Python Data Analytics with Pandas, NumPy, SciPy and Matplotlib

Introduction Download
Course Outline Download
NumPy
SciPy
Matplotlib
Pandas
DayModulesSharing
1
  • Data Analysis
  • Knowledge Domains of the Data Analyst
  • Understanding the Nature of the Data
  • The Data Analysis Process
  • Quantitative and Qualitative Data Analysis
  • Open Data
  • Python and Data Analysis
  • The Language
  • Python 2 and Python 3
  • The IDEs for Python
  • Packages for Data Analysis
2
  • The History
  • Ndarray: The Heart of the Library
  • Basic Operations
  • Indexing, Slicing, and Iterating
  • Conditions and Boolean Arrays
  • Shape Manipulation
  • Array Manipulation
  • General Concepts
  • Structured Arrays
  • Reading and Writing Array Data on Files
  • pandas: The Python Data Analysis Library
  • Installation of pandas
  • Testing Your pandas Installation
  • Getting Started with pandas
  • Introduction to pandas Data Structures
  • Other Functionalities on Indexes
  • Operations Between Data Structures
  • Function Application and Mapping
  • Sorting and Ranking
  • Correlation and Covariance
  • “Not a Number” Data
  • Hierarchical Indexing and Leveling
  • I/O API Tools
  • CSV and Textual Files
  • Reading Data in CSV or Text Files
  • Reading and Writing HTML Files
  • Reading Data from XML
  • Reading and Writing Data on Microsoft Excel Files
  • JSON Data
  • The Format HDF5
  • Pickle—Python Object Serialization
  • Interacting with Databases
  • Reading and Writing Data with a NoSQL Database: MongoDB
  • Data Preparation
  • Concatenating
  • Data Transformation
  • Discretization and Binning
  • Permutation
  • String Manipulation
  • Data Aggregation
  • Group Iteration
  • Advanced Data Aggregation
  • The matplotlib Library
  • The IPython and IPython QtConsole
  • The matplotlib Architecture
  • pyplot
  • The Plotting Window
  • Using the kwargs
  • Adding Elements to the Chart
  • Saving Your Charts
  • Handling Date Values
  • Chart Typology
  • Line Charts
  • Histograms
  • Bar Charts
  • Pie Charts
  • Advanced Charts
  • The mplot3d Toolkit
  • Multi-Panel Plots

Recommanded Books
TitleNumpy Programming, For Beginners, Quick Start Guide: Numpy Language Crash Course Tutorial & Exercises
ISBNB09446DZQH
AuthorYao, Ray
Year2021
Publisher In Easy Step By Step, Teach Yourself eBook & Book
TitlePython Data Analytics: Mastering Python for Effective Data Analysis and Visualization
ISBNB0CW28VQJ4
AuthorFloyd Bax
Year2024
Publisher FLOYD BAX; 1st edition
TitlePandas for Everyone: Python Data Analysis
ISBN978-0-137-89115-3
AuthorDaniel Chen
Year2023
Publisher Addison-Wesley Professional
TitleData Analysis with Python: Introducing NumPy, Pandas, Matplotlib, and Essential Elements of Python Programming
ISBN978-9-355-51065-5
AuthorRituraj Dixit
Year2023
Publisher BPB Publications
TitlePython for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter
ISBN978-1-098-10403-0
AuthorWes McKinney
Year2022
Publisher O'Reilly Media
TitlePandas 1.x Cookbook: Practical recipes for scientific computing, time series analysis, and exploratory data analysis using Python
ISBN978-1-839-21310-6
AuthorMatt Harrison, Theodore Petrou
Year2020
Publisher Packt Publishing
TitleLearn Python: A Beginner's Guide to Python, Numpy,Pandas and Scipy
ISBNB098YPMHDB
AuthorKumar, Kishore
Year2021
Publisher
TitleNumerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib
ISBN978-1-484-24245-2
AuthorRobert Johansson
Year2019
Publisher Apress
TitlePython for Data Analysis: A Basic Programming Crash Course to Learn Python Data Science Essential Tools, Pandas, and Numpy with Questions and Answer from Beginners to Advanced
ISBNB07Z6H5Y7H
AuthorOscar Scratch
Year2019
Publisher
TitlePython Data Analytics: With Pandas, NumPy, and Matplotlib
ISBN978-1-484-23912-4
AuthorFabio Nelli
Year2018
Publisher Apress
TitleUse MySQL with Python
ISBN
AuthorM. MOka
Year2016
Publisher
TitleMySQL for Python
ISBN978-1-849-51018-9
AuthorAlbert Lukaszewski
Year2010
Publisher Packt Publishing