
Matplotlib
Release 3.4.3

John Hunter
Darren Dale
Eric Firing

Michael Droettboom
and the matplotlib development team

August 13, 2021

CONTENTS

I User's Guide 1

1 Installation 3

2 Tutorials 7

3 Interactive Figures 403

4 What's new? 425

5 What's new in Matplotlib 3.4.0 427

6 History 461

7 GitHub Stats 463

8 Previous What's New 677

9 License 917

10 Citing Matplotlib 921

11 Credits 925

II The Matplotlib FAQ 929

12 Installation 931

13 How-to 935

14 Troubleshooting 943

15 Environment Variables 947

III API Overview 949

16 API Changes 951

i

17 Usage patterns 1139

18 Modules 1141

19 Toolkits 2929

IV External Resources 3157

20 Books, Chapters and Articles 3159

21 Videos 3161

22 Tutorials 3163

V Third party packages 3165

23 Mapping toolkits 3169

24 Declarative libraries 3173

25 Specialty plots 3175

26 Animations 3181

27 Interactivity 3183

28 Rendering backends 3185

29 GUI integration 3187

30 Miscellaneous 3189

31 GUI applications 3195

VI The Matplotlib Developers' Guide 3197

32 Contributing 3201

33 Bug triaging and issue curation 3211

34 Setting up Matplotlib for development 3215

35 Testing 3219

36 Writing documentation 3225

37 Developer's guide for creating scales and transformations 3245

38 Working withMatplotlib source code 3249

ii

39 Pull request guidelines 3271

40 Release Guide 3277

41 Dependencies 3285

42 Minimum Version of Dependencies Policy 3289

43 Matplotlib Enhancement Proposals 3291

44 Licenses 3357

45 Default Color changes 3359

VII Appendices 3363

Bibliography 3365

Python Module Index 3367

Index 3369

iii

iv

Part I

User's Guide

1

CHAPTER

ONE

INSTALLATION

1.1 Installing from source

If you are interested in contributing to Matplotlib development, running the latest source code, or just like to
build everything yourself, it is not difficult to build Matplotlib from source.

First you need to install the Dependencies.

A C compiler is required. Typically, on Linux, you will need gcc, which should be installed using your
distribution's package manager; on macOS, you will need xcode; on Windows, you will need Visual Studio
2015 or later.

The easiest way to get the latest development version to start contributing is to go to the git repository and
run:

git clone https://github.com/matplotlib/matplotlib.git

or:

git clone git@github.com:matplotlib/matplotlib.git

If you're developing, it's better to do it in editable mode. The reason why is that pytest's test discovery only
works for Matplotlib if installation is done this way. Also, editable mode allows your code changes to be
instantly propagated to your library code without reinstalling (though you will have to restart your python
process / kernel):

cd matplotlib
python -m pip install -e .

If you're not developing, it can be installed from the source directory with a simple (just replace the last step):

python -m pip install .

To run the tests you will need to install some additional dependencies:

python -m pip install -r requirements/dev/dev-requirements.txt

Then, if you want to update your Matplotlib at any time, just do:

3

https://guide.macports.org/chunked/installing.html#installing.xcode
https://github.com/matplotlib/matplotlib

Matplotlib, Release 3.4.3

git pull

When you run git pull, if the output shows that only Python files have been updated, you are all set. If
C files have changed, you need to run pip install -e . again to compile them.

There is more information on using git in the developer docs.

Warning: The following instructions in this section are for very custom installations of Matplotlib.
Proceed with caution because these instructions may result in your build producing unexpected behavior
and/or causing local testing to fail.

If you would like to build from a tarball, grab the latest tar.gz release file from the PyPI files page.

We provide a setup.cfg file which you can use to customize the build process. For example, which default
backend to use, whether some of the optional libraries that Matplotlib ships with are installed, and so on.
This file will be particularly useful to those packaging Matplotlib.

If you are building your own Matplotlib wheels (or sdists) on Windows, note that any DLLs that you copy
into the source tree will be packaged too.

1.2 Installing an official release

Matplotlib releases are available as wheel packages for macOS, Windows and Linux on PyPI. Install it using
pip:

python -m pip install -U pip
python -m pip install -U matplotlib

If this command results in Matplotlib being compiled from source and there's trouble with the compilation,
you can add --prefer-binary to select the newest version ofMatplotlib for which there is a precompiled
wheel for your OS and Python.

Note: The following backends work out of the box: Agg, ps, pdf, svg

Python is typically shipped with tk bindings which are used by TkAgg.

For support of other GUI frameworks, LaTeX rendering, saving animations and a larger selection of file
formats, you can install Optional dependencies.

4 Chapter 1. Installation

https://pypi.org/project/matplotlib/
https://raw.githubusercontent.com/matplotlib/matplotlib/master/setup.cfg.template
https://pypi.org/project/matplotlib/

Matplotlib, Release 3.4.3

1.3 Third-party distributions

Various third-parties provide Matplotlib for their environments.

1.3.1 Conda packages

Matplotlib is available both via the anaconda main channel

conda install matplotlib

as well as via the conda-forge community channel

conda install -c conda-forge matplotlib

1.3.2 Python distributions

Matplotlib is part of major Python distributions:

• Anaconda

• ActiveState ActivePython

• WinPython

1.3.3 Linux package manager

If you are using the Python version that comes with your Linux distribution, you can install Matplotlib via
your package manager, e.g.:

• Debian / Ubuntu: sudo apt-get install python3-matplotlib

• Fedora: sudo dnf install python3-matplotlib

• Red Hat: sudo yum install python3-matplotlib

• Arch: sudo pacman -S python-matplotlib

1.4 Installing from source

See Installing from source.

1.3. Third-party distributions 5

https://www.anaconda.com/
https://www.activestate.com/activepython/downloads
https://winpython.github.io/

Matplotlib, Release 3.4.3

1.5 Installing for development

See Setting up Matplotlib for development.

6 Chapter 1. Installation

CHAPTER

TWO

TUTORIALS

This page contains more in-depth guides for using Matplotlib. It is broken up into beginner, intermediate,
and advanced sections, as well as sections covering specific topics.

For shorter examples, see our examples page. You can also find external resources and a FAQ in our user
guide.

2.1 Introductory

These tutorials cover the basics of creating visualizations with Matplotlib, as well as some best-practices in
using the package effectively.

2.1.1 Usage Guide

This tutorial covers some basic usage patterns and best-practices to help you get started with Matplotlib.

import matplotlib.pyplot as plt
import numpy as np

A simple example

Matplotlib graphs your data on Figures (i.e., windows, Jupyter widgets, etc.), each of which can contain
one or more Axes (i.e., an area where points can be specified in terms of x-y coordinates, or theta-r in a
polar plot, or x-y-z in a 3D plot, etc.). The simplest way of creating a figure with an axes is using pyplot.
subplots. We can then use Axes.plot to draw some data on the axes:

fig, ax = plt.subplots() # Create a figure containing a single axes.
ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) # Plot some data on the axes.

7

../gallery/index.html
../resources/index.html
../faq/index.html
../contents.html
../contents.html

Matplotlib, Release 3.4.3

Out:

[<matplotlib.lines.Line2D object at 0x7fe64a1cf1f0>]

Many other plotting libraries or languages do not require you to explicitly create an axes. For example, in
MATLAB, one can just do

plot([1, 2, 3, 4], [1, 4, 2, 3]) % MATLAB plot.

and get the desired graph.

In fact, you can do the same inMatplotlib: for each Axes graphing method, there is a corresponding function
in the matplotlib.pyplotmodule that performs that plot on the "current" axes, creating that axes (and
its parent figure) if they don't exist yet. So, the previous example can be written more shortly as

plt.plot([1, 2, 3, 4], [1, 4, 2, 3]) # Matplotlib plot.

8 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

[<matplotlib.lines.Line2D object at 0x7fe659d068b0>]

Parts of a Figure

Now, let's have a deeper look at the components of a Matplotlib figure.

2.1. Introductory 9

Matplotlib, Release 3.4.3

Figure

The whole figure. The figure keeps track of all the child Axes, a smattering of 'special' artists (titles, figure
legends, etc), and the canvas. (Don't worry too much about the canvas, it is crucial as it is the object that
actually does the drawing to get you your plot, but as the user it is more-or-less invisible to you). A figure
can contain any number of Axes, but will typically have at least one.

The easiest way to create a new figure is with pyplot:

fig = plt.figure() # an empty figure with no Axes
fig, ax = plt.subplots() # a figure with a single Axes

(continues on next page)

10 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
fig, axs = plt.subplots(2, 2) # a figure with a 2x2 grid of Axes

It's convenient to create the axes together with the figure, but you can also add axes later on, allowing for
more complex axes layouts.

Axes

This is what you think of as 'a plot', it is the region of the image with the data space. A given figure can
contain many Axes, but a given Axes object can only be in one Figure. The Axes contains two (or
three in the case of 3D) Axis objects (be aware of the difference between Axes and Axis) which take
care of the data limits (the data limits can also be controlled via the axes.Axes.set_xlim() and
axes.Axes.set_ylim() methods). Each Axes has a title (set via set_title()), an x-label (set
via set_xlabel()), and a y-label set via set_ylabel()).

The Axes class and its member functions are the primary entry point to working with the OO interface.

Axis

These are the number-line-like objects. They take care of setting the graph limits and generating the ticks
(the marks on the axis) and ticklabels (strings labeling the ticks). The location of the ticks is determined by a
Locator object and the ticklabel strings are formatted by a Formatter. The combination of the correct
Locator and Formatter gives very fine control over the tick locations and labels.

Artist

Basically, everything you can see on the figure is an artist (even the Figure, Axes, and Axis objects).
This includes Text objects, Line2D objects, collections objects, Patch objects ... (you get the idea).
When the figure is rendered, all of the artists are drawn to the canvas. Most Artists are tied to an Axes; such
an Artist cannot be shared by multiple Axes, or moved from one to another.

Types of inputs to plotting functions

All of plotting functions expect numpy.array or numpy.ma.masked_array as input. Classes that
are 'array-like' such as pandas data objects and numpy.matrix may or may not work as intended. It is
best to convert these to numpy.array objects prior to plotting.

For example, to convert a pandas.DataFrame

a = pandas.DataFrame(np.random.rand(4, 5), columns = list('abcde'))
a_asarray = a.values

and to convert a numpy.matrix

2.1. Introductory 11

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numpy.org/doc/stable/reference/generated/numpy.ma.masked_array.html#numpy.ma.masked_array
https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix

Matplotlib, Release 3.4.3

b = np.matrix([[1, 2], [3, 4]])
b_asarray = np.asarray(b)

The object-oriented interface and the pyplot interface

As noted above, there are essentially two ways to use Matplotlib:

• Explicitly create figures and axes, and call methods on them (the "object-oriented (OO) style").

• Rely on pyplot to automatically create and manage the figures and axes, and use pyplot functions for
plotting.

So one can do (OO-style)

x = np.linspace(0, 2, 100)

Note that even in the OO-style, we use `.pyplot.figure` to create the␣
↪figure.

fig, ax = plt.subplots() # Create a figure and an axes.
ax.plot(x, x, label='linear') # Plot some data on the axes.
ax.plot(x, x**2, label='quadratic') # Plot more data on the axes...
ax.plot(x, x**3, label='cubic') # ... and some more.
ax.set_xlabel('x label') # Add an x-label to the axes.
ax.set_ylabel('y label') # Add a y-label to the axes.
ax.set_title("Simple Plot") # Add a title to the axes.
ax.legend() # Add a legend.

12 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

<matplotlib.legend.Legend object at 0x7fe65a0d3c70>

or (pyplot-style)

x = np.linspace(0, 2, 100)

plt.plot(x, x, label='linear') # Plot some data on the (implicit) axes.
plt.plot(x, x**2, label='quadratic') # etc.
plt.plot(x, x**3, label='cubic')
plt.xlabel('x label')
plt.ylabel('y label')
plt.title("Simple Plot")
plt.legend()

2.1. Introductory 13

Matplotlib, Release 3.4.3

Out:

<matplotlib.legend.Legend object at 0x7fe64c428340>

In addition, there is a third approach, for the case when embedding Matplotlib in a GUI application, which
completely drops pyplot, even for figure creation. We won't discuss it here; see the corresponding section in
the gallery for more info (user_interfaces).

Matplotlib's documentation and examples use both the OO and the pyplot approaches (which are equally
powerful), and you should feel free to use either (however, it is preferable pick one of them and stick to it,
instead of mixing them). In general, we suggest to restrict pyplot to interactive plotting (e.g., in a Jupyter
notebook), and to prefer the OO-style for non-interactive plotting (in functions and scripts that are intended
to be reused as part of a larger project).

Note: In older examples, you may find examples that instead used the so-called pylab interface, via from
pylab import *. This star-import imports everything both from pyplot and from numpy, so that one
could do

x = linspace(0, 2, 100)
plot(x, x, label='linear')
...

14 Chapter 2. Tutorials

https://numpy.org/doc/stable/reference/index.html#module-numpy

Matplotlib, Release 3.4.3

for an even more MATLAB-like style. This approach is strongly discouraged nowadays and deprecated. It
is only mentioned here because you may still encounter it in the wild.

Typically one finds oneself making the same plots over and over again, but with different data sets, which
leads to needing to write specialized functions to do the plotting. The recommended function signature is
something like:

def my_plotter(ax, data1, data2, param_dict):
"""
A helper function to make a graph

Parameters

ax : Axes

The axes to draw to

data1 : array
The x data

data2 : array
The y data

param_dict : dict
Dictionary of kwargs to pass to ax.plot

Returns

out : list

list of artists added
"""
out = ax.plot(data1, data2, **param_dict)
return out

which you would then use as:

data1, data2, data3, data4 = np.random.randn(4, 100)
fig, ax = plt.subplots(1, 1)
my_plotter(ax, data1, data2, {'marker': 'x'})

2.1. Introductory 15

Matplotlib, Release 3.4.3

Out:

[<matplotlib.lines.Line2D object at 0x7fe64b5e2220>]

or if you wanted to have 2 sub-plots:

fig, (ax1, ax2) = plt.subplots(1, 2)
my_plotter(ax1, data1, data2, {'marker': 'x'})
my_plotter(ax2, data3, data4, {'marker': 'o'})

16 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

[<matplotlib.lines.Line2D object at 0x7fe64b411250>]

For these simple examples this style seems like overkill, however once the graphs get slightly more complex
it pays off.

Backends

What is a backend?

A lot of documentation on the website and in the mailing lists refers to the "backend" and many new users
are confused by this term. Matplotlib targets many different use cases and output formats. Some people use
Matplotlib interactively from the python shell and have plotting windows pop up when they type commands.
Some people run Jupyter notebooks and draw inline plots for quick data analysis. Others embed Matplotlib
into graphical user interfaces like PyQt or PyGObject to build rich applications. Some people use Matplotlib
in batch scripts to generate postscript images from numerical simulations, and still others run web application
servers to dynamically serve up graphs.

To support all of these use cases, Matplotlib can target different outputs, and each of these capabilities is
called a backend; the "frontend" is the user facing code, i.e., the plotting code, whereas the "backend" does

2.1. Introductory 17

https://jupyter.org

Matplotlib, Release 3.4.3

all the hard work behind-the-scenes to make the figure. There are two types of backends: user interface
backends (for use in PyQt/PySide, PyGObject, Tkinter, wxPython, or macOS/Cocoa); also referred to as
"interactive backends") and hardcopy backends to make image files (PNG, SVG, PDF, PS; also referred to
as "non-interactive backends").

Selecting a backend

There are three ways to configure your backend:

1. The rcParams["backend"] parameter in your matplotlibrc file

2. The MPLBACKEND environment variable

3. The function matplotlib.use()

A more detailed description is given below.

If multiple of these are configurations are present, the last one from the list takes precedence; e.g. calling
matplotlib.use() will override the setting in your matplotlibrc.

If no backend is explicitly set, Matplotlib automatically detects a usable backend based on what is available
on your system and on whether a GUI event loop is already running. On Linux, if the environment variable
DISPLAY is unset, the "event loop" is identified as "headless", which causes a fallback to a noninteractive
backend (agg); in all other cases, an interactive backend is preferred (usually, at least tkagg will be available).

Here is a detailed description of the configuration methods:

1. Setting rcParams["backend"] in your matplotlibrc file:

backend : qt5agg # use pyqt5 with antigrain (agg) rendering

See also Customizing Matplotlib with style sheets and rcParams.

2. Setting the MPLBACKEND environment variable:

You can set the environment variable either for your current shell or for a single script.

On Unix:

> export MPLBACKEND=qt5agg
> python simple_plot.py

> MPLBACKEND=qt5agg python simple_plot.py

On Windows, only the former is possible:

> set MPLBACKEND=qt5agg
> python simple_plot.py

Setting this environment variable will override thebackend parameter in anymatplotlibrc, even
if there is a matplotlibrc in your current working directory. Therefore, setting MPLBACKEND
globally, e.g. in your .bashrc or .profile, is discouraged as it might lead to counter-intuitive
behavior.

18 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=backend#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=backend#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

3. If your script depends on a specific backend you can use the function matplotlib.use():

import matplotlib
matplotlib.use('qt5agg')

This should be done before any figure is created, otherwise Matplotlib may fail to switch the backend
and raise an ImportError.

Using use will require changes in your code if users want to use a different backend. Therefore, you
should avoid explicitly calling use unless absolutely necessary.

The builtin backends

By default, Matplotlib should automatically select a default backend which allows both interactive work and
plotting from scripts, with output to the screen and/or to a file, so at least initially, you will not need to worry
about the backend. The most common exception is if your Python distribution comes without tkinter
and you have no other GUI toolkit installed. This happens on certain Linux distributions, where you need to
install a Linux package named python-tk (or similar).

If, however, you want to write graphical user interfaces, or a web application server
(/gallery/user_interfaces/web_application_server_sgskip), or need a better understanding of what is
going on, read on. To make things a little more customizable for graphical user interfaces, Matplotlib
separates the concept of the renderer (the thing that actually does the drawing) from the canvas (the place
where the drawing goes). The canonical renderer for user interfaces is Agg which uses the Anti-Grain
Geometry C++ library to make a raster (pixel) image of the figure; it is used by the Qt5Agg, Qt4Agg,
GTK3Agg, wxAgg, TkAgg, and macosx backends. An alternative renderer is based on the Cairo library,
used by Qt5Cairo, Qt4Cairo, etc.

For the rendering engines, one can also distinguish between vector or raster renderers. Vector graphics
languages issue drawing commands like "draw a line from this point to this point" and hence are scale free,
and raster backends generate a pixel representation of the line whose accuracy depends on a DPI setting.

Here is a summary of the Matplotlib renderers (there is an eponymous backend for each; these are non-
interactive backends, capable of writing to a file):

Ren-
derer

Filetypes Description

AGG png raster graphics -- high quality images using the Anti-Grain Geometry en-
gine

PDF pdf vector graphics -- Portable Document Format
PS ps, eps vector graphics -- Postscript output
SVG svg vector graphics -- Scalable Vector Graphics
PGF pgf, pdf vector graphics -- using the pgf package
Cairo png, ps, pdf,

svg
raster or vector graphics -- using the Cairo library

To save plots using the non-interactive backends, use the matplotlib.pyplot.
savefig('filename') method.

2.1. Introductory 19

https://docs.python.org/3/library/tkinter.html#module-tkinter
http://antigrain.com/
http://antigrain.com/
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/Raster_graphics
http://antigrain.com/
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Portable_Document_Format
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/Vector_graphics
https://ctan.org/pkg/pgf
https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/Vector_graphics
https://www.cairographics.org

Matplotlib, Release 3.4.3

And here are the user interfaces and renderer combinations supported; these are interactive backends, capable
of displaying to the screen and of using appropriate renderers from the table above to write to a file:

Back-
end

Description

Qt5Agg Agg rendering in a Qt5 canvas (requires PyQt5). This backend can be activated in IPython with
%matplotlib qt5.

ipympl Agg rendering embedded in a Jupyter widget. (requires ipympl). This backend can be enabled
in a Jupyter notebook with %matplotlib ipympl.

GTK3AggAgg rendering to aGTK3.x canvas (requires PyGObject, and pycairo or cairocffi). This backend
can be activated in IPython with %matplotlib gtk3.

ma-
cosx

Agg rendering into a Cocoa canvas in OSX. This backend can be activated in IPython with
%matplotlib osx.

TkAgg Agg rendering to a Tk canvas (requires TkInter). This backend can be activated in IPython with
%matplotlib tk.

nbAgg Embed an interactive figure in a Jupyter classic notebook. This backend can be enabled in
Jupyter notebooks via %matplotlib notebook.

We-
bAgg

On show() will start a tornado server with an interactive figure.

GTK3CairoCairo rendering to a GTK 3.x canvas (requires PyGObject, and pycairo or cairocffi).
Qt4Agg Agg rendering to a Qt4 canvas (requires PyQt4 or pyside). This backend can be activated in

IPython with %matplotlib qt4.
wx-
Agg

Agg rendering to a wxWidgets canvas (requires wxPython 4). This backend can be activated in
IPython with %matplotlib wx.

Note: The names of builtin backends case-insensitive; e.g., 'Qt5Agg' and 'qt5agg' are equivalent.

ipympl

The Jupyter widget ecosystem is moving too fast to support directly in Matplotlib. To install ipympl

pip install ipympl
jupyter nbextension enable --py --sys-prefix ipympl

or

conda install ipympl -c conda-forge

See jupyter-matplotlib for more details.

20 Chapter 2. Tutorials

https://doc.qt.io/qt-5/index.html
https://riverbankcomputing.com/software/pyqt/intro
https://www.gtk.org/
https://wiki.gnome.org/action/show/Projects/PyGObject
https://www.cairographics.org/pycairo/
https://pythonhosted.org/cairocffi/
https://www.tcl.tk/
https://docs.python.org/3/library/tk.html
https://www.gtk.org/
https://wiki.gnome.org/action/show/Projects/PyGObject
https://www.cairographics.org/pycairo/
https://pythonhosted.org/cairocffi/
https://doc.qt.io/archives/qt-4.8/index.html
https://riverbankcomputing.com/software/pyqt/intro
https://www.wxwidgets.org/
https://www.wxpython.org/
https://github.com/matplotlib/jupyter-matplotlib

Matplotlib, Release 3.4.3

How do I select PyQt4 or PySide?

The QT_API environment variable can be set to either pyqt or pyside to use PyQt4 or PySide, re-
spectively.

Since the default value for the bindings to be used is PyQt4, Matplotlib first tries to import it. If the import
fails, it tries to import PySide.

Using non-builtin backends

More generally, any importable backend can be selected by using any of the methods above. If name.of.
the.backend is the module containing the backend, use module://name.of.the.backend as the
backend name, e.g. matplotlib.use('module://name.of.the.backend').

What is interactive mode?

Use of an interactive backend (see What is a backend?) permits--but does not by itself require or ensure--
plotting to the screen. Whether and when plotting to the screen occurs, and whether a script or shell session
continues after a plot is drawn on the screen, depends on the functions and methods that are called, and on a
state variable that determines whetherMatplotlib is in "interactive mode". The default Boolean value is set by
the matplotlibrc file, and may be customized like any other configuration parameter (see Customizing
Matplotlib with style sheets and rcParams). It may also be set via matplotlib.interactive(), and
its value may be queried via matplotlib.is_interactive(). Turning interactive mode on and off in
the middle of a stream of plotting commands, whether in a script or in a shell, is rarely needed and potentially
confusing. In the following, we will assume all plotting is done with interactive mode either on or off.

Note: Major changes related to interactivity, and in particular the role and behavior of show(), were made
in the transition to Matplotlib version 1.0, and bugs were fixed in 1.0.1. Here we describe the version 1.0.1
behavior for the primary interactive backends, with the partial exception of macosx.

Interactive mode may also be turned on via matplotlib.pyplot.ion(), and turned off via
matplotlib.pyplot.ioff().

Note: Interactive mode works with suitable backends in ipython and in the ordinary python shell, but it
does not work in the IDLE IDE. If the default backend does not support interactivity, an interactive backend
can be explicitly activated using any of the methods discussed in What is a backend?.

2.1. Introductory 21

Matplotlib, Release 3.4.3

Interactive example

From an ordinary python prompt, or after invoking ipython with no options, try this:

import matplotlib.pyplot as plt
plt.ion()
plt.plot([1.6, 2.7])

This will pop up a plot window. Your terminal prompt will remain active, so that you can type additional
commands such as:

plt.title("interactive test")
plt.xlabel("index")

On most interactive backends, the figure window will also be updated if you change it via the object-oriented
interface. E.g. get a reference to the Axes instance, and call a method of that instance:

ax = plt.gca()
ax.plot([3.1, 2.2])

If you are using certain backends (like macosx), or an older version of Matplotlib, you may not see the new
line added to the plot immediately. In this case, you need to explicitly call draw() in order to update the
plot:

plt.draw()

Non-interactive example

Start a fresh session as in the previous example, but now turn interactive mode off:

import matplotlib.pyplot as plt
plt.ioff()
plt.plot([1.6, 2.7])

Nothing happened--or at least nothing has shown up on the screen (unless you are using macosx backend,
which is anomalous). To make the plot appear, you need to do this:

plt.show()

Now you see the plot, but your terminal command line is unresponsive; pyplot.show() blocks the input
of additional commands until you manually kill the plot window.

What good is this--being forced to use a blocking function? Suppose you need a script that plots the contents
of a file to the screen. You want to look at that plot, and then end the script. Without some blocking command
such as show(), the script would flash up the plot and then end immediately, leaving nothing on the screen.

In addition, non-interactive mode delays all drawing until show() is called; this is more efficient than
redrawing the plot each time a line in the script adds a new feature.

22 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Prior to version 1.0, show() generally could not be called more than once in a single script (although
sometimes one could get away with it); for version 1.0.1 and above, this restriction is lifted, so one can write
a script like this:

import numpy as np
import matplotlib.pyplot as plt

plt.ioff()
for i in range(3):

plt.plot(np.random.rand(10))
plt.show()

This makes three plots, one at a time. I.e., the second plot will show up once the first plot is closed.

Summary

In interactive mode, pyplot functions automatically draw to the screen.

When plotting interactively, if using object method calls in addition to pyplot functions, then call draw()
whenever you want to refresh the plot.

Use non-interactive mode in scripts in which you want to generate one or more figures and display them
before ending or generating a new set of figures. In that case, use show() to display the figure(s) and to
block execution until you have manually destroyed them.

Performance

Whether exploring data in interactive mode or programmatically saving lots of plots, rendering performance
can be a painful bottleneck in your pipeline. Matplotlib provides a couple ways to greatly reduce rendering
time at the cost of a slight change (to a settable tolerance) in your plot's appearance. The methods available
to reduce rendering time depend on the type of plot that is being created.

Line segment simplification

For plots that have line segments (e.g. typical line plots, outlines of polygons, etc.), rendering performance
can be controlled by rcParams["path.simplify"] (default: True) and rcParams["path.
simplify_threshold"] (default: 0.111111111111), which can be defined e.g. in the mat-
plotlibrc file (see Customizing Matplotlib with style sheets and rcParams for more information about
the matplotlibrc file). rcParams["path.simplify"] (default: True) is a boolean indicating
whether or not line segments are simplified at all. rcParams["path.simplify_threshold"] (de-
fault: 0.111111111111) controls how much line segments are simplified; higher thresholds result in
quicker rendering.

The following script will first display the data without any simplification, and then display the same data
with simplification. Try interacting with both of them:

2.1. Introductory 23

../../tutorials/introductory/customizing.html?highlight=path.simplify#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=path.simplify_threshold#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=path.simplify_threshold#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=path.simplify#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=path.simplify_threshold#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

Setup, and create the data to plot
y = np.random.rand(100000)
y[50000:] *= 2
y[np.geomspace(10, 50000, 400).astype(int)] = -1
mpl.rcParams['path.simplify'] = True

mpl.rcParams['path.simplify_threshold'] = 0.0
plt.plot(y)
plt.show()

mpl.rcParams['path.simplify_threshold'] = 1.0
plt.plot(y)
plt.show()

Matplotlib currently defaults to a conservative simplification threshold of 1/9. If you want to change your
default settings to use a different value, you can change your matplotlibrc file. Alternatively, you could
create a new style for interactive plotting (with maximal simplification) and another style for publication
quality plotting (with minimal simplification) and activate them as necessary. See Customizing Matplotlib
with style sheets and rcParams for instructions on how to perform these actions.

The simplification works by iteratively merging line segments into a single vector until the next line seg-
ment's perpendicular distance to the vector (measured in display-coordinate space) is greater than the path.
simplify_threshold parameter.

Note: Changes related to how line segments are simplified were made in version 2.1. Rendering time will
still be improved by these parameters prior to 2.1, but rendering time for some kinds of data will be vastly
improved in versions 2.1 and greater.

Marker simplification

Markers can also be simplified, albeit less robustly than line segments. Marker simplification is only available
to Line2D objects (through the markevery property). Wherever Line2D construction parameters are
passed through, such as matplotlib.pyplot.plot() and matplotlib.axes.Axes.plot(),
the markevery parameter can be used:

plt.plot(x, y, markevery=10)

The markevery argument allows for naive subsampling, or an attempt at evenly spaced (along the x axis)
sampling. See the /gallery/lines_bars_and_markers/markevery_demo for more information.

24 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Splitting lines into smaller chunks

If you are using the Agg backend (see What is a backend?), then you can make use of rcParams["agg.
path.chunksize"] (default: 0) This allows you to specify a chunk size, and any lines with greater than
that many vertices will be split intomultiple lines, each of which has nomore thanagg.path.chunksize
many vertices. (Unless agg.path.chunksize is zero, in which case there is no chunking.) For some
kind of data, chunking the line up into reasonable sizes can greatly decrease rendering time.

The following script will first display the data without any chunk size restriction, and then display the same
data with a chunk size of 10,000. The difference can best be seen when the figures are large, try maximizing
the GUI and then interacting with them:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['path.simplify_threshold'] = 1.0

Setup, and create the data to plot
y = np.random.rand(100000)
y[50000:] *= 2
y[np.geomspace(10, 50000, 400).astype(int)] = -1
mpl.rcParams['path.simplify'] = True

mpl.rcParams['agg.path.chunksize'] = 0
plt.plot(y)
plt.show()

mpl.rcParams['agg.path.chunksize'] = 10000
plt.plot(y)
plt.show()

Legends

The default legend behavior for axes attempts to find the location that covers the fewest data points
(loc='best'). This can be a very expensive computation if there are lots of data points. In this case,
you may want to provide a specific location.

Using the fast style

The fast style can be used to automatically set simplification and chunking parameters to reasonable settings
to speed up plotting large amounts of data. It can be used simply by running:

import matplotlib.style as mplstyle
mplstyle.use('fast')

It is very lightweight, so it plays nicely with other styles, just make sure the fast style is applied last so that
other styles do not overwrite the settings:

2.1. Introductory 25

../../tutorials/introductory/customizing.html?highlight=agg.path.chunksize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=agg.path.chunksize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

mplstyle.use(['dark_background', 'ggplot', 'fast'])

Total running time of the script: (0 minutes 2.430 seconds)

2.1.2 Pyplot tutorial

An introduction to the pyplot interface.

Intro to pyplot

matplotlib.pyplot is a collection of functions that make matplotlib work like MATLAB. Each py-
plot function makes some change to a figure: e.g., creates a figure, creates a plotting area in a figure, plots
some lines in a plotting area, decorates the plot with labels, etc.

In matplotlib.pyplot various states are preserved across function calls, so that it keeps track of things
like the current figure and plotting area, and the plotting functions are directed to the current axes (please
note that "axes" here and in most places in the documentation refers to the axes part of a figure and not the
strict mathematical term for more than one axis).

Note: the pyplot API is generally less-flexible than the object-oriented API. Most of the function calls you
see here can also be called as methods from an Axes object. We recommend browsing the tutorials and
examples to see how this works.

Generating visualizations with pyplot is very quick:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4])
plt.ylabel('some numbers')
plt.show()

26 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

You may be wondering why the x-axis ranges from 0-3 and the y-axis from 1-4. If you provide a single list
or array to plot, matplotlib assumes it is a sequence of y values, and automatically generates the x values
for you. Since python ranges start with 0, the default x vector has the same length as y but starts with 0.
Hence the x data are [0, 1, 2, 3].

plot is a versatile function, and will take an arbitrary number of arguments. For example, to plot x versus
y, you can write:

plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

2.1. Introductory 27

Matplotlib, Release 3.4.3

Out:

[<matplotlib.lines.Line2D object at 0x7fe64a20c9a0>]

Formatting the style of your plot

For every x, y pair of arguments, there is an optional third argument which is the format string that indicates
the color and line type of the plot. The letters and symbols of the format string are from MATLAB, and you
concatenate a color string with a line style string. The default format string is 'b-', which is a solid blue line.
For example, to plot the above with red circles, you would issue

plt.plot([1, 2, 3, 4], [1, 4, 9, 16], 'ro')
plt.axis([0, 6, 0, 20])
plt.show()

28 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

See the plot documentation for a complete list of line styles and format strings. The axis function in the
example above takes a list of [xmin, xmax, ymin, ymax] and specifies the viewport of the axes.

If matplotlib were limited to working with lists, it would be fairly useless for numeric processing. Generally,
you will use numpy arrays. In fact, all sequences are converted to numpy arrays internally. The example
below illustrates plotting several lines with different format styles in one function call using arrays.

import numpy as np

evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()

2.1. Introductory 29

http://www.numpy.org

Matplotlib, Release 3.4.3

Plotting with keyword strings

There are some instances where you have data in a format that lets you access particular variables with
strings. For example, with numpy.recarray or pandas.DataFrame.

Matplotlib allows you provide such an object with the data keyword argument. If provided, then you may
generate plots with the strings corresponding to these variables.

data = {'a': np.arange(50),
'c': np.random.randint(0, 50, 50),
'd': np.random.randn(50)}

data['b'] = data['a'] + 10 * np.random.randn(50)
data['d'] = np.abs(data['d']) * 100

plt.scatter('a', 'b', c='c', s='d', data=data)
plt.xlabel('entry a')
plt.ylabel('entry b')
plt.show()

30 Chapter 2. Tutorials

https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Matplotlib, Release 3.4.3

Plotting with categorical variables

It is also possible to create a plot using categorical variables. Matplotlib allows you to pass categorical
variables directly to many plotting functions. For example:

names = ['group_a', 'group_b', 'group_c']
values = [1, 10, 100]

plt.figure(figsize=(9, 3))

plt.subplot(131)
plt.bar(names, values)
plt.subplot(132)
plt.scatter(names, values)
plt.subplot(133)
plt.plot(names, values)
plt.suptitle('Categorical Plotting')
plt.show()

2.1. Introductory 31

Matplotlib, Release 3.4.3

Controlling line properties

Lines have many attributes that you can set: linewidth, dash style, antialiased, etc; see matplotlib.
lines.Line2D. There are several ways to set line properties

• Use keyword args:

plt.plot(x, y, linewidth=2.0)

• Use the setter methods of a Line2D instance. plot returns a list of Line2D objects; e.g., line1,
line2 = plot(x1, y1, x2, y2). In the code below we will suppose that we have only one
line so that the list returned is of length 1. We use tuple unpacking with line, to get the first element
of that list:

line, = plt.plot(x, y, '-')
line.set_antialiased(False) # turn off antialiasing

• Use setp. The example below uses a MATLAB-style function to set multiple properties on a list of
lines. setp works transparently with a list of objects or a single object. You can either use python
keyword arguments or MATLAB-style string/value pairs:

lines = plt.plot(x1, y1, x2, y2)
use keyword args
plt.setp(lines, color='r', linewidth=2.0)
or MATLAB style string value pairs
plt.setp(lines, 'color', 'r', 'linewidth', 2.0)

Here are the available Line2D properties.

Property Value Type
alpha float
animated [True | False]
antialiased or aa [True | False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]

continues on next page

32 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Table 1 – continued from previous page
Property Value Type
clip_path a Path instance and a Transform instance, a Patch
color or c any matplotlib color
contains the hit testing function
dash_capstyle ['butt' | 'round' | 'projecting']
dash_joinstyle ['miter' | 'round' | 'bevel']
dashes sequence of on/off ink in points
data (np.array xdata, np.array ydata)
figure a matplotlib.figure.Figure instance
label any string
linestyle or ls ['-' | '--' | '-.' | ':' | 'steps' | ...]
linewidth or lw float value in points
marker ['+' | ',' | '.' | '1' | '2' | '3' | '4']
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery [None | integer | (startind, stride)]
picker used in interactive line selection
pickradius the line pick selection radius
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round' | 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]
xdata np.array
ydata np.array
zorder any number

To get a list of settable line properties, call the setp function with a line or lines as argument

In [69]: lines = plt.plot([1, 2, 3])

In [70]: plt.setp(lines)
alpha: float
animated: [True | False]
antialiased or aa: [True | False]
...snip

2.1. Introductory 33

Matplotlib, Release 3.4.3

Working with multiple figures and axes

MATLAB, and pyplot, have the concept of the current figure and the current axes. All plotting functions
apply to the current axes. The function gca returns the current axes (a matplotlib.axes.Axes in-
stance), and gcf returns the current figure (a matplotlib.figure.Figure instance). Normally, you
don't have to worry about this, because it is all taken care of behind the scenes. Below is a script to create
two subplots.

def f(t):
return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

plt.figure()
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')

plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()

The figure call here is optional because a figure will be created if none exists, just as an axes will be

34 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

created (equivalent to an explicit subplot() call) if none exists. The subplot call specifies numrows,
numcols, plot_number where plot_number ranges from 1 to numrows*numcols. The com-
mas in the subplot call are optional if numrows*numcols<10. So subplot(211) is identical to
subplot(2, 1, 1).

You can create an arbitrary number of subplots and axes. If you want to place an axes man-
ually, i.e., not on a rectangular grid, use axes, which allows you to specify the location as
axes([left, bottom, width, height]) where all values are in fractional (0 to 1) coordi-
nates. See /gallery/subplots_axes_and_figures/axes_demo for an example of placing axes manually and
/gallery/subplots_axes_and_figures/subplot_demo for an example with lots of subplots.

You can create multiple figures by using multiple figure calls with an increasing figure number. Of course,
each figure can contain as many axes and subplots as your heart desires:

import matplotlib.pyplot as plt
plt.figure(1) # the first figure
plt.subplot(211) # the first subplot in the first figure
plt.plot([1, 2, 3])
plt.subplot(212) # the second subplot in the first figure
plt.plot([4, 5, 6])

plt.figure(2) # a second figure
plt.plot([4, 5, 6]) # creates a subplot() by default

plt.figure(1) # figure 1 current; subplot(212) still current
plt.subplot(211) # make subplot(211) in figure1 current
plt.title('Easy as 1, 2, 3') # subplot 211 title

You can clear the current figure with clf and the current axes with cla. If you find it annoying that
states (specifically the current image, figure and axes) are being maintained for you behind the scenes, don't
despair: this is just a thin stateful wrapper around an object oriented API, which you can use instead (see
Artist tutorial)

If you are making lots of figures, you need to be aware of one more thing: the memory required for a figure
is not completely released until the figure is explicitly closed with close. Deleting all references to the
figure, and/or using the window manager to kill the window in which the figure appears on the screen, is not
enough, because pyplot maintains internal references until close is called.

Working with text

text can be used to add text in an arbitrary location, and xlabel, ylabel and title are used to add
text in the indicated locations (see Text in Matplotlib Plots for a more detailed example)

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

the histogram of the data
n, bins, patches = plt.hist(x, 50, density=1, facecolor='g', alpha=0.75)

(continues on next page)

2.1. Introductory 35

Matplotlib, Release 3.4.3

(continued from previous page)

plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()

All of the text functions return a matplotlib.text.Text instance. Just as with lines above, you can
customize the properties by passing keyword arguments into the text functions or using setp:

t = plt.xlabel('my data', fontsize=14, color='red')

These properties are covered in more detail in Text properties and layout.

36 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Using mathematical expressions in text

matplotlib accepts TeX equation expressions in any text expression. For example to write the expression
𝜎𝑖 = 15 in the title, you can write a TeX expression surrounded by dollar signs:

plt.title(r'$\sigma_i=15$')

The r preceding the title string is important -- it signifies that the string is a raw string and not to treat
backslashes as python escapes. matplotlib has a built-in TeX expression parser and layout engine, and ships
its own math fonts -- for details see Writing mathematical expressions. Thus you can use mathematical text
across platforms without requiring a TeX installation. For those who have LaTeX and dvipng installed, you
can also use LaTeX to format your text and incorporate the output directly into your display figures or saved
postscript -- see Text rendering With LaTeX.

Annotating text

The uses of the basic text function above place text at an arbitrary position on the Axes. A common use
for text is to annotate some feature of the plot, and the annotate method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these arguments are (x, y)
tuples.

ax = plt.subplot()

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = plt.plot(t, s, lw=2)

plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor='black', shrink=0.05),
)

plt.ylim(-2, 2)
plt.show()

2.1. Introductory 37

Matplotlib, Release 3.4.3

In this basic example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates.
There are a variety of other coordinate systems one can choose -- see Basic annotation and Advanced Anno-
tations for details. More examples can be found in /gallery/text_labels_and_annotations/annotation_demo.

Logarithmic and other nonlinear axes

matplotlib.pyplot supports not only linear axis scales, but also logarithmic and logit scales. This is
commonly used if data spans many orders of magnitude. Changing the scale of an axis is easy:

plt.xscale('log')

An example of four plots with the same data and different scales for the y axis is shown below.

Fixing random state for reproducibility
np.random.seed(19680801)

make up some data in the open interval (0, 1)
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
y = y[(y > 0) & (y < 1)]
y.sort()
x = np.arange(len(y))

(continues on next page)

38 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
plot with various axes scales
plt.figure()

linear
plt.subplot(221)
plt.plot(x, y)
plt.yscale('linear')
plt.title('linear')
plt.grid(True)

log
plt.subplot(222)
plt.plot(x, y)
plt.yscale('log')
plt.title('log')
plt.grid(True)

symmetric log
plt.subplot(223)
plt.plot(x, y - y.mean())
plt.yscale('symlog', linthresh=0.01)
plt.title('symlog')
plt.grid(True)

logit
plt.subplot(224)
plt.plot(x, y)
plt.yscale('logit')
plt.title('logit')
plt.grid(True)
Adjust the subplot layout, because the logit one may take more space
than usual, due to y-tick labels like "1 - 10^{-3}"
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,

wspace=0.35)

plt.show()

2.1. Introductory 39

Matplotlib, Release 3.4.3

It is also possible to add your own scale, see Developer's guide for creating scales and transformations for
details.

Total running time of the script: (0 minutes 3.758 seconds)

2.1.3 Sample plots in Matplotlib

Here you'll find a host of example plots with the code that generated them.

Line Plot

Here's how to create a line plot with text labels using plot().

40 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Fig. 1: Simple Plot

Multiple subplots in one figure

Multiple axes (i.e. subplots) are created with the subplot() function:

Fig. 2: Subplot

Images

Matplotlib can display images (assuming equally spaced horizontal dimensions) using the imshow() func-
tion.

2.1. Introductory 41

../../gallery/lines_bars_and_markers/simple_plot.html
../../gallery/subplots_axes_and_figures/subplot.html

Matplotlib, Release 3.4.3

Fig. 3: Example of using imshow() to display a CT scan

Contouring and pseudocolor

The pcolormesh() function can make a colored representation of a two-dimensional array, even if the
horizontal dimensions are unevenly spaced. The contour() function is another way to represent the same
data:

Fig. 4: Example comparing pcolormesh() and contour() for plotting two-dimensional data

Histograms

The hist() function automatically generates histograms and returns the bin counts or probabilities:

42 Chapter 2. Tutorials

../../gallery/images_contours_and_fields/image_demo.html
../../gallery/images_contours_and_fields/pcolormesh_levels.html

Matplotlib, Release 3.4.3

Fig. 5: Histogram Features

Paths

You can add arbitrary paths in Matplotlib using the matplotlib.path module:

Fig. 6: Path Patch

Three-dimensional plotting

The mplot3d toolkit (see Getting started and mplot3d-examples-index) has support for simple 3D graphs
including surface, wireframe, scatter, and bar charts.

Thanks to John Porter, Jonathon Taylor, Reinier Heeres, and Ben Root for the mplot3d toolkit. This toolkit
is included with all standard Matplotlib installs.

2.1. Introductory 43

../../gallery/statistics/histogram_features.html
../../gallery/shapes_and_collections/path_patch.html

Matplotlib, Release 3.4.3

Fig. 7: Surface3d

Streamplot

The streamplot() function plots the streamlines of a vector field. In addition to simply plotting the
streamlines, it allows you to map the colors and/or line widths of streamlines to a separate parameter, such
as the speed or local intensity of the vector field.

This feature complements the quiver() function for plotting vector fields. Thanks to Tom Flannaghan
and Tony Yu for adding the streamplot function.

Ellipses

In support of the Phoenix mission to Mars (which used Matplotlib to display ground tracking of spacecraft),
Michael Droettboom built on work by CharlieMoad to provide an extremely accurate 8-spline approximation
to elliptical arcs (see Arc), which are insensitive to zoom level.

Bar charts

Use the bar() function to make bar charts, which includes customizations such as error bars:

You can also create stacked bars (bar_stacked.py), or horizontal bar charts (barh.py).

Pie charts

The pie() function allows you to create pie charts. Optional features include auto-labeling the percentage
of area, exploding one or more wedges from the center of the pie, and a shadow effect. Take a close look at
the attached code, which generates this figure in just a few lines of code.

44 Chapter 2. Tutorials

../../gallery/mplot3d/surface3d.html
http://www.jpl.nasa.gov/news/phoenix/main.php
../../gallery/lines_bars_and_markers/bar_stacked.html
../../gallery/lines_bars_and_markers/barh.html

Matplotlib, Release 3.4.3

Fig. 8: Streamplot with various plotting options.

Fig. 9: Ellipse Demo

2.1. Introductory 45

../../gallery/images_contours_and_fields/plot_streamplot.html
../../gallery/shapes_and_collections/ellipse_demo.html

Matplotlib, Release 3.4.3

Fig. 10: Barchart Demo

Fig. 11: Pie Features

46 Chapter 2. Tutorials

../../gallery/statistics/barchart_demo.html
../../gallery/pie_and_polar_charts/pie_features.html

Matplotlib, Release 3.4.3

Tables

The table() function adds a text table to an axes.

Fig. 12: Table Demo

Scatter plots

The scatter() function makes a scatter plot with (optional) size and color arguments. This example plots
changes in Google's stock price, with marker sizes reflecting the trading volume and colors varying with time.
Here, the alpha attribute is used to make semitransparent circle markers.

Fig. 13: Scatter Demo2

2.1. Introductory 47

../../gallery/misc/table_demo.html
../../gallery/lines_bars_and_markers/scatter_demo2.html

Matplotlib, Release 3.4.3

GUI widgets

Matplotlib has basic GUI widgets that are independent of the graphical user interface you are using, allowing
you to write cross GUI figures and widgets. See matplotlib.widgets and the widget examples.

Fig. 14: Slider and radio-button GUI.

Filled curves

The fill() function lets you plot filled curves and polygons:

Thanks to Andrew Straw for adding this function.

Date handling

You can plot timeseries data with major and minor ticks and custom tick formatters for both.

See matplotlib.ticker and matplotlib.dates for details and usage.

Log plots

The semilogx(), semilogy() and loglog() functions simplify the creation of logarithmic plots.

Thanks to Andrew Straw, Darren Dale and Gregory Lielens for contributions log-scaling infrastructure.

48 Chapter 2. Tutorials

../../gallery/index.html#widgets
../../gallery/widgets/slider_demo.html

Matplotlib, Release 3.4.3

Fig. 15: Fill

Fig. 16: Date

2.1. Introductory 49

../../gallery/lines_bars_and_markers/fill.html
../../gallery/text_labels_and_annotations/date.html

Matplotlib, Release 3.4.3

Fig. 17: Log Demo

Polar plots

The polar() function generates polar plots.

Fig. 18: Polar Demo

Legends

The legend() function automatically generates figure legends, with MATLAB-compatible legend-
placement functions.

Thanks to Charles Twardy for input on the legend function.

50 Chapter 2. Tutorials

../../gallery/scales/log_demo.html
../../gallery/pie_and_polar_charts/polar_demo.html

Matplotlib, Release 3.4.3

Fig. 19: Legend

TeX-notation for text objects

Below is a sampling of the many TeX expressions now supported by Matplotlib's internal mathtext engine.
Themathtextmodule provides TeX stylemathematical expressions using FreeType and theDejaVu, BaKoMa
computer modern, or STIX fonts. See the matplotlib.mathtext module for additional details.

Fig. 20: Mathtext Examples

Matplotlib's mathtext infrastructure is an independent implementation and does not require TeX or any ex-
ternal packages installed on your computer. See the tutorial at Writing mathematical expressions.

2.1. Introductory 51

../../gallery/text_labels_and_annotations/legend.html
https://www.freetype.org/
http://www.stixfonts.org
../../gallery/text_labels_and_annotations/mathtext_examples.html

Matplotlib, Release 3.4.3

Native TeX rendering

AlthoughMatplotlib's internal math rendering engine is quite powerful, sometimes you need TeX.Matplotlib
supports external TeX rendering of strings with the usetex option.

Fig. 21: Tex Demo

EEG GUI

You can embed Matplotlib into Qt, GTK, Tk, or wxWidgets applications. Here is a screenshot of an EEG
viewer called pbrain.

52 Chapter 2. Tutorials

../../gallery/text_labels_and_annotations/tex_demo.html
https://github.com/nipy/pbrain

Matplotlib, Release 3.4.3

The lower axes uses specgram() to plot the spectrogram of one of the EEG channels.

For examples of how to embed Matplotlib in different toolkits, see:

• /gallery/user_interfaces/embedding_in_gtk3_sgskip

• /gallery/user_interfaces/embedding_in_wx2_sgskip

• /gallery/user_interfaces/mpl_with_glade3_sgskip

• /gallery/user_interfaces/embedding_in_qt_sgskip

• /gallery/user_interfaces/embedding_in_tk_sgskip

2.1. Introductory 53

Matplotlib, Release 3.4.3

XKCD-style sketch plots

Just for fun, Matplotlib supports plotting in the style of xkcd.

Fig. 22: xkcd

Subplot example

Many plot types can be combined in one figure to create powerful and flexible representations of data.

54 Chapter 2. Tutorials

https://www.xkcd.com/
../../gallery/showcase/xkcd.html

Matplotlib, Release 3.4.3

import matplotlib.pyplot as plt
import numpy as np

np.random.seed(19680801)
data = np.random.randn(2, 100)

fig, axs = plt.subplots(2, 2, figsize=(5, 5))
axs[0, 0].hist(data[0])
axs[1, 0].scatter(data[0], data[1])
axs[0, 1].plot(data[0], data[1])
axs[1, 1].hist2d(data[0], data[1])

plt.show()

2.1. Introductory 55

Matplotlib, Release 3.4.3

2.1.4 Image tutorial

A short tutorial on plotting images with Matplotlib.

Startup commands

First, let's start IPython. It is a most excellent enhancement to the standard Python prompt, and it ties in
especially well with Matplotlib. Start IPython either directly at a shell, or with the Jupyter Notebook (where
IPython as a running kernel).

With IPython started, we now need to connect to a GUI event loop. This tells IPython where (and how) to
display plots. To connect to a GUI loop, execute the %matplotlib magic at your IPython prompt. There's
more detail on exactly what this does at IPython's documentation on GUI event loops.

If you're using Jupyter Notebook, the same commands are available, but people commonly use a specific
argument to the %matplotlib magic:

In [1]: %matplotlib inline

This turns on inline plotting, where plot graphics will appear in your notebook. This has important implica-
tions for interactivity. For inline plotting, commands in cells below the cell that outputs a plot will not affect
the plot. For example, changing the colormap is not possible from cells below the cell that creates a plot.
However, for other backends, such as Qt5, that open a separate window, cells below those that create the plot
will change the plot - it is a live object in memory.

This tutorial will use Matplotlib's imperative-style plotting interface, pyplot. This interface maintains global
state, and is very useful for quickly and easily experimenting with various plot settings. The alternative is
the object-oriented interface, which is also very powerful, and generally more suitable for large application
development. If you'd like to learn about the object-oriented interface, a great place to start is our Usage
guide. For now, let's get on with the imperative-style approach:

import matplotlib.pyplot as plt
import matplotlib.image as mpimg

Importing image data into Numpy arrays

Matplotlib relies on the Pillow library to load image data.

Here's the image we're going to play with:

56 Chapter 2. Tutorials

https://ipython.readthedocs.io/en/stable/interactive/reference.html#gui-event-loop-support
https://pillow.readthedocs.io/en/latest/

Matplotlib, Release 3.4.3

It's a 24-bit RGB PNG image (8 bits for each of R, G, B). Depending on where you get your data, the other
kinds of image that you'll most likely encounter are RGBA images, which allow for transparency, or single-
channel grayscale (luminosity) images. Download stinkbug.png to your computer for the rest of this tutorial.

And here we go...

img = mpimg.imread('../../doc/_static/stinkbug.png')
print(img)

Out:

[[[0.40784314 0.40784314 0.40784314]
[0.40784314 0.40784314 0.40784314]
[0.40784314 0.40784314 0.40784314]
...
[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]]

[[0.4117647 0.4117647 0.4117647]
[0.4117647 0.4117647 0.4117647]
[0.4117647 0.4117647 0.4117647]
...

(continues on next page)

2.1. Introductory 57

https://raw.githubusercontent.com/matplotlib/matplotlib/master/doc/_static/stinkbug.png

Matplotlib, Release 3.4.3

(continued from previous page)
[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]]

[[0.41960785 0.41960785 0.41960785]
[0.41568628 0.41568628 0.41568628]
[0.41568628 0.41568628 0.41568628]
...
[0.43137255 0.43137255 0.43137255]
[0.43137255 0.43137255 0.43137255]
[0.43137255 0.43137255 0.43137255]]

...

[[0.4392157 0.4392157 0.4392157]
[0.43529412 0.43529412 0.43529412]
[0.43137255 0.43137255 0.43137255]
...
[0.45490196 0.45490196 0.45490196]
[0.4509804 0.4509804 0.4509804]
[0.4509804 0.4509804 0.4509804]]

[[0.44313726 0.44313726 0.44313726]
[0.44313726 0.44313726 0.44313726]
[0.4392157 0.4392157 0.4392157]
...
[0.4509804 0.4509804 0.4509804]
[0.44705883 0.44705883 0.44705883]
[0.44705883 0.44705883 0.44705883]]

[[0.44313726 0.44313726 0.44313726]
[0.4509804 0.4509804 0.4509804]
[0.4509804 0.4509804 0.4509804]
...
[0.44705883 0.44705883 0.44705883]
[0.44705883 0.44705883 0.44705883]
[0.44313726 0.44313726 0.44313726]]]

Note the dtype there - float32. Matplotlib has rescaled the 8 bit data from each channel to floating point data
between 0.0 and 1.0. As a side note, the only datatype that Pillow can work with is uint8. Matplotlib plotting
can handle float32 and uint8, but image reading/writing for any format other than PNG is limited to uint8
data. Why 8 bits? Most displays can only render 8 bits per channel worth of color gradation. Why can they
only render 8 bits/channel? Because that's about all the human eye can see. More here (from a photography
standpoint): Luminous Landscape bit depth tutorial.

Each inner list represents a pixel. Here, with an RGB image, there are 3 values. Since it's a black and white
image, R, G, and B are all similar. An RGBA (where A is alpha, or transparency), has 4 values per inner list,
and a simple luminance image just has one value (and is thus only a 2-D array, not a 3-D array). For RGB
and RGBA images, Matplotlib supports float32 and uint8 data types. For grayscale, Matplotlib supports only
float32. If your array data does not meet one of these descriptions, you need to rescale it.

58 Chapter 2. Tutorials

https://luminous-landscape.com/bit-depth/

Matplotlib, Release 3.4.3

Plotting numpy arrays as images

So, you have your data in a numpy array (either by importing it, or by generating it). Let's render it. In
Matplotlib, this is performed using the imshow() function. Here we'll grab the plot object. This object
gives you an easy way to manipulate the plot from the prompt.

imgplot = plt.imshow(img)

You can also plot any numpy array.

Applying pseudocolor schemes to image plots

Pseudocolor can be a useful tool for enhancing contrast and visualizing your data more easily. This is es-
pecially useful when making presentations of your data using projectors - their contrast is typically quite
poor.

Pseudocolor is only relevant to single-channel, grayscale, luminosity images. We currently have an RGB
image. Since R, G, and B are all similar (see for yourself above or in your data), we can just pick one channel
of our data:

2.1. Introductory 59

Matplotlib, Release 3.4.3

lum_img = img[:, :, 0]

This is array slicing. You can read more in the `Numpy tutorial
<https://docs.scipy.org/doc/numpy/user/quickstart.html>`_.

plt.imshow(lum_img)

Out:

<matplotlib.image.AxesImage object at 0x7fe64b7af0d0>

Now, with a luminosity (2D, no color) image, the default colormap (aka lookup table, LUT), is applied. The
default is called viridis. There are plenty of others to choose from.

plt.imshow(lum_img, cmap="hot")

60 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

<matplotlib.image.AxesImage object at 0x7fe659ccf070>

Note that you can also change colormaps on existing plot objects using the set_cmap() method:

imgplot = plt.imshow(lum_img)
imgplot.set_cmap('nipy_spectral')

2.1. Introductory 61

Matplotlib, Release 3.4.3

Note: However, remember that in the Jupyter Notebook with the inline backend, you can't make changes to
plots that have already been rendered. If you create imgplot here in one cell, you cannot call set_cmap() on
it in a later cell and expect the earlier plot to change. Make sure that you enter these commands together in
one cell. plt commands will not change plots from earlier cells.

There are many other colormap schemes available. See the list and images of the colormaps.

Color scale reference

It's helpful to have an idea of what value a color represents. We can do that by adding a color bar to your
figure:

imgplot = plt.imshow(lum_img)
plt.colorbar()

62 Chapter 2. Tutorials

../colors/colormaps.html

Matplotlib, Release 3.4.3

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe659dac550>

Examining a specific data range

Sometimes you want to enhance the contrast in your image, or expand the contrast in a particular region
while sacrificing the detail in colors that don't vary much, or don't matter. A good tool to find interesting
regions is the histogram. To create a histogram of our image data, we use the hist() function.

plt.hist(lum_img.ravel(), bins=256, range=(0.0, 1.0), fc='k', ec='k')

2.1. Introductory 63

Matplotlib, Release 3.4.3

Out:

(array([2.000e+00, 2.000e+00, 3.000e+00, 3.000e+00, 2.000e+00, 2.000e+00,
3.000e+00, 1.000e+00, 7.000e+00, 9.000e+00, 7.000e+00, 2.000e+00,
7.000e+00, 1.000e+01, 1.100e+01, 1.500e+01, 1.400e+01, 2.700e+01,
2.100e+01, 2.400e+01, 1.400e+01, 3.100e+01, 2.900e+01, 2.800e+01,
2.400e+01, 2.400e+01, 4.000e+01, 2.600e+01, 5.200e+01, 3.900e+01,
5.700e+01, 4.600e+01, 8.400e+01, 7.600e+01, 8.900e+01, 8.000e+01,
1.060e+02, 1.130e+02, 1.120e+02, 9.000e+01, 1.160e+02, 1.090e+02,
1.270e+02, 1.350e+02, 9.800e+01, 1.310e+02, 1.230e+02, 1.110e+02,
1.230e+02, 1.160e+02, 1.010e+02, 1.170e+02, 1.000e+02, 1.010e+02,
9.000e+01, 1.060e+02, 1.260e+02, 1.040e+02, 1.070e+02, 1.110e+02,
1.380e+02, 1.000e+02, 1.340e+02, 1.210e+02, 1.400e+02, 1.320e+02,
1.390e+02, 1.160e+02, 1.330e+02, 1.180e+02, 1.080e+02, 1.170e+02,
1.280e+02, 1.200e+02, 1.210e+02, 1.100e+02, 1.160e+02, 1.180e+02,
9.700e+01, 9.700e+01, 1.140e+02, 1.070e+02, 1.170e+02, 8.700e+01,
1.070e+02, 9.800e+01, 1.040e+02, 1.120e+02, 1.110e+02, 1.180e+02,
1.240e+02, 1.340e+02, 1.200e+02, 1.410e+02, 1.520e+02, 1.360e+02,
1.610e+02, 1.380e+02, 1.620e+02, 1.570e+02, 1.350e+02, 1.470e+02,
1.690e+02, 1.710e+02, 1.820e+02, 1.980e+02, 1.970e+02, 2.060e+02,
2.160e+02, 2.460e+02, 2.210e+02, 2.520e+02, 2.890e+02, 3.450e+02,
3.620e+02, 3.760e+02, 4.480e+02, 4.630e+02, 5.170e+02, 6.000e+02,
6.200e+02, 6.410e+02, 7.440e+02, 7.120e+02, 8.330e+02, 9.290e+02,

(continues on next page)

64 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
1.061e+03, 1.280e+03, 1.340e+03, 1.638e+03, 1.740e+03, 1.953e+03,
2.151e+03, 2.290e+03, 2.440e+03, 2.758e+03, 2.896e+03, 3.384e+03,
4.332e+03, 5.584e+03, 6.197e+03, 6.422e+03, 6.404e+03, 7.181e+03,
8.196e+03, 7.968e+03, 7.474e+03, 7.926e+03, 8.460e+03, 8.091e+03,
9.148e+03, 8.563e+03, 6.747e+03, 6.074e+03, 6.328e+03, 5.291e+03,
6.472e+03, 6.268e+03, 2.864e+03, 3.760e+02, 1.620e+02, 1.180e+02,
1.270e+02, 9.500e+01, 7.600e+01, 8.200e+01, 6.200e+01, 6.700e+01,
5.600e+01, 5.900e+01, 4.000e+01, 4.200e+01, 3.000e+01, 3.400e+01,
3.200e+01, 4.300e+01, 4.200e+01, 2.300e+01, 2.800e+01, 1.900e+01,
2.200e+01, 1.600e+01, 1.200e+01, 1.800e+01, 9.000e+00, 1.000e+01,
1.700e+01, 5.000e+00, 2.100e+01, 1.300e+01, 8.000e+00, 1.200e+01,
1.000e+01, 8.000e+00, 8.000e+00, 5.000e+00, 1.300e+01, 6.000e+00,
3.000e+00, 7.000e+00, 6.000e+00, 2.000e+00, 1.000e+00, 5.000e+00,
3.000e+00, 3.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 5.000e+00,
0.000e+00, 1.000e+00, 3.000e+00, 0.000e+00, 1.000e+00, 1.000e+00,
2.000e+00, 1.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00]), array([0. , 0.

↪00390625, 0.0078125 , 0.01171875, 0.015625 ,
0.01953125, 0.0234375 , 0.02734375, 0.03125 , 0.03515625,
0.0390625 , 0.04296875, 0.046875 , 0.05078125, 0.0546875 ,
0.05859375, 0.0625 , 0.06640625, 0.0703125 , 0.07421875,
0.078125 , 0.08203125, 0.0859375 , 0.08984375, 0.09375 ,
0.09765625, 0.1015625 , 0.10546875, 0.109375 , 0.11328125,
0.1171875 , 0.12109375, 0.125 , 0.12890625, 0.1328125 ,
0.13671875, 0.140625 , 0.14453125, 0.1484375 , 0.15234375,
0.15625 , 0.16015625, 0.1640625 , 0.16796875, 0.171875 ,
0.17578125, 0.1796875 , 0.18359375, 0.1875 , 0.19140625,
0.1953125 , 0.19921875, 0.203125 , 0.20703125, 0.2109375 ,
0.21484375, 0.21875 , 0.22265625, 0.2265625 , 0.23046875,
0.234375 , 0.23828125, 0.2421875 , 0.24609375, 0.25 ,
0.25390625, 0.2578125 , 0.26171875, 0.265625 , 0.26953125,
0.2734375 , 0.27734375, 0.28125 , 0.28515625, 0.2890625 ,
0.29296875, 0.296875 , 0.30078125, 0.3046875 , 0.30859375,
0.3125 , 0.31640625, 0.3203125 , 0.32421875, 0.328125 ,
0.33203125, 0.3359375 , 0.33984375, 0.34375 , 0.34765625,
0.3515625 , 0.35546875, 0.359375 , 0.36328125, 0.3671875 ,
0.37109375, 0.375 , 0.37890625, 0.3828125 , 0.38671875,
0.390625 , 0.39453125, 0.3984375 , 0.40234375, 0.40625 ,
0.41015625, 0.4140625 , 0.41796875, 0.421875 , 0.42578125,
0.4296875 , 0.43359375, 0.4375 , 0.44140625, 0.4453125 ,
0.44921875, 0.453125 , 0.45703125, 0.4609375 , 0.46484375,
0.46875 , 0.47265625, 0.4765625 , 0.48046875, 0.484375 ,
0.48828125, 0.4921875 , 0.49609375, 0.5 , 0.50390625,
0.5078125 , 0.51171875, 0.515625 , 0.51953125, 0.5234375 ,
0.52734375, 0.53125 , 0.53515625, 0.5390625 , 0.54296875,
0.546875 , 0.55078125, 0.5546875 , 0.55859375, 0.5625 ,
0.56640625, 0.5703125 , 0.57421875, 0.578125 , 0.58203125,

(continues on next page)

2.1. Introductory 65

Matplotlib, Release 3.4.3

(continued from previous page)
0.5859375 , 0.58984375, 0.59375 , 0.59765625, 0.6015625 ,
0.60546875, 0.609375 , 0.61328125, 0.6171875 , 0.62109375,
0.625 , 0.62890625, 0.6328125 , 0.63671875, 0.640625 ,
0.64453125, 0.6484375 , 0.65234375, 0.65625 , 0.66015625,
0.6640625 , 0.66796875, 0.671875 , 0.67578125, 0.6796875 ,
0.68359375, 0.6875 , 0.69140625, 0.6953125 , 0.69921875,
0.703125 , 0.70703125, 0.7109375 , 0.71484375, 0.71875 ,
0.72265625, 0.7265625 , 0.73046875, 0.734375 , 0.73828125,
0.7421875 , 0.74609375, 0.75 , 0.75390625, 0.7578125 ,
0.76171875, 0.765625 , 0.76953125, 0.7734375 , 0.77734375,
0.78125 , 0.78515625, 0.7890625 , 0.79296875, 0.796875 ,
0.80078125, 0.8046875 , 0.80859375, 0.8125 , 0.81640625,
0.8203125 , 0.82421875, 0.828125 , 0.83203125, 0.8359375 ,
0.83984375, 0.84375 , 0.84765625, 0.8515625 , 0.85546875,
0.859375 , 0.86328125, 0.8671875 , 0.87109375, 0.875 ,
0.87890625, 0.8828125 , 0.88671875, 0.890625 , 0.89453125,
0.8984375 , 0.90234375, 0.90625 , 0.91015625, 0.9140625 ,
0.91796875, 0.921875 , 0.92578125, 0.9296875 , 0.93359375,
0.9375 , 0.94140625, 0.9453125 , 0.94921875, 0.953125 ,
0.95703125, 0.9609375 , 0.96484375, 0.96875 , 0.97265625,
0.9765625 , 0.98046875, 0.984375 , 0.98828125, 0.9921875 ,
0.99609375, 1.], dtype=float32), <BarContainer object of 256␣

↪artists>)

Most often, the "interesting" part of the image is around the peak, and you can get extra contrast by clipping
the regions above and/or below the peak. In our histogram, it looks like there's not much useful information
in the high end (not many white things in the image). Let's adjust the upper limit, so that we effectively
"zoom in on" part of the histogram. We do this by passing the clim argument to imshow. You could also do
this by calling the set_clim() method of the image plot object, but make sure that you do so in the same
cell as your plot command when working with the Jupyter Notebook - it will not change plots from earlier
cells.

You can specify the clim in the call to plot.

imgplot = plt.imshow(lum_img, clim=(0.0, 0.7))

66 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

You can also specify the clim using the returned object

fig = plt.figure()
ax = fig.add_subplot(1, 2, 1)
imgplot = plt.imshow(lum_img)
ax.set_title('Before')
plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal')
ax = fig.add_subplot(1, 2, 2)
imgplot = plt.imshow(lum_img)
imgplot.set_clim(0.0, 0.7)
ax.set_title('After')
plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal')

2.1. Introductory 67

Matplotlib, Release 3.4.3

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe64bec9790>

Array Interpolation schemes

Interpolation calculates what the color or value of a pixel "should" be, according to different mathematical
schemes. One common place that this happens is when you resize an image. The number of pixels change,
but you want the same information. Since pixels are discrete, there's missing space. Interpolation is how
you fill that space. This is why your images sometimes come out looking pixelated when you blow them
up. The effect is more pronounced when the difference between the original image and the expanded image
is greater. Let's take our image and shrink it. We're effectively discarding pixels, only keeping a select few.
Now when we plot it, that data gets blown up to the size on your screen. The old pixels aren't there anymore,
and the computer has to draw in pixels to fill that space.

We'll use the Pillow library that we used to load the image also to resize the image.

from PIL import Image

img = Image.open('../../doc/_static/stinkbug.png')

(continues on next page)

68 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
img.thumbnail((64, 64), Image.ANTIALIAS) # resizes image in-place
imgplot = plt.imshow(img)

Here we have the default interpolation, bilinear, since we did not give imshow() any interpolation argu-
ment.

Let's try some others. Here's "nearest", which does no interpolation.

imgplot = plt.imshow(img, interpolation="nearest")

2.1. Introductory 69

Matplotlib, Release 3.4.3

and bicubic:

imgplot = plt.imshow(img, interpolation="bicubic")

70 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Bicubic interpolation is often used when blowing up photos - people tend to prefer blurry over pixelated.

Total running time of the script: (0 minutes 7.519 seconds)

2.1.5 The Lifecycle of a Plot

This tutorial aims to show the beginning, middle, and end of a single visualization using Matplotlib. We'll
begin with some raw data and end by saving a figure of a customized visualization. Along the way we try to
highlight some neat features and best-practices using Matplotlib.

Note: This tutorial is based on this excellent blog post by Chris Moffitt. It was transformed into this tutorial
by Chris Holdgraf.

2.1. Introductory 71

http://pbpython.com/effective-matplotlib.html

Matplotlib, Release 3.4.3

A note on the Object-Oriented API vs. Pyplot

Matplotlib has two interfaces. The first is an object-oriented (OO) interface. In this case, we utilize an
instance of axes.Axes in order to render visualizations on an instance of figure.Figure.

The second is based on MATLAB and uses a state-based interface. This is encapsulated in the pyplot
module. See the pyplot tutorials for a more in-depth look at the pyplot interface.

Most of the terms are straightforward but the main thing to remember is that:

• The Figure is the final image that may contain 1 or more Axes.

• The Axes represent an individual plot (don't confuse this with the word "axis", which refers to the x/y
axis of a plot).

We call methods that do the plotting directly from the Axes, which gives us much more flexibility and power
in customizing our plot.

Note: In general, try to use the object-oriented interface over the pyplot interface.

Our data

We'll use the data from the post from which this tutorial was derived. It contains sales information for a
number of companies.

import numpy as np
import matplotlib.pyplot as plt

data = {'Barton LLC': 109438.50,
'Frami, Hills and Schmidt': 103569.59,
'Fritsch, Russel and Anderson': 112214.71,
'Jerde-Hilpert': 112591.43,
'Keeling LLC': 100934.30,
'Koepp Ltd': 103660.54,
'Kulas Inc': 137351.96,
'Trantow-Barrows': 123381.38,
'White-Trantow': 135841.99,
'Will LLC': 104437.60}

group_data = list(data.values())
group_names = list(data.keys())
group_mean = np.mean(group_data)

72 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Getting started

This data is naturally visualized as a barplot, with one bar per group. To do this with the object-oriented
approach, we first generate an instance of figure.Figure and axes.Axes. The Figure is like a canvas,
and the Axes is a part of that canvas on which we will make a particular visualization.

Note: Figures can have multiple axes on them. For information on how to do this, see the Tight Layout
tutorial.

fig, ax = plt.subplots()

Now that we have an Axes instance, we can plot on top of it.

fig, ax = plt.subplots()
ax.barh(group_names, group_data)

2.1. Introductory 73

Matplotlib, Release 3.4.3

Out:

<BarContainer object of 10 artists>

Controlling the style

There are many styles available in Matplotlib in order to let you tailor your visualization to your needs. To
see a list of styles, we can use style.

print(plt.style.available)

Out:

['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_background
↪', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-
↪bright', 'seaborn-colorblind', 'seaborn-dark', 'seaborn-dark-palette',
↪'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook',
↪'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk',
↪'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'tableau-colorblind10
↪']

You can activate a style with the following:

74 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

plt.style.use('fivethirtyeight')

Now let's remake the above plot to see how it looks:

fig, ax = plt.subplots()
ax.barh(group_names, group_data)

Out:

<BarContainer object of 10 artists>

The style controls many things, such as color, linewidths, backgrounds, etc.

2.1. Introductory 75

Matplotlib, Release 3.4.3

Customizing the plot

Now we've got a plot with the general look that we want, so let's fine-tune it so that it's ready for print. First
let's rotate the labels on the x-axis so that they show up more clearly. We can gain access to these labels with
the axes.Axes.get_xticklabels() method:

fig, ax = plt.subplots()
ax.barh(group_names, group_data)
labels = ax.get_xticklabels()

If we'd like to set the property of many items at once, it's useful to use the pyplot.setp() function. This
will take a list (or many lists) of Matplotlib objects, and attempt to set some style element of each one.

fig, ax = plt.subplots()
ax.barh(group_names, group_data)
labels = ax.get_xticklabels()
plt.setp(labels, rotation=45, horizontalalignment='right')

76 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

[None, None, None, None, None, None, None, None, None, None, None, None, None,
↪ None, None, None, None, None]

It looks like this cut off some of the labels on the bottom. We can tell Matplotlib to automatically make room
for elements in the figures that we create. To do this we set the autolayout value of our rcParams. For
more information on controlling the style, layout, and other features of plots with rcParams, see Customizing
Matplotlib with style sheets and rcParams.

plt.rcParams.update({'figure.autolayout': True})

fig, ax = plt.subplots()
ax.barh(group_names, group_data)
labels = ax.get_xticklabels()
plt.setp(labels, rotation=45, horizontalalignment='right')

2.1. Introductory 77

Matplotlib, Release 3.4.3

Out:

[None, None, None, None, None, None, None, None, None, None, None, None, None,
↪ None, None, None, None, None]

Next, we add labels to the plot. To do this with the OO interface, we can use the Artist.set() method
to set properties of this Axes object.

fig, ax = plt.subplots()
ax.barh(group_names, group_data)
labels = ax.get_xticklabels()
plt.setp(labels, rotation=45, horizontalalignment='right')
ax.set(xlim=[-10000, 140000], xlabel='Total Revenue', ylabel='Company',

title='Company Revenue')

78 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

[(-10000.0, 140000.0), Text(0.5, 44.08838834764833, 'Total Revenue'), Text(43.
↪999999999999986, 0.5, 'Company'), Text(0.5, 1.0, 'Company Revenue')]

We can also adjust the size of this plot using the pyplot.subplots() function. We can do this with the
figsize kwarg.

Note: While indexing in NumPy follows the form (row, column), the figsize kwarg follows the form (width,
height). This follows conventions in visualization, which unfortunately are different from those of linear
algebra.

fig, ax = plt.subplots(figsize=(8, 4))
ax.barh(group_names, group_data)
labels = ax.get_xticklabels()
plt.setp(labels, rotation=45, horizontalalignment='right')
ax.set(xlim=[-10000, 140000], xlabel='Total Revenue', ylabel='Company',

title='Company Revenue')

2.1. Introductory 79

Matplotlib, Release 3.4.3

Out:

[(-10000.0, 140000.0), Text(0.5, 43.823223304703376, 'Total Revenue'),␣
↪Text(43.999999999999986, 0.5, 'Company'), Text(0.5, 1.0, 'Company Revenue')]

For labels, we can specify custom formatting guidelines in the form of functions. Below we define
a function that takes an integer as input, and returns a string as an output. When used with Axis.
set_major_formatter or Axis.set_minor_formatter, they will automatically create and use
a ticker.FuncFormatter class.

For this function, the x argument is the original tick label and pos is the tick position. We will only use x
here but both arguments are needed.

def currency(x, pos):
"""The two args are the value and tick position"""
if x >= 1e6:

s = '${:1.1f}M'.format(x*1e-6)
else:

s = '${:1.0f}K'.format(x*1e-3)
return s

We can then apply this function to the labels on our plot. To do this, we use the xaxis attribute of our axes.
This lets you perform actions on a specific axis on our plot.

fig, ax = plt.subplots(figsize=(6, 8))
ax.barh(group_names, group_data)
labels = ax.get_xticklabels()
plt.setp(labels, rotation=45, horizontalalignment='right')

ax.set(xlim=[-10000, 140000], xlabel='Total Revenue', ylabel='Company',
title='Company Revenue')

ax.xaxis.set_major_formatter(currency)

80 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

2.1. Introductory 81

Matplotlib, Release 3.4.3

Combining multiple visualizations

It is possible to draw multiple plot elements on the same instance of axes.Axes. To do this we simply
need to call another one of the plot methods on that axes object.

fig, ax = plt.subplots(figsize=(8, 8))
ax.barh(group_names, group_data)
labels = ax.get_xticklabels()
plt.setp(labels, rotation=45, horizontalalignment='right')

Add a vertical line, here we set the style in the function call
ax.axvline(group_mean, ls='--', color='r')

Annotate new companies
for group in [3, 5, 8]:

ax.text(145000, group, "New Company", fontsize=10,
verticalalignment="center")

Now we move our title up since it's getting a little cramped
ax.title.set(y=1.05)

ax.set(xlim=[-10000, 140000], xlabel='Total Revenue', ylabel='Company',
title='Company Revenue')

ax.xaxis.set_major_formatter(currency)
ax.set_xticks([0, 25e3, 50e3, 75e3, 100e3, 125e3])
fig.subplots_adjust(right=.1)

plt.show()

82 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Saving our plot

Now that we're happy with the outcome of our plot, we want to save it to disk. There are many file formats
we can save to in Matplotlib. To see a list of available options, use:

print(fig.canvas.get_supported_filetypes())

Out:

{'eps': 'Encapsulated Postscript', 'jpg': 'Joint Photographic Experts Group',
↪'jpeg': 'Joint Photographic Experts Group', 'pdf': 'Portable Document Format
↪', 'pgf': 'PGF code for LaTeX', 'png': 'Portable Network Graphics', 'ps':
↪'Postscript', 'raw': 'Raw RGBA bitmap', 'rgba': 'Raw RGBA bitmap', 'svg':
↪'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics', 'tif':
↪'Tagged Image File Format', 'tiff': 'Tagged Image File Format'}

(continues on next page)

2.1. Introductory 83

Matplotlib, Release 3.4.3

(continued from previous page)

We can then use the figure.Figure.savefig() in order to save the figure to disk. Note that there are
several useful flags we show below:

• transparent=True makes the background of the saved figure transparent if the format supports
it.

• dpi=80 controls the resolution (dots per square inch) of the output.

• bbox_inches="tight" fits the bounds of the figure to our plot.

Uncomment this line to save the figure.
fig.savefig('sales.png', transparent=False, dpi=80, bbox_inches="tight")

Total running time of the script: (0 minutes 3.396 seconds)

2.1.6 Customizing Matplotlib with style sheets and rcParams

Tips for customizing the properties and default styles of Matplotlib.

Using style sheets

The style package adds support for easy-to-switch plotting "styles" with the same parameters as a mat-
plotlib rc file (which is read at startup to configure Matplotlib).

There are a number of pre-defined styles provided by Matplotlib. For example, there's a pre-defined style
called "ggplot", which emulates the aesthetics of ggplot (a popular plotting package for R). To use this style,
just add:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from cycler import cycler
plt.style.use('ggplot')
data = np.random.randn(50)

To list all available styles, use:

print(plt.style.available)

Out:

['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_background
↪', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-
↪bright', 'seaborn-colorblind', 'seaborn-dark', 'seaborn-dark-palette',
↪'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook',
↪'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk',
↪'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'tableau-colorblind10
↪']

84 Chapter 2. Tutorials

https://ggplot2.tidyverse.org/
https://www.r-project.org/

Matplotlib, Release 3.4.3

Defining your own style

You can create custom styles and use them by calling style.use with the path or URL to the style sheet.

For example, you might want to create ./images/presentation.mplstyle with the following:

axes.titlesize : 24
axes.labelsize : 20
lines.linewidth : 3
lines.markersize : 10
xtick.labelsize : 16
ytick.labelsize : 16

Then, when you want to adapt a plot designed for a paper to one that looks good in a presentation, you can
just add:

>>> import matplotlib.pyplot as plt
>>> plt.style.use('./images/presentation.mplstyle')

Alternatively, you can make your style known to Matplotlib by placing your <style-name>.mplstyle
file into mpl_configdir/stylelib. You can then load your custom style sheet with a call to style.
use(<style-name>). By default mpl_configdir should be ~/.config/matplotlib, but you
can check where yours is with matplotlib.get_configdir(); you may need to create this directory.
You also can change the directory where Matplotlib looks for the stylelib/ folder by setting the MPLCON-
FIGDIR environment variable, see matplotlib configuration and cache directory locations.

Note that a custom style sheet in mpl_configdir/stylelib will override a style sheet defined by
Matplotlib if the styles have the same name.

Once your <style-name>.mplstyle file is in the appropriate mpl_configdir you can specify your
style with:

>>> import matplotlib.pyplot as plt
>>> plt.style.use(<style-name>)

Composing styles

Style sheets are designed to be composed together. So you can have a style sheet that customizes colors
and a separate style sheet that alters element sizes for presentations. These styles can easily be combined by
passing a list of styles:

>>> import matplotlib.pyplot as plt
>>> plt.style.use(['dark_background', 'presentation'])

Note that styles further to the right will overwrite values that are already defined by styles on the left.

2.1. Introductory 85

Matplotlib, Release 3.4.3

Temporary styling

If you only want to use a style for a specific block of code but don't want to change the global styling, the style
package provides a context manager for limiting your changes to a specific scope. To isolate your styling
changes, you can write something like the following:

with plt.style.context('dark_background'):
plt.plot(np.sin(np.linspace(0, 2 * np.pi)), 'r-o')

plt.show()

2.1.7 Matplotlib rcParams

Dynamic rc settings

You can also dynamically change the default rc settings in a python script or interactively from the python
shell. All of the rc settings are stored in a dictionary-like variable called matplotlib.rcParams, which
is global to the matplotlib package. rcParams can be modified directly, for example:

mpl.rcParams['lines.linewidth'] = 2
mpl.rcParams['lines.linestyle'] = '--'
plt.plot(data)

86 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

[<matplotlib.lines.Line2D object at 0x7fe64b46e9d0>]

Note, that in order to change the usual plot color you have to change the prop_cycle property of axes:

mpl.rcParams['axes.prop_cycle'] = cycler(color=['r', 'g', 'b', 'y'])
plt.plot(data) # first color is red

2.1. Introductory 87

Matplotlib, Release 3.4.3

Out:

[<matplotlib.lines.Line2D object at 0x7fe65a511160>]

Matplotlib also provides a couple of convenience functions for modifying rc settings. matplotlib.rc
can be used to modify multiple settings in a single group at once, using keyword arguments:

mpl.rc('lines', linewidth=4, linestyle='-.')
plt.plot(data)

88 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

[<matplotlib.lines.Line2D object at 0x7fe64b638d90>]

matplotlib.rcdefaults will restore the standard Matplotlib default settings.

There is some degree of validation when setting the values of rcParams, see matplotlib.rcsetup for
details.

The matplotlibrc file

Matplotlib uses matplotlibrc configuration files to customize all kinds of properties, which we call 'rc
settings' or 'rc parameters'. You can control the defaults of almost every property in Matplotlib: figure size
and DPI, line width, color and style, axes, axis and grid properties, text and font properties and so on. When
a URL or path is not specified with a call to style.use('<path>/<style-name>.mplstyle'),
Matplotlib looks for matplotlibrc in four locations, in the following order:

1. matplotlibrc in the current working directory, usually used for specific customizations that you
do not want to apply elsewhere.

2. $MATPLOTLIBRC if it is a file, else $MATPLOTLIBRC/matplotlibrc.

3. It next looks in a user-specific place, depending on your platform:

2.1. Introductory 89

Matplotlib, Release 3.4.3

• On Linux and FreeBSD, it looks in .config/matplotlib/matplotlibrc (or
$XDG_CONFIG_HOME/matplotlib/matplotlibrc) if you've customized your environ-
ment.

• On other platforms, it looks in .matplotlib/matplotlibrc.

See matplotlib configuration and cache directory locations.

4. INSTALL/matplotlib/mpl-data/matplotlibrc, where INSTALL is something like /
usr/lib/python3.7/site-packages on Linux, and maybe C:\Python37\Lib\site-
packages on Windows. Every time you install matplotlib, this file will be overwritten, so if you
want your customizations to be saved, please move this file to your user-specific matplotlib directory.

Once a matplotlibrc file has been found, it will not search any of the other paths.

To display where the currently active matplotlibrc file was loaded from, one can do the following:

>>> import matplotlib
>>> matplotlib.matplotlib_fname()
'/home/foo/.config/matplotlib/matplotlibrc'

See below for a sample matplotlibrc file.

A sample matplotlibrc file

MATPLOTLIBRC FORMAT

NOTE FOR END USERS: DO NOT EDIT THIS FILE!
##
This is a sample Matplotlib configuration file - you can find a copy
of it on your system in site-packages/matplotlib/mpl-data/matplotlibrc
(relative to your Python installation location).
##
You should find a copy of it on your system at
site-packages/matplotlib/mpl-data/matplotlibrc (relative to your Python
installation location). DO NOT EDIT IT!
##
If you wish to change your default style, copy this file to one of the
following locations:
Unix/Linux:
$HOME/.config/matplotlib/matplotlibrc OR
$XDG_CONFIG_HOME/matplotlib/matplotlibrc (if $XDG_CONFIG_HOME is␣

↪set)
Other platforms:
$HOME/.matplotlib/matplotlibrc
and edit that copy.
##
See https://matplotlib.org/users/customizing.html#the-matplotlibrc-file
for more details on the paths which are checked for the configuration file.
##
Blank lines, or lines starting with a comment symbol, are ignored, as are
trailing comments. Other lines must have the format:

(continues on next page)

90 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
key: val # optional comment
##
Formatting: Use PEP8-like style (as enforced in the rest of the codebase).
All lines start with an additional '#', so that removing all leading '#'s
yields a valid style file.
##
Colors: for the color values below, you can either use
- a Matplotlib color string, such as r, k, or b
- an RGB tuple, such as (1.0, 0.5, 0.0)
- a hex string, such as ff00ff
- a scalar grayscale intensity such as 0.75
- a legal html color name, e.g., red, blue, darkslategray
##
Matplotlib configuration are currently divided into following parts:
- BACKENDS
- LINES
- PATCHES
- HATCHES
- BOXPLOT
- FONT
- TEXT
- LaTeX
- AXES
- DATES
- TICKS
- GRIDS
- LEGEND
- FIGURE
- IMAGES
- CONTOUR PLOTS
- ERRORBAR PLOTS
- HISTOGRAM PLOTS
- SCATTER PLOTS
- AGG RENDERING
- PATHS
- SAVING FIGURES
- INTERACTIVE KEYMAPS
- ANIMATION

CONFIGURATION BEGINS HERE

* BACKENDS *

The default backend. If you omit this parameter, the first working
backend from the following list is used:
MacOSX Qt5Agg Gtk3Agg TkAgg WxAgg Agg
Other choices include:
Qt5Cairo GTK3Cairo TkCairo WxCairo Cairo
Qt4Agg Qt4Cairo Wx # deprecated.
PS PDF SVG Template

(continues on next page)

2.1. Introductory 91

Matplotlib, Release 3.4.3

(continued from previous page)
You can also deploy your own backend outside of Matplotlib by referring to
the module name (which must be in the PYTHONPATH) as 'module://my_backend'.
#backend: Agg

The port to use for the web server in the WebAgg backend.
#webagg.port: 8988

The address on which the WebAgg web server should be reachable
#webagg.address: 127.0.0.1

If webagg.port is unavailable, a number of other random ports will
be tried until one that is available is found.
#webagg.port_retries: 50

When True, open the web browser to the plot that is shown
#webagg.open_in_browser: True

If you are running pyplot inside a GUI and your backend choice
conflicts, we will automatically try to find a compatible one for
you if backend_fallback is True
#backend_fallback: True

#interactive: False
#toolbar: toolbar2 # {None, toolbar2, toolmanager}
#timezone: UTC # a pytz timezone string, e.g., US/Central or Europe/

↪Paris

* LINES *

See https://matplotlib.org/api/artist_api.html#module-matplotlib.lines
for more information on line properties.
#lines.linewidth: 1.5 # line width in points
#lines.linestyle: - # solid line
#lines.color: C0 # has no affect on plot(); see axes.prop_

↪cycle
#lines.marker: None # the default marker
#lines.markerfacecolor: auto # the default marker face color
#lines.markeredgecolor: auto # the default marker edge color
#lines.markeredgewidth: 1.0 # the line width around the marker symbol
#lines.markersize: 6 # marker size, in points
#lines.dash_joinstyle: round # {miter, round, bevel}
#lines.dash_capstyle: butt # {butt, round, projecting}
#lines.solid_joinstyle: round # {miter, round, bevel}
#lines.solid_capstyle: projecting # {butt, round, projecting}
#lines.antialiased: True # render lines in antialiased (no jaggies)

The three standard dash patterns. These are scaled by the linewidth.
#lines.dashed_pattern: 3.7, 1.6
#lines.dashdot_pattern: 6.4, 1.6, 1, 1.6
#lines.dotted_pattern: 1, 1.65

(continues on next page)

92 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
#lines.scale_dashes: True

#markers.fillstyle: full # {full, left, right, bottom, top, none}

#pcolor.shading : flat
#pcolormesh.snap : True # Whether to snap the mesh to pixel boundaries. This

is provided solely to allow old test images to␣
↪remain

unchanged. Set to False to obtain the previous␣
↪behavior.

* PATCHES *

Patches are graphical objects that fill 2D space, like polygons or circles.
See https://matplotlib.org/api/artist_api.html#module-matplotlib.patches
for more information on patch properties.
#patch.linewidth: 1 # edge width in points.
#patch.facecolor: C0
#patch.edgecolor: black # if forced, or patch is not filled
#patch.force_edgecolor: False # True to always use edgecolor
#patch.antialiased: True # render patches in antialiased (no jaggies)

* HATCHES *

#hatch.color: black
#hatch.linewidth: 1.0

* BOXPLOT *

#boxplot.notch: False
#boxplot.vertical: True
#boxplot.whiskers: 1.5
#boxplot.bootstrap: None
#boxplot.patchartist: False
#boxplot.showmeans: False
#boxplot.showcaps: True
#boxplot.showbox: True
#boxplot.showfliers: True
#boxplot.meanline: False

#boxplot.flierprops.color: black
#boxplot.flierprops.marker: o
#boxplot.flierprops.markerfacecolor: none
#boxplot.flierprops.markeredgecolor: black
#boxplot.flierprops.markeredgewidth: 1.0
#boxplot.flierprops.markersize: 6
#boxplot.flierprops.linestyle: none

(continues on next page)

2.1. Introductory 93

Matplotlib, Release 3.4.3

(continued from previous page)
#boxplot.flierprops.linewidth: 1.0

#boxplot.boxprops.color: black
#boxplot.boxprops.linewidth: 1.0
#boxplot.boxprops.linestyle: -

#boxplot.whiskerprops.color: black
#boxplot.whiskerprops.linewidth: 1.0
#boxplot.whiskerprops.linestyle: -

#boxplot.capprops.color: black
#boxplot.capprops.linewidth: 1.0
#boxplot.capprops.linestyle: -

#boxplot.medianprops.color: C1
#boxplot.medianprops.linewidth: 1.0
#boxplot.medianprops.linestyle: -

#boxplot.meanprops.color: C2
#boxplot.meanprops.marker: ^
#boxplot.meanprops.markerfacecolor: C2
#boxplot.meanprops.markeredgecolor: C2
#boxplot.meanprops.markersize: 6
#boxplot.meanprops.linestyle: --
#boxplot.meanprops.linewidth: 1.0

* FONT *

The font properties used by `text.Text`.
See https://matplotlib.org/api/font_manager_api.html for more information
on font properties. The 6 font properties used for font matching are
given below with their default values.
##
The font.family property can take either a concrete font name (not␣

↪supported
when rendering text with usetex), or one of the following five generic
values:
- 'serif' (e.g., Times),
- 'sans-serif' (e.g., Helvetica),
- 'cursive' (e.g., Zapf-Chancery),
- 'fantasy' (e.g., Western), and
- 'monospace' (e.g., Courier).
Each of these values has a corresponding default list of font names
(font.serif, etc.); the first available font in the list is used. Note␣

↪that
for font.serif, font.sans-serif, and font.monospace, the first element of
the list (a DejaVu font) will always be used because DejaVu is shipped with
Matplotlib and is thus guaranteed to be available; the other entries are
left as examples of other possible values.
##

(continues on next page)

94 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
The font.style property has three values: normal (or roman), italic
or oblique. The oblique style will be used for italic, if it is not
present.
##
The font.variant property has two values: normal or small-caps. For
TrueType fonts, which are scalable fonts, small-caps is equivalent
to using a font size of 'smaller', or about 83%% of the current font
size.
##
The font.weight property has effectively 13 values: normal, bold,
bolder, lighter, 100, 200, 300, ..., 900. Normal is the same as
400, and bold is 700. bolder and lighter are relative values with
respect to the current weight.
##
The font.stretch property has 11 values: ultra-condensed,
extra-condensed, condensed, semi-condensed, normal, semi-expanded,
expanded, extra-expanded, ultra-expanded, wider, and narrower. This
property is not currently implemented.
##
The font.size property is the default font size for text, given in points.
10 pt is the standard value.
##
Note that font.size controls default text sizes. To configure
special text sizes tick labels, axes, labels, title, etc., see the rc
settings for axes and ticks. Special text sizes can be defined
relative to font.size, using the following values: xx-small, x-small,
small, medium, large, x-large, xx-large, larger, or smaller

#font.family: sans-serif
#font.style: normal
#font.variant: normal
#font.weight: normal
#font.stretch: normal
#font.size: 10.0

#font.serif: DejaVu Serif, Bitstream Vera Serif, Computer Modern Roman,␣
↪New Century Schoolbook, Century Schoolbook L, Utopia, ITC Bookman, Bookman,␣
↪Nimbus Roman No9 L, Times New Roman, Times, Palatino, Charter, serif

#font.sans-serif: DejaVu Sans, Bitstream Vera Sans, Computer Modern Sans␣
↪Serif, Lucida Grande, Verdana, Geneva, Lucid, Arial, Helvetica, Avant Garde,
↪ sans-serif

#font.cursive: Apple Chancery, Textile, Zapf Chancery, Sand, Script MT,␣
↪Felipa, Comic Neue, Comic Sans MS, cursive

#font.fantasy: Chicago, Charcoal, Impact, Western, Humor Sans, xkcd,␣
↪fantasy

#font.monospace: DejaVu Sans Mono, Bitstream Vera Sans Mono, Computer Modern␣
↪Typewriter, Andale Mono, Nimbus Mono L, Courier New, Courier, Fixed,␣
↪Terminal, monospace

* TEXT *

(continues on next page)

2.1. Introductory 95

Matplotlib, Release 3.4.3

(continued from previous page)

The text properties used by `text.Text`.
See https://matplotlib.org/api/artist_api.html#module-matplotlib.text
for more information on text properties
#text.color: black

* LaTeX *

For more information on LaTeX properties, see
https://matplotlib.org/tutorials/text/usetex.html
#text.usetex: False # use latex for all text handling. The following fonts

are supported through the usual rc parameter settings:
new century schoolbook, bookman, times, palatino,
zapf chancery, charter, serif, sans-serif, helvetica,
avant garde, courier, monospace, computer modern roman,
computer modern sans serif, computer modern typewriter
If another font is desired which can loaded using the
LaTeX \usepackage command, please inquire at the
Matplotlib mailing list

#text.latex.preamble: # IMPROPER USE OF THIS FEATURE WILL LEAD TO LATEX␣
↪FAILURES

AND IS THEREFORE UNSUPPORTED. PLEASE DO NOT ASK FOR␣
↪HELP

IF THIS FEATURE DOES NOT DO WHAT YOU EXPECT IT TO.
text.latex.preamble is a single line of LaTeX code␣

↪that
will be passed on to the LaTeX system. It may␣

↪contain
any code that is valid for the LaTeX "preamble", i.

↪e.
between the "\documentclass" and "\begin{document}"
statements.
Note that it has to be put on a single line, which␣

↪may
become quite long.
The following packages are always loaded with␣

↪usetex, so
beware of package collisions: color, geometry,␣

↪graphicx,
type1cm, textcomp.
Adobe Postscript (PSSNFS) font packages may also be
loaded, depending on your font settings.

FreeType hinting flag ("foo" corresponds to FT_LOAD_FOO); may be one of the
following (Proprietary Matplotlib-specific synonyms are given in␣

↪parentheses,
but their use is discouraged):
- default: Use the font's native hinter if possible, else FreeType's auto-

↪hinter.
("either" is a synonym).

(continues on next page)

96 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
- no_autohint: Use the font's native hinter if possible, else don't hint.
("native" is a synonym.)
- force_autohint: Use FreeType's auto-hinter. ("auto" is a synonym.)
- no_hinting: Disable hinting. ("none" is a synonym.)
#text.hinting: force_autohint

#text.hinting_factor: 8 # Specifies the amount of softness for hinting in the
horizontal direction. A value of 1 will hint to␣

↪full
pixels. A value of 2 will hint to half pixels etc.

#text.kerning_factor : 0 # Specifies the scaling factor for kerning values.␣
↪This

is provided solely to allow old test images to␣
↪remain

unchanged. Set to 6 to obtain previous behavior.␣
↪Values

other than 0 or 6 have no defined meaning.
#text.antialiased: True # If True (default), the text will be antialiased.

This only affects raster outputs.

The following settings allow you to select the fonts in math mode.
#mathtext.fontset: dejavusans # Should be 'dejavusans' (default),

'dejavuserif', 'cm' (Computer Modern), 'stix
↪',

'stixsans' or 'custom' (unsupported, may go
away in the future)

"mathtext.fontset: custom" is defined by the mathtext.bf, .cal, .it, ...
settings which map a TeX font name to a fontconfig font pattern. (These
settings are not used for other font sets.)
#mathtext.bf: sans:bold
#mathtext.cal: cursive
#mathtext.it: sans:italic
#mathtext.rm: sans
#mathtext.sf: sans
#mathtext.tt: monospace
#mathtext.fallback: cm # Select fallback font from ['cm' (Computer Modern),

↪'stix'
'stixsans'] when a symbol can not be found in one␣

↪of the
custom math fonts. Select 'None' to not perform␣

↪fallback
and replace the missing character by a dummy symbol.

#mathtext.default: it # The default font to use for math.
Can be any of the LaTeX font names, including
the special name "regular" for the same font
used in regular text.

* AXES *

Following are default face and edge colors, default tick sizes,

(continues on next page)

2.1. Introductory 97

Matplotlib, Release 3.4.3

(continued from previous page)
default font sizes for tick labels, and so on. See
https://matplotlib.org/api/axes_api.html#module-matplotlib.axes
#axes.facecolor: white # axes background color
#axes.edgecolor: black # axes edge color
#axes.linewidth: 0.8 # edge line width
#axes.grid: False # display grid or not
#axes.grid.axis: both # which axis the grid should apply to
#axes.grid.which: major # grid lines at {major, minor, both} ticks
#axes.titlelocation: center # alignment of the title: {left, right, center}
#axes.titlesize: large # font size of the axes title
#axes.titleweight: normal # font weight of title
#axes.titlecolor: auto # color of the axes title, auto falls back to

text.color as default value
#axes.titley: None # position title (axes relative units). None␣

↪implies auto
#axes.titlepad: 6.0 # pad between axes and title in points
#axes.labelsize: medium # font size of the x and y labels
#axes.labelpad: 4.0 # space between label and axis
#axes.labelweight: normal # weight of the x and y labels
#axes.labelcolor: black
#axes.axisbelow: line # draw axis gridlines and ticks:

- below patches (True)
- above patches but below lines ('line')
- above all (False)

#axes.formatter.limits: -5, 6 # use scientific notation if log10
of the axis range is smaller than the
first or larger than the second

#axes.formatter.use_locale: False # When True, format tick labels
according to the user's locale.
For example, use ',' as a decimal
separator in the fr_FR locale.

#axes.formatter.use_mathtext: False # When True, use mathtext for scientific
notation.

#axes.formatter.min_exponent: 0 # minimum exponent to format in scientific␣
↪notation

#axes.formatter.useoffset: True # If True, the tick label formatter
will default to labeling ticks relative
to an offset when the data range is
small compared to the minimum absolute
value of the data.

#axes.formatter.offset_threshold: 4 # When useoffset is True, the offset
will be used when it can remove
at least this number of significant
digits from tick labels.

#axes.spines.left: True # display axis spines
#axes.spines.bottom: True
#axes.spines.top: True
#axes.spines.right: True

#axes.unicode_minus: True # use Unicode for the minus symbol rather than␣
↪hyphen. See (continues on next page)

98 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
https://en.wikipedia.org/wiki/Plus_and_minus_

↪signs#Character_codes
#axes.prop_cycle: cycler('color', ['1f77b4', 'ff7f0e', '2ca02c', 'd62728',

↪'9467bd', '8c564b', 'e377c2', '7f7f7f', 'bcbd22', '17becf'])
color cycle for plot lines as list of string color specs:
single letter, long name, or web-style hex
As opposed to all other parameters in this file, the color
values must be enclosed in quotes for this parameter,
e.g. '1f77b4', instead of 1f77b4.
See also https://matplotlib.org/tutorials/intermediate/

↪color_cycle.html
for more details on prop_cycle usage.

#axes.xmargin: .05 # x margin. See `axes.Axes.margins`
#axes.ymargin: .05 # y margin. See `axes.Axes.margins`
#axes.zmargin: .05 # z margin. See `axes.Axes.margins`
#axes.autolimit_mode: data # If "data", use axes.xmargin and axes.ymargin as␣

↪is.
If "round_numbers", after application of␣

↪margins, axis
limits are further expanded to the nearest

↪"round" number.
#polaraxes.grid: True # display grid on polar axes
#axes3d.grid: True # display grid on 3D axes

* AXIS *

#xaxis.labellocation: center # alignment of the xaxis label: {left, right,␣

↪center}
#yaxis.labellocation: center # alignment of the yaxis label: {bottom, top,␣

↪center}

* DATES *

These control the default format strings used in AutoDateFormatter.
Any valid format datetime format string can be used (see the python
`datetime` for details). For example, by using:
- '%%x' will use the locale date representation
- '%%X' will use the locale time representation
- '%%c' will use the full locale datetime representation
These values map to the scales:
{'year': 365, 'month': 30, 'day': 1, 'hour': 1/24, 'minute': 1 / (24 *␣

↪60)}

#date.autoformatter.year: %Y
#date.autoformatter.month: %Y-%m
#date.autoformatter.day: %Y-%m-%d
#date.autoformatter.hour: %m-%d %H
#date.autoformatter.minute: %d %H:%M

(continues on next page)

2.1. Introductory 99

Matplotlib, Release 3.4.3

(continued from previous page)
#date.autoformatter.second: %H:%M:%S
#date.autoformatter.microsecond: %M:%S.%f
The reference date for Matplotlib's internal date representation
See https://matplotlib.org/examples/ticks_and_spines/date_precision_and_

↪epochs.py
#date.epoch: 1970-01-01T00:00:00
'auto', 'concise':
#date.converter: auto
For auto converter whether to use interval_multiples:
#date.interval_multiples: True

* TICKS *

See https://matplotlib.org/api/axis_api.html#matplotlib.axis.Tick
#xtick.top: False # draw ticks on the top side
#xtick.bottom: True # draw ticks on the bottom side
#xtick.labeltop: False # draw label on the top
#xtick.labelbottom: True # draw label on the bottom
#xtick.major.size: 3.5 # major tick size in points
#xtick.minor.size: 2 # minor tick size in points
#xtick.major.width: 0.8 # major tick width in points
#xtick.minor.width: 0.6 # minor tick width in points
#xtick.major.pad: 3.5 # distance to major tick label in points
#xtick.minor.pad: 3.4 # distance to the minor tick label in points
#xtick.color: black # color of the ticks
#xtick.labelcolor: inherit # color of the tick labels or inherit from␣

↪xtick.color
#xtick.labelsize: medium # font size of the tick labels
#xtick.direction: out # direction: {in, out, inout}
#xtick.minor.visible: False # visibility of minor ticks on x-axis
#xtick.major.top: True # draw x axis top major ticks
#xtick.major.bottom: True # draw x axis bottom major ticks
#xtick.minor.top: True # draw x axis top minor ticks
#xtick.minor.bottom: True # draw x axis bottom minor ticks
#xtick.alignment: center # alignment of xticks

#ytick.left: True # draw ticks on the left side
#ytick.right: False # draw ticks on the right side
#ytick.labelleft: True # draw tick labels on the left side
#ytick.labelright: False # draw tick labels on the right side
#ytick.major.size: 3.5 # major tick size in points
#ytick.minor.size: 2 # minor tick size in points
#ytick.major.width: 0.8 # major tick width in points
#ytick.minor.width: 0.6 # minor tick width in points
#ytick.major.pad: 3.5 # distance to major tick label in points
#ytick.minor.pad: 3.4 # distance to the minor tick label in points
#ytick.color: black # color of the ticks
#ytick.labelcolor: inherit # color of the tick labels or inherit from␣

↪ytick.color
#ytick.labelsize: medium # font size of the tick labels
#ytick.direction: out # direction: {in, out, inout}

(continues on next page)

100 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
#ytick.minor.visible: False # visibility of minor ticks on y-axis
#ytick.major.left: True # draw y axis left major ticks
#ytick.major.right: True # draw y axis right major ticks
#ytick.minor.left: True # draw y axis left minor ticks
#ytick.minor.right: True # draw y axis right minor ticks
#ytick.alignment: center_baseline # alignment of yticks

* GRIDS *

#grid.color: b0b0b0 # grid color
#grid.linestyle: - # solid
#grid.linewidth: 0.8 # in points
#grid.alpha: 1.0 # transparency, between 0.0 and 1.0

* LEGEND *

#legend.loc: best
#legend.frameon: True # if True, draw the legend on a background␣

↪patch
#legend.framealpha: 0.8 # legend patch transparency
#legend.facecolor: inherit # inherit from axes.facecolor; or color spec
#legend.edgecolor: 0.8 # background patch boundary color
#legend.fancybox: True # if True, use a rounded box for the

legend background, else a rectangle
#legend.shadow: False # if True, give background a shadow effect
#legend.numpoints: 1 # the number of marker points in the legend␣

↪line
#legend.scatterpoints: 1 # number of scatter points
#legend.markerscale: 1.0 # the relative size of legend markers vs.␣

↪original
#legend.fontsize: medium
#legend.title_fontsize: None # None sets to the same as the default axes.

Dimensions as fraction of font size:
#legend.borderpad: 0.4 # border whitespace
#legend.labelspacing: 0.5 # the vertical space between the legend entries
#legend.handlelength: 2.0 # the length of the legend lines
#legend.handleheight: 0.7 # the height of the legend handle
#legend.handletextpad: 0.8 # the space between the legend line and legend␣

↪text
#legend.borderaxespad: 0.5 # the border between the axes and legend edge
#legend.columnspacing: 2.0 # column separation

* FIGURE *

See https://matplotlib.org/api/figure_api.html#matplotlib.figure.Figure

(continues on next page)

2.1. Introductory 101

Matplotlib, Release 3.4.3

(continued from previous page)
#figure.titlesize: large # size of the figure title (``Figure.

↪suptitle()``)
#figure.titleweight: normal # weight of the figure title
#figure.figsize: 6.4, 4.8 # figure size in inches
#figure.dpi: 100 # figure dots per inch
#figure.facecolor: white # figure face color
#figure.edgecolor: white # figure edge color
#figure.frameon: True # enable figure frame
#figure.max_open_warning: 20 # The maximum number of figures to open through

the pyplot interface before emitting a␣
↪warning.

If less than one this feature is disabled.
#figure.raise_window : True # Raise the GUI window to front when show() is␣

↪called.

The figure subplot parameters. All dimensions are a fraction of the␣
↪figure width and height.

#figure.subplot.left: 0.125 # the left side of the subplots of the figure
#figure.subplot.right: 0.9 # the right side of the subplots of the figure
#figure.subplot.bottom: 0.11 # the bottom of the subplots of the figure
#figure.subplot.top: 0.88 # the top of the subplots of the figure
#figure.subplot.wspace: 0.2 # the amount of width reserved for space␣

↪between subplots,
expressed as a fraction of the average axis␣

↪width
#figure.subplot.hspace: 0.2 # the amount of height reserved for space␣

↪between subplots,
expressed as a fraction of the average axis␣

↪height

Figure layout
#figure.autolayout: False # When True, automatically adjust subplot

parameters to make the plot fit the figure
using `tight_layout`

#figure.constrained_layout.use: False # When True, automatically make plot
elements fit on the figure. (Not
compatible with `autolayout`, above).

#figure.constrained_layout.h_pad: 0.04167 # Padding around axes objects.␣
↪Float representing

#figure.constrained_layout.w_pad: 0.04167 # inches. Default is 3/72 inches␣
↪(3 points)

#figure.constrained_layout.hspace: 0.02 # Space between subplot groups.␣
↪Float representing

#figure.constrained_layout.wspace: 0.02 # a fraction of the subplot␣
↪widths being separated.

* IMAGES *

#image.aspect: equal # {equal, auto} or a number
#image.interpolation: antialiased # see help(imshow) for options

(continues on next page)

102 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
#image.cmap: viridis # A colormap name, gray etc...
#image.lut: 256 # the size of the colormap lookup table
#image.origin: upper # {lower, upper}
#image.resample: True
#image.composite_image: True # When True, all the images on a set of axes are

combined into a single composite image before
saving a figure as a vector graphics file,
such as a PDF.

* CONTOUR PLOTS *

#contour.negative_linestyle: dashed # string or on-off ink sequence
#contour.corner_mask: True # {True, False, legacy}
#contour.linewidth: None # {float, None} Size of the contour line

widths. If set to None, it falls back␣
↪to

`line.linewidth`.

* ERRORBAR PLOTS *

#errorbar.capsize: 0 # length of end cap on error bars in pixels

* HISTOGRAM PLOTS *

#hist.bins: 10 # The default number of histogram bins or 'auto'.

* SCATTER PLOTS *

#scatter.marker: o # The default marker type for scatter plots.
#scatter.edgecolors: face # The default edge colors for scatter plots.

* AGG RENDERING *

Warning: experimental, 2008/10/10
#agg.path.chunksize: 0 # 0 to disable; values in the range

10000 to 100000 can improve speed slightly
and prevent an Agg rendering failure
when plotting very large data sets,
especially if they are very gappy.
It may cause minor artifacts, though.
A value of 20000 is probably a good
starting point.

(continues on next page)

2.1. Introductory 103

Matplotlib, Release 3.4.3

(continued from previous page)

* PATHS *

#path.simplify: True # When True, simplify paths by removing "invisible"

points to reduce file size and increase rendering
speed

#path.simplify_threshold: 0.111111111111 # The threshold of similarity below
which vertices will be removed in
the simplification process.

#path.snap: True # When True, rectilinear axis-aligned paths will be snapped
to the nearest pixel when certain criteria are met.
When False, paths will never be snapped.

#path.sketch: None # May be None, or a 3-tuple of the form:
(scale, length, randomness).
- *scale* is the amplitude of the wiggle
perpendicular to the line (in pixels).
- *length* is the length of the wiggle along the
line (in pixels).
- *randomness* is the factor by which the length is
randomly scaled.

#path.effects:

* SAVING FIGURES *

The default savefig parameters can be different from the display parameters
e.g., you may want a higher resolution, or to make the figure
background white
#savefig.dpi: figure # figure dots per inch or 'figure'
#savefig.facecolor: auto # figure face color when saving
#savefig.edgecolor: auto # figure edge color when saving
#savefig.format: png # {png, ps, pdf, svg}
#savefig.bbox: standard # {tight, standard}

'tight' is incompatible with pipe-based␣
↪animation

backends (e.g. 'ffmpeg') but will work with␣
↪those

based on temporary files (e.g. 'ffmpeg_file
↪')

#savefig.pad_inches: 0.1 # Padding to be used when bbox is set to
↪'tight'

#savefig.directory: ~ # default directory in savefig dialog box,
leave empty to always use current working␣

↪directory
#savefig.transparent: False # setting that controls whether figures are␣

↪saved with a
transparent background by default

#savefig.orientation: portrait # Orientation of saved figure

(continues on next page)

104 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
tk backend params
#tk.window_focus: False # Maintain shell focus for TkAgg

ps backend params
#ps.papersize: letter # {auto, letter, legal, ledger, A0-A10, B0-B10}
#ps.useafm: False # use of AFM fonts, results in small files
#ps.usedistiller: False # {ghostscript, xpdf, None}

Experimental: may produce smaller files.
xpdf intended for production of publication␣

↪quality files,
but requires ghostscript, xpdf and ps2eps

#ps.distiller.res: 6000 # dpi
#ps.fonttype: 3 # Output Type 3 (Type3) or Type 42 (TrueType)

PDF backend params
#pdf.compression: 6 # integer from 0 to 9

0 disables compression (good for debugging)
#pdf.fonttype: 3 # Output Type 3 (Type3) or Type 42 (TrueType)
#pdf.use14corefonts : False
#pdf.inheritcolor: False

SVG backend params
#svg.image_inline: True # Write raster image data directly into the SVG file
#svg.fonttype: path # How to handle SVG fonts:

path: Embed characters as paths -- supported
by most SVG renderers
None: Assume fonts are installed on the
machine where the SVG will be viewed.

#svg.hashsalt: None # If not None, use this string as hash salt instead␣
↪of uuid4

pgf parameter
See https://matplotlib.org/tutorials/text/pgf.html for more information.
#pgf.rcfonts: True
#pgf.preamble: # See text.latex.preamble for documentation
#pgf.texsystem: xelatex

docstring params
#docstring.hardcopy: False # set this when you want to generate hardcopy␣

↪docstring

* INTERACTIVE KEYMAPS *

Event keys to interact with figures/plots via keyboard.
See https://matplotlib.org/users/navigation_toolbar.html for more details␣

↪on
interactive navigation. Customize these settings according to your needs.
Leave the field(s) empty if you don't need a key-map. (i.e., fullscreen : '

↪')
#keymap.fullscreen: f, ctrl+f # toggling

(continues on next page)

2.1. Introductory 105

Matplotlib, Release 3.4.3

(continued from previous page)
#keymap.home: h, r, home # home or reset mnemonic
#keymap.back: left, c, backspace, MouseButton.BACK # forward / backward keys
#keymap.forward: right, v, MouseButton.FORWARD # for quick navigation
#keymap.pan: p # pan mnemonic
#keymap.zoom: o # zoom mnemonic
#keymap.save: s, ctrl+s # saving current figure
#keymap.help: f1 # display help about active tools
#keymap.quit: ctrl+w, cmd+w, q # close the current figure
#keymap.quit_all: # close all figures
#keymap.grid: g # switching on/off major grids in current axes
#keymap.grid_minor: G # switching on/off minor grids in current axes
#keymap.yscale: l # toggle scaling of y-axes ('log'/'linear')
#keymap.xscale: k, L # toggle scaling of x-axes ('log'/'linear')
#keymap.copy: ctrl+c, cmd+c # Copy figure to clipboard

* ANIMATION *

#animation.html: none # How to display the animation as HTML in

the IPython notebook:
- 'html5' uses HTML5 video tag
- 'jshtml' creates a JavaScript animation

#animation.writer: ffmpeg # MovieWriter 'backend' to use
#animation.codec: h264 # Codec to use for writing movie
#animation.bitrate: -1 # Controls size/quality trade-off for movie.

-1 implies let utility auto-determine
#animation.frame_format: png # Controls frame format used by temp files
#animation.ffmpeg_path: ffmpeg # Path to ffmpeg binary. Without full path

$PATH is searched
#animation.ffmpeg_args: # Additional arguments to pass to ffmpeg
#animation.convert_path: convert # Path to ImageMagick's convert binary.

On Windows use the full path since convert
is also the name of a system tool.

#animation.convert_args: # Additional arguments to pass to convert
#animation.embed_limit: 20.0 # Limit, in MB, of size of base64 encoded

animation in HTML (i.e. IPython notebook)

Total running time of the script: (0 minutes 1.653 seconds)

106 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

2.2 Intermediate

These tutorials cover some of the more complicated classes and functions in Matplotlib. They can be useful
for particular custom and complex visualizations.

2.2.1 Artist tutorial

Using Artist objects to render on the canvas.

There are three layers to the Matplotlib API.

• the matplotlib.backend_bases.FigureCanvas is the area onto which the figure is drawn

• the matplotlib.backend_bases.Renderer is the object which knows how to draw on the
FigureCanvas

• and the matplotlib.artist.Artist is the object that knows how to use a renderer to paint
onto the canvas.

The FigureCanvas and Renderer handle all the details of talking to user interface toolkits like wx-
Python or drawing languages like PostScript®, and the Artist handles all the high level constructs like
representing and laying out the figure, text, and lines. The typical user will spend 95% of their time working
with the Artists.

There are two types of Artists: primitives and containers. The primitives represent the standard graphical
objects wewant to paint onto our canvas: Line2D,Rectangle, Text, AxesImage, etc., and the contain-
ers are places to put them (Axis, Axes and Figure). The standard use is to create a Figure instance,
use the Figure to create one or more Axes or Subplot instances, and use the Axes instance helper
methods to create the primitives. In the example below, we create a Figure instance using matplotlib.
pyplot.figure(), which is a convenience method for instantiating Figure instances and connecting
them with your user interface or drawing toolkit FigureCanvas. As we will discuss below, this is not
necessary -- you can work directly with PostScript, PDF Gtk+, or wxPython FigureCanvas instances,
instantiate your Figures directly and connect them yourselves -- but since we are focusing here on the
Artist API we'll let pyplot handle some of those details for us:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1) # two rows, one column, first plot

The Axes is probably the most important class in the Matplotlib API, and the one you will be working
with most of the time. This is because the Axes is the plotting area into which most of the objects go, and
the Axes has many special helper methods (plot(), text(), hist(), imshow()) to create the most
common graphics primitives (Line2D, Text, Rectangle, AxesImage, respectively). These helper
methods will take your data (e.g., numpy arrays and strings) and create primitive Artist instances as
needed (e.g., Line2D), add them to the relevant containers, and draw them when requested. Most of you
are probably familiar with the Subplot, which is just a special case of an Axes that lives on a regular rows
by columns grid of Subplot instances. If you want to create an Axes at an arbitrary location, simply use
the add_axes() method which takes a list of [left, bottom, width, height] values in 0-1
relative figure coordinates:

2.2. Intermediate 107

https://www.wxpython.org
https://www.wxpython.org

Matplotlib, Release 3.4.3

fig2 = plt.figure()
ax2 = fig2.add_axes([0.15, 0.1, 0.7, 0.3])

Continuing with our example:

import numpy as np
t = np.arange(0.0, 1.0, 0.01)
s = np.sin(2*np.pi*t)
line, = ax.plot(t, s, color='blue', lw=2)

In this example, ax is the Axes instance created by the fig.add_subplot call above (remember Sub-
plot is just a subclass of Axes) and when you call ax.plot, it creates a Line2D instance and adds it to
the Axes.lines list. In the interactive IPython session below, you can see that the Axes.lines list is
length one and contains the same line that was returned by the line, = ax.plot... call:

In [101]: ax.lines[0]
Out[101]: <matplotlib.lines.Line2D at 0x19a95710>

In [102]: line
Out[102]: <matplotlib.lines.Line2D at 0x19a95710>

If you make subsequent calls to ax.plot (and the hold state is "on" which is the default) then additional
lines will be added to the list. You can remove lines later simply by calling the list methods; either of these
will work:

del ax.lines[0]
ax.lines.remove(line) # one or the other, not both!

The Axes also has helper methods to configure and decorate the x-axis and y-axis tick, tick labels and axis
labels:

xtext = ax.set_xlabel('my xdata') # returns a Text instance
ytext = ax.set_ylabel('my ydata')

When you call ax.set_xlabel, it passes the information on the Text instance of the XAxis. Each
Axes instance contains an XAxis and a YAxis instance, which handle the layout and drawing of the ticks,
tick labels and axis labels.

Try creating the figure below.

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
fig.subplots_adjust(top=0.8)
ax1 = fig.add_subplot(211)
ax1.set_ylabel('volts')
ax1.set_title('a sine wave')

t = np.arange(0.0, 1.0, 0.01)
s = np.sin(2*np.pi*t)

(continues on next page)

108 Chapter 2. Tutorials

https://ipython.org/

Matplotlib, Release 3.4.3

(continued from previous page)
line, = ax1.plot(t, s, color='blue', lw=2)

Fixing random state for reproducibility
np.random.seed(19680801)

ax2 = fig.add_axes([0.15, 0.1, 0.7, 0.3])
n, bins, patches = ax2.hist(np.random.randn(1000), 50,

facecolor='yellow', edgecolor='yellow')
ax2.set_xlabel('time (s)')

plt.show()

2.2. Intermediate 109

Matplotlib, Release 3.4.3

Customizing your objects

Every element in the figure is represented by a Matplotlib Artist, and each has an extensive list of proper-
ties to configure its appearance. The figure itself contains a Rectangle exactly the size of the figure, which
you can use to set the background color and transparency of the figures. Likewise, each Axes bounding box
(the standard white box with black edges in the typical Matplotlib plot, has a Rectangle instance that
determines the color, transparency, and other properties of the Axes. These instances are stored as member
variables Figure.patch and Axes.patch ("Patch" is a name inherited from MATLAB, and is a 2D
"patch" of color on the figure, e.g., rectangles, circles and polygons). Every Matplotlib Artist has the
following properties

Property Description
alpha The transparency - a scalar from 0-1
animated A boolean that is used to facilitate animated drawing
axes The Axes that the Artist lives in, possibly None
clip_box The bounding box that clips the Artist
clip_on Whether clipping is enabled
clip_path The path the artist is clipped to
contains A picking function to test whether the artist contains the pick point
figure The figure instance the artist lives in, possibly None
label A text label (e.g., for auto-labeling)
picker A python object that controls object picking
transform The transformation
visible A boolean whether the artist should be drawn
zorder A number which determines the drawing order
rasterized Boolean; Turns vectors into raster graphics (for compression & EPS transparency)

Each of the properties is accessed with an old-fashioned setter or getter (yes we know this irritates Pythonistas
and we plan to support direct access via properties or traits but it hasn't been done yet). For example, to
multiply the current alpha by a half:

a = o.get_alpha()
o.set_alpha(0.5*a)

If you want to set a number of properties at once, you can also use the setmethod with keyword arguments.
For example:

o.set(alpha=0.5, zorder=2)

If you are working interactively at the python shell, a handy way to inspect the Artist properties is to use
the matplotlib.artist.getp() function (simply getp() in pyplot), which lists the properties and
their values. This works for classes derived from Artist as well, e.g., Figure and Rectangle. Here
are the Figure rectangle properties mentioned above:

In [149]: matplotlib.artist.getp(fig.patch)
agg_filter = None
alpha = None

(continues on next page)

110 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
animated = False
antialiased or aa = False
bbox = Bbox(x0=0.0, y0=0.0, x1=1.0, y1=1.0)
capstyle = butt
children = []
clip_box = None
clip_on = True
clip_path = None
contains = None
data_transform = BboxTransformTo(TransformedBbox(Bbox...
edgecolor or ec = (1.0, 1.0, 1.0, 1.0)
extents = Bbox(x0=0.0, y0=0.0, x1=640.0, y1=480.0)
facecolor or fc = (1.0, 1.0, 1.0, 1.0)
figure = Figure(640x480)
fill = True
gid = None
hatch = None
height = 1
in_layout = False
joinstyle = miter
label =
linestyle or ls = solid
linewidth or lw = 0.0
patch_transform = CompositeGenericTransform(BboxTransformTo(...
path = Path(array([[0., 0.], [1., 0.], [1.,...
path_effects = []
picker = None
rasterized = None
sketch_params = None
snap = None
transform = CompositeGenericTransform(CompositeGenericTra...
transformed_clip_path_and_affine = (None, None)
url = None
verts = [[0. 0.] [640. 0.] [640. 480.] [0. 480....
visible = True
width = 1
window_extent = Bbox(x0=0.0, y0=0.0, x1=640.0, y1=480.0)
x = 0
xy = (0, 0)
y = 0
zorder = 1

The docstrings for all of the classes also contain the Artist properties, so you can consult the interactive
"help" or the matplotlib.artist for a listing of properties for a given object.

2.2. Intermediate 111

Matplotlib, Release 3.4.3

Object containers

Now that we know how to inspect and set the properties of a given object we want to configure, we need to
know how to get at that object. As mentioned in the introduction, there are two kinds of objects: primitives
and containers. The primitives are usually the things you want to configure (the font of a Text instance,
the width of a Line2D) although the containers also have some properties as well -- for example the Axes
Artist is a container that contains many of the primitives in your plot, but it also has properties like
the xscale to control whether the xaxis is 'linear' or 'log'. In this section we'll review where the various
container objects store the Artists that you want to get at.

Figure container

The top level container Artist is the matplotlib.figure.Figure, and it contains everything in
the figure. The background of the figure is a Rectangle which is stored in Figure.patch. As you
add subplots (add_subplot()) and axes (add_axes()) to the figure these will be appended to the
Figure.axes. These are also returned by the methods that create them:

In [156]: fig = plt.figure()

In [157]: ax1 = fig.add_subplot(211)

In [158]: ax2 = fig.add_axes([0.1, 0.1, 0.7, 0.3])

In [159]: ax1
Out[159]: <AxesSubplot:>

In [160]: print(fig.axes)
[<AxesSubplot:>, <matplotlib.axes._axes.Axes object at 0x7f0768702be0>]

Because the figure maintains the concept of the "current Axes" (see Figure.gca and Figure.sca) to
support the pylab/pyplot state machine, you should not insert or remove Axes directly from the Axes list,
but rather use the add_subplot() and add_axes()methods to insert, and the delaxes()method to
delete. You are free however, to iterate over the list of Axes or index into it to get access to Axes instances
you want to customize. Here is an example which turns all the Axes grids on:

for ax in fig.axes:
ax.grid(True)

The figure also has its own images, lines, patches and text attributes, which you can use to add
primitives directly. When doing so, the default coordinate system for the Figure will simply be in pixels
(which is not usually what you want). If you instead use Figure-level methods to add Artists (e.g., using
Figure.text to add text), then the default coordinate system will be "figure coordinates" where (0, 0) is
the bottom-left of the figure and (1, 1) is the top-right of the figure.

As with all Artists, you can control this coordinate system by setting the transform property. You can
explicitly use "figure coordinates" by setting the Artist transform to fig.transFigure:

import matplotlib.lines as lines

(continues on next page)

112 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
fig = plt.figure()

l1 = lines.Line2D([0, 1], [0, 1], transform=fig.transFigure, figure=fig)
l2 = lines.Line2D([0, 1], [1, 0], transform=fig.transFigure, figure=fig)
fig.lines.extend([l1, l2])

plt.show()

Here is a summary of the Artists the Figure contains

Figure attribute Description
axes A list of Axes instances (includes Subplot)
patch The Rectangle background
images A list of FigureImage patches - useful for raw pixel display
legends A list of Figure Legend instances (different from Axes.legends)
lines A list of Figure Line2D instances (rarely used, see Axes.lines)
patches A list of Figure Patchs (rarely used, see Axes.patches)
texts A list Figure Text instances

2.2. Intermediate 113

Matplotlib, Release 3.4.3

Axes container

The matplotlib.axes.Axes is the center of the Matplotlib universe -- it contains the vast majority of
all the Artists used in a figure with many helper methods to create and add these Artists to itself, as
well as helper methods to access and customize the Artists it contains. Like the Figure, it contains a
Patch patch which is a Rectangle for Cartesian coordinates and a Circle for polar coordinates; this
patch determines the shape, background and border of the plotting region:

ax = fig.add_subplot()
rect = ax.patch # a Rectangle instance
rect.set_facecolor('green')

When you call a plotting method, e.g., the canonical plot() and pass in arrays or lists of values, the method
will create a matplotlib.lines.Line2D() instance, update the line with all the Line2D properties
passed as keyword arguments, add the line to the Axes.lines container, and returns it to you:

In [213]: x, y = np.random.rand(2, 100)

In [214]: line, = ax.plot(x, y, '-', color='blue', linewidth=2)

plot returns a list of lines because you can pass in multiple x, y pairs to plot, and we are unpacking the first
element of the length one list into the line variable. The line has been added to the Axes.lines list:

In [229]: print(ax.lines)
[<matplotlib.lines.Line2D at 0xd378b0c>]

Similarly, methods that create patches, like bar() creates a list of rectangles, will add the patches to the
Axes.patches list:

In [233]: n, bins, rectangles = ax.hist(np.random.randn(1000), 50)

In [234]: rectangles
Out[234]: <BarContainer object of 50 artists>

In [235]: print(len(ax.patches))
Out[235]: 50

You should not add objects directly to the Axes.lines or Axes.patches lists unless you know exactly
what you are doing, because the Axes needs to do a few things when it creates and adds an object. It sets the
figure and axes property of the Artist, as well as the default Axes transformation (unless a transformation
is set). It also inspects the data contained in the Artist to update the data structures controlling auto-
scaling, so that the view limits can be adjusted to contain the plotted data. You can, nonetheless, create objects
yourself and add them directly to the Axes using helper methods like add_line() and add_patch().
Here is an annotated interactive session illustrating what is going on:

In [262]: fig, ax = plt.subplots()

create a rectangle instance
In [263]: rect = matplotlib.patches.Rectangle((1, 1), width=5, height=12)

(continues on next page)

114 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
by default the axes instance is None
In [264]: print(rect.axes)
None

and the transformation instance is set to the "identity transform"
In [265]: print(rect.get_data_transform())
IdentityTransform()

now we add the Rectangle to the Axes
In [266]: ax.add_patch(rect)

and notice that the ax.add_patch method has set the axes
instance
In [267]: print(rect.axes)
Axes(0.125,0.1;0.775x0.8)

and the transformation has been set too
In [268]: print(rect.get_data_transform())
CompositeGenericTransform(

TransformWrapper(
BlendedAffine2D(

IdentityTransform(),
IdentityTransform())),

CompositeGenericTransform(
BboxTransformFrom(

TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=1.0, y1=1.0),
TransformWrapper(

BlendedAffine2D(
IdentityTransform(),
IdentityTransform())))),

BboxTransformTo(
TransformedBbox(

Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(

TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(

[[100. 0. 0.]
[0. 100. 0.]
[0. 0. 1.]])))))))

the default axes transformation is ax.transData
In [269]: print(ax.transData)
CompositeGenericTransform(

TransformWrapper(
BlendedAffine2D(

IdentityTransform(),
IdentityTransform())),

CompositeGenericTransform(
BboxTransformFrom(

TransformedBbox(
(continues on next page)

2.2. Intermediate 115

Matplotlib, Release 3.4.3

(continued from previous page)
Bbox(x0=0.0, y0=0.0, x1=1.0, y1=1.0),
TransformWrapper(

BlendedAffine2D(
IdentityTransform(),
IdentityTransform())))),

BboxTransformTo(
TransformedBbox(

Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(

TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(

[[100. 0. 0.]
[0. 100. 0.]
[0. 0. 1.]])))))))

notice that the xlimits of the Axes have not been changed
In [270]: print(ax.get_xlim())
(0.0, 1.0)

but the data limits have been updated to encompass the rectangle
In [271]: print(ax.dataLim.bounds)
(1.0, 1.0, 5.0, 12.0)

we can manually invoke the auto-scaling machinery
In [272]: ax.autoscale_view()

and now the xlim are updated to encompass the rectangle, plus margins
In [273]: print(ax.get_xlim())
(0.75, 6.25)

we have to manually force a figure draw
In [274]: fig.canvas.draw()

There are many, many Axes helper methods for creating primitive Artists and adding them to their
respective containers. The table below summarizes a small sampling of them, the kinds of Artist they
create, and where they store them

Axes helper method Artist Container
annotate - text annotations Annotation ax.texts
bar - bar charts Rectangle ax.patches
errorbar - error bar plots Line2D and Rectangle ax.lines and ax.patches
fill - shared area Polygon ax.patches
hist - histograms Rectangle ax.patches
imshow - image data AxesImage ax.images
legend - Axes legends Legend ax.legends
plot - xy plots Line2D ax.lines
scatter - scatter charts PolyCollection ax.collections
text - text Text ax.texts

116 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

In addition to all of these Artists, the Axes contains two important Artist containers: the XAxis and
YAxis, which handle the drawing of the ticks and labels. These are stored as instance variables xaxis and
yaxis. The XAxis and YAxis containers will be detailed below, but note that the Axes contains many
helper methods which forward calls on to the Axis instances so you often do not need to work with them
directly unless you want to. For example, you can set the font color of the XAxis ticklabels using the Axes
helper method:

for label in ax.get_xticklabels():
label.set_color('orange')

Below is a summary of the Artists that the Axes contains

Axes attribute Description
artists A list of Artist instances
patch Rectangle instance for Axes background
collections A list of Collection instances
images A list of AxesImage
legends A list of Legend instances
lines A list of Line2D instances
patches A list of Patch instances
texts A list of Text instances
xaxis A matplotlib.axis.XAxis instance
yaxis A matplotlib.axis.YAxis instance

Axis containers

The matplotlib.axis.Axis instances handle the drawing of the tick lines, the grid lines, the tick labels
and the axis label. You can configure the left and right ticks separately for the y-axis, and the upper and lower
ticks separately for the x-axis. The Axis also stores the data and view intervals used in auto-scaling, panning
and zooming, as well as the Locator and Formatter instances which control where the ticks are placed
and how they are represented as strings.

Each Axis object contains a label attribute (this is what pyplotmodifies in calls to xlabel and yla-
bel) as well as a list of major and minor ticks. The ticks are axis.XTick and axis.YTick instances,
which contain the actual line and text primitives that render the ticks and ticklabels. Because the ticks
are dynamically created as needed (e.g., when panning and zooming), you should access the lists of major
and minor ticks through their accessor methods axis.Axis.get_major_ticks and axis.Axis.
get_minor_ticks. Although the ticks contain all the primitives and will be covered below, Axis in-
stances have accessor methods that return the tick lines, tick labels, tick locations etc.:

fig, ax = plt.subplots()
axis = ax.xaxis
axis.get_ticklocs()

2.2. Intermediate 117

Matplotlib, Release 3.4.3

Out:

array([0. , 0.2, 0.4, 0.6, 0.8, 1.])

axis.get_ticklabels()

Out:

[Text(0.0, 0, '0.0'), Text(0.2, 0, '0.2'), Text(0.4, 0, '0.4'), Text(0.
↪6000000000000001, 0, '0.6'), Text(0.8, 0, '0.8'), Text(1.0, 0, '1.0')]

note there are twice as many ticklines as labels because by default there are tick lines at the top and bottom
but only tick labels below the xaxis; however, this can be customized.

axis.get_ticklines()

Out:

<a list of 12 Line2D ticklines objects>

And with the above methods, you only get lists of major ticks back by default, but you can also ask for the
minor ticks:

118 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

axis.get_ticklabels(minor=True)
axis.get_ticklines(minor=True)

Out:

<a list of 0 Line2D ticklines objects>

Here is a summary of some of the useful accessor methods of the Axis (these have corresponding setters
where useful, such as set_major_formatter().)

Axis accessor method Description
get_scale The scale of the Axis, e.g., 'log' or 'linear'
get_view_interval The interval instance of the Axis view limits
get_data_interval The interval instance of the Axis data limits
get_gridlines A list of grid lines for the Axis
get_label The Axis label - a Text instance
get_offset_text The Axis offset text - a Text instance
get_ticklabels A list of Text instances - keyword minor=True|False
get_ticklines A list of Line2D instances - keyword minor=True|False
get_ticklocs A list of Tick locations - keyword minor=True|False
get_major_locator The ticker.Locator instance for major ticks
get_major_formatter The ticker.Formatter instance for major ticks
get_minor_locator The ticker.Locator instance for minor ticks
get_minor_formatter The ticker.Formatter instance for minor ticks
get_major_ticks A list of Tick instances for major ticks
get_minor_ticks A list of Tick instances for minor ticks
grid Turn the grid on or off for the major or minor ticks

Here is an example, not recommended for its beauty, which customizes the Axes and Tick properties.

plt.figure creates a matplotlib.figure.Figure instance
fig = plt.figure()
rect = fig.patch # a rectangle instance
rect.set_facecolor('lightgoldenrodyellow')

ax1 = fig.add_axes([0.1, 0.3, 0.4, 0.4])
rect = ax1.patch
rect.set_facecolor('lightslategray')

for label in ax1.xaxis.get_ticklabels():
label is a Text instance
label.set_color('red')
label.set_rotation(45)
label.set_fontsize(16)

for line in ax1.yaxis.get_ticklines():
line is a Line2D instance

(continues on next page)

2.2. Intermediate 119

Matplotlib, Release 3.4.3

(continued from previous page)
line.set_color('green')
line.set_markersize(25)
line.set_markeredgewidth(3)

plt.show()

Tick containers

The matplotlib.axis.Tick is the final container object in our descent from the Figure to the Axes
to the Axis to the Tick. The Tick contains the tick and grid line instances, as well as the label instances
for the upper and lower ticks. Each of these is accessible directly as an attribute of the Tick.

Tick attribute Description
tick1line A Line2D instance
tick2line A Line2D instance
gridline A Line2D instance
label1 A Text instance
label2 A Text instance

120 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Here is an example which sets the formatter for the right side ticks with dollar signs and colors them green
on the right side of the yaxis.

import numpy as np
import matplotlib.pyplot as plt

Fixing random state for reproducibility
np.random.seed(19680801)

fig, ax = plt.subplots()
ax.plot(100*np.random.rand(20))

Use automatic StrMethodFormatter
ax.yaxis.set_major_formatter('${x:1.2f}')

ax.yaxis.set_tick_params(which='major', labelcolor='green',
labelleft=False, labelright=True)

plt.show()

2.2. Intermediate 121

Matplotlib, Release 3.4.3

2.2.2 Legend guide

Generating legends flexibly in Matplotlib.

This legend guide is an extension of the documentation available at legend() - please ensure you are
familiar with contents of that documentation before proceeding with this guide.

This guide makes use of some common terms, which are documented here for clarity:

legend entry
A legend is made up of one or more legend entries. An entry is made up of exactly one key and one
label.

legend key
The colored/patterned marker to the left of each legend label.

legend label
The text which describes the handle represented by the key.

legend handle
The original object which is used to generate an appropriate entry in the legend.

Controlling the legend entries

Calling legend() with no arguments automatically fetches the legend handles and their associated labels.
This functionality is equivalent to:

handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels)

The get_legend_handles_labels() function returns a list of handles/artists which exist on the Axes
which can be used to generate entries for the resulting legend - it is worth noting however that not all artists
can be added to a legend, at which point a "proxy" will have to be created (see Creating artists specifically
for adding to the legend (aka. Proxy artists) for further details).

Those artists with an empty string as label or with a label starting with "_" will be ignored.

For full control of what is being added to the legend, it is common to pass the appropriate handles directly
to legend():

line_up, = plt.plot([1, 2, 3], label='Line 2')
line_down, = plt.plot([3, 2, 1], label='Line 1')
plt.legend(handles=[line_up, line_down])

In some cases, it is not possible to set the label of the handle, so it is possible to pass through the list of labels
to legend():

line_up, = plt.plot([1, 2, 3], label='Line 2')
line_down, = plt.plot([3, 2, 1], label='Line 1')
plt.legend([line_up, line_down], ['Line Up', 'Line Down'])

122 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Creating artists specifically for adding to the legend (aka. Proxy artists)

Not all handles can be turned into legend entries automatically, so it is often necessary to create an artist
which can. Legend handles don't have to exist on the Figure or Axes in order to be used.

Suppose we wanted to create a legend which has an entry for some data which is represented by a red color:

import matplotlib.patches as mpatches
import matplotlib.pyplot as plt

red_patch = mpatches.Patch(color='red', label='The red data')
plt.legend(handles=[red_patch])

plt.show()

There are many supported legend handles. Instead of creating a patch of color we could have created a line
with a marker:

import matplotlib.lines as mlines

blue_line = mlines.Line2D([], [], color='blue', marker='*',
markersize=15, label='Blue stars')

plt.legend(handles=[blue_line])

(continues on next page)

2.2. Intermediate 123

Matplotlib, Release 3.4.3

(continued from previous page)

plt.show()

Legend location

The location of the legend can be specified by the keyword argument loc. Please see the documentation at
legend() for more details.

Thebbox_to_anchor keyword gives a great degree of control formanual legend placement. For example,
if you want your axes legend located at the figure's top right-hand corner instead of the axes' corner, simply
specify the corner's location and the coordinate system of that location:

plt.legend(bbox_to_anchor=(1, 1),
bbox_transform=plt.gcf().transFigure)

More examples of custom legend placement:

plt.subplot(211)
plt.plot([1, 2, 3], label="test1")
plt.plot([3, 2, 1], label="test2")

(continues on next page)

124 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

Place a legend above this subplot, expanding itself to
fully use the given bounding box.
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left',

ncol=2, mode="expand", borderaxespad=0.)

plt.subplot(223)
plt.plot([1, 2, 3], label="test1")
plt.plot([3, 2, 1], label="test2")
Place a legend to the right of this smaller subplot.
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.)

plt.show()

2.2. Intermediate 125

Matplotlib, Release 3.4.3

Multiple legends on the same Axes

Sometimes it is more clear to split legend entries across multiple legends. Whilst the instinctive approach
to doing this might be to call the legend() function multiple times, you will find that only one legend
ever exists on the Axes. This has been done so that it is possible to call legend() repeatedly to update the
legend to the latest handles on the Axes. To keep old legend instances, we must add them manually to the
Axes:

line1, = plt.plot([1, 2, 3], label="Line 1", linestyle='--')
line2, = plt.plot([3, 2, 1], label="Line 2", linewidth=4)

Create a legend for the first line.
first_legend = plt.legend(handles=[line1], loc='upper right')

Add the legend manually to the current Axes.
plt.gca().add_artist(first_legend)

Create another legend for the second line.
plt.legend(handles=[line2], loc='lower right')

plt.show()

126 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Legend Handlers

In order to create legend entries, handles are given as an argument to an appropriateHandlerBase subclass.
The choice of handler subclass is determined by the following rules:

1. Update get_legend_handler_map() with the value in the handler_map keyword.

2. Check if the handle is in the newly created handler_map.

3. Check if the type of handle is in the newly created handler_map.

4. Check if any of the types in the handle's mro is in the newly created handler_map.

For completeness, this logic is mostly implemented in get_legend_handler().

All of this flexibility means that we have the necessary hooks to implement custom handlers for our own type
of legend key.

The simplest example of using custom handlers is to instantiate one of the existing legend_handler.
HandlerBase subclasses. For the sake of simplicity, let's choose legend_handler.
HandlerLine2D which accepts a numpoints argument (numpoints is also a keyword on the legend()
function for convenience). We can then pass the mapping of instance to Handler as a keyword to legend.

from matplotlib.legend_handler import HandlerLine2D

line1, = plt.plot([3, 2, 1], marker='o', label='Line 1')
line2, = plt.plot([1, 2, 3], marker='o', label='Line 2')

plt.legend(handler_map={line1: HandlerLine2D(numpoints=4)})

2.2. Intermediate 127

Matplotlib, Release 3.4.3

Out:

<matplotlib.legend.Legend object at 0x7fe64b59f4c0>

As you can see, "Line 1" now has 4 marker points, where "Line 2" has 2 (the default). Try the above code,
only change the map's key from line1 to type(line1). Notice how now both Line2D instances get 4
markers.

Along with handlers for complex plot types such as errorbars, stem plots and histograms, the default han-
dler_map has a special tuple handler (legend_handler.HandlerTuple) which simply plots the
handles on top of one another for each item in the given tuple. The following example demonstrates com-
bining two legend keys on top of one another:

from numpy.random import randn

z = randn(10)

red_dot, = plt.plot(z, "ro", markersize=15)
Put a white cross over some of the data.
white_cross, = plt.plot(z[:5], "w+", markeredgewidth=3, markersize=15)

plt.legend([red_dot, (red_dot, white_cross)], ["Attr A", "Attr A+B"])

128 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

<matplotlib.legend.Legend object at 0x7fe64a1a77f0>

The legend_handler.HandlerTuple class can also be used to assign several legend keys to the same
entry:

from matplotlib.legend_handler import HandlerLine2D, HandlerTuple

p1, = plt.plot([1, 2.5, 3], 'r-d')
p2, = plt.plot([3, 2, 1], 'k-o')

l = plt.legend([(p1, p2)], ['Two keys'], numpoints=1,
handler_map={tuple: HandlerTuple(ndivide=None)})

2.2. Intermediate 129

Matplotlib, Release 3.4.3

Implementing a custom legend handler

A custom handler can be implemented to turn any handle into a legend key (handles don't necessarily need to
be matplotlib artists). The handler must implement a legend_artistmethod which returns a single artist
for the legend to use. The required signature for legend_artist is documented at legend_artist.

import matplotlib.patches as mpatches

class AnyObject:
pass

class AnyObjectHandler:
def legend_artist(self, legend, orig_handle, fontsize, handlebox):

x0, y0 = handlebox.xdescent, handlebox.ydescent
width, height = handlebox.width, handlebox.height
patch = mpatches.Rectangle([x0, y0], width, height, facecolor='red',

edgecolor='black', hatch='xx', lw=3,
transform=handlebox.get_transform())

handlebox.add_artist(patch)

(continues on next page)

130 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
return patch

plt.legend([AnyObject()], ['My first handler'],
handler_map={AnyObject: AnyObjectHandler()})

Out:

<matplotlib.legend.Legend object at 0x7fe64b8bc2b0>

Alternatively, had we wanted to globally accept AnyObject instances without needing to manually set the
handler_map keyword all the time, we could have registered the new handler with:

from matplotlib.legend import Legend
Legend.update_default_handler_map({AnyObject: AnyObjectHandler()})

Whilst the power here is clear, remember that there are already many handlers implemented and what you
want to achieve may already be easily possible with existing classes. For example, to produce elliptical
legend keys, rather than rectangular ones:

from matplotlib.legend_handler import HandlerPatch

(continues on next page)

2.2. Intermediate 131

Matplotlib, Release 3.4.3

(continued from previous page)

class HandlerEllipse(HandlerPatch):
def create_artists(self, legend, orig_handle,

xdescent, ydescent, width, height, fontsize, trans):
center = 0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent
p = mpatches.Ellipse(xy=center, width=width + xdescent,

height=height + ydescent)
self.update_prop(p, orig_handle, legend)
p.set_transform(trans)
return [p]

c = mpatches.Circle((0.5, 0.5), 0.25, facecolor="green",
edgecolor="red", linewidth=3)

plt.gca().add_patch(c)

plt.legend([c], ["An ellipse, not a rectangle"],
handler_map={mpatches.Circle: HandlerEllipse()})

Out:

132 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

<matplotlib.legend.Legend object at 0x7fe64b68e0d0>

Total running time of the script: (0 minutes 2.851 seconds)

2.2.3 Styling with cycler

Demo of custom property-cycle settings to control colors and other style properties for multi-line plots.

Note: More complete documentation of the cycler API can be found here.

This example demonstrates two different APIs:

1. Setting the rc parameter specifying the default property cycle. This affects all subsequent axes (but
not axes already created).

2. Setting the property cycle for a single pair of axes.

from cycler import cycler
import numpy as np
import matplotlib.pyplot as plt

First we'll generate some sample data, in this case, four offset sine curves.

x = np.linspace(0, 2 * np.pi, 50)
offsets = np.linspace(0, 2 * np.pi, 4, endpoint=False)
yy = np.transpose([np.sin(x + phi) for phi in offsets])

Now yy has shape

print(yy.shape)

Out:

(50, 4)

So yy[:, i] will give you the i-th offset sine curve. Let's set the default prop_cycle using
matplotlib.pyplot.rc(). We'll combine a color cycler and a linestyle cycler by adding (+) two
cycler's together. See the bottom of this tutorial for more information about combining different cyclers.

default_cycler = (cycler(color=['r', 'g', 'b', 'y']) +
cycler(linestyle=['-', '--', ':', '-.']))

plt.rc('lines', linewidth=4)
plt.rc('axes', prop_cycle=default_cycler)

Now we'll generate a figure with two axes, one on top of the other. On the first axis, we'll plot with
the default cycler. On the second axis, we'll set the prop_cycle using matplotlib.axes.Axes.
set_prop_cycle(), which will only set the prop_cycle for this matplotlib.axes.Axes in-
stance. We'll use a second cycler that combines a color cycler and a linewidth cycler.

2.2. Intermediate 133

https://matplotlib.org/cycler/

Matplotlib, Release 3.4.3

custom_cycler = (cycler(color=['c', 'm', 'y', 'k']) +
cycler(lw=[1, 2, 3, 4]))

fig, (ax0, ax1) = plt.subplots(nrows=2)
ax0.plot(yy)
ax0.set_title('Set default color cycle to rgby')
ax1.set_prop_cycle(custom_cycler)
ax1.plot(yy)
ax1.set_title('Set axes color cycle to cmyk')

Add a bit more space between the two plots.
fig.subplots_adjust(hspace=0.3)
plt.show()

134 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Setting prop_cycle in the matplotlibrc file or style files

Remember, a custom cycler can be set in your matplotlibrc file or a style file (style.mplstyle)
under axes.prop_cycle:

axes.prop_cycle : cycler(color='bgrcmyk')

Cycling through multiple properties

You can add cyclers:

from cycler import cycler
cc = (cycler(color=list('rgb')) +

cycler(linestyle=['-', '--', '-.']))
for d in cc:

print(d)

Results in:

{'color': 'r', 'linestyle': '-'}
{'color': 'g', 'linestyle': '--'}
{'color': 'b', 'linestyle': '-.'}

You can multiply cyclers:

from cycler import cycler
cc = (cycler(color=list('rgb')) *

cycler(linestyle=['-', '--', '-.']))
for d in cc:

print(d)

Results in:

{'color': 'r', 'linestyle': '-'}
{'color': 'r', 'linestyle': '--'}
{'color': 'r', 'linestyle': '-.'}
{'color': 'g', 'linestyle': '-'}
{'color': 'g', 'linestyle': '--'}
{'color': 'g', 'linestyle': '-.'}
{'color': 'b', 'linestyle': '-'}
{'color': 'b', 'linestyle': '--'}
{'color': 'b', 'linestyle': '-.'}

2.2. Intermediate 135

Matplotlib, Release 3.4.3

2.2.4 Customizing Figure Layouts Using GridSpec and Other Functions

How to create grid-shaped combinations of axes.

subplots()

Perhaps the primary function used to create figures and axes. It's also similar to
matplotlib.pyplot.subplot(), but creates and places all axes on the figure at
once. See also matplotlib.figure.Figure.subplots.

GridSpec

Specifies the geometry of the grid that a subplot will be placed. The number of rows and
number of columns of the grid need to be set. Optionally, the subplot layout parameters
(e.g., left, right, etc.) can be tuned.

SubplotSpec

Specifies the location of the subplot in the given GridSpec.

subplot2grid()

A helper function that is similar to subplot(), but uses 0-based indexing and let subplot
to occupy multiple cells. This function is not covered in this tutorial.

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

Basic Quickstart Guide

These first two examples show how to create a basic 2-by-2 grid using both subplots() and gridspec.

Using subplots() is quite simple. It returns a Figure instance and an array of Axes objects.

fig1, f1_axes = plt.subplots(ncols=2, nrows=2, constrained_layout=True)

136 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

For a simple use case such as this, gridspec is perhaps overly verbose. You have to create the figure and
GridSpec instance separately, then pass elements of gridspec instance to the add_subplot() method
to create the axes objects. The elements of the gridspec are accessed in generally the same manner as numpy
arrays.

fig2 = plt.figure(constrained_layout=True)
spec2 = gridspec.GridSpec(ncols=2, nrows=2, figure=fig2)
f2_ax1 = fig2.add_subplot(spec2[0, 0])
f2_ax2 = fig2.add_subplot(spec2[0, 1])
f2_ax3 = fig2.add_subplot(spec2[1, 0])
f2_ax4 = fig2.add_subplot(spec2[1, 1])

2.2. Intermediate 137

Matplotlib, Release 3.4.3

The power of gridspec comes in being able to create subplots that span rows and columns. Note the NumPy
slice syntax for selecting the part of the gridspec each subplot will occupy.

Note that we have also used the convenience method Figure.add_gridspec instead of gridspec.
GridSpec, potentially saving the user an import, and keeping the namespace cleaner.

fig3 = plt.figure(constrained_layout=True)
gs = fig3.add_gridspec(3, 3)
f3_ax1 = fig3.add_subplot(gs[0, :])
f3_ax1.set_title('gs[0, :]')
f3_ax2 = fig3.add_subplot(gs[1, :-1])
f3_ax2.set_title('gs[1, :-1]')
f3_ax3 = fig3.add_subplot(gs[1:, -1])
f3_ax3.set_title('gs[1:, -1]')
f3_ax4 = fig3.add_subplot(gs[-1, 0])
f3_ax4.set_title('gs[-1, 0]')
f3_ax5 = fig3.add_subplot(gs[-1, -2])
f3_ax5.set_title('gs[-1, -2]')

138 Chapter 2. Tutorials

https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Matplotlib, Release 3.4.3

Out:

Text(0.5, 1.0, 'gs[-1, -2]')

gridspec is also indispensable for creating subplots of different widths via a couple of methods.

The method shown here is similar to the one above and initializes a uniform grid specification, and then uses
numpy indexing and slices to allocate multiple "cells" for a given subplot.

fig4 = plt.figure(constrained_layout=True)
spec4 = fig4.add_gridspec(ncols=2, nrows=2)
anno_opts = dict(xy=(0.5, 0.5), xycoords='axes fraction',

va='center', ha='center')

f4_ax1 = fig4.add_subplot(spec4[0, 0])
f4_ax1.annotate('GridSpec[0, 0]', **anno_opts)
fig4.add_subplot(spec4[0, 1]).annotate('GridSpec[0, 1:]', **anno_opts)
fig4.add_subplot(spec4[1, 0]).annotate('GridSpec[1:, 0]', **anno_opts)
fig4.add_subplot(spec4[1, 1]).annotate('GridSpec[1:, 1:]', **anno_opts)

2.2. Intermediate 139

Matplotlib, Release 3.4.3

Out:

Text(0.5, 0.5, 'GridSpec[1:, 1:]')

Another option is to use the width_ratios and height_ratios parameters. These keyword argu-
ments are lists of numbers. Note that absolute values are meaningless, only their relative ratios matter. That
means that width_ratios=[2, 4, 8] is equivalent to width_ratios=[1, 2, 4]within equally
wide figures. For the sake of demonstration, we'll blindly create the axes within for loops since we won't
need them later.

fig5 = plt.figure(constrained_layout=True)
widths = [2, 3, 1.5]
heights = [1, 3, 2]
spec5 = fig5.add_gridspec(ncols=3, nrows=3, width_ratios=widths,

height_ratios=heights)
for row in range(3):

for col in range(3):
ax = fig5.add_subplot(spec5[row, col])
label = 'Width: {}\nHeight: {}'.format(widths[col], heights[row])
ax.annotate(label, (0.1, 0.5), xycoords='axes fraction', va='center')

140 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Learning to use width_ratios and height_ratios is particularly useful since the top-level function
subplots() accepts them within the gridspec_kw parameter. For that matter, any parameter accepted
by GridSpec can be passed to subplots() via the gridspec_kw parameter. This example recreates
the previous figure without directly using a gridspec instance.

gs_kw = dict(width_ratios=widths, height_ratios=heights)
fig6, f6_axes = plt.subplots(ncols=3, nrows=3, constrained_layout=True,

gridspec_kw=gs_kw)
for r, row in enumerate(f6_axes):

for c, ax in enumerate(row):
label = 'Width: {}\nHeight: {}'.format(widths[c], heights[r])
ax.annotate(label, (0.1, 0.5), xycoords='axes fraction', va='center')

2.2. Intermediate 141

Matplotlib, Release 3.4.3

The subplots and get_gridspec methods can be combined since it is sometimes more convenient to
make most of the subplots using subplots and then remove some and combine them. Here we create a
layout with the bottom two axes in the last column combined.

fig7, f7_axs = plt.subplots(ncols=3, nrows=3)
gs = f7_axs[1, 2].get_gridspec()
remove the underlying axes
for ax in f7_axs[1:, -1]:

ax.remove()
axbig = fig7.add_subplot(gs[1:, -1])
axbig.annotate('Big Axes \nGridSpec[1:, -1]', (0.1, 0.5),

xycoords='axes fraction', va='center')

fig7.tight_layout()

142 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Fine Adjustments to a Gridspec Layout

When a GridSpec is explicitly used, you can adjust the layout parameters of subplots that are created
from the GridSpec. Note this option is not compatible with constrained_layout or Figure.
tight_layout which both adjust subplot sizes to fill the figure.

fig8 = plt.figure(constrained_layout=False)
gs1 = fig8.add_gridspec(nrows=3, ncols=3, left=0.05, right=0.48, wspace=0.05)
f8_ax1 = fig8.add_subplot(gs1[:-1, :])
f8_ax2 = fig8.add_subplot(gs1[-1, :-1])
f8_ax3 = fig8.add_subplot(gs1[-1, -1])

2.2. Intermediate 143

Matplotlib, Release 3.4.3

This is similar to subplots_adjust(), but it only affects the subplots that are created from the given
GridSpec.

For example, compare the left and right sides of this figure:

fig9 = plt.figure(constrained_layout=False)
gs1 = fig9.add_gridspec(nrows=3, ncols=3, left=0.05, right=0.48,

wspace=0.05)
f9_ax1 = fig9.add_subplot(gs1[:-1, :])
f9_ax2 = fig9.add_subplot(gs1[-1, :-1])
f9_ax3 = fig9.add_subplot(gs1[-1, -1])

gs2 = fig9.add_gridspec(nrows=3, ncols=3, left=0.55, right=0.98,
hspace=0.05)

f9_ax4 = fig9.add_subplot(gs2[:, :-1])
f9_ax5 = fig9.add_subplot(gs2[:-1, -1])
f9_ax6 = fig9.add_subplot(gs2[-1, -1])

144 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

GridSpec using SubplotSpec

You can create GridSpec from the SubplotSpec, in which case its layout parameters are set to that of the
location of the given SubplotSpec.

Note this is also available from the more verbose gridspec.GridSpecFromSubplotSpec.

fig10 = plt.figure(constrained_layout=True)
gs0 = fig10.add_gridspec(1, 2)

gs00 = gs0[0].subgridspec(2, 3)
gs01 = gs0[1].subgridspec(3, 2)

for a in range(2):
for b in range(3):

fig10.add_subplot(gs00[a, b])
fig10.add_subplot(gs01[b, a])

2.2. Intermediate 145

Matplotlib, Release 3.4.3

A Complex Nested GridSpec using SubplotSpec

Here's a more sophisticated example of nested GridSpec where we put a box around each cell of the outer
4x4 grid, by hiding appropriate spines in each of the inner 3x3 grids.

import numpy as np

def squiggle_xy(a, b, c, d, i=np.arange(0.0, 2*np.pi, 0.05)):
return np.sin(i*a)*np.cos(i*b), np.sin(i*c)*np.cos(i*d)

fig11 = plt.figure(figsize=(8, 8), constrained_layout=False)
outer_grid = fig11.add_gridspec(4, 4, wspace=0, hspace=0)

for a in range(4):
for b in range(4):

gridspec inside gridspec
inner_grid = outer_grid[a, b].subgridspec(3, 3, wspace=0, hspace=0)
axs = inner_grid.subplots() # Create all subplots for the inner grid.
for (c, d), ax in np.ndenumerate(axs):

ax.plot(*squiggle_xy(a + 1, b + 1, c + 1, d + 1))
(continues on next page)

146 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
ax.set(xticks=[], yticks=[])

show only the outside spines
for ax in fig11.get_axes():

ss = ax.get_subplotspec()
ax.spines.top.set_visible(ss.is_first_row())
ax.spines.bottom.set_visible(ss.is_last_row())
ax.spines.left.set_visible(ss.is_first_col())
ax.spines.right.set_visible(ss.is_last_col())

plt.show()

2.2. Intermediate 147

Matplotlib, Release 3.4.3

References
The use of the following functions, methods, classes and modules is shown in this example:

• matplotlib.pyplot.subplots

• matplotlib.figure.Figure.add_gridspec

• matplotlib.figure.Figure.add_subplot

• matplotlib.gridspec.GridSpec

• matplotlib.gridspec.SubplotSpec.subgridspec

• matplotlib.gridspec.GridSpecFromSubplotSpec

Total running time of the script: (0 minutes 8.524 seconds)

2.2.5 Constrained Layout Guide

How to use constrained-layout to fit plots within your figure cleanly.

constrained_layout automatically adjusts subplots and decorations like legends and colorbars so that they fit
in the figure window while still preserving, as best they can, the logical layout requested by the user.

constrained_layout is similar to tight_layout, but uses a constraint solver to determine the size of axes that
allows them to fit.

constrained_layout needs to be activated before any axes are added to a figure. Two ways of doing so are

• using the respective argument to subplots() or figure(), e.g.:

plt.subplots(constrained_layout=True)

• activate it via rcParams, like:

plt.rcParams['figure.constrained_layout.use'] = True

Those are described in detail throughout the following sections.

Warning: Currently Constrained Layout is experimental. The behaviour andAPI are subject to change,
or the whole functionality may be removed without a deprecation period. If you require your plots
to be absolutely reproducible, get the Axes positions after running Constrained Layout and use ax.
set_position() in your code with constrained_layout=False.

148 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Simple Example

In Matplotlib, the location of axes (including subplots) are specified in normalized figure coordinates. It can
happen that your axis labels or titles (or sometimes even ticklabels) go outside the figure area, and are thus
clipped.

import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import matplotlib.gridspec as gridspec
import numpy as np

plt.rcParams['savefig.facecolor'] = "0.8"
plt.rcParams['figure.figsize'] = 4.5, 4.
plt.rcParams['figure.max_open_warning'] = 50

def example_plot(ax, fontsize=12, hide_labels=False):
ax.plot([1, 2])

ax.locator_params(nbins=3)
if hide_labels:

ax.set_xticklabels([])
ax.set_yticklabels([])

else:
ax.set_xlabel('x-label', fontsize=fontsize)
ax.set_ylabel('y-label', fontsize=fontsize)
ax.set_title('Title', fontsize=fontsize)

fig, ax = plt.subplots(constrained_layout=False)
example_plot(ax, fontsize=24)

2.2. Intermediate 149

Matplotlib, Release 3.4.3

To prevent this, the location of axes needs to be adjusted. For subplots, this can be done by adjusting the
subplot params (Move the edge of an axes to make room for tick labels). However, specifying your figure
with the constrained_layout=True kwarg will do the adjusting automatically.

fig, ax = plt.subplots(constrained_layout=True)
example_plot(ax, fontsize=24)

150 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

When you have multiple subplots, often you see labels of different axes overlapping each other.

fig, axs = plt.subplots(2, 2, constrained_layout=False)
for ax in axs.flat:

example_plot(ax)

2.2. Intermediate 151

Matplotlib, Release 3.4.3

Specifying constrained_layout=True in the call to plt.subplots causes the layout to be prop-
erly constrained.

fig, axs = plt.subplots(2, 2, constrained_layout=True)
for ax in axs.flat:

example_plot(ax)

152 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Colorbars

If you create a colorbar with Figure.colorbar, you need to make room for it. con-
strained_layout does this automatically. Note that if you specify use_gridspec=True it will
be ignored because this option is made for improving the layout via tight_layout.

Note: For the pcolormesh kwargs (pc_kwargs) we use a dictionary. Belowwewill assign one colorbar
to a number of axes each containing a ScalarMappable; specifying the norm and colormap ensures the
colorbar is accurate for all the axes.

arr = np.arange(100).reshape((10, 10))
norm = mcolors.Normalize(vmin=0., vmax=100.)
see note above: this makes all pcolormesh calls consistent:
pc_kwargs = {'rasterized': True, 'cmap': 'viridis', 'norm': norm}
fig, ax = plt.subplots(figsize=(4, 4), constrained_layout=True)
im = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=ax, shrink=0.6)

2.2. Intermediate 153

Matplotlib, Release 3.4.3

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe64bee83a0>

If you specify a list of axes (or other iterable container) to theax argument of colorbar, constrained_layout
will take space from the specified axes.

fig, axs = plt.subplots(2, 2, figsize=(4, 4), constrained_layout=True)
for ax in axs.flat:

im = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=axs, shrink=0.6)

154 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe64b5ff4c0>

If you specify a list of axes from inside a grid of axes, the colorbar will steal space appropriately, and leave
a gap, but all subplots will still be the same size.

fig, axs = plt.subplots(3, 3, figsize=(4, 4), constrained_layout=True)
for ax in axs.flat:

im = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=axs[1:,][:, 1], shrink=0.8)
fig.colorbar(im, ax=axs[:, -1], shrink=0.6)

2.2. Intermediate 155

Matplotlib, Release 3.4.3

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe64b2a4fd0>

Suptitle

constrained_layout can also make room for suptitle.

fig, axs = plt.subplots(2, 2, figsize=(4, 4), constrained_layout=True)
for ax in axs.flat:

im = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=axs, shrink=0.6)
fig.suptitle('Big Suptitle')

156 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

Text(0.5, 0.9895825, 'Big Suptitle')

Legends

Legends can be placed outside of their parent axis. Constrained-layout is designed to handle this for Axes.
legend(). However, constrained-layout does not handle legends being created via Figure.legend()
(yet).

fig, ax = plt.subplots(constrained_layout=True)
ax.plot(np.arange(10), label='This is a plot')
ax.legend(loc='center left', bbox_to_anchor=(0.8, 0.5))

2.2. Intermediate 157

Matplotlib, Release 3.4.3

Out:

<matplotlib.legend.Legend object at 0x7fe64bffd1c0>

However, this will steal space from a subplot layout:

fig, axs = plt.subplots(1, 2, figsize=(4, 2), constrained_layout=True)
axs[0].plot(np.arange(10))
axs[1].plot(np.arange(10), label='This is a plot')
axs[1].legend(loc='center left', bbox_to_anchor=(0.8, 0.5))

Out:

<matplotlib.legend.Legend object at 0x7fe64bf8c040>

In order for a legend or other artist to not steal space from the subplot layout, we can leg.

158 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

set_in_layout(False). Of course this can mean the legend ends up cropped, but can be useful if
the plot is subsequently called with fig.savefig('outname.png', bbox_inches='tight').
Note, however, that the legend's get_in_layout status will have to be toggled again to make the saved
file work, and we must manually trigger a draw if we want constrained_layout to adjust the size of the axes
before printing.

fig, axs = plt.subplots(1, 2, figsize=(4, 2), constrained_layout=True)

axs[0].plot(np.arange(10))
axs[1].plot(np.arange(10), label='This is a plot')
leg = axs[1].legend(loc='center left', bbox_to_anchor=(0.8, 0.5))
leg.set_in_layout(False)
trigger a draw so that constrained_layout is executed once
before we turn it off when printing....
fig.canvas.draw()
we want the legend included in the bbox_inches='tight' calcs.
leg.set_in_layout(True)
we don't want the layout to change at this point.
fig.set_constrained_layout(False)
fig.savefig('../../doc/_static/constrained_layout_1b.png',

bbox_inches='tight', dpi=100)

The saved file looks like:

A better way to get around this awkwardness is to simply use the legend method provided by Figure.
legend:

2.2. Intermediate 159

Matplotlib, Release 3.4.3

fig, axs = plt.subplots(1, 2, figsize=(4, 2), constrained_layout=True)
axs[0].plot(np.arange(10))
lines = axs[1].plot(np.arange(10), label='This is a plot')
labels = [l.get_label() for l in lines]
leg = fig.legend(lines, labels, loc='center left',

bbox_to_anchor=(0.8, 0.5), bbox_transform=axs[1].transAxes)
fig.savefig('../../doc/_static/constrained_layout_2b.png',

bbox_inches='tight', dpi=100)

The saved file looks like:

Padding and Spacing

Padding between axes is controlled in the horizontal byw_pad andwspace, and vertical by h_pad and hspace.
These can be edited via set_constrained_layout_pads. w/h_pad are the minimum space around
the axes in units of inches:

fig, axs = plt.subplots(2, 2, constrained_layout=True)
for ax in axs.flat:

example_plot(ax, hide_labels=True)
fig.set_constrained_layout_pads(w_pad=4 / 72, h_pad=4 / 72, hspace=0,␣

↪wspace=0)

160 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Spacing between subplots is further set by wspace and hspace. These are specified as a fraction of the size of
the subplot group as a whole. If these values are smaller than w_pad or h_pad, then the fixed pads are used
instead. Note in the below how the space at the edges doesn't change from the above, but the space between
subplots does.

fig, axs = plt.subplots(2, 2, constrained_layout=True)
for ax in axs.flat:

example_plot(ax, hide_labels=True)
fig.set_constrained_layout_pads(w_pad=4 / 72, h_pad=4 / 72, hspace=0.2,

wspace=0.2)

2.2. Intermediate 161

Matplotlib, Release 3.4.3

If there are more than two columns, the wspace is shared between them, so here the wspace is divided in 2,
with a wspace of 0.1 between each column:

fig, axs = plt.subplots(2, 3, constrained_layout=True)
for ax in axs.flat:

example_plot(ax, hide_labels=True)
fig.set_constrained_layout_pads(w_pad=4 / 72, h_pad=4 / 72, hspace=0.2,

wspace=0.2)

162 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

GridSpecs also have optional hspace and wspace keyword arguments, that will be used instead of the pads
set by constrained_layout:

fig, axs = plt.subplots(2, 2, constrained_layout=True,
gridspec_kw={'wspace': 0.3, 'hspace': 0.2})

for ax in axs.flat:
example_plot(ax, hide_labels=True)

this has no effect because the space set in the gridspec trumps the
space set in constrained_layout.
fig.set_constrained_layout_pads(w_pad=4 / 72, h_pad=4 / 72, hspace=0.0,

wspace=0.0)
plt.show()

2.2. Intermediate 163

Matplotlib, Release 3.4.3

Spacing with colorbars

Colorbars are placed a distance pad from their parent, where pad is a fraction of the width of the parent(s).
The spacing to the next subplot is then given by w/hspace.

fig, axs = plt.subplots(2, 2, constrained_layout=True)
pads = [0, 0.05, 0.1, 0.2]
for pad, ax in zip(pads, axs.flat):

pc = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(pc, ax=ax, shrink=0.6, pad=pad)
ax.set_xticklabels('')
ax.set_yticklabels('')
ax.set_title(f'pad: {pad}')

fig.set_constrained_layout_pads(w_pad=2 / 72, h_pad=2 / 72, hspace=0.2,
wspace=0.2)

164 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

rcParams

There are five rcParams that can be set, either in a script or in the matplotlibrc file. They all have the
prefix figure.constrained_layout:

• use: Whether to use constrained_layout. Default is False

• w_pad, h_pad: Padding around axes objects. Float representing inches. Default is 3./72. inches (3
pts)

• wspace, hspace: Space between subplot groups. Float representing a fraction of the subplot widths
being separated. Default is 0.02.

plt.rcParams['figure.constrained_layout.use'] = True
fig, axs = plt.subplots(2, 2, figsize=(3, 3))
for ax in axs.flat:

example_plot(ax)

2.2. Intermediate 165

Matplotlib, Release 3.4.3

Use with GridSpec

constrained_layout is meant to be used with subplots() or GridSpec() and add_subplot().

Note that in what follows constrained_layout=True

fig = plt.figure()

gs1 = gridspec.GridSpec(2, 1, figure=fig)
ax1 = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1[1])

example_plot(ax1)
example_plot(ax2)

166 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

More complicated gridspec layouts are possible. Note here we use the convenience functions
add_gridspec and subgridspec.

fig = plt.figure()

gs0 = fig.add_gridspec(1, 2)

gs1 = gs0[0].subgridspec(2, 1)
ax1 = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1[1])

example_plot(ax1)
example_plot(ax2)

gs2 = gs0[1].subgridspec(3, 1)

for ss in gs2:
ax = fig.add_subplot(ss)
example_plot(ax)
ax.set_title("")
ax.set_xlabel("")

ax.set_xlabel("x-label", fontsize=12)

2.2. Intermediate 167

Matplotlib, Release 3.4.3

Out:

Text(0.5, 22.166999999999994, 'x-label')

Note that in the above the left and right columns don't have the same vertical extent. If we want the top and
bottom of the two grids to line up then they need to be in the same gridspec. We need to make this figure
larger as well in order for the axes not to collapse to zero height:

fig = plt.figure(figsize=(4, 6))

gs0 = fig.add_gridspec(6, 2)

ax1 = fig.add_subplot(gs0[:3, 0])
ax2 = fig.add_subplot(gs0[3:, 0])

example_plot(ax1)
example_plot(ax2)

ax = fig.add_subplot(gs0[0:2, 1])
example_plot(ax, hide_labels=True)
ax = fig.add_subplot(gs0[2:4, 1])
example_plot(ax, hide_labels=True)
ax = fig.add_subplot(gs0[4:, 1])
example_plot(ax, hide_labels=True)
fig.suptitle('Overlapping Gridspecs')

168 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

Text(0.5, 0.993055, 'Overlapping Gridspecs')

This example uses two gridspecs to have the colorbar only pertain to one set of pcolors. Note how the left
column is wider than the two right-hand columns because of this. Of course, if you wanted the subplots to
be the same size you only needed one gridspec.

def docomplicated(suptitle=None):
fig = plt.figure()
gs0 = fig.add_gridspec(1, 2, figure=fig, width_ratios=[1., 2.])
gsl = gs0[0].subgridspec(2, 1)
gsr = gs0[1].subgridspec(2, 2)

for gs in gsl:
ax = fig.add_subplot(gs)

(continues on next page)

2.2. Intermediate 169

Matplotlib, Release 3.4.3

(continued from previous page)
example_plot(ax)

axs = []
for gs in gsr:

ax = fig.add_subplot(gs)
pcm = ax.pcolormesh(arr, **pc_kwargs)
ax.set_xlabel('x-label')
ax.set_ylabel('y-label')
ax.set_title('title')

axs += [ax]
fig.colorbar(pcm, ax=axs)
if suptitle is not None:

fig.suptitle(suptitle)

docomplicated()

170 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Manually setting axes positions

There can be good reasons to manually set an axes position. A manual call to set_position will set the
axes so constrained_layout has no effect on it anymore. (Note that constrained_layout still leaves the
space for the axes that is moved).

fig, axs = plt.subplots(1, 2)
example_plot(axs[0], fontsize=12)
axs[1].set_position([0.2, 0.2, 0.4, 0.4])

Manually turning off constrained_layout

constrained_layout usually adjusts the axes positions on each draw of the figure. If you want to get
the spacing provided by constrained_layout but not have it update, then do the initial draw and then
call fig.set_constrained_layout(False). This is potentially useful for animations where the
tick labels may change length.

Note that constrained_layout is turned off for ZOOM and PAN GUI events for the backends that use
the toolbar. This prevents the axes from changing position during zooming and panning.

2.2. Intermediate 171

Matplotlib, Release 3.4.3

Limitations

Incompatible functions

constrained_layoutwill work with pyplot.subplot, but only if the number of rows and columns
is the same for each call. The reason is that each call to pyplot.subplot will create a new GridSpec
instance if the geometry is not the same, and constrained_layout. So the following works fine:

fig = plt.figure()

ax1 = plt.subplot(2, 2, 1)
ax2 = plt.subplot(2, 2, 3)
third axes that spans both rows in second column:
ax3 = plt.subplot(2, 2, (2, 4))

example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
plt.suptitle('Homogenous nrows, ncols')

Out:

Text(0.5, 0.9895825, 'Homogenous nrows, ncols')

but the following leads to a poor layout:

172 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

fig = plt.figure()

ax1 = plt.subplot(2, 2, 1)
ax2 = plt.subplot(2, 2, 3)
ax3 = plt.subplot(1, 2, 2)

example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
plt.suptitle('Mixed nrows, ncols')

Out:

Text(0.5, 0.9895825, 'Mixed nrows, ncols')

Similarly, subplot2gridworks with the same limitation that nrows and ncols cannot change for the layout
to look good.

fig = plt.figure()

ax1 = plt.subplot2grid((3, 3), (0, 0))
ax2 = plt.subplot2grid((3, 3), (0, 1), colspan=2)
ax3 = plt.subplot2grid((3, 3), (1, 0), colspan=2, rowspan=2)
ax4 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)

example_plot(ax1)
example_plot(ax2)

(continues on next page)

2.2. Intermediate 173

Matplotlib, Release 3.4.3

(continued from previous page)
example_plot(ax3)
example_plot(ax4)
fig.suptitle('subplot2grid')

Out:

Text(0.5, 0.9895825, 'subplot2grid')

Other Caveats

• constrained_layout only considers ticklabels, axis labels, titles, and legends. Thus, other artists
may be clipped and also may overlap.

• It assumes that the extra space needed for ticklabels, axis labels, and titles is independent of original
location of axes. This is often true, but there are rare cases where it is not.

• There are small differences in how the backends handle rendering fonts, so the results will not be
pixel-identical.

• An artist using axes coordinates that extend beyond the axes boundary will result in unusual lay-
outs when added to an axes. This can be avoided by adding the artist directly to the Figure using
add_artist(). See ConnectionPatch for an example.

174 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Debugging

Constrained-layout can fail in somewhat unexpected ways. Because it uses a constraint solver the solver can
find solutions that are mathematically correct, but that aren't at all what the user wants. The usual failure
mode is for all sizes to collapse to their smallest allowable value. If this happens, it is for one of two reasons:

1. There was not enough room for the elements you were requesting to draw.

2. There is a bug - in which case open an issue at https://github.com/matplotlib/matplotlib/issues.

If there is a bug, please report with a self-contained example that does not require outside data or dependen-
cies (other than numpy).

Notes on the algorithm

The algorithm for the constraint is relatively straightforward, but has some complexity due to the complex
ways we can layout a figure.

Layout in Matplotlib is carried out with gridspecs via the GridSpec class. A gridspec is a logical division
of the figure into rows and columns, with the relative width of the Axes in those rows and columns set by
width_ratios and height_ratios.

In constrained_layout, each gridspec gets a layoutgrid associated with it. The layoutgrid has a series of
left and right variables for each column, and bottom and top variables for each row, and further it
has a margin for each of left, right, bottom and top. In each row, the bottom/top margins are widened until
all the decorators in that row are accommodated. Similarly for columns and the left/right margins.

Simple case: one Axes

For a single Axes the layout is straight forward. There is one parent layoutgrid for the figure consisting of one
column and row, and a child layoutgrid for the gridspec that contains the axes, again consisting of one row
and column. Space is made for the "decorations" on each side of the axes. In the code, this is accomplished
by the entries in do_constrained_layout() like:

gridspec._layoutgrid[0, 0].edit_margin_min('left',
-bbox.x0 + pos.x0 + w_pad)

where bbox is the tight bounding box of the axes, and pos its position. Note how the four margins encom-
pass the axes decorations.

from matplotlib._layoutgrid import plot_children

fig, ax = plt.subplots(constrained_layout=True)
example_plot(ax, fontsize=24)
plot_children(fig, fig._layoutgrid)

2.2. Intermediate 175

https://github.com/matplotlib/matplotlib/issues

Matplotlib, Release 3.4.3

Simple case: two Axes

When there are multiple axes they have their layouts bound in simple ways. In this example the left axes
has much larger decorations than the right, but they share a bottom margin, which is made large enough to
accommodate the larger xlabel. Same with the shared top margin. The left and right margins are not shared,
and hence are allowed to be different.

fig, ax = plt.subplots(1, 2, constrained_layout=True)
example_plot(ax[0], fontsize=32)
example_plot(ax[1], fontsize=8)
plot_children(fig, fig._layoutgrid, printit=False)

176 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Two Axes and colorbar

A colorbar is simply another item that expands the margin of the parent layoutgrid cell:

fig, ax = plt.subplots(1, 2, constrained_layout=True)
im = ax[0].pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=ax[0], shrink=0.6)
im = ax[1].pcolormesh(arr, **pc_kwargs)
plot_children(fig, fig._layoutgrid)

2.2. Intermediate 177

Matplotlib, Release 3.4.3

Colorbar associated with a Gridspec

If a colorbar belongs to more than one cell of the grid, then it makes a larger margin for each:

fig, axs = plt.subplots(2, 2, constrained_layout=True)
for ax in axs.flat:

im = ax.pcolormesh(arr, **pc_kwargs)
fig.colorbar(im, ax=axs, shrink=0.6)
plot_children(fig, fig._layoutgrid, printit=False)

178 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Uneven sized Axes

There are two ways to make axes have an uneven size in a Gridspec layout, either by specifying them to cross
Gridspecs rows or columns, or by specifying width and height ratios.

The first method is used here. Note that the middle top and bottom margins are not affected by the left-
hand column. This is a conscious decision of the algorithm, and leads to the case where the two right-hand
axes have the same height, but it is not 1/2 the height of the left-hand axes. This is consietent with how
gridspec works without constrained layout.

fig = plt.figure(constrained_layout=True)
gs = gridspec.GridSpec(2, 2, figure=fig)
ax = fig.add_subplot(gs[:, 0])
im = ax.pcolormesh(arr, **pc_kwargs)
ax = fig.add_subplot(gs[0, 1])
im = ax.pcolormesh(arr, **pc_kwargs)
ax = fig.add_subplot(gs[1, 1])
im = ax.pcolormesh(arr, **pc_kwargs)
plot_children(fig, fig._layoutgrid, printit=False)

2.2. Intermediate 179

Matplotlib, Release 3.4.3

One case that requires finessing is if margins do not have any artists constraining their width. In the case
below, the right margin for column 0 and the left margin for column 3 have no margin artists to set their
width, so we take the maximum width of the margin widths that do have artists. This makes all the axes have
the same size:

fig = plt.figure(constrained_layout=True)
gs = fig.add_gridspec(2, 4)
ax00 = fig.add_subplot(gs[0, 0:2])
ax01 = fig.add_subplot(gs[0, 2:])
ax10 = fig.add_subplot(gs[1, 1:3])
example_plot(ax10, fontsize=14)
plot_children(fig, fig._layoutgrid)

180 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Total running time of the script: (0 minutes 14.099 seconds)

2.2.6 Tight Layout guide

How to use tight-layout to fit plots within your figure cleanly.

tight_layout automatically adjusts subplot params so that the subplot(s) fits in to the figure area. This is an
experimental feature and may not work for some cases. It only checks the extents of ticklabels, axis labels,
and titles.

An alternative to tight_layout is constrained_layout.

Simple Example

In matplotlib, the location of axes (including subplots) are specified in normalized figure coordinates. It can
happen that your axis labels or titles (or sometimes even ticklabels) go outside the figure area, and are thus
clipped.

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['savefig.facecolor'] = "0.8"

def example_plot(ax, fontsize=12):
ax.plot([1, 2])

(continues on next page)

2.2. Intermediate 181

Matplotlib, Release 3.4.3

(continued from previous page)

ax.locator_params(nbins=3)
ax.set_xlabel('x-label', fontsize=fontsize)
ax.set_ylabel('y-label', fontsize=fontsize)
ax.set_title('Title', fontsize=fontsize)

plt.close('all')
fig, ax = plt.subplots()
example_plot(ax, fontsize=24)

To prevent this, the location of axes needs to be adjusted. For subplots, this can be done by adjusting the
subplot params (Move the edge of an axes tomake room for tick labels). Matplotlib v1.1 introducedFigure.
tight_layout that does this automatically for you.

fig, ax = plt.subplots()
example_plot(ax, fontsize=24)
plt.tight_layout()

182 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Note that matplotlib.pyplot.tight_layout() will only adjust the subplot params when it
is called. In order to perform this adjustment each time the figure is redrawn, you can call fig.
set_tight_layout(True), or, equivalently, set rcParams["figure.autolayout"] (default:
False) to True.

When you have multiple subplots, often you see labels of different axes overlapping each other.

plt.close('all')

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)

2.2. Intermediate 183

../../tutorials/introductory/customizing.html?highlight=figure.autolayout#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

tight_layout() will also adjust spacing between subplots to minimize the overlaps.

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)
plt.tight_layout()

184 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

tight_layout() can take keyword arguments of pad,w_pad and h_pad. These control the extra padding
around the figure border and between subplots. The pads are specified in fraction of fontsize.

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)

2.2. Intermediate 185

Matplotlib, Release 3.4.3

tight_layout() will work even if the sizes of subplots are different as far as their grid specification is
compatible. In the example below, ax1 and ax2 are subplots of a 2x2 grid, while ax3 is of a 1x2 grid.

plt.close('all')
fig = plt.figure()

ax1 = plt.subplot(221)
ax2 = plt.subplot(223)
ax3 = plt.subplot(122)

example_plot(ax1)
example_plot(ax2)
example_plot(ax3)

plt.tight_layout()

186 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

It works with subplots created with subplot2grid(). In general, subplots created from the gridspec
(Customizing Figure Layouts Using GridSpec and Other Functions) will work.

plt.close('all')
fig = plt.figure()

ax1 = plt.subplot2grid((3, 3), (0, 0))
ax2 = plt.subplot2grid((3, 3), (0, 1), colspan=2)
ax3 = plt.subplot2grid((3, 3), (1, 0), colspan=2, rowspan=2)
ax4 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)

example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)

plt.tight_layout()

2.2. Intermediate 187

Matplotlib, Release 3.4.3

Although not thoroughly tested, it seems to work for subplots with aspect != "auto" (e.g., axes with images).

arr = np.arange(100).reshape((10, 10))

plt.close('all')
fig = plt.figure(figsize=(5, 4))

ax = plt.subplot()
im = ax.imshow(arr, interpolation="none")

plt.tight_layout()

188 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Caveats

• tight_layout considers all artists on the axes by default. To remove an artist from the layout
calculation you can call Artist.set_in_layout.

• tight_layout assumes that the extra space needed for artists is independent of the original location
of axes. This is often true, but there are rare cases where it is not.

• pad=0 can clip some texts by a few pixels. This may be a bug or a limitation of the current algorithm
and it is not clear why it happens. Meanwhile, use of pad larger than 0.3 is recommended.

Use with GridSpec

GridSpec has its own GridSpec.tight_layout method (the pyplot api pyplot.tight_layout
also works).

import matplotlib.gridspec as gridspec

plt.close('all')
fig = plt.figure()

gs1 = gridspec.GridSpec(2, 1)
ax1 = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1[1])

(continues on next page)

2.2. Intermediate 189

Matplotlib, Release 3.4.3

(continued from previous page)
example_plot(ax1)
example_plot(ax2)

gs1.tight_layout(fig)

You may provide an optional rect parameter, which specifies the bounding box that the subplots will be fit
inside. The coordinates must be in normalized figure coordinates and the default is (0, 0, 1, 1).

fig = plt.figure()

gs1 = gridspec.GridSpec(2, 1)
ax1 = fig.add_subplot(gs1[0])
ax2 = fig.add_subplot(gs1[1])

example_plot(ax1)
example_plot(ax2)

gs1.tight_layout(fig, rect=[0, 0, 0.5, 1.0])

190 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

However, we do not recommend that this be used to manually construct more complicated lay-
outs, like having one GridSpec in the left and one in the right side of the figure. For these use
cases, one should instead take advantage of /gallery/subplots_axes_and_figures/gridspec_nested, or the
/gallery/subplots_axes_and_figures/subfigures.

Legends and Annotations

Pre Matplotlib 2.2, legends and annotations were excluded from the bounding box calculations that decide
the layout. Subsequently these artists were added to the calculation, but sometimes it is undesirable to include
them. For instance in this case it might be good to have the axes shrink a bit to make room for the legend:

fig, ax = plt.subplots(figsize=(4, 3))
lines = ax.plot(range(10), label='A simple plot')
ax.legend(bbox_to_anchor=(0.7, 0.5), loc='center left',)
fig.tight_layout()
plt.show()

2.2. Intermediate 191

Matplotlib, Release 3.4.3

However, sometimes this is not desired (quite often when using fig.savefig('outname.png',
bbox_inches='tight')). In order to remove the legend from the bounding box calculation, we simply
set its bounding leg.set_in_layout(False) and the legend will be ignored.

fig, ax = plt.subplots(figsize=(4, 3))
lines = ax.plot(range(10), label='B simple plot')
leg = ax.legend(bbox_to_anchor=(0.7, 0.5), loc='center left',)
leg.set_in_layout(False)
fig.tight_layout()
plt.show()

192 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Use with AxesGrid1

While limited, mpl_toolkits.axes_grid1 is also supported.

from mpl_toolkits.axes_grid1 import Grid

plt.close('all')
fig = plt.figure()
grid = Grid(fig, rect=111, nrows_ncols=(2, 2),

axes_pad=0.25, label_mode='L',
)

for ax in grid:
example_plot(ax)

ax.title.set_visible(False)

plt.tight_layout()

2.2. Intermediate 193

Matplotlib, Release 3.4.3

Colorbar

If you create a colorbar with Figure.colorbar, the created colorbar is drawn in a Subplot as long as the
parent axes is also a Subplot, so Figure.tight_layout will work.

plt.close('all')
arr = np.arange(100).reshape((10, 10))
fig = plt.figure(figsize=(4, 4))
im = plt.imshow(arr, interpolation="none")

plt.colorbar(im)

plt.tight_layout()

Another option is to use the AxesGrid1 toolkit to explicitly create an axes for the colorbar.

from mpl_toolkits.axes_grid1 import make_axes_locatable

plt.close('all')
arr = np.arange(100).reshape((10, 10))
fig = plt.figure(figsize=(4, 4))
im = plt.imshow(arr, interpolation="none")

divider = make_axes_locatable(plt.gca())
cax = divider.append_axes("right", "5%", pad="3%")
plt.colorbar(im, cax=cax)

plt.tight_layout()

194 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Total running time of the script: (0 minutes 5.110 seconds)

2.2.7 Autoscaling

The limits on an axis can be set manually (e.g. ax.set_xlim(xmin, xmax)) or Matplotlib can set
them automatically based on the data already on the axes. There are a number of options to this autoscaling
behaviour, discussed below.

We will start with a simple line plot showing that autoscaling extends the axis limits 5% beyond the data
limits (-2π, 2π).

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

x = np.linspace(-2 * np.pi, 2 * np.pi, 100)
y = np.sinc(x)

fig, ax = plt.subplots()
ax.plot(x, y)

2.2. Intermediate 195

Matplotlib, Release 3.4.3

Out:

[<matplotlib.lines.Line2D object at 0x7fe647eeaa60>]

Margins

The default margin around the data limits is 5%:

ax.margins()

Out:

(0.05, 0.05)

The margins can be made larger using margins:

fig, ax = plt.subplots()
ax.plot(x, y)
ax.margins(0.2, 0.2)

196 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

In general, margins can be in the range (-0.5, ∞), where negative margins set the axes limits to a subrange of
the data range, i.e. they clip data. Using a single number for margins affects both axes, a single margin can
be customized using keyword arguments x or y, but positional and keyword interface cannot be combined.

fig, ax = plt.subplots()
ax.plot(x, y)
ax.margins(y=-0.2)

2.2. Intermediate 197

Matplotlib, Release 3.4.3

Sticky edges

There are plot elements (Artists) that are usually used without margins. For example false-color images
(e.g. created with Axes.imshow) are not considered in the margins calculation.

xx, yy = np.meshgrid(x, x)
zz = np.sinc(np.sqrt((xx - 1)**2 + (yy - 1)**2))

fig, ax = plt.subplots(ncols=2, figsize=(12, 8))
ax[0].imshow(zz)
ax[0].set_title("default margins")
ax[1].imshow(zz)
ax[1].margins(0.2)
ax[1].set_title("margins(0.2)")

198 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

Text(0.5, 1.0, 'margins(0.2)')

This override of margins is determined by "sticky edges", a property of Artist class that can sup-
press adding margins to axis limits. The effect of sticky edges can be disabled on an Axes by changing
use_sticky_edges. Artists have a property Artist.sticky_edges, and the values of sticky edges
can be changed by writing to Artist.sticky_edges.x or .Artist.sticky_edges.y.

The following example shows how overriding works and when it is needed.

fig, ax = plt.subplots(ncols=3, figsize=(16, 10))
ax[0].imshow(zz)
ax[0].margins(0.2)
ax[0].set_title("default use_sticky_edges\nmargins(0.2)")
ax[1].imshow(zz)
ax[1].margins(0.2)
ax[1].use_sticky_edges = False
ax[1].set_title("use_sticky_edges=False\nmargins(0.2)")
ax[2].imshow(zz)
ax[2].margins(-0.2)
ax[2].set_title("default use_sticky_edges\nmargins(-0.2)")

2.2. Intermediate 199

Matplotlib, Release 3.4.3

Out:

Text(0.5, 1.0, 'default use_sticky_edges\nmargins(-0.2)')

We can see that setting use_sticky_edges to False renders the image with requested margins.

While sticky edges don't increase the axis limits through extra margins, negative margins are still taken into
account. This can be seen in the reduced limits of the third image.

Controlling autoscale

By default, the limits are recalculated every time you add a new curve to the plot:

fig, ax = plt.subplots(ncols=2, figsize=(12, 8))
ax[0].plot(x, y)
ax[0].set_title("Single curve")
ax[1].plot(x, y)
ax[1].plot(x * 2.0, y)
ax[1].set_title("Two curves")

200 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

Text(0.5, 1.0, 'Two curves')

However, there are cases when you don't want to automatically adjust the viewport to new data.

One way to disable autoscaling is to manually set the axis limit. Let's say that we want to see only a part of
the data in greater detail. Setting the xlim persists even if we add more curves to the data. To recalculate
the new limits calling Axes.autoscale will toggle the functionality manually.

fig, ax = plt.subplots(ncols=2, figsize=(12, 8))
ax[0].plot(x, y)
ax[0].set_xlim(left=-1, right=1)
ax[0].plot(x + np.pi * 0.5, y)
ax[0].set_title("set_xlim(left=-1, right=1)\n")
ax[1].plot(x, y)
ax[1].set_xlim(left=-1, right=1)
ax[1].plot(x + np.pi * 0.5, y)
ax[1].autoscale()
ax[1].set_title("set_xlim(left=-1, right=1)\nautoscale()")

2.2. Intermediate 201

Matplotlib, Release 3.4.3

Out:

Text(0.5, 1.0, 'set_xlim(left=-1, right=1)\nautoscale()')

We can check that the first plot has autoscale disabled and that the second plot has it enabled again by using
Axes.get_autoscale_on():

print(ax[0].get_autoscale_on()) # False means disabled
print(ax[1].get_autoscale_on()) # True means enabled -> recalculated

Out:

False
True

Arguments of the autoscale function give us precise control over the process of autoscaling. A combination
of arguments enable, and axis sets the autoscaling feature for the selected axis (or both). The argument
tight sets the margin of the selected axis to zero. To preserve settings of either enable or tight you
can set the opposite one to None, that way it should not be modified. However, setting enable to None and
tight to True affects both axes regardless of the axis argument.

fig, ax = plt.subplots()
ax.plot(x, y)
ax.margins(0.2, 0.2)
ax.autoscale(enable=None, axis="x", tight=True)

(continues on next page)

202 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

print(ax.margins())

Out:

(0, 0)

Working with collections

Autoscale works out of the box for all lines, patches, and images added to the axes. One of the artists that it
won't work with is a Collection. After adding a collection to the axes, one has to manually trigger the
autoscale_view() to recalculate axes limits.

fig, ax = plt.subplots()
collection = mpl.collections.StarPolygonCollection(

5, 0, [250,], # five point star, zero angle, size 250px
offsets=np.column_stack([x, y]), # Set the positions
transOffset=ax.transData, # Propagate transformations of the Axes

)

(continues on next page)

2.2. Intermediate 203

Matplotlib, Release 3.4.3

(continued from previous page)
ax.add_collection(collection)
ax.autoscale_view()

Total running time of the script: (0 minutes 6.041 seconds)

2.2.8 origin and extent in imshow

imshow() allows you to render an image (either a 2D array which will be color-mapped (based on norm and
cmap) or a 3D RGB(A) array which will be used as-is) to a rectangular region in data space. The orientation
of the image in the final rendering is controlled by the origin and extent kwargs (and attributes on the resulting
AxesImage instance) and the data limits of the axes.

The extent kwarg controls the bounding box in data coordinates that the image will fill specified as (left,
right, bottom, top) in data coordinates, the origin kwarg controls how the image fills that bounding
box, and the orientation in the final rendered image is also affected by the axes limits.

Hint: Most of the code below is used for adding labels and informative text to the plots. The described
effects of origin and extent can be seen in the plots without the need to follow all code details.

For a quick understanding, you may want to skip the code details below and directly continue with the

204 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

discussion of the results.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec

def index_to_coordinate(index, extent, origin):
"""Return the pixel center of an index."""
left, right, bottom, top = extent

hshift = 0.5 * np.sign(right - left)
left, right = left + hshift, right - hshift
vshift = 0.5 * np.sign(top - bottom)
bottom, top = bottom + vshift, top - vshift

if origin == 'upper':
bottom, top = top, bottom

return {
"[0, 0]": (left, bottom),
"[M', 0]": (left, top),
"[0, N']": (right, bottom),
"[M', N']": (right, top),

}[index]

def get_index_label_pos(index, extent, origin, inverted_xindex):
"""
Return the desired position and horizontal alignment of an index label.
"""
if extent is None:

extent = lookup_extent(origin)
left, right, bottom, top = extent
x, y = index_to_coordinate(index, extent, origin)

is_x0 = index[-2:] == "0]"
halign = 'left' if is_x0 ^ inverted_xindex else 'right'
hshift = 0.5 * np.sign(left - right)
x += hshift * (1 if is_x0 else -1)
return x, y, halign

def get_color(index, data, cmap):
"""Return the data color of an index."""
val = {

"[0, 0]": data[0, 0],
"[0, N']": data[0, -1],
"[M', 0]": data[-1, 0],
"[M', N']": data[-1, -1],

}[index]
return cmap(val / data.max())

(continues on next page)

2.2. Intermediate 205

Matplotlib, Release 3.4.3

(continued from previous page)

def lookup_extent(origin):
"""Return extent for label positioning when not given explicitly."""
if origin == 'lower':

return (-0.5, 6.5, -0.5, 5.5)
else:

return (-0.5, 6.5, 5.5, -0.5)

def set_extent_None_text(ax):
ax.text(3, 2.5, 'equals\nextent=None', size='large',

ha='center', va='center', color='w')

def plot_imshow_with_labels(ax, data, extent, origin, xlim, ylim):
"""Actually run ``imshow()`` and add extent and index labels."""
im = ax.imshow(data, origin=origin, extent=extent)

extent labels (left, right, bottom, top)
left, right, bottom, top = im.get_extent()
if xlim is None or top > bottom:

upper_string, lower_string = 'top', 'bottom'
else:

upper_string, lower_string = 'bottom', 'top'
if ylim is None or left < right:

port_string, starboard_string = 'left', 'right'
inverted_xindex = False

else:
port_string, starboard_string = 'right', 'left'
inverted_xindex = True

bbox_kwargs = {'fc': 'w', 'alpha': .75, 'boxstyle': "round4"}
ann_kwargs = {'xycoords': 'axes fraction',

'textcoords': 'offset points',
'bbox': bbox_kwargs}

ax.annotate(upper_string, xy=(.5, 1), xytext=(0, -1),
ha='center', va='top', **ann_kwargs)

ax.annotate(lower_string, xy=(.5, 0), xytext=(0, 1),
ha='center', va='bottom', **ann_kwargs)

ax.annotate(port_string, xy=(0, .5), xytext=(1, 0),
ha='left', va='center', rotation=90,
**ann_kwargs)

ax.annotate(starboard_string, xy=(1, .5), xytext=(-1, 0),
ha='right', va='center', rotation=-90,
**ann_kwargs)

ax.set_title('origin: {origin}'.format(origin=origin))

index labels
for index in ["[0, 0]", "[0, N']", "[M', 0]", "[M', N']"]:

tx, ty, halign = get_index_label_pos(index, extent, origin,
inverted_xindex)

facecolor = get_color(index, data, im.get_cmap())
(continues on next page)

206 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
ax.text(tx, ty, index, color='white', ha=halign, va='center',

bbox={'boxstyle': 'square', 'facecolor': facecolor})
if xlim:

ax.set_xlim(*xlim)
if ylim:

ax.set_ylim(*ylim)

def generate_imshow_demo_grid(extents, xlim=None, ylim=None):
N = len(extents)
fig = plt.figure(tight_layout=True)
fig.set_size_inches(6, N * (11.25) / 5)
gs = GridSpec(N, 5, figure=fig)

columns = {'label': [fig.add_subplot(gs[j, 0]) for j in range(N)],
'upper': [fig.add_subplot(gs[j, 1:3]) for j in range(N)],
'lower': [fig.add_subplot(gs[j, 3:5]) for j in range(N)]}

x, y = np.ogrid[0:6, 0:7]
data = x + y

for origin in ['upper', 'lower']:
for ax, extent in zip(columns[origin], extents):

plot_imshow_with_labels(ax, data, extent, origin, xlim, ylim)

columns['label'][0].set_title('extent=')
for ax, extent in zip(columns['label'], extents):

if extent is None:
text = 'None'

else:
left, right, bottom, top = extent
text = (f'left: {left:0.1f}\nright: {right:0.1f}\n'

f'bottom: {bottom:0.1f}\ntop: {top:0.1f}\n')
ax.text(1., .5, text, transform=ax.transAxes, ha='right', va='center')
ax.axis('off')

return columns

Default extent

First, let's have a look at the default extent=None

generate_imshow_demo_grid(extents=[None])

2.2. Intermediate 207

Matplotlib, Release 3.4.3

Out:

{'label': [<AxesSubplot:title={'center':'extent='}>], 'upper': [
↪<AxesSubplot:title={'center':'origin: upper'}>], 'lower': [
↪<AxesSubplot:title={'center':'origin: lower'}>]}

Generally, for an array of shape (M, N), the first index runs along the vertical, the second index runs along
the horizontal. The pixel centers are at integer positions ranging from 0 to N' = N - 1 horizontally and
from 0 to M' = M - 1 vertically. origin determines how the data is filled in the bounding box.

For origin='lower':

• [0, 0] is at (left, bottom)

• [M', 0] is at (left, top)

• [0, N'] is at (right, bottom)

• [M', N'] is at (right, top)

origin='upper' reverses the vertical axes direction and filling:

• [0, 0] is at (left, top)

• [M', 0] is at (left, bottom)

• [0, N'] is at (right, top)

• [M', N'] is at (right, bottom)

In summary, the position of the [0, 0] index as well as the extent are influenced by origin:

origin [0, 0] position extent
upper top left (-0.5, numcols-0.5, numrows-0.5, -0.5)

lower bottom left (-0.5, numcols-0.5, -0.5, numrows-0.5)

The default value of origin is set by rcParams["image.origin"] (default: 'upper') which defaults
to 'upper' to match the matrix indexing conventions in math and computer graphics image indexing con-
ventions.

208 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Explicit extent

By setting extent we define the coordinates of the image area. The underlying image data is interpo-
lated/resampled to fill that area.

If the axes is set to autoscale, then the view limits of the axes are set to match the extent which ensures that
the coordinate set by (left, bottom) is at the bottom left of the axes! However, this may invert the axis
so they do not increase in the 'natural' direction.

extents = [(-0.5, 6.5, -0.5, 5.5),
(-0.5, 6.5, 5.5, -0.5),
(6.5, -0.5, -0.5, 5.5),
(6.5, -0.5, 5.5, -0.5)]

columns = generate_imshow_demo_grid(extents)
set_extent_None_text(columns['upper'][1])
set_extent_None_text(columns['lower'][0])

2.2. Intermediate 209

Matplotlib, Release 3.4.3

210 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Explicit extent and axes limits

If we fix the axes limits by explicitly setting set_xlim / set_ylim, we force a certain size and orientation
of the axes. This can decouple the 'left-right' and 'top-bottom' sense of the image from the orientation on the
screen.

In the example below we have chosen the limits slightly larger than the extent (note the white areas within
the Axes).

While we keep the extents as in the examples before, the coordinate (0, 0) is now explicitly put at the bottom
left and values increase to up and to the right (from the viewer's point of view). We can see that:

• The coordinate (left, bottom) anchors the image which then fills the box going towards the
(right, top) point in data space.

• The first column is always closest to the 'left'.

• origin controls if the first row is closest to 'top' or 'bottom'.

• The image may be inverted along either direction.

• The 'left-right' and 'top-bottom' sense of the image may be uncoupled from the orientation on the
screen.

generate_imshow_demo_grid(extents=[None] + extents,
xlim=(-2, 8), ylim=(-1, 6))

plt.show()

2.2. Intermediate 211

Matplotlib, Release 3.4.3

212 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Total running time of the script: (0 minutes 2.676 seconds)

2.3 Advanced

These tutorials cover advanced topics for experienced Matplotlib users and developers.

2.3.1 Faster rendering by using blitting

Blitting is a standard technique in raster graphics that, in the context ofMatplotlib, can be used to (drastically)
improve performance of interactive figures. For example, the animation and widgets modules use
blitting internally. Here, we demonstrate how to implement your own blitting, outside of these classes.

Blitting speeds up repetitive drawing by rendering all non-changing graphic elements into a background
image once. Then, for every draw, only the changing elements need to be drawn onto this background. For
example, if the limits of an Axes have not changed, we can render the empty Axes including all ticks and
labels once, and only draw the changing data later.

The strategy is

• Prepare the constant background:

– Draw the figure, but exclude all artists that you want to animate by marking them as animated
(see Artist.set_animated).

– Save a copy of the RBGA buffer.

• Render the individual images:

– Restore the copy of the RGBA buffer.

– Redraw the animated artists using Axes.draw_artist / Figure.draw_artist.

– Show the resulting image on the screen.

One consequence of this procedure is that your animated artists are always drawn on top of the static artists.

Not all backends support blitting. You can check if a given canvas does via the FigureCanvasBase.
supports_blit property.

Warning: This code does not work with the OSX backend (but does work with other GUI backends on
mac).

2.3. Advanced 213

https://en.wikipedia.org/wiki/Bit_blit

Matplotlib, Release 3.4.3

Minimal example

We can use the FigureCanvasAgg methods copy_from_bbox and restore_region in conjunc-
tion with setting animated=True on our artist to implement a minimal example that uses blitting to ac-
celerate rendering

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 2 * np.pi, 100)

fig, ax = plt.subplots()

animated=True tells matplotlib to only draw the artist when we
explicitly request it
(ln,) = ax.plot(x, np.sin(x), animated=True)

make sure the window is raised, but the script keeps going
plt.show(block=False)

stop to admire our empty window axes and ensure it is rendered at
least once.
#
We need to fully draw the figure at its final size on the screen
before we continue on so that :
a) we have the correctly sized and drawn background to grab
b) we have a cached renderer so that ``ax.draw_artist`` works
so we spin the event loop to let the backend process any pending operations
plt.pause(0.1)

get copy of entire figure (everything inside fig.bbox) sans animated artist
bg = fig.canvas.copy_from_bbox(fig.bbox)
draw the animated artist, this uses a cached renderer
ax.draw_artist(ln)
show the result to the screen, this pushes the updated RGBA buffer from the
renderer to the GUI framework so you can see it
fig.canvas.blit(fig.bbox)

for j in range(100):
reset the background back in the canvas state, screen unchanged
fig.canvas.restore_region(bg)
update the artist, neither the canvas state nor the screen have changed
ln.set_ydata(np.sin(x + (j / 100) * np.pi))
re-render the artist, updating the canvas state, but not the screen
ax.draw_artist(ln)
copy the image to the GUI state, but screen might not be changed yet
fig.canvas.blit(fig.bbox)
flush any pending GUI events, re-painting the screen if needed
fig.canvas.flush_events()
you can put a pause in if you want to slow things down
plt.pause(.1)

214 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

This example works and shows a simple animation, however because we are only grabbing the background
once, if the size of the figure in pixels changes (due to either the size or dpi of the figure changing) , the
background will be invalid and result in incorrect (but sometimes cool looking!) images. There is also a
global variable and a fair amount of boiler plate which suggests we should wrap this in a class.

Class-based example

We can use a class to encapsulate the boilerplate logic and state of restoring the background, drawing the
artists, and then blitting the result to the screen. Additionally, we can use the 'draw_event' callback to
capture a new background whenever a full re-draw happens to handle resizes correctly.

class BlitManager:
def __init__(self, canvas, animated_artists=()):

"""
Parameters

canvas : FigureCanvasAgg

The canvas to work with, this only works for sub-classes of the␣
↪Agg

canvas which have the `~FigureCanvasAgg.copy_from_bbox` and
`~FigureCanvasAgg.restore_region` methods.

(continues on next page)

2.3. Advanced 215

Matplotlib, Release 3.4.3

(continued from previous page)

animated_artists : Iterable[Artist]
List of the artists to manage

"""
self.canvas = canvas
self._bg = None
self._artists = []

for a in animated_artists:
self.add_artist(a)

grab the background on every draw
self.cid = canvas.mpl_connect("draw_event", self.on_draw)

def on_draw(self, event):
"""Callback to register with 'draw_event'."""
cv = self.canvas
if event is not None:

if event.canvas != cv:
raise RuntimeError

self._bg = cv.copy_from_bbox(cv.figure.bbox)
self._draw_animated()

def add_artist(self, art):
"""
Add an artist to be managed.

Parameters

art : Artist

The artist to be added. Will be set to 'animated' (just
to be safe). *art* must be in the figure associated with
the canvas this class is managing.

"""
if art.figure != self.canvas.figure:

raise RuntimeError
art.set_animated(True)
self._artists.append(art)

def _draw_animated(self):
"""Draw all of the animated artists."""
fig = self.canvas.figure
for a in self._artists:

fig.draw_artist(a)

def update(self):
"""Update the screen with animated artists."""
cv = self.canvas
fig = cv.figure
paranoia in case we missed the draw event,
if self._bg is None:

(continues on next page)

216 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
self.on_draw(None)

else:
restore the background
cv.restore_region(self._bg)
draw all of the animated artists
self._draw_animated()
update the GUI state
cv.blit(fig.bbox)

let the GUI event loop process anything it has to do
cv.flush_events()

Here is how we would use our class. This is a slightly more complicated example than the first case as we
add a text frame counter as well.

make a new figure
fig, ax = plt.subplots()
add a line
(ln,) = ax.plot(x, np.sin(x), animated=True)
add a frame number
fr_number = ax.annotate(

"0",
(0, 1),
xycoords="axes fraction",
xytext=(10, -10),
textcoords="offset points",
ha="left",
va="top",
animated=True,

)
bm = BlitManager(fig.canvas, [ln, fr_number])
make sure our window is on the screen and drawn
plt.show(block=False)
plt.pause(.1)

for j in range(100):
update the artists
ln.set_ydata(np.sin(x + (j / 100) * np.pi))
fr_number.set_text("frame: {j}".format(j=j))
tell the blitting manager to do its thing
bm.update()

2.3. Advanced 217

Matplotlib, Release 3.4.3

This class does not depend on pyplot and is suitable to embed into larger GUI application.

Total running time of the script: (0 minutes 1.207 seconds)

2.3.2 Path Tutorial

Defining paths in your Matplotlib visualization.

The object underlying all of the matplotlib.patches objects is the Path, which supports the standard
set of moveto, lineto, curveto commands to draw simple and compound outlines consisting of line segments
and splines. The Path is instantiated with a (N, 2) array of (x, y) vertices, and a N-length array of path
codes. For example to draw the unit rectangle from (0, 0) to (1, 1), we could use this code:

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

verts = [
(0., 0.), # left, bottom
(0., 1.), # left, top
(1., 1.), # right, top
(1., 0.), # right, bottom

(continues on next page)

218 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
(0., 0.), # ignored

]

codes = [
Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.CLOSEPOLY,

]

path = Path(verts, codes)

fig, ax = plt.subplots()
patch = patches.PathPatch(path, facecolor='orange', lw=2)
ax.add_patch(patch)
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
plt.show()

The following path codes are recognized

2.3. Advanced 219

Matplotlib, Release 3.4.3

Code Vertices Description
STOP 1 (ignored) A marker for the end of the entire path (currently not required and ig-

nored).
MOVETO 1 Pick up the pen and move to the given vertex.
LINETO 1 Draw a line from the current position to the given vertex.
CURVE3 2: 1 control point, 1

end point
Draw a quadratic Bézier curve from the current position, with the given
control point, to the given end point.

CURVE4 3: 2 control points,
1 end point

Draw a cubic Bézier curve from the current position, with the given
control points, to the given end point.

CLOSE-
POLY

1 (the point is ig-
nored)

Draw a line segment to the start point of the current polyline.

Bézier example

Some of the path components require multiple vertices to specify them: for example CURVE 3 is a bézier
curve with one control point and one end point, and CURVE4 has three vertices for the two control points
and the end point. The example below shows a CURVE4 Bézier spline -- the bézier curve will be contained
in the convex hull of the start point, the two control points, and the end point

verts = [
(0., 0.), # P0
(0.2, 1.), # P1
(1., 0.8), # P2
(0.8, 0.), # P3

]

codes = [
Path.MOVETO,
Path.CURVE4,
Path.CURVE4,
Path.CURVE4,

]

path = Path(verts, codes)

fig, ax = plt.subplots()
patch = patches.PathPatch(path, facecolor='none', lw=2)
ax.add_patch(patch)

xs, ys = zip(*verts)
ax.plot(xs, ys, 'x--', lw=2, color='black', ms=10)

ax.text(-0.05, -0.05, 'P0')
ax.text(0.15, 1.05, 'P1')
ax.text(1.05, 0.85, 'P2')
ax.text(0.85, -0.05, 'P3')

ax.set_xlim(-0.1, 1.1)

(continues on next page)

220 Chapter 2. Tutorials

https://en.wikipedia.org/wiki/B%C3%A9zier_curve

Matplotlib, Release 3.4.3

(continued from previous page)
ax.set_ylim(-0.1, 1.1)
plt.show()

Compound paths

All of the simple patch primitives in matplotlib, Rectangle, Circle, Polygon, etc, are implemented with simple
path. Plotting functions like hist() and bar(), which create a number of primitives, e.g., a bunch of
Rectangles, can usually be implemented more efficiently using a compound path. The reason bar creates
a list of rectangles and not a compound path is largely historical: the Path code is comparatively new and
bar predates it. While we could change it now, it would break old code, so here we will cover how to create
compound paths, replacing the functionality in bar, in case you need to do so in your own code for efficiency
reasons, e.g., you are creating an animated bar plot.

We will make the histogram chart by creating a series of rectangles for each histogram bar: the rectangle
width is the bin width and the rectangle height is the number of datapoints in that bin. First we'll create some
random normally distributed data and compute the histogram. Because numpy returns the bin edges and not
centers, the length of bins is 1 greater than the length of n in the example below:

2.3. Advanced 221

Matplotlib, Release 3.4.3

histogram our data with numpy
data = np.random.randn(1000)
n, bins = np.histogram(data, 100)

We'll now extract the corners of the rectangles. Each of the left, bottom, etc, arrays below is len(n),
where n is the array of counts for each histogram bar:

get the corners of the rectangles for the histogram
left = np.array(bins[:-1])
right = np.array(bins[1:])
bottom = np.zeros(len(left))
top = bottom + n

Now we have to construct our compound path, which will consist of a series of MOVETO, LINETO and
CLOSEPOLY for each rectangle. For each rectangle, we need 5 vertices: 1 for the MOVETO, 3 for the
LINETO, and 1 for the CLOSEPOLY. As indicated in the table above, the vertex for the closepoly is ig-
nored but we still need it to keep the codes aligned with the vertices:

nverts = nrects*(1+3+1)
verts = np.zeros((nverts, 2))
codes = np.ones(nverts, int) * path.Path.LINETO
codes[0::5] = path.Path.MOVETO
codes[4::5] = path.Path.CLOSEPOLY
verts[0::5, 0] = left
verts[0::5, 1] = bottom
verts[1::5, 0] = left
verts[1::5, 1] = top
verts[2::5, 0] = right
verts[2::5, 1] = top
verts[3::5, 0] = right
verts[3::5, 1] = bottom

All that remains is to create the path, attach it to a PathPatch, and add it to our axes:

barpath = path.Path(verts, codes)
patch = patches.PathPatch(barpath, facecolor='green',

edgecolor='yellow', alpha=0.5)
ax.add_patch(patch)

import numpy as np
import matplotlib.patches as patches
import matplotlib.path as path

fig, ax = plt.subplots()
Fixing random state for reproducibility
np.random.seed(19680801)

histogram our data with numpy
data = np.random.randn(1000)
n, bins = np.histogram(data, 100)

(continues on next page)

222 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
get the corners of the rectangles for the histogram
left = np.array(bins[:-1])
right = np.array(bins[1:])
bottom = np.zeros(len(left))
top = bottom + n
nrects = len(left)

nverts = nrects*(1+3+1)
verts = np.zeros((nverts, 2))
codes = np.ones(nverts, int) * path.Path.LINETO
codes[0::5] = path.Path.MOVETO
codes[4::5] = path.Path.CLOSEPOLY
verts[0::5, 0] = left
verts[0::5, 1] = bottom
verts[1::5, 0] = left
verts[1::5, 1] = top
verts[2::5, 0] = right
verts[2::5, 1] = top
verts[3::5, 0] = right
verts[3::5, 1] = bottom

barpath = path.Path(verts, codes)
patch = patches.PathPatch(barpath, facecolor='green',

edgecolor='yellow', alpha=0.5)
ax.add_patch(patch)

ax.set_xlim(left[0], right[-1])
ax.set_ylim(bottom.min(), top.max())

plt.show()

2.3. Advanced 223

Matplotlib, Release 3.4.3

2.3.3 Path effects guide

Defining paths that objects follow on a canvas.

Matplotlib's patheffects module provides functionality to apply a multiple draw stage to any Artist
which can be rendered via a path.Path.

Artists which can have a path effect applied to them include patches.Patch, lines.Line2D,
collections.Collection and even text.Text. Each artist's path effects can be controlled via the
Artist.set_path_effects method, which takes an iterable of AbstractPathEffect instances.

The simplest path effect is the Normal effect, which simply draws the artist without any effect:

import matplotlib.pyplot as plt
import matplotlib.patheffects as path_effects

fig = plt.figure(figsize=(5, 1.5))
text = fig.text(0.5, 0.5, 'Hello path effects world!\nThis is the normal '

'path effect.\nPretty dull, huh?',
ha='center', va='center', size=20)

text.set_path_effects([path_effects.Normal()])
plt.show()

224 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Whilst the plot doesn't look any different to what you would expect without any path effects, the drawing
of the text has now been changed to use the path effects framework, opening up the possibilities for more
interesting examples.

Adding a shadow

A far more interesting path effect than Normal is the drop-shadow, which we can apply to any of our path
based artists. The classesSimplePatchShadow andSimpleLineShadow do precisely this by drawing
either a filled patch or a line patch below the original artist:

import matplotlib.patheffects as path_effects

text = plt.text(0.5, 0.5, 'Hello path effects world!',
path_effects=[path_effects.withSimplePatchShadow()])

plt.plot([0, 3, 2, 5], linewidth=5, color='blue',
path_effects=[path_effects.SimpleLineShadow(),

path_effects.Normal()])
plt.show()

2.3. Advanced 225

Matplotlib, Release 3.4.3

Notice the two approaches to setting the path effects in this example. The first uses the with* classes to
include the desired functionality automatically followedwith the "normal" effect, whereas the latter explicitly
defines the two path effects to draw.

Making an artist stand out

One nice way of making artists visually stand out is to draw an outline in a bold color below the actual artist.
The Stroke path effect makes this a relatively simple task:

fig = plt.figure(figsize=(7, 1))
text = fig.text(0.5, 0.5, 'This text stands out because of\n'

'its black border.', color='white',
ha='center', va='center', size=30)

text.set_path_effects([path_effects.Stroke(linewidth=3, foreground='black'),
path_effects.Normal()])

plt.show()

226 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

It is important to note that this effect only works because we have drawn the text path twice; once with a
thick black line, and then once with the original text path on top.

You may have noticed that the keywords to Stroke and SimplePatchShadow and SimpleLine-
Shadow are not the usual Artist keywords (facecolor edgecolor, etc.). This is because with these path
effects we are operating at lower level of Matplotlib. In fact, the keywords which are accepted are those for
a matplotlib.backend_bases.GraphicsContextBase instance, which have been designed for
making it easy to create new backends - and not for its user interface.

Greater control of the path effect artist

As already mentioned, some of the path effects operate at a lower level than most users will be used to,
meaning that setting keywords such as facecolor and edgecolor raise an AttributeError. Luckily there is a
generic PathPatchEffect path effect which creates a patches.PathPatch class with the original
path. The keywords to this effect are identical to those of patches.PathPatch:

fig = plt.figure(figsize=(8.5, 1))
t = fig.text(0.02, 0.5, 'Hatch shadow', fontsize=75, weight=1000, va='center')
t.set_path_effects([

path_effects.PathPatchEffect(
offset=(4, -4), hatch='xxxx', facecolor='gray'),

path_effects.PathPatchEffect(
edgecolor='white', linewidth=1.1, facecolor='black')])

plt.show()

2.3.4 Transformations Tutorial

Like any graphics packages, Matplotlib is built on top of a transformation framework to easily move between
coordinate systems, the userland data coordinate system, the axes coordinate system, the figure coordinate
system, and the display coordinate system. In 95% of your plotting, you won't need to think about this,
as it happens under the hood, but as you push the limits of custom figure generation, it helps to have an
understanding of these objects so you can reuse the existing transformations Matplotlib makes available to
you, or create your own (see matplotlib.transforms). The table below summarizes the some useful
coordinate systems, the transformation object you should use to work in that coordinate system, and the
description of that system. In the Transformation Object column, ax is a Axes instance, and fig
is a Figure instance.

2.3. Advanced 227

Matplotlib, Release 3.4.3

Co-
ordi-
nates

Transformation object Description

"data" ax.transData The coordinate system for the data, controlled by xlim and ylim.
"axes" ax.transAxes The coordinate system of the Axes; (0, 0) is bottom left of the axes,

and (1, 1) is top right of the axes.
"sub-
fig-
ure"

subfigure.
transSubfigure

The coordinate system of the SubFigure; (0, 0) is bottom left of
the subfigure, and (1, 1) is top right of the subfigure. If a figure has
no subfigures, this is the same as transFigure.

"fig-
ure"

fig.transFigure The coordinate system of the Figure; (0, 0) is bottom left of the
figure, and (1, 1) is top right of the figure.

"figure-
inches"

fig.
dpi_scale_trans

The coordinate system of the Figure in inches; (0, 0) is bottom
left of the figure, and (width, height) is the top right of the figure in
inches.

"dis-
play"

None, or Identity-
Transform()

The pixel coordinate system of the display window; (0, 0) is bottom
left of the window, and (width, height) is top right of the display
window in pixels.

"xaxis",
"yaxis"

ax.
get_xaxis_transform(),
ax.
get_yaxis_transform()

Blended coordinate systems; use data coordinates on one of the axis
and axes coordinates on the other.

All of the transformation objects in the table above take inputs in their coordinate system, and transform
the input to the display coordinate system. That is why the display coordinate system has None for the
Transformation Object column -- it already is in display coordinates. The transformations also
know how to invert themselves, to go from display back to the native coordinate system. This is particularly
useful when processing events from the user interface, which typically occur in display space, and you want
to know where the mouse click or key-press occurred in your data coordinate system.

Note that specifying objects in display coordinates will change their location if the dpi of the figure changes.
This can cause confusion when printing or changing screen resolution, because the object can change location
and size. Therefore it is most common for artists placed in an axes or figure to have their transform set to
something other than the IdentityTransform(); the default when an artist is placed on an axes using
add_artist is for the transform to be ax.transData.

Data coordinates

Let's start with the most commonly used coordinate, the data coordinate system. Whenever you add
data to the axes, Matplotlib updates the datalimits, most commonly updated with the set_xlim() and
set_ylim() methods. For example, in the figure below, the data limits stretch from 0 to 10 on the x-axis,
and -1 to 1 on the y-axis.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches

(continues on next page)

228 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
x = np.arange(0, 10, 0.005)
y = np.exp(-x/2.) * np.sin(2*np.pi*x)

fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_xlim(0, 10)
ax.set_ylim(-1, 1)

plt.show()

You can use the ax.transData instance to transform from your data to your display coordinate system,
either a single point or a sequence of points as shown below:

In [14]: type(ax.transData)
Out[14]: <class 'matplotlib.transforms.CompositeGenericTransform'>

In [15]: ax.transData.transform((5, 0))
Out[15]: array([335.175, 247.])

In [16]: ax.transData.transform([(5, 0), (1, 2)])
Out[16]:
array([[335.175, 247.],

(continues on next page)

2.3. Advanced 229

Matplotlib, Release 3.4.3

(continued from previous page)
[132.435, 642.2]])

You can use the inverted() method to create a transform which will take you from display to data
coordinates:

In [41]: inv = ax.transData.inverted()

In [42]: type(inv)
Out[42]: <class 'matplotlib.transforms.CompositeGenericTransform'>

In [43]: inv.transform((335.175, 247.))
Out[43]: array([5., 0.])

If your are typing along with this tutorial, the exact values of the display coordinates may differ if you have
a different window size or dpi setting. Likewise, in the figure below, the display labeled points are probably
not the same as in the ipython session because the documentation figure size defaults are different.

x = np.arange(0, 10, 0.005)
y = np.exp(-x/2.) * np.sin(2*np.pi*x)

fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_xlim(0, 10)
ax.set_ylim(-1, 1)

xdata, ydata = 5, 0
This computing the transform now, if anything
(figure size, dpi, axes placement, data limits, scales..)
changes re-calling transform will get a different value.
xdisplay, ydisplay = ax.transData.transform((xdata, ydata))

bbox = dict(boxstyle="round", fc="0.8")
arrowprops = dict(

arrowstyle="->",
connectionstyle="angle,angleA=0,angleB=90,rad=10")

offset = 72
ax.annotate('data = (%.1f, %.1f)' % (xdata, ydata),

(xdata, ydata), xytext=(-2*offset, offset), textcoords='offset␣
↪points',

bbox=bbox, arrowprops=arrowprops)

disp = ax.annotate('display = (%.1f, %.1f)' % (xdisplay, ydisplay),
(xdisplay, ydisplay), xytext=(0.5*offset, -offset),
xycoords='figure pixels',
textcoords='offset points',
bbox=bbox, arrowprops=arrowprops)

plt.show()

230 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Warning: If you run the source code in the example above in a GUI backend, you may also find that the
two arrows for the data and display annotations do not point to exactly the same point. This is because
the display point was computed before the figure was displayed, and the GUI backend may slightly resize
the figure when it is created. The effect is more pronounced if you resize the figure yourself. This is
one good reason why you rarely want to work in display space, but you can connect to the 'on_draw'
Event to update figure coordinates on figure draws; see Event handling and picking.

When you change the x or y limits of your axes, the data limits are updated so the transformation yields a new
display point. Note that when we just change the ylim, only the y-display coordinate is altered, and when we
change the xlim too, both are altered. More on this later when we talk about the Bbox.

In [54]: ax.transData.transform((5, 0))
Out[54]: array([335.175, 247.])

In [55]: ax.set_ylim(-1, 2)
Out[55]: (-1, 2)

In [56]: ax.transData.transform((5, 0))
Out[56]: array([335.175 , 181.13333333])

(continues on next page)

2.3. Advanced 231

Matplotlib, Release 3.4.3

(continued from previous page)
In [57]: ax.set_xlim(10, 20)
Out[57]: (10, 20)

In [58]: ax.transData.transform((5, 0))
Out[58]: array([-171.675 , 181.13333333])

Axes coordinates

After the data coordinate system, axes is probably the second most useful coordinate system. Here the point
(0, 0) is the bottom left of your axes or subplot, (0.5, 0.5) is the center, and (1.0, 1.0) is the top right. You can
also refer to points outside the range, so (-0.1, 1.1) is to the left and above your axes. This coordinate system
is extremely useful when placing text in your axes, because you often want a text bubble in a fixed, location,
e.g., the upper left of the axes pane, and have that location remain fixed when you pan or zoom. Here is a
simple example that creates four panels and labels them 'A', 'B', 'C', 'D' as you often see in journals.

fig = plt.figure()
for i, label in enumerate(('A', 'B', 'C', 'D')):

ax = fig.add_subplot(2, 2, i+1)
ax.text(0.05, 0.95, label, transform=ax.transAxes,

fontsize=16, fontweight='bold', va='top')

plt.show()

232 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

You can also make lines or patches in the axes coordinate system, but this is less useful in my experience
than using ax.transAxes for placing text. Nonetheless, here is a silly example which plots some random
dots in data space, and overlays a semi-transparent Circle centered in the middle of the axes with a radius
one quarter of the axes -- if your axes does not preserve aspect ratio (see set_aspect()), this will look
like an ellipse. Use the pan/zoom tool to move around, or manually change the data xlim and ylim, and you
will see the data move, but the circle will remain fixed because it is not in data coordinates and will always
remain at the center of the axes.

fig, ax = plt.subplots()
x, y = 10*np.random.rand(2, 1000)
ax.plot(x, y, 'go', alpha=0.2) # plot some data in data coordinates

circ = mpatches.Circle((0.5, 0.5), 0.25, transform=ax.transAxes,
facecolor='blue', alpha=0.75)

ax.add_patch(circ)
plt.show()

2.3. Advanced 233

Matplotlib, Release 3.4.3

Blended transformations

Drawing in blended coordinate spaces which mix axeswith data coordinates is extremely useful, for example
to create a horizontal span which highlights some region of the y-data but spans across the x-axis regardless
of the data limits, pan or zoom level, etc. In fact these blended lines and spans are so useful, we have built
in functions to make them easy to plot (see axhline(), axvline(), axhspan(), axvspan()) but
for didactic purposes we will implement the horizontal span here using a blended transformation. This trick
only works for separable transformations, like you see in normal Cartesian coordinate systems, but not on
inseparable transformations like the PolarTransform.

import matplotlib.transforms as transforms

fig, ax = plt.subplots()
x = np.random.randn(1000)

ax.hist(x, 30)
ax.set_title(r'$\sigma=1 \/ \dots \/ \sigma=2$', fontsize=16)

the x coords of this transformation are data, and the y coord are axes
trans = transforms.blended_transform_factory(

ax.transData, ax.transAxes)

(continues on next page)

234 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
highlight the 1..2 stddev region with a span.
We want x to be in data coordinates and y to span from 0..1 in axes coords.
rect = mpatches.Rectangle((1, 0), width=1, height=1, transform=trans,

color='yellow', alpha=0.5)
ax.add_patch(rect)

plt.show()

Note: The blended transformations where x is in data coords and y in axes coordinates is so
useful that we have helper methods to return the versions Matplotlib uses internally for drawing
ticks, ticklabels, etc. The methods are matplotlib.axes.Axes.get_xaxis_transform()
and matplotlib.axes.Axes.get_yaxis_transform(). So in the example above, the call to
blended_transform_factory() can be replaced by get_xaxis_transform:

trans = ax.get_xaxis_transform()

2.3. Advanced 235

Matplotlib, Release 3.4.3

Plotting in physical coordinates

Sometimes we want an object to be a certain physical size on the plot. Here we draw the same circle as
above, but in physical coordinates. If done interactively, you can see that changing the size of the figure does
not change the offset of the circle from the lower-left corner, does not change its size, and the circle remains
a circle regardless of the aspect ratio of the axes.

fig, ax = plt.subplots(figsize=(5, 4))
x, y = 10*np.random.rand(2, 1000)
ax.plot(x, y*10., 'go', alpha=0.2) # plot some data in data coordinates
add a circle in fixed-coordinates
circ = mpatches.Circle((2.5, 2), 1.0, transform=fig.dpi_scale_trans,

facecolor='blue', alpha=0.75)
ax.add_patch(circ)
plt.show()

If we change the figure size, the circle does not change its absolute position and is cropped.

fig, ax = plt.subplots(figsize=(7, 2))
x, y = 10*np.random.rand(2, 1000)
ax.plot(x, y*10., 'go', alpha=0.2) # plot some data in data coordinates
add a circle in fixed-coordinates
circ = mpatches.Circle((2.5, 2), 1.0, transform=fig.dpi_scale_trans,

facecolor='blue', alpha=0.75)
ax.add_patch(circ)
plt.show()

236 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Another use is putting a patch with a set physical dimension around a data point on the axes. Here we add
together two transforms. The first sets the scaling of how large the ellipse should be and the second sets its
position. The ellipse is then placed at the origin, and then we use the helper transform ScaledTransla-
tion to move it to the right place in the ax.transData coordinate system. This helper is instantiated
with:

trans = ScaledTranslation(xt, yt, scale_trans)

where xt and yt are the translation offsets, and scale_trans is a transformation which scales xt and yt at
transformation time before applying the offsets.

Note the use of the plus operator on the transforms below. This code says: first apply the scale transformation
fig.dpi_scale_trans to make the ellipse the proper size, but still centered at (0, 0), and then translate
the data to xdata[0] and ydata[0] in data space.

In interactive use, the ellipse stays the same size even if the axes limits are changed via zoom.

fig, ax = plt.subplots()
xdata, ydata = (0.2, 0.7), (0.5, 0.5)
ax.plot(xdata, ydata, "o")
ax.set_xlim((0, 1))

trans = (fig.dpi_scale_trans +
transforms.ScaledTranslation(xdata[0], ydata[0], ax.transData))

plot an ellipse around the point that is 150 x 130 points in diameter...
circle = mpatches.Ellipse((0, 0), 150/72, 130/72, angle=40,

fill=None, transform=trans)
ax.add_patch(circle)
plt.show()

2.3. Advanced 237

Matplotlib, Release 3.4.3

Note: The order of transformation matters. Here the ellipse is given the right dimensions in display space
first and then moved in data space to the correct spot. If we had done the ScaledTranslation first, then
xdata[0] and ydata[0] would first be transformed to display coordinates ([358.4 475.2] on a
200-dpi monitor) and then those coordinates would be scaled by fig.dpi_scale_trans pushing the
center of the ellipse well off the screen (i.e. [71680. 95040.]).

Using offset transforms to create a shadow effect

Another use of ScaledTranslation is to create a new transformation that is offset from another trans-
formation, e.g., to place one object shifted a bit relative to another object. Typically you want the shift to be
in some physical dimension, like points or inches rather than in data coordinates, so that the shift effect is
constant at different zoom levels and dpi settings.

One use for an offset is to create a shadow effect, where you draw one object identical to the first just to the
right of it, and just below it, adjusting the zorder to make sure the shadow is drawn first and then the object
it is shadowing above it.

Here we apply the transforms in the opposite order to the use of ScaledTranslation above. The plot
is first made in data coordinates (ax.transData) and then shifted by dx and dy points using fig.
dpi_scale_trans. (In typography, a point is 1/72 inches, and by specifying your offsets in points, your

238 Chapter 2. Tutorials

https://en.wikipedia.org/wiki/Point_%28typography%29

Matplotlib, Release 3.4.3

figure will look the same regardless of the dpi resolution it is saved in.)

fig, ax = plt.subplots()

make a simple sine wave
x = np.arange(0., 2., 0.01)
y = np.sin(2*np.pi*x)
line, = ax.plot(x, y, lw=3, color='blue')

shift the object over 2 points, and down 2 points
dx, dy = 2/72., -2/72.
offset = transforms.ScaledTranslation(dx, dy, fig.dpi_scale_trans)
shadow_transform = ax.transData + offset

now plot the same data with our offset transform;
use the zorder to make sure we are below the line
ax.plot(x, y, lw=3, color='gray',

transform=shadow_transform,
zorder=0.5*line.get_zorder())

ax.set_title('creating a shadow effect with an offset transform')
plt.show()

2.3. Advanced 239

Matplotlib, Release 3.4.3

Note: The dpi and inches offset is a common-enough use case that we have a special helper function
to create it in matplotlib.transforms.offset_copy(), which returns a new transform with an
added offset. So above we could have done:

shadow_transform = transforms.offset_copy(ax.transData,
fig=fig, dx, dy, units='inches')

The transformation pipeline

The ax.transData transform we have been working with in this tutorial is a composite of three different
transformations that comprise the transformation pipeline from data -> display coordinates. Michael Droet-
tboom implemented the transformations framework, taking care to provide a clean API that segregated the
nonlinear projections and scales that happen in polar and logarithmic plots, from the linear affine transfor-
mations that happen when you pan and zoom. There is an efficiency here, because you can pan and zoom in
your axes which affects the affine transformation, but you may not need to compute the potentially expensive
nonlinear scales or projections on simple navigation events. It is also possible to multiply affine transfor-
mation matrices together, and then apply them to coordinates in one step. This is not true of all possible
transformations.

Here is how the ax.transData instance is defined in the basic separable axis Axes class:

self.transData = self.transScale + (self.transLimits + self.transAxes)

We've been introduced to the transAxes instance above in Axes coordinates, which maps the (0, 0), (1, 1)
corners of the axes or subplot bounding box to display space, so let's look at these other two pieces.

self.transLimits is the transformation that takes you from data to axes coordinates; i.e., it maps your
view xlim and ylim to the unit space of the axes (and transAxes then takes that unit space to display
space). We can see this in action here

In [80]: ax = plt.subplot()

In [81]: ax.set_xlim(0, 10)
Out[81]: (0, 10)

In [82]: ax.set_ylim(-1, 1)
Out[82]: (-1, 1)

In [84]: ax.transLimits.transform((0, -1))
Out[84]: array([0., 0.])

In [85]: ax.transLimits.transform((10, -1))
Out[85]: array([1., 0.])

In [86]: ax.transLimits.transform((10, 1))
Out[86]: array([1., 1.])

(continues on next page)

240 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
In [87]: ax.transLimits.transform((5, 0))
Out[87]: array([0.5, 0.5])

and we can use this same inverted transformation to go from the unit axes coordinates back to data coordi-
nates.

In [90]: inv.transform((0.25, 0.25))
Out[90]: array([2.5, -0.5])

The final piece is the self.transScale attribute, which is responsible for the optional non-linear scaling
of the data, e.g., for logarithmic axes. When an Axes is initially setup, this is just set to the identity trans-
form, since the basic Matplotlib axes has linear scale, but when you call a logarithmic scaling function like
semilogx() or explicitly set the scale to logarithmic with set_xscale(), then the ax.transScale
attribute is set to handle the nonlinear projection. The scales transforms are properties of the respective
xaxis and yaxis Axis instances. For example, when you call ax.set_xscale('log'), the xaxis
updates its scale to a matplotlib.scale.LogScale instance.

For non-separable axes the PolarAxes, there is one more piece to consider, the projection transformation.
The transData matplotlib.projections.polar.PolarAxes is similar to that for the typical
separable matplotlib Axes, with one additional piece transProjection:

self.transData = self.transScale + self.transProjection + \
(self.transProjectionAffine + self.transAxes)

transProjection handles the projection from the space, e.g., latitude and longitude for map data, or
radius and theta for polar data, to a separable Cartesian coordinate system. There are several projection
examples in the matplotlib.projections package, and the best way to learn more is to open the
source for those packages and see how to make your own, since Matplotlib supports extensible axes and
projections. Michael Droettboom has provided a nice tutorial example of creating a Hammer projection
axes; see /gallery/misc/custom_projection.

Total running time of the script: (0 minutes 3.177 seconds)

2.4 Colors

Matplotlib has support for visualizing information with a wide array of colors and colormaps. These tutorials
cover the basics of how these colormaps look, how you can create your own, and how you can customize
colormaps for your use case.

For even more information see the examples page.

2.4. Colors 241

Matplotlib, Release 3.4.3

2.4.1 Specifying Colors

Matplotlib recognizes the following formats in the table below to specify a color.

242 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Format Example
RGB or RGBA (red, green, blue, alpha) tuple of
float values in a closed interval [0, 1]. • (0.1, 0.2, 0.5)

• (0.1, 0.2, 0.5, 0.3)

Case-insensitive hex RGB or RGBA string. • '#0f0f0f'
• '#0f0f0f80'

Case-insensitive RGB or RGBA string equivalent
hex shorthand of duplicated characters. • '#abc' as '#aabbcc'

• '#fb1' as '#ffbb11'

String representation of float value in closed inter-
val [0, 1] for black and white, respectively. • '0.8' as light gray

• '0' as black
• '1' as white

Single character shorthand notation for shades of
colors.

Note: The colors green, cyan, magenta, and yel-
low do not coincide with X11/CSS4 colors.

• 'b' as blue
• 'g' as green
• 'r' as red
• 'c' as cyan
• 'm' as magenta
• 'y' as yellow
• 'k' as black
• 'w' as white

Case-insensitive X11/CSS4 color name with no
spaces. • 'aquamarine'

• 'mediumseagreen'

Case-insensitive color name from xkcd color sur-
vey with 'xkcd:' prefix. • 'xkcd:sky blue'

• 'xkcd:eggshell'

Case-insensitive Tableau Colors from 'T10' cate-
gorical palette.

Note: This is the default color cycle.

• 'tab:blue'
• 'tab:orange'
• 'tab:green'
• 'tab:red'
• 'tab:purple'
• 'tab:brown'
• 'tab:pink'
• 'tab:gray'
• 'tab:olive'
• 'tab:cyan'

"CN" color spec where 'C' precedes a number act-
ing as an index into the default property cycle.

Note: Matplotlib indexes color at draw time and
defaults to black if cycle does not include color.

• 'C0'
• 'C1'

rcParams["axes.prop_cycle"] (de-
fault: cycler('color', ['#1f77b4',
'#ff7f0e', '#2ca02c', '#d62728',
'#9467bd', '#8c564b', '#e377c2',
'#7f7f7f', '#bcbd22', '#17becf']))

2.4. Colors 243

https://xkcd.com/color/rgb/
https://xkcd.com/color/rgb/
../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

See also:
The following links provide more information on colors in Matplotlib.

• /gallery/color/color_demo Example

• matplotlib.colors API

• /gallery/color/named_colors Example

"Red", "Green", and "Blue" are the intensities of those colors. In combination, they represent the colorspace.

Matplotlib drawsArtists based on thezorder parameter. If there are no specified values, Matplotlib defaults
to the order of the Artists added to the Axes.

The alpha for an Artist controls opacity. It indicates how the RGB color of the new Artist combines with
RGB colors already on the Axes.

The two Artists combine with alpha compositing. Matplotlib uses the equation below to compute the result
of blending a new Artist.

RGB_{new} = RGB_{below} * (1 - \alpha) + RGB_{artist} * \alpha

Alpha of 1 indicates the new Artist completely covers the previous color. Alpha of 0 for top color is not
visible; however, it contributes to blending for intermediate values as the cumulative result of all previous
Artists. The following table contains examples.

244 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Alpha
value

Visual

0.3

1

Note: Re-ordering Artists is not commutative in Matplotlib.

2.4. Colors 245

Matplotlib, Release 3.4.3

"CN" color selection

Matplotlib converts "CN" colors to RGBA when drawing Artists. The Styling with cycler section contains
additional information about controlling colors and style properties.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

th = np.linspace(0, 2*np.pi, 128)

def demo(sty):
mpl.style.use(sty)
fig, ax = plt.subplots(figsize=(3, 3))

ax.set_title('style: {!r}'.format(sty), color='C0')

ax.plot(th, np.cos(th), 'C1', label='C1')
ax.plot(th, np.sin(th), 'C2', label='C2')
ax.legend()

demo('default')
demo('seaborn')

•

246 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

•

The first color 'C0' is the title. Each plot uses the second and third colors of each style's
rcParams["axes.prop_cycle"] (default: cycler('color', ['#1f77b4', '#ff7f0e',
'#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
'#bcbd22', '#17becf'])). They are 'C1' and 'C2', respectively.

Comparison between X11/CSS4 and xkcd colors

The xkcd colors come from a user survey conducted by the webcomic xkcd.

95 out of the 148 X11/CSS4 color names also appear in the xkcd color survey. Almost all of them map to
different color values in the X11/CSS4 and in the xkcd palette. Only 'black', 'white' and 'cyan' are identical.

For example, 'blue' maps to '#0000FF' whereas 'xkcd:blue' maps to '#0343DF'. Due to these
name collisions, all xkcd colors have the 'xkcd:' prefix.

The visual below shows name collisions. Color names where color values agree are in bold.

import matplotlib._color_data as mcd
import matplotlib.patches as mpatch

overlap = {name for name in mcd.CSS4_COLORS
if "xkcd:" + name in mcd.XKCD_COLORS}

fig = plt.figure(figsize=[9, 5])
ax = fig.add_axes([0, 0, 1, 1])

n_groups = 3
n_rows = len(overlap) // n_groups + 1

for j, color_name in enumerate(sorted(overlap)):
css4 = mcd.CSS4_COLORS[color_name]
xkcd = mcd.XKCD_COLORS["xkcd:" + color_name].upper()

(continues on next page)

2.4. Colors 247

../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://blog.xkcd.com/2010/05/03/color-survey-results/

Matplotlib, Release 3.4.3

(continued from previous page)
col_shift = (j // n_rows) * 3
y_pos = j % n_rows
text_args = dict(va='center', fontsize=10,

weight='bold' if css4 == xkcd else None)
ax.add_patch(mpatch.Rectangle((0 + col_shift, y_pos), 1, 1, color=css4))
ax.add_patch(mpatch.Rectangle((1 + col_shift, y_pos), 1, 1, color=xkcd))
ax.text(0 + col_shift, y_pos + .5, ' ' + css4, alpha=0.5, **text_args)
ax.text(1 + col_shift, y_pos + .5, ' ' + xkcd, alpha=0.5, **text_args)
ax.text(2 + col_shift, y_pos + .5, ' ' + color_name, **text_args)

for g in range(n_groups):
ax.hlines(range(n_rows), 3*g, 3*g + 2.8, color='0.7', linewidth=1)
ax.text(0.5 + 3*g, -0.5, 'X11', ha='center', va='center')
ax.text(1.5 + 3*g, -0.5, 'xkcd', ha='center', va='center')

ax.set_xlim(0, 3 * n_groups)
ax.set_ylim(n_rows, -1)
ax.axis('off')

plt.show()

Total running time of the script: (0 minutes 1.236 seconds)

248 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

2.4.2 Customized Colorbars Tutorial

This tutorial shows how to build and customize standalone colorbars, i.e. without an attached plot.

Customized Colorbars

A colorbar needs a "mappable" (matplotlib.cm.ScalarMappable) object (typically, an image)
which indicates the colormap and the norm to be used. In order to create a colorbar without an attached
image, one can instead use a ScalarMappable with no associated data.

Basic continuous colorbar

Here we create a basic continuous colorbar with ticks and labels.

The arguments to the colorbar call are the ScalarMappable (constructed using the norm and cmap
arguments), the axes where the colorbar should be drawn, and the colorbar's orientation.

For more information see the colorbar API.

import matplotlib.pyplot as plt
import matplotlib as mpl

fig, ax = plt.subplots(figsize=(6, 1))
fig.subplots_adjust(bottom=0.5)

cmap = mpl.cm.cool
norm = mpl.colors.Normalize(vmin=5, vmax=10)

fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),
cax=ax, orientation='horizontal', label='Some Units')

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe6483bf670>

2.4. Colors 249

Matplotlib, Release 3.4.3

Extended colorbar with continuous colorscale

The second example shows how to make a discrete colorbar based on a continuous cmap. With the "extend"
keyword argument the appropriate colors are chosen to fill the colorspace, including the extensions:

fig, ax = plt.subplots(figsize=(6, 1))
fig.subplots_adjust(bottom=0.5)

cmap = mpl.cm.viridis
bounds = [-1, 2, 5, 7, 12, 15]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N, extend='both')

fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),
cax=ax, orientation='horizontal',
label="Discrete intervals with extend='both' keyword")

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe64b64eeb0>

Discrete intervals colorbar

The third example illustrates the use of a ListedColormap which generates a colormap from a set of
listed colors, colors.BoundaryNorm which generates a colormap index based on discrete intervals and
extended ends to show the "over" and "under" value colors. Over and under are used to display data outside
of the normalized [0, 1] range. Here we pass colors as gray shades as a string encoding a float in the 0-1
range.

If a ListedColormap is used, the length of the bounds array must be one greater than the length of the
color list. The bounds must be monotonically increasing.

This time we pass additional arguments to colorbar. For the out-of-range values to display on the colorbar
without using the extend keyword with colors.BoundaryNorm, we have to use the extend keyword
argument directly in the colorbar call, and supply an additional boundary on each end of the range. Here we
also use the spacing argument to make the length of each colorbar segment proportional to its corresponding
interval.

fig, ax = plt.subplots(figsize=(6, 1))
fig.subplots_adjust(bottom=0.5)

cmap = (mpl.colors.ListedColormap(['red', 'green', 'blue', 'cyan'])
.with_extremes(over='0.25', under='0.75'))

(continues on next page)

250 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
bounds = [1, 2, 4, 7, 8]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
fig.colorbar(

mpl.cm.ScalarMappable(cmap=cmap, norm=norm),
cax=ax,
boundaries=[0] + bounds + [13], # Adding values for extensions.
extend='both',
ticks=bounds,
spacing='proportional',
orientation='horizontal',
label='Discrete intervals, some other units',

)

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe64b6ac790>

Colorbar with custom extension lengths

Here we illustrate the use of custom length colorbar extensions, on a colorbar with discrete intervals. Tomake
the length of each extension the same as the length of the interior colors, use extendfrac='auto'.

fig, ax = plt.subplots(figsize=(6, 1))
fig.subplots_adjust(bottom=0.5)

cmap = (mpl.colors.ListedColormap(['royalblue', 'cyan', 'yellow', 'orange'])
.with_extremes(over='red', under='blue'))

bounds = [-1.0, -0.5, 0.0, 0.5, 1.0]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
fig.colorbar(

mpl.cm.ScalarMappable(cmap=cmap, norm=norm),
cax=ax,
boundaries=[-10] + bounds + [10],
extend='both',
extendfrac='auto',
ticks=bounds,
spacing='uniform',
orientation='horizontal',
label='Custom extension lengths, some other units',

)

plt.show()

2.4. Colors 251

Matplotlib, Release 3.4.3

2.4.3 Creating Colormaps in Matplotlib

Matplotlib has a number of built-in colormaps accessible via matplotlib.cm.get_cmap. There are
also external libraries like palettable that have many extra colormaps.

However, we often want to create or manipulate colormaps in Matplotlib. This can be done using the class
ListedColormap or LinearSegmentedColormap. Seen from the outside, both colormap classes
map values between 0 and 1 to a bunch of colors. There are, however, slight differences, some of which are
shown in the following.

Before manually creating or manipulating colormaps, let us first see how we can obtain colormaps and their
colors from existing colormap classes.

Getting colormaps and accessing their values

First, getting a named colormap, most of which are listed in Choosing Colormaps in Matplotlib, may be
done using matplotlib.cm.get_cmap, which returns a colormap object. The second argument gives
the size of the list of colors used to define the colormap, and below we use a modest value of 8 so there are
not a lot of values to look at.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap

viridis = cm.get_cmap('viridis', 8)

The object viridis is a callable, that when passed a float between 0 and 1 returns an RGBA value from
the colormap:

print(viridis(0.56))

Out:

(0.122312, 0.633153, 0.530398, 1.0)

252 Chapter 2. Tutorials

https://jiffyclub.github.io/palettable/

Matplotlib, Release 3.4.3

ListedColormap

ListedColormap s store their color values in a .colors attribute. The list of colors that comprise the
colormap can be directly accessed using the colors property, or it can be accessed indirectly by calling
viridis with an array of values matching the length of the colormap. Note that the returned list is in the
form of an RGBA Nx4 array, where N is the length of the colormap.

print('viridis.colors', viridis.colors)
print('viridis(range(8))', viridis(range(8)))
print('viridis(np.linspace(0, 1, 8))', viridis(np.linspace(0, 1, 8)))

Out:

viridis.colors [[0.267004 0.004874 0.329415 1.]
[0.275191 0.194905 0.496005 1.]
[0.212395 0.359683 0.55171 1.]
[0.153364 0.497 0.557724 1.]
[0.122312 0.633153 0.530398 1.]
[0.288921 0.758394 0.428426 1.]
[0.626579 0.854645 0.223353 1.]
[0.993248 0.906157 0.143936 1.]]

viridis(range(8)) [[0.267004 0.004874 0.329415 1.]
[0.275191 0.194905 0.496005 1.]
[0.212395 0.359683 0.55171 1.]
[0.153364 0.497 0.557724 1.]
[0.122312 0.633153 0.530398 1.]
[0.288921 0.758394 0.428426 1.]
[0.626579 0.854645 0.223353 1.]
[0.993248 0.906157 0.143936 1.]]

viridis(np.linspace(0, 1, 8)) [[0.267004 0.004874 0.329415 1.]
[0.275191 0.194905 0.496005 1.]
[0.212395 0.359683 0.55171 1.]
[0.153364 0.497 0.557724 1.]
[0.122312 0.633153 0.530398 1.]
[0.288921 0.758394 0.428426 1.]
[0.626579 0.854645 0.223353 1.]
[0.993248 0.906157 0.143936 1.]]

The colormap is a lookup table, so "oversampling" the colormap returns nearest-neighbor interpolation (note
the repeated colors in the list below)

print('viridis(np.linspace(0, 1, 12))', viridis(np.linspace(0, 1, 12)))

Out:

viridis(np.linspace(0, 1, 12)) [[0.267004 0.004874 0.329415 1.]
[0.267004 0.004874 0.329415 1.]
[0.275191 0.194905 0.496005 1.]
[0.212395 0.359683 0.55171 1.]
[0.212395 0.359683 0.55171 1.]
[0.153364 0.497 0.557724 1.]
[0.122312 0.633153 0.530398 1.]

(continues on next page)

2.4. Colors 253

Matplotlib, Release 3.4.3

(continued from previous page)
[0.288921 0.758394 0.428426 1.]
[0.288921 0.758394 0.428426 1.]
[0.626579 0.854645 0.223353 1.]
[0.993248 0.906157 0.143936 1.]
[0.993248 0.906157 0.143936 1.]]

LinearSegmentedColormap

LinearSegmentedColormap s do not have a .colors attribute. However, one may still call the col-
ormap with an integer array, or with a float array between 0 and 1.

copper = cm.get_cmap('copper', 8)

print('copper(range(8))', copper(range(8)))
print('copper(np.linspace(0, 1, 8))', copper(np.linspace(0, 1, 8)))

Out:

copper(range(8)) [[0. 0. 0. 1.]
[0.17647055 0.1116 0.07107143 1.]
[0.35294109 0.2232 0.14214286 1.]
[0.52941164 0.3348 0.21321429 1.]
[0.70588219 0.4464 0.28428571 1.]
[0.88235273 0.558 0.35535714 1.]
[1. 0.6696 0.42642857 1.]
[1. 0.7812 0.4975 1.]]

copper(np.linspace(0, 1, 8)) [[0. 0. 0. 1.]
[0.17647055 0.1116 0.07107143 1.]
[0.35294109 0.2232 0.14214286 1.]
[0.52941164 0.3348 0.21321429 1.]
[0.70588219 0.4464 0.28428571 1.]
[0.88235273 0.558 0.35535714 1.]
[1. 0.6696 0.42642857 1.]
[1. 0.7812 0.4975 1.]]

Creating listed colormaps

Creating a colormap is essentially the inverse operation of the above where we supply a list or array of color
specifications to ListedColormap to make a new colormap.

Before continuing with the tutorial, let us define a helper function that takes one of more colormaps as input,
creates some random data and applies the colormap(s) to an image plot of that dataset.

def plot_examples(colormaps):
"""
Helper function to plot data with associated colormap.
"""
np.random.seed(19680801)

(continues on next page)

254 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
data = np.random.randn(30, 30)
n = len(colormaps)
fig, axs = plt.subplots(1, n, figsize=(n * 2 + 2, 3),

constrained_layout=True, squeeze=False)
for [ax, cmap] in zip(axs.flat, colormaps):

psm = ax.pcolormesh(data, cmap=cmap, rasterized=True, vmin=-4, vmax=4)
fig.colorbar(psm, ax=ax)

plt.show()

In the simplest case we might type in a list of color names to create a colormap from those.

cmap = ListedColormap(["darkorange", "gold", "lawngreen", "lightseagreen"])
plot_examples([cmap])

In fact, that list may contain any valid matplotlib color specification. Particularly useful for creating custom
colormaps are Nx4 numpy arrays. Because with the variety of numpy operations that we can do on a such
an array, carpentry of new colormaps from existing colormaps become quite straight forward.

For example, suppose we want to make the first 25 entries of a 256-length "viridis" colormap pink for some
reason:

viridis = cm.get_cmap('viridis', 256)
newcolors = viridis(np.linspace(0, 1, 256))
pink = np.array([248/256, 24/256, 148/256, 1])
newcolors[:25, :] = pink
newcmp = ListedColormap(newcolors)

plot_examples([viridis, newcmp])

2.4. Colors 255

Matplotlib, Release 3.4.3

We can easily reduce the dynamic range of a colormap; here we choose the middle 0.5 of the colormap.
However, we need to interpolate from a larger colormap, otherwise the new colormap will have repeated
values.

viridis_big = cm.get_cmap('viridis', 512)
newcmp = ListedColormap(viridis_big(np.linspace(0.25, 0.75, 256)))
plot_examples([viridis, newcmp])

and we can easily concatenate two colormaps:

top = cm.get_cmap('Oranges_r', 128)
bottom = cm.get_cmap('Blues', 128)

newcolors = np.vstack((top(np.linspace(0, 1, 128)),
bottom(np.linspace(0, 1, 128))))

(continues on next page)

256 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
newcmp = ListedColormap(newcolors, name='OrangeBlue')
plot_examples([viridis, newcmp])

Of course we need not start from a named colormap, we just need to create the Nx4 array to pass to List-
edColormap. Here we create a colormap that goes from brown (RGB: 90, 40, 40) to white (RGB: 255,
255, 255).

N = 256
vals = np.ones((N, 4))
vals[:, 0] = np.linspace(90/256, 1, N)
vals[:, 1] = np.linspace(40/256, 1, N)
vals[:, 2] = np.linspace(40/256, 1, N)
newcmp = ListedColormap(vals)
plot_examples([viridis, newcmp])

2.4. Colors 257

Matplotlib, Release 3.4.3

Creating linear segmented colormaps

LinearSegmentedColormap class specifies colormaps using anchor points between which RGB(A)
values are interpolated.

The format to specify these colormaps allows discontinuities at the anchor points. Each anchor point is
specified as a row in a matrix of the form [x[i] yleft[i] yright[i]], where x[i] is the anchor,
and yleft[i] and yright[i] are the values of the color on either side of the anchor point.

If there are no discontinuities, then yleft[i]=yright[i]:

cdict = {'red': [[0.0, 0.0, 0.0],
[0.5, 1.0, 1.0],
[1.0, 1.0, 1.0]],

'green': [[0.0, 0.0, 0.0],
[0.25, 0.0, 0.0],
[0.75, 1.0, 1.0],
[1.0, 1.0, 1.0]],

'blue': [[0.0, 0.0, 0.0],
[0.5, 0.0, 0.0],
[1.0, 1.0, 1.0]]}

def plot_linearmap(cdict):
newcmp = LinearSegmentedColormap('testCmap', segmentdata=cdict, N=256)
rgba = newcmp(np.linspace(0, 1, 256))
fig, ax = plt.subplots(figsize=(4, 3), constrained_layout=True)
col = ['r', 'g', 'b']
for xx in [0.25, 0.5, 0.75]:

ax.axvline(xx, color='0.7', linestyle='--')
for i in range(3):

ax.plot(np.arange(256)/256, rgba[:, i], color=col[i])
ax.set_xlabel('index')
ax.set_ylabel('RGB')
plt.show()

plot_linearmap(cdict)

258 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

In order to make a discontinuity at an anchor point, the third column is different than the second. The matrix
for each of "red", "green", "blue", and optionally "alpha" is set up as:

cdict['red'] = [...
[x[i] yleft[i] yright[i]],
[x[i+1] yleft[i+1] yright[i+1]],
...]

and for values passed to the colormap betweenx[i] andx[i+1], the interpolation is betweenyright[i]
and yleft[i+1].

In the example below there is a discontinuity in red at 0.5. The interpolation between 0 and 0.5 goes from
0.3 to 1, and between 0.5 and 1 it goes from 0.9 to 1. Note that red[0, 1], and red[2, 2] are both superfluous
to the interpolation because red[0, 1] is the value to the left of 0, and red[2, 2] is the value to the right of 1.0.

cdict['red'] = [[0.0, 0.0, 0.3],
[0.5, 1.0, 0.9],
[1.0, 1.0, 1.0]]

plot_linearmap(cdict)

2.4. Colors 259

Matplotlib, Release 3.4.3

Directly creating a segmented colormap from a list

The above described is a very versatile approach, but admittedly a bit cumbersome to implement. For some
basic cases, the use of LinearSegmentedColormap.from_list may be easier. This creates a seg-
mented colormap with equal spacings from a supplied list of colors.

colors = ["darkorange", "gold", "lawngreen", "lightseagreen"]
cmap1 = LinearSegmentedColormap.from_list("mycmap", colors)

If desired, the nodes of the colormap can be given as numbers between 0 and 1. E.g. one could have the
reddish part take more space in the colormap.

nodes = [0.0, 0.4, 0.8, 1.0]
cmap2 = LinearSegmentedColormap.from_list("mycmap", list(zip(nodes, colors)))

plot_examples([cmap1, cmap2])

260 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

References
The use of the following functions, methods, classes and modules is shown in this example:

• matplotlib.axes.Axes.pcolormesh

• matplotlib.figure.Figure.colorbar

• matplotlib.colors

• matplotlib.colors.LinearSegmentedColormap

• matplotlib.colors.ListedColormap

• matplotlib.cm

• matplotlib.cm.get_cmap

Total running time of the script: (0 minutes 3.373 seconds)

2.4.4 Colormap Normalization

Objects that use colormaps by default linearly map the colors in the colormap from data values vmin to vmax.
For example:

pcm = ax.pcolormesh(x, y, Z, vmin=-1., vmax=1., cmap='RdBu_r')

will map the data in Z linearly from -1 to +1, so Z=0 will give a color at the center of the colormap RdBu_r
(white in this case).

Matplotlib does this mapping in two steps, with a normalization from the input data to [0, 1] occur-
ring first, and then mapping onto the indices in the colormap. Normalizations are classes defined in
the matplotlib.colors() module. The default, linear normalization is matplotlib.colors.
Normalize().

2.4. Colors 261

Matplotlib, Release 3.4.3

Artists that map data to color pass the arguments vmin and vmax to construct a matplotlib.colors.
Normalize() instance, then call it:

In [1]: import matplotlib as mpl

In [2]: norm = mpl.colors.Normalize(vmin=-1, vmax=1)

In [3]: norm(0)
Out[3]: 0.5

However, there are sometimes cases where it is useful to map data to colormaps in a non-linear fashion.

Logarithmic

One of the most common transformations is to plot data by taking its logarithm (to the base-10). This
transformation is useful to display changes across disparate scales. Using colors.LogNorm normalizes
the data via 𝑙𝑜𝑔10. In the example below, there are two bumps, one much smaller than the other. Using
colors.LogNorm, the shape and location of each bump can clearly be seen:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import matplotlib.cbook as cbook
from matplotlib import cm

N = 100
X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]

A low hump with a spike coming out of the top right. Needs to have
z/colour axis on a log scale so we see both hump and spike. linear
scale only shows the spike.
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X * 10)**2 - (Y * 10)**2)
Z = Z1 + 50 * Z2

fig, ax = plt.subplots(2, 1)

pcm = ax[0].pcolor(X, Y, Z,
norm=colors.LogNorm(vmin=Z.min(), vmax=Z.max()),
cmap='PuBu_r', shading='auto')

fig.colorbar(pcm, ax=ax[0], extend='max')

pcm = ax[1].pcolor(X, Y, Z, cmap='PuBu_r', shading='auto')
fig.colorbar(pcm, ax=ax[1], extend='max')
plt.show()

262 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Centered

In many cases, data is symmetrical around a center, for example, positive and negative anomalies around
a center 0. In this case, we would like the center to be mapped to 0.5 and the datapoint with the largest
deviation from the center to be mapped to 1.0, if its value is greater than the center, or 0.0 otherwise. The
norm colors.CenteredNorm creates such a mapping automatically. It is well suited to be combined
with a divergent colormap which uses different colors edges that meet in the center at an unsaturated color.

If the center of symmetry is different from 0, it can be set with the vcenter argument. For logarithmic scaling
on both sides of the center, see colors.SymLogNorm below; to apply a different mapping above and
below the center, use colors.TwoSlopeNorm below.

delta = 0.1
x = np.arange(-3.0, 4.001, delta)
y = np.arange(-4.0, 3.001, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (0.9*Z1 - 0.5*Z2) * 2

select a divergent colormap

(continues on next page)

2.4. Colors 263

Matplotlib, Release 3.4.3

(continued from previous page)
cmap = cm.coolwarm

fig, (ax1, ax2) = plt.subplots(ncols=2)
pc = ax1.pcolormesh(Z, cmap=cmap)
fig.colorbar(pc, ax=ax1)
ax1.set_title('Normalize()')

pc = ax2.pcolormesh(Z, norm=colors.CenteredNorm(), cmap=cmap)
fig.colorbar(pc, ax=ax2)
ax2.set_title('CenteredNorm()')

plt.show()

264 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Symmetric logarithmic

Similarly, it sometimes happens that there is data that is positive and negative, but we would still like a
logarithmic scaling applied to both. In this case, the negative numbers are also scaled logarithmically, and
mapped to smaller numbers; e.g., if vmin=-vmax, then the negative numbers are mapped from 0 to 0.5 and
the positive from 0.5 to 1.

Since the logarithm of values close to zero tends toward infinity, a small range around zero needs to bemapped
linearly. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh). The
size of this range in the colormap is set by linscale. When linscale == 1.0 (the default), the space used for
the positive and negative halves of the linear range will be equal to one decade in the logarithmic range.

N = 100
X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2

fig, ax = plt.subplots(2, 1)

pcm = ax[0].pcolormesh(X, Y, Z,
norm=colors.SymLogNorm(linthresh=0.03, linscale=0.03,

vmin=-1.0, vmax=1.0, base=10),
cmap='RdBu_r', shading='auto')

fig.colorbar(pcm, ax=ax[0], extend='both')

pcm = ax[1].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z), shading='auto
↪')

fig.colorbar(pcm, ax=ax[1], extend='both')
plt.show()

2.4. Colors 265

Matplotlib, Release 3.4.3

Power-law

Sometimes it is useful to remap the colors onto a power-law relationship (i.e. 𝑦 = 𝑥𝛾 , where 𝛾 is the power).
For this we use the colors.PowerNorm. It takes as an argument gamma (gamma == 1.0 will just yield
the default linear normalization):

Note: There should probably be a good reason for plotting the data using this type of transformation.
Technical viewers are used to linear and logarithmic axes and data transformations. Power laws are less
common, and viewers should explicitly be made aware that they have been used.

N = 100
X, Y = np.mgrid[0:3:complex(0, N), 0:2:complex(0, N)]
Z1 = (1 + np.sin(Y * 10.)) * X**2

fig, ax = plt.subplots(2, 1, constrained_layout=True)

pcm = ax[0].pcolormesh(X, Y, Z1, norm=colors.PowerNorm(gamma=0.5),
cmap='PuBu_r', shading='auto')

fig.colorbar(pcm, ax=ax[0], extend='max')

(continues on next page)

266 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
ax[0].set_title('PowerNorm()')

pcm = ax[1].pcolormesh(X, Y, Z1, cmap='PuBu_r', shading='auto')
fig.colorbar(pcm, ax=ax[1], extend='max')
ax[1].set_title('Normalize()')
plt.show()

Discrete bounds

Another normalization that comes with Matplotlib is colors.BoundaryNorm. In addition to vmin and
vmax, this takes as arguments boundaries between which data is to be mapped. The colors are then linearly
distributed between these "bounds". It can also take an extend argument to add upper and/or lower out-of-
bounds values to the range over which the colors are distributed. For instance:

In [4]: import matplotlib.colors as colors

In [5]: bounds = np.array([-0.25, -0.125, 0, 0.5, 1])

In [6]: norm = colors.BoundaryNorm(boundaries=bounds, ncolors=4)

(continues on next page)

2.4. Colors 267

Matplotlib, Release 3.4.3

(continued from previous page)
In [7]: print(norm([-0.2, -0.15, -0.02, 0.3, 0.8, 0.99]))
[0 0 1 2 3 3]

Note: Unlike the other norms, this norm returns values from 0 to ncolors-1.

N = 100
X, Y = np.meshgrid(np.linspace(-3, 3, N), np.linspace(-2, 2, N))
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = ((Z1 - Z2) * 2)[:-1, :-1]

fig, ax = plt.subplots(2, 2, figsize=(8, 6), constrained_layout=True)
ax = ax.flatten()

Default norm:
pcm = ax[0].pcolormesh(X, Y, Z, cmap='RdBu_r')
fig.colorbar(pcm, ax=ax[0], orientation='vertical')
ax[0].set_title('Default norm')

Even bounds give a contour-like effect:
bounds = np.linspace(-1.5, 1.5, 7)
norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256)
pcm = ax[1].pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r')
fig.colorbar(pcm, ax=ax[1], extend='both', orientation='vertical')
ax[1].set_title('BoundaryNorm: 7 boundaries')

Bounds may be unevenly spaced:
bounds = np.array([-0.2, -0.1, 0, 0.5, 1])
norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256)
pcm = ax[2].pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r')
fig.colorbar(pcm, ax=ax[2], extend='both', orientation='vertical')
ax[2].set_title('BoundaryNorm: nonuniform')

With out-of-bounds colors:
bounds = np.linspace(-1.5, 1.5, 7)
norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256, extend='both')
pcm = ax[3].pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r')
The colorbar inherits the "extend" argument from BoundaryNorm.
fig.colorbar(pcm, ax=ax[3], orientation='vertical')
ax[3].set_title('BoundaryNorm: extend="both"')
plt.show()

268 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

TwoSlopeNorm: Different mapping on either side of a center

Sometimes we want to have a different colormap on either side of a conceptual center point, and we want
those two colormaps to have different linear scales. An example is a topographic map where the land and
ocean have a center at zero, but land typically has a greater elevation range than the water has depth range,
and they are often represented by a different colormap.

dem = cbook.get_sample_data('topobathy.npz', np_load=True)
topo = dem['topo']
longitude = dem['longitude']
latitude = dem['latitude']

fig, ax = plt.subplots()
make a colormap that has land and ocean clearly delineated and of the
same length (256 + 256)
colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 256))
colors_land = plt.cm.terrain(np.linspace(0.25, 1, 256))
all_colors = np.vstack((colors_undersea, colors_land))
terrain_map = colors.LinearSegmentedColormap.from_list(

'terrain_map', all_colors)

(continues on next page)

2.4. Colors 269

Matplotlib, Release 3.4.3

(continued from previous page)
make the norm: Note the center is offset so that the land has more
dynamic range:
divnorm = colors.TwoSlopeNorm(vmin=-500., vcenter=0, vmax=4000)

pcm = ax.pcolormesh(longitude, latitude, topo, rasterized=True, norm=divnorm,
cmap=terrain_map, shading='auto')

Simple geographic plot, set aspect ratio beecause distance between lines of
longitude depends on latitude.
ax.set_aspect(1 / np.cos(np.deg2rad(49)))
ax.set_title('TwoSlopeNorm(x)')
fig.colorbar(pcm, shrink=0.6)
plt.show()

270 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

FuncNorm: Arbitrary function normalization

If the above norms do not provide the normalization you want, you can use FuncNorm to define your own.
Note that this example is the same as PowerNorm with a power of 0.5:

def _forward(x):
return np.sqrt(x)

def _inverse(x):
return x**2

N = 100
X, Y = np.mgrid[0:3:complex(0, N), 0:2:complex(0, N)]
Z1 = (1 + np.sin(Y * 10.)) * X**2
fig, ax = plt.subplots()

norm = colors.FuncNorm((_forward, _inverse), vmin=0, vmax=20)
pcm = ax.pcolormesh(X, Y, Z1, norm=norm, cmap='PuBu_r', shading='auto')
ax.set_title('FuncNorm(x)')
fig.colorbar(pcm, shrink=0.6)
plt.show()

2.4. Colors 271

Matplotlib, Release 3.4.3

Custom normalization: Manually implement two linear ranges

The TwoSlopeNorm described above makes a useful example for defining your own norm.

class MidpointNormalize(colors.Normalize):
def __init__(self, vmin=None, vmax=None, vcenter=None, clip=False):

self.vcenter = vcenter
super().__init__(vmin, vmax, clip)

def __call__(self, value, clip=None):
I'm ignoring masked values and all kinds of edge cases to make a
simple example...
x, y = [self.vmin, self.vcenter, self.vmax], [0, 0.5, 1]
return np.ma.masked_array(np.interp(value, x, y))

fig, ax = plt.subplots()
midnorm = MidpointNormalize(vmin=-500., vcenter=0, vmax=4000)

pcm = ax.pcolormesh(longitude, latitude, topo, rasterized=True, norm=midnorm,
cmap=terrain_map, shading='auto')

ax.set_aspect(1 / np.cos(np.deg2rad(49)))
ax.set_title('Custom norm')
fig.colorbar(pcm, shrink=0.6, extend='both')
plt.show()

272 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Total running time of the script: (0 minutes 4.688 seconds)

2.4.5 Choosing Colormaps in Matplotlib

Matplotlib has a number of built-in colormaps accessible via matplotlib.cm.get_cmap. There are
also external libraries like [palettable] and [colorcet] that havemany extra colormaps. Here we briefly discuss
how to choose between the many options. For help on creating your own colormaps, seeCreating Colormaps
in Matplotlib.

Overview

The idea behind choosing a good colormap is to find a good representation in 3D colorspace for your data
set. The best colormap for any given data set depends on many things including:

• Whether representing form or metric data ([Ware])

• Your knowledge of the data set (e.g., is there a critical value from which the other values deviate?)

• If there is an intuitive color scheme for the parameter you are plotting

• If there is a standard in the field the audience may be expecting

2.4. Colors 273

Matplotlib, Release 3.4.3

For many applications, a perceptually uniform colormap is the best choice; i.e. a colormap in which equal
steps in data are perceived as equal steps in the color space. Researchers have found that the human brain
perceives changes in the lightness parameter as changes in the data much better than, for example, changes
in hue. Therefore, colormaps which have monotonically increasing lightness through the colormap will be
better interpreted by the viewer. A wonderful example of perceptually uniform colormaps is [colorcet].

Color can be represented in 3D space in various ways. One way to represent color is using CIELAB. In
CIELAB, color space is represented by lightness, 𝐿∗; red-green, 𝑎∗; and yellow-blue, 𝑏∗. The lightness
parameter 𝐿∗ can then be used to learn more about how the matplotlib colormaps will be perceived by
viewers.

An excellent starting resource for learning about human perception of colormaps is from [IBM].

Classes of colormaps

Colormaps are often split into several categories based on their function (see, e.g., [Moreland]):

1. Sequential: change in lightness and often saturation of color incrementally, often using a single hue;
should be used for representing information that has ordering.

2. Diverging: change in lightness and possibly saturation of two different colors that meet in the middle
at an unsaturated color; should be used when the information being plotted has a critical middle value,
such as topography or when the data deviates around zero.

3. Cyclic: change in lightness of two different colors that meet in the middle and beginning/end at an
unsaturated color; should be used for values that wrap around at the endpoints, such as phase angle,
wind direction, or time of day.

4. Qualitative: often are miscellaneous colors; should be used to represent information which does not
have ordering or relationships.

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import cm
from colorspacious import cspace_converter
from collections import OrderedDict

cmaps = OrderedDict()

Sequential

For the Sequential plots, the lightness value increases monotonically through the colormaps. This is good.
Some of the 𝐿∗ values in the colormaps span from 0 to 100 (binary and the other grayscale), and others start
around 𝐿∗ = 20. Those that have a smaller range of 𝐿∗ will accordingly have a smaller perceptual range.
Note also that the 𝐿∗ function varies amongst the colormaps: some are approximately linear in 𝐿∗ and others
are more curved.

274 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

cmaps['Perceptually Uniform Sequential'] = [
'viridis', 'plasma', 'inferno', 'magma', 'cividis']

cmaps['Sequential'] = [
'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds',
'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu',
'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn']

Sequential2

Many of the 𝐿∗ values from the Sequential2 plots are monotonically increasing, but some (autumn, cool,
spring, and winter) plateau or even go both up and down in 𝐿∗ space. Others (afmhot, copper, gist_heat,
and hot) have kinks in the 𝐿∗ functions. Data that is being represented in a region of the colormap that is
at a plateau or kink will lead to a perception of banding of the data in those values in the colormap (see
[mycarta-banding] for an excellent example of this).

cmaps['Sequential (2)'] = [
'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink',
'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia',
'hot', 'afmhot', 'gist_heat', 'copper']

Diverging

For the Divergingmaps, wewant to havemonotonically increasing 𝐿∗ values up to amaximum, which should
be close to 𝐿∗ = 100, followed by monotonically decreasing 𝐿∗ values. We are looking for approximately
equal minimum 𝐿∗ values at opposite ends of the colormap. By these measures, BrBG and RdBu are good
options. coolwarm is a good option, but it doesn't span a wide range of 𝐿∗ values (see grayscale section
below).

cmaps['Diverging'] = [
'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu',
'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic']

Cyclic

For Cyclic maps, we want to start and end on the same color, and meet a symmetric center point in the
middle. 𝐿∗ should change monotonically from start to middle, and inversely from middle to end. It should
be symmetric on the increasing and decreasing side, and only differ in hue. At the ends and middle, 𝐿∗ will
reverse direction, which should be smoothed in 𝐿∗ space to reduce artifacts. See [kovesi-colormaps] for
more information on the design of cyclic maps.

The often-used HSV colormap is included in this set of colormaps, although it is not symmetric to a cen-
ter point. Additionally, the 𝐿∗ values vary widely throughout the colormap, making it a poor choice for
representing data for viewers to see perceptually. See an extension on this idea at [mycarta-jet].

2.4. Colors 275

Matplotlib, Release 3.4.3

cmaps['Cyclic'] = ['twilight', 'twilight_shifted', 'hsv']

Qualitative

Qualitative colormaps are not aimed at being perceptual maps, but looking at the lightness parameter can
verify that for us. The 𝐿∗ values move all over the place throughout the colormap, and are clearly not
monotonically increasing. These would not be good options for use as perceptual colormaps.

cmaps['Qualitative'] = ['Pastel1', 'Pastel2', 'Paired', 'Accent',
'Dark2', 'Set1', 'Set2', 'Set3',
'tab10', 'tab20', 'tab20b', 'tab20c']

Miscellaneous

Some of the miscellaneous colormaps have particular uses for which they have been created. For example,
gist_earth, ocean, and terrain all seem to be created for plotting topography (green/brown) and water depths
(blue) together. We would expect to see a divergence in these colormaps, then, but multiple kinks may not
be ideal, such as in gist_earth and terrain. CMRmap was created to convert well to grayscale, though it does
appear to have some small kinks in 𝐿∗. cubehelix was created to vary smoothly in both lightness and hue,
but appears to have a small hump in the green hue area. turbo was created to display depth and disparity
data.

The often-used jet colormap is included in this set of colormaps. We can see that the 𝐿∗ values vary widely
throughout the colormap, making it a poor choice for representing data for viewers to see perceptually. See
an extension on this idea at [mycarta-jet] and [turbo].

cmaps['Miscellaneous'] = [
'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern',
'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg',
'gist_rainbow', 'rainbow', 'jet', 'turbo', 'nipy_spectral',
'gist_ncar']

First, we'll show the range of each colormap. Note that some seem to change more "quickly" than others.

gradient = np.linspace(0, 1, 256)
gradient = np.vstack((gradient, gradient))

def plot_color_gradients(cmap_category, cmap_list):
Create figure and adjust figure height to number of colormaps
nrows = len(cmap_list)
figh = 0.35 + 0.15 + (nrows + (nrows - 1) * 0.1) * 0.22
fig, axs = plt.subplots(nrows=nrows + 1, figsize=(6.4, figh))
fig.subplots_adjust(top=1 - 0.35 / figh, bottom=0.15 / figh,

left=0.2, right=0.99)
axs[0].set_title(cmap_category + ' colormaps', fontsize=14)

(continues on next page)

276 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
for ax, name in zip(axs, cmap_list):

ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name))
ax.text(-0.01, 0.5, name, va='center', ha='right', fontsize=10,

transform=ax.transAxes)

Turn off *all* ticks & spines, not just the ones with colormaps.
for ax in axs:

ax.set_axis_off()

for cmap_category, cmap_list in cmaps.items():
plot_color_gradients(cmap_category, cmap_list)

plt.show()

•

2.4. Colors 277

Matplotlib, Release 3.4.3

•

•

278 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

•

•

•

2.4. Colors 279

Matplotlib, Release 3.4.3

•

Lightness of Matplotlib colormaps

Here we examine the lightness values of the matplotlib colormaps. Note that some documentation on the
colormaps is available ([list-colormaps]).

mpl.rcParams.update({'font.size': 12})

Number of colormap per subplot for particular cmap categories
_DSUBS = {'Perceptually Uniform Sequential': 5, 'Sequential': 6,

'Sequential (2)': 6, 'Diverging': 6, 'Cyclic': 3,
'Qualitative': 4, 'Miscellaneous': 6}

Spacing between the colormaps of a subplot
_DC = {'Perceptually Uniform Sequential': 1.4, 'Sequential': 0.7,

'Sequential (2)': 1.4, 'Diverging': 1.4, 'Cyclic': 1.4,
'Qualitative': 1.4, 'Miscellaneous': 1.4}

Indices to step through colormap
x = np.linspace(0.0, 1.0, 100)

Do plot
for cmap_category, cmap_list in cmaps.items():

Do subplots so that colormaps have enough space.

(continues on next page)

280 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
Default is 6 colormaps per subplot.
dsub = _DSUBS.get(cmap_category, 6)
nsubplots = int(np.ceil(len(cmap_list) / dsub))

squeeze=False to handle similarly the case of a single subplot
fig, axs = plt.subplots(nrows=nsubplots, squeeze=False,

figsize=(7, 2.6*nsubplots))

for i, ax in enumerate(axs.flat):

locs = [] # locations for text labels

for j, cmap in enumerate(cmap_list[i*dsub:(i+1)*dsub]):

Get RGB values for colormap and convert the colormap in
CAM02-UCS colorspace. lab[0, :, 0] is the lightness.
rgb = cm.get_cmap(cmap)(x)[np.newaxis, :, :3]
lab = cspace_converter("sRGB1", "CAM02-UCS")(rgb)

Plot colormap L values. Do separately for each category
so each plot can be pretty. To make scatter markers change
color along plot:
http://stackoverflow.com/questions/8202605/

if cmap_category == 'Sequential':
These colormaps all start at high lightness but we want them
reversed to look nice in the plot, so reverse the order.
y_ = lab[0, ::-1, 0]
c_ = x[::-1]

else:
y_ = lab[0, :, 0]
c_ = x

dc = _DC.get(cmap_category, 1.4) # cmaps horizontal spacing
ax.scatter(x + j*dc, y_, c=c_, cmap=cmap, s=300, linewidths=0.0)

Store locations for colormap labels
if cmap_category in ('Perceptually Uniform Sequential',

'Sequential'):
locs.append(x[-1] + j*dc)

elif cmap_category in ('Diverging', 'Qualitative', 'Cyclic',
'Miscellaneous', 'Sequential (2)'):

locs.append(x[int(x.size/2.)] + j*dc)

Set up the axis limits:
* the 1st subplot is used as a reference for the x-axis limits
* lightness values goes from 0 to 100 (y-axis limits)
ax.set_xlim(axs[0, 0].get_xlim())
ax.set_ylim(0.0, 100.0)

Set up labels for colormaps
ax.xaxis.set_ticks_position('top')

(continues on next page)

2.4. Colors 281

Matplotlib, Release 3.4.3

(continued from previous page)
ticker = mpl.ticker.FixedLocator(locs)
ax.xaxis.set_major_locator(ticker)
formatter = mpl.ticker.FixedFormatter(cmap_list[i*dsub:(i+1)*dsub])
ax.xaxis.set_major_formatter(formatter)
ax.xaxis.set_tick_params(rotation=50)
ax.set_ylabel('Lightness L^*', fontsize=12)

ax.set_xlabel(cmap_category + ' colormaps', fontsize=14)

fig.tight_layout(h_pad=0.0, pad=1.5)
plt.show()

•

282 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

•

2.4. Colors 283

Matplotlib, Release 3.4.3

•

284 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

•

•

2.4. Colors 285

Matplotlib, Release 3.4.3

•

286 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

•

Grayscale conversion

It is important to pay attention to conversion to grayscale for color plots, since they may be printed on black
and white printers. If not carefully considered, your readers may end up with indecipherable plots because
the grayscale changes unpredictably through the colormap.

Conversion to grayscale is done inmany different ways [bw]. Some of the better ones use a linear combination
of the rgb values of a pixel, but weighted according to how we perceive color intensity. A nonlinear method
of conversion to grayscale is to use the 𝐿∗ values of the pixels. In general, similar principles apply for this
question as they do for presenting one's information perceptually; that is, if a colormap is chosen that is

2.4. Colors 287

Matplotlib, Release 3.4.3

monotonically increasing in 𝐿∗ values, it will print in a reasonable manner to grayscale.

With this in mind, we see that the Sequential colormaps have reasonable representations in grayscale. Some
of the Sequential2 colormaps have decent enough grayscale representations, though some (autumn, spring,
summer, winter) have very little grayscale change. If a colormap like this was used in a plot and then the
plot was printed to grayscale, a lot of the information may map to the same gray values. The Diverging
colormaps mostly vary from darker gray on the outer edges to white in the middle. Some (PuOr and seismic)
have noticeably darker gray on one side than the other and therefore are not very symmetric. coolwarm has
little range of gray scale and would print to a more uniform plot, losing a lot of detail. Note that overlaid,
labeled contours could help differentiate between one side of the colormap vs. the other since color cannot
be used once a plot is printed to grayscale. Many of the Qualitative and Miscellaneous colormaps, such as
Accent, hsv, jet and turbo, change from darker to lighter and back to darker grey throughout the colormap.
This would make it impossible for a viewer to interpret the information in a plot once it is printed in grayscale.

mpl.rcParams.update({'font.size': 14})

Indices to step through colormap.
x = np.linspace(0.0, 1.0, 100)

gradient = np.linspace(0, 1, 256)
gradient = np.vstack((gradient, gradient))

def plot_color_gradients(cmap_category, cmap_list):
fig, axs = plt.subplots(nrows=len(cmap_list), ncols=2)
fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99,

wspace=0.05)
fig.suptitle(cmap_category + ' colormaps', fontsize=14, y=1.0, x=0.6)

for ax, name in zip(axs, cmap_list):

Get RGB values for colormap.
rgb = cm.get_cmap(plt.get_cmap(name))(x)[np.newaxis, :, :3]

Get colormap in CAM02-UCS colorspace. We want the lightness.
lab = cspace_converter("sRGB1", "CAM02-UCS")(rgb)
L = lab[0, :, 0]
L = np.float32(np.vstack((L, L, L)))

ax[0].imshow(gradient, aspect='auto', cmap=plt.get_cmap(name))
ax[1].imshow(L, aspect='auto', cmap='binary_r', vmin=0., vmax=100.)
pos = list(ax[0].get_position().bounds)
x_text = pos[0] - 0.01
y_text = pos[1] + pos[3]/2.
fig.text(x_text, y_text, name, va='center', ha='right', fontsize=10)

Turn off *all* ticks & spines, not just the ones with colormaps.
for ax in axs.flat:

ax.set_axis_off()

plt.show()

(continues on next page)

288 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

for cmap_category, cmap_list in cmaps.items():

plot_color_gradients(cmap_category, cmap_list)

•

2.4. Colors 289

Matplotlib, Release 3.4.3

•

290 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

•

2.4. Colors 291

Matplotlib, Release 3.4.3

•

292 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

•

2.4. Colors 293

Matplotlib, Release 3.4.3

•

294 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

•

Color vision deficiencies

There is a lot of information available about color blindness (e.g., [colorblindness]). Additionally, there are
tools available to convert images to how they look for different types of color vision deficiencies.

The most common form of color vision deficiency involves differentiating between red and green. Thus,
avoiding colormaps with both red and green will avoid many problems in general.

2.4. Colors 295

Matplotlib, Release 3.4.3

References

Total running time of the script: (0 minutes 13.963 seconds)

2.5 Provisional

These tutorials cover proposed APIs of any complexity. These are here to document features that we have
released, but want to get user feedback on before committing to them. Please have a look, try them out and
give us feedback on gitter, discourse, or the the mailing list! But, be aware that we may change the APIs
without warning in subsequent versions.

2.5.1 Complex and semantic figure composition

Warning: This tutorial documents experimental / provisional API. We are releasing this in v3.3 to get
user feedback. We may make breaking changes in future versions with no warning.

Laying out Axes in a Figure in a non uniform grid can be both tedious and verbose. For dense, even grids
we have Figure.subplots but for more complex layouts, such as Axes that span multiple columns
/ rows of the layout or leave some areas of the Figure blank, you can use gridspec.GridSpec (see
Customizing Figure Layouts Using GridSpec and Other Functions) or manually place your axes. Figure.
subplot_mosaic aims to provide an interface to visually lay out your axes (as either ASCII art or nested
lists) to streamline this process.

This interface naturally supports naming your axes. Figure.subplot_mosaic returns a dictionary
keyed on the labels used to lay out the Figure. By returning data structures with names, it is easier to write
plotting code that is independent of the Figure layout.

This is inspired by a proposedMEP and the patchwork library for R. While we do not implement the operator
overloading style, we do provide a Pythonic API for specifying (nested) Axes layouts.

import matplotlib.pyplot as plt
import numpy as np

Helper function used for visualization in the following examples
def identify_axes(ax_dict, fontsize=48):

"""
Helper to identify the Axes in the examples below.

Draws the label in a large font in the center of the Axes.

Parameters

ax_dict : dict[str, Axes]

Mapping between the title / label and the Axes.
fontsize : int, optional

(continues on next page)

296 Chapter 2. Tutorials

https://gitter.im/matplotlib/matplotlib
https://discourse.matplotlib.org
https://mail.python.org/mailman/listinfo/matplotlib-users
https://github.com/matplotlib/matplotlib/pull/4384
https://github.com/thomasp85/patchwork

Matplotlib, Release 3.4.3

(continued from previous page)
How big the label should be.

"""
kw = dict(ha="center", va="center", fontsize=fontsize, color="darkgrey")
for k, ax in ax_dict.items():

ax.text(0.5, 0.5, k, transform=ax.transAxes, **kw)

If we want a 2x2 grid we can use Figure.subplots which returns a 2D array of axes.Axes which we
can index into to do our plotting.

np.random.seed(19680801)
hist_data = np.random.randn(1_500)

fig = plt.figure(constrained_layout=True)
ax_array = fig.subplots(2, 2, squeeze=False)

ax_array[0, 0].bar(["a", "b", "c"], [5, 7, 9])
ax_array[0, 1].plot([1, 2, 3])
ax_array[1, 0].hist(hist_data, bins="auto")
ax_array[1, 1].imshow([[1, 2], [2, 1]])

identify_axes(
{(j, k): a for j, r in enumerate(ax_array) for k, a in enumerate(r)},

)

2.5. Provisional 297

Matplotlib, Release 3.4.3

Using Figure.subplot_mosaic we can produce the same mosaic but give the axes semantic names

fig = plt.figure(constrained_layout=True)
ax_dict = fig.subplot_mosaic(

[
["bar", "plot"],
["hist", "image"],

],
)
ax_dict["bar"].bar(["a", "b", "c"], [5, 7, 9])
ax_dict["plot"].plot([1, 2, 3])
ax_dict["hist"].hist(hist_data)
ax_dict["image"].imshow([[1, 2], [2, 1]])
identify_axes(ax_dict)

298 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

A key difference between Figure.subplots and Figure.subplot_mosaic is the return value.
While the former returns an array for index access, the latter returns a dictionary mapping the labels to the
axes.Axes instances created

print(ax_dict)

Out:

{'bar': <AxesSubplot:label='bar'>, 'plot': <AxesSubplot:label='plot'>, 'hist
↪': <AxesSubplot:label='hist'>, 'image': <AxesSubplot:label='image'>}

String short-hand

By restricting our axes labels to single characters we can use Using we can "draw" the Axes we want as
"ASCII art". The following

mosaic = """
AB
CD
"""

2.5. Provisional 299

Matplotlib, Release 3.4.3

will give us 4 Axes laid out in a 2x2 grid and generates the same figure mosaic as above (but now labeled
with {"A", "B", "C", "D"} rather than {"bar", "plot", "hist", "image"}).

fig = plt.figure(constrained_layout=True)
ax_dict = fig.subplot_mosaic(mosaic)
identify_axes(ax_dict)

Something we can do with Figure.subplot_mosaic that you can not do with Figure.subplots
is specify that an Axes should span several rows or columns.

If we want to re-arrange our four Axes to have C be a horizontal span on the bottom and D be a vertical span
on the right we would do

axd = plt.figure(constrained_layout=True).subplot_mosaic(
"""
ABD
CCD
"""

)
identify_axes(axd)

300 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

If we do not want to fill in all the spaces in the Figure with Axes, we can specify some spaces in the grid to
be blank

axd = plt.figure(constrained_layout=True).subplot_mosaic(
"""
A.C
BBB
.D.
"""

)
identify_axes(axd)

2.5. Provisional 301

Matplotlib, Release 3.4.3

If we prefer to use another character (rather than a period ".") to mark the empty space, we can use
empty_sentinel to specify the character to use.

axd = plt.figure(constrained_layout=True).subplot_mosaic(
"""
aX
Xb
""",
empty_sentinel="X",

)
identify_axes(axd)

302 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Internally there is no meaning attached to the letters we use, any Unicode code point is valid!

axd = plt.figure(constrained_layout=True).subplot_mosaic(
"""αб

ℝ�"""
)
identify_axes(axd)

2.5. Provisional 303

Matplotlib, Release 3.4.3

It is not recommended to use white space as either a label or an empty sentinel with the string shorthand
because it may be stripped while processing the input.

Controlling mosaic and subplot creation

This feature is built on top of gridspec and you can pass the keyword arguments through to the underlying
gridspec.GridSpec (the same as Figure.subplots).

In this case we want to use the input to specify the arrangement, but set the relative widths of the rows /
columns via gridspec_kw.

axd = plt.figure(constrained_layout=True).subplot_mosaic(
"""
.a.
bAc
.d.
""",
gridspec_kw={

set the height ratios between the rows
"height_ratios": [1, 3.5, 1],
set the width ratios between the columns
"width_ratios": [1, 3.5, 1],

(continues on next page)

304 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
},

)
identify_axes(axd)

Or use the {left, right, bottom, top} keyword arguments to position the overall mosaic to put multiple versions
of the same mosaic in a figure

mosaic = """AA
BC"""

fig = plt.figure()
axd = fig.subplot_mosaic(

mosaic,
gridspec_kw={

"bottom": 0.25,
"top": 0.95,
"left": 0.1,
"right": 0.5,
"wspace": 0.5,
"hspace": 0.5,

},
)
identify_axes(axd)

(continues on next page)

2.5. Provisional 305

Matplotlib, Release 3.4.3

(continued from previous page)

axd = fig.subplot_mosaic(
mosaic,
gridspec_kw={

"bottom": 0.05,
"top": 0.75,
"left": 0.6,
"right": 0.95,
"wspace": 0.5,
"hspace": 0.5,

},
)
identify_axes(axd)

Alternatively, you can use the sub-Figure functionality:

mosaic = """AA
BC"""

fig = plt.figure(constrained_layout=True)
left, right = fig.subfigures(nrows=1, ncols=2)
axd = left.subplot_mosaic(mosaic)
identify_axes(axd)

(continues on next page)

306 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

axd = right.subplot_mosaic(mosaic)
identify_axes(axd)

We can also pass through arguments used to create the subplots (again, the same as Figure.subplots).

axd = plt.figure(constrained_layout=True).subplot_mosaic(
"AB", subplot_kw={"projection": "polar"}

)
identify_axes(axd)

2.5. Provisional 307

Matplotlib, Release 3.4.3

Nested List input

Everything we can do with the string short-hand we can also do when passing in a list (internally we convert
the string shorthand to a nested list), for example using spans, blanks, and gridspec_kw:

axd = plt.figure(constrained_layout=True).subplot_mosaic(
[

["main", "zoom"],
["main", "BLANK"],

],
empty_sentinel="BLANK",
gridspec_kw={"width_ratios": [2, 1]},

)
identify_axes(axd)

308 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

In addition, using the list input we can specify nested mosaics. Any element of the inner list can be another
set of nested lists:

inner = [
["inner A"],
["inner B"],

]

outer_nested_mosaic = [
["main", inner],
["bottom", "bottom"],

]
axd = plt.figure(constrained_layout=True).subplot_mosaic(

outer_nested_mosaic, empty_sentinel=None
)
identify_axes(axd, fontsize=36)

2.5. Provisional 309

Matplotlib, Release 3.4.3

We can also pass in a 2D NumPy array to do things like

mosaic = np.zeros((4, 4), dtype=int)
for j in range(4):

mosaic[j, j] = j + 1
axd = plt.figure(constrained_layout=True).subplot_mosaic(

mosaic,
empty_sentinel=0,

)
identify_axes(axd)

310 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Total running time of the script: (0 minutes 6.155 seconds)

2.6 Text

matplotlib has extensive text support, including support for mathematical expressions, truetype support for
raster and vector outputs, newline separated text with arbitrary rotations, and unicode support. These tutorials
cover the basics of working with text in Matplotlib.

2.6.1 Text in Matplotlib Plots

Introduction to plotting and working with text in Matplotlib.

Matplotlib has extensive text support, including support for mathematical expressions, truetype support for
raster and vector outputs, newline separated text with arbitrary rotations, and unicode support.

Because it embeds fonts directly in output documents, e.g., for postscript or PDF, what you see on the screen
is what you get in the hardcopy. FreeType support produces very nice, antialiased fonts, that look good even
at small raster sizes. Matplotlib includes its own matplotlib.font_manager (thanks to Paul Barrett),
which implements a cross platform, W3C compliant font finding algorithm.

2.6. Text 311

https://www.freetype.org/
https://www.w3.org/

Matplotlib, Release 3.4.3

The user has a great deal of control over text properties (font size, font weight, text location and color,
etc.) with sensible defaults set in the rc file. And significantly, for those interested in mathematical or
scientific figures, Matplotlib implements a large number of TeX math symbols and commands, supporting
mathematical expressions anywhere in your figure.

Basic text commands

The following commands are used to create text in the pyplot interface and the object-oriented API:

pyplot
API

OO API description

text text Add text at an arbitrary location of the Axes.
annotate annotate Add an annotation, with an optional arrow, at an arbitrary location of the

Axes.
xlabel set_xlabel Add a label to the Axes's x-axis.
ylabel set_ylabel Add a label to the Axes's y-axis.
title set_title Add a title to the Axes.
figtext text Add text at an arbitrary location of the Figure.
suptitle suptitle Add a title to the Figure.

All of these functions create and return a Text instance, which can be configured with a variety of font and
other properties. The example below shows all of these commands in action, and more detail is provided in
the sections that follow.

import matplotlib
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot()
fig.subplots_adjust(top=0.85)

Set titles for the figure and the subplot respectively
fig.suptitle('bold figure suptitle', fontsize=14, fontweight='bold')
ax.set_title('axes title')

ax.set_xlabel('xlabel')
ax.set_ylabel('ylabel')

Set both x- and y-axis limits to [0, 10] instead of default [0, 1]
ax.axis([0, 10, 0, 10])

ax.text(3, 8, 'boxed italics text in data coords', style='italic',
bbox={'facecolor': 'red', 'alpha': 0.5, 'pad': 10})

ax.text(2, 6, r'an equation: $E=mc^2$', fontsize=15)

ax.text(3, 2, 'unicode: Institut für Festkörperphysik')

ax.text(0.95, 0.01, 'colored text in axes coords',
(continues on next page)

312 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
verticalalignment='bottom', horizontalalignment='right',
transform=ax.transAxes,
color='green', fontsize=15)

ax.plot([2], [1], 'o')
ax.annotate('annotate', xy=(2, 1), xytext=(3, 4),

arrowprops=dict(facecolor='black', shrink=0.05))

plt.show()

Labels for x- and y-axis

Specifying the labels for the x- and y-axis is straightforward, via the set_xlabel and set_ylabel
methods.

import matplotlib.pyplot as plt
import numpy as np

x1 = np.linspace(0.0, 5.0, 100)
y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)

(continues on next page)

2.6. Text 313

Matplotlib, Release 3.4.3

(continued from previous page)

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)
ax.plot(x1, y1)
ax.set_xlabel('time [s]')
ax.set_ylabel('Damped oscillation [V]')

plt.show()

The x- and y-labels are automatically placed so that they clear the x- and y-ticklabels. Compare the plot
below with that above, and note the y-label is to the left of the one above.

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)
ax.plot(x1, y1*10000)
ax.set_xlabel('time [s]')
ax.set_ylabel('Damped oscillation [V]')

plt.show()

314 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

If you want to move the labels, you can specify the labelpad keyword argument, where the value is points
(1/72", the same unit used to specify fontsizes).

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)
ax.plot(x1, y1*10000)
ax.set_xlabel('time [s]')
ax.set_ylabel('Damped oscillation [V]', labelpad=18)

plt.show()

Or, the labels accept all the Text keyword arguments, including position, via which we canmanually specify
the label positions. Here we put the xlabel to the far left of the axis. Note, that the y-coordinate of this position
has no effect - to adjust the y-position we need to use the labelpad kwarg.

2.6. Text 315

Matplotlib, Release 3.4.3

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)
ax.plot(x1, y1)
ax.set_xlabel('time [s]', position=(0., 1e6), horizontalalignment='left')
ax.set_ylabel('Damped oscillation [V]')

plt.show()

All the labelling in this tutorial can be changed by manipulating the matplotlib.font_manager.
FontProperties method, or by named kwargs to set_xlabel

from matplotlib.font_manager import FontProperties

font = FontProperties()
font.set_family('serif')
font.set_name('Times New Roman')
font.set_style('italic')

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.15, left=0.2)
ax.plot(x1, y1)
ax.set_xlabel('time [s]', fontsize='large', fontweight='bold')
ax.set_ylabel('Damped oscillation [V]', fontproperties=font)

plt.show()

316 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Finally, we can use native TeX rendering in all text objects and have multiple lines:

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(bottom=0.2, left=0.2)
ax.plot(x1, np.cumsum(y1**2))
ax.set_xlabel('time [s] \n This was a long experiment')
ax.set_ylabel(r'$\int\ Y^2\ dt\ \ [V^2 s]$')
plt.show()

2.6. Text 317

Matplotlib, Release 3.4.3

Titles

Subplot titles are set in much the same way as labels, but there is the loc keyword arguments that can change
the position and justification from the default value of loc=center.

fig, axs = plt.subplots(3, 1, figsize=(5, 6), tight_layout=True)
locs = ['center', 'left', 'right']
for ax, loc in zip(axs, locs):

ax.plot(x1, y1)
ax.set_title('Title with loc at '+loc, loc=loc)

plt.show()

Vertical spacing for titles is controlled via rcParams["axes.titlepad"] (default: 6.0), which de-
faults to 5 points. Setting to a different value moves the title.

318 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=axes.titlepad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust(top=0.8)
ax.plot(x1, y1)
ax.set_title('Vertically offset title', pad=30)
plt.show()

Ticks and ticklabels

Placing ticks and ticklabels is a very tricky aspect of making a figure. Matplotlib does its best to accom-
plish the task automatically, but it also offers a very flexible framework for determining the choices for tick
locations, and how they are labelled.

Terminology

Axes have an matplotlib.axis.Axis object for the ax.xaxis and ax.yaxis that contain the in-
formation about how the labels in the axis are laid out.

The axis API is explained in detail in the documentation to axis.

An Axis object has major and minor ticks. The Axis has Axis.set_major_locator and Axis.
set_minor_locator methods that use the data being plotted to determine the location of major and
minor ticks. There are also Axis.set_major_formatter and Axis.set_minor_formatter
methods that format the tick labels.

2.6. Text 319

Matplotlib, Release 3.4.3

Simple ticks

It often is convenient to simply define the tick values, and sometimes the tick labels, overriding the default
locators and formatters. This is discouraged because it breaks interactive navigation of the plot. It also can
reset the axis limits: note that the second plot has the ticks we asked for, including ones that are well outside
the automatic view limits.

fig, axs = plt.subplots(2, 1, figsize=(5, 3), tight_layout=True)
axs[0].plot(x1, y1)
axs[1].plot(x1, y1)
axs[1].xaxis.set_ticks(np.arange(0., 8.1, 2.))
plt.show()

We can of course fix this after the fact, but it does highlight a weakness of hard-coding the ticks. This example
also changes the format of the ticks:

fig, axs = plt.subplots(2, 1, figsize=(5, 3), tight_layout=True)
axs[0].plot(x1, y1)
axs[1].plot(x1, y1)
ticks = np.arange(0., 8.1, 2.)
list comprehension to get all tick labels...
tickla = [f'{tick:1.2f}' for tick in ticks]
axs[1].xaxis.set_ticks(ticks)
axs[1].xaxis.set_ticklabels(tickla)
axs[1].set_xlim(axs[0].get_xlim())
plt.show()

320 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Tick Locators and Formatters

Instead of making a list of all the tickalbels, we could have used matplotlib.ticker.
StrMethodFormatter (new-style str.format() format string) or matplotlib.ticker.
FormatStrFormatter (old-style '%' format string) and passed it to the ax.xaxis. A matplotlib.
ticker.StrMethodFormatter can also be created by passing astrwithout having to explicitly create
the formatter.

fig, axs = plt.subplots(2, 1, figsize=(5, 3), tight_layout=True)
axs[0].plot(x1, y1)
axs[1].plot(x1, y1)
ticks = np.arange(0., 8.1, 2.)
axs[1].xaxis.set_ticks(ticks)
axs[1].xaxis.set_major_formatter('{x:1.1f}')
axs[1].set_xlim(axs[0].get_xlim())
plt.show()

2.6. Text 321

Matplotlib, Release 3.4.3

And of course we could have used a non-default locator to set the tick locations. Note we still pass in the tick
values, but the x-limit fix used above is not needed.

fig, axs = plt.subplots(2, 1, figsize=(5, 3), tight_layout=True)
axs[0].plot(x1, y1)
axs[1].plot(x1, y1)
locator = matplotlib.ticker.FixedLocator(ticks)
axs[1].xaxis.set_major_locator(locator)
axs[1].xaxis.set_major_formatter('±{x}°')
plt.show()

The default formatter is the matplotlib.ticker.MaxNLocator called as ticker.
MaxNLocator(self, nbins='auto', steps=[1, 2, 2.5, 5, 10]) The steps
keyword contains a list of multiples that can be used for tick values. i.e. in this case, 2, 4, 6 would be
acceptable ticks, as would 20, 40, 60 or 0.2, 0.4, 0.6. However, 3, 6, 9 would not be acceptable because 3

322 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

doesn't appear in the list of steps.

nbins=auto uses an algorithm to determine how many ticks will be acceptable based on how long the
axis is. The fontsize of the ticklabel is taken into account, but the length of the tick string is not (because its
not yet known.) In the bottom row, the ticklabels are quite large, so we set nbins=4 to make the labels fit
in the right-hand plot.

fig, axs = plt.subplots(2, 2, figsize=(8, 5), tight_layout=True)
for n, ax in enumerate(axs.flat):

ax.plot(x1*10., y1)

formatter = matplotlib.ticker.FormatStrFormatter('%1.1f')
locator = matplotlib.ticker.MaxNLocator(nbins='auto', steps=[1, 4, 10])
axs[0, 1].xaxis.set_major_locator(locator)
axs[0, 1].xaxis.set_major_formatter(formatter)

formatter = matplotlib.ticker.FormatStrFormatter('%1.5f')
locator = matplotlib.ticker.AutoLocator()
axs[1, 0].xaxis.set_major_formatter(formatter)
axs[1, 0].xaxis.set_major_locator(locator)

formatter = matplotlib.ticker.FormatStrFormatter('%1.5f')
locator = matplotlib.ticker.MaxNLocator(nbins=4)
axs[1, 1].xaxis.set_major_formatter(formatter)
axs[1, 1].xaxis.set_major_locator(locator)

plt.show()

Finally, we can specify functions for the formatter using matplotlib.ticker.FuncFormatter. Fur-

2.6. Text 323

Matplotlib, Release 3.4.3

ther, like matplotlib.ticker.StrMethodFormatter, passing a function will automatically create
a matplotlib.ticker.FuncFormatter.

def formatoddticks(x, pos):
"""Format odd tick positions."""
if x % 2:

return f'{x:1.2f}'
else:

return ''

fig, ax = plt.subplots(figsize=(5, 3), tight_layout=True)
ax.plot(x1, y1)
locator = matplotlib.ticker.MaxNLocator(nbins=6)
ax.xaxis.set_major_formatter(formatoddticks)
ax.xaxis.set_major_locator(locator)

plt.show()

Dateticks

Matplotlib can accept datetime.datetime and numpy.datetime64 objects as plotting arguments.
Dates and times require special formatting, which can often benefit from manual intervention. In order to
help, dates have special Locators and Formatters, defined in the matplotlib.dates module.

A simple example is as follows. Note how we have to rotate the tick labels so that they don't over-run each
other.

import datetime

fig, ax = plt.subplots(figsize=(5, 3), tight_layout=True)
base = datetime.datetime(2017, 1, 1, 0, 0, 1)

(continues on next page)

324 Chapter 2. Tutorials

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64

Matplotlib, Release 3.4.3

(continued from previous page)
time = [base + datetime.timedelta(days=x) for x in range(len(x1))]

ax.plot(time, y1)
ax.tick_params(axis='x', rotation=70)
plt.show()

We can pass a format to matplotlib.dates.DateFormatter. Also note that the 29th and the next
month are very close together. We can fix this by using the dates.DayLocator class, which allows us to
specify a list of days of the month to use. Similar formatters are listed in the matplotlib.datesmodule.

import matplotlib.dates as mdates

locator = mdates.DayLocator(bymonthday=[1, 15])
formatter = mdates.DateFormatter('%b %d')

fig, ax = plt.subplots(figsize=(5, 3), tight_layout=True)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax.plot(time, y1)
ax.tick_params(axis='x', rotation=70)
plt.show()

2.6. Text 325

Matplotlib, Release 3.4.3

Legends and Annotations

• Legends: Legend guide

• Annotations: Annotations

Total running time of the script: (0 minutes 5.111 seconds)

2.6.2 Text properties and layout

Controlling properties of text and its layout with Matplotlib.

matplotlib.text.Text instances have a variety of properties which can be configured via keyword
arguments to set_title, set_xlabel, text, etc.

326 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Property Value Type
alpha float

backgroundcolor any matplotlib color
bbox Rectangle prop dict plus key 'pad' which is a pad in points
clip_box a matplotlib.transform.Bbox instance
clip_on bool
clip_path a Path instance and a Transform instance, a Patch
color any matplotlib color
family ['serif' | 'sans-serif' | 'cursive' | 'fantasy' |

'monospace']
fontproperties FontProperties

horizontalalignment or
ha

['center' | 'right' | 'left']

label any string
linespacing float

multialignment ['left' | 'right' | 'center']
name or fontname string e.g., ['Sans' | 'Courier' | 'Helvetica' ...]
picker [None|float|bool|callable]
position (x, y)
rotation [angle in degrees | 'vertical' | 'horizontal']
size or fontsize [size in points | relative size, e.g., 'smaller', 'x-large']
style or fontstyle ['normal' | 'italic' | 'oblique']
text string or anything printable with '%s' conversion
transform Transform subclass
variant ['normal' | 'small-caps']
verticalalignment or va ['center' | 'top' | 'bottom' | 'baseline']
visible bool
weight or fontweight ['normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultra-

light']
x float

y float

zorder any number

You can lay out text with the alignment arguments horizontalalignment, verticalalignment,
and multialignment. horizontalalignment controls whether the x positional argument for the
text indicates the left, center or right side of the text bounding box. verticalalignment controls
whether the y positional argument for the text indicates the bottom, center or top side of the text bound-
ing box. multialignment, for newline separated strings only, controls whether the different lines are
left, center or right justified. Here is an example which uses the text() command to show the various
alignment possibilities. The use of transform=ax.transAxes throughout the code indicates that the
coordinates are given relative to the axes bounding box, with (0, 0) being the lower left of the axes and (1,
1) the upper right.

import matplotlib.pyplot as plt
import matplotlib.patches as patches

(continues on next page)

2.6. Text 327

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Matplotlib, Release 3.4.3

(continued from previous page)
build a rectangle in axes coords
left, width = .25, .5
bottom, height = .25, .5
right = left + width
top = bottom + height

fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1])

axes coordinates: (0, 0) is bottom left and (1, 1) is upper right
p = patches.Rectangle(

(left, bottom), width, height,
fill=False, transform=ax.transAxes, clip_on=False
)

ax.add_patch(p)

ax.text(left, bottom, 'left top',
horizontalalignment='left',
verticalalignment='top',
transform=ax.transAxes)

ax.text(left, bottom, 'left bottom',
horizontalalignment='left',
verticalalignment='bottom',
transform=ax.transAxes)

ax.text(right, top, 'right bottom',
horizontalalignment='right',
verticalalignment='bottom',
transform=ax.transAxes)

ax.text(right, top, 'right top',
horizontalalignment='right',
verticalalignment='top',
transform=ax.transAxes)

ax.text(right, bottom, 'center top',
horizontalalignment='center',
verticalalignment='top',
transform=ax.transAxes)

ax.text(left, 0.5*(bottom+top), 'right center',
horizontalalignment='right',
verticalalignment='center',
rotation='vertical',
transform=ax.transAxes)

ax.text(left, 0.5*(bottom+top), 'left center',
horizontalalignment='left',
verticalalignment='center',
rotation='vertical',

(continues on next page)

328 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
transform=ax.transAxes)

ax.text(0.5*(left+right), 0.5*(bottom+top), 'middle',
horizontalalignment='center',
verticalalignment='center',
fontsize=20, color='red',
transform=ax.transAxes)

ax.text(right, 0.5*(bottom+top), 'centered',
horizontalalignment='center',
verticalalignment='center',
rotation='vertical',
transform=ax.transAxes)

ax.text(left, top, 'rotated\nwith newlines',
horizontalalignment='center',
verticalalignment='center',
rotation=45,
transform=ax.transAxes)

ax.set_axis_off()
plt.show()

2.6. Text 329

Matplotlib, Release 3.4.3

2.6.3 Default Font

The base default font is controlled by a set of rcParams. To set the font for mathematical expressions, use
the rcParams beginning with mathtext (see mathtext).

rcParam usage
'font.
family'

List of either names of font or {'cursive', 'fantasy', 'monospace',
'sans', 'sans serif', 'sans-serif', 'serif'}.

'font.
style'

The default style, ex 'normal', 'italic'.

'font.
variant'

Default variant, ex 'normal', 'small-caps' (untested)

'font.
stretch'

Default stretch, ex 'normal', 'condensed' (incomplete)

'font.
weight'

Default weight. Either string or integer

'font.
size'

Default font size in points. Relative font sizes ('large', 'x-small') are computed
against this size.

The mapping between the family aliases ({'cursive', 'fantasy', 'monospace', 'sans',
'sans serif', 'sans-serif', 'serif'}) and actual font names is controlled by the following
rcParams:

family alias rcParam with mappings
'serif' 'font.serif'

'monospace' 'font.monospace'

'fantasy' 'font.fantasy'

'cursive' 'font.cursive'

{'sans', 'sans serif', 'sans-serif'} 'font.sans-serif'

which are lists of font names.

Text with non-latin glyphs

As of v2.0 the default font, DejaVu, contains glyphs for many western alphabets, but not other scripts, such
as Chinese, Korean, or Japanese.

To set the default font to be one that supports the code points you need, prepend the font name to 'font.
family' or the desired alias lists

matplotlib.rcParams['font.sans-serif'] = ['Source Han Sans TW', 'sans-serif']

or set it in your .matplotlibrc file:

font.sans-serif: Source Han Sans TW, Arial, sans-serif

330 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

To control the font used on per-artist basis use the 'name', 'fontname' or 'fontproperties'
kwargs documented above.

On linux, fc-list can be a useful tool to discover the font name; for example

$ fc-list :lang=zh family
Noto to Sans Mono CJK TC,Noto Sans Mono CJK TC Bold
Noto Sans CJK TC,Noto Sans CJK TC Medium
Noto Sans CJK TC,Noto Sans CJK TC DemiLight
Noto Sans CJK KR,Noto Sans CJK KR Black
Noto Sans CJK TC,Noto Sans CJK TC Black
Noto Sans Mono CJK TC,Noto Sans Mono CJK TC Regular
Noto Sans CJK SC,Noto Sans CJK SC Light

lists all of the fonts that support Chinese.

2.6.4 Annotations

Annotating text with Matplotlib.

Table of Contents

• Annotations

– Basic annotation

– Advanced Annotations

∗ Annotating with Text with Box

∗ Annotating with Arrow

∗ Placing Artist at the anchored location of the Axes

∗ Using Complex Coordinates with Annotations

∗ Using ConnectionPatch

– Advanced Topics

∗ Zoom effect between Axes

∗ Define Custom BoxStyle

2.6. Text 331

https://linux.die.net/man/1/fc-list

Matplotlib, Release 3.4.3

Basic annotation

The uses of the basic text()will place text at an arbitrary position on the Axes. A common use case of text
is to annotate some feature of the plot, and the annotate()method provides helper functionality to make
annotations easy. In an annotation, there are two points to consider: the location being annotated represented
by the argument xy and the location of the text xytext. Both of these arguments are (x, y) tuples.

Fig. 23: Annotation Basic

In this example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates. There
are a variety of other coordinate systems one can choose -- you can specify the coordinate system of xy and
xytext with one of the following strings for xycoords and textcoords (default is 'data')

argument coordinate system
'figure points' points from the lower left corner of the figure
'figure pixels' pixels from the lower left corner of the figure
'figure fraction' (0, 0) is lower left of figure and (1, 1) is upper right
'axes points' points from lower left corner of axes
'axes pixels' pixels from lower left corner of axes
'axes fraction' (0, 0) is lower left of axes and (1, 1) is upper right
'data' use the axes data coordinate system

For example to place the text coordinates in fractional axes coordinates, one could do:

ax.annotate('local max', xy=(3, 1), xycoords='data',
xytext=(0.8, 0.95), textcoords='axes fraction',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='right', verticalalignment='top',
)

For physical coordinate systems (points or pixels) the origin is the bottom-left of the figure or axes.

Optionally, you can enable drawing of an arrow from the text to the annotated point by giving a dictionary
of arrow properties in the optional keyword argument arrowprops.

332 Chapter 2. Tutorials

../../gallery/pyplots/annotation_basic.html

Matplotlib, Release 3.4.3

arrowprops key description
width the width of the arrow in points
frac the fraction of the arrow length occupied by the head
headwidth the width of the base of the arrow head in points
shrink move the tip and base some percent away from the annotated point and text
**kwargs any key for matplotlib.patches.Polygon, e.g., facecolor

In the example below, the xy point is in native coordinates (xycoords defaults to 'data'). For a polar axes,
this is in (theta, radius) space. The text in this example is placed in the fractional figure coordinate system.
matplotlib.text.Text keyword arguments like horizontalalignment, verticalalignment and fontsize
are passed from annotate to the Text instance.

Fig. 24: Annotation Polar

For more on all the wild and wonderful things you can do with annotations, including fancy arrows, see
Advanced Annotations and /gallery/text_labels_and_annotations/annotation_demo.

Do not proceed unless you have already read Basic annotation, text() and annotate()!

Advanced Annotations

Annotating with Text with Box

Let's start with a simple example.

text takes a bbox keyword argument, which draws a box around the text:

t = ax.text(
0, 0, "Direction", ha="center", va="center", rotation=45, size=15,
bbox=dict(boxstyle="rarrow,pad=0.3", fc="cyan", ec="b", lw=2))

The patch object associated with the text can be accessed by:

2.6. Text 333

../../gallery/pyplots/annotation_polar.html

Matplotlib, Release 3.4.3

Fig. 25: Annotate Text Arrow

bb = t.get_bbox_patch()

The return value is a FancyBboxPatch; patch properties (facecolor, edgewidth, etc.) can be accessed and
modified as usual. FancyBboxPatch.set_boxstyle sets the box shape:

bb.set_boxstyle("rarrow", pad=0.6)

The arguments are the name of the box style with its attributes as keyword arguments. Currently, following
box styles are implemented.

Class Name Attrs
Circle circle pad=0.3
DArrow darrow pad=0.3
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth roundtooth pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

Note that the attribute arguments can be specified within the style name with separating comma (this form
can be used as "boxstyle" value of bbox argument when initializing the text instance)

bb.set_boxstyle("rarrow,pad=0.6")

334 Chapter 2. Tutorials

../../gallery/userdemo/annotate_text_arrow.html

Matplotlib, Release 3.4.3

Fig. 26: Fancybox Demo

Annotating with Arrow

annotate draws an arrow connecting two points in an axes:

ax.annotate("Annotation",
xy=(x1, y1), xycoords='data',
xytext=(x2, y2), textcoords='offset points',
)

This annotates a point at xy in the given coordinate (xycoords) with the text at xytext given in textcoords.
Often, the annotated point is specified in the data coordinate and the annotating text in offset points. See
annotate for available coordinate systems.

An arrow connecting xy to xytext can be optionally drawn by specifying the arrowprops argument. To draw
only an arrow, use empty string as the first argument.

ax.annotate("",
xy=(0.2, 0.2), xycoords='data',
xytext=(0.8, 0.8), textcoords='data',
arrowprops=dict(arrowstyle="->",

connectionstyle="arc3"),
)

The arrow is drawn as follows:

1. A path connecting the two points is created, as specified by the connectionstyle parameter.

2.6. Text 335

../../gallery/shapes_and_collections/fancybox_demo.html

Matplotlib, Release 3.4.3

Fig. 27: Annotate Simple01

2. The path is clipped to avoid patches patchA and patchB, if these are set.

3. The path is further shrunk by shrinkA and shrinkB (in pixels).

4. The path is transmuted to an arrow patch, as specified by the arrowstyle parameter.

Fig. 28: Annotate Explain

The creation of the connecting path between two points is controlled by connectionstyle key and the
following styles are available.

Name Attrs
angle angleA=90,angleB=0,rad=0.0
angle3 angleA=90,angleB=0
arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
arc3 rad=0.0
bar armA=0.0,armB=0.0,fraction=0.3,angle=None

Note that "3" in angle3 and arc3 is meant to indicate that the resulting path is a quadratic spline segment
(three control points). As will be discussed below, some arrow style options can only be used when the
connecting path is a quadratic spline.

The behavior of each connection style is (limitedly) demonstrated in the example below. (Warning: The
behavior of the bar style is currently not well defined, it may be changed in the future).

336 Chapter 2. Tutorials

../../gallery/userdemo/annotate_simple01.html
../../gallery/userdemo/annotate_explain.html

Matplotlib, Release 3.4.3

Fig. 29: Connectionstyle Demo

The connecting path (after clipping and shrinking) is then mutated to an arrow patch, according to the given
arrowstyle.

Name Attrs
- None
-> head_length=0.4,head_width=0.2
-[widthB=1.0,lengthB=0.2,angleB=None
|-| widthA=1.0,widthB=1.0
-|> head_length=0.4,head_width=0.2
<- head_length=0.4,head_width=0.2
<-> head_length=0.4,head_width=0.2
<|- head_length=0.4,head_width=0.2
<|-|> head_length=0.4,head_width=0.2
fancy head_length=0.4,head_width=0.4,tail_width=0.4
simple head_length=0.5,head_width=0.5,tail_width=0.2
wedge tail_width=0.3,shrink_factor=0.5

Some arrowstyles only work with connection styles that generate a quadratic-spline segment. They are
fancy, simple, and wedge. For these arrow styles, you must use the "angle3" or "arc3" connection
style.

If the annotation string is given, the patchA is set to the bbox patch of the text by default.

As with text, a box around the text can be drawn using the bbox argument.

By default, the starting point is set to the center of the text extent. This can be adjusted with relpos key
value. The values are normalized to the extent of the text. For example, (0, 0) means lower-left corner and
(1, 1) means top-right.

2.6. Text 337

../../gallery/userdemo/connectionstyle_demo.html

Matplotlib, Release 3.4.3

Fig. 30: Fancyarrow Demo

Fig. 31: Annotate Simple02

Fig. 32: Annotate Simple03

Fig. 33: Annotate Simple04

338 Chapter 2. Tutorials

../../gallery/text_labels_and_annotations/fancyarrow_demo.html
../../gallery/userdemo/annotate_simple02.html
../../gallery/userdemo/annotate_simple03.html
../../gallery/userdemo/annotate_simple04.html

Matplotlib, Release 3.4.3

Placing Artist at the anchored location of the Axes

There are classes of artists that can be placed at an anchored location in the Axes. A common example is the
legend. This type of artist can be created by using the OffsetBox class. A few predefined classes are avail-
able in matplotlib.offsetbox and in mpl_toolkits.axes_grid1.anchored_artists.

from matplotlib.offsetbox import AnchoredText
at = AnchoredText("Figure 1a",

prop=dict(size=15), frameon=True,
loc='upper left',
)

at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2")
ax.add_artist(at)

Fig. 34: Anchored Box01

The loc keyword has same meaning as in the legend command.

A simple application is when the size of the artist (or collection of artists) is known in pixel size during the
time of creation. For example, If you want to draw a circle with fixed size of 20 pixel x 20 pixel (radius =
10 pixel), you can utilize AnchoredDrawingArea. The instance is created with a size of the drawing
area (in pixels), and arbitrary artists can added to the drawing area. Note that the extents of the artists that
are added to the drawing area are not related to the placement of the drawing area itself. Only the initial size
matters.

from mpl_toolkits.axes_grid1.anchored_artists import AnchoredDrawingArea

ada = AnchoredDrawingArea(20, 20, 0, 0,
loc='upper right', pad=0., frameon=False)

p1 = Circle((10, 10), 10)
ada.drawing_area.add_artist(p1)
p2 = Circle((30, 10), 5, fc="r")
ada.drawing_area.add_artist(p2)

The artists that are added to the drawing area should not have a transform set (it will be overridden) and
the dimensions of those artists are interpreted as a pixel coordinate, i.e., the radius of the circles in above
example are 10 pixels and 5 pixels, respectively.

Sometimes, you want your artists to scale with the data coordinate (or coordinates other than canvas pixels).
You can use AnchoredAuxTransformBox class. This is similar to AnchoredDrawingArea except
that the extent of the artist is determined during the drawing time respecting the specified transform.

2.6. Text 339

../../gallery/userdemo/anchored_box01.html

Matplotlib, Release 3.4.3

Fig. 35: Anchored Box02

from mpl_toolkits.axes_grid1.anchored_artists import AnchoredAuxTransformBox

box = AnchoredAuxTransformBox(ax.transData, loc='upper left')
el = Ellipse((0, 0), width=0.1, height=0.4, angle=30) # in data coordinates!
box.drawing_area.add_artist(el)

The ellipse in the above example will have width and height corresponding to 0.1 and 0.4 in data coordinates
and will be automatically scaled when the view limits of the axes change.

Fig. 36: Anchored Box03

As in the legend, the bbox_to_anchor argument can be set. Using the HPacker and VPacker, you can have
an arrangement(?) of artist as in the legend (as a matter of fact, this is how the legend is created).

Fig. 37: Anchored Box04

Note that unlike the legend, the bbox_transform is set to IdentityTransform by default.

340 Chapter 2. Tutorials

../../gallery/userdemo/anchored_box02.html
../../gallery/userdemo/anchored_box03.html
../../gallery/userdemo/anchored_box04.html

Matplotlib, Release 3.4.3

Using Complex Coordinates with Annotations

The Annotation in matplotlib supports several types of coordinates as described in Basic annotation. For an
advanced user who wants more control, it supports a few other options.

1. A Transform instance. For example,

ax.annotate("Test", xy=(0.5, 0.5), xycoords=ax.transAxes)

is identical to

ax.annotate("Test", xy=(0.5, 0.5), xycoords="axes fraction")

This allows annotating a point in another axes:

fig, (ax1, ax2) = plt.subplots(1, 2)
ax2.annotate("Test", xy=(0.5, 0.5), xycoords=ax1.transData,

xytext=(0.5, 0.5), textcoords=ax2.transData,
arrowprops=dict(arrowstyle="->"))

2. An Artist instance. The xy value (or xytext) is interpreted as a fractional coordinate of the bbox
(return value of get_window_extent) of the artist:

an1 = ax.annotate("Test 1", xy=(0.5, 0.5), xycoords="data",
va="center", ha="center",
bbox=dict(boxstyle="round", fc="w"))

an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=an1, # (1, 0.5) of␣
↪the an1's bbox

xytext=(30, 0), textcoords="offset points",
va="center", ha="left",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"))

Fig. 38: Annotation with Simple Coordinates

Note that you must ensure that the extent of the coordinate artist (an1 in above example) is determined
before an2 gets drawn. Usually, this means that an2 needs to be drawn after an1.

3. A callable object that takes the renderer instance as single argument, and returns either a Transform
or a BboxBase. The return value is then handled as in (1), for transforms, or in (2), for bboxes. For
example,

an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=an1,
xytext=(30, 0), textcoords="offset points")

2.6. Text 341

../../gallery/userdemo/annotate_simple_coord01.html

Matplotlib, Release 3.4.3

is identical to:

an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=an1.get_window_extent,
xytext=(30, 0), textcoords="offset points")

4. A pair of coordinate specifications -- the first for the x-coordinate, and the second is for the y-
coordinate; e.g.

annotate("Test", xy=(0.5, 1), xycoords=("data", "axes fraction"))

Here, 0.5 is in data coordinates, and 1 is in normalized axes coordinates. Each of the coordinate
specifications can also be an artist or a transform. For example,

Fig. 39: Annotation with Simple Coordinates 2

5. Sometimes, you want your annotation with some "offset points", not from the annotated point but from
some other point. text.OffsetFrom is a helper for such cases.

Fig. 40: Annotation with Simple Coordinates 3

You may take a look at this example /gallery/text_labels_and_annotations/annotation_demo.

Using ConnectionPatch

ConnectionPatch is like an annotation without text. While annotate is sufficient in most situations, Con-
nectionPatch is useful when you want to connect points in different axes.

from matplotlib.patches import ConnectionPatch
xy = (0.2, 0.2)
con = ConnectionPatch(xyA=xy, coordsA=ax1.transData,

xyB=xy, coordsB=ax2.transData)
fig.add_artist(con)

The above code connects point xy in the data coordinates of ax1 to point xy in the data coordinates of ax2.
Here is a simple example.

342 Chapter 2. Tutorials

../../gallery/userdemo/annotate_simple_coord02.html
../../gallery/userdemo/annotate_simple_coord03.html

Matplotlib, Release 3.4.3

Fig. 41: Connect Simple01

Here, we added the ConnectionPatch to the figure (with add_artist) rather than to either axes: this
ensures that it is drawn on top of both axes, and is also necessary if using constrained_layout for positioning
the axes.

Advanced Topics

Zoom effect between Axes

mpl_toolkits.axes_grid1.inset_locator defines some patch classes useful for interconnect-
ing two axes. Understanding the code requires some knowledge of Matplotlib's transform system.

Fig. 42: Axes Zoom Effect

2.6. Text 343

../../gallery/userdemo/connect_simple01.html
../../gallery/subplots_axes_and_figures/axes_zoom_effect.html

Matplotlib, Release 3.4.3

Define Custom BoxStyle

You can use a custom box style. The value for the boxstyle can be a callable object in the following
forms.:

def __call__(self, x0, y0, width, height, mutation_size,
aspect_ratio=1.):

'''
Given the location and size of the box, return the path of
the box around it.

- *x0*, *y0*, *width*, *height* : location and size of the box
- *mutation_size* : a reference scale for the mutation.
- *aspect_ratio* : aspect-ratio for the mutation.

'''
path = ...
return path

Here is a complete example.

Fig. 43: Custom Boxstyle01

Similarly, you can define a custom ConnectionStyle and a custom ArrowStyle. See the source code of lib/
matplotlib/patches.py and check how each style class is defined.

2.6.5 Writing mathematical expressions

An introduction to writing mathematical expressions in Matplotlib.

You can use a subset TeX markup in any matplotlib text string by placing it inside a pair of dollar signs ($).

Note that you do not need to have TeX installed, since Matplotlib ships its own TeX expression parser, layout
engine, and fonts. The layout engine is a fairly direct adaptation of the layout algorithms in Donald Knuth's
TeX, so the quality is quite good (matplotlib also provides a usetex option for those who do want to call
out to TeX to generate their text (see Text rendering With LaTeX).

Any text element can use math text. You should use raw strings (precede the quotes with an 'r'), and
surround the math text with dollar signs ($), as in TeX. Regular text and mathtext can be interleaved within
the same string. Mathtext can use DejaVu Sans (default), DejaVu Serif, the Computer Modern fonts (from
(La)TeX), STIX fonts (with are designed to blend well with Times), or a Unicode font that you provide.

344 Chapter 2. Tutorials

../../gallery/userdemo/custom_boxstyle01.html
http://www.stixfonts.org/

Matplotlib, Release 3.4.3

The mathtext font can be selected with the customization variable mathtext.fontset (see Customizing
Matplotlib with style sheets and rcParams)

Here is a simple example:

plain text
plt.title('alpha > beta')

produces "alpha > beta".

Whereas this:

math text
plt.title(r'$\alpha > \beta$')

produces "𝛼 > 𝛽".

Note: Mathtext should be placed between a pair of dollar signs ($). To make it easy to display monetary
values, e.g., "$100.00", if a single dollar sign is present in the entire string, it will be displayed verbatim as a
dollar sign. This is a small change from regular TeX, where the dollar sign in non-math text would have to
be escaped ('\$').

Note: While the syntax inside the pair of dollar signs ($) aims to be TeX-like, the text outside does not. In
particular, characters such as:

$ % & ~ _ ^ \ { } \(\) \[\]

have special meaning outside of math mode in TeX. Therefore, these characters will behave differently de-
pending on rcParams["text.usetex"] (default: False). See the usetex tutorial for more informa-
tion.

Subscripts and superscripts

To make subscripts and superscripts, use the '_' and '^' symbols:

r'$\alpha_i > \beta_i$'

𝛼𝑖 > 𝛽𝑖

To display multi-letter subscripts or superscripts correctly, you should put them in curly braces {...}:

r'$\alpha^{ic} > \beta_{ic}$'

𝛼𝑖𝑐 > 𝛽𝑖𝑐

Some symbols automatically put their sub/superscripts under and over the operator. For example, to write
the sum of 𝑥𝑖 from 0 to ∞, you could do:

2.6. Text 345

../../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

r'$\sum_{i=0}^\infty x_i$'

∞

∑
𝑖=0

𝑥𝑖

Fractions, binomials, and stacked numbers

Fractions, binomials, and stacked numbers can be created with the \frac{}{}, \binom{}{} and \
genfrac{}{}{}{}{}{} commands, respectively:

r'$\frac{3}{4} \binom{3}{4} \genfrac{}{}{0}{}{3}{4}$'

produces

3
4(

3
4)

3
4

Fractions can be arbitrarily nested:

r'$\frac{5 - \frac{1}{x}}{4}$'

produces

5 − 1
𝑥

4
Note that special care needs to be taken to place parentheses and brackets around fractions. Doing things the
obvious way produces brackets that are too small:

r'$(\frac{5 - \frac{1}{x}}{4})$'

(
5 − 1

𝑥
4)

The solution is to precede the bracket with \left and \right to inform the parser that those brackets
encompass the entire object.:

r'$\left(\frac{5 - \frac{1}{x}}{4}\right)$'

(
5 − 1

𝑥
4)

346 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Radicals

Radicals can be produced with the \sqrt[]{} command. For example:

r'$\sqrt{2}$'

√2
Any base can (optionally) be provided inside square brackets. Note that the base must be a simple expression,
and can not contain layout commands such as fractions or sub/superscripts:

r'$\sqrt[3]{x}$'

3√𝑥

Fonts

The default font is italics for mathematical symbols.

Note: This default can be changed using rcParams["mathtext.default"] (default: 'it'). This
is useful, for example, to use the same font as regular non-math text for math text, by setting it to regular.

To change fonts, e.g., to write "sin" in a Roman font, enclose the text in a font command:

r'$s(t) = \mathcal{A}\mathrm{sin}(2 \omega t)$'

𝑠(𝑡) = 𝒜 sin(2𝜔𝑡)

More conveniently, many commonly used function names that are typeset in a Roman font have shortcuts.
So the expression above could be written as follows:

r'$s(t) = \mathcal{A}\sin(2 \omega t)$'

𝑠(𝑡) = 𝒜 sin(2𝜔𝑡)

Here "s" and "t" are variable in italics font (default), "sin" is in Roman font, and the amplitude "A" is in
calligraphy font. Note in the example above the calligraphy A is squished into the sin. You can use a
spacing command to add a little whitespace between them:

r's(t) = \mathcal{A}\/\sin(2 \omega t)'

𝑠(𝑡) = 𝒜 sin(2𝜔𝑡)

The choices available with all fonts are:

2.6. Text 347

../../tutorials/introductory/customizing.html?highlight=mathtext.default#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Command Result
\mathrm{Roman} Roman
\mathit{Italic} Italic
\mathtt{Typewriter} Typewriter

\mathcal{CALLIGRAPHY} 𝒞 𝒜ℒℒℐ 𝒢 ℛ𝒜𝒫 ℋ 𝒴

When using the STIX fonts, you also have the choice of:

Command Result
\mathbb{blackboard} 𝕓𝕝𝕒𝕔𝕜𝕓𝕠𝕒𝕣 𝕕
\mathrm{\mathbb{blackboard}} 𝕓𝕝𝕒𝕔𝕜𝕓𝕠𝕒𝕣 𝕕
\mathfrak{Fraktur} 𝔉𝔯𝔞𝔨𝔱𝔲𝔯
\mathsf{sansserif} sansserif
\mathrm{\mathsf{sansserif}} sansserif

There are also five global "font sets" to choose from, which are selected using the mathtext.fontset
parameter in matplotlibrc.

dejavusans: DejaVu Sans

ℛ
∞

∏
𝑖=𝛼

𝑎𝑖 sin (2𝜋𝑓𝑥𝑖) (2.1)

dejavuserif: DejaVu Serif

ℛ
∞

∏
𝑖=𝛼

𝑎𝑖 sin (2𝜋𝑓𝑥𝑖) (2.2)

cm: Computer Modern (TeX)

ℛ
∞

∏
𝑖=𝛼

𝑎𝑖 sin (2𝜋𝑓𝑥𝑖) (2.3)

stix: STIX (designed to blend well with Times)

ℛ
∞

∏
𝑖=𝛼

𝑎𝑖 sin (2𝜋𝑓𝑥𝑖) (2.4)

stixsans: STIX sans-serif

ℛ
∞

∏
𝑖=𝛼

𝑎𝑖 sin (2𝜋𝑓𝑥𝑖) (2.5)

348 Chapter 2. Tutorials

http://www.stixfonts.org/

Matplotlib, Release 3.4.3

Additionally, you can use \mathdefault{...} or its alias \mathregular{...} to use the font used
for regular text outside of mathtext. There are a number of limitations to this approach, most notably that far
fewer symbols will be available, but it can be useful to make math expressions blend well with other text in
the plot.

Custom fonts

mathtext also provides a way to use custom fonts for math. This method is fairly tricky to use, and
should be considered an experimental feature for patient users only. By setting rcParams["mathtext.
fontset"] (default: 'dejavusans') to custom, you can then set the following parameters, which
control which font file to use for a particular set of math characters.

Parameter Corresponds to
mathtext.it \mathit{} or default italic
mathtext.rm \mathrm{} Roman (upright)
mathtext.tt \mathtt{} Typewriter (monospace)
mathtext.bf \mathbf{} bold italic
mathtext.cal \mathcal{} calligraphic
mathtext.sf \mathsf{} sans-serif

Each parameter should be set to a fontconfig font descriptor (as defined in the yet-to-be-written font chapter).

The fonts used should have aUnicodemapping in order to find any non-Latin characters, such asGreek. If you
want to use amath symbol that is not contained in your custom fonts, you can setrcParams["mathtext.
fallback"] (default: 'cm') to either 'cm', 'stix' or 'stixsans' which will cause the mathtext
system to use characters from an alternative font whenever a particular character can not be found in the
custom font.

Note that the math glyphs specified in Unicode have evolved over time, and many fonts may not have glyphs
in the correct place for mathtext.

2.6. Text 349

../../tutorials/introductory/customizing.html?highlight=mathtext.fontset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=mathtext.fontset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=mathtext.fallback#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=mathtext.fallback#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Accents

An accent command may precede any symbol to add an accent above it. There are long and short forms for
some of them.

Command Result
\acute a or \'a ́𝑎
\bar a ̄𝑎
\breve a ̆𝑎
\ddot a or \''a ̈𝑎
\dot a or \.a ̇𝑎
\grave a or \`a ̀𝑎
\hat a or \^a ̂𝑎
\tilde a or \~a ̃𝑎
\vec a 𝑎
\overline{abc} 𝑎𝑏𝑐

In addition, there are two special accents that automatically adjust to the width of the symbols below:

Command Result
\widehat{xyz} 𝑥𝑦𝑧
\widetilde{xyz} 𝑥𝑦𝑧

Care should be taken when putting accents on lower-case i's and j's. Note that in the following \imath is
used to avoid the extra dot over the i:

r"$\hat i\ \ \hat \imath$"

̂𝑖 ̂𝚤

Symbols

You can also use a large number of the TeX symbols, as in \infty, \leftarrow, \sum, \int.

Lower-case Greek

350 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

α \alpha β \beta χ \chi δ \delta ϝ \digamma ε \epsilon
η \eta γ \

gamma
ι \iota κ \kappa λ \lambda μ \mu

ν \nu ω \
omega

ϕ \phi π \pi ψ \psi ρ \rho

σ \sigma τ \tau θ \theta υ \upsilon ε \
varepsilon

ϰ \
varkappa

φ \
varphi

ϖ \
varpi

ϱ \
varrho

ς \
varsigma

ϑ \vartheta ξ \xi

ζ \zeta

Upper-case Greek

Δ \
Delta

Γ \Gamma Λ \
Lambda

Ω \
Omega

Φ \Phi Π
\Pi

Ψ
\Psi

Σ \
Sigma

Θ \
Theta

Υ \
Upsilon

Ξ \Xi ℧ \mho ∇ \
nabla

Hebrew

ℵ \aleph ℶ \beth ℸ \daleth ℷ \gimel

Delimiters

/ / [[⇓ \
Downarrow

⇑ \
Uparrow

‖ \Vert \ \
backslash

↓ \
downarrow

⟨ \
langle

⌈ \lceil ⌊ \lfloor ⌞ \
llcorner

⌟ \
lrcorner

⟩ \rangle ⌉ \
rceil

⌋ \rfloor ⌜ \
ulcorner

↑ \
uparrow

⌝ \
urcorner

| \vert { \{ | \| } \}]] | |

Big symbols

⋂ \
bigcap

⋃ \
bigcup

⨀ \
bigodot

⨁ \
bigoplus

⨂ \
bigotimes

⨄ \
biguplus

⋁ \
bigvee

⋀ \
bigwedge

∐ \
coprod

∫ \int ∮ \oint ∏ \prod

∑ \sum

Standard function names

2.6. Text 351

Matplotlib, Release 3.4.3

Pr \Pr arccos \
arccos

arcsin \
arcsin

arctan \
arctan

arg \arg cos
\cos

cosh
\cosh

cot \cot coth \coth csc \csc deg \deg det
\det

dim \dim exp \exp gcd \gcd hom \hom inf \inf ker
\ker

lg \lg lim \lim liminf \
liminf

limsup \
limsup

ln \ln log
\log

max \max min \min sec \sec sin \sin sinh
\sinh

sup
\sup

tan \tan tanh \tanh

Binary operation and relation symbols

≎ \Bumpeq ⋒ \Cap ⋓ \Cup ≑ \Doteq

⨝ \Join ⋐ \Subset ⋑ \Supset ⊩ \Vdash

⊪ \Vvdash ≈ \approx ≊ \approxeq ∗ \ast
≍ \asymp ϶ \backepsilon ∽ \backsim ⋍ \backsimeq

⊼ \barwedge ∵ \because ≬ \between ○ \bigcirc

▽ \bigtriangledown △ \bigtriangleup ◀ \blacktriangleleft ▶ \blacktriangleright

⊥ \bot ⋈ \bowtie ⊡ \boxdot ⊟ \boxminus

⊞ \boxplus ⊠ \boxtimes ∙ \bullet ≏ \bumpeq

∩ \cap ⋅ \cdot ∘ \circ ≗ \circeq

≔ \coloneq ≅ \cong ∪ \cup ⋞ \curlyeqprec

⋟ \curlyeqsucc ⋎ \curlyvee ⋏ \curlywedge † \dag
⊣ \dashv ‡ \ddag ⋄ \diamond ÷ \div
⋇ \divideontimes ≐ \doteq ≑ \doteqdot ∔ \dotplus

⌆ \doublebarwedge ≖ \eqcirc ≕ \eqcolon ≂ \eqsim

⪖ \eqslantgtr ⪕ \eqslantless ≡ \equiv ≒ \fallingdotseq

⌢ \frown ≥ \geq ≧ \geqq ⩾ \geqslant

≫ \gg ⋙ \ggg ⪺ \gnapprox ≩ \gneqq

⋧ \gnsim ⪆ \gtrapprox ⋗ \gtrdot ⋛ \gtreqless

⪌ \gtreqqless ≷ \gtrless ≳ \gtrsim ∈ \in

⊺ \intercal ⋋ \leftthreetimes ≤ \leq ≦ \leqq

⩽ \leqslant ⪅ \lessapprox ⋖ \lessdot ⋚ \lesseqgtr

⪋ \lesseqqgtr ≶ \lessgtr ≲ \lesssim ≪ \ll

⋘ \lll ⪹ \lnapprox ≨ \lneqq ⋦ \lnsim

⋉ \ltimes ∣ \mid ⊧ \models ∓ \mp

⊯ \nVDash ⊮ \nVdash ≉ \napprox ≇ \ncong

≠ \ne ≠ \neq ≠ \neq ≢ \nequiv

≱ \ngeq ≯ \ngtr ∋ \ni ≰ \nleq

≮ \nless ∤ \nmid ∉ \notin ∦ \nparallel
⊀ \nprec ≁ \nsim ⊄ \nsubset ⊈ \nsubseteq

continues on next page

352 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Table 2 – continued from previous page
⊁ \nsucc ⊅ \nsupset ⊉ \nsupseteq ⋪ \ntriangleleft

⋬ \ntrianglelefteq ⋫ \ntriangleright ⋭ \ntrianglerighteq ⊭ \nvDash

⊬ \nvdash ⊙ \odot ⊖ \ominus ⊕ \oplus

⊘ \oslash ⊗ \otimes ∥ \parallel ⟂ \perp

⋔ \pitchfork ± \pm ≺ \prec ⪷ \precapprox

≼ \preccurlyeq ≼ \preceq ⪹ \precnapprox ⋨ \precnsim

≾ \precsim ∝ \propto ⋌ \rightthreetimes ≓ \risingdotseq

⋊ \rtimes ∼ \sim ≃ \simeq ∕ \slash
⌣ \smile ⊓ \sqcap ⊔ \sqcup ⊏ \sqsubset

⊏ \sqsubset ⊑ \sqsubseteq ⊐ \sqsupset ⊐ \sqsupset

⊒ \sqsupseteq ⋆ \star ⊂ \subset ⊆ \subseteq

⫅ \subseteqq ⊊ \subsetneq ⫋ \subsetneqq ≻ \succ

⪸ \succapprox ≽ \succcurlyeq ≽ \succeq ⪺ \succnapprox

⋩ \succnsim ≿ \succsim ⊃ \supset ⊇ \supseteq

⫆ \supseteqq ⊋ \supsetneq ⫌ \supsetneqq ∴ \therefore

× \times ⊤ \top ◁ \triangleleft ⊴ \trianglelefteq

≜ \triangleq ▷ \triangleright ⊵ \trianglerighteq ⊎ \uplus

⊨ \vDash ∝ \varpropto ⊲ \vartriangleleft ⊳ \vartriangleright

⊢ \vdash ∨ \vee ⊻ \veebar ∧ \wedge

≀ \wr

Arrow symbols

2.6. Text 353

Matplotlib, Release 3.4.3

⇓ \Downarrow ⇐ \Leftarrow ⇔ \
Leftrightarrow

⇚ \Lleftarrow

⟸ \
Longleftarrow

⟺ \
Longleftrightarrow

⟹ \
Longrightarrow

↰ \Lsh

⇗ \Nearrow ⇖ \Nwarrow ⇒ \Rightarrow ⇛ \
Rrightarrow

↱ \Rsh ⇘ \Searrow ⇙ \Swarrow ⇑ \Uparrow

⇕ \
Updownarrow

↺ \
circlearrowleft

↻ \
circlearrowright

↶ \
curvearrowleft

↷ \
curvearrowright

⤎ \
dashleftarrow

⤏ \
dashrightarrow

↓ \downarrow

⇊ \
downdownarrows

⇃ \
downharpoonleft

⇂ \
downharpoonright

↩ \
hookleftarrow

↪ \
hookrightarrow

⇝ \leadsto ← \leftarrow ↢ \
leftarrowtail

↽ \
leftharpoondown

↼ \
leftharpoonup

⇇ \
leftleftarrows

↔ \
leftrightarrow

⇆ \
leftrightarrows

⇋ \
leftrightharpoons

↭ \
leftrightsquigarrow

↜ \
leftsquigarrow

⟵ \
longleftarrow

⟷ \
longleftrightarrow

⟼ \longmapsto ⟶ \
longrightarrow

↫ \
looparrowleft

↬ \
looparrowright

↦ \mapsto ⊸ \multimap

⇍ \
nLeftarrow

⇎ \
nLeftrightarrow

⇏ \nRightarrow ↗ \nearrow

↚ \
nleftarrow

↮ \
nleftrightarrow

↛ \nrightarrow ↖ \nwarrow

→ \
rightarrow

↣ \
rightarrowtail

⇁ \
rightharpoondown

⇀ \
rightharpoonup

⇄ \
rightleftarrows

⇄ \
rightleftarrows

⇌ \
rightleftharpoons

⇌ \
rightleftharpoons

⇉ \
rightrightarrows

⇉ \
rightrightarrows

↝ \
rightsquigarrow

↘ \searrow

↙ \swarrow → \to ↞ \
twoheadleftarrow

↠ \
twoheadrightarrow

↑ \uparrow ↕ \updownarrow ↕ \updownarrow ↿ \
upharpoonleft

↾ \
upharpoonright

⇈ \upuparrows

Miscellaneous symbols

354 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

$ \$ Å \AA Ⅎ \Finv ⅁ \Game

ℑ \Im ¶ \P ℜ \Re § \S
∠ \angle ‵ \backprime ★ \bigstar ■ \

blacksquare

▴ \
blacktriangle

▾ \
blacktriangledown

⋯ \cdots ✓ \checkmark

® \circledR Ⓢ \circledS ♣ \clubsuit ∁ \complement
© \copyright ⋱ \ddots ♢ \

diamondsuit
ℓ \ell

∅ \emptyset ð \eth ∃ \exists ♭ \flat
∀ \forall ħ \hbar ♡ \heartsuit ℏ \hslash
∭ \iiint ∬ \iint ı \imath ∞ \infty

ȷ \jmath … \ldots ∡ \
measuredangle

♮ \natural

¬ \neg ∄ \nexists ∰ \oiiint ∂ \partial
′ \prime ♯ \sharp ♠ \spadesuit ∢ \

sphericalangle

ß \ss ▿ \triangledown ∅ \varnothing ▵ \vartriangle

⋮ \vdots ℘ \wp ¥ \yen

If a particular symbol does not have a name (as is true of many of the more obscure symbols in the STIX
fonts), Unicode characters can also be used:

r'$\u23ce$'

Example

Here is an example illustrating many of these features in context.

Fig. 44: Pyplot Mathtext

2.6. Text 355

../../gallery/pyplots/pyplot_mathtext.html

Matplotlib, Release 3.4.3

2.6.6 Typesetting With XeLaTeX/LuaLaTeX

How to typeset text with the pgf backend in Matplotlib.

Using the pgf backend, Matplotlib can export figures as pgf drawing commands that can be processed
with pdflatex, xelatex or lualatex. XeLaTeX and LuaLaTeX have full Unicode support and can use any
font that is installed in the operating system, making use of advanced typographic features of OpenType,
AAT and Graphite. Pgf pictures created by plt.savefig('figure.pgf') can be embedded as raw
commands in LaTeX documents. Figures can also be directly compiled and saved to PDF with plt.
savefig('figure.pdf') by switching the backend

matplotlib.use('pgf')

or by explicitly requesting the use of the pgf backend

plt.savefig('figure.pdf', backend='pgf')

or by registering it for handling pdf output

from matplotlib.backends.backend_pgf import FigureCanvasPgf
matplotlib.backend_bases.register_backend('pdf', FigureCanvasPgf)

The last method allows you to keep using regular interactive backends and to save xelatex, lualatex or pdflatex
compiled PDF files from the graphical user interface.

Matplotlib's pgf support requires a recent LaTeX installation that includes the TikZ/PGF packages (such as
TeXLive), preferably with XeLaTeX or LuaLaTeX installed. If either pdftocairo or ghostscript is present on
your system, figures can optionally be saved to PNG images as well. The executables for all applications
must be located on your PATH.

rcParams that control the behavior of the pgf backend:

Parameter Documentation
pgf.preamble Lines to be included in the LaTeX preamble
pgf.rcfonts Setup fonts from rc params using the fontspec package
pgf.texsystem Either "xelatex" (default), "lualatex" or "pdflatex"

Note: TeX defines a set of special characters, such as:

$ % & ~ _ ^ \ { }

Generally, these characters must be escaped correctly. For convenience, some characters (_, ^, %) are auto-
matically escaped outside of math environments.

356 Chapter 2. Tutorials

http://www.tug.org
http://www.tug.org/texlive/

Matplotlib, Release 3.4.3

Multi-Page PDF Files

The pgf backend also supports multipage pdf files using PdfPages

from matplotlib.backends.backend_pgf import PdfPages
import matplotlib.pyplot as plt

with PdfPages('multipage.pdf', metadata={'author': 'Me'}) as pdf:

fig1, ax1 = plt.subplots()
ax1.plot([1, 5, 3])
pdf.savefig(fig1)

fig2, ax2 = plt.subplots()
ax2.plot([1, 5, 3])
pdf.savefig(fig2)

Font specification

The fonts used for obtaining the size of text elements or when compiling figures to PDF are usually de-
fined in the rcParams. You can also use the LaTeX default Computer Modern fonts by clearing the lists
for rcParams["font.serif"] (default: ['DejaVu Serif', 'Bitstream Vera Serif',
'Computer Modern Roman', 'New Century Schoolbook', 'Century Schoolbook
L', 'Utopia', 'ITC Bookman', 'Bookman', 'Nimbus Roman No9 L', 'Times New
Roman', 'Times', 'Palatino', 'Charter', 'serif']), rcParams["font.sans-
serif"] (default: ['DejaVu Sans', 'Bitstream Vera Sans', 'Computer Modern
Sans Serif', 'Lucida Grande', 'Verdana', 'Geneva', 'Lucid', 'Arial',
'Helvetica', 'Avant Garde', 'sans-serif']) or rcParams["font.monospace"]
(default: ['DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Computer Modern
Typewriter', 'Andale Mono', 'Nimbus Mono L', 'Courier New', 'Courier',
'Fixed', 'Terminal', 'monospace']). Please note that the glyph coverage of these fonts is very
limited. If you want to keep the Computer Modern font face but require extended Unicode support, consider
installing the Computer Modern Unicode fonts CMU Serif, CMU Sans Serif, etc.

When saving to .pgf, the font configuration Matplotlib used for the layout of the figure is included in the
header of the text file.

"""
=========
Pgf Fonts
=========

"""

import matplotlib.pyplot as plt
plt.rcParams.update({

"font.family": "serif",
Use LaTeX default serif font.
"font.serif": [],

(continues on next page)

2.6. Text 357

../../tutorials/introductory/customizing.html?highlight=font.serif#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=font.sans\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} serif#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=font.sans\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} serif#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=font.monospace#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://sourceforge.net/projects/cm-unicode/

Matplotlib, Release 3.4.3

(continued from previous page)
Use specific cursive fonts.
"font.cursive": ["Comic Neue", "Comic Sans MS"],

})

fig, ax = plt.subplots(figsize=(4.5, 2.5))

ax.plot(range(5))

ax.text(0.5, 3., "serif")
ax.text(0.5, 2., "monospace", family="monospace")
ax.text(2.5, 2., "sans-serif", family="DejaVu Sans") # Use specific sans␣

↪font.
ax.text(2.5, 1., "comic", family="cursive")
ax.set_xlabel("µ is not $\\mu$")

fig.tight_layout(pad=.5)

Custom preamble

Full customization is possible by adding your own commands to the preamble. Use rcParams["pgf.
preamble"] (default: '') if you want to configure the math fonts, using unicode-math for example,
or for loading additional packages. Also, if you want to do the font configuration yourself instead of using
the fonts specified in the rc parameters, make sure to disable rcParams["pgf.rcfonts"] (default:
True).

"""
============
Pgf Preamble
============

"""

import matplotlib as mpl
mpl.use("pgf")

Choosing the TeX system

The TeX system to be used by Matplotlib is chosen by rcParams["pgf.texsystem"] (default: 'xe-
latex'). Possible values are 'xelatex' (default), 'lualatex' and 'pdflatex'. Please note that
when selecting pdflatex, the fonts and Unicode handling must be configured in the preamble.

"""
=============
Pgf Texsystem
=============

(continues on next page)

358 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=pgf.preamble#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=pgf.preamble#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=pgf.rcfonts#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=pgf.texsystem#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

(continued from previous page)
"""

import matplotlib.pyplot as plt
plt.rcParams.update({

"pgf.texsystem": "pdflatex",
"pgf.preamble": "\n".join([

r"\usepackage[utf8x]{inputenc}",
r"\usepackage[T1]{fontenc}",
r"\usepackage{cmbright}",

]),
})

fig, ax = plt.subplots(figsize=(4.5, 2.5))

ax.plot(range(5))

ax.text(0.5, 3., "serif", family="serif")
ax.text(0.5, 2., "monospace", family="monospace")
ax.text(2.5, 2., "sans-serif", family="sans-serif")
ax.set_xlabel(r"µ is not μ")

fig.tight_layout(pad=.5)

Troubleshooting

• Please note that the TeX packages found in some Linux distributions and MiKTeX installations are
dramatically outdated. Make sure to update your package catalog and upgrade or install a recent TeX
distribution.

• On Windows, the PATH environment variable may need to be modified to include the directories
containing the latex, dvipng and ghostscript executables. See Environment Variables and Setting en-
vironment variables in Windows for details.

• A limitation onWindows causes the backend to keep file handles that have been opened by your appli-
cation open. As a result, it may not be possible to delete the corresponding files until the application
closes (see #1324).

• Sometimes the font rendering in figures that are saved to png images is very bad. This happens when
the pdftocairo tool is not available and ghostscript is used for the pdf to png conversion.

• Make sure what you are trying to do is possible in a LaTeX document, that your LaTeX syntax is valid
and that you are using raw strings if necessary to avoid unintended escape sequences.

• rcParams["pgf.preamble"] (default: '') provides lots of flexibility, and lots of ways to cause
problems. When experiencing problems, try to minimalize or disable the custom preamble.

• Configuring an unicode-math environment can be a bit tricky. The TeXLive distribution for
example provides a set of math fonts which are usually not installed system-wide. XeTeX, un-
like LuaLatex, cannot find these fonts by their name, which is why you might have to specify \

2.6. Text 359

https://github.com/matplotlib/matplotlib/issues/1324
../../tutorials/introductory/customizing.html?highlight=pgf.preamble#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

setmathfont{xits-math.otf} instead of \setmathfont{XITS Math} or alternatively
make the fonts available to your OS. See this tex.stackexchange.com question for more details.

• If the font configuration used by Matplotlib differs from the font setting in yout LaTeX document, the
alignment of text elements in imported figures may be off. Check the header of your .pgf file if you
are unsure about the fonts Matplotlib used for the layout.

• Vector images and hence .pgf files can become bloated if there are a lot of objects in the graph. This
can be the case for image processing or very big scatter graphs. In an extreme case this can cause TeX to
run out of memory: "TeX capacity exceeded, sorry" You can configure latex to increase the amount of
memory available to generate the .pdf image as discussed on tex.stackexchange.com. Another way
would be to "rasterize" parts of the graph causing problems using either the rasterized=True
keyword, or .set_rasterized(True) as per this example.

• If you still need help, please see Getting help

2.6.7 Text rendering With LaTeX

Matplotlib can use LaTeX to render text. This is activated by setting text.usetex : True in your
rcParams, or by setting the usetex property to True on individual Text objects. Text handling through
LaTeX is slower thanMatplotlib's very capablemathtext, but is more flexible, since different LaTeX packages
(font packages, math packages, etc.) can be used. The results can be striking, especially when you take care
to use the same fonts in your figures as in the main document.

Matplotlib's LaTeX support requires a working LaTeX installation. For the *Agg backends, dvipng is addi-
tionally required; for the PS backend, psfrag, dvips and Ghostscript are additionally required. The executa-
bles for these external dependencies must all be located on your PATH.

There are a couple of options to mention, which can be changed using rc settings. Here is an example
matplotlibrc file:

font.family : serif
font.serif : Times, Palatino, New Century Schoolbook, Bookman,␣

↪Computer Modern Roman
font.sans-serif : Helvetica, Avant Garde, Computer Modern Sans Serif
font.cursive : Zapf Chancery
font.monospace : Courier, Computer Modern Typewriter

text.usetex : true

The first valid font in each family is the one that will be loaded. If the fonts are not specified, the Computer
Modern fonts are used by default. All of the other fonts are Adobe fonts. Times and Palatino each have their
own accompanying math fonts, while the other Adobe serif fonts make use of the Computer Modern math
fonts. See the PSNFSS documentation for more details.

To use LaTeX and select Helvetica as the default font, without editing matplotlibrc use:

import matplotlib.pyplot as plt
plt.rcParams.update({

"text.usetex": True,
"font.family": "sans-serif",

(continues on next page)

360 Chapter 2. Tutorials

http://tex.stackexchange.com/questions/43642
http://tex.stackexchange.com/questions/7953
http://www.tug.org
http://www.nongnu.org/dvipng/
https://ctan.org/pkg/psfrag
https://tug.org/texinfohtml/dvips.html
https://ghostscript.com/
http://www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf

Matplotlib, Release 3.4.3

(continued from previous page)
"font.sans-serif": ["Helvetica"]})

for Palatino and other serif fonts use:
plt.rcParams.update({

"text.usetex": True,
"font.family": "serif",
"font.serif": ["Palatino"],

})

Here is the standard example, /gallery/text_labels_and_annotations/tex_demo:

Note that display math mode ($$ e=mc^2 $$) is not supported, but adding the command \
displaystyle, as in the above demo, will produce the same results.

Non-ASCII characters (e.g. the degree sign in the y-label above) are supported to the extent that they are
supported by inputenc.

Note: Certain characters require special escaping in TeX, such as:

$ % & ~ _ ^ \ { } \(\) \[\]

Therefore, these characters will behave differently depending on rcParams["text.usetex"] (default:
False).

PostScript options

In order to produce encapsulated PostScript (EPS) files that can be embedded in a new LaTeX document,
the default behavior of Matplotlib is to distill the output, which removes some PostScript operators used
by LaTeX that are illegal in an EPS file. This step produces results which may be unacceptable to some
users, because the text is coarsely rasterized and converted to bitmaps, which are not scalable like standard
PostScript, and the text is not searchable. Oneworkaround is to setrcParams["ps.distiller.res"]
(default: 6000) to a higher value (perhaps 6000) in your rc settings, which will produce larger files but may
look better and scale reasonably. A better workaround, which requires Poppler or Xpdf, can be activated
by changing rcParams["ps.usedistiller"] (default: None) to xpdf. This alternative produces
PostScript without rasterizing text, so it scales properly, can be edited in Adobe Illustrator, and searched text
in pdf documents.

2.6. Text 361

../../gallery/text_labels_and_annotations/tex_demo.html
https://ctan.org/pkg/inputenc
../../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ps.distiller.res#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://poppler.freedesktop.org/
http://www.xpdfreader.com/
../../tutorials/introductory/customizing.html?highlight=ps.usedistiller#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Possible hangups

• On Windows, the PATH environment variable may need to be modified to include the directories
containing the latex, dvipng and ghostscript executables. See Environment Variables and Setting en-
vironment variables in Windows for details.

• Using MiKTeX with Computer Modern fonts, if you get odd *Agg and PNG results, go to MiK-
TeX/Options and update your format files

• On Ubuntu and Gentoo, the base texlive install does not ship with the type1cm package. You may
need to install some of the extra packages to get all the goodies that come bundled with other latex
distributions.

• Some progress has been made so matplotlib uses the dvi files directly for text layout. This allows latex
to be used for text layout with the pdf and svg backends, as well as the *Agg and PS backends. In the
future, a latex installation may be the only external dependency.

Troubleshooting

• Try deleting your .matplotlib/tex.cache directory. If you don't know where to find .
matplotlib, see matplotlib configuration and cache directory locations.

• Make sure LaTeX, dvipng and ghostscript are each working and on your PATH.

• Make sure what you are trying to do is possible in a LaTeX document, that your LaTeX syntax is valid
and that you are using raw strings if necessary to avoid unintended escape sequences.

• rcParams["text.latex.preamble"] (default: '') is not officially supported. This option
provides lots of flexibility, and lots of ways to cause problems. Please disable this option before re-
porting problems to the mailing list.

• If you still need help, please see Getting help

2.7 Toolkits

These tutorials cover toolkits designed to extend the functionality of Matplotlib in order to accomplish spe-
cific goals.

2.7.1 Overview of axes_grid1 toolkit

Controlling the layout of plots with the mpl_toolkits.axes_grid1 toolkit.

362 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=text.latex.preamble#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

What is axes_grid1 toolkit?

mpl_toolkits.axes_grid1 is a collection of helper classes to ease displaying (multiple) images with
matplotlib. In matplotlib, the axes location (and size) is specified in the normalized figure coordinates, which
may not be ideal for displaying images that needs to have a given aspect ratio. For example, it helps if you
have a colorbar whose height always matches that of the image. ImageGrid, RGB Axes and AxesDivider are
helper classes that deal with adjusting the location of (multiple) Axes. They provides a framework to adjust
the position of multiple axes at the drawing time. ParasiteAxes provides twinx(or twiny)-like features so that
you can plot different data (e.g., different y-scale) in a same Axes. AnchoredArtists includes custom artists
which are placed at some anchored position, like the legend.

Fig. 45: Demo Axes Grid

axes_grid1

ImageGrid

A grid of Axes.

In Matplotlib, the axes location (and size) is specified in normalized figure coordinates. This may not be
ideal for images that needs to be displayed with a given aspect ratio; for example, it is difficult to display
multiple images of a same size with some fixed padding between them. ImageGrid can be used in such a
case; see its docs for a detailed list of the parameters it accepts.

Fig. 46: Simple Axesgrid

• The position of each axes is determined at the drawing time (see AxesDivider), so that the size of the
entire grid fits in the given rectangle (like the aspect of axes). Note that in this example, the paddings

2.7. Toolkits 363

../../gallery/axes_grid1/demo_axes_grid.html
../../gallery/axes_grid1/simple_axesgrid.html

Matplotlib, Release 3.4.3

between axes are fixed even if you changes the figure size.

• axes in the same column has a same axes width (in figure coordinate), and similarly, axes in the same
row has a same height. The widths (height) of the axes in the same row (column) are scaled according
to their view limits (xlim or ylim).

Fig. 47: Simple Axes Grid

• xaxis are shared among axes in a same column. Similarly, yaxis are shared among axes in a same row.
Therefore, changing axis properties (view limits, tick location, etc. either by plot commands or using
your mouse in interactive backends) of one axes will affect all other shared axes.

The examples below show what you can do with ImageGrid.

Fig. 48: Demo Axes Grid

AxesDivider Class

Behind the scene, the ImageGrid class and the RGBAxes class utilize the AxesDivider class, whose role
is to calculate the location of the axes at drawing time. Direct use of the AxesDivider class will not be
necessary for most users. The axes_divider module provides a helper function make_axes_locatable,
which can be useful. It takes a existing axes instance and create a divider for it.

ax = subplot(1, 1, 1)
divider = make_axes_locatable(ax)

make_axes_locatable returns an instance of the AxesDivider class. It provides an append_axes
method that creates a new axes on the given side of ("top", "right", "bottom" and "left") of the original
axes.

364 Chapter 2. Tutorials

../../gallery/axes_grid1/simple_axesgrid2.html
../../gallery/axes_grid1/demo_axes_grid.html

Matplotlib, Release 3.4.3

colorbar whose height (or width) in sync with the master axes

Fig. 49: Simple Colorbar

scatter_hist.py with AxesDivider

The /gallery/lines_bars_and_markers/scatter_hist example can be rewritten using
make_axes_locatable:

axScatter = plt.subplot()
axScatter.scatter(x, y)
axScatter.set_aspect(1.)

create new axes on the right and on the top of the current axes.
divider = make_axes_locatable(axScatter)
axHistx = divider.append_axes("top", size=1.2, pad=0.1, sharex=axScatter)
axHisty = divider.append_axes("right", size=1.2, pad=0.1, sharey=axScatter)

the scatter plot:
histograms
bins = np.arange(-lim, lim + binwidth, binwidth)
axHistx.hist(x, bins=bins)
axHisty.hist(y, bins=bins, orientation='horizontal')

See the full source code below.

The /gallery/axes_grid1/scatter_hist_locatable_axes using the AxesDivider has some advantage over the
original /gallery/lines_bars_and_markers/scatter_hist in Matplotlib. For example, you can set the aspect
ratio of the scatter plot, even with the x-axis or y-axis is shared accordingly.

2.7. Toolkits 365

../../gallery/axes_grid1/simple_colorbar.html

Matplotlib, Release 3.4.3

Fig. 50: Scatter Hist

ParasiteAxes

The ParasiteAxes is an axes whose location is identical to its host axes. The location is adjusted in the
drawing time, thus it works even if the host change its location (e.g., images).

In most cases, you first create a host axes, which provides a few method that can be used to create parasite
axes. They are twinx, twiny (which are similar to twinx and twiny in the matplotlib) and twin. twin takes
an arbitrary transformation that maps between the data coordinates of the host axes and the parasite axes.
drawmethod of the parasite axes are never called. Instead, host axes collects artists in parasite axes and draw
them as if they belong to the host axes, i.e., artists in parasite axes are merged to those of the host axes and
then drawn according to their zorder. The host and parasite axes modifies some of the axes behavior. For
example, color cycle for plot lines are shared between host and parasites. Also, the legend command in host,
creates a legend that includes lines in the parasite axes. To create a host axes, you may use host_subplot or
host_axes command.

Example 1. twinx

Example 2. twin

twin without a transform argument assumes that the parasite axes has the same data transform as the host.
This can be useful when you want the top(or right)-axis to have different tick-locations, tick-labels, or tick-
formatter for bottom(or left)-axis.

ax2 = ax.twin() # now, ax2 is responsible for "top" axis and "right" axis
ax2.set_xticks([0., .5*np.pi, np.pi, 1.5*np.pi, 2*np.pi])
ax2.set_xticklabels(["0", r"$\frac{1}{2}\pi$",

r"π", r"$\frac{3}{2}\pi$", r"2π"])

A more sophisticated example using twin. Note that if you change the x-limit in the host axes, the x-limit of

366 Chapter 2. Tutorials

../../gallery/axes_grid1/scatter_hist_locatable_axes.html

Matplotlib, Release 3.4.3

Fig. 51: Parasite Simple

Fig. 52: Simple Axisline4

2.7. Toolkits 367

../../gallery/axes_grid1/parasite_simple.html
../../gallery/axes_grid1/simple_axisline4.html

Matplotlib, Release 3.4.3

the parasite axes will change accordingly.

Fig. 53: Parasite Simple2

AnchoredArtists

It's a collection of artists whose location is anchored to the (axes) bbox, like the legend. It is derived from
OffsetBox in Matplotlib, and artist need to be drawn in the canvas coordinate. But, there is a limited support
for an arbitrary transform. For example, the ellipse in the example below will have width and height in the
data coordinate.

Fig. 54: Simple Anchored Artists

368 Chapter 2. Tutorials

../../gallery/axes_grid1/parasite_simple2.html
../../gallery/axes_grid1/simple_anchored_artists.html

Matplotlib, Release 3.4.3

InsetLocator

mpl_toolkits.axes_grid1.inset_locator provides helper classes and functions to place your
(inset) axes at the anchored position of the parent axes, similarly to AnchoredArtist.

Using mpl_toolkits.axes_grid1.inset_locator.inset_axes(), you can have inset axes
whose size is either fixed, or a fixed proportion of the parent axes:

inset_axes = inset_axes(parent_axes,
width="30%", # width = 30% of parent_bbox
height=1., # height : 1 inch
loc='lower left')

creates an inset axes whose width is 30% of the parent axes and whose height is fixed at 1 inch.

You may creates your inset whose size is determined so that the data scale of the inset axes to be that of the
parent axes multiplied by some factor. For example,

inset_axes = zoomed_inset_axes(ax,
0.5, # zoom = 0.5
loc='upper right')

creates an inset axes whose data scale is half of the parent axes. Here is complete examples.

Fig. 55: Inset Locator Demo

For example, zoomed_inset_axes() can be used when you want the inset represents the zoom-up of
the small portion in the parent axes. And inset_locator provides a helper function mark_inset()
to mark the location of the area represented by the inset axes.

Fig. 56: Inset Locator Demo2

2.7. Toolkits 369

../../gallery/axes_grid1/inset_locator_demo.html
../../gallery/axes_grid1/inset_locator_demo2.html

Matplotlib, Release 3.4.3

RGB Axes

RGBAxes is a helper class to conveniently show RGB composite images. Like ImageGrid, the location of
axes are adjusted so that the area occupied by them fits in a given rectangle. Also, the xaxis and yaxis of
each axes are shared.

from mpl_toolkits.axes_grid1.axes_rgb import RGBAxes

fig = plt.figure()
ax = RGBAxes(fig, [0.1, 0.1, 0.8, 0.8], pad=0.0)
r, g, b = get_rgb() # r, g, b are 2D images.
ax.imshow_rgb(r, g, b)

AxesDivider

The mpl_toolkits.axes_grid1.axes_dividermodule provides helper classes to adjust the axes
positions of a set of images at drawing time.

• axes_size provides a class of units that are used to determine the size of each axes. For example,
you can specify a fixed size.

• Divider is the class that calculates the axes position. It divides the given rectangular area into several
areas. The divider is initialized by setting the lists of horizontal and vertical sizes on which the division
will be based. Then use new_locator(), which returns a callable object that can be used to set the
axes_locator of the axes.

Here, we demonstrate how to achieve the following layout: we want to position axes in a 3x4 grid (note that
Divider makes row indices start from the bottom(!) of the grid):

+--------+--------+--------+--------+
| (2, 0) | (2, 1) | (2, 2) | (2, 3) |
+--------+--------+--------+--------+
| (1, 0) | (1, 1) | (1, 2) | (1, 3) |
+--------+--------+--------+--------+

(continues on next page)

370 Chapter 2. Tutorials

../../gallery/axes_grid1/demo_axes_rgb.html

Matplotlib, Release 3.4.3

(continued from previous page)
| (0, 0) | (0, 1) | (0, 2) | (0, 3) |
+--------+--------+--------+--------+

such that the bottom row has a fixed height of 2 (inches) and the top two rows have a height ratio of 2 (middle)
to 3 (top). (For example, if the grid has a size of 7 inches, the bottom row will be 2 inches, the middle row
also 2 inches, and the top row 3 inches.)

These constraints are specified using classes from the axes_size module, namely:

from mpl_toolkits.axes_grid1.axes_size import Fixed, Scaled
vert = [Fixed(2), Scaled(2), Scaled(3)]

(More generally, axes_size classes define a get_size(renderer) method that returns a pair of
floats -- a relative size, and an absolute size. Fixed(2).get_size(renderer) returns (0, 2);
Scaled(2).get_size(renderer) returns (2, 0).)

We use these constraints to initialize a Divider object:

rect = [0.2, 0.2, 0.6, 0.6] # Position of the grid in the figure.
vert = [Fixed(2), Scaled(2), Scaled(3)] # As above.
horiz = [...] # Some other horizontal constraints.
divider = Divider(fig, rect, horiz, vert)

then use Divider.new_locator to create an AxesLocator instance for a given grid entry:

locator = divider.new_locator(nx=0, ny=1) # Grid entry (1, 0).

and make it responsible for locating the axes:

ax.set_axes_locator(locator)

The AxesLocator is a callable object that returns the location and size of the cell at the first column and
the second row.

Locators that spans over multiple cells can be created with, e.g.:

Columns #0 and #1 ("0-2 range"), row #1.
locator = divider.new_locator(nx=0, nx1=2, ny=1)

See the example,

You can also adjust the size of each axes according to its x or y data limits (AxesX and AxesY).

2.7. Toolkits 371

Matplotlib, Release 3.4.3

372 Chapter 2. Tutorials

../../gallery/axes_grid1/simple_axes_divider1.html
../../gallery/axes_grid1/simple_axes_divider3.html

Matplotlib, Release 3.4.3

2.7.2 Overview of axisartist toolkit

The axisartist toolkit tutorial.

Warning: axisartist uses a custom Axes class (derived from the Matplotlib's original Axes class). As a
side effect, some commands (mostly tick-related) do not work.

The axisartist contains a custom Axes class that is meant to support curvilinear grids (e.g., the world coor-
dinate system in astronomy). Unlike Matplotlib's original Axes class which uses Axes.xaxis and Axes.yaxis
to draw ticks, ticklines, etc., axisartist uses a special artist (AxisArtist) that can handle ticks, ticklines, etc.
for curved coordinate systems.

Fig. 57: Demo Floating Axis

Since it uses special artists, some Matplotlib commands that work on Axes.xaxis and Axes.yaxis may not
work.

axisartist

The axisartistmodule provides a custom (and very experimental) Axes class, where each axis (left, right, top,
and bottom) have a separate associated artist which is responsible for drawing the axis-line, ticks, ticklabels,
and labels. You can also create your own axis, which can pass through a fixed position in the axes coordinate,
or a fixed position in the data coordinate (i.e., the axis floats around when viewlimit changes).

The axes class, by default, has its xaxis and yaxis invisible, and has 4 additional artists which are responsible
for drawing the 4 axis spines in "left", "right", "bottom", and "top". They are accessed as ax.axis["left"],
ax.axis["right"], and so on, i.e., ax.axis is a dictionary that contains artists (note that ax.axis is still a callable
method and it behaves as an original Axes.axis method in Matplotlib).

To create an axes,

2.7. Toolkits 373

../../gallery/axisartist/demo_floating_axis.html

Matplotlib, Release 3.4.3

import mpl_toolkits.axisartist as AA
fig = plt.figure()
fig.add_axes([0.1, 0.1, 0.8, 0.8], axes_class=AA.Axes)

or to create a subplot

fig.add_subplot(111, axes_class=AA.Axes)
Given that 111 is the default, one can also do
fig.add_subplot(axes_class=AA.Axes)

For example, you can hide the right and top spines using:

ax.axis["right"].set_visible(False)
ax.axis["top"].set_visible(False)

Fig. 58: Simple Axisline3

It is also possible to add a horizontal axis. For example, you may have an horizontal axis at y=0 (in data
coordinate).

ax.axis["y=0"] = ax.new_floating_axis(nth_coord=0, value=0)

Fig. 59: Simple Axisartist1

Or a fixed axis with some offset

374 Chapter 2. Tutorials

../../gallery/axisartist/simple_axisline3.html
../../gallery/axisartist/simple_axisartist1.html

Matplotlib, Release 3.4.3

make new (right-side) yaxis, but with some offset
ax.axis["right2"] = ax.new_fixed_axis(loc="right", offset=(20, 0))

axisartist with ParasiteAxes

Most commands in the axes_grid1 toolkit can take an axes_class keyword argument, and the commands
create an axes of the given class. For example, to create a host subplot with axisartist.Axes,

import mpl_toolkits.axisartist as AA
from mpl_toolkits.axes_grid1 import host_subplot

host = host_subplot(111, axes_class=AA.Axes)

Here is an example that uses ParasiteAxes.

Fig. 60: Demo Parasite Axes2

Curvilinear Grid

The motivation behind the AxisArtist module is to support a curvilinear grid and ticks.

Floating Axes

AxisArtist also supports a Floating Axes whose outer axes are defined as floating axis.

2.7. Toolkits 375

../../gallery/axisartist/demo_parasite_axes2.html

Matplotlib, Release 3.4.3

Fig. 61: Demo CurveLinear Grid

Fig. 62: Demo Floating Axes

376 Chapter 2. Tutorials

../../gallery/axisartist/demo_curvelinear_grid.html
../../gallery/axisartist/demo_floating_axes.html

Matplotlib, Release 3.4.3

axisartist namespace

The axisartist namespace includes a derived Axes implementation. The biggest difference is that the artists
responsible to draw axis line, ticks, ticklabel and axis labels are separated out from the Matplotlib's Axis
class, which are much more than artists in the original Matplotlib. This change was strongly motivated to
support curvilinear grid. Here are a few things that mpl_toolkits.axisartist.Axes is different from original
Axes from Matplotlib.

• Axis elements (axis line(spine), ticks, ticklabel and axis labels) are drawn by a AxisArtist instance.
Unlike Axis, left, right, top and bottom axis are drawn by separate artists. And each of them may have
different tick location and different tick labels.

• gridlines are drawn by a Gridlines instance. The change was motivated that in curvilinear coordinate,
a gridline may not cross axis-lines (i.e., no associated ticks). In the original Axes class, gridlines are
tied to ticks.

• ticklines can be rotated if necessary (i.e, along the gridlines)

In summary, all these changes was to support

• a curvilinear grid.

• a floating axis

Fig. 63: Demo Floating Axis

mpl_toolkits.axisartist.Axes class defines a axis attribute, which is a dictionary of AxisArtist instances. By
default, the dictionary has 4 AxisArtist instances, responsible for drawing of left, right, bottom and top axis.

xaxis and yaxis attributes are still available, however they are set to not visible. As separate artists are used
for rendering axis, some axis-related method in Matplotlib may have no effect. In addition to AxisArtist
instances, the mpl_toolkits.axisartist.Axes will have gridlines attribute (Gridlines), which obviously draws
grid lines.

In both AxisArtist and Gridlines, the calculation of tick and grid location is delegated to an instance of
GridHelper class. mpl_toolkits.axisartist.Axes class uses GridHelperRectlinear as a grid helper. The Grid-
HelperRectlinear class is a wrapper around the xaxis and yaxis of Matplotlib's original Axes, and it was
meant to work as the way how Matplotlib's original axes works. For example, tick location changes using

2.7. Toolkits 377

../../gallery/axisartist/demo_floating_axis.html

Matplotlib, Release 3.4.3

set_ticks method and etc. should work as expected. But change in artist properties (e.g., color) will not
work in general, although some effort has been made so that some often-change attributes (color, etc.) are
respected.

AxisArtist

AxisArtist can be considered as a container artist with following attributes which will draw ticks, labels, etc.

• line

• major_ticks, major_ticklabels

• minor_ticks, minor_ticklabels

• offsetText

• label

line

Derived from Line2D class. Responsible for drawing a spinal(?) line.

major_ticks, minor_ticks

Derived from Line2D class. Note that ticks are markers.

major_ticklabels, minor_ticklabels

Derived from Text. Note that it is not a list of Text artist, but a single artist (similar to a collection).

axislabel

Derived from Text.

Default AxisArtists

By default, following for axis artists are defined.:

ax.axis["left"], ax.axis["bottom"], ax.axis["right"], ax.axis["top"]

The ticklabels and axislabel of the top and the right axis are set to not visible.

For example, if you want to change the color attributes of major_ticklabels of the bottom x-axis

ax.axis["bottom"].major_ticklabels.set_color("b")

378 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Similarly, to make ticklabels invisible

ax.axis["bottom"].major_ticklabels.set_visible(False)

AxisArtist provides a helper method to control the visibility of ticks, ticklabels, and label. To make ticklabel
invisible,

ax.axis["bottom"].toggle(ticklabels=False)

To make all of ticks, ticklabels, and (axis) label invisible

ax.axis["bottom"].toggle(all=False)

To turn all off but ticks on

ax.axis["bottom"].toggle(all=False, ticks=True)

To turn all on but (axis) label off

ax.axis["bottom"].toggle(all=True, label=False)

ax.axis's __getitem__ method can take multiple axis names. For example, to turn ticklabels of "top" and
"right" axis on,

ax.axis["top", "right"].toggle(ticklabels=True)

Note that ax.axis["top", "right"] returns a simple proxy object that translate above code to some-
thing like below.

for n in ["top", "right"]:
ax.axis[n].toggle(ticklabels=True)

So, any return values in the for loop are ignored. And you should not use it anything more than a simple
method.

Like the list indexing ":" means all items, i.e.,

ax.axis[:].major_ticks.set_color("r")

changes tick color in all axis.

HowTo

1. Changing tick locations and label.

Same as the original Matplotlib's axes:

ax.set_xticks([1, 2, 3])

2. Changing axis properties like color, etc.

Change the properties of appropriate artists. For example, to change the color of the ticklabels:

2.7. Toolkits 379

Matplotlib, Release 3.4.3

ax.axis["left"].major_ticklabels.set_color("r")

3. To change the attributes of multiple axis:

ax.axis["left", "bottom"].major_ticklabels.set_color("r")

or to change the attributes of all axis:

ax.axis[:].major_ticklabels.set_color("r")

4. To change the tick size (length), you need to use axis.major_ticks.set_ticksize method. To
change the direction of the ticks (ticks are in opposite direction of ticklabels by default), use
axis.major_ticks.set_tick_out method.

To change the pad between ticks and ticklabels, use axis.major_ticklabels.set_pad method.

To change the pad between ticklabels and axis label, axis.label.set_pad method.

Rotation and Alignment of TickLabels

This is also quite different from standard Matplotlib and can be confusing. When you want to rotate the
ticklabels, first consider using "set_axis_direction" method.

ax1.axis["left"].major_ticklabels.set_axis_direction("top")
ax1.axis["right"].label.set_axis_direction("left")

Fig. 64: Simple Axis Direction01

The parameter for set_axis_direction is one of ["left", "right", "bottom", "top"].

You must understand some underlying concept of directions.

• There is a reference direction which is defined as the direction of the axis line with increasing coordi-
nate. For example, the reference direction of the left x-axis is from bottom to top.

The direction, text angle, and alignments of the ticks, ticklabels and axis-label is determined with
respect to the reference direction

• label_direction and ticklabel_direction are either the right-hand side (+) of the reference direction or
the left-hand side (-).

• ticks are by default drawn toward the opposite direction of the ticklabels.

380 Chapter 2. Tutorials

../../gallery/axisartist/simple_axis_direction01.html

Matplotlib, Release 3.4.3

• text rotation of ticklabels and label is determined in reference to the ticklabel_direction or la-
bel_direction, respectively. The rotation of ticklabels and label is anchored.

On the other hand, there is a concept of "axis_direction". This is a default setting of above properties for
each, "bottom", "left", "top", and "right" axis.

? ? left bottom right top
axislabel direction '-' '+' '+' '-'
axislabel rotation 180 0 0 180
axislabel va center top center bottom
axislabel ha right center right center
ticklabel direction '-' '+' '+' '-'
ticklabels rotation 90 0 -90 180
ticklabel ha right center right center
ticklabel va center baseline center baseline

And, 'set_axis_direction("top")' means to adjust the text rotation etc, for settings suitable for "top" axis. The
concept of axis direction can be more clear with curved axis.

Fig. 65: Demo Axis Direction

The axis_direction can be adjusted in the AxisArtist level, or in the level of its child artists, i.e., ticks, tick-
labels, and axis-label.

2.7. Toolkits 381

../../gallery/axisartist/axis_direction.html
../../gallery/axisartist/demo_axis_direction.html

Matplotlib, Release 3.4.3

ax1.axis["left"].set_axis_direction("top")

changes axis_direction of all the associated artist with the "left" axis, while

ax1.axis["left"].major_ticklabels.set_axis_direction("top")

changes the axis_direction of only the major_ticklabels. Note that set_axis_direction in the AxisArtist level
changes the ticklabel_direction and label_direction, while changing the axis_direction of ticks, ticklabels,
and axis-label does not affect them.

If you want to make ticks outward and ticklabels inside the axes, use invert_ticklabel_direction method.

ax.axis[:].invert_ticklabel_direction()

A related method is "set_tick_out". It makes ticks outward (as a matter of fact, it makes ticks toward the
opposite direction of the default direction).

ax.axis[:].major_ticks.set_tick_out(True)

Fig. 66: Simple Axis Direction03

So, in summary,

• AxisArtist's methods

– set_axis_direction: "left", "right", "bottom", or "top"

– set_ticklabel_direction: "+" or "-"

– set_axislabel_direction: "+" or "-"

– invert_ticklabel_direction

• Ticks' methods (major_ticks and minor_ticks)

– set_tick_out: True or False

– set_ticksize: size in points

• TickLabels' methods (major_ticklabels and minor_ticklabels)

– set_axis_direction: "left", "right", "bottom", or "top"

– set_rotation: angle with respect to the reference direction

– set_ha and set_va: see below

• AxisLabels' methods (label)

382 Chapter 2. Tutorials

../../gallery/axisartist/simple_axis_direction03.html

Matplotlib, Release 3.4.3

– set_axis_direction: "left", "right", "bottom", or "top"

– set_rotation: angle with respect to the reference direction

– set_ha and set_va

Adjusting ticklabels alignment

Alignment of TickLabels are treated specially. See below

Fig. 67: Demo Ticklabel Alignment

Adjusting pad

To change the pad between ticks and ticklabels

ax.axis["left"].major_ticklabels.set_pad(10)

Or ticklabels and axis-label

ax.axis["left"].label.set_pad(10)

Fig. 68: Simple Axis Pad

2.7. Toolkits 383

../../gallery/axisartist/demo_ticklabel_alignment.html
../../gallery/axisartist/simple_axis_pad.html

Matplotlib, Release 3.4.3

GridHelper

To actually define a curvilinear coordinate, you have to use your own grid helper. A generalised version
of grid helper class is supplied and this class should suffice in most of cases. A user may provide two
functions which defines a transformation (and its inverse pair) from the curved coordinate to (rectilinear)
image coordinate. Note that while ticks and grids are drawn for curved coordinate, the data transform of the
axes itself (ax.transData) is still rectilinear (image) coordinate.

from mpl_toolkits.axisartist.grid_helper_curvelinear \
import GridHelperCurveLinear

from mpl_toolkits.axisartist import Axes

from curved coordinate to rectlinear coordinate.
def tr(x, y):

x, y = np.asarray(x), np.asarray(y)
return x, y-x

from rectlinear coordinate to curved coordinate.
def inv_tr(x, y):

x, y = np.asarray(x), np.asarray(y)
return x, y+x

grid_helper = GridHelperCurveLinear((tr, inv_tr))

fig.add_subplot(axes_class=Axes, grid_helper=grid_helper)

You may use Matplotlib's Transform instance instead (but a inverse transformation must be defined). Often,
coordinate range in a curved coordinate system may have a limited range, or may have cycles. In those cases,
a more customized version of grid helper is required.

import mpl_toolkits.axisartist.angle_helper as angle_helper

PolarAxes.PolarTransform takes radian. However, we want our coordinate
system in degree
tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform()

extreme finder: find a range of coordinate.
20, 20: number of sampling points along x, y direction
The first coordinate (longitude, but theta in polar)
has a cycle of 360 degree.
The second coordinate (latitude, but radius in polar) has a minimum of 0
extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,

lon_cycle = 360,
lat_cycle = None,
lon_minmax = None,
lat_minmax = (0, np.inf),
)

Find a grid values appropriate for the coordinate (degree,
minute, second). The argument is a approximate number of grids.
grid_locator1 = angle_helper.LocatorDMS(12)

(continues on next page)

384 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
And also uses an appropriate formatter. Note that the acceptable Locator
and Formatter classes are different than that of Matplotlib's, and you
cannot directly use Matplotlib's Locator and Formatter here (but may be
possible in the future).
tick_formatter1 = angle_helper.FormatterDMS()

grid_helper = GridHelperCurveLinear(tr,
extreme_finder=extreme_finder,
grid_locator1=grid_locator1,
tick_formatter1=tick_formatter1
)

Again, the transData of the axes is still a rectilinear coordinate (image coordinate). You may manually do
conversion between two coordinates, or you may use Parasite Axes for convenience.:

ax1 = SubplotHost(fig, 1, 2, 2, grid_helper=grid_helper)

A parasite axes with given transform
ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
note that ax2.transData == tr + ax1.transData
Anything you draw in ax2 will match the ticks and grids of ax1.
ax1.parasites.append(ax2)

Fig. 69: Demo CurveLinear Grid

FloatingAxis

A floating axis is an axis one of whose data coordinate is fixed, i.e, its location is not fixed in Axes coordinate
but changes as axes data limits changes. A floating axis can be created using new_floating_axis method.
However, it is your responsibility that the resulting AxisArtist is properly added to the axes. A recommended
way is to add it as an item of Axes's axis attribute.:

floating axis whose first (index starts from 0) coordinate
(theta) is fixed at 60

ax1.axis["lat"] = axis = ax1.new_floating_axis(0, 60)

(continues on next page)

2.7. Toolkits 385

../../gallery/axisartist/demo_curvelinear_grid.html

Matplotlib, Release 3.4.3

(continued from previous page)
axis.label.set_text(r"$\theta = 60^{\circ}$")
axis.label.set_visible(True)

See the first example of this page.

Current Limitations and TODO's

The code need more refinement. Here is a incomplete list of issues and TODO's

• No easy way to support a user customized tick location (for curvilinear grid). A new Locator class
needs to be created.

• FloatingAxis may have coordinate limits, e.g., a floating axis of x = 0, but y only spans from 0 to 1.

• The location of axislabel of FloatingAxis needs to be optionally given as a coordinate value. ex, a
floating axis of x=0 with label at y=1

2.7.3 The mplot3d Toolkit

Generating 3D plots using the mplot3d toolkit.

Contents

• The mplot3d Toolkit

– Getting started

∗ Line plots

∗ Scatter plots

∗ Wireframe plots

∗ Surface plots

∗ Tri-Surface plots

∗ Contour plots

∗ Filled contour plots

∗ Polygon plots

∗ Bar plots

∗ Quiver

∗ 2D plots in 3D

∗ Text

∗ Subplotting

386 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Getting started

3D Axes (of class Axes3D) are created by passing the projection="3d" keyword argument to
Figure.add_subplot:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(projection='3d')

Changed in version 1.0.0: Prior to Matplotlib 1.0.0, Axes3D needed to be directly instantiated with from
mpl_toolkits.mplot3d import Axes3D; ax = Axes3D(fig).

Changed in version 3.2.0: Prior to Matplotlib 3.2.0, it was necessary to explicitly import the
mpl_toolkits.mplot3d module to make the '3d' projection to Figure.add_subplot.

See the mplot3d FAQ for more information about the mplot3d toolkit.

Line plots

Axes3D.plot(xs, ys, *args, zdir='z', **kwargs)
Plot 2D or 3D data.

Parameters

xs
[1D array-like] x coordinates of vertices.

ys
[1D array-like] y coordinates of vertices.

zs
[float or 1D array-like] z coordinates of vertices; either one for all points or one
for each point.

zdir
[{'x', 'y', 'z'}, default: 'z'] When plotting 2D data, the direction to use as z ('x', 'y'
or 'z').

**kwargs
Other arguments are forwarded to matplotlib.axes.Axes.plot.

2.7. Toolkits 387

Matplotlib, Release 3.4.3

Fig. 70: Lines3d

Scatter plots

Axes3D.scatter(xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True, *args, **kwargs)
Create a scatter plot.

Parameters

xs, ys
[array-like] The data positions.

zs
[float or array-like, default: 0] The z-positions. Either an array of the same length
as xs and ys or a single value to place all points in the same plane.

zdir
[{'x', 'y', 'z', '-x', '-y', '-z'}, default: 'z'] The axis direction for the zs. This is useful
when plotting 2D data on a 3D Axes. The data must be passed as xs, ys. Setting
zdir to 'y' then plots the data to the x-z-plane.

See also /gallery/mplot3d/2dcollections3d.

s
[float or array-like, default: 20] The marker size in points**2. Either an array of
the same length as xs and ys or a single value to make all markers the same size.

c
[color, sequence, or sequence of colors, optional] The marker color. Possible val-
ues:

• A single color format string.

• A sequence of colors of length n.

388 Chapter 2. Tutorials

../../gallery/mplot3d/lines3d.html

Matplotlib, Release 3.4.3

• A sequence of n numbers to be mapped to colors using cmap and norm.

• A 2D array in which the rows are RGB or RGBA.

For more details see the c argument of scatter.

depthshade
[bool, default: True] Whether to shade the scatter markers to give the appearance
of depth. Each call to scatter() will perform its depthshading independently.

**kwargs
All other arguments are passed on to scatter.

Returns

paths
[PathCollection]

Fig. 71: Scatter3d

Wireframe plots

Axes3D.plot_wireframe(X, Y, Z, *args, **kwargs)
Plot a 3D wireframe.

Note: The rcount and ccount kwargs, which both default to 50, determine the maximum number of
samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these
numbers of points.

Parameters

2.7. Toolkits 389

../../gallery/mplot3d/scatter3d.html

Matplotlib, Release 3.4.3

X, Y, Z
[2D arrays] Data values.

rcount, ccount
[int] Maximum number of samples used in each direction. If the input data is
larger, it will be downsampled (by slicing) to these numbers of points. Setting a
count to zero causes the data to be not sampled in the corresponding direction,
producing a 3D line plot rather than a wireframe plot. Defaults to 50.

New in version 2.0.

rstride, cstride
[int] Downsampling stride in each direction. These arguments are mutually ex-
clusive with rcount and ccount. If only one of rstride or cstride is set, the other
defaults to 1. Setting a stride to zero causes the data to be not sampled in the
corresponding direction, producing a 3D line plot rather than a wireframe plot.

'classic' mode uses a default of rstride = cstride = 1 instead of the new
default of rcount = ccount = 50.

**kwargs
Other arguments are forwarded to Line3DCollection.

Fig. 72: Wire3d

390 Chapter 2. Tutorials

../../gallery/mplot3d/wire3d.html

Matplotlib, Release 3.4.3

Surface plots

Axes3D.plot_surface(X, Y, Z, *args, norm=None, vmin=None, vmax=None, light-
source=None, **kwargs)

Create a surface plot.

By default it will be colored in shades of a solid color, but it also supports colormapping by supplying
the cmap argument.

Note: The rcount and ccount kwargs, which both default to 50, determine the maximum number of
samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these
numbers of points.

Note: To maximize rendering speed consider setting rstride and cstride to divisors of the number of
rows minus 1 and columns minus 1 respectively. For example, given 51 rows rstride can be any of the
divisors of 50.

Similarly, a setting of rstride and cstride equal to 1 (or rcount and ccount equal the number of rows
and columns) can use the optimized path.

Parameters

X, Y, Z
[2D arrays] Data values.

rcount, ccount
[int] Maximum number of samples used in each direction. If the input data is
larger, it will be downsampled (by slicing) to these numbers of points. Defaults to
50.

New in version 2.0.

rstride, cstride
[int] Downsampling stride in each direction. These arguments are mutually ex-
clusive with rcount and ccount. If only one of rstride or cstride is set, the other
defaults to 10.

'classic' mode uses a default of rstride = cstride = 10 instead of the
new default of rcount = ccount = 50.

color
[color-like] Color of the surface patches.

cmap
[Colormap] Colormap of the surface patches.

2.7. Toolkits 391

Matplotlib, Release 3.4.3

facecolors
[array-like of colors.] Colors of each individual patch.

norm
[Normalize] Normalization for the colormap.

vmin, vmax
[float] Bounds for the normalization.

shade
[bool, default: True] Whether to shade the facecolors. Shading is always disabled
when cmap is specified.

lightsource
[LightSource] The lightsource to use when shade is True.

**kwargs
Other arguments are forwarded to Poly3DCollection.

Fig. 73: Surface3d
Surface3d 2
Surface3d 3

Tri-Surface plots

Axes3D.plot_trisurf(*args, color=None, norm=None, vmin=None, vmax=None, light-
source=None, **kwargs)

Plot a triangulated surface.

The (optional) triangulation can be specified in one of two ways; either:

plot_trisurf(triangulation, ...)

392 Chapter 2. Tutorials

../../gallery/mplot3d/surface3d.html

Matplotlib, Release 3.4.3

where triangulation is a Triangulation object, or:

plot_trisurf(X, Y, ...)
plot_trisurf(X, Y, triangles, ...)
plot_trisurf(X, Y, triangles=triangles, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

The remaining arguments are:

plot_trisurf(..., Z)

where Z is the array of values to contour, one per point in the triangulation.

Parameters

X, Y, Z
[array-like] Data values as 1D arrays.

color
Color of the surface patches.

cmap
A colormap for the surface patches.

norm
[Normalize] An instance of Normalize to map values to colors.

vmin, vmax
[float, default: None] Minimum and maximum value to map.

shade
[bool, default: True] Whether to shade the facecolors. Shading is always disabled
when cmap is specified.

lightsource
[LightSource] The lightsource to use when shade is True.

**kwargs
All other arguments are passed on to Poly3DCollection

2.7. Toolkits 393

Matplotlib, Release 3.4.3

Examples

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.4
0.2
0.0
0.2

0.4

New in version 1.2.0.

Contour plots

Axes3D.contour(X, Y, Z, *args, extend3d=False, stride=5, zdir='z', offset=None, **kwargs)
Create a 3D contour plot.

Parameters

X, Y, Z
[array-like] Input data.

extend3d
[bool, default: False] Whether to extend contour in 3D.

stride
[int] Step size for extending contour.

zdir
[{'x', 'y', 'z'}, default: 'z'] The direction to use.

394 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.0 0.5 0.0 0.5
1.0 1.0

0.5
0.0

0.5
1.0

1.0

0.5

0.0

0.5

1.0

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.5

0.0

0.5

Fig. 74: Trisurf3d

2.7. Toolkits 395

../../gallery/mplot3d/trisurf3d.html

Matplotlib, Release 3.4.3

offset
[float, optional] If specified, plot a projection of the contour lines at this position
in a plane normal to zdir.

*args, **kwargs
Other arguments are forwarded to matplotlib.axes.Axes.contour.

Returns

matplotlib.contour.QuadContourSet

Fig. 75: Contour3d
Contour3d 2
Contour3d 3

Filled contour plots

Axes3D.contourf(X, Y, Z, *args, zdir='z', offset=None, **kwargs)
Create a 3D filled contour plot.

Parameters

X, Y, Z
[array-like] Input data.

zdir
[{'x', 'y', 'z'}, default: 'z'] The direction to use.

offset
[float, optional] If specified, plot a projection of the contour lines at this position
in a plane normal to zdir.

396 Chapter 2. Tutorials

../../gallery/mplot3d/contour3d.html

Matplotlib, Release 3.4.3

*args, **kwargs
Other arguments are forwarded to matplotlib.axes.Axes.contourf.

Returns

matplotlib.contour.QuadContourSet

Notes

New in version 1.1.0: The zdir and offset parameters.

Fig. 76: Contourf3d
Contourf3d 2

New in version 1.1.0: The feature demoed in the second contourf3d example was enabled as a result of a
bugfix for version 1.1.0.

Polygon plots

Axes3D.add_collection3d(col, zs=0, zdir='z')
Add a 3D collection object to the plot.

2D collection types are converted to a 3D version by modifying the object and adding z coordinate
information.

Supported are:

• PolyCollection

• LineCollection

• PatchCollection

2.7. Toolkits 397

../../gallery/mplot3d/contourf3d.html

Matplotlib, Release 3.4.3

Fig. 77: Polys3d

Bar plots

Axes3D.bar(left, height, zs=0, zdir='z', *args, **kwargs)
Add 2D bar(s).

Parameters

left
[1D array-like] The x coordinates of the left sides of the bars.

height
[1D array-like] The height of the bars.

zs
[float or 1D array-like] Z coordinate of bars; if a single value is specified, it will
be used for all bars.

zdir
[{'x', 'y', 'z'}, default: 'z'] When plotting 2D data, the direction to use as z ('x', 'y'
or 'z').

**kwargs
Other arguments are forwarded to matplotlib.axes.Axes.bar.

Returns

mpl_toolkits.mplot3d.art3d.Patch3DCollection

398 Chapter 2. Tutorials

../../gallery/mplot3d/polys3d.html

Matplotlib, Release 3.4.3

Fig. 78: Bars3d

Quiver

Axes3D.quiver(X, Y, Z, U, V, W, /, length=1, arrow_length_ratio=.3, pivot='tail', normal-
ize=False, **kwargs)

Plot a 3D field of arrows.

The arguments could be array-like or scalars, so long as they they can be broadcast together. The argu-
ments can also be masked arrays. If an element in any of argument is masked, then that corresponding
quiver element will not be plotted.

Parameters

X, Y, Z
[array-like] The x, y and z coordinates of the arrow locations (default is tail of
arrow; see pivot kwarg).

U, V, W
[array-like] The x, y and z components of the arrow vectors.

length
[float, default: 1] The length of each quiver.

arrow_length_ratio
[float, default: 0.3] The ratio of the arrow head with respect to the quiver.

pivot
[{'tail', 'middle', 'tip'}, default: 'tail'] The part of the arrow that is at the grid point;
the arrow rotates about this point, hence the name pivot.

normalize
[bool, default: False] Whether all arrows are normalized to have the same length,
or keep the lengths defined by u, v, and w.

2.7. Toolkits 399

../../gallery/mplot3d/bars3d.html

Matplotlib, Release 3.4.3

**kwargs
Any additional keyword arguments are delegated to LineCollection

Fig. 79: Quiver3d

2D plots in 3D

Fig. 80: 2dcollections3d

400 Chapter 2. Tutorials

../../gallery/mplot3d/quiver3d.html
../../gallery/mplot3d/2dcollections3d.html

Matplotlib, Release 3.4.3

Text

Axes3D.text(x, y, z, s, zdir=None, **kwargs)
Add text to the plot. kwargs will be passed on to Axes.text, except for the zdir keyword, which sets the
direction to be used as the z direction.

Fig. 81: Text3d

Subplotting

Having multiple 3D plots in a single figure is the same as it is for 2D plots. Also, you can have both 2D and
3D plots in the same figure.

New in version 1.0.0: Subplotting 3D plots was added in v1.0.0. Earlier version can not do this.

Fig. 82: Subplot3d
Mixed Subplots

2.7. Toolkits 401

../../gallery/mplot3d/text3d.html
../../gallery/mplot3d/subplot3d.html

Matplotlib, Release 3.4.3

402 Chapter 2. Tutorials

CHAPTER

THREE

INTERACTIVE FIGURES

When working with data, interactivity can be invaluable. The pan/zoom and mouse-location tools built into
the Matplotlib GUI windows are often sufficient, but you can also use the event system to build customized
data exploration tools.

Matplotlib ships with backends binding to several GUI toolkits (Qt, Tk, Wx, GTK, macOS, JavaScript)
and third party packages provide bindings to kivy and Jupyter Lab. For the figures to be responsive to
mouse, keyboard, and paint events, the GUI event loop needs to be integrated with an interactive prompt.
We recommend using IPython (see below).

Thepyplotmodule provides functions for explicitly creating figures that include interactive tools, a toolbar,
a tool-tip, and key bindings:

pyplot.figure

Creates a new empty figure.Figure or selects an existing figure

pyplot.subplots

Creates a new figure.Figure and fills it with a grid of axes.Axes

pyplot has a notion of "The Current Figure" which can be accessed through pyplot.gcf and a notion of
"The Current Axes" accessed through pyplot.gca. Almost all of the functions in pyplot pass through
the current Figure / axes.Axes (or create one) as appropriate.

Matplotlib keeps a reference to all of the open figures created via pyplot.figure or pyplot.
subplots so that the figures will not be garbage collected. Figures can be closed and deregistered from
pyplot individually via pyplot.close; all open Figures can be closed via plt.close('all').

For more discussion of Matplotlib's event system and integrated event loops, please read:

3.1 Interactive Figures and Asynchronous Programming

Matplotlib supports rich interactive figures by embedding figures into a GUI window. The basic interactions
of panning and zooming in an Axes to inspect your data is 'baked in' to Matplotlib. This is supported by a
full mouse and keyboard event handling system that you can use to build sophisticated interactive graphs.

This guide is meant to be an introduction to the low-level details of how Matplotlib integration with a GUI
event loop works. For a more practical introduction to the Matplotlib event API see event handling system,
Interactive Tutorial, and Interactive Applications using Matplotlib.

403

https://github.com/kivy-garden/garden.matplotlib
https://github.com/matplotlib/ipympl
https://github.com/matplotlib/interactive_tutorial
http://www.amazon.com/Interactive-Applications-using-Matplotlib-Benjamin/dp/1783988843

Matplotlib, Release 3.4.3

3.1.1 Event Loops

Fundamentally, all user interaction (and networking) is implemented as an infinite loop waiting for events
from the user (via the OS) and then doing something about it. For example, a minimal Read Evaluate Print
Loop (REPL) is

exec_count = 0
while True:

inp = input(f"[{exec_count}] > ") # Read
ret = eval(inp) # Evaluate
print(ret) # Print
exec_count += 1 # Loop

This is missing many niceties (for example, it exits on the first exception!), but is representative of the event
loops that underlie all terminals, GUIs, and servers1. In general the Read step is waiting on some sort of I/O
-- be it user input or the network -- while the Evaluate and Print are responsible for interpreting the input
and then doing something about it.

In practice we interact with a framework that provides a mechanism to register callbacks to be run in response
to specific events rather than directly implement the I/O loop2. For example "when the user clicks on this
button, please run this function" or "when the user hits the 'z' key, please run this other function". This allows
users to write reactive, event-driven, programs without having to delve into the nitty-gritty3 details of I/O.
The core event loop is sometimes referred to as "the main loop" and is typically started, depending on the
library, by methods with names like _exec, run, or start.

All GUI frameworks (Qt, Wx, Gtk, tk, OSX, or web) have some method of capturing user interactions
and passing them back to the application (for example Signal / Slot framework in Qt) but the ex-
act details depend on the toolkit. Matplotlib has a backend for each GUI toolkit we support which uses
the toolkit API to bridge the toolkit UI events into Matplotlib's event handling system. You can then use
FigureCanvasBase.mpl_connect to connect your function to Matplotlib's event handling system.
This allows you to directly interact with your data and write GUI toolkit agnostic user interfaces.

1 A limitation of this design is that you can only wait for one input, if there is a need to multiplex between multiple sources then
the loop would look something like

fds = [...]
while True: # Loop

inp = select(fds).read() # Read
eval(inp) # Evaluate / Print

2 Or you can write your own if you must.
3 These examples are aggressively dropping many of the complexities that must be dealt with in the real world such as keyboard

interrupts, timeouts, bad input, resource allocation and cleanup, etc.

404 Chapter 3. Interactive Figures

https://www.youtube.com/watch?v=ZzfHjytDceU

Matplotlib, Release 3.4.3

3.1.2 Command Prompt Integration

So far, so good. We have the REPL (like the IPython terminal) that lets us interactively send code to the
interpreter and get results back. We also have the GUI toolkit that runs an event loop waiting for user input
and lets us register functions to be run when that happens. However, if we want to do both we have a problem:
the prompt and the GUI event loop are both infinite loops that each think they are in charge! In order for both
the prompt and the GUI windows to be responsive we need a method to allow the loops to 'timeshare' :

1. let the GUI main loop block the python process when you want interactive windows

2. let the CLI main loop block the python process and intermittently run the GUI loop

3. fully embed python in the GUI (but this is basically writing a full application)

Blocking the Prompt

pyplot.show Display all open figures.
pyplot.pause Run the GUI event loop for interval seconds.
backend_bases.FigureCanvasBase.
start_event_loop

Start a blocking event loop.

backend_bases.FigureCanvasBase.
stop_event_loop

Stop the current blocking event loop.

The simplest "integration" is to start the GUI event loop in 'blocking' mode and take over the CLI. While
the GUI event loop is running you can not enter new commands into the prompt (your terminal may echo
the characters typed into the terminal, but they will not be sent to the Python interpreter because it is busy
running the GUI event loop), but the figure windows will be responsive. Once the event loop is stopped
(leaving any still open figure windows non-responsive) you will be able to use the prompt again. Re-starting
the event loop will make any open figure responsive again (and will process any queued up user interaction).

To start the event loop until all open figures are closed, use pyplot.show as

pyplot.show(block=True)

To start the event loop for a fixed amount of time (in seconds) use pyplot.pause.

If you are not using pyplot you can start and stop the event loops via FigureCanvasBase.
start_event_loop and FigureCanvasBase.stop_event_loop. However, in most contexts
where you would not be using pyplot you are embedding Matplotlib in a large GUI application and the
GUI event loop should already be running for the application.

Away from the prompt, this technique can be very useful if you want to write a script that pauses for user
interaction, or displays a figure between polling for additional data. See Scripts and functions for more
details.

3.1. Interactive Figures and Asynchronous Programming 405

Matplotlib, Release 3.4.3

Input Hook integration

While running the GUI event loop in a blocking mode or explicitly handling UI events is useful, we can do
better! We really want to be able to have a usable prompt and interactive figure windows.

We can do this using the 'input hook' feature of the interactive prompt. This hook is called by the prompt as
it waits for the user to type (even for a fast typist the prompt is mostly waiting for the human to think and
move their fingers). Although the details vary between prompts the logic is roughly

1. start to wait for keyboard input

2. start the GUI event loop

3. as soon as the user hits a key, exit the GUI event loop and handle the key

4. repeat

This gives us the illusion of simultaneously having interactive GUI windows and an interactive prompt. Most
of the time the GUI event loop is running, but as soon as the user starts typing the prompt takes over again.

This time-share technique only allows the event loop to run while python is otherwise idle and waiting for
user input. If you want the GUI to be responsive during long running code it is necessary to periodically
flush the GUI event queue as described above. In this case it is your code, not the REPL, which is blocking
the process so you need to handle the "time-share" manually. Conversely, a very slow figure draw will block
the prompt until it finishes drawing.

3.1.3 Full embedding

It is also possible to go the other direction and fully embed figures (and a Python interpreter) in a rich native
application. Matplotlib provides classes for each toolkit which can be directly embedded in GUI applications
(this is how the built-in windows are implemented!). See user_interfaces for more details.

3.1.4 Scripts and functions

backend_bases.FigureCanvasBase.
flush_events

Flush the GUI events for the figure.

backend_bases.FigureCanvasBase.
draw_idle

Request a widget redraw once control returns to the
GUI event loop.

figure.Figure.ginput Blocking call to interact with a figure.
pyplot.ginput Blocking call to interact with a figure.
pyplot.show Display all open figures.
pyplot.pause Run the GUI event loop for interval seconds.

There are several use-cases for using interactive figures in scripts:

• capture user input to steer the script

• progress updates as a long running script progresses

• streaming updates from a data source

406 Chapter 3. Interactive Figures

https://docs.python.org/3/extending/embedding.html

Matplotlib, Release 3.4.3

Blocking functions

If you only need to collect points in an Axes you can use figure.Figure.ginput or more generally
the tools from blocking_input the tools will take care of starting and stopping the event loop for you.
However if you have written some custom event handling or are using widgets you will need to manually
run the GUI event loop using the methods described above.

You can also use the methods described in Blocking the Prompt to suspend run the GUI event loop. Once the
loop exits your code will resume. In general, any place you would use time.sleep you can use pyplot.
pause instead with the added benefit of interactive figures.

For example, if you want to poll for data you could use something like

fig, ax = plt.subplots()
ln, = ax.plot([], [])

while True:
x, y = get_new_data()
ln.set_data(x, y)
plt.pause(1)

which would poll for new data and update the figure at 1Hz.

Explicitly spinning the Event Loop

backend_bases.FigureCanvasBase.
flush_events

Flush the GUI events for the figure.

backend_bases.FigureCanvasBase.
draw_idle

Request a widget redraw once control returns to the
GUI event loop.

If you have open windows that have pending UI events (mouse clicks, button presses, or draws) you can
explicitly process those events by calling FigureCanvasBase.flush_events. This will run the
GUI event loop until all UI events currently waiting have been processed. The exact behavior is backend-
dependent but typically events on all figure are processed and only events waiting to be processed (not those
added during processing) will be handled.

For example

import time
import matplotlib.pyplot as plt
import numpy as np
plt.ion()

fig, ax = plt.subplots()
th = np.linspace(0, 2*np.pi, 512)
ax.set_ylim(-1.5, 1.5)

ln, = ax.plot(th, np.sin(th))

(continues on next page)

3.1. Interactive Figures and Asynchronous Programming 407

https://docs.python.org/3/library/time.html#time.sleep

Matplotlib, Release 3.4.3

(continued from previous page)
def slow_loop(N, ln):

for j in range(N):
time.sleep(.1) # to simulate some work
ln.figure.canvas.flush_events()

slow_loop(100, ln)

While this will feel a bit laggy (as we are only processing user input every 100ms whereas 20-30ms is what
feels "responsive") it will respond.

If you make changes to the plot and want it re-rendered you will need to call draw_idle to request
that the canvas be re-drawn. This method can be thought of draw_soon in analogy to asyncio.loop.
call_soon.

We can add this our example above as

def slow_loop(N, ln):
for j in range(N):

time.sleep(.1) # to simulate some work
if j % 10:

ln.set_ydata(np.sin(((j // 10) % 5 * th)))
ln.figure.canvas.draw_idle()

ln.figure.canvas.flush_events()

slow_loop(100, ln)

The more frequently you call FigureCanvasBase.flush_events the more responsive your figure
will feel but at the cost of spending more resources on the visualization and less on your computation.

3.1.5 Stale Artists

Artists (as of Matplotlib 1.5) have a stale attribute which is True if the internal state of the artist has changed
since the last time it was rendered. By default the stale state is propagated up to the Artists parents in the
draw tree, e.g., if the color of a Line2D instance is changed, the axes.Axes and figure.Figure that
contain it will also be marked as "stale". Thus, fig.stale will report if any artist in the figure has been
modified and is out of sync with what is displayed on the screen. This is intended to be used to determine if
draw_idle should be called to schedule a re-rendering of the figure.

Each artist has a Artist.stale_callback attribute which holds a callback with the signature

def callback(self: Artist, val: bool) -> None:
...

which by default is set to a function that forwards the stale state to the artist's parent. If you wish to suppress
a given artist from propagating set this attribute to None.

figure.Figure instances do not have a containing artist and their default callback is None. If you
call pyplot.ion and are not in IPython we will install a callback to invoke draw_idle when-
ever the figure.Figure becomes stale. In IPython we use the 'post_execute' hook to invoke

408 Chapter 3. Interactive Figures

https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.call_soon
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.call_soon
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

draw_idle on any stale figures after having executed the user's input, but before returning the prompt to
the user. If you are not using pyplot you can use the callback Figure.stale_callback attribute to
be notified when a figure has become stale.

3.1.6 Idle draw

backend_bases.FigureCanvasBase.
draw

Render the Figure.

backend_bases.FigureCanvasBase.
draw_idle

Request a widget redraw once control returns to the
GUI event loop.

backend_bases.FigureCanvasBase.
flush_events

Flush the GUI events for the figure.

In almost all cases, we recommend using backend_bases.FigureCanvasBase.draw_idle over
backend_bases.FigureCanvasBase.draw. draw forces a rendering of the figure whereas
draw_idle schedules a rendering the next time the GUI window is going to re-paint the screen. This
improves performance by only rendering pixels that will be shown on the screen. If you want to be sure that
the screen is updated as soon as possible do

fig.canvas.draw_idle()
fig.canvas.flush_events()

3.1.7 Threading

Most GUI frameworks require that all updates to the screen, and hence their main event loop, run on the
main thread. This makes pushing periodic updates of a plot to a background thread impossible. Although
it seems backwards, it is typically easier to push your computations to a background thread and periodically
update the figure on the main thread.

In general Matplotlib is not thread safe. If you are going to update Artist objects in one thread and draw
from another you should make sure that you are locking in the critical sections.

3.1.8 Eventloop integration mechanism

CPython / readline

The Python C API provides a hook, PyOS_InputHook, to register a function to be run ("The function
will be called when Python's interpreter prompt is about to become idle and wait for user input from the
terminal."). This hook can be used to integrate a second event loop (the GUI event loop) with the python
input prompt loop. The hook functions typically exhaust all pending events on the GUI event queue, run the
main loop for a short fixed amount of time, or run the event loop until a key is pressed on stdin.

Matplotlib does not currently do any management of PyOS_InputHook due to the wide range of ways
that Matplotlib is used. This management is left to downstream libraries -- either user code or the shell.

3.1. Interactive Figures and Asynchronous Programming 409

https://docs.python.org/3/c-api/veryhigh.html#c.PyOS_InputHook
https://docs.python.org/3/c-api/veryhigh.html#c.PyOS_InputHook

Matplotlib, Release 3.4.3

Interactive figures, even with Matplotlib in 'interactive mode', may not work in the vanilla python repl if an
appropriate PyOS_InputHook is not registered.

Input hooks, and helpers to install them, are usually included with the python bindings for GUI toolkits and
may be registered on import. IPython also ships input hook functions for all of the GUI frameworks Mat-
plotlib supports which can be installed via %matplotlib. This is the recommended method of integrating
Matplotlib and a prompt.

IPython / prompt_toolkit

With IPython >= 5.0 IPython has changed from using CPython's readline based prompt to a
prompt_toolkit based prompt. prompt_toolkit has the same conceptual input hook,
which is fed into prompt_toolkit via the IPython.terminal.interactiveshell.
TerminalInteractiveShell.inputhook() method. The source for the prompt_toolkit
input hooks lives at IPython.terminal.pt_inputhooks.

3.2 Event handling and picking

Matplotlib works with a number of user interface toolkits (wxpython, tkinter, qt, gtk, and macosx) and in
order to support features like interactive panning and zooming of figures, it is helpful to the developers to
have an API for interacting with the figure via key presses and mouse movements that is "GUI neutral" so we
don't have to repeat a lot of code across the different user interfaces. Although the event handling API is GUI
neutral, it is based on the GTK model, which was the first user interface Matplotlib supported. The events
that are triggered are also a bit richer vis-a-vis Matplotlib than standard GUI events, including information
like which Axes the event occurred in. The events also understand the Matplotlib coordinate system, and
report event locations in both pixel and data coordinates.

3.2.1 Event connections

To receive events, you need to write a callback function and then connect your function to the event manager,
which is part of the FigureCanvasBase. Here is a simple example that prints the location of the mouse
click and which button was pressed:

fig, ax = plt.subplots()
ax.plot(np.random.rand(10))

def onclick(event):
print('%s click: button=%d, x=%d, y=%d, xdata=%f, ydata=%f' %

('double' if event.dblclick else 'single', event.button,
event.x, event.y, event.xdata, event.ydata))

cid = fig.canvas.mpl_connect('button_press_event', onclick)

The FigureCanvasBase.mpl_connect method returns a connection id (an integer), which can be
used to disconnect the callback via

410 Chapter 3. Interactive Figures

https://docs.python.org/3/c-api/veryhigh.html#c.PyOS_InputHook

Matplotlib, Release 3.4.3

fig.canvas.mpl_disconnect(cid)

Note: The canvas retains only weak references to instance methods used as callbacks. Therefore, you need
to retain a reference to instances owning such methods. Otherwise the instance will be garbage-collected
and the callback will vanish.

This does not affect free functions used as callbacks.

Here are the events that you can connect to, the class instances that are sent back to you when the event
occurs, and the event descriptions:

Event name Class Description
'button_press_event' MouseEvent mouse button is pressed
'but-
ton_release_event'

MouseEvent mouse button is released

'close_event' CloseEvent figure is closed
'draw_event' DrawEvent canvas has been drawn (but screen widget not updated yet)
'key_press_event' KeyEvent key is pressed
'key_release_event' KeyEvent key is released
'motion_notify_event' MouseEvent mouse moves
'pick_event' PickEvent artist in the canvas is selected
'resize_event' ResizeEvent figure canvas is resized
'scroll_event' MouseEvent mouse scroll wheel is rolled
'figure_enter_event' Location-

Event
mouse enters a new figure

'figure_leave_event' Location-
Event

mouse leaves a figure

'axes_enter_event' Location-
Event

mouse enters a new axes

'axes_leave_event' Location-
Event

mouse leaves an axes

Note: When connecting to 'key_press_event' and 'key_release_event' events, you may encounter inconsis-
tencies between the different user interface toolkits that Matplotlib works with. This is due to inconsisten-
cies/limitations of the user interface toolkit. The following table shows some basic examples of what you
may expect to receive as key(s) from the different user interface toolkits, where a comma separates different
keys:

3.2. Event handling and picking 411

Matplotlib, Release 3.4.3

Key(s)
Pressed

WxPython Qt WebAgg Gtk Tkinter

Shift+2 shift, shift+2 shift, " shift, " shift, " shift, "
Shift+F1 shift, shift+f1 shift, shift+f1 shift, shift+f1 shift, shift+f1 shift, shift+f1
Shift shift shift shift shift shift
Control control control control control control
Alt alt alt alt alt alt
AltGr Nothing Nothing alt iso_level3_shift iso_level3_shift
Cap-
sLock

caps_lock caps_lock caps_lock caps_lock caps_lock

A a a A A A
a a a a a a
Shift+a shift, A shift, A shift, A shift, A shift, A
Shift+A shift, A shift, A shift, a shift, a shift, a
Ctrl+Shift+Altcontrol,

ctrl+shift,
ctrl+alt

control,
ctrl+shift,
ctrl+meta

control,
ctrl+shit,
ctrl+meta

control,
ctrl+shift,
ctrl+meta

control,
ctrl+shift,
ctrl+meta

Ctrl+Shift+acontrol,
ctrl+shift,
ctrl+A

control,
ctrl+shift,
ctrl+A

control,
ctrl+shit,
ctrl+A

control,
ctrl+shift,
ctrl+A

control,
ctrl+shift,
ctrl+a

Ctrl+Shift+Acontrol,
ctrl+shift,
ctrl+A

control,
ctrl+shift,
ctrl+A

control,
ctrl+shit,
ctrl+a

control,
ctrl+shift,
ctrl+a

control,
ctrl+shift,
ctrl+a

F1 f1 f1 f1 f1 f1
Ctrl+F1 control,

ctrl+f1
control, ctrl+f1 control, ctrl+f1 control, ctrl+f1 control, ctrl+f1

Matplotlib attaches some keypress callbacks by default for interactivity; they are documented in the Naviga-
tion Keyboard Shortcuts section.

3.2.2 Event attributes

All Matplotlib events inherit from the base class matplotlib.backend_bases.Event, which stores
the attributes:

name

the event name

canvas

the FigureCanvas instance generating the event

guiEvent

the GUI event that triggered the Matplotlib event

412 Chapter 3. Interactive Figures

Matplotlib, Release 3.4.3

The most common events that are the bread and butter of event handling are key press/release events and
mouse press/release and movement events. The KeyEvent and MouseEvent classes that handle these
events are both derived from the LocationEvent, which has the following attributes

x, y
mouse x and y position in pixels from left and bottom of canvas

inaxes

the Axes instance over which the mouse is, if any; else None

xdata, ydata
mouse x and y position in data coordinates, if the mouse is over an axes

Let's look a simple example of a canvas, where a simple line segment is created every time amouse is pressed:

from matplotlib import pyplot as plt

class LineBuilder:
def __init__(self, line):

self.line = line
self.xs = list(line.get_xdata())
self.ys = list(line.get_ydata())
self.cid = line.figure.canvas.mpl_connect('button_press_event', self)

def __call__(self, event):
print('click', event)
if event.inaxes!=self.line.axes: return
self.xs.append(event.xdata)
self.ys.append(event.ydata)
self.line.set_data(self.xs, self.ys)
self.line.figure.canvas.draw()

fig, ax = plt.subplots()
ax.set_title('click to build line segments')
line, = ax.plot([0], [0]) # empty line
linebuilder = LineBuilder(line)

plt.show()

The MouseEvent that we just used is a LocationEvent, so we have access to the data and pixel co-
ordinates via (event.x, event.y) and (event.xdata, event.ydata). In addition to the
LocationEvent attributes, it also has

button

the button pressed: None, MouseButton, 'up', or 'down' (up and down are used for scroll
events)

key

the key pressed: None, any character, 'shift', 'win', or 'control'

3.2. Event handling and picking 413

Matplotlib, Release 3.4.3

Draggable rectangle exercise

Write draggable rectangle class that is initialized with a Rectangle instance but will move its xy location
when dragged. Hint: you will need to store the original xy location of the rectangle which is stored as rect.xy
and connect to the press, motion and release mouse events. When the mouse is pressed, check to see if the
click occurs over your rectangle (see Rectangle.contains) and if it does, store the rectangle xy and
the location of the mouse click in data coords. In the motion event callback, compute the deltax and deltay of
the mouse movement, and add those deltas to the origin of the rectangle you stored. The redraw the figure.
On the button release event, just reset all the button press data you stored as None.

Here is the solution:

import numpy as np
import matplotlib.pyplot as plt

class DraggableRectangle:
def __init__(self, rect):

self.rect = rect
self.press = None

def connect(self):
"""Connect to all the events we need."""
self.cidpress = self.rect.figure.canvas.mpl_connect(

'button_press_event', self.on_press)
self.cidrelease = self.rect.figure.canvas.mpl_connect(

'button_release_event', self.on_release)
self.cidmotion = self.rect.figure.canvas.mpl_connect(

'motion_notify_event', self.on_motion)

def on_press(self, event):
"""Check whether mouse is over us; if so, store some data."""
if event.inaxes != self.rect.axes:

return
contains, attrd = self.rect.contains(event)
if not contains:

return
print('event contains', self.rect.xy)
self.press = self.rect.xy, (event.xdata, event.ydata)

def on_motion(self, event):
"""Move the rectangle if the mouse is over us."""
if self.press is None or event.inaxes != self.rect.axes:

return
(x0, y0), (xpress, ypress) = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
print(f'x0={x0}, xpress={xpress}, event.xdata={event.xdata}, '
f'dx={dx}, x0+dx={x0+dx}')
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

self.rect.figure.canvas.draw()

(continues on next page)

414 Chapter 3. Interactive Figures

Matplotlib, Release 3.4.3

(continued from previous page)

def on_release(self, event):
"""Clear button press information."""
self.press = None
self.rect.figure.canvas.draw()

def disconnect(self):
"""Disconnect all callbacks."""
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig, ax = plt.subplots()
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:

dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

Extra credit: Use blitting to make the animated drawing faster and smoother.

Extra credit solution:

Draggable rectangle with blitting.
import numpy as np
import matplotlib.pyplot as plt

class DraggableRectangle:
lock = None # only one can be animated at a time

def __init__(self, rect):
self.rect = rect
self.press = None
self.background = None

def connect(self):
"""Connect to all the events we need."""
self.cidpress = self.rect.figure.canvas.mpl_connect(

'button_press_event', self.on_press)
self.cidrelease = self.rect.figure.canvas.mpl_connect(

'button_release_event', self.on_release)
self.cidmotion = self.rect.figure.canvas.mpl_connect(

'motion_notify_event', self.on_motion)

def on_press(self, event):
"""Check whether mouse is over us; if so, store some data."""
if (event.inaxes != self.rect.axes

or DraggableRectangle.lock is not None):
return

(continues on next page)

3.2. Event handling and picking 415

Matplotlib, Release 3.4.3

(continued from previous page)
contains, attrd = self.rect.contains(event)
if not contains:

return
print('event contains', self.rect.xy)
self.press = self.rect.xy, (event.xdata, event.ydata)
DraggableRectangle.lock = self

draw everything but the selected rectangle and store the pixel␣
↪buffer

canvas = self.rect.figure.canvas
axes = self.rect.axes
self.rect.set_animated(True)
canvas.draw()
self.background = canvas.copy_from_bbox(self.rect.axes.bbox)

now redraw just the rectangle
axes.draw_artist(self.rect)

and blit just the redrawn area
canvas.blit(axes.bbox)

def on_motion(self, event):
"""Move the rectangle if the mouse is over us."""
if (event.inaxes != self.rect.axes

or DraggableRectangle.lock is not self):
return

(x0, y0), (xpress, ypress) = self.press
dx = event.xdata - xpress
dy = event.ydata - ypress
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)

canvas = self.rect.figure.canvas
axes = self.rect.axes
restore the background region
canvas.restore_region(self.background)

redraw just the current rectangle
axes.draw_artist(self.rect)

blit just the redrawn area
canvas.blit(axes.bbox)

def on_release(self, event):
"""Clear button press information."""
if DraggableRectangle.lock is not self:

return

self.press = None
DraggableRectangle.lock = None

turn off the rect animation property and reset the background
(continues on next page)

416 Chapter 3. Interactive Figures

Matplotlib, Release 3.4.3

(continued from previous page)
self.rect.set_animated(False)
self.background = None

redraw the full figure
self.rect.figure.canvas.draw()

def disconnect(self):
"""Disconnect all callbacks."""
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)

fig, ax = plt.subplots()
rects = ax.bar(range(10), 20*np.random.rand(10))
drs = []
for rect in rects:

dr = DraggableRectangle(rect)
dr.connect()
drs.append(dr)

plt.show()

3.2.3 Mouse enter and leave

If you want to be notified when the mouse enters or leaves a figure or axes, you can connect to the figure/axes
enter/leave events. Here is a simple example that changes the colors of the axes and figure background that
the mouse is over:

"""
Illustrate the figure and axes enter and leave events by changing the
frame colors on enter and leave
"""
import matplotlib.pyplot as plt

def enter_axes(event):
print('enter_axes', event.inaxes)
event.inaxes.patch.set_facecolor('yellow')
event.canvas.draw()

def leave_axes(event):
print('leave_axes', event.inaxes)
event.inaxes.patch.set_facecolor('white')
event.canvas.draw()

def enter_figure(event):
print('enter_figure', event.canvas.figure)
event.canvas.figure.patch.set_facecolor('red')
event.canvas.draw()

def leave_figure(event):
(continues on next page)

3.2. Event handling and picking 417

Matplotlib, Release 3.4.3

(continued from previous page)
print('leave_figure', event.canvas.figure)
event.canvas.figure.patch.set_facecolor('grey')
event.canvas.draw()

fig1, axs = plt.subplots(2)
fig1.suptitle('mouse hover over figure or axes to trigger events')

fig1.canvas.mpl_connect('figure_enter_event', enter_figure)
fig1.canvas.mpl_connect('figure_leave_event', leave_figure)
fig1.canvas.mpl_connect('axes_enter_event', enter_axes)
fig1.canvas.mpl_connect('axes_leave_event', leave_axes)

fig2, axs = plt.subplots(2)
fig2.suptitle('mouse hover over figure or axes to trigger events')

fig2.canvas.mpl_connect('figure_enter_event', enter_figure)
fig2.canvas.mpl_connect('figure_leave_event', leave_figure)
fig2.canvas.mpl_connect('axes_enter_event', enter_axes)
fig2.canvas.mpl_connect('axes_leave_event', leave_axes)

plt.show()

3.2.4 Object picking

You can enable picking by setting the picker property of an Artist (such as Line2D, Text, Patch,
Polygon, AxesImage, etc.)

The picker property can be set using various types:

None

Picking is disabled for this artist (default).

boolean

If True, then picking will be enabled and the artist will fire a pick event if the mouse event
is over the artist.

callable

If picker is a callable, it is a user supplied function which determines whether the artist
is hit by the mouse event. The signature is hit, props = picker(artist,
mouseevent) to determine the hit test. If the mouse event is over the artist, return
hit = True; props is a dictionary of properties that become additional attributes on
the PickEvent.

The artist's pickradius property can additionally be set to a tolerance value in points (there are 72 points
per inch) that determines how far the mouse can be and still trigger a mouse event.

After you have enabled an artist for picking by setting the picker property, you need to connect a handler
to the figure canvas pick_event to get pick callbacks on mouse press events. The handler typically looks like

418 Chapter 3. Interactive Figures

Matplotlib, Release 3.4.3

def pick_handler(event):
mouseevent = event.mouseevent
artist = event.artist
now do something with this...

The PickEvent passed to your callback always has the following attributes:

mouseevent

The MouseEvent that generate the pick event. See event-attributes for a list of useful
attributes on the mouse event.

artist

The Artist that generated the pick event.

Additionally, certain artists like Line2D and PatchCollection may attach additional metadata, like
the indices of the data that meet the picker criteria (e.g., all the points in the line that are within the specified
pickradius tolerance).

Simple picking example

In the example below, we enable picking on the line and set a pick radius tolerance in points. The onpick
callback function will be called when the pick event it within the tolerance distance from the line, and has
the indices of the data vertices that are within the pick distance tolerance. Our onpick callback function
simply prints the data that are under the pick location. Different Matplotlib Artists can attach different data
to the PickEvent. For example, Line2D attaches the ind property, which are the indices into the line data
under the pick point. See Line2D.pick for details on the PickEvent properties of the line.

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.set_title('click on points')

line, = ax.plot(np.random.rand(100), 'o',
picker=True, pickradius=5) # 5 points tolerance

def onpick(event):
thisline = event.artist
xdata = thisline.get_xdata()
ydata = thisline.get_ydata()
ind = event.ind
points = tuple(zip(xdata[ind], ydata[ind]))
print('onpick points:', points)

fig.canvas.mpl_connect('pick_event', onpick)

plt.show()

3.2. Event handling and picking 419

Matplotlib, Release 3.4.3

Picking exercise

Create a data set of 100 arrays of 1000 Gaussian random numbers and compute the sample mean and standard
deviation of each of them (hint: NumPy arrays have a mean and std method) and make a xy marker plot of
the 100 means vs. the 100 standard deviations. Connect the line created by the plot command to the pick
event, and plot the original time series of the data that generated the clicked on points. If more than one point
is within the tolerance of the clicked on point, you can use multiple subplots to plot the multiple time series.

Exercise solution:

"""
Compute the mean and stddev of 100 data sets and plot mean vs. stddev.
When you click on one of the (mean, stddev) points, plot the raw dataset
that generated that point.
"""

import numpy as np
import matplotlib.pyplot as plt

X = np.random.rand(100, 1000)
xs = np.mean(X, axis=1)
ys = np.std(X, axis=1)

fig, ax = plt.subplots()
ax.set_title('click on point to plot time series')
line, = ax.plot(xs, ys, 'o', picker=True, pickradius=5) # 5 points tolerance

def onpick(event):
if event.artist != line:

return
n = len(event.ind)
if not n:

return
fig, axs = plt.subplots(n, squeeze=False)
for dataind, ax in zip(event.ind, axs.flat):

ax.plot(X[dataind])
ax.text(0.05, 0.9,

f"$\\mu$={xs[dataind]:1.3f}\n$\\sigma$={ys[dataind]:1.3f}",
transform=ax.transAxes, verticalalignment='top')

ax.set_ylim(-0.5, 1.5)
fig.show()
return True

fig.canvas.mpl_connect('pick_event', onpick)
plt.show()

420 Chapter 3. Interactive Figures

Matplotlib, Release 3.4.3

3.3 IPython integration

We recommend using IPython for an interactive shell. In addition to all of its features (improved tab-
completion, magics, multiline editing, etc), it also ensures that the GUI toolkit event loop is properly in-
tegrated with the command line (see Command Prompt Integration).

In this example, we create and modify a figure via an IPython prompt. The figure displays in a Qt5Agg GUI
window. To configure the integration and enable interactive mode use the %matplotlib magic:

In [1]: %matplotlib
Using matplotlib backend: Qt5Agg

In [2]: import matplotlib.pyplot as plt

Create a new figure window:

In [3]: fig, ax = plt.subplots()

Add a line plot of the data to the window:

In [4]: ln, = ax.plot(range(5))

Change the color of the line from blue to orange:

In [5]: ln.set_color('orange')

If you wish to disable automatic redrawing of the plot:

In [6]: plt.ioff()

If you wish to re-enable automatic redrawing of the plot:

In [7]: plt.ion()

In recent versions of Matplotlib and IPython, it is sufficient to import matplotlib.pyplot and
call pyplot.ion. Using the % magic is guaranteed to work in all versions of Matplotlib and IPython.

3.4 Interactive mode

pyplot.ion Enable interactive mode.
pyplot.ioff Disable interactive mode.
pyplot.isinteractive Return whether plots are updated after every plot-

ting command.

pyplot.show Display all open figures.
pyplot.pause Run the GUI event loop for interval seconds.

3.4. Interactive mode 421

Matplotlib, Release 3.4.3

Interactive mode controls:

• whether created figures are automatically shown

• whether changes to artists automatically trigger re-drawing existing figures

• when pyplot.show() returns if given no arguments: immediately, or after all of the figures have
been closed

If in interactive mode:

• newly created figures will be displayed immediately

• figures will automatically redraw when elements are changed

• pyplot.show() displays the figures and immediately returns

If not in interactive mode:

• newly created figures and changes to figures are not displayed until
– pyplot.show() is called

– pyplot.pause() is called

– FigureCanvasBase.flush_events() is called

• pyplot.show() runs the GUI event loop and does not return until all the plot windows are closed

If you are in non-interactive mode (or created figures while in non-interactive mode) you may need to ex-
plicitly call pyplot.show to display the windows on your screen. If you only want to run the GUI event
loop for a fixed amount of time, you can use pyplot.pause. This will block the progress of your code as
if you had called time.sleep, ensure the current window is shown and re-drawn if needed, and run the
GUI event loop for the specified period of time.

The GUI event loop being integrated with your command prompt and the figures being in interactive mode
are independent of each other. If you use pyplot.ion but have not arranged for the event loop integration,
your figures will appear but will not be interactive while the prompt is waiting for input. You will not be
able to pan/zoom and the figure may not even render (the window might appear black, transparent, or as a
snapshot of the desktop under it). Conversely, if you configure the event loop integration, displayed figures
will be responsive while waiting for input at the prompt, regardless of pyplot's "interactive mode".

Nomatter what combination of interactive mode setting and event loop integration, figures will be responsive
if you use pyplot.show(block=True), pyplot.pause, or run the GUI main loop in some other
way.

Warning: Using figure.Figure.show it is possible to display a figure on the screen without
starting the event loop and without being in interactive mode. This may work (depending on the GUI
toolkit) but will likely result in a non-responsive figure.

422 Chapter 3. Interactive Figures

https://docs.python.org/3/library/time.html#time.sleep

Matplotlib, Release 3.4.3

3.5 Default UI

The windows created by pyplot have an interactive toolbar with navigation buttons and a readout of the
data values the cursor is pointing at. A number of helpful keybindings are registered by default.

3.5.1 Navigation Keyboard Shortcuts

The following table holds all the default keys, which can be overwritten by use of your matplotlibrc.

Command Default key binding and rcParam
Home/Reset rcParams["keymap.home"] (default: ['h', 'r', 'home'])
Back rcParams["keymap.back"] (default: ['left', 'c',

'backspace', 'MouseButton.BACK'])
Forward rcParams["keymap.forward"] (default: ['right', 'v',

'MouseButton.FORWARD'])
Pan/Zoom rcParams["keymap.pan"] (default: ['p'])
Zoom-to-rect rcParams["keymap.zoom"] (default: ['o'])
Save rcParams["keymap.save"] (default: ['s', 'ctrl+s'])
Toggle fullscreen rcParams["keymap.fullscreen"] (default: ['f', 'ctrl+f'])
Toggle major grids rcParams["keymap.grid"] (default: ['g'])
Toggle minor grids rcParams["keymap.grid_minor"] (default: ['G'])
Toggle x axis scale
(log/linear)

rcParams["keymap.xscale"] (default: ['k', 'L'])

Toggle y axis scale
(log/linear)

rcParams["keymap.yscale"] (default: ['l'])

Close Figure rcParams["keymap.quit"] (default: ['ctrl+w', 'cmd+w',
'q'])

Constrain pan/zoom
to x axis

hold x when panning/zooming with mouse

Constrain pan/zoom
to y axis

hold y when panning/zooming with mouse

Preserve aspect ratio hold CONTROL when panning/zooming with mouse

3.6 Other Python prompts

Interactive mode works in the default Python prompt:

>>> import matplotlib.pyplot as plt
>>> plt.ion()
>>>

however this does not ensure that the event hook is properly installed and your figures may not be responsive.
Please consult the documentation of your GUI toolkit for details.

3.5. Default UI 423

../tutorials/introductory/customizing.html?highlight=keymap.home#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=keymap.back#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=keymap.forward#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=keymap.pan#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=keymap.zoom#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=keymap.save#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=keymap.fullscreen#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=keymap.grid#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=keymap.grid_minor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=keymap.xscale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=keymap.yscale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=keymap.quit#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

3.6.1 Jupyter Notebooks / Lab

Note: To get the interactive functionality described here, you must be using an interactive backend. The
default backend in notebooks, the inline backend, is not. backend_inline renders the figure once and
inserts a static image into the notebook when the cell is executed. Because the images are static, they can
not be panned / zoomed, take user input, or be updated from other cells.

To get interactive figures in the 'classic' notebook or Jupyter lab, use the ipympl backend (must be installed
separately) which uses the ipywidget framework. If ipympl is installed use the magic:

%matplotlib widget

to select and enable it.

If you only need to use the classic notebook, you can use

%matplotlib notebook

which uses thebackend_nbagg backend provided byMatplotlib; however, nbagg does not work in Jupyter
Lab.

GUIs + Jupyter

You can also use one of the non-ipympl GUI backends in a Jupyter Notebook. If you are running your
Jupyter kernel locally, the GUI window will spawn on your desktop adjacent to your web browser. If you
run your notebook on a remote server, the kernel will try to open the GUI window on the remote computer.
Unless you have arranged to forward the xserver back to your desktop, you will not be able to see or interact
with the window. It may also raise an exception.

3.6.2 PyCharm, Spyder, and VSCode

Many IDEs have built-in integration with Matplotlib, please consult their documentation for configuration
details.

424 Chapter 3. Interactive Figures

https://github.com/matplotlib/ipympl

CHAPTER

FOUR

WHAT'S NEW?

425

Matplotlib, Release 3.4.3

426 Chapter 4. What's new?

CHAPTER

FIVE

WHAT'S NEW IN MATPLOTLIB 3.4.0

For a list of all of the issues and pull requests since the last revision, see the GitHub Stats.

Table of Contents

• What's new?

• What's new in Matplotlib 3.4.0

– Figure and Axes creation / management

∗ New subfigure functionality

∗ Single-line string notation for subplot_mosaic

∗ Changes to behavior of Axes creation methods (gca, add_axes, add_subplot)

∗ add_subplot/add_axes gained an axes_class parameter

∗ Subplot and subplot2grid can now work with constrained layout

– Plotting methods

∗ axline supports transform parameter

∗ New automatic labeling for bar charts

∗ A list of hatches can be specified to bar and barh

∗ Setting BarContainer orientation

∗ Contour plots now default to using ScalarFormatter

∗ Axes.errorbar cycles non-color properties correctly

∗ errorbar errorevery parameter matches markevery

∗ hexbin supports data reference for C parameter

∗ Support callable for formatting of Sankey labels

∗ Axes.spines access shortcuts

∗ New stairs method and StepPatch artist

∗ Added orientation parameter for stem plots

427

Matplotlib, Release 3.4.3

∗ Angles on Bracket arrow styles

∗ TickedStroke patheffect

– Colors and colormaps

∗ Collection color specification and mapping

∗ Transparency (alpha) can be set as an array in collections

∗ pcolormesh has improved transparency handling by enabling snapping

∗ IPython representations for Colormap objects

∗ Colormap.set_extremes and Colormap.with_extremes

∗ Get under/over/bad colors of Colormap objects

∗ New cm.unregister_cmap function

∗ New CenteredNorm for symmetrical data around a center

∗ New FuncNorm for arbitrary normalizations

∗ GridSpec-based colorbars can now be positioned above or to the left of the main axes

– Titles, ticks, and labels

∗ supxlabel and supylabel

∗ Shared-axes subplots tick label visibility is now correct for top or left labels

∗ An iterable object with labels can be passed to Axes.plot

– Fonts and Text

∗ Text transform can rotate text direction

∗ matplotlib.mathtext now supports overset and underset LaTeX symbols

∗ math_fontfamily parameter to change Text font family

∗ TextArea/AnchoredText support horizontalalignment

∗ PDF supports URLs on Text artists

– rcParams improvements

∗ New rcParams for dates: set converter and whether to use interval_multiples

∗ Date formatters now respect usetex rcParam

∗ Setting image.cmap to a Colormap

∗ Tick and tick label colors can be set independently using rcParams

– 3D Axes improvements

∗ Errorbar method in 3D Axes

∗ Stem plots in 3D Axes

428 Chapter 5. What's new in Matplotlib 3.4.0

Matplotlib, Release 3.4.3

∗ 3D Collection properties are now modifiable

∗ Panning in 3D Axes

– Interactive tool improvements

∗ New RangeSlider widget

∗ Sliders can now snap to arbitrary values

∗ Pausing and Resuming Animations

– Sphinx extensions

∗ plot_directive caption option

– Backend-specific improvements

∗ Consecutive rasterized draws now merged

∗ Support raw/rgba frame format in FFMpegFileWriter

∗ nbAgg/WebAgg support middle-click and double-click

∗ nbAgg support binary communication

∗ Indexed color for PNG images in PDF files when possible

∗ Improved font subsettings in PDF/PS

∗ Kerning added to strings in PDFs

∗ Fully-fractional HiDPI in QtAgg

∗ wxAgg supports fullscreen toggle

5.1 Figure and Axes creation / management

5.1.1 New subfigure functionality

New figure.Figure.add_subfigure and figure.Figure.subfigures functionalities allow
creating virtual figures within figures. Similar nesting was previously done with nested gridspecs (see
/gallery/subplots_axes_and_figures/gridspec_nested). However, this did not allow localized figure artists
(e.g., a colorbar or suptitle) that only pertained to each subgridspec.

The new methods figure.Figure.add_subfigure and figure.Figure.subfigures are
meant to rhyme with figure.Figure.add_subplot and figure.Figure.subplots and have
most of the same arguments.

See /gallery/subplots_axes_and_figures/subfigures for further details.

Note: The subfigure functionality is experimental API as of v3.4.

5.1. Figure and Axes creation / management 429

Matplotlib, Release 3.4.3

Figure suptitle

0 10 20 30
x-label

0

5

10

15

20

25

30

y-
la

be
l

Title

0 10 20 30
x-label

y-
la

be
l

Title

2 0 2

Left plots

0
10
20
30

0
10
20
30

yl
ab

el

0 5 10 15 20 25 30
xlabel

0
10
20
30 2

0

2

Right plots

5.1.2 Single-line string notation for subplot_mosaic

Figure.subplot_mosaic and pyplot.subplot_mosaic now accept a single-line string, using
semicolons to delimit rows. Namely,

plt.subplot_mosaic(
"""
AB
CC
""")

may be written as the shorter:

plt.subplot_mosaic("AB;CC")

5.1.3 Changes to behavior of Axes creation methods (gca, add_axes,
add_subplot)

The behavior of the functions to create new Axes (pyplot.axes, pyplot.subplot, figure.
Figure.add_axes, figure.Figure.add_subplot) has changed. In the past, these functions
would detect if you were attempting to create Axes with the same keyword arguments as already-existing
Axes in the current Figure, and if so, they would return the existing Axes. Now, pyplot.axes, figure.
Figure.add_axes, and figure.Figure.add_subplot will always create new Axes. pyplot.
subplot will continue to reuse an existing Axes with a matching subplot spec and equal kwargs.

Correspondingly, the behavior of the functions to get the current Axes (pyplot.gca, figure.Figure.
gca) has changed. In the past, these functions accepted keyword arguments. If the keyword arguments
matched an already-existing Axes, then that Axes would be returned, otherwise new Axes would be created
with those keyword arguments. Now, the keyword arguments are only considered if there are no Axes at all
in the current figure. In a future release, these functions will not accept keyword arguments at all.

430 Chapter 5. What's new in Matplotlib 3.4.0

Matplotlib, Release 3.4.3

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

5.1.4 add_subplot/add_axes gained an axes_class parameter

In particular, mpl_toolkits Axes subclasses can now be idiomatically used using, e.g., fig.
add_subplot(axes_class=mpl_toolkits.axislines.Axes)

5.1.5 Subplot and subplot2grid can now work with constrained layout

constrained_layout depends on a single GridSpec for each logical layout on a figure. Previously,
pyplot.subplot and pyplot.subplot2grid added a new GridSpec each time they were called
and were therefore incompatible with constrained_layout.

Now subplot attempts to reuse the GridSpec if the number of rows and columns is the same as the
top level GridSpec already in the figure, i.e., plt.subplot(2, 1, 2) will use the same GridSpec as
plt.subplot(2, 1, 1) and the constrained_layout=True option to Figure will work.

In contrast, mixing nrows and ncols will not work with constrained_layout: plt.subplot(2,
2, 1) followed by plt.subplots(2, 1, 2) will still produce two GridSpecs, and con-
strained_layout=True will give bad results. In order to get the desired effect, the second call can
specify the cells the second Axes is meant to cover: plt.subplots(2, 2, (2, 4)), or the more
Pythonic plt.subplot2grid((2, 2), (0, 1), rowspan=2) can be used.

5.1. Figure and Axes creation / management 431

Matplotlib, Release 3.4.3

5.2 Plotting methods

5.2.1 axline supports transform parameter

axline now supports the transform parameter, which applies to the points xy1, xy2. The slope (if given) is
always in data coordinates.

For example, this can be used with ax.transAxes for drawing lines with a fixed slope. In the following
plot, the line appears through the same point on both Axes, even though they show different data limits.

fig, axs = plt.subplots(1, 2)

for i, ax in enumerate(axs):
ax.axline((0.25, 0), slope=2, transform=ax.transAxes)
ax.set(xlim=(i, i+5), ylim=(i, i+5))

0 2 4
0

1

2

3

4

5

2 4 6
1

2

3

4

5

6

432 Chapter 5. What's new in Matplotlib 3.4.0

Matplotlib, Release 3.4.3

5.2.2 New automatic labeling for bar charts

A new Axes.bar_label method has been added for auto-labeling bar charts.

Fig. 1: Example of the new automatic labeling.

5.2.3 A list of hatches can be specified to bar and barh

Similar to some other rectangle properties, it is now possible to hand a list of hatch styles to bar and barh
in order to create bars with different hatch styles, e.g.

5.2.4 Setting BarContainer orientation

BarContainer now accepts a new string argument orientation. It can be either 'vertical' or 'hor-
izontal', default is None.

5.2. Plotting methods 433

/gallery/lines_bars_and_markers/bar_label_demo.html

Matplotlib, Release 3.4.3

0.75 1.00 1.25 1.50 1.75 2.00 2.25
0.0

0.5

1.0

1.5

2.0

2.5

3.0

5.2.5 Contour plots now default to using ScalarFormatter

Pass fmt="%1.3f" to the contouring call to restore the old default label format.

5.2.6 Axes.errorbar cycles non-color properties correctly

Formerly, Axes.errorbar incorrectly skipped the Axes property cycle if a color was explicitly specified,
even if the property cycler was for other properties (such as line style). Now, Axes.errorbarwill advance
the Axes property cycle as done for Axes.plot, i.e., as long as all properties in the cycler are not explicitly
passed.

For example, the following will cycle through the line styles:

x = np.arange(0.1, 4, 0.5)
y = np.exp(-x)
offsets = [0, 1]

plt.rcParams['axes.prop_cycle'] = plt.cycler('linestyle', ['-', '--'])

fig, ax = plt.subplots()
for offset in offsets:

ax.errorbar(x, y + offset, xerr=0.1, yerr=0.3, fmt='tab:blue')

434 Chapter 5. What's new in Matplotlib 3.4.0

Matplotlib, Release 3.4.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.5

1.0

1.5

2.0

5.2.7 errorbar errorevery parameter matches markevery

Similar to the markevery parameter to plot, the errorevery parameter of errorbar now accept slices and
NumPy fancy indexes (which must match the size of x).

5.2.8 hexbin supports data reference for C parameter

Aswith the x and y parameters, Axes.hexbin now supports passing theC parameter using a data reference.

data = {
'a': np.random.rand(1000),
'b': np.random.rand(1000),
'c': np.random.rand(1000),

}

fig, ax = plt.subplots()
ax.hexbin('a', 'b', C='c', data=data, gridsize=10)

5.2. Plotting methods 435

Matplotlib, Release 3.4.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3
errorevery unspecified

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3
errorevery=[False, True, True, False, True] * 3

5.2.9 Support callable for formatting of Sankey labels

The format parameter of matplotlib.sankey.Sankey can now accept callables.

This allows the use of an arbitrary function to label flows, for example allowing the mapping of numbers to
emoji.

5.2.10 Axes.spines access shortcuts

Axes.spines is now a dedicated container class Spines for a set of Spines instead of an Ordered-
Dict. On top of dict-like access, Axes.spines now also supports some pandas.Series-like features.

Accessing single elements by item or by attribute:

ax.spines['top'].set_visible(False)
ax.spines.top.set_visible(False)

Accessing a subset of items:

ax.spines[['top', 'right']].set_visible(False)

Accessing all items simultaneously:

436 Chapter 5. What's new in Matplotlib 3.4.0

https://docs.python.org/3/library/functions.html#format

Matplotlib, Release 3.4.3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ax.spines[:].set_visible(False)

5.2.11 New stairs method and StepPatch artist

pyplot.stairs and the underlying artist StepPatch provide a cleaner interface for plotting stepwise
constant functions for the common case that you know the step edges. This supersedes many use cases of
pyplot.step, for instance when plotting the output of numpy.histogram.

For both the artist and the function, the x-like edges input is one element longer than the y-like values input

See /gallery/lines_bars_and_markers/stairs_demo for examples.

5.2.12 Added orientation parameter for stem plots

By default, stem lines are vertical. They can be changed to horizontal using the orientation parameter of
Axes.stem or pyplot.stem:

5.2. Plotting methods 437

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram

Matplotlib, Release 3.4.3

Sankey flows measured in cats
 = 10.0

5.2.13 Angles on Bracket arrow styles

Angles specified on the Bracket arrow styles (]-[,]-, -[, or |-| passed to arrowstyle parameter of Fanc-
yArrowPatch) are now applied. Previously, the angleA and angleB options were allowed, but did nothing.

5.2.14 TickedStroke patheffect

The new TickedStroke patheffect can be used to produce lines with a ticked style. This can be used to,
e.g., distinguish the valid and invalid sides of the constraint boundaries in the solution space of optimizations.

5.3 Colors and colormaps

5.3.1 Collection color specification and mapping

Reworking the handling of color mapping and the keyword arguments for facecolor and edgecolor has re-
sulted in three behavior changes:

1. Color mapping can be turned off by calling Collection.set_array(None). Previously, this
would have no effect.

438 Chapter 5. What's new in Matplotlib 3.4.0

Matplotlib, Release 3.4.3

0 2 4 6 8 10
0

100

200

300

400

500

2. When a mappable array is set, with facecolor='none' and edgecolor='face', both the
faces and the edges are left uncolored. Previously the edges would be color-mapped.

3. When a mappable array is set, with facecolor='none' and edgecolor='red', the edges are
red. This addresses Issue #1302. Previously the edges would be color-mapped.

5.3.2 Transparency (alpha) can be set as an array in collections

Previously, the alpha value controlling transparency in collections could be specified only as a scalar applied
to all elements in the collection. For example, all the markers in a scatter plot, or all the quadrilaterals
in a pcolormesh plot, would have the same alpha value.

Now it is possible to supply alpha as an array with one value for each element (marker, quadrilateral, etc.)
in a collection.

5.3. Colors and colormaps 439

Matplotlib, Release 3.4.3

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

1

2

3

4

5

6

5.3.3 pcolormesh has improved transparency handling by enabling snapping

Due to how the snapping keyword argument was getting passed to the Agg backend, previous versions
of Matplotlib would appear to show lines between the grid edges of a mesh with transparency. This ver-
sion now applies snapping by default. To restore the old behavior (e.g., for test images), you may set
rcParams["pcolormesh.snap"] (default: True) to False.

Note that there are lines between the grid boundaries of the main plot which are not the same transparency.
The colorbar also shows these lines when a transparency is added to the colormap because internally it uses
pcolormesh to draw the colorbar. With snapping on by default (below), the lines at the grid boundaries
disappear.

440 Chapter 5. What's new in Matplotlib 3.4.0

../tutorials/introductory/customizing.html?highlight=pcolormesh.snap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/constants.html#False

Matplotlib, Release 3.4.3

0.0 0.2 0.4 0.6 0.8 1.0
1

0

1

2

3

4

]-[,angleA=-30,angleB=30

]-[,angleA=60,angleB=-60

|-|,angleA=-30,angleB=30

|-|,angleA=60,angleB=-60

5.3.4 IPython representations for Colormap objects

The matplotlib.colors.Colormap object now has image representations for IPython / Jupyter back-
ends. Cells returning a colormap on the last line will display an image of the colormap.

5.3.5 Colormap.set_extremes and Colormap.with_extremes

Because the Colormap.set_bad, Colormap.set_under and Colormap.set_over methods
modify the colormap in place, the user must be careful to first make a copy of the colormap if setting the
extreme colors e.g. for a builtin colormap.

The new Colormap.with_extremes(bad=..., under=..., over=...) can be used to first
copy the colormap and set the extreme colors on that copy.

The new Colormap.set_extremes method is provided for API symmetry with Colormap.
with_extremes, but note that it suffers from the same issue as the earlier individual setters.

5.3. Colors and colormaps 441

Matplotlib, Release 3.4.3

442 Chapter 5. What's new in Matplotlib 3.4.0

/gallery/misc/tickedstroke_demo.html

Matplotlib, Release 3.4.3

0 1 2 3 4
0

1

2

3

4
pcolormesh

0 1 2 3 4
0

1

2

3

4
color-mapped

0 1 2 3 4
0

1

2

3

4
c='k'

0 1 2 3 4
0

1

2

3

4
c=['r', 'g', 'b', 'c', 'm']

5.3.6 Get under/over/bad colors of Colormap objects

matplotlib.colors.Colormap now has methods get_under, get_over, get_bad for the col-
ors used for out-of-range and masked values.

5.3.7 New cm.unregister_cmap function

cm.unregister_cmap allows users to remove a colormap that they have previously registered.

5.3.8 New CenteredNorm for symmetrical data around a center

In cases where data is symmetrical around a center, for example, positive and negative anomalies around a
center zero, CenteredNorm is a new norm that automatically creates a symmetrical mapping around the
center. This norm is well suited to be combined with a divergent colormap which uses an unsaturated color
in its center.

If the center of symmetry is different from 0, it can be set with the vcenter argument. To manually set the
range of CenteredNorm, use the halfrange argument.

See Colormap Normalization for an example and more details about data normalization.

5.3. Colors and colormaps 443

Matplotlib, Release 3.4.3

0 2 4 6 8

0

2

4

6

8

Before (pcolormesh.snap = False)

20

40

60

80

100

5.3.9 New FuncNorm for arbitrary normalizations

The FuncNorm allows for arbitrary normalization using functions for the forward and inverse.

See Colormap Normalization for an example and more details about data normalization.

5.3.10 GridSpec-based colorbars can now be positioned above or to the left of the
main axes

... by passing location="top" or location="left" to the colorbar() call.

5.4 Titles, ticks, and labels

5.4.1 supxlabel and supylabel

It is possible to add x- and y-labels to a whole figure, analogous to FigureBase.suptitle using the
new FigureBase.supxlabel and FigureBase.supylabel methods.

444 Chapter 5. What's new in Matplotlib 3.4.0

Matplotlib, Release 3.4.3

0 2 4 6 8

0

2

4

6

8

After (default: pcolormesh.snap = True)

20

40

60

80

100

5.4.2 Shared-axes subplots tick label visibility is now correct for top or left labels

When calling subplots(..., sharex=True, sharey=True), Matplotlib automatically hides x
tick labels for Axes not in the first column and y tick labels for Axes not in the last row. This behavior is
incorrect if rcParams specify that Axes should be labeled on the top (rcParams["xtick.labeltop"]
= True) or on the right (rcParams["ytick.labelright"] = True).

Cases such as the following are now handled correctly (adjusting visibility as needed on the first row and last
column of Axes):

plt.rcParams["xtick.labelbottom"] = False
plt.rcParams["xtick.labeltop"] = True
plt.rcParams["ytick.labelleft"] = False
plt.rcParams["ytick.labelright"] = True

fig, axs = plt.subplots(2, 2, sharex=True, sharey=True)

5.4. Titles, ticks, and labels 445

Matplotlib, Release 3.4.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.80 2.80 0.83 1.22

0.46 0.15 1.65 0.97

2.14 0.18 -0.92 2.27

data centered around zero

2

1

0

1

2

5.4.3 An iterable object with labels can be passed to Axes.plot

When plotting multiple datasets by passing 2D data as y value to plot, labels for the datasets can be passed
as a list, the length matching the number of columns in y.

x = [1, 2, 3]

y = [[1, 2],
[2, 5],
[4, 9]]

plt.plot(x, y, label=['low', 'high'])
plt.legend()

446 Chapter 5. What's new in Matplotlib 3.4.0

Matplotlib, Release 3.4.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.80 2.80 0.83 1.22

0.46 0.15 1.65 0.97

2.14 0.18 -0.92 2.27

squared normalization

0.00.5
1.0

1.5

2.0

2.5

3.0

5.5 Fonts and Text

5.5.1 Text transform can rotate text direction

The newText parametertransform_rotates_text now sets whether rotations of the transform affect
the text direction.

5.5.2 matplotlib.mathtext now supports overset and underset LaTeX symbols

mathtext now supports overset and underset, called as \overset{annotation}{body} or \
underset{annotation}{body}, where annotation is the text "above" or "below" the body.

5.5. Fonts and Text 447

Matplotlib, Release 3.4.3

5

0

5

10
Channel 0 Channel 1

5

0

5

10
Channel 2 Channel 3

0 20 40
5

0

5

10
Channel 4

0 20 40

Channel 5

Time [s]

Da
ta

 [V
]

448 Chapter 5. What's new in Matplotlib 3.4.0

Matplotlib, Release 3.4.3

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

5.5.3 math_fontfamily parameter to change Text font family

The new math_fontfamily parameter may be used to change the family of fonts for each individual text el-
ement in a plot. If no parameter is set, the global value rcParams["mathtext.fontset"] (default:
'dejavusans') will be used.

5.5.4 TextArea/AnchoredText support horizontalalignment

The horizontal alignment of text in a TextArea or AnchoredTextmay now be specified, which is mostly
effective for multiline text:

5.5.5 PDF supports URLs on Text artists

URLs on text.Text artists (i.e., from Artist.set_url) will now be saved in PDF files.

5.5. Fonts and Text 449

../tutorials/introductory/customizing.html?highlight=mathtext.fontset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

1

2

3

4

5

6

7

8

9 low
high

5.6 rcParams improvements

5.6.1 New rcParams for dates: set converter and whether to use interval_multiples

The new rcParams["date.converter"] (default: None) allows toggling between matplotlib.
dates.DateConverter and matplotlib.dates.ConciseDateConverter using the strings
'auto' and 'concise' respectively.

The new rcParams["date.interval_multiples"] (default: None) allows toggling between the
dates locator trying to pick ticks at set intervals (i.e., day 1 and 15 of the month), versus evenly spaced ticks
that start wherever the timeseries starts:

dates = np.arange('2001-01-10', '2001-05-23', dtype='datetime64[D]')
y = np.sin(dates.astype(float) / 10)
fig, axs = plt.subplots(nrows=2, constrained_layout=True)

plt.rcParams['date.converter'] = 'concise'
plt.rcParams['date.interval_multiples'] = True
axs[0].plot(dates, y)

plt.rcParams['date.converter'] = 'auto'
plt.rcParams['date.interval_multiples'] = False
axs[1].plot(dates, y)

450 Chapter 5. What's new in Matplotlib 3.4.0

../tutorials/introductory/customizing.html?highlight=date.converter#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=date.interval_multiples#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Fig. 2: Example of the new transform_rotates_text parameter

5.6. rcParams improvements 451

/gallery/text_labels_and_annotations/text_rotation_relative_to_line.html

Matplotlib, Release 3.4.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x
f

y
f

z

5.6.2 Date formatters now respect usetex rcParam

The AutoDateFormatter and ConciseDateFormatter now respect rcParams["text.
usetex"] (default: False), and will thus use fonts consistent with TeX rendering of the default (non-date)
formatter. TeX rendering may also be enabled/disabled by passing the usetex parameter when creating the
formatter instance.

In the following plot, both the x-axis (dates) and y-axis (numbers) now use the same (TeX) font:

5.6.3 Setting image.cmap to a Colormap

It is now possible to set rcParams["image.cmap"] (default: 'viridis') to a Colormap instance,
such as a colormap created with the new set_extremes above. (This can only be done from Python code,
not from the matplotlibrc file.)

452 Chapter 5. What's new in Matplotlib 3.4.0

../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

5.6. rcParams improvements 453

/gallery/text_labels_and_annotations/mathtext_fontfamily_example.html

Matplotlib, Release 3.4.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

test
test long text

test
test long text

test
test long text

5.6.4 Tick and tick label colors can be set independently using rcParams

Previously, rcParams["xtick.color"] (default: 'black') defined both the tick color and the label
color. The label color can now be set independently usingrcParams["xtick.labelcolor"] (default:
'inherit'). It defaults to 'inherit'which will take the value from rcParams["xtick.color"]
(default: 'black'). The same holds for ytick.[label]color. For instance, to set the ticks to light
grey and the tick labels to black, one can use the following code in a script:

import matplotlib as mpl

mpl.rcParams['xtick.labelcolor'] = 'lightgrey'
mpl.rcParams['xtick.color'] = 'black'
mpl.rcParams['ytick.labelcolor'] = 'lightgrey'
mpl.rcParams['ytick.color'] = 'black'

Or by adding the following lines to the matplotlibrc file, or a Matplotlib style file:

xtick.labelcolor : lightgrey
xtick.color : black
ytick.labelcolor : lightgrey
ytick.color : black

454 Chapter 5. What's new in Matplotlib 3.4.0

../tutorials/introductory/customizing.html?highlight=xtick.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=xtick.labelcolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=xtick.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

15 Feb 15 Mar 15 Apr 15 May 15
2001-May

1.0

0.5

0.0

0.5

1.0

2001-01-242001-02-142001-03-072001-03-282001-04-182001-05-09
1.0

0.5

0.0

0.5

1.0

5.7 3D Axes improvements

5.7.1 Errorbar method in 3D Axes

The errorbar function Axes.errorbar is ported into the 3D Axes framework in its entirety, supporting
features such as custom styling for error lines and cap marks, control over errorbar spacing, upper and lower
limit marks.

5.7.2 Stem plots in 3D Axes

Stem plots are now supported on 3D Axes. Much like 2D stems, stem3D supports plotting the stems in
various orientations:

See also the /gallery/mplot3d/stem3d_demo demo.

5.7. 3D Axes improvements 455

Matplotlib, Release 3.4.3

Aug 02 03 04 05 06 07 08 09 10

Date 1968−Aug

0

2

4

6

8
V

al
u

e

5.7.3 3D Collection properties are now modifiable

Previously, properties of a 3D Collection that were used for 3D effects (e.g., colors were modified to produce
depth shading) could not be changed after it was created.

Now it is possible to modify all properties of 3D Collections at any time.

5.7.4 Panning in 3D Axes

Click and drag with the middle mouse button to pan 3D Axes.

5.8 Interactive tool improvements

5.8.1 New RangeSlider widget

widgets.RangeSlider allows for creating a slider that defines a range rather than a single value.

456 Chapter 5. What's new in Matplotlib 3.4.0

Matplotlib, Release 3.4.3

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
0

2

4

6

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
0

2

4

6

cos

1.0 0.5 0.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
0

2

4

6

sin

A parametric circle: (x, y) = (cos , sin)

5.8. Interactive tool improvements 457

/gallery/mplot3d/errorbar3d.html

Matplotlib, Release 3.4.3

Slider 0.5

RangeSlider (0.25, 0.75)

5.8.2 Sliders can now snap to arbitrary values

The Slider UI widget now accepts arrays for valstep. This generalizes the previous behavior by allowing
the slider to snap to arbitrary values.

5.8.3 Pausing and Resuming Animations

The animation.Animation.pause and animation.Animation.resumemethods allow you to
pause and resume animations. These methods can be used as callbacks for event listeners on UI elements so
that your plots can have some playback control UI.

5.9 Sphinx extensions

5.9.1 plot_directive caption option

Captions were previously supported when using the plot_directive directive with an external source
file by specifying content:

.. plot:: path/to/plot.py

This is the caption for the plot.

The :caption: option allows specifying the caption for both external:

.. plot:: path/to/plot.py
:caption: This is the caption for the plot.

and inline plots:

.. plot::
:caption: This is a caption for the plot.

plt.plot([1, 2, 3])

458 Chapter 5. What's new in Matplotlib 3.4.0

Matplotlib, Release 3.4.3

5.10 Backend-specific improvements

5.10.1 Consecutive rasterized draws now merged

Elements of a vector output can be individually set to rasterized, using the rasterized keyword argument, or
set_rasterized(). This can be useful to reduce file sizes. For figures with multiple raster elements
they are now automatically merged into a smaller number of bitmaps where this will not effect the visual
output. For cases with many elements this can result in significantly smaller file sizes.

To ensure this happens do not place vector elements between raster ones.

To inhibit this merging set Figure.suppressComposite to True.

5.10.2 Support raw/rgba frame format in FFMpegFileWriter

When using FFMpegFileWriter, the frame_format may now be set to "raw" or "rgba", which may
be slightly faster than an image format, as no encoding/decoding need take place between Matplotlib and
FFmpeg.

5.10.3 nbAgg/WebAgg support middle-click and double-click

Double click events are now supported by the nbAgg and WebAgg backends. Formerly, WebAgg would
report middle-click events as right clicks, but now reports the correct button type.

5.10.4 nbAgg support binary communication

If the web browser and notebook support binary websockets, nbAgg will now use them for slightly improved
transfer of figure display.

5.10.5 Indexed color for PNG images in PDF files when possible

When PNG images have 256 colors or fewer, they are converted to indexed color before saving them in a
PDF. This can result in a significant reduction in file size in some cases. This is particularly true for raster
data that uses a colormap but no interpolation, such as Healpy mollview plots. Currently, this is only done
for RGB images.

5.10. Backend-specific improvements 459

Matplotlib, Release 3.4.3

5.10.6 Improved font subsettings in PDF/PS

Font subsetting in PDF and PostScript has been re-written from the embedded ttconv C code to Python.
Some composite characters and outlines may have changed slightly. This fixes ttc subsetting in PDF, and adds
support for subsetting of type 3 OTF fonts, resulting in smaller files (much smaller when using CJK fonts),
and avoids running into issues with type 42 embedding and certain PDF readers such as Acrobat Reader.

5.10.7 Kerning added to strings in PDFs

As with text produced in the Agg backend (see the previous what's new entry for examples), PDFs now
include kerning in text strings.

5.10.8 Fully-fractional HiDPI in QtAgg

Fully-fractional HiDPI (that is, HiDPI ratios that are not whole integers) was added in Qt 5.14, and is now
supported by the QtAgg backend when using this version of Qt or newer.

5.10.9 wxAgg supports fullscreen toggle

The wxAgg backend supports toggling fullscreen using the f shortcut, or the manager function
FigureManagerBase.full_screen_toggle.

460 Chapter 5. What's new in Matplotlib 3.4.0

CHAPTER

SIX

HISTORY

Note: The following introductory text was written in 2008 by John D. Hunter (1968-2012), the original
author of Matplotlib.

Matplotlib is a library for making 2D plots of arrays in Python. Although it has its origins in emulating
the MATLAB graphics commands, it is independent of MATLAB, and can be used in a Pythonic, object
oriented way. Although Matplotlib is written primarily in pure Python, it makes heavy use of NumPy and
other extension code to provide good performance even for large arrays.

Matplotlib is designed with the philosophy that you should be able to create simple plots with just a few
commands, or just one! If you want to see a histogram of your data, you shouldn't need to instantiate objects,
call methods, set properties, and so on; it should just work.

For years, I used to useMATLAB exclusively for data analysis and visualization. MATLAB excels at making
nice looking plots easy. When I began working with EEG data, I found that I needed to write applications
to interact with my data, and developed an EEG analysis application in MATLAB. As the application grew
in complexity, interacting with databases, http servers, manipulating complex data structures, I began to
strain against the limitations of MATLAB as a programming language, and decided to start over in Python.
Python more than makes up for all of MATLAB's deficiencies as a programming language, but I was having
difficulty finding a 2D plotting package (for 3D VTK more than exceeds all of my needs).

When I went searching for a Python plotting package, I had several requirements:

• Plots should look great - publication quality. One important requirement for me is that the text looks
good (antialiased, etc.)

• Postscript output for inclusion with TeX documents

• Embeddable in a graphical user interface for application development

• Code should be easy enough that I can understand it and extend it

• Making plots should be easy

Finding no package that suited me just right, I did what any self-respecting Python programmer would do:
rolled up my sleeves and dived in. Not having any real experience with computer graphics, I decided to
emulate MATLAB's plotting capabilities because that is something MATLAB does very well. This had the
added advantage that many people have a lot of MATLAB experience, and thus they can quickly get up to
steam plotting in python. From a developer's perspective, having a fixed user interface (the pylab interface)
has been very useful, because the guts of the code base can be redesigned without affecting user code.

461

https://www.python.org
https://numpy.org
http://www.vtk.org/

Matplotlib, Release 3.4.3

The Matplotlib code is conceptually divided into three parts: the pylab interface is the set of functions pro-
vided by pylab which allow the user to create plots with code quite similar to MATLAB figure generating
code (Pyplot tutorial). The Matplotlib frontend or Matplotlib API is the set of classes that do the heavy
lifting, creating and managing figures, text, lines, plots and so on (Artist tutorial). This is an abstract inter-
face that knows nothing about output. The backends are device-dependent drawing devices, aka renderers,
that transform the frontend representation to hardcopy or a display device (What is a backend?). Example
backends: PS creates PostScript® hardcopy, SVG creates Scalable Vector Graphics hardcopy, Agg creates
PNG output using the high quality Anti-Grain Geometry library that ships with Matplotlib, GTK embeds
Matplotlib in a Gtk+ application, GTKAgg uses the Anti-Grain renderer to create a figure and embed it in a
Gtk+ application, and so on for PDF, WxWidgets, Tkinter, etc.

Matplotlib is used by many people in many different contexts. Some people want to automatically generate
PostScript files to send to a printer or publishers. Others deploy Matplotlib on a web application server to
generate PNG output for inclusion in dynamically-generated web pages. Some use Matplotlib interactively
from the Python shell in Tkinter on Windows. My primary use is to embed Matplotlib in a Gtk+ EEG
application that runs on Windows, Linux and Macintosh OS X.

Matplotlib's original logo (2003 -- 2008).

matplotlib
Matplotlib logo (2008 - 2015).

W3
1 1 2 = U3

1 1 + 1
8 2

2

2
d ′

2[U2
1 1

′
2U1

1 2

U0
1 2

]

d
dt + v v = p + 2v + g

e x2dx =
FG = Gm1m2

r2matplotlib

462 Chapter 6. History

http://www.adobe.com/products/postscript/
https://www.w3.org/Graphics/SVG/
http://antigrain.com/
https://www.gtk.org/
https://acrobat.adobe.com/us/en/why-adobe/about-adobe-pdf.html
https://www.wxpython.org/
https://docs.python.org/library/tkinter.html

CHAPTER

SEVEN

GITHUB STATS

GitHub stats for 2021/05/08 - 2021/08/12 (tag: v3.4.2)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 22 issues and merged 69 pull requests. The full list can be seen on GitHub

The following 20 authors contributed 95 commits.

• Antony Lee

• David Stansby

• Diego

• Diego Leal Petrola

• Diego Petrola

• Elliott Sales de Andrade

• Eric Firing

• Frank Sauerburger

• Greg Lucas

• Ian Hunt-Isaak

• Jash Shah

• Jody Klymak

• Jouni K. Seppänen

• Michał Górny

• sandipanpanda

• Slava Ostroukh

• Thomas A Caswell

• Tim Hoffmann

• Viacheslav Ostroukh

• Xianxiang Li

463

https://github.com/matplotlib/matplotlib/milestone/64?closed=1

Matplotlib, Release 3.4.3

GitHub issues and pull requests:

Pull Requests (69):

• PR #20830: Backport PR #20826 on branch v3.4.x (Fix clear of Axes that are shared.)

• PR #20826: Fix clear of Axes that are shared.

• PR #20823: Backport PR #20817 on branch v3.4.x (Make test_change_epoch more robust.)

• PR #20817: Make test_change_epoch more robust.

• PR #20820: Backport PR #20771 on branch v3.4.x (FIX: tickspacing for subfigures)

• PR #20771: FIX: tickspacing for subfigures

• PR #20777: FIX: dpi and scatter for subfigures now correct

• PR #20787: Backport PR #20786 on branch v3.4.x (Fixed typo in _constrained_layout.py (#20782))

• PR #20786: Fixed typo in _constrained_layout.py (#20782)

• PR #20763: Backport PR #20761 on branch v3.4.x (Fix suplabel autopos)

• PR #20761: Fix suplabel autopos

• PR #20751: Backport PR #20748 on branch v3.4.x (Ensure _static directory exists before copying
CSS.)

• PR #20748: Ensure _static directory exists before copying CSS.

• PR #20713: Backport PR #20710 on branch v3.4.x (Fix tests with Inkscape 1.1.)

• PR #20687: Enable PyPy wheels for v3.4.x

• PR #20710: Fix tests with Inkscape 1.1.

• PR #20696: Backport PR #20662 on branch v3.4.x (Don't forget to disable autoscaling after interactive
zoom.)

• PR #20662: Don't forget to disable autoscaling after interactive zoom.

• PR #20683: Backport PR #20645 on branch v3.4.x (Fix leak if affine_transform is passed invalid
vertices.)

• PR #20645: Fix leak if affine_transform is passed invalid vertices.

• PR #20642: Backport PR #20629 on branch v3.4.x (Add protection against out-of-bounds read in
ttconv)

• PR #20643: Backport PR #20597 on branch v3.4.x

• PR #20629: Add protection against out-of-bounds read in ttconv

• PR #20597: Fix TTF headers for type 42 stix font

• PR #20624: Backport PR #20609 on branch v3.4.x (FIX: fix figbox deprecation)

• PR #20609: FIX: fix figbox deprecation

• PR #20594: Backport PR #20590 on branch v3.4.x (Fix class docstrings for Norms created from
Scales.)

464 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/20830/
https://github.com/matplotlib/matplotlib/pull/20826/
https://github.com/matplotlib/matplotlib/pull/20823/
https://github.com/matplotlib/matplotlib/pull/20817/
https://github.com/matplotlib/matplotlib/pull/20820/
https://github.com/matplotlib/matplotlib/pull/20771/
https://github.com/matplotlib/matplotlib/pull/20777/
https://github.com/matplotlib/matplotlib/pull/20787/
https://github.com/matplotlib/matplotlib/pull/20786/
https://github.com/matplotlib/matplotlib/pull/20763/
https://github.com/matplotlib/matplotlib/pull/20761/
https://github.com/matplotlib/matplotlib/pull/20751/
https://github.com/matplotlib/matplotlib/pull/20748/
https://github.com/matplotlib/matplotlib/pull/20713/
https://github.com/matplotlib/matplotlib/pull/20687/
https://github.com/matplotlib/matplotlib/pull/20710/
https://github.com/matplotlib/matplotlib/pull/20696/
https://github.com/matplotlib/matplotlib/pull/20662/
https://github.com/matplotlib/matplotlib/pull/20683/
https://github.com/matplotlib/matplotlib/pull/20645/
https://github.com/matplotlib/matplotlib/pull/20642/
https://github.com/matplotlib/matplotlib/pull/20643/
https://github.com/matplotlib/matplotlib/pull/20629/
https://github.com/matplotlib/matplotlib/pull/20597/
https://github.com/matplotlib/matplotlib/pull/20624/
https://github.com/matplotlib/matplotlib/pull/20609/
https://github.com/matplotlib/matplotlib/pull/20594/

Matplotlib, Release 3.4.3

• PR #20590: Fix class docstrings for Norms created from Scales.

• PR #20587: Backport PR #20584: FIX: do not simplify path in LineCollection.get_s…

• PR #20584: FIX: do not simplify path in LineCollection.get_segments

• PR #20578: Backport PR #20511 on branch v3.4.x (Fix calls to np.ma.masked_where)

• PR #20511: Fix calls to np.ma.masked_where

• PR #20568: Backport PR #20565 on branch v3.4.x (FIX: PILLOW asarray bug)

• PR #20566: Backout pillow=8.3.0 due to a crash

• PR #20565: FIX: PILLOW asarray bug

• PR #20503: Backport PR #20488 on branch v3.4.x (FIX: Include 0 when checking lognorm vmin)

• PR #20488: FIX: Include 0 when checking lognorm vmin

• PR #20483: Backport PR #20480 on branch v3.4.x (Fix str of empty polygon.)

• PR #20480: Fix str of empty polygon.

• PR #20478: Backport PR #20473 on branch v3.4.x (_GSConverter: handle stray 'GS' in output grace-
fully)

• PR #20473: _GSConverter: handle stray 'GS' in output gracefully

• PR #20456: Backport PR #20453 on branch v3.4.x (Remove Tick.apply_tickdir from 3.4
deprecations.)

• PR #20441: Backport PR #20416 on branch v3.4.x (Fix missing Patch3DCollection._z_markers_idx)

• PR #20416: Fix missing Patch3DCollection._z_markers_idx

• PR #20417: Backport PR #20395 on branch v3.4.x (Pathing issue)

• PR #20395: Pathing issue

• PR #20404: Backport PR #20403: FIX: if we have already subclassed mixin class ju…

• PR #20403: FIX: if we have already subclassed mixin class just return

• PR #20383: Backport PR #20381 on branch v3.4.x (Prevent corrections and completions in search
field)

• PR #20307: Backport PR #20154 on branch v3.4.x (ci: Bump Ubuntu to 18.04 LTS.)

• PR #20285: Backport PR #20275 on branch v3.4.x (Fix some examples that are skipped in docs build)

• PR #20275: Fix some examples that are skipped in docs build

• PR #20267: Backport PR #20265 on branch v3.4.x (Legend edgecolor face)

• PR #20265: Legend edgecolor face

• PR #20260: Fix legend edgecolor face

• PR #20259: Backport PR #20248 on branch v3.4.x (Replace pgf image-streaming warning by error.)

• PR #20248: Replace pgf image-streaming warning by error.

465

https://github.com/matplotlib/matplotlib/pull/20590/
https://github.com/matplotlib/matplotlib/pull/20587/
https://github.com/matplotlib/matplotlib/pull/20584/
https://github.com/matplotlib/matplotlib/pull/20578/
https://github.com/matplotlib/matplotlib/pull/20511/
https://github.com/matplotlib/matplotlib/pull/20568/
https://github.com/matplotlib/matplotlib/pull/20566/
https://github.com/matplotlib/matplotlib/pull/20565/
https://github.com/matplotlib/matplotlib/pull/20503/
https://github.com/matplotlib/matplotlib/pull/20488/
https://github.com/matplotlib/matplotlib/pull/20483/
https://github.com/matplotlib/matplotlib/pull/20480/
https://github.com/matplotlib/matplotlib/pull/20478/
https://github.com/matplotlib/matplotlib/pull/20473/
https://github.com/matplotlib/matplotlib/pull/20456/
https://github.com/matplotlib/matplotlib/pull/20441/
https://github.com/matplotlib/matplotlib/pull/20416/
https://github.com/matplotlib/matplotlib/pull/20417/
https://github.com/matplotlib/matplotlib/pull/20395/
https://github.com/matplotlib/matplotlib/pull/20404/
https://github.com/matplotlib/matplotlib/pull/20403/
https://github.com/matplotlib/matplotlib/pull/20383/
https://github.com/matplotlib/matplotlib/pull/20307/
https://github.com/matplotlib/matplotlib/pull/20285/
https://github.com/matplotlib/matplotlib/pull/20275/
https://github.com/matplotlib/matplotlib/pull/20267/
https://github.com/matplotlib/matplotlib/pull/20265/
https://github.com/matplotlib/matplotlib/pull/20260/
https://github.com/matplotlib/matplotlib/pull/20259/
https://github.com/matplotlib/matplotlib/pull/20248/

Matplotlib, Release 3.4.3

• PR #20241: Backport PR #20212 on branch v3.4.x (Update span_selector.py)

• PR #20212: Update span_selector.py

• PR #19980: Tidy up deprecation messages in _subplots.py

• PR #20234: Backport PR #20225 on branch v3.4.x (FIX: correctly handle ax.legend(..., legend-
color='none'))

• PR #20225: FIX: correctly handle ax.legend(..., legendcolor='none')

• PR #20232: Backport PR #19636 on branch v3.4.x (Correctly check inaxes for multicursor)

• PR #20228: Backport PR #19849 on branch v3.4.x (FIX DateFormatter for month names when use-
tex=True)

• PR #19849: FIX DateFormatter for month names when usetex=True

• PR #20154: ci: Bump Ubuntu to 18.04 LTS.

• PR #20186: Backport PR #19975 on branch v3.4.x (CI: remove workflow to push commits to
macpython/matplotlib-wheels)

• PR #19975: CI: remove workflow to push commits to macpython/matplotlib-wheels

• PR #19636: Correctly check inaxes for multicursor

Issues (22):

• #20219: Regression: undocumented change of behaviour in mpl 3.4.2 with axis ticks direction

• #20721: ax.clear() adds extra ticks, un-hides shared-axis tick labels

• #20765: savefig re-scales xticks and labels of some (but not all) subplots

• #20782: [Bug]: _supylabel get_in_layout() typo?

• #20747: [Bug]: _copy_css_file assumes that the _static directory already exists

• #20617: tests fail with new inkscape

• #20519: Toolbar zoom doesn't change autoscale status for versions 3.2.0 and above

• #20628: Out-of-bounds read leads to crash or broken TrueType fonts

• #20612: Broken EPS for Type 42 STIX

• #19982: regression for 3.4.x - ax.figbox replacement incompatible to all version including 3.3.4

• #19938: unuseful deprecation warning figbox

• #16400: Inconsistent behavior between Normalizers when input is Dataframe

• #20583: Lost class descriptions since 3.4 docs

• #20551: set_segments(get_segments()) makes lines coarse

• #20560: test_png is failing

• #20487: test_huge_range_log is failing...

466 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/20241/
https://github.com/matplotlib/matplotlib/pull/20212/
https://github.com/matplotlib/matplotlib/pull/19980/
https://github.com/matplotlib/matplotlib/pull/20234/
https://github.com/matplotlib/matplotlib/pull/20225/
https://github.com/matplotlib/matplotlib/pull/20232/
https://github.com/matplotlib/matplotlib/pull/20228/
https://github.com/matplotlib/matplotlib/pull/19849/
https://github.com/matplotlib/matplotlib/pull/20154/
https://github.com/matplotlib/matplotlib/pull/20186/
https://github.com/matplotlib/matplotlib/pull/19975/
https://github.com/matplotlib/matplotlib/pull/19636/
https://github.com/matplotlib/matplotlib/issues/20219/
https://github.com/matplotlib/matplotlib/issues/20721/
https://github.com/matplotlib/matplotlib/issues/20765/
https://github.com/matplotlib/matplotlib/issues/20782/
https://github.com/matplotlib/matplotlib/issues/20747/
https://github.com/matplotlib/matplotlib/issues/20617/
https://github.com/matplotlib/matplotlib/issues/20519/
https://github.com/matplotlib/matplotlib/issues/20628/
https://github.com/matplotlib/matplotlib/issues/20612/
https://github.com/matplotlib/matplotlib/issues/19982/
https://github.com/matplotlib/matplotlib/issues/19938/
https://github.com/matplotlib/matplotlib/issues/16400/
https://github.com/matplotlib/matplotlib/issues/20583/
https://github.com/matplotlib/matplotlib/issues/20551/
https://github.com/matplotlib/matplotlib/issues/20560/
https://github.com/matplotlib/matplotlib/issues/20487/

Matplotlib, Release 3.4.3

• #20472: test_backend_pgf.py::test_xelatex[pdf] - ValueError: invalid literal for int() with base 10:
b'ate missing from Resources. [...]

• #20328: Path.intersects_path sometimes returns incorrect values

• #20258: Using edgecolors='face' with stackplot causes value error when using plt.legend()

• #20200: examples/widgets/span_selector.py is brittle

• #20231: MultiCursor bug

• #19836: Month names not set as text when using usetex

7.1 Previous GitHub Stats

7.1.1 GitHub Stats for Matplotlib 3.4.2

GitHub stats for 2021/03/31 - 2021/05/07 (tag: v3.4.1)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 21 issues and merged 97 pull requests. The full list can be seen on GitHub

The following 13 authors contributed 138 commits.

• AkM-2018

• Antony Lee

• David Stansby

• Elliott Sales de Andrade

• hannah

• Ian Thomas

• Jann Paul Mattern

• Jody Klymak

• pwohlhart

• richardsheridan

• Thomas A Caswell

• Tim Hoffmann

• Xianxiang Li

GitHub issues and pull requests:

Pull Requests (97):

• PR #20184: Backport PR #20147 on branch v3.4.x (DOC: add example of labelling axes)

7.1. Previous GitHub Stats 467

https://github.com/matplotlib/matplotlib/issues/20472/
https://github.com/matplotlib/matplotlib/issues/20328/
https://github.com/matplotlib/matplotlib/issues/20258/
https://github.com/matplotlib/matplotlib/issues/20200/
https://github.com/matplotlib/matplotlib/issues/20231/
https://github.com/matplotlib/matplotlib/issues/19836/
https://github.com/matplotlib/matplotlib/milestone/63?closed=1
https://github.com/matplotlib/matplotlib/pull/20184/

Matplotlib, Release 3.4.3

• PR #20181: Backport PR #20171 on branch v3.4.x (Remove unsupported arguments from tricontourf
documentation)

• PR #20180: Backport PR #19876 on branch v3.4.x (FIX: re-order unit conversion and mask array
coercion)

• PR #20171: Remove unsupported arguments from tricontourf documentation

• PR #19876: FIX: re-order unit conversion and mask array coercion

• PR #20178: Backport PR #20150 on branch v3.4.x

• PR #20172: Backport PR #20161 on branch v3.4.x (Fix resetting grid visibility)

• PR #20161: Fix resetting grid visibility

• PR #20167: Backport PR #20146 on branch v3.4.x (Don't clip clip paths to Figure bbox.)

• PR #20166: Backport PR #19978 on branch v3.4.x (fixed bug in CenteredNorm, issue #19972)

• PR #20146: Don't clip clip paths to Figure bbox.

• PR #19978: fixed bug in CenteredNorm, issue #19972

• PR #20160: Backport PR #20148 on branch v3.4.x (FIX: MouseButton representation in boilerplate
generated signatures)

• PR #20148: FIX: MouseButton representation in boilerplate generated signatures

• PR #20152: Backport PR #20145 on branch v3.4.x (Fix broken link to ggplot in docs)

• PR #20139: Backport PR #20135 on branch v3.4.x (Add tricontour/tricontourf argu-
ments(corner_mask, vmin vmax, antialiased, nchunk, hatches) documentation)

• PR #20135: Add tricontour/tricontourf arguments(corner_mask, vmin vmax, antialiased, nchunk,
hatches) documentation

• PR #20136: Backport PR #19959 on branch v3.4.x (Bugfix Tk start_event_loop)

• PR #19959: Bugfix Tk start_event_loop

• PR #20128: Backport PR #20123 on branch v3.4.x (Ensure thatMatplotlib is importable even if there's
no HOME.)

• PR #20123: Ensure that Matplotlib is importable even if there's no HOME.

• PR #20009: Fix removal of shared polar axes.

• PR #20104: Backport PR #19686 on branch v3.4.x (Declare sphinxext.redirect_from paral-
lel_read_safe)

• PR #19686: Declare sphinxext.redirect_from parallel_read_safe

• PR #20098: Backport PR #20096 on branch v3.4.x (Ignore errors for sip with no setapi.)

• PR #20096: Ignore errors for sip with no setapi.

• PR #20087: Backport PR #20083 on branch v3.4.x (Revert "Temporarily switch intersphinx to latest
pytest.")

• PR #20085: Backport PR #20082 on branch v3.4.x (Fix bar_label for bars with nan values)

468 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/20181/
https://github.com/matplotlib/matplotlib/pull/20180/
https://github.com/matplotlib/matplotlib/pull/20171/
https://github.com/matplotlib/matplotlib/pull/19876/
https://github.com/matplotlib/matplotlib/pull/20178/
https://github.com/matplotlib/matplotlib/pull/20172/
https://github.com/matplotlib/matplotlib/pull/20161/
https://github.com/matplotlib/matplotlib/pull/20167/
https://github.com/matplotlib/matplotlib/pull/20166/
https://github.com/matplotlib/matplotlib/pull/20146/
https://github.com/matplotlib/matplotlib/pull/19978/
https://github.com/matplotlib/matplotlib/pull/20160/
https://github.com/matplotlib/matplotlib/pull/20148/
https://github.com/matplotlib/matplotlib/pull/20152/
https://github.com/matplotlib/matplotlib/pull/20139/
https://github.com/matplotlib/matplotlib/pull/20135/
https://github.com/matplotlib/matplotlib/pull/20136/
https://github.com/matplotlib/matplotlib/pull/19959/
https://github.com/matplotlib/matplotlib/pull/20128/
https://github.com/matplotlib/matplotlib/pull/20123/
https://github.com/matplotlib/matplotlib/pull/20009/
https://github.com/matplotlib/matplotlib/pull/20104/
https://github.com/matplotlib/matplotlib/pull/19686/
https://github.com/matplotlib/matplotlib/pull/20098/
https://github.com/matplotlib/matplotlib/pull/20096/
https://github.com/matplotlib/matplotlib/pull/20087/
https://github.com/matplotlib/matplotlib/pull/20085/

Matplotlib, Release 3.4.3

• PR #20082: Fix bar_label for bars with nan values

• PR #20076: Backport PR #20062 on branch v3.4.x ([DOC] Add top-level .. module:: definition for
matplotlib)

• PR #20043: Backport PR #20041 on branch v3.4.x (Clarify docs for stackplot.)

• PR #20041: Clarify docs for stackplot.

• PR #20039: Backport PR #20037 on branch v3.4.x (Don't generate wheels unusable on
PyPy7.3.{0,1}.)

• PR #20037: Don't generate wheels unusable on PyPy7.3.{0,1}.

• PR #20033: Backport PR #20031 on branch v3.4.x (Cleanup widget examples)

• PR #20031: Cleanup widget examples

• PR #20022: Backport PR #19949 on branch v3.4.x (FIX: subfigure indexing error)

• PR #19949: FIX: subfigure indexing error

• PR #20018: Backport PR #20017 on branch v3.4.x (FIX typos in imshow_extent.py)

• PR #20017: FIX typos in imshow_extent.py

• PR #20015: Backport PR #19962 on branch v3.4.x (Dev install troubleshooting)

• PR #19962: Dev install troubleshooting

• PR #20002: Backport PR #19995 on branch v3.4.x (Fix valinit argument to RangeSlider)

• PR #20004: Backport PR #19999 on branch v3.4.x (DOC: add note about axes order to docstring)

• PR #19998: Backport PR #19964 on branch v3.4.x (FIX: add subplot_mosaic axes in the order the
user gave them to us)

• PR #19999: DOC: add note about axes order to docstring

• PR #19997: Backport PR #19992 on branch v3.4.x (Minor fixes to polar locator docstrings.)

• PR #19995: Fix valinit argument to RangeSlider

• PR #19964: FIX: add subplot_mosaic axes in the order the user gave them to us

• PR #19993: Backport PR #19983 on branch v3.4.x (Fix handling of "d" glyph in backend_ps.)

• PR #19992: Minor fixes to polar locator docstrings.

• PR #19991: Backport PR #19987 on branch v3.4.x (Fix set_thetalim((min, max)).)

• PR #19976: Backport PR #19970 on branch v3.4.x (Initialize members of PathClipper and check for
m_has_init)

• PR #19983: Fix handling of "d" glyph in backend_ps.

• PR #19987: Fix set_thetalim((min, max)).

• PR #19970: Initialize members of PathClipper and check for m_has_init

• PR #19973: Backport PR #19971 on branch v3.4.x (Fix missing closing bracket in docs)

7.1. Previous GitHub Stats 469

https://github.com/matplotlib/matplotlib/pull/20082/
https://github.com/matplotlib/matplotlib/pull/20076/
https://github.com/matplotlib/matplotlib/pull/20043/
https://github.com/matplotlib/matplotlib/pull/20041/
https://github.com/matplotlib/matplotlib/pull/20039/
https://github.com/matplotlib/matplotlib/pull/20037/
https://github.com/matplotlib/matplotlib/pull/20033/
https://github.com/matplotlib/matplotlib/pull/20031/
https://github.com/matplotlib/matplotlib/pull/20022/
https://github.com/matplotlib/matplotlib/pull/19949/
https://github.com/matplotlib/matplotlib/pull/20018/
https://github.com/matplotlib/matplotlib/pull/20017/
https://github.com/matplotlib/matplotlib/pull/20015/
https://github.com/matplotlib/matplotlib/pull/19962/
https://github.com/matplotlib/matplotlib/pull/20002/
https://github.com/matplotlib/matplotlib/pull/20004/
https://github.com/matplotlib/matplotlib/pull/19998/
https://github.com/matplotlib/matplotlib/pull/19999/
https://github.com/matplotlib/matplotlib/pull/19997/
https://github.com/matplotlib/matplotlib/pull/19995/
https://github.com/matplotlib/matplotlib/pull/19964/
https://github.com/matplotlib/matplotlib/pull/19993/
https://github.com/matplotlib/matplotlib/pull/19992/
https://github.com/matplotlib/matplotlib/pull/19991/
https://github.com/matplotlib/matplotlib/pull/19976/
https://github.com/matplotlib/matplotlib/pull/19983/
https://github.com/matplotlib/matplotlib/pull/19987/
https://github.com/matplotlib/matplotlib/pull/19970/
https://github.com/matplotlib/matplotlib/pull/19973/

Matplotlib, Release 3.4.3

• PR #19971: Fix missing closing bracket in docs

• PR #19966: Backport PR #19963 on branch v3.4.x (test_StrCategoryLocator using parameterized
plotter)

• PR #19965: Backport PR #19961 on branch v3.4.x (FIX: subfigure tightbbox)

• PR #19963: test_StrCategoryLocator using parameterized plotter

• PR #19961: FIX: subfigure tightbbox

• PR #19953: Backport PR #19919 on branch v3.4.x (Copy errorbar style normalization to 3D)

• PR #19919: Copy errorbar style normalization to 3D

• PR #19950: Backport PR #19948 on branch v3.4.x (Allow numpy arrays to be used as elinewidth)

• PR #19948: Allow numpy arrays to be used as elinewidth

• PR #19944: Backport PR #19939 on branch v3.4.x (add highlight-text to the third party packages list)

• PR #19921: Backport PR #19913 on branch v3.4.x (Minor docstring improvement for set_aspect())

• PR #19920: Backport PR #19903 on branch v3.4.x (Fix textbox cursor color, set its linewidth.)

• PR #19913: Minor docstring improvement for set_aspect()

• PR #19903: Fix textbox cursor color, set its linewidth.

• PR #19917: Backport PR #19911 on branch v3.4.x (Shorten "how-to draw order")

• PR #19916: Backport PR #19888 on branch v3.4.x (Fix errorbar drawstyle)

• PR #19911: Shorten "how-to draw order"

• PR #19888: Fix errorbar drawstyle

• PR #19910: Backport PR #19895 on branch v3.4.x (Added PyPI info to third party page)

• PR #19895: Added PyPI info to third party page

• PR #19896: Backport PR #19893 on branch v3.4.x (Remove Howto: Plot numpy.datetime64 values)

• PR #19893: Remove Howto: Plot numpy.datetime64 values

• PR #19886: Backport PR #19881 on branch v3.4.x (Remove two sections from Plotting FAQ)

• PR #19877: Backport PR #19863 on branch v3.4.x (Cleanup docstrings related to interactive mode)

• PR #19881: Remove two sections from Plotting FAQ

• PR #19885: Backport PR #19883 on branch v3.4.x (Small cleanups to FAQ.)

• PR #19883: Small cleanups to FAQ.

• PR #19878: Backport PR #19867 on branch v3.4.x (Remove "Use show()" from how-to)

• PR #19875: Backport PR #19868 on branch v3.4.x (Remove "Install from source" from Installing
FAQ)

• PR #19867: Remove "Use show()" from how-to

• PR #19863: Cleanup docstrings related to interactive mode

470 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/19971/
https://github.com/matplotlib/matplotlib/pull/19966/
https://github.com/matplotlib/matplotlib/pull/19965/
https://github.com/matplotlib/matplotlib/pull/19963/
https://github.com/matplotlib/matplotlib/pull/19961/
https://github.com/matplotlib/matplotlib/pull/19953/
https://github.com/matplotlib/matplotlib/pull/19919/
https://github.com/matplotlib/matplotlib/pull/19950/
https://github.com/matplotlib/matplotlib/pull/19948/
https://github.com/matplotlib/matplotlib/pull/19944/
https://github.com/matplotlib/matplotlib/pull/19921/
https://github.com/matplotlib/matplotlib/pull/19920/
https://github.com/matplotlib/matplotlib/pull/19913/
https://github.com/matplotlib/matplotlib/pull/19903/
https://github.com/matplotlib/matplotlib/pull/19917/
https://github.com/matplotlib/matplotlib/pull/19916/
https://github.com/matplotlib/matplotlib/pull/19911/
https://github.com/matplotlib/matplotlib/pull/19888/
https://github.com/matplotlib/matplotlib/pull/19910/
https://github.com/matplotlib/matplotlib/pull/19895/
https://github.com/matplotlib/matplotlib/pull/19896/
https://github.com/matplotlib/matplotlib/pull/19893/
https://github.com/matplotlib/matplotlib/pull/19886/
https://github.com/matplotlib/matplotlib/pull/19877/
https://github.com/matplotlib/matplotlib/pull/19881/
https://github.com/matplotlib/matplotlib/pull/19885/
https://github.com/matplotlib/matplotlib/pull/19883/
https://github.com/matplotlib/matplotlib/pull/19878/
https://github.com/matplotlib/matplotlib/pull/19875/
https://github.com/matplotlib/matplotlib/pull/19867/
https://github.com/matplotlib/matplotlib/pull/19863/

Matplotlib, Release 3.4.3

• PR #19868: Remove "Install from source" from Installing FAQ

• PR #19874: Backport PR #19847 on branch v3.4.x (Reformat references (part 2))

• PR #19847: Reformat references (part 2)

• PR #19865: Backport PR #19860 on branch v3.4.x (Move "howto interpreting box plots" to boxplot
docstring)

• PR #19860: Move "howto interpreting box plots" to boxplot docstring

• PR #19862: Backport PR #19861 on branch v3.4.x (Remove FAQ Installing - Linux notes)

• PR #19861: Remove FAQ Installing - Linux notes

• PR #18060: Correctly handle 'none' facecolors in do_3d_projection

• PR #19846: Backport PR #19788 on branch v3.4.x (Reformat references)

Issues (21):

• #19871: Matplotlib >= v3.3.3 breaks with pandas.plotting.register_matplotlib_converters(),
ax.pcolormesh(), and datetime objects

• #20149: KeyError: 'gridOn' in axis.py when axis.tick_params() is used with reset = True

• #20127: Zooming on a contour plot with clipping results in bad clipping

• #19972: CenteredNorm with halfrange raises exception when passed to imshow

• #19940: Tkagg event loop throws error on window close

• #20122: Run in a system service / without configuration

• #19989: Removal of y-shared polar axes causes crash at draw time

• #19988: Removal of x-shared polar axes causes crash

• #20040: AttributeError: module 'sip' has no attribute 'setapi'

• #20058: bar_label fails with nan data values

• #20036: Minor changes about stackplot documentation

• #20014: undefined symbol: PyPyUnicode_ReadChar

• #19947: Figure.subfigures dont show/update correctly

• #19960: Failed to init RangeSlider with valinit attribute

• #19736: subplot_mosaic axes are not added in consistent order

• #19979: Blank EPS figures if plot contains 'd'

• #19938: unuseful deprecation warning figbox

• #19958: subfigures missing bbox_inches attribute in inline backend

• #19936: Errorbars elinewidth raise error when numpy array

• #19879: Using "drawstyle" raises AttributeError in errorbar, when yerr is specified.

• #19454: I cannot import matplotlib.pyplot as plt

7.1. Previous GitHub Stats 471

https://github.com/matplotlib/matplotlib/pull/19868/
https://github.com/matplotlib/matplotlib/pull/19874/
https://github.com/matplotlib/matplotlib/pull/19847/
https://github.com/matplotlib/matplotlib/pull/19865/
https://github.com/matplotlib/matplotlib/pull/19860/
https://github.com/matplotlib/matplotlib/pull/19862/
https://github.com/matplotlib/matplotlib/pull/19861/
https://github.com/matplotlib/matplotlib/pull/18060/
https://github.com/matplotlib/matplotlib/pull/19846/
https://github.com/matplotlib/matplotlib/issues/19871/
https://github.com/matplotlib/matplotlib/issues/20149/
https://github.com/matplotlib/matplotlib/issues/20127/
https://github.com/matplotlib/matplotlib/issues/19972/
https://github.com/matplotlib/matplotlib/issues/19940/
https://github.com/matplotlib/matplotlib/issues/20122/
https://github.com/matplotlib/matplotlib/issues/19989/
https://github.com/matplotlib/matplotlib/issues/19988/
https://github.com/matplotlib/matplotlib/issues/20040/
https://github.com/matplotlib/matplotlib/issues/20058/
https://github.com/matplotlib/matplotlib/issues/20036/
https://github.com/matplotlib/matplotlib/issues/20014/
https://github.com/matplotlib/matplotlib/issues/19947/
https://github.com/matplotlib/matplotlib/issues/19960/
https://github.com/matplotlib/matplotlib/issues/19736/
https://github.com/matplotlib/matplotlib/issues/19979/
https://github.com/matplotlib/matplotlib/issues/19938/
https://github.com/matplotlib/matplotlib/issues/19958/
https://github.com/matplotlib/matplotlib/issues/19936/
https://github.com/matplotlib/matplotlib/issues/19879/
https://github.com/matplotlib/matplotlib/issues/19454/

Matplotlib, Release 3.4.3

7.1.2 GitHub Stats for Matplotlib 3.4.1

GitHub stats for 2021/03/26 - 2021/03/31 (tag: v3.4.0)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 7 issues and merged 20 pull requests. The full list can be seen on GitHub

The following 6 authors contributed 43 commits.

• Antony Lee

• Elliott Sales de Andrade

• Jody Klymak

• Thomas A Caswell

• Tim Hoffmann

• Xianxiang Li

GitHub issues and pull requests:

Pull Requests (20):

• PR #19834: Backport PR #19812: FIX: size and color rendering for Path3DCollection

• PR #19833: Backport PR #19811 on branch v3.4.x (Fix Inkscape cleanup at exit on Windows.)

• PR #19812: FIX: size and color rendering for Path3DCollection

• PR #19811: Fix Inkscape cleanup at exit on Windows.

• PR #19816: Fix legend of colour-mapped scatter plots.

• PR #19830: Backport PR #19824 on branch v3.4.x (Access pdf annotations while inside pikepdf.Pdf
context manager.)

• PR #19829: Backport PR #19822 on branch v3.4.x (Clarify default backend selection doc.)

• PR #19827: Backport PR #19805 on branch v3.4.x (Fix suptitle out of layout)

• PR #19824: Access pdf annotations while inside pikepdf.Pdf context manager.

• PR #19805: Fix suptitle out of layout

• PR #19823: Backport PR #19814 on branch v3.4.x (Fix positioning of annotation arrow.)

• PR #19820: Backport PR #19817 on branch v3.4.x (Fix antialiasing with old pycairo/cairocffi.)

• PR #19814: Fix positioning of annotation arrow.

• PR #19817: Fix antialiasing with old pycairo/cairocffi.

• PR #19818: Backport PR #19784 on branch v3.4.x (FIX errorbar problem with fillstyle)

• PR #19784: FIX errorbar problem with fillstyle

• PR #19815: Backport PR #19793 on branch v3.4.x (Fix non existent URIs)

• PR #19793: Fix non existent URIs

472 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/milestone/61?closed=1
https://github.com/matplotlib/matplotlib/pull/19834/
https://github.com/matplotlib/matplotlib/pull/19833/
https://github.com/matplotlib/matplotlib/pull/19812/
https://github.com/matplotlib/matplotlib/pull/19811/
https://github.com/matplotlib/matplotlib/pull/19816/
https://github.com/matplotlib/matplotlib/pull/19830/
https://github.com/matplotlib/matplotlib/pull/19829/
https://github.com/matplotlib/matplotlib/pull/19827/
https://github.com/matplotlib/matplotlib/pull/19824/
https://github.com/matplotlib/matplotlib/pull/19805/
https://github.com/matplotlib/matplotlib/pull/19823/
https://github.com/matplotlib/matplotlib/pull/19820/
https://github.com/matplotlib/matplotlib/pull/19814/
https://github.com/matplotlib/matplotlib/pull/19817/
https://github.com/matplotlib/matplotlib/pull/19818/
https://github.com/matplotlib/matplotlib/pull/19784/
https://github.com/matplotlib/matplotlib/pull/19815/
https://github.com/matplotlib/matplotlib/pull/19793/

Matplotlib, Release 3.4.3

• PR #19783: Backport PR #19719 on branch v3.4.x (Respect antialiasing settings in cairo backends as
well.)

• PR #19719: Respect antialiasing settings in cairo backends as well.

Issues (7):

• #19779: BUG: matplotlib 3.4.0 -- Scatter with colormap and legend gives TypeError: object of type
'NoneType' has no len()

• #19787: Marker sizes in Axes3D scatter plot are changing all the time

• #19809: Tests that use "image_comparison" fail to cleanup on Windows

• #19803: Suptitle positioning messed up in 3.4.0

• #19785: Starting point of annotation arrows has changed in 3.4.0

• #19776: Errorbars with yerr fail when fillstyle is specified

• #19780: redirect_from extension breaks latex build

7.1.3 GitHub Stats for Matplotlib 3.4.0

GitHub stats for 2020/07/16 - 2021/03/25 (tag: v3.3.0)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 204 issues and merged 772 pull requests. The full list can be seen on GitHub

The following 177 authors contributed 3852 commits.

• A N U S H

• Adam Brown

• Aditya Malhotra

• aflah02

• Aitik Gupta

• Alejandro García

• Alex Henrie

• Alexander Schlüter

• Alexis de Almeida Coutinho

• Andreas C Mueller

• andrzejnovak

• Antony Lee

• Arthur Milchior

• bakes

7.1. Previous GitHub Stats 473

https://github.com/matplotlib/matplotlib/pull/19783/
https://github.com/matplotlib/matplotlib/pull/19719/
https://github.com/matplotlib/matplotlib/issues/19779/
https://github.com/matplotlib/matplotlib/issues/19787/
https://github.com/matplotlib/matplotlib/issues/19809/
https://github.com/matplotlib/matplotlib/issues/19803/
https://github.com/matplotlib/matplotlib/issues/19785/
https://github.com/matplotlib/matplotlib/issues/19776/
https://github.com/matplotlib/matplotlib/issues/19780/
https://github.com/matplotlib/matplotlib/milestone/53?closed=1

Matplotlib, Release 3.4.3

• BAKEZQ

• BaoGiang HoangVu

• Ben Root

• BH4

• Bradley Dice

• Braxton Lamey

• Brian McFee

• Bruno Beltran

• Bryan Kok

• Byron Boulton

• Carsten Schelp

• ceelo777

• Charles

• CharlesHe16

• Christian Baumann

• Contextualist

• DangoMelon

• Daniel

• Daniel Ingram

• David Meyer

• David Stansby

• David Young

• deep-jkl

• Diego Leal

• Dr. Thomas A Caswell

• Dylan Cutler

• Eben Pendleton

• EBenkler

• ebenp

• ecotner

• Elliott Sales de Andrade

• Emily FY

474 Chapter 7. GitHub Stats

Matplotlib, Release 3.4.3

• Eric Firing

• Eric Larson

• Eric Prestat

• Erik Benkler

• Evan Berkowitz

• Ewan Sutherland

• Federico Ariza

• Forrest

• Frank Sauerburger

• FrankTheCodeMonkey

• Greg Lucas

• hannah

• Harry Knight

• Harsh Sharma

• Hassan Kibirige

• Hugo van Kemenade

• Iain-S

• Ian Hunt-Isaak

• Ian Thomas

• ianhi

• Ilya V. Schurov

• ImportanceOfBeingErnest

• Isuru Fernando

• ItsRLuo

• J. Scott Berg

• Jae-Joon Lee

• Jakub Klus

• Janakarajan Natarajan

• Jann Paul Mattern

• jbhopkins

• jeetvora331

• Jerome F. Villegas

7.1. Previous GitHub Stats 475

Matplotlib, Release 3.4.3

• Jerome Villegas

• jfbu

• Jirka Hladky

• Jody Klymak

• Johan von Forstner

• johan12345

• john imperial

• John Losito

• John Peloquin

• johnthagen

• Jouni K. Seppänen

• Kate Perkins

• kate-perkins

• katrielester

• kolibril13

• kwgchi

• Lee Johnston

• Leo Singer

• linchiwei123

• Lucy Liu

• luz paz

• luzpaz

• Léonard Gérard

• majorwitty

• mansoor96g

• Maria Ilie

• Maria-Alexandra Ilie

• Marianne Corvellec

• Mark Harfouche

• Martin Spacek

• Mary Chris Go

• Matthew Petroff

476 Chapter 7. GitHub Stats

Matplotlib, Release 3.4.3

• Matthias Bussonnier

• Matthias Geier

• Max Chen

• McToel

• Michael Grupp

• Michaël Defferrard

• Mihai Anton

• Mohammad Aflah Khan

• Neilzon Viloria

• neok-m4700

• Nora Moseman

• Pamela Wu

• pankajchetry1168

• Petar Mlinarić

• Peter Williams

• Phil Nagel

• philip-sparks

• Philipp Arras

• Philipp Nagel

• Pratyush Raj

• Péter Leéh

• rajpratyush

• Randall Ung

• reshamas

• Rezangyal

• Richard Sheridan

• richardsheridan

• Rob McDonald

• Rohit Rawat

• Ruben Verweij

• Ruth Comer

• Ryan May

7.1. Previous GitHub Stats 477

Matplotlib, Release 3.4.3

• Sam Tygier

• shawnchen

• shawnchen1996

• ShawnChen1996

• Sidharth Bansal

• Srihitha Maryada

• Stephen Sinclair

• Struan Murray

• Theodor Athanasiadis

• Thomas A Caswell

• Thorvald Johannessen

• Tim Gates

• Tim Hoffmann

• Tobias Hangleiter

• tohc1

• Tom Charrett

• Tom Neep

• Tomas Fiers

• ulijh

• Ulrich J. Herter

• Utkarshp1

• Uwe F. Mayer

• Valentin Valls

• Vincent Cuenca

• Vineyard

• Vlas Sokolov

• Xianxiang Li

• xlilos

• Ye Chang

• Yichao Yu

• yozhikoff

• Yun Liu

478 Chapter 7. GitHub Stats

Matplotlib, Release 3.4.3

• z0rgy

• zitorelova

GitHub issues and pull requests:

Pull Requests (772):

• PR #19775: Fix deprecation for imread on URLs.

• PR #19772: Backport PR #19535 on branch v3.4.x (Fix example's BasicUnit array conversion.)

• PR #19771: Backport PR #19757 on branch v3.4.x (Fixed python -mpip typo)

• PR #19770: Backport PR #19739 on branch v3.4.x (Changed 'python -mpip' to 'python -m pip' for
consistency)

• PR #19535: Fix example's BasicUnit array conversion.

• PR #19767: Backport PR #19766 on branch v3.4.x (Set colormap modification removal to 3.6.)

• PR #19766: Set colormap modification removal to 3.6.

• PR #19764: Backport PR #19762 on branch v3.4.x (FIX: do not report that webagg supports blitting)

• PR #19762: FIX: do not report that webagg supports blitting

• PR #19689: Prepare API docs for v3.4.0

• PR #19761: Backport PR #19746 on branch v3.4.x (Fix resizing in nbAgg.)

• PR #19746: Fix resizing in nbAgg.

• PR #19757: Fixed python -mpip typo

• PR #19739: Changed 'python -mpip' to 'python -m pip' for consistency

• PR #19713: DOC: Prepare What's new page for 3.4.0.

• PR #19742: Backport PR #19741 on branch v3.4.x (Only override pickradius when picker is not a
bool.)

• PR #19741: Only override pickradius when picker is not a bool.

• PR #19726: Backport PR #19505 on branch v3.4.x (Move some advanced documentation away from
Installation Guide)

• PR #19505: Move some advanced documentation away from Installation Guide

• PR #19712: Backport PR #19707 on branch v3.4.x (DOC: fix dx in Arrow guide)

• PR #19711: Backport PR #19709 on branch v3.4.x (Fix arrow_guide.py typo)

• PR #19709: Fix arrow_guide.py typo

• PR #19707: DOC: fix dx in Arrow guide

• PR #19699: Backport PR #19695 on branch v3.4.x (DOC: Increase size of headings)

• PR #19695: DOC: Increase size of headings

7.1. Previous GitHub Stats 479

https://github.com/matplotlib/matplotlib/pull/19775/
https://github.com/matplotlib/matplotlib/pull/19772/
https://github.com/matplotlib/matplotlib/pull/19771/
https://github.com/matplotlib/matplotlib/pull/19770/
https://github.com/matplotlib/matplotlib/pull/19535/
https://github.com/matplotlib/matplotlib/pull/19767/
https://github.com/matplotlib/matplotlib/pull/19766/
https://github.com/matplotlib/matplotlib/pull/19764/
https://github.com/matplotlib/matplotlib/pull/19762/
https://github.com/matplotlib/matplotlib/pull/19689/
https://github.com/matplotlib/matplotlib/pull/19761/
https://github.com/matplotlib/matplotlib/pull/19746/
https://github.com/matplotlib/matplotlib/pull/19757/
https://github.com/matplotlib/matplotlib/pull/19739/
https://github.com/matplotlib/matplotlib/pull/19713/
https://github.com/matplotlib/matplotlib/pull/19742/
https://github.com/matplotlib/matplotlib/pull/19741/
https://github.com/matplotlib/matplotlib/pull/19726/
https://github.com/matplotlib/matplotlib/pull/19505/
https://github.com/matplotlib/matplotlib/pull/19712/
https://github.com/matplotlib/matplotlib/pull/19711/
https://github.com/matplotlib/matplotlib/pull/19709/
https://github.com/matplotlib/matplotlib/pull/19707/
https://github.com/matplotlib/matplotlib/pull/19699/
https://github.com/matplotlib/matplotlib/pull/19695/

Matplotlib, Release 3.4.3

• PR #19697: Backport PR #19690 on branch v3.4.x (Only warn about existing redirects if content
differs.)

• PR #19690: Only warn about existing redirects if content differs.

• PR #19696: Backport PR #19665 on branch v3.4.x (Changed FormatStrFormatter documentation to
include how to get unicode minus)

• PR #19680: Backport PR #19402 on branch v3.4.x (Build aarch64 wheels)

• PR #19678: Backport PR #19671 on branch v3.4.x (Fix crash in early window raise in gtk3.)

• PR #19671: Fix crash in early window raise in gtk3.

• PR #19665: Changed FormatStrFormatter documentation to include how to get unicode minus

• PR #19402: Build aarch64 wheels

• PR #19669: Backport PR #19661 on branch v3.4.x (Fix CoC link)

• PR #19668: Backport PR #19663 on branch v3.4.x (ENH: add a copy method to colormaps)

• PR #19663: ENH: add a copy method to colormaps

• PR #19661: Fix CoC link

• PR #19652: Backport PR #19649 on branch v3.4.x (Use globals() instead of locals() for adding col-
ormaps as names to cm module)

• PR #19649: Use globals() instead of locals() for adding colormaps as names to cm module

• PR #19651: Backport PR #19618 on branch v3.4.x (FIX: make the cache in font_manager._get_font
keyed by thread id)

• PR #19650: Backport PR #19625 on branch v3.4.x (Restore _AxesStack to track a Figure's Axes
order.)

• PR #19647: Backport PR #19645 on branch v3.4.x (Fix comment in RectangleSelector)

• PR #19618: FIX: make the cache in font_manager._get_font keyed by thread id

• PR #19648: Backport PR #19643 on branch v3.4.x (Don't turn check_for_pgf into public API.)

• PR #19625: Restore _AxesStack to track a Figure's Axes order.

• PR #19643: Don't turn check_for_pgf into public API.

• PR #19645: Fix comment in RectangleSelector

• PR #19644: Backport PR #19611 on branch v3.4.x (Fix double picks.)

• PR #19611: Fix double picks.

• PR #19640: Backport PR #19639 on branch v3.4.x (FIX: do not allow single element list of str in
subplot_mosaic)

• PR #19639: FIX: do not allow single element list of str in subplot_mosaic

• PR #19638: Backport PR #19632 on branch v3.4.x (Fix handling of warn keyword in in Figure.show.)

• PR #19637: Backport PR #19582 on branch v3.4.x (Add kerning to single-byte strings in PDFs)

480 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/19697/
https://github.com/matplotlib/matplotlib/pull/19690/
https://github.com/matplotlib/matplotlib/pull/19696/
https://github.com/matplotlib/matplotlib/pull/19680/
https://github.com/matplotlib/matplotlib/pull/19678/
https://github.com/matplotlib/matplotlib/pull/19671/
https://github.com/matplotlib/matplotlib/pull/19665/
https://github.com/matplotlib/matplotlib/pull/19402/
https://github.com/matplotlib/matplotlib/pull/19669/
https://github.com/matplotlib/matplotlib/pull/19668/
https://github.com/matplotlib/matplotlib/pull/19663/
https://github.com/matplotlib/matplotlib/pull/19661/
https://github.com/matplotlib/matplotlib/pull/19652/
https://github.com/matplotlib/matplotlib/pull/19649/
https://github.com/matplotlib/matplotlib/pull/19651/
https://github.com/matplotlib/matplotlib/pull/19650/
https://github.com/matplotlib/matplotlib/pull/19647/
https://github.com/matplotlib/matplotlib/pull/19618/
https://github.com/matplotlib/matplotlib/pull/19648/
https://github.com/matplotlib/matplotlib/pull/19625/
https://github.com/matplotlib/matplotlib/pull/19643/
https://github.com/matplotlib/matplotlib/pull/19645/
https://github.com/matplotlib/matplotlib/pull/19644/
https://github.com/matplotlib/matplotlib/pull/19611/
https://github.com/matplotlib/matplotlib/pull/19640/
https://github.com/matplotlib/matplotlib/pull/19639/
https://github.com/matplotlib/matplotlib/pull/19638/
https://github.com/matplotlib/matplotlib/pull/19637/

Matplotlib, Release 3.4.3

• PR #19632: Fix handling of warn keyword in in Figure.show.

• PR #19582: Add kerning to single-byte strings in PDFs

• PR #19629: Backport PR #19548 on branch v3.4.x (Increase tolerances for other arches.)

• PR #19630: Backport PR #19596 on branch v3.4.x (Fix for issue 17769: wx interactive figure close
cause crash)

• PR #19596: Fix for issue 17769: wx interactive figure close cause crash

• PR #19548: Increase tolerances for other arches.

• PR #19616: Backport PR #19577 on branch v3.4.x (Fix "return"->"enter" mapping in key names.)

• PR #19617: Backport PR #19571 on branch v3.4.x (Fail early when setting Text color to a non-
colorlike.)

• PR #19615: Backport PR #19583 on branch v3.4.x (FIX: check for a set during color conversion)

• PR #19614: Backport PR #19597 on branch v3.4.x (Fix IPython import issue)

• PR #19613: Backport PR #19546 on branch v3.4.x (Move unrendered README.wx to thirdparty-
packages/index.rst.)

• PR #19583: FIX: check for a set during color conversion

• PR #19597: Fix IPython import issue

• PR #19571: Fail early when setting Text color to a non-colorlike.

• PR #19595: Backport PR #19589 on branch v3.4.x (Changes linestyle parameter of flierprops)

• PR #19577: Fix "return"->"enter" mapping in key names.

• PR #19589: Changes linestyle parameter of flierprops

• PR #19592: Backport PR #19587 on branch v3.4.x (DOC: fix plot_date doc)

• PR #19587: DOC: fix plot_date doc

• PR #19580: Backport PR #19456 on branch v3.4.x (Doc implement reredirects)

• PR #19579: Backport PR #19567 on branch v3.4.x (DOC: fix typos)

• PR #19456: Doc implement reredirects

• PR #19567: DOC: fix typos

• PR #19542: Backport PR #19532 on branch v3.4.x (Add note on interaction between text wrapping
and bbox_inches='tight')

• PR #19549: Backport PR #19545 on branch v3.4.x (Replace references to pygtk by pygobject in docs.)

• PR #19546: Move unrendered README.wx to thirdpartypackages/index.rst.

• PR #19545: Replace references to pygtk by pygobject in docs.

• PR #19532: Add note on interaction between text wrapping and bbox_inches='tight'

• PR #19541: MAINT: fix typo from #19438

7.1. Previous GitHub Stats 481

https://github.com/matplotlib/matplotlib/pull/19632/
https://github.com/matplotlib/matplotlib/pull/19582/
https://github.com/matplotlib/matplotlib/pull/19629/
https://github.com/matplotlib/matplotlib/pull/19630/
https://github.com/matplotlib/matplotlib/pull/19596/
https://github.com/matplotlib/matplotlib/pull/19548/
https://github.com/matplotlib/matplotlib/pull/19616/
https://github.com/matplotlib/matplotlib/pull/19617/
https://github.com/matplotlib/matplotlib/pull/19615/
https://github.com/matplotlib/matplotlib/pull/19614/
https://github.com/matplotlib/matplotlib/pull/19613/
https://github.com/matplotlib/matplotlib/pull/19583/
https://github.com/matplotlib/matplotlib/pull/19597/
https://github.com/matplotlib/matplotlib/pull/19571/
https://github.com/matplotlib/matplotlib/pull/19595/
https://github.com/matplotlib/matplotlib/pull/19577/
https://github.com/matplotlib/matplotlib/pull/19589/
https://github.com/matplotlib/matplotlib/pull/19592/
https://github.com/matplotlib/matplotlib/pull/19587/
https://github.com/matplotlib/matplotlib/pull/19580/
https://github.com/matplotlib/matplotlib/pull/19579/
https://github.com/matplotlib/matplotlib/pull/19456/
https://github.com/matplotlib/matplotlib/pull/19567/
https://github.com/matplotlib/matplotlib/pull/19542/
https://github.com/matplotlib/matplotlib/pull/19549/
https://github.com/matplotlib/matplotlib/pull/19546/
https://github.com/matplotlib/matplotlib/pull/19545/
https://github.com/matplotlib/matplotlib/pull/19532/
https://github.com/matplotlib/matplotlib/pull/19541/

Matplotlib, Release 3.4.3

• PR #19480: Fix CallbackRegistry memory leak

• PR #19539: In scatter, fix single rgb edgecolors handling

• PR #19438: FIX: restore creating new axes via plt.subplot with different kwargs

• PR #18436: Sync 3D errorbar with 2D

• PR #19472: Fix default label visibility for top-or-left-labeled shared subplots().

• PR #19496: MNT: Restore auto-adding Axes3D to their parent figure on init

• PR #19533: Clarify the animated property and reword blitting tutorial a bit

• PR #19146: Fix #19128: webagg reports incorrect values for non-alphanumeric key events on non-
qwerty keyboards

• PR #18068: Add note on writing binary formats to stdout using savefig()

• PR #19507: FIX: ensure we import when the user cwd does not exist

• PR #19413: FIX: allow add option for Axes3D(fig)

• PR #19498: Dedupe implementations of {XAxis,YAxis}._get_tick_boxes_siblings.

• PR #19502: Prefer projection="polar" over polar=True.

• PR #18480: Clarify color priorities in collections

• PR #19501: Fix text position with usetex and xcolor

• PR #19460: Implement angles for bracket arrow styles.

• PR #18408: FIX/API: fig.canvas.draw always updates internal state

• PR #19504: Remove remaining references to Travis CI

• PR #13358: 3D margins consistency for mplot3d (isometric projection)

• PR #19529: Simplify checking for tex packages.

• PR #19516: Ignore files from annotate coverage reports

• PR #19500: Remove workaround for numpy<1.16, and update version check.

• PR #19518: Skip setting up a tmpdir in tests that don't need one.

• PR #19514: DOC: add fixed-aspect colorbar examples

• PR #19511: Clarify axes.autolimit_mode rcParam.

• PR #19503: Fix tight_layout() on "canvasless" figures.

• PR #19410: Set the GTK background color to white.

• PR #19497: Add overset/underset whatsnew entry

• PR #19490: Fix error message in plt.close().

• PR #19461: Move ToolManager warnings to rcParam validator

• PR #19488: Prefer tr1-tr2 to tr1+tr2.inverted().

482 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/19480/
https://github.com/matplotlib/matplotlib/pull/19539/
https://github.com/matplotlib/matplotlib/pull/19438/
https://github.com/matplotlib/matplotlib/pull/18436/
https://github.com/matplotlib/matplotlib/pull/19472/
https://github.com/matplotlib/matplotlib/pull/19496/
https://github.com/matplotlib/matplotlib/pull/19533/
https://github.com/matplotlib/matplotlib/pull/19146/
https://github.com/matplotlib/matplotlib/pull/18068/
https://github.com/matplotlib/matplotlib/pull/19507/
https://github.com/matplotlib/matplotlib/pull/19413/
https://github.com/matplotlib/matplotlib/pull/19498/
https://github.com/matplotlib/matplotlib/pull/19502/
https://github.com/matplotlib/matplotlib/pull/18480/
https://github.com/matplotlib/matplotlib/pull/19501/
https://github.com/matplotlib/matplotlib/pull/19460/
https://github.com/matplotlib/matplotlib/pull/18408/
https://github.com/matplotlib/matplotlib/pull/19504/
https://github.com/matplotlib/matplotlib/pull/13358/
https://github.com/matplotlib/matplotlib/pull/19529/
https://github.com/matplotlib/matplotlib/pull/19516/
https://github.com/matplotlib/matplotlib/pull/19500/
https://github.com/matplotlib/matplotlib/pull/19518/
https://github.com/matplotlib/matplotlib/pull/19514/
https://github.com/matplotlib/matplotlib/pull/19511/
https://github.com/matplotlib/matplotlib/pull/19503/
https://github.com/matplotlib/matplotlib/pull/19410/
https://github.com/matplotlib/matplotlib/pull/19497/
https://github.com/matplotlib/matplotlib/pull/19490/
https://github.com/matplotlib/matplotlib/pull/19461/
https://github.com/matplotlib/matplotlib/pull/19488/

Matplotlib, Release 3.4.3

• PR #19485: fix regression of axline behavior with non-linear scales

• PR #19314: Fix over/under mathtext symbols

• PR #19468: Include tex output in pdf LatexError.

• PR #19478: Fix trivial typo in error message.

• PR #19449: Switch array-like (M, N) to (M, N) array-like.

• PR #19459: Merge v3.3.4 into master

• PR #18746: Make figure parameter optional when constructing canvases.

• PR #19455: Add note that pyplot cannot be used for 3D.

• PR #19457: Use absolute link for discourse

• PR #19440: Slightly reorganize api docs.

• PR #19344: Improvements to Docs for new contributors

• PR #19435: Replace gtk3 deprecated APIs that have simple replacements.

• PR #19452: Fix the docstring of draw_markers to match the actual behavior.

• PR #19448: Remove unnecessary facecolor cache in Patch3D.

• PR #19396: CI: remove win prerelease azure + add py39

• PR #19426: Support empty stairs.

• PR #19399: Fix empty Poly3DCollections

• PR #19416: fixes TypeError constructor returned NULL in wayland session

• PR #19439: Move cheatsheet focus to the cheatsheets away

• PR #19425: Add units to bar_label padding documentation.

• PR #19422: Style fixes to triintepolate docs.

• PR #19421: Switch to documenting generic collections in lowercase.

• PR #19411: DOC: fix incorrect parameter names

• PR #19387: Fix CSS table header layout

• PR #18683: Better document font.<generic-family> rcParams entries.

• PR #19418: BF: DOCS: fix slash for windows in conf.py

• PR #18544: REORG: JoinStyle and CapStyle classes

• PR #19415: Make TaggedValue in basic_units a sequence

• PR #19412: DOC: correct off by one indentation.

• PR #19407: Improve doc of default labelpad.

• PR #19373: test for align_ylabel bug with constrained_layout

• PR #19347: os.environ-related cleanups.

7.1. Previous GitHub Stats 483

https://github.com/matplotlib/matplotlib/pull/19485/
https://github.com/matplotlib/matplotlib/pull/19314/
https://github.com/matplotlib/matplotlib/pull/19468/
https://github.com/matplotlib/matplotlib/pull/19478/
https://github.com/matplotlib/matplotlib/pull/19449/
https://github.com/matplotlib/matplotlib/pull/19459/
https://github.com/matplotlib/matplotlib/pull/18746/
https://github.com/matplotlib/matplotlib/pull/19455/
https://github.com/matplotlib/matplotlib/pull/19457/
https://github.com/matplotlib/matplotlib/pull/19440/
https://github.com/matplotlib/matplotlib/pull/19344/
https://github.com/matplotlib/matplotlib/pull/19435/
https://github.com/matplotlib/matplotlib/pull/19452/
https://github.com/matplotlib/matplotlib/pull/19448/
https://github.com/matplotlib/matplotlib/pull/19396/
https://github.com/matplotlib/matplotlib/pull/19426/
https://github.com/matplotlib/matplotlib/pull/19399/
https://github.com/matplotlib/matplotlib/pull/19416/
https://github.com/matplotlib/matplotlib/pull/19439/
https://github.com/matplotlib/matplotlib/pull/19425/
https://github.com/matplotlib/matplotlib/pull/19422/
https://github.com/matplotlib/matplotlib/pull/19421/
https://github.com/matplotlib/matplotlib/pull/19411/
https://github.com/matplotlib/matplotlib/pull/19387/
https://github.com/matplotlib/matplotlib/pull/18683/
https://github.com/matplotlib/matplotlib/pull/19418/
https://github.com/matplotlib/matplotlib/pull/18544/
https://github.com/matplotlib/matplotlib/pull/19415/
https://github.com/matplotlib/matplotlib/pull/19412/
https://github.com/matplotlib/matplotlib/pull/19407/
https://github.com/matplotlib/matplotlib/pull/19373/
https://github.com/matplotlib/matplotlib/pull/19347/

Matplotlib, Release 3.4.3

• PR #19319: DOC: make canonical version stable

• PR #19395: wx: Use integers in more places

• PR #17850: MNT: set the facecolor of nofill markers

• PR #19334: Fix qt backend on mac big sur

• PR #19394: Don't allow pyzmq 22.0.0 on AppVeyor.

• PR #19367: Deprecate imread() reading from URLs

• PR #19341: MarkerStyle is considered immutable

• PR #19337: Move sphinx extension files into mpl-data.

• PR #19389: Temporarily switch intersphinx to latest pytest.

• PR #19390: Doc: Minor formatting

• PR #19383: Always include sample_data in installs.

• PR #19378: Modify indicate_inset default label value

• PR #19357: Shorten/make more consistent the half-filled marker definitions.

• PR #18649: Deprecate imread() reading from URLs

• PR #19370: Force classic ("auto") date converter in classic style.

• PR #19364: Fix trivial doc typos.

• PR #19359: Replace use of pyplot with OO api in some examples

• PR #19342: FIX: fix bbox_inches=tight and constrained layout bad interaction

• PR #19350: Describe how to test regular installations of Matplotlib

• PR #19332: Prefer concatenate to h/vstack in simple cases.

• PR #19340: Remove the deprecated rcParams["datapath"].

• PR #19326: Whitespace in Choosing Colormaps tutorial plots

• PR #16417: Deprecate rcParams["datapath"] in favor of mpl.get_data_path().

• PR #19336: Revert "Deprecate setting Line2D's pickradius via set_picker."

• PR #19153: MNT: Remove deprecated axes kwargs collision detection (version 2)

• PR #19330: Remove register storage class from Agg files.

• PR #19324: Improve FT2Font docstrings.

• PR #19328: Explain annotation behavior when used in conjunction with arrows

• PR #19329: Fix building against system qhull

• PR #19331: Skip an ImageMagick test if ffmpeg is unavailable.

• PR #19333: Fix PGF with special character paths.

• PR #19322: Improve docs of _path C-extension.

484 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/19319/
https://github.com/matplotlib/matplotlib/pull/19395/
https://github.com/matplotlib/matplotlib/pull/17850/
https://github.com/matplotlib/matplotlib/pull/19334/
https://github.com/matplotlib/matplotlib/pull/19394/
https://github.com/matplotlib/matplotlib/pull/19367/
https://github.com/matplotlib/matplotlib/pull/19341/
https://github.com/matplotlib/matplotlib/pull/19337/
https://github.com/matplotlib/matplotlib/pull/19389/
https://github.com/matplotlib/matplotlib/pull/19390/
https://github.com/matplotlib/matplotlib/pull/19383/
https://github.com/matplotlib/matplotlib/pull/19378/
https://github.com/matplotlib/matplotlib/pull/19357/
https://github.com/matplotlib/matplotlib/pull/18649/
https://github.com/matplotlib/matplotlib/pull/19370/
https://github.com/matplotlib/matplotlib/pull/19364/
https://github.com/matplotlib/matplotlib/pull/19359/
https://github.com/matplotlib/matplotlib/pull/19342/
https://github.com/matplotlib/matplotlib/pull/19350/
https://github.com/matplotlib/matplotlib/pull/19332/
https://github.com/matplotlib/matplotlib/pull/19340/
https://github.com/matplotlib/matplotlib/pull/19326/
https://github.com/matplotlib/matplotlib/pull/16417/
https://github.com/matplotlib/matplotlib/pull/19336/
https://github.com/matplotlib/matplotlib/pull/19153/
https://github.com/matplotlib/matplotlib/pull/19330/
https://github.com/matplotlib/matplotlib/pull/19324/
https://github.com/matplotlib/matplotlib/pull/19328/
https://github.com/matplotlib/matplotlib/pull/19329/
https://github.com/matplotlib/matplotlib/pull/19331/
https://github.com/matplotlib/matplotlib/pull/19333/
https://github.com/matplotlib/matplotlib/pull/19322/

Matplotlib, Release 3.4.3

• PR #19317: Pin to oldest supported PyQt on minver CI instance.

• PR #19315: Update the markers part of matplotlib.pyplot.plot document (fix issue #19274)

• PR #18978: API: Remove deprecated axes kwargs collision detection

• PR #19306: Fix some packaging issues

• PR #19291: Cleanup code for format processing

• PR #19316: Simplify X11 checking for Qt.

• PR #19287: Speedup LinearSegmentedColormap.from_list.

• PR #19293: Fix some docstring interpolations

• PR #19313: Add missing possible return value to docs of get_verticalalignment()

• PR #18916: Add overset and underset support for mathtext

• PR #18126: FIX: Allow deepcopy on norms and scales

• PR #19281: Make all transforms copiable (and thus scales, too).

• PR #19294: Deprecate project argument to Line3DCollection.draw.

• PR #19307: DOC: remove stray assignment in "multiple legends" example

• PR #19303: Extended the convolution filter for correct dilation

• PR #19261: Add machinery for png-only, single-font mathtext tests.

• PR #16571: Update Qhull to 2019.1 reentrant version

• PR #16720: Download qhull at build-or-sdist time.

• PR #18653: ENH: Add func norm

• PR #19272: Strip irrelevant information from testing docs

• PR #19298: Fix misplaced colon in bug report template.

• PR #19297: Clarify return format of Line2D.get_data.

• PR #19277: Warn on redundant definition of plot properties

• PR #19278: Cleanup and document _plot_args()

• PR #19282: Remove the unused TransformNode._gid.

• PR #19264: Expand on slider_demo example

• PR #19244: Move cbook._check_isinstance() to _api.check_isinstance()

• PR #19273: Use proper pytest functionality for warnings and exceptions

• PR #19262: more robust check for enter key in TextBox

• PR #19249: Clarify Doc for Secondary axis, ad-hoc example

• PR #19248: Make return value of _get_patch_verts always an array.

• PR #19247: Fix markup for mplot3d example.

7.1. Previous GitHub Stats 485

https://github.com/matplotlib/matplotlib/pull/19317/
https://github.com/matplotlib/matplotlib/pull/19315/
https://github.com/matplotlib/matplotlib/pull/18978/
https://github.com/matplotlib/matplotlib/pull/19306/
https://github.com/matplotlib/matplotlib/pull/19291/
https://github.com/matplotlib/matplotlib/pull/19316/
https://github.com/matplotlib/matplotlib/pull/19287/
https://github.com/matplotlib/matplotlib/pull/19293/
https://github.com/matplotlib/matplotlib/pull/19313/
https://github.com/matplotlib/matplotlib/pull/18916/
https://github.com/matplotlib/matplotlib/pull/18126/
https://github.com/matplotlib/matplotlib/pull/19281/
https://github.com/matplotlib/matplotlib/pull/19294/
https://github.com/matplotlib/matplotlib/pull/19307/
https://github.com/matplotlib/matplotlib/pull/19303/
https://github.com/matplotlib/matplotlib/pull/19261/
https://github.com/matplotlib/matplotlib/pull/16571/
https://github.com/matplotlib/matplotlib/pull/16720/
https://github.com/matplotlib/matplotlib/pull/18653/
https://github.com/matplotlib/matplotlib/pull/19272/
https://github.com/matplotlib/matplotlib/pull/19298/
https://github.com/matplotlib/matplotlib/pull/19297/
https://github.com/matplotlib/matplotlib/pull/19277/
https://github.com/matplotlib/matplotlib/pull/19278/
https://github.com/matplotlib/matplotlib/pull/19282/
https://github.com/matplotlib/matplotlib/pull/19264/
https://github.com/matplotlib/matplotlib/pull/19244/
https://github.com/matplotlib/matplotlib/pull/19273/
https://github.com/matplotlib/matplotlib/pull/19262/
https://github.com/matplotlib/matplotlib/pull/19249/
https://github.com/matplotlib/matplotlib/pull/19248/
https://github.com/matplotlib/matplotlib/pull/19247/

Matplotlib, Release 3.4.3

• PR #19216: Ignore non-draw codes when calculating path extent

• PR #19215: Collect information for setting up a development environment

• PR #19210: Fix creation of AGG images bigger than 1024**3 pixels

• PR #18933: Set clip path for PostScript texts.

• PR #19162: Deprecate cbook.warn_deprecated and move internal calls to _api.warn_deprecated

• PR #16391: Re-write sym-log-norm

• PR #19240: FIX: process lists for inverse norms

• PR #18737: Fix data cursor for images with additional transform

• PR #18642: Propagate minpos from Collections to Axes.datalim

• PR #19242: Update first occurrence of QT to show both 4 and 5

• PR #19231: Add reference section to all statistics examples

• PR #19217: Request an autoscale at the end of ax.pie()

• PR #19176: Deprecate additional positional args to plot_{surface,wireframe}.

• PR #19063: Give plot_directive output a max-width: 100%

• PR #19187: Support callable for formatting of Sankey labels

• PR #19220: Remove one TOC level from the release guide

• PR #19212: MNT: try to put more whitespace in welcome message

• PR #19155: Consolidated the Install from Source docs

• PR #19208: added version ask/hint to issue templates, grammar on pr bot

• PR #19185: Document Triangulation.triangles

• PR #19181: Remove unused imports

• PR #19207: Fix Grouper example code

• PR #19204: Clarify Date Format Example

• PR #19200: Fix incorrect statement regarding test images cache size.

• PR #19198: Fix link in contrbuting docs

• PR #19196: Fix PR welcome action

• PR #19188: Cleanup comparision between X11/CSS4 and xkcd colors

• PR #19194: Fix trivial quiver doc typo.

• PR #19180: Fix Artist.remove_callback()

• PR #19192: Fixed part of Issue - #19100, changed documentation for axisartist

• PR #19179: Check that no new figures are created in image comparison tests

• PR #19184: Minor doc cleanup

486 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/19216/
https://github.com/matplotlib/matplotlib/pull/19215/
https://github.com/matplotlib/matplotlib/pull/19210/
https://github.com/matplotlib/matplotlib/pull/18933/
https://github.com/matplotlib/matplotlib/pull/19162/
https://github.com/matplotlib/matplotlib/pull/16391/
https://github.com/matplotlib/matplotlib/pull/19240/
https://github.com/matplotlib/matplotlib/pull/18737/
https://github.com/matplotlib/matplotlib/pull/18642/
https://github.com/matplotlib/matplotlib/pull/19242/
https://github.com/matplotlib/matplotlib/pull/19231/
https://github.com/matplotlib/matplotlib/pull/19217/
https://github.com/matplotlib/matplotlib/pull/19176/
https://github.com/matplotlib/matplotlib/pull/19063/
https://github.com/matplotlib/matplotlib/pull/19187/
https://github.com/matplotlib/matplotlib/pull/19220/
https://github.com/matplotlib/matplotlib/pull/19212/
https://github.com/matplotlib/matplotlib/pull/19155/
https://github.com/matplotlib/matplotlib/pull/19208/
https://github.com/matplotlib/matplotlib/pull/19185/
https://github.com/matplotlib/matplotlib/pull/19181/
https://github.com/matplotlib/matplotlib/pull/19207/
https://github.com/matplotlib/matplotlib/pull/19204/
https://github.com/matplotlib/matplotlib/pull/19200/
https://github.com/matplotlib/matplotlib/pull/19198/
https://github.com/matplotlib/matplotlib/pull/19196/
https://github.com/matplotlib/matplotlib/pull/19188/
https://github.com/matplotlib/matplotlib/pull/19194/
https://github.com/matplotlib/matplotlib/pull/19180/
https://github.com/matplotlib/matplotlib/pull/19192/
https://github.com/matplotlib/matplotlib/pull/19179/
https://github.com/matplotlib/matplotlib/pull/19184/

Matplotlib, Release 3.4.3

• PR #19093: DOCS: Specifying Colors tutorial format & arrange

• PR #17107: Add Spines class as a container for all Axes spines

• PR #18829: Create a RangeSlider widget

• PR #18873: Getting Started GSoD

• PR #19175: Fix axes direction for a floating axisartist

• PR #19130: DOC: remove reference to 2.2.x branches from list of active branches

• PR #15212: Dedupe window-title setting by moving it to FigureManagerBase.

• PR #19172: Fix 3D surface example bug for non-square grid

• PR #19173: Ensure backend tests are skipped if unavailable

• PR #19170: Clarify meaning of facecolors for LineCollection

• PR #18310: Add 3D stem plot

• PR #18127: Implement lazy autoscaling in mplot3d.

• PR #16178: Add multiple label support for Axes.plot()

• PR #19151: Deprecate @cbook.deprecated and move internal calls to @_api.deprecated

• PR #19088: Ignore CLOSEPOLY vertices when computing dataLim from patches

• PR #19166: CI: add github action to post to first-time PRs openers

• PR #19124: GOV/DOC: add section to docs on triaging and triage team

• PR #15602: Add an auto-labeling helper function for bar charts

• PR #19164: docs: fix simple typo, backslahes -> backslashes

• PR #19161: Simplify test_backend_pdf::test_multipage_properfinalize.

• PR #19141: FIX: suppress offset text in ConciseDateFormatter when largest scale is in years

• PR #19150: Move from @cbook._classproperty to @_api.classproperty

• PR #19144: Move from cbook._warn_external() to _api.warn_external()

• PR #19119: Don't lose unit change handlers when pickling/unpickling.

• PR #19145: Move from cbook._deprecate_*() to _api.deprecate_*()

• PR #19123: Use Qt events to refresh pixel ratio.

• PR #19056: Support raw/rgba frame format in FFMpegFileWriter

• PR #19140: Fix the docstring of suptitle/subxlabel/supylabel.

• PR #19132: Normalize docstring interpolation label for kwdoc() property lists

• PR #19134: Switch internal API function calls from cbook to _api

• PR #19138: Added non-code contributions to incubator docs

• PR #19125: DOC: contributor incubator

7.1. Previous GitHub Stats 487

https://github.com/matplotlib/matplotlib/pull/19093/
https://github.com/matplotlib/matplotlib/pull/17107/
https://github.com/matplotlib/matplotlib/pull/18829/
https://github.com/matplotlib/matplotlib/pull/18873/
https://github.com/matplotlib/matplotlib/pull/19175/
https://github.com/matplotlib/matplotlib/pull/19130/
https://github.com/matplotlib/matplotlib/pull/15212/
https://github.com/matplotlib/matplotlib/pull/19172/
https://github.com/matplotlib/matplotlib/pull/19173/
https://github.com/matplotlib/matplotlib/pull/19170/
https://github.com/matplotlib/matplotlib/pull/18310/
https://github.com/matplotlib/matplotlib/pull/18127/
https://github.com/matplotlib/matplotlib/pull/16178/
https://github.com/matplotlib/matplotlib/pull/19151/
https://github.com/matplotlib/matplotlib/pull/19088/
https://github.com/matplotlib/matplotlib/pull/19166/
https://github.com/matplotlib/matplotlib/pull/19124/
https://github.com/matplotlib/matplotlib/pull/15602/
https://github.com/matplotlib/matplotlib/pull/19164/
https://github.com/matplotlib/matplotlib/pull/19161/
https://github.com/matplotlib/matplotlib/pull/19141/
https://github.com/matplotlib/matplotlib/pull/19150/
https://github.com/matplotlib/matplotlib/pull/19144/
https://github.com/matplotlib/matplotlib/pull/19119/
https://github.com/matplotlib/matplotlib/pull/19145/
https://github.com/matplotlib/matplotlib/pull/19123/
https://github.com/matplotlib/matplotlib/pull/19056/
https://github.com/matplotlib/matplotlib/pull/19140/
https://github.com/matplotlib/matplotlib/pull/19132/
https://github.com/matplotlib/matplotlib/pull/19134/
https://github.com/matplotlib/matplotlib/pull/19138/
https://github.com/matplotlib/matplotlib/pull/19125/

Matplotlib, Release 3.4.3

• PR #18948: DOC: Fix latexpdf build

• PR #18753: Remove several more deprecations

• PR #19083: Fix headless tests on Wayland.

• PR #19127: Cleanups to webagg & friends.

• PR #19122: FIX/DOC - make Text doscstring interp more easily searchable

• PR #19106: Support setting rcParams["image.cmap"] to Colormap instances.

• PR #19085: FIX: update a transfrom from transFigure to transSubfigure

• PR #19117: Rename a confusing variable.

• PR #18647: Axes.axline: implement support transform argument (for points but not slope)

• PR #16220: Fix interaction with unpickled 3d plots.

• PR #19059: Support blitting in webagg backend

• PR #19107: Update pyplot.py

• PR #19044: Cleanup Animation frame_formats.

• PR #19087: FIX/TST: recursively remove ticks

• PR #19094: Suppress -Wunused-function about _import_array when compiling tkagg.cpp.

• PR #19092: Fix use transform mplot3d

• PR #19097: DOC: add FuncScale to set_x/yscale

• PR #19089: ENH: allow passing a scale instance to set_scale

• PR #19086: FIX: add a default scale to Normalize

• PR #19073: Mention in a few more places that artists default to not-pickable.

• PR #19079: Remove incorrect statement about hist(..., log=True).

• PR #19076: Small improvements to aitoff projection.

• PR #19071: DOC: Add 'blackman' to list of imshow interpolations

• PR #17524: ENH: add supxlabel and supylabel

• PR #18840: Add tutorial about autoscaling

• PR #19042: Simplify GridHelper invalidation.

• PR #19048: Remove _draw_{ticks2,label2}; skip extents computation in _update_ticks.

• PR #18983: Pass norm argument to spy

• PR #18802: Add code of conduct

• PR #19060: Fix broken link in Readme

• PR #18569: More generic value snapping for Slider widgets

• PR #19055: Fix kwargs handling in AnnotationBbox

488 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/18948/
https://github.com/matplotlib/matplotlib/pull/18753/
https://github.com/matplotlib/matplotlib/pull/19083/
https://github.com/matplotlib/matplotlib/pull/19127/
https://github.com/matplotlib/matplotlib/pull/19122/
https://github.com/matplotlib/matplotlib/pull/19106/
https://github.com/matplotlib/matplotlib/pull/19085/
https://github.com/matplotlib/matplotlib/pull/19117/
https://github.com/matplotlib/matplotlib/pull/18647/
https://github.com/matplotlib/matplotlib/pull/16220/
https://github.com/matplotlib/matplotlib/pull/19059/
https://github.com/matplotlib/matplotlib/pull/19107/
https://github.com/matplotlib/matplotlib/pull/19044/
https://github.com/matplotlib/matplotlib/pull/19087/
https://github.com/matplotlib/matplotlib/pull/19094/
https://github.com/matplotlib/matplotlib/pull/19092/
https://github.com/matplotlib/matplotlib/pull/19097/
https://github.com/matplotlib/matplotlib/pull/19089/
https://github.com/matplotlib/matplotlib/pull/19086/
https://github.com/matplotlib/matplotlib/pull/19073/
https://github.com/matplotlib/matplotlib/pull/19079/
https://github.com/matplotlib/matplotlib/pull/19076/
https://github.com/matplotlib/matplotlib/pull/19071/
https://github.com/matplotlib/matplotlib/pull/17524/
https://github.com/matplotlib/matplotlib/pull/18840/
https://github.com/matplotlib/matplotlib/pull/19042/
https://github.com/matplotlib/matplotlib/pull/19048/
https://github.com/matplotlib/matplotlib/pull/18983/
https://github.com/matplotlib/matplotlib/pull/18802/
https://github.com/matplotlib/matplotlib/pull/19060/
https://github.com/matplotlib/matplotlib/pull/18569/
https://github.com/matplotlib/matplotlib/pull/19055/

Matplotlib, Release 3.4.3

• PR #19041: Reword docs for exception_handler in CallbackRegistry.

• PR #19046: Prepare inlining MovieWriter.cleanup() into MovieWriter.finish().

• PR #19050: Better validate tick direction.

• PR #19038: Fix markup in interactive figures doc.

• PR #19035: grid_helper_curvelinear cleanups.

• PR #19022: Update event handling docs.

• PR #19025: Remove individual doc entries for some methods Axes inherits from Artist

• PR #19018: Inline and optimize ContourLabeler.get_label_coords.

• PR #19019: Deprecate never used resize_callback param to FigureCanvasTk.

• PR #19023: Cleanup comments/docs in backend_macosx, backend_pdf.

• PR #19020: Replace mathtext assertions by unpacking.

• PR #19024: Dedupe docs of GridSpec.subplots.

• PR #19013: Improve docs of _get_packed_offsets, _get_aligned_offsets.

• PR #19009: Compactify the implementation of ContourLabeler.add_label_near.

• PR #19008: Deprecate event processing wrapper methods on FigureManagerBase.

• PR #19015: Better document multilinebaseline (and other small TextArea fixes)

• PR #19012: Common __init__ for VPacker and HPacker.

• PR #19014: Support normalize_kwargs(None) (== {}).

• PR #19010: Inline _print_pdf_to_fh, _print_png_to_fh.

• PR #19003: Remove reference to unicode-math in pgf preamble.

• PR #18847: Cleanup interactive pan/zoom.

• PR #18868: Expire _make_keyword_only deprecations from 3.2

• PR #18903: Move cbook._suppress_matplotlib_deprecation_warning() from cbook to _api

• PR #18997: Micro-optimize check_isinstance.

• PR #18995: Fix the doc of GraphicsContextBase.set_clip_rectangle.

• PR #18996: Fix API change message from #18989

• PR #18993: Don't access private renderer attributes in tkagg blit.

• PR #18980: DOC: fix typos

• PR #18989: The Artist property rasterized cannot be None anymore

• PR #18987: Fix punctuation in doc.

• PR #18894: Use selectfont instead of findfont + scalefont + setfont in PostScript.

• PR #18990: Minor cleanup of categorical example

7.1. Previous GitHub Stats 489

https://github.com/matplotlib/matplotlib/pull/19041/
https://github.com/matplotlib/matplotlib/pull/19046/
https://github.com/matplotlib/matplotlib/pull/19050/
https://github.com/matplotlib/matplotlib/pull/19038/
https://github.com/matplotlib/matplotlib/pull/19035/
https://github.com/matplotlib/matplotlib/pull/19022/
https://github.com/matplotlib/matplotlib/pull/19025/
https://github.com/matplotlib/matplotlib/pull/19018/
https://github.com/matplotlib/matplotlib/pull/19019/
https://github.com/matplotlib/matplotlib/pull/19023/
https://github.com/matplotlib/matplotlib/pull/19020/
https://github.com/matplotlib/matplotlib/pull/19024/
https://github.com/matplotlib/matplotlib/pull/19013/
https://github.com/matplotlib/matplotlib/pull/19009/
https://github.com/matplotlib/matplotlib/pull/19008/
https://github.com/matplotlib/matplotlib/pull/19015/
https://github.com/matplotlib/matplotlib/pull/19012/
https://github.com/matplotlib/matplotlib/pull/19014/
https://github.com/matplotlib/matplotlib/pull/19010/
https://github.com/matplotlib/matplotlib/pull/19003/
https://github.com/matplotlib/matplotlib/pull/18847/
https://github.com/matplotlib/matplotlib/pull/18868/
https://github.com/matplotlib/matplotlib/pull/18903/
https://github.com/matplotlib/matplotlib/pull/18997/
https://github.com/matplotlib/matplotlib/pull/18995/
https://github.com/matplotlib/matplotlib/pull/18996/
https://github.com/matplotlib/matplotlib/pull/18993/
https://github.com/matplotlib/matplotlib/pull/18980/
https://github.com/matplotlib/matplotlib/pull/18989/
https://github.com/matplotlib/matplotlib/pull/18987/
https://github.com/matplotlib/matplotlib/pull/18894/
https://github.com/matplotlib/matplotlib/pull/18990/

Matplotlib, Release 3.4.3

• PR #18947: Strictly increasing check with test coverage for streamplot grid

• PR #18981: Cleanup Firefox SVG example.

• PR #18969: Improve documentation on rasterization

• PR #18876: Support fully-fractional HiDPI added in Qt 5.14.

• PR #18976: Simplify contour_label_demo.

• PR #18975: Fix typing error in pyplot's docs

• PR #18956: Document rasterized parameter in pcolormesh() explicitly

• PR #18968: Fix clabel() for backends without canvas.get_renderer()

• PR #18949: Deprecate AxisArtist.ZORDER

• PR #18830: Pgf plotting

• PR #18967: Remove unnecessary calls to lower().

• PR #18910: Remove Artist.eventson and Container.eventson

• PR #18964: Remove special-casing for PostScript dpi in pyplot.py.

• PR #18961: Replace sphinx-gallery-specific references by standard :doc: refs.

• PR #18955: added needs_ghostscript; skip test

• PR #18857: Improve hat graph example

• PR #18943: Small cleanup to StepPatch._update_path.

• PR #18937: Cleanup stem docs and simplify implementation.

• PR #18895: Introduce variable since which mpl version the minimal python version

• PR #18927: Improve warning message for missing font family specified via alias.

• PR #18930: Document limitations of Path.contains_point() and clarify its semantics

• PR #18892: Fixes MIME type for svg frame_format in HTMLWriter.

• PR #18938: Edit usetex docs.

• PR #18923: Use lambdas to prevent gc'ing and deduplication of widget callbacks.

• PR #16171: Contour fixes/improvements

• PR #18901: Simplify repeat_delay and fix support for it when using iterable frames.

• PR #18911: Added Aria-Labels to all inputs with tooltips for generated HTML animations: issue
#17910

• PR #18912: Use CallbackRegistry for {Artist,Collection}.add_callback.

• PR #18919: DOCS: fix contourf hatch demo legend

• PR #18905: Make docs fail on Warning (and fix all existing warnings)

• PR #18763: Single-line string notation for subplot_mosaic

490 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/18947/
https://github.com/matplotlib/matplotlib/pull/18981/
https://github.com/matplotlib/matplotlib/pull/18969/
https://github.com/matplotlib/matplotlib/pull/18876/
https://github.com/matplotlib/matplotlib/pull/18976/
https://github.com/matplotlib/matplotlib/pull/18975/
https://github.com/matplotlib/matplotlib/pull/18956/
https://github.com/matplotlib/matplotlib/pull/18968/
https://github.com/matplotlib/matplotlib/pull/18949/
https://github.com/matplotlib/matplotlib/pull/18830/
https://github.com/matplotlib/matplotlib/pull/18967/
https://github.com/matplotlib/matplotlib/pull/18910/
https://github.com/matplotlib/matplotlib/pull/18964/
https://github.com/matplotlib/matplotlib/pull/18961/
https://github.com/matplotlib/matplotlib/pull/18955/
https://github.com/matplotlib/matplotlib/pull/18857/
https://github.com/matplotlib/matplotlib/pull/18943/
https://github.com/matplotlib/matplotlib/pull/18937/
https://github.com/matplotlib/matplotlib/pull/18895/
https://github.com/matplotlib/matplotlib/pull/18927/
https://github.com/matplotlib/matplotlib/pull/18930/
https://github.com/matplotlib/matplotlib/pull/18892/
https://github.com/matplotlib/matplotlib/pull/18938/
https://github.com/matplotlib/matplotlib/pull/18923/
https://github.com/matplotlib/matplotlib/pull/16171/
https://github.com/matplotlib/matplotlib/pull/18901/
https://github.com/matplotlib/matplotlib/pull/18911/
https://github.com/matplotlib/matplotlib/pull/18912/
https://github.com/matplotlib/matplotlib/pull/18919/
https://github.com/matplotlib/matplotlib/pull/18905/
https://github.com/matplotlib/matplotlib/pull/18763/

Matplotlib, Release 3.4.3

• PR #18902: Move ImageMagick version exclusion to _get_executable_info.

• PR #18915: Remove hard-coded API removal version mapping.

• PR #18914: Fix typo in error message: interable -> iterable.

• PR #15065: step-between as drawstyle [Alternative approach to #15019]

• PR #18532: Consistent behavior of draw_if_interactive across interactive backends.

• PR #18908: Rework interactive backends tests.

• PR #18817: MAINT: deprecate validCap, validJoin

• PR #18907: Unmark wx-threading-test-failure as strict xfail.

• PR #18896: Add note on keeping a reference to animation docstrings

• PR #18862: Resolve mathtext.fontset at FontProperties creation time.

• PR #18877: Remove fallback to nonexistent setDevicePixelRatioF.

• PR #18823: Move from @cbook.deprecated to @_api.deprecated

• PR #18889: Switch Tk to using PNG files for buttons

• PR #18888: Update version of Matplotlib that needs Python 3.7

• PR #18867: Remove "Demo" from example titles (part 2)

• PR #18863: Reword FontProperties docstring.

• PR #18866: Fix RGBAxes docs markup.

• PR #18874: Slightly compress down the pgf tests.

• PR #18565: Make Tkagg blit thread safe

• PR #18858: Remove "Demo" from example titles

• PR #15177: Bind WX_CHAR_HOOK instead of WX_KEY_DOWN for wx key_press_event.

• PR #18821: Simplification of animated histogram example

• PR #18844: Fix sphinx formatting issues

• PR #18834: Add cross-references to Artist tutorial

• PR #18827: Update Qt version in event handling docs.

• PR #18825: Warn in pgf backend when unknown font is requested.

• PR #18822: Remove deprecate

• PR #18733: Time series histogram plot example

• PR #18812: Change LogFormatter coeff computation

• PR #18820: Fix axes -> Axes changes in figure.py

• PR #18657: Move cbook.deprecation to _api.deprecation

• PR #18818: Clarify behavior of CallbackRegistry.disconnect with nonexistent cids.

7.1. Previous GitHub Stats 491

https://github.com/matplotlib/matplotlib/pull/18902/
https://github.com/matplotlib/matplotlib/pull/18915/
https://github.com/matplotlib/matplotlib/pull/18914/
https://github.com/matplotlib/matplotlib/pull/15065/
https://github.com/matplotlib/matplotlib/pull/18532/
https://github.com/matplotlib/matplotlib/pull/18908/
https://github.com/matplotlib/matplotlib/pull/18817/
https://github.com/matplotlib/matplotlib/pull/18907/
https://github.com/matplotlib/matplotlib/pull/18896/
https://github.com/matplotlib/matplotlib/pull/18862/
https://github.com/matplotlib/matplotlib/pull/18877/
https://github.com/matplotlib/matplotlib/pull/18823/
https://github.com/matplotlib/matplotlib/pull/18889/
https://github.com/matplotlib/matplotlib/pull/18888/
https://github.com/matplotlib/matplotlib/pull/18867/
https://github.com/matplotlib/matplotlib/pull/18863/
https://github.com/matplotlib/matplotlib/pull/18866/
https://github.com/matplotlib/matplotlib/pull/18874/
https://github.com/matplotlib/matplotlib/pull/18565/
https://github.com/matplotlib/matplotlib/pull/18858/
https://github.com/matplotlib/matplotlib/pull/15177/
https://github.com/matplotlib/matplotlib/pull/18821/
https://github.com/matplotlib/matplotlib/pull/18844/
https://github.com/matplotlib/matplotlib/pull/18834/
https://github.com/matplotlib/matplotlib/pull/18827/
https://github.com/matplotlib/matplotlib/pull/18825/
https://github.com/matplotlib/matplotlib/pull/18822/
https://github.com/matplotlib/matplotlib/pull/18733/
https://github.com/matplotlib/matplotlib/pull/18812/
https://github.com/matplotlib/matplotlib/pull/18820/
https://github.com/matplotlib/matplotlib/pull/18657/
https://github.com/matplotlib/matplotlib/pull/18818/

Matplotlib, Release 3.4.3

• PR #18811: DOC Use 'Axes' instead of 'axes' in figure.py

• PR #18814: [Example] update Anscombe's Quartet

• PR #18806: DOC Use 'Axes' in _axes.py docstrings

• PR #18799: Remove unused wx private attribute.

• PR #18772: BF: text not drawn shouldn't count for tightbbox

• PR #18793: Consistently use axs to refer to a set of Axes (v2)

• PR #18792: Cmap cleanup

• PR #18798: Deprecate ps.useafm for mathtext

• PR #18302: Remove 3D attributes from renderer

• PR #18795: Make inset indicator more visible in the example

• PR #18781: Update description of web application server example.

• PR #18791: Fix documentation of edgecolors precedence for scatter()

• PR #14645: Add a helper to copy a colormap and set its extreme colors.

• PR #17709: Enh: SymNorm for normalizing symmetrical data around a center

• PR #18780: CI: pydocstyle>=5.1.0, flake8-docstrings>=1.4.0 verified to work

• PR #18200: Unpin pydocstyle

• PR #18767: Turn "How to use Matplotlib in a web application server" into a sphinx-gallery example

• PR #18765: Remove some unused tick private attributes.

• PR #18688: Shorter property deprecation.

• PR #18748: Allow dependabot to check GitHub actions daily

• PR #18529: Synchronize view limits of shared axes after setting ticks

• PR #18575: Colorbar grid position

• PR #18744: DOCS: document log locator's numticks

• PR #18687: Deprecate GraphicsContextPS.

• PR #18706: Consistently use 3D, 2D, 1D for dimensionality

• PR #18702: _make_norm_from_scale fixes.

• PR #18558: Support usetex in date Formatters

• PR #18493: MEP22 toolmanager set axes navigate_mode

• PR #18730: TST: skip if known-bad version of imagemagick

• PR #18583: Support binary comms in nbagg.

• PR #18728: Disable mouseover info for NonUniformImage.

• PR #18710: Deprecate cla() methods of Axis and Spines in favor of clear()

492 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/18811/
https://github.com/matplotlib/matplotlib/pull/18814/
https://github.com/matplotlib/matplotlib/pull/18806/
https://github.com/matplotlib/matplotlib/pull/18799/
https://github.com/matplotlib/matplotlib/pull/18772/
https://github.com/matplotlib/matplotlib/pull/18793/
https://github.com/matplotlib/matplotlib/pull/18792/
https://github.com/matplotlib/matplotlib/pull/18798/
https://github.com/matplotlib/matplotlib/pull/18302/
https://github.com/matplotlib/matplotlib/pull/18795/
https://github.com/matplotlib/matplotlib/pull/18781/
https://github.com/matplotlib/matplotlib/pull/18791/
https://github.com/matplotlib/matplotlib/pull/14645/
https://github.com/matplotlib/matplotlib/pull/17709/
https://github.com/matplotlib/matplotlib/pull/18780/
https://github.com/matplotlib/matplotlib/pull/18200/
https://github.com/matplotlib/matplotlib/pull/18767/
https://github.com/matplotlib/matplotlib/pull/18765/
https://github.com/matplotlib/matplotlib/pull/18688/
https://github.com/matplotlib/matplotlib/pull/18748/
https://github.com/matplotlib/matplotlib/pull/18529/
https://github.com/matplotlib/matplotlib/pull/18575/
https://github.com/matplotlib/matplotlib/pull/18744/
https://github.com/matplotlib/matplotlib/pull/18687/
https://github.com/matplotlib/matplotlib/pull/18706/
https://github.com/matplotlib/matplotlib/pull/18702/
https://github.com/matplotlib/matplotlib/pull/18558/
https://github.com/matplotlib/matplotlib/pull/18493/
https://github.com/matplotlib/matplotlib/pull/18730/
https://github.com/matplotlib/matplotlib/pull/18583/
https://github.com/matplotlib/matplotlib/pull/18728/
https://github.com/matplotlib/matplotlib/pull/18710/

Matplotlib, Release 3.4.3

• PR #18719: Added the trace plot of the end point

• PR #18729: Use ax.add_image rather than ax.images.append in NonUniformImage example

• PR #18707: Use "Return whether ..." docstring for functions returning bool

• PR #18724: Remove extra newlines in contour(f) docs.

• PR #18696: removed glossary

• PR #18721: Remove the use_cmex font fallback mechanism.

• PR #18680: wx backend API cleanups.

• PR #18709: Use attributes Axes.x/yaxis instead of Axes.get_x/yaxis()

• PR #18712: Shorten GraphicsContextWx.get_wxcolour.

• PR #18708: Individualize contour and contourf docstrings

• PR #18663: fix: keep baseline scale to baseline 0 even if set to None

• PR #18704: Fix docstring of Axes.cla()

• PR #18675: Merge ParasiteAxesAuxTransBase into ParasiteAxesBase.

• PR #18651: Allow Type3 subsetting of otf fonts in pdf backend.

• PR #17396: Improve headlessness detection for backend selection.

• PR #17737: Deprecate BoxStyle._Base.

• PR #18655: Sync SubplotDivider API with SubplotBase API changes.

• PR #18582: Shorten mlab tests.

• PR #18599: Simplify wx rubberband drawing.

• PR #18671: DOC: fix autoscale docstring

• PR #18637: BLD: sync build and run time numpy pinning

• PR #18693: Also fix tk key mapping, following the same strategy as for gtk.

• PR #18691: Cleanup sample_data.

• PR #18697: Catch TypeError when validating rcParams types.

• PR #18537: Create security policy

• PR #18356: ENH: Subfigures

• PR #18694: Document limitations on @deprecated with multiple-inheritance.

• PR #18669: Rework checks for old macosx

• PR #17791: More accurate handling of unicode/numpad input in gtk3 backends.

• PR #18679: Further simplify pgf tmpdir cleanup.

• PR #18685: Cleanup pgf examples

• PR #18682: Small API cleanups to plot_directive.

7.1. Previous GitHub Stats 493

https://github.com/matplotlib/matplotlib/pull/18719/
https://github.com/matplotlib/matplotlib/pull/18729/
https://github.com/matplotlib/matplotlib/pull/18707/
https://github.com/matplotlib/matplotlib/pull/18724/
https://github.com/matplotlib/matplotlib/pull/18696/
https://github.com/matplotlib/matplotlib/pull/18721/
https://github.com/matplotlib/matplotlib/pull/18680/
https://github.com/matplotlib/matplotlib/pull/18709/
https://github.com/matplotlib/matplotlib/pull/18712/
https://github.com/matplotlib/matplotlib/pull/18708/
https://github.com/matplotlib/matplotlib/pull/18663/
https://github.com/matplotlib/matplotlib/pull/18704/
https://github.com/matplotlib/matplotlib/pull/18675/
https://github.com/matplotlib/matplotlib/pull/18651/
https://github.com/matplotlib/matplotlib/pull/17396/
https://github.com/matplotlib/matplotlib/pull/17737/
https://github.com/matplotlib/matplotlib/pull/18655/
https://github.com/matplotlib/matplotlib/pull/18582/
https://github.com/matplotlib/matplotlib/pull/18599/
https://github.com/matplotlib/matplotlib/pull/18671/
https://github.com/matplotlib/matplotlib/pull/18637/
https://github.com/matplotlib/matplotlib/pull/18693/
https://github.com/matplotlib/matplotlib/pull/18691/
https://github.com/matplotlib/matplotlib/pull/18697/
https://github.com/matplotlib/matplotlib/pull/18537/
https://github.com/matplotlib/matplotlib/pull/18356/
https://github.com/matplotlib/matplotlib/pull/18694/
https://github.com/matplotlib/matplotlib/pull/18669/
https://github.com/matplotlib/matplotlib/pull/17791/
https://github.com/matplotlib/matplotlib/pull/18679/
https://github.com/matplotlib/matplotlib/pull/18685/
https://github.com/matplotlib/matplotlib/pull/18682/

Matplotlib, Release 3.4.3

• PR #18686: Numpydocify setp.

• PR #18684: Small simplification to triage_tests.py.

• PR #17832: pdf: Support setting URLs on Text objects

• PR #18674: Remove accidentally added swapfile.

• PR #18673: Small cleanups to parasite axes.

• PR #18536: axes3d panning

• PR #18667: TST: Lock cache directory during cleanup.

• PR #18672: Created Border for color examples

• PR #18661: Define GridFinder.{,inv_}transform_xy as normal methods.

• PR #18656: Fix some missing references.

• PR #18659: Small simplifications to BboxImage.

• PR #18511: feat: StepPatch to take array as baseline

• PR #18646: Support activating figures with plt.figure(figure_instance).

• PR #18370: Move PostScript Type3 subsetting to pure python.

• PR #18645: Simplify Colorbar.set_label, inline Colorbar._edges.

• PR #18633: Support linestyle='none' in Patch

• PR #18527: Fold ColorbarPatch into Colorbar, deprecate colorbar_factory.

• PR #17480: Regenerate background when RectangleSelector active-flag is set back on.

• PR #18626: Specify case when parameter is ignored.

• PR #18634: Fix typo in warning message.

• PR #18603: bugfix #18600 by using the MarkerStyle copy constructor

• PR #18628: Remove outdate comment about canvases with no manager attribute.

• PR #18591: Deprecate MathTextParser("bitmap") and associated APIs.

• PR #18617: Remove special styling of sidebar heading

• PR #18616: Improve instructions for building the docs

• PR #18623: Provide a 'cursive' font present in Windows' default font set.

• PR #18579: Fix stairs() tests

• PR #18618: Correctly separate two fantasy font names.

• PR #18610: DOCS: optional doc building dependencies

• PR #18601: Simplify Rectangle and RegularPolygon.

• PR #18573: add_subplot(..., axes_class=...) for more idiomatic mpl_toolkits usage.

• PR #18605: Correctly sync state of wx toolbar buttons when triggered by keyboard.

494 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/18686/
https://github.com/matplotlib/matplotlib/pull/18684/
https://github.com/matplotlib/matplotlib/pull/17832/
https://github.com/matplotlib/matplotlib/pull/18674/
https://github.com/matplotlib/matplotlib/pull/18673/
https://github.com/matplotlib/matplotlib/pull/18536/
https://github.com/matplotlib/matplotlib/pull/18667/
https://github.com/matplotlib/matplotlib/pull/18672/
https://github.com/matplotlib/matplotlib/pull/18661/
https://github.com/matplotlib/matplotlib/pull/18656/
https://github.com/matplotlib/matplotlib/pull/18659/
https://github.com/matplotlib/matplotlib/pull/18511/
https://github.com/matplotlib/matplotlib/pull/18646/
https://github.com/matplotlib/matplotlib/pull/18370/
https://github.com/matplotlib/matplotlib/pull/18645/
https://github.com/matplotlib/matplotlib/pull/18633/
https://github.com/matplotlib/matplotlib/pull/18527/
https://github.com/matplotlib/matplotlib/pull/17480/
https://github.com/matplotlib/matplotlib/pull/18626/
https://github.com/matplotlib/matplotlib/pull/18634/
https://github.com/matplotlib/matplotlib/pull/18603/
https://github.com/matplotlib/matplotlib/pull/18628/
https://github.com/matplotlib/matplotlib/pull/18591/
https://github.com/matplotlib/matplotlib/pull/18617/
https://github.com/matplotlib/matplotlib/pull/18616/
https://github.com/matplotlib/matplotlib/pull/18623/
https://github.com/matplotlib/matplotlib/pull/18579/
https://github.com/matplotlib/matplotlib/pull/18618/
https://github.com/matplotlib/matplotlib/pull/18610/
https://github.com/matplotlib/matplotlib/pull/18601/
https://github.com/matplotlib/matplotlib/pull/18573/
https://github.com/matplotlib/matplotlib/pull/18605/

Matplotlib, Release 3.4.3

• PR #18606: Revert "FIX: pin pytest"

• PR #18587: Fix docstring of zaxis_date.

• PR #18589: Factor out pdf Type3 glyph drawing.

• PR #18586: Text cleanups.

• PR #18594: FIX: pin pytest

• PR #18577: Random test cleanups

• PR #18578: Merge all axisartist axis_direction demos together.

• PR #18588: Use get_x/yaxis_transform more.

• PR #18585: FIx precision in pie and donut example

• PR #18564: Prepare for merging SubplotBase into AxesBase.

• PR #15127: ENH/API: improvements to register_cmap

• PR #18576: DOC: prefer colormap over color map

• PR #18340: Colorbar grid postion

• PR #18568: Added Reporting to code_of_conduct.md

• PR #18555: Convert _math_style_dict into an Enum.

• PR #18567: Replace subplot(ijk) calls by subplots(i, j)

• PR #18554: Replace some usages of plt.subplot() by plt.subplots() in tests

• PR #18556: Accept same types to errorevery as markevery

• PR #15932: Use test cache for test result images too.

• PR #18557: DOC: Add an option to disable Google Analytics.

• PR #18560: Remove incorrect override of pcolor/contour in parasite axes.

• PR #18566: Use fig, ax = plt.subplots() in tests (part 2)

• PR #18553: Use fig, ax = plt.subplots() in tests

• PR #11748: get_clip_path checks for nan

• PR #8987: Tick formatter does not support grouping with locale

• PR #18552: Change *subplot(111, ...) to *subplot(...) as 111 is the default.

• PR #18189: FIX: Add get/set methods for 3D collections

• PR #18430: FIX: do not reset ylabel ha when changing position

• PR #18515: Remove deprecated backend code.

• PR #17935: MNT: improve error messages on bad pdf metadata input

• PR #18525: Add Text3D position getter/setter

• PR #18542: CLEANUP: validate join/cap style centrally

7.1. Previous GitHub Stats 495

https://github.com/matplotlib/matplotlib/pull/18606/
https://github.com/matplotlib/matplotlib/pull/18587/
https://github.com/matplotlib/matplotlib/pull/18589/
https://github.com/matplotlib/matplotlib/pull/18586/
https://github.com/matplotlib/matplotlib/pull/18594/
https://github.com/matplotlib/matplotlib/pull/18577/
https://github.com/matplotlib/matplotlib/pull/18578/
https://github.com/matplotlib/matplotlib/pull/18588/
https://github.com/matplotlib/matplotlib/pull/18585/
https://github.com/matplotlib/matplotlib/pull/18564/
https://github.com/matplotlib/matplotlib/pull/15127/
https://github.com/matplotlib/matplotlib/pull/18576/
https://github.com/matplotlib/matplotlib/pull/18340/
https://github.com/matplotlib/matplotlib/pull/18568/
https://github.com/matplotlib/matplotlib/pull/18555/
https://github.com/matplotlib/matplotlib/pull/18567/
https://github.com/matplotlib/matplotlib/pull/18554/
https://github.com/matplotlib/matplotlib/pull/18556/
https://github.com/matplotlib/matplotlib/pull/15932/
https://github.com/matplotlib/matplotlib/pull/18557/
https://github.com/matplotlib/matplotlib/pull/18560/
https://github.com/matplotlib/matplotlib/pull/18566/
https://github.com/matplotlib/matplotlib/pull/18553/
https://github.com/matplotlib/matplotlib/pull/11748/
https://github.com/matplotlib/matplotlib/pull/8987/
https://github.com/matplotlib/matplotlib/pull/18552/
https://github.com/matplotlib/matplotlib/pull/18189/
https://github.com/matplotlib/matplotlib/pull/18430/
https://github.com/matplotlib/matplotlib/pull/18515/
https://github.com/matplotlib/matplotlib/pull/17935/
https://github.com/matplotlib/matplotlib/pull/18525/
https://github.com/matplotlib/matplotlib/pull/18542/

Matplotlib, Release 3.4.3

• PR #18501: TST: Add test for _repr_html_

• PR #18528: Deprecate TextArea minimumdescent.

• PR #18543: Documentation improvements for stairs()

• PR #18531: Unit handling improvements

• PR #18523: Don't leak file paths into PostScript metadata

• PR #18526: Templatize _image.resample to deduplicate it.

• PR #18522: Remove mlab, toolkits, and misc deprecations

• PR #18516: Remove deprecated font-related things.

• PR #18535: Add a code of conduct link to github

• PR #17521: Remove font warning when legend is added while using Tex

• PR #18517: Include kerning when outputting pdf strings.

• PR #18521: Inline some helpers in ColorbarBase.

• PR #18512: Private api2

• PR #18519: Correctly position text with nonzero descent with afm fonts / ps output.

• PR #18513: Remove Locator.autoscale.

• PR #18497: Merge v3.3.x into master

• PR #18502: Remove the deprecated matplotlib.cm.revcmap()

• PR #18506: Inline ScalarFormatter._formatSciNotation.

• PR #18455: Fix BoundingBox in EPS files.

• PR #18275: feat: StepPatch

• PR #18507: Fewer "soft" dependencies on LaTeX packages.

• PR #18378: Deprecate public access to many mathtext internals.

• PR #18494: Move cbook._check_in_list() to _api.check_in_list()

• PR #18423: 2-D array RGB and RGBA values not understood in plt.plot()

• PR #18492: Fix doc build failure due to #18440

• PR #18435: New environment terminal language

• PR #18456: Reuse InsetLocator to make twinned axes follow their parents.

• PR #18440: List existing rcParams in rcParams docstring.

• PR #18453: FIX: allow manually placed axes in constrained_layout

• PR #18473: Correct link to widgets examples

• PR #18466: Remove unnecessary autoscale handling in hist().

• PR #18465: Don't modify bottom argument in place in stacked histograms.

496 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/18501/
https://github.com/matplotlib/matplotlib/pull/18528/
https://github.com/matplotlib/matplotlib/pull/18543/
https://github.com/matplotlib/matplotlib/pull/18531/
https://github.com/matplotlib/matplotlib/pull/18523/
https://github.com/matplotlib/matplotlib/pull/18526/
https://github.com/matplotlib/matplotlib/pull/18522/
https://github.com/matplotlib/matplotlib/pull/18516/
https://github.com/matplotlib/matplotlib/pull/18535/
https://github.com/matplotlib/matplotlib/pull/17521/
https://github.com/matplotlib/matplotlib/pull/18517/
https://github.com/matplotlib/matplotlib/pull/18521/
https://github.com/matplotlib/matplotlib/pull/18512/
https://github.com/matplotlib/matplotlib/pull/18519/
https://github.com/matplotlib/matplotlib/pull/18513/
https://github.com/matplotlib/matplotlib/pull/18497/
https://github.com/matplotlib/matplotlib/pull/18502/
https://github.com/matplotlib/matplotlib/pull/18506/
https://github.com/matplotlib/matplotlib/pull/18455/
https://github.com/matplotlib/matplotlib/pull/18275/
https://github.com/matplotlib/matplotlib/pull/18507/
https://github.com/matplotlib/matplotlib/pull/18378/
https://github.com/matplotlib/matplotlib/pull/18494/
https://github.com/matplotlib/matplotlib/pull/18423/
https://github.com/matplotlib/matplotlib/pull/18492/
https://github.com/matplotlib/matplotlib/pull/18435/
https://github.com/matplotlib/matplotlib/pull/18456/
https://github.com/matplotlib/matplotlib/pull/18440/
https://github.com/matplotlib/matplotlib/pull/18453/
https://github.com/matplotlib/matplotlib/pull/18473/
https://github.com/matplotlib/matplotlib/pull/18466/
https://github.com/matplotlib/matplotlib/pull/18465/

Matplotlib, Release 3.4.3

• PR #18468: Cleanup multiple_yaxis_with_spines example.

• PR #18463: Improve formatting of defaults in docstrings.

• PR #6268: ENH: support alpha arrays in collections

• PR #18449: Remove the private Axes._set_position.

• PR #18460: DOC: example gray level in 'Specifying Colors' tutorial

• PR #18426: plot directive: caption-option

• PR #18444: Support doubleclick in webagg/nbagg

• PR #12518: Example showing scale-invariant angle arc

• PR #18446: Normalize properties passed to ToolHandles.

• PR #18445: Warn if an animation is gc'd before doing anything.

• PR #18452: Move Axes __repr__ from Subplot to AxesBase.

• PR #15374: Replace _prod_vectorized by @-multiplication.

• PR #13643: RecangleSelector constructor does not handle marker_props

• PR #18403: DOC: Remove related topics entries from the sidebar

• PR #18421: Move {get,set}_{x,y}label to _AxesBase.

• PR #18429: DOC: fix date example

• PR #18353: DOCS: describe shared axes behavior with units

• PR #18420: Always strip out date in postscript's test_savefig_to_stringio.

• PR #18422: Decrease output when running pytest -s.

• PR #18418: Cleanup menu example

• PR #18419: Avoid demo'ing passing kwargs to gca().

• PR #18372: DOC: Fix various missing references and typos

• PR #18400: Clarify argument name in constrained_layout error message

• PR #18384: Clarification in ArtistAnimation docstring

• PR #17892: Add earlier color validation

• PR #18367: Support horizontalalignment in TextArea/AnchoredText.

• PR #18362: DOC: Add some types to Returns entries.

• PR #18365: move canvas focus after toomanager initialization

• PR #18360: Add example for specifying figure size in different units

• PR #18341: DOCS: add action items to PR template

• PR #18349: Remove redundant angles in ellipse demo.

• PR #18145: Created a parameter fontset that can be used in each Text element

7.1. Previous GitHub Stats 497

https://github.com/matplotlib/matplotlib/pull/18468/
https://github.com/matplotlib/matplotlib/pull/18463/
https://github.com/matplotlib/matplotlib/pull/6268/
https://github.com/matplotlib/matplotlib/pull/18449/
https://github.com/matplotlib/matplotlib/pull/18460/
https://github.com/matplotlib/matplotlib/pull/18426/
https://github.com/matplotlib/matplotlib/pull/18444/
https://github.com/matplotlib/matplotlib/pull/12518/
https://github.com/matplotlib/matplotlib/pull/18446/
https://github.com/matplotlib/matplotlib/pull/18445/
https://github.com/matplotlib/matplotlib/pull/18452/
https://github.com/matplotlib/matplotlib/pull/15374/
https://github.com/matplotlib/matplotlib/pull/13643/
https://github.com/matplotlib/matplotlib/pull/18403/
https://github.com/matplotlib/matplotlib/pull/18421/
https://github.com/matplotlib/matplotlib/pull/18429/
https://github.com/matplotlib/matplotlib/pull/18353/
https://github.com/matplotlib/matplotlib/pull/18420/
https://github.com/matplotlib/matplotlib/pull/18422/
https://github.com/matplotlib/matplotlib/pull/18418/
https://github.com/matplotlib/matplotlib/pull/18419/
https://github.com/matplotlib/matplotlib/pull/18372/
https://github.com/matplotlib/matplotlib/pull/18400/
https://github.com/matplotlib/matplotlib/pull/18384/
https://github.com/matplotlib/matplotlib/pull/17892/
https://github.com/matplotlib/matplotlib/pull/18367/
https://github.com/matplotlib/matplotlib/pull/18362/
https://github.com/matplotlib/matplotlib/pull/18365/
https://github.com/matplotlib/matplotlib/pull/18360/
https://github.com/matplotlib/matplotlib/pull/18341/
https://github.com/matplotlib/matplotlib/pull/18349/
https://github.com/matplotlib/matplotlib/pull/18145/

Matplotlib, Release 3.4.3

• PR #18344: More nouns/imperative forms in docs.

• PR #18308: Synchronize units change in Axis.set_units for shared axis

• PR #17494: Rewrite of constrained_layout....

• PR #16646: update colorbar.py make_axes_gridspec

• PR #18306: Fix configure subplots

• PR #17509: Fix swap_if_landscape call in backend_ps

• PR #18323: Deleted "Our Favorite Recipes" section and moved the examples.

• PR #18128: Change several deprecated symbols in _macosx.m

• PR #18251: Merge v3.3.x into master

• PR #18329: Change default keymap in toolmanager example.

• PR #18330: Dedent rst list.

• PR #18286: Fix imshow to work with subclasses of ndarray.

• PR #18320: Make Colorbar outline into a Spine.

• PR #18316: Safely import pyplot if a GUI framework is already running.

• PR #18321: Capture output of CallbackRegistry exception test.

• PR #17900: Add getters and _repr_html_ for over/under/bad values of Colormap objects.

• PR #17930: Fix errorbar property cycling to match plot.

• PR #18290: Remove unused import to fix flake8.

• PR #16818: Dedupe implementations of configure_subplots().

• PR #18284: TkTimer interval=0 workaround

• PR #17901: DOC: Autoreformating of backend/*.py

• PR #17291: Normalize gridspec ratios to lists in the setter.

• PR #18226: Use CallbackRegistry in Widgets and some related cleanup

• PR #18203: Force locator and formatter inheritence

• PR #18279: boxplot: Add conf_intervals reference to notch docs.

• PR #18276: Fix autoscaling to exclude inifinite data limits when possible.

• PR #18261: Migrate tk backend tests into subprocesses

• PR #17961: DOCS: Remove How-to: Contributing

• PR #18201: Remove mpl.colors deprecations for 3.4

• PR #18223: Added example on how to make packed bubble charts

• PR #18264: Fix broken links in doc build.

• PR #8031: Add errorbars to mplot3d

498 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/18344/
https://github.com/matplotlib/matplotlib/pull/18308/
https://github.com/matplotlib/matplotlib/pull/17494/
https://github.com/matplotlib/matplotlib/pull/16646/
https://github.com/matplotlib/matplotlib/pull/18306/
https://github.com/matplotlib/matplotlib/pull/17509/
https://github.com/matplotlib/matplotlib/pull/18323/
https://github.com/matplotlib/matplotlib/pull/18128/
https://github.com/matplotlib/matplotlib/pull/18251/
https://github.com/matplotlib/matplotlib/pull/18329/
https://github.com/matplotlib/matplotlib/pull/18330/
https://github.com/matplotlib/matplotlib/pull/18286/
https://github.com/matplotlib/matplotlib/pull/18320/
https://github.com/matplotlib/matplotlib/pull/18316/
https://github.com/matplotlib/matplotlib/pull/18321/
https://github.com/matplotlib/matplotlib/pull/17900/
https://github.com/matplotlib/matplotlib/pull/17930/
https://github.com/matplotlib/matplotlib/pull/18290/
https://github.com/matplotlib/matplotlib/pull/16818/
https://github.com/matplotlib/matplotlib/pull/18284/
https://github.com/matplotlib/matplotlib/pull/17901/
https://github.com/matplotlib/matplotlib/pull/17291/
https://github.com/matplotlib/matplotlib/pull/18226/
https://github.com/matplotlib/matplotlib/pull/18203/
https://github.com/matplotlib/matplotlib/pull/18279/
https://github.com/matplotlib/matplotlib/pull/18276/
https://github.com/matplotlib/matplotlib/pull/18261/
https://github.com/matplotlib/matplotlib/pull/17961/
https://github.com/matplotlib/matplotlib/pull/18201/
https://github.com/matplotlib/matplotlib/pull/18223/
https://github.com/matplotlib/matplotlib/pull/18264/
https://github.com/matplotlib/matplotlib/pull/8031/

Matplotlib, Release 3.4.3

• PR #18187: Add option to create horizontally-oriented stem plots

• PR #18250: correctly autolabel Documentation and Maintenance issues

• PR #18161: Add more specific GitHub issue templates

• PR #18181: Replace ttconv by plain python for pdf subsetting

• PR #17371: add context manager functionality to ion and ioff

• PR #17789: Tk backend improvements

• PR #15532: Resolve 'text ignores rotational part of transformation' (#698)

• PR #17851: Fix Axes3D.add_collection3d issues

• PR #18205: Hat graph example

• PR #6168: #5856: added option to create vertically-oriented stem plots

• PR #18202: Remove mpl.testing deprecations for 3.4

• PR #18081: Support scale in ttf composite glyphs

• PR #18199: Some cleanup on TickedStroke

• PR #18190: Use super() more in backends

• PR #18193: Allow savefig to save SVGs on FIPS enabled systems #18192

• PR #17802: fix FigureManagerTk close behavior if embedded in Tk App

• PR #15458: TickedStroke, a stroke style with ticks useful for depicting constraints

• PR #18178: DOC: clarify that display space coordinates are not stable

• PR #18172: allow webAgg to report middle click events

• PR #17578: Search for minus of any font size to get height of tex result

• PR #17546: func argument in legend_elements with non-monotonically increasing functions

• PR #17684: Deprecate passing bytes to FT2Font.set_text.

• PR #17500: Tst improve memleak

• PR #17669: Small changes to svg font embedding details

• PR #18095: Error on unexpected kwargs in scale classes

• PR #18106: Copy docstring description from Axes.legend() to Figure.legend()

• PR #18002: Deprecate various vector-backend-specific mathtext helpers.

• PR #18006: Fix ToolManager inconsistencies with regular toolbar

• PR #18004: Typos and docs for mathtext fonts.

• PR #18133: DOC: Update paths for moved API/what's new fragments

• PR #18122: Document and test legend argument parsing

• PR #18124: Fix FuncAnimation._draw_frame exception and testing

7.1. Previous GitHub Stats 499

https://github.com/matplotlib/matplotlib/pull/18187/
https://github.com/matplotlib/matplotlib/pull/18250/
https://github.com/matplotlib/matplotlib/pull/18161/
https://github.com/matplotlib/matplotlib/pull/18181/
https://github.com/matplotlib/matplotlib/pull/17371/
https://github.com/matplotlib/matplotlib/pull/17789/
https://github.com/matplotlib/matplotlib/pull/15532/
https://github.com/matplotlib/matplotlib/pull/17851/
https://github.com/matplotlib/matplotlib/pull/18205/
https://github.com/matplotlib/matplotlib/pull/6168/
https://github.com/matplotlib/matplotlib/pull/18202/
https://github.com/matplotlib/matplotlib/pull/18081/
https://github.com/matplotlib/matplotlib/pull/18199/
https://github.com/matplotlib/matplotlib/pull/18190/
https://github.com/matplotlib/matplotlib/pull/18193/
https://github.com/matplotlib/matplotlib/pull/17802/
https://github.com/matplotlib/matplotlib/pull/15458/
https://github.com/matplotlib/matplotlib/pull/18178/
https://github.com/matplotlib/matplotlib/pull/18172/
https://github.com/matplotlib/matplotlib/pull/17578/
https://github.com/matplotlib/matplotlib/pull/17546/
https://github.com/matplotlib/matplotlib/pull/17684/
https://github.com/matplotlib/matplotlib/pull/17500/
https://github.com/matplotlib/matplotlib/pull/17669/
https://github.com/matplotlib/matplotlib/pull/18095/
https://github.com/matplotlib/matplotlib/pull/18106/
https://github.com/matplotlib/matplotlib/pull/18002/
https://github.com/matplotlib/matplotlib/pull/18006/
https://github.com/matplotlib/matplotlib/pull/18004/
https://github.com/matplotlib/matplotlib/pull/18133/
https://github.com/matplotlib/matplotlib/pull/18122/
https://github.com/matplotlib/matplotlib/pull/18124/

Matplotlib, Release 3.4.3

• PR #18125: pdf: Convert operator list to an Enum.

• PR #18123: Cleanup figure title example

• PR #18121: Improve rasterization demo

• PR #18012: Add explanatory text for rasterization demo

• PR #18103: Support data reference for hexbin() parameter C

• PR #17826: Add pause() and resume() methods to the base Animation class

• PR #18090: Privatize cbook.format_approx.

• PR #18080: Reduce numerical precision in Type 1 fonts

• PR #18044: Super-ify parts of the code base, part 3

• PR #18087: Add a note on working around limit expansion of set_ticks()

• PR #18071: Remove deprecated animation code

• PR #17822: Check for float values for min/max values to ax{v,h}line

• PR #18069: Remove support for multiple-color strings in to_rgba_array

• PR #18070: Remove rcsetup deprecations

• PR #18073: Remove disable_internet.py

• PR #18075: typo in usetex.py example

• PR #18043: Super-ify parts of the code base, part 2

• PR #18062: Bump matplotlib.patches coverage

• PR #17269: Fix ConciseDateFormatter when plotting a range included in a second

• PR #18063: Remove un-used trivial setters and getters

• PR #18025: add figpager as a third party package

• PR #18046: Discourage references in section headings.

• PR #18042: scatter: Raise if unexpected type of s argument.

• PR #18028: Super-ify parts of the code base, part 1

• PR #18029: Remove some unused imports.

• PR #18018: Cache realpath resolution in font_manager.

• PR #18013: Use argumentless super() more.

• PR #17988: add test with -OO

• PR #17993: Make inset_axes and secondary_axis picklable.

• PR #17992: Shorten tight_bbox.

• PR #18003: Deprecate the unneeded Fonts.destroy.

• PR #16457: Build lognorm/symlognorm from corresponding scales.

500 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/18125/
https://github.com/matplotlib/matplotlib/pull/18123/
https://github.com/matplotlib/matplotlib/pull/18121/
https://github.com/matplotlib/matplotlib/pull/18012/
https://github.com/matplotlib/matplotlib/pull/18103/
https://github.com/matplotlib/matplotlib/pull/17826/
https://github.com/matplotlib/matplotlib/pull/18090/
https://github.com/matplotlib/matplotlib/pull/18080/
https://github.com/matplotlib/matplotlib/pull/18044/
https://github.com/matplotlib/matplotlib/pull/18087/
https://github.com/matplotlib/matplotlib/pull/18071/
https://github.com/matplotlib/matplotlib/pull/17822/
https://github.com/matplotlib/matplotlib/pull/18069/
https://github.com/matplotlib/matplotlib/pull/18070/
https://github.com/matplotlib/matplotlib/pull/18073/
https://github.com/matplotlib/matplotlib/pull/18075/
https://github.com/matplotlib/matplotlib/pull/18043/
https://github.com/matplotlib/matplotlib/pull/18062/
https://github.com/matplotlib/matplotlib/pull/17269/
https://github.com/matplotlib/matplotlib/pull/18063/
https://github.com/matplotlib/matplotlib/pull/18025/
https://github.com/matplotlib/matplotlib/pull/18046/
https://github.com/matplotlib/matplotlib/pull/18042/
https://github.com/matplotlib/matplotlib/pull/18028/
https://github.com/matplotlib/matplotlib/pull/18029/
https://github.com/matplotlib/matplotlib/pull/18018/
https://github.com/matplotlib/matplotlib/pull/18013/
https://github.com/matplotlib/matplotlib/pull/17988/
https://github.com/matplotlib/matplotlib/pull/17993/
https://github.com/matplotlib/matplotlib/pull/17992/
https://github.com/matplotlib/matplotlib/pull/18003/
https://github.com/matplotlib/matplotlib/pull/16457/

Matplotlib, Release 3.4.3

• PR #17966: Fix some words

• PR #17803: Simplify projection-of-point-on-polyline in contour.py.

• PR #17699: raise RuntimeError appropriately for animation update func

• PR #17954: Remove another overspecified latex geometry.

• PR #17948: Sync Cairo's usetex measurement with base class.

• PR #17788: Tighten a bit the RendererAgg API.

• PR #12443: Warn in colorbar() when mappable.axes != figure.gca().

• PR #17926: Deprecate hatch patterns with invalid values

• PR #17922: Rewrite the barcode example

• PR #17890: Properly use thin space after math text operator

• PR #16090: Change pcolormesh snapping (fixes alpha colorbar/grid issues) [AGG]

• PR #17842: Move "Request a new feature" from How-to to Contributing

• PR #17897: Force origin='upper' in pyplot.specgram

• PR #17929: Improve hatch demo

• PR #17927: Remove unnecessary file save during test

• PR #14896: Updated doc in images.py by adding direct link to 24-bit stink bug png

• PR #17909: frame_format to support all listed by animation writers

• PR #13569: Style cleanup to pyplot.

• PR #17924: Remove the example "Easily creating subplots"

• PR #17869: FIX: new date rcParams weren't being evaluated

• PR #17921: Added density and combination hatching examples

• PR #17159: Merge consecutive rasterizations

• PR #17895: Use indexed color for PNG images in PDF files when possible

• PR #17894: DOC: Numpydoc format.

• PR #17884: Created Hatch marker styles Demo for Example Gallery

• PR #17347: ENH: reuse oldgridspec is possible...

• PR #17915: Document that set_ticks() increases view limits if necessary

• PR #17902: Fix figure size in path effects guide

• PR #17899: Add missing space in cairo error

• PR #17888: Add _repr_png_ and _repr_html_ to Colormap objects.

• PR #17830: Fix BoundaryNorm for multiple colors and one region

• PR #17883: Remove Python 3.6 compatibility shims

7.1. Previous GitHub Stats 501

https://github.com/matplotlib/matplotlib/pull/17966/
https://github.com/matplotlib/matplotlib/pull/17803/
https://github.com/matplotlib/matplotlib/pull/17699/
https://github.com/matplotlib/matplotlib/pull/17954/
https://github.com/matplotlib/matplotlib/pull/17948/
https://github.com/matplotlib/matplotlib/pull/17788/
https://github.com/matplotlib/matplotlib/pull/12443/
https://github.com/matplotlib/matplotlib/pull/17926/
https://github.com/matplotlib/matplotlib/pull/17922/
https://github.com/matplotlib/matplotlib/pull/17890/
https://github.com/matplotlib/matplotlib/pull/16090/
https://github.com/matplotlib/matplotlib/pull/17842/
https://github.com/matplotlib/matplotlib/pull/17897/
https://github.com/matplotlib/matplotlib/pull/17929/
https://github.com/matplotlib/matplotlib/pull/17927/
https://github.com/matplotlib/matplotlib/pull/14896/
https://github.com/matplotlib/matplotlib/pull/17909/
https://github.com/matplotlib/matplotlib/pull/13569/
https://github.com/matplotlib/matplotlib/pull/17924/
https://github.com/matplotlib/matplotlib/pull/17869/
https://github.com/matplotlib/matplotlib/pull/17921/
https://github.com/matplotlib/matplotlib/pull/17159/
https://github.com/matplotlib/matplotlib/pull/17895/
https://github.com/matplotlib/matplotlib/pull/17894/
https://github.com/matplotlib/matplotlib/pull/17884/
https://github.com/matplotlib/matplotlib/pull/17347/
https://github.com/matplotlib/matplotlib/pull/17915/
https://github.com/matplotlib/matplotlib/pull/17902/
https://github.com/matplotlib/matplotlib/pull/17899/
https://github.com/matplotlib/matplotlib/pull/17888/
https://github.com/matplotlib/matplotlib/pull/17830/
https://github.com/matplotlib/matplotlib/pull/17883/

Matplotlib, Release 3.4.3

• PR #17889: Minor doc fixes

• PR #17879: Link to style-file example page in style tutorial

• PR #17876: Fix description of subplot2grid arguments

• PR #17856: Clarify plotnonfinite parameter docs of scatter()

• PR #17843: Add fullscreen toggle support to WxAgg backend

• PR #17022: ENH: add rcParam for ConciseDate and interval_multiples

• PR #17799: Deduplicate attribute docs of ContourSet and its derived classes

• PR #17847: Remove overspecified latex geometry.

• PR #17662: Mnt drop py36

• PR #17845: Fix size of donate button

• PR #17825: Add quick-link buttons for contributing

• PR #17837: Remove "Reporting a bug or submitting a patch" from How-to

• PR #17828: API: treat xunits=None and yunits=None as "default"

• PR #17839: Avoid need to lock in dvi generation, to avoid deadlocks.

• PR #17824: Improve categorical converter error message

• PR #17834: Keep using a single dividers LineCollection instance in colorbar.

• PR #17838: Prefer colorbar(ScalarMappable(...)) to ColorbarBase in tutorial.

• PR #17836: More precise axes section names in docs

• PR #17835: Colorbar cleanups.

• PR #17727: FIX: properly handle dates when intmult is true

• PR #15617: Dev docs update

• PR #17819: Fix typos in tight layout guide

• PR #17806: Set colorbar label only in set_label.

• PR #17265: Mnt rearrange next api again

• PR #17808: Improve docstring of ColorbarBase.set_label()

• PR #17723: Deprecate FigureCanvas.{get,set}_window_title.

• PR #17798: Fix overindented bullet/enumerated lists.

• PR #17767: Allow list of hatches to {bar, barh}

• PR #17749: Deprecate FancyBboxPatch(..., boxstyle="custom",
bbox_transmuter=...)

• PR #17783: DOC: point to bbox static "constructor" functions in set_position

• PR #17782: MNT: update mailmap

502 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/17889/
https://github.com/matplotlib/matplotlib/pull/17879/
https://github.com/matplotlib/matplotlib/pull/17876/
https://github.com/matplotlib/matplotlib/pull/17856/
https://github.com/matplotlib/matplotlib/pull/17843/
https://github.com/matplotlib/matplotlib/pull/17022/
https://github.com/matplotlib/matplotlib/pull/17799/
https://github.com/matplotlib/matplotlib/pull/17847/
https://github.com/matplotlib/matplotlib/pull/17662/
https://github.com/matplotlib/matplotlib/pull/17845/
https://github.com/matplotlib/matplotlib/pull/17825/
https://github.com/matplotlib/matplotlib/pull/17837/
https://github.com/matplotlib/matplotlib/pull/17828/
https://github.com/matplotlib/matplotlib/pull/17839/
https://github.com/matplotlib/matplotlib/pull/17824/
https://github.com/matplotlib/matplotlib/pull/17834/
https://github.com/matplotlib/matplotlib/pull/17838/
https://github.com/matplotlib/matplotlib/pull/17836/
https://github.com/matplotlib/matplotlib/pull/17835/
https://github.com/matplotlib/matplotlib/pull/17727/
https://github.com/matplotlib/matplotlib/pull/15617/
https://github.com/matplotlib/matplotlib/pull/17819/
https://github.com/matplotlib/matplotlib/pull/17806/
https://github.com/matplotlib/matplotlib/pull/17265/
https://github.com/matplotlib/matplotlib/pull/17808/
https://github.com/matplotlib/matplotlib/pull/17723/
https://github.com/matplotlib/matplotlib/pull/17798/
https://github.com/matplotlib/matplotlib/pull/17767/
https://github.com/matplotlib/matplotlib/pull/17749/
https://github.com/matplotlib/matplotlib/pull/17783/
https://github.com/matplotlib/matplotlib/pull/17782/

Matplotlib, Release 3.4.3

• PR #17776: Changes in the image for test_load_from_url

• PR #17750: Soft-deprecate mutation_aspect=None.

• PR #17780: Reorganize colorbar docstrings.

• PR #17778: Fix whatsnew confusing typo.

• PR #17748: Don't use bezier helpers in axisartist.

• PR #17700: Remove remnants of macosx old-style toolbar.

• PR #17753: Support location="left"/"top" for gridspec-based colorbars.

• PR #17761: Update hard-coded results in artist tutorial

• PR #17728: Move Win32_{Get,Set}ForegroundWindow to c_internal_utils.

• PR #17754: Small cleanups to contour() code.

• PR #17751: Deprecate dpi_cor property of FancyArrowPatch.

• PR #15941: FontManager fixes.

• PR #17661: Issue #17659: set tick color and tick labelcolor independently from rcParams

• PR #17389: Don't duplicate docstrings of pyplot-level cmap setters.

• PR #17555: Set Win32 AppUserModelId to fix taskbar icons.

• PR #17726: Clarify docs of box_aspect()

• PR #17704: Remove "created-by-matplotlib" comment in svg output.

• PR #17697: Add description examples/pyplots/pyplot simple.py

• PR #17694: CI: Only skip devdocs deploy if PR is to this repo.

• PR #17691: ci: Print out reasons for not deploying docs.

• PR #17099: Make Spines accessable by the attributes.

Issues (204):

• #19701: Notebook plotting regression in 3.4.0rc*

• #19754: add space in python -mpip

• #18364: Axes3d attaches itself to a figure, where as Axes does not

• #19700: Setting pickradius regression in 3.4.0rc

• #19594: code of conduct link 404s

• #19576: duplicate pick events firing

• #19560: segfault due to font objects when multi-threading

• #19598: Axes order changed in 3.4.0rc1

• #19631: subplot mosaic 1 element list

• #19581: Missing kerning for single-byte strings in PDF

7.1. Previous GitHub Stats 503

https://github.com/matplotlib/matplotlib/pull/17776/
https://github.com/matplotlib/matplotlib/pull/17750/
https://github.com/matplotlib/matplotlib/pull/17780/
https://github.com/matplotlib/matplotlib/pull/17778/
https://github.com/matplotlib/matplotlib/pull/17748/
https://github.com/matplotlib/matplotlib/pull/17700/
https://github.com/matplotlib/matplotlib/pull/17753/
https://github.com/matplotlib/matplotlib/pull/17761/
https://github.com/matplotlib/matplotlib/pull/17728/
https://github.com/matplotlib/matplotlib/pull/17754/
https://github.com/matplotlib/matplotlib/pull/17751/
https://github.com/matplotlib/matplotlib/pull/15941/
https://github.com/matplotlib/matplotlib/pull/17661/
https://github.com/matplotlib/matplotlib/pull/17389/
https://github.com/matplotlib/matplotlib/pull/17555/
https://github.com/matplotlib/matplotlib/pull/17726/
https://github.com/matplotlib/matplotlib/pull/17704/
https://github.com/matplotlib/matplotlib/pull/17697/
https://github.com/matplotlib/matplotlib/pull/17694/
https://github.com/matplotlib/matplotlib/pull/17691/
https://github.com/matplotlib/matplotlib/pull/17099/
https://github.com/matplotlib/matplotlib/issues/19701/
https://github.com/matplotlib/matplotlib/issues/19754/
https://github.com/matplotlib/matplotlib/issues/18364/
https://github.com/matplotlib/matplotlib/issues/19700/
https://github.com/matplotlib/matplotlib/issues/19594/
https://github.com/matplotlib/matplotlib/issues/19576/
https://github.com/matplotlib/matplotlib/issues/19560/
https://github.com/matplotlib/matplotlib/issues/19598/
https://github.com/matplotlib/matplotlib/issues/19631/
https://github.com/matplotlib/matplotlib/issues/19581/

Matplotlib, Release 3.4.3

• #17769: interactive figure close with wxpython 4.1 causes freeze / crash (segfault?)

• #19427: Fix mistake in documentation

• #19624: Cannot add colorbar to figure after pickle

• #19544: Regression in 3.4.0rc1 in creating ListedColormap from a set

• #5855: plt.step(..., where="auto")

• #19474: Memory leak with CallbackRegistry

• #19345: legend is eating up huge amounts of memory

• #19066: plt.scatter, error with NaN values and edge color

• #19432: Unexpected change in behavior in plt.subplot

• #18020: Scatter3D: facecolor or color to "none" leads to an error

• #18939: Warn re: Axes3D constructor behavior change in mpl3.4

• #19128: webagg reports incorrect values for non-alphanumeric key events on non-qwerty keyboards

• #16558: Request: for non-interactive backends make fig.canvas.draw() force the render

• #19234: tick labels displaced vertically with text.usetex and xcolor

• #18407: pgf backend no longer supports fig.draw

• #2298: axes.xmargin/ymargin rcParam behaves differently than pyplot.margins()

• #19473: Animations in Tkinter window advance non-uniformly

• #8688: document moved examples

• #9553: Display warning on out-of-date documentation websites

• #9556: Examples page version is out of date

• #12374: Examples in docs should be redirected to latest version number

• #19486: Figure.tight_layout() raises MatplotlibDeprecationWarning

• #19445: axline transform support broke axline in loglog scale

• #19178: mathtext lim is vertically misaligned

• #19446: Better document and error handle third dimension in pyplot.text() positional argument

• #8790: Inconsistent doc vs behavior for RendererXXX.draw_markers

• #18815: Patch3D object does not return correct face color with get_facecolor

• #19152: Automatically Aligned Labels outside Figure with Constrained Layout in Exported File

• #18934: stairs() crashes with no values and one edge

• #11296: Image in github repo does not match matplotlib.org (breaks image tutorial)

• #18699: Issue with downloading stinkbug for "Image Tutorial"

• #19405: TypeError constructor returned NULL in wayland session

504 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/17769/
https://github.com/matplotlib/matplotlib/issues/19427/
https://github.com/matplotlib/matplotlib/issues/19624/
https://github.com/matplotlib/matplotlib/issues/19544/
https://github.com/matplotlib/matplotlib/issues/5855/
https://github.com/matplotlib/matplotlib/issues/19474/
https://github.com/matplotlib/matplotlib/issues/19345/
https://github.com/matplotlib/matplotlib/issues/19066/
https://github.com/matplotlib/matplotlib/issues/19432/
https://github.com/matplotlib/matplotlib/issues/18020/
https://github.com/matplotlib/matplotlib/issues/18939/
https://github.com/matplotlib/matplotlib/issues/19128/
https://github.com/matplotlib/matplotlib/issues/16558/
https://github.com/matplotlib/matplotlib/issues/19234/
https://github.com/matplotlib/matplotlib/issues/18407/
https://github.com/matplotlib/matplotlib/issues/2298/
https://github.com/matplotlib/matplotlib/issues/19473/
https://github.com/matplotlib/matplotlib/issues/8688/
https://github.com/matplotlib/matplotlib/issues/9553/
https://github.com/matplotlib/matplotlib/issues/9556/
https://github.com/matplotlib/matplotlib/issues/12374/
https://github.com/matplotlib/matplotlib/issues/19486/
https://github.com/matplotlib/matplotlib/issues/19445/
https://github.com/matplotlib/matplotlib/issues/19178/
https://github.com/matplotlib/matplotlib/issues/19446/
https://github.com/matplotlib/matplotlib/issues/8790/
https://github.com/matplotlib/matplotlib/issues/18815/
https://github.com/matplotlib/matplotlib/issues/19152/
https://github.com/matplotlib/matplotlib/issues/18934/
https://github.com/matplotlib/matplotlib/issues/11296/
https://github.com/matplotlib/matplotlib/issues/18699/
https://github.com/matplotlib/matplotlib/issues/19405/

Matplotlib, Release 3.4.3

• #18962: Table CSS needs cleanup

• #19417: CI failing on numpy...

• #17849: Problems caused by changes to logic of scatter coloring in matplotlib 3.3.0.rc1

• #18648: Drop support for directly imread()ing urls.

• #19366: Current CI doc builds fail

• #19372: matplotlib.axes.Axes.indicate_inset default label value is incompatible with LaTeX

• #17100: Is it a better solution to acess one of the spines by class atrribute?

• #17375: Proposal: add_subfigs....

• #19339: constrained_layout + fixed-aspect axes + bbox_inches="tight"

• #19308: Reduce whitespace in Choosing Colormaps tutorial plots

• #18832: MNT: Remove AxesStack and deprecated behavior of reuse of existing axes with same argu-
ments

• #19084: Arrow coordinates slightly off when used with annotation text

• #17765: PGF xelatex can't find fonts in special-character paths

• #19274: Missing marker in documentation of plot

• #18241: LaTeX overset: unknown symbol

• #19292: Non interpolated placeholder value in docstring.

• #18119: Can no longer deepcopy LogNorm objects on master

• #8665: Noninteger Bases in mathtext sqrt

• #19243: matplotlib doesn't build with qhull-2020.2

• #19275: Double specifications of plot attributes

• #15066: Feature request: stem3

• #19209: Segfault when trying to create gigapixel image with agg backend

• #4321: clabel ticks and axes limits with eps zoom output

• #16376: SymLogNorm and SymLogScale give inconsistent results....

• #19239: _make_norm_from_scale needs to process values

• #16552: Scatter autoscaling still has issues with log scaling and zero values

• #18417: Documentation issue template should ask for matplotlib version

• #19206: matplotlib.cbook.Grouper: Example raise exception:

• #19203: Date Tick Labels example

• #18581: Add a check in check_figures_equal that the test did not accidentally plot on non-fixture
figures

• #18563: Create a RangeSlider widget

7.1. Previous GitHub Stats 505

https://github.com/matplotlib/matplotlib/issues/18962/
https://github.com/matplotlib/matplotlib/issues/19417/
https://github.com/matplotlib/matplotlib/issues/17849/
https://github.com/matplotlib/matplotlib/issues/18648/
https://github.com/matplotlib/matplotlib/issues/19366/
https://github.com/matplotlib/matplotlib/issues/19372/
https://github.com/matplotlib/matplotlib/issues/17100/
https://github.com/matplotlib/matplotlib/issues/17375/
https://github.com/matplotlib/matplotlib/issues/19339/
https://github.com/matplotlib/matplotlib/issues/19308/
https://github.com/matplotlib/matplotlib/issues/18832/
https://github.com/matplotlib/matplotlib/issues/19084/
https://github.com/matplotlib/matplotlib/issues/17765/
https://github.com/matplotlib/matplotlib/issues/19274/
https://github.com/matplotlib/matplotlib/issues/18241/
https://github.com/matplotlib/matplotlib/issues/19292/
https://github.com/matplotlib/matplotlib/issues/18119/
https://github.com/matplotlib/matplotlib/issues/8665/
https://github.com/matplotlib/matplotlib/issues/19243/
https://github.com/matplotlib/matplotlib/issues/19275/
https://github.com/matplotlib/matplotlib/issues/15066/
https://github.com/matplotlib/matplotlib/issues/19209/
https://github.com/matplotlib/matplotlib/issues/4321/
https://github.com/matplotlib/matplotlib/issues/16376/
https://github.com/matplotlib/matplotlib/issues/19239/
https://github.com/matplotlib/matplotlib/issues/16552/
https://github.com/matplotlib/matplotlib/issues/18417/
https://github.com/matplotlib/matplotlib/issues/19206/
https://github.com/matplotlib/matplotlib/issues/19203/
https://github.com/matplotlib/matplotlib/issues/18581/
https://github.com/matplotlib/matplotlib/issues/18563/

Matplotlib, Release 3.4.3

• #19099: axisartist axis_direction bug

• #19171: 3D surface example bug for non-square grid

• #18112: set_{x,y,z}bound 3d limits are not persistent upon interactive rotation

• #19078: _update_patch_limits should not use CLOSEPOLY verticies for updating

• #16123: test_dpi_ratio_change fails on Windows/Qt5Agg

• #15796: [DOC] PDF build of matplotlib own documentation crashes with LaTeX error "too deeply
nested"

• #19091: 3D Axes don't work in SubFigures

• #7238: better document how to configure artists for picking

• #11147: FR: add a supxlabel and supylabel as the suptitle function which are already exist

• #17417: tutorial on how autoscaling works

• #18917: Spy displays nothing for full arrays

• #18562: Allow slider valstep to be arraylike

• #18942: AnnotationBbox errors with kwargs

• #11472: Mention predefined keyboard shortcuts in the docs on event-handling

• #18898: wrong bounds checking in streamplot start_points

• #18974: Contour label demo would benefit from some more info and/or references.

• #17708: Mention rasterized option in more methods

• #18826: Pgf plots with pdflatex broken

• #18959: Add sphinx-gallery cross ref instructions to documenting guide

• #18926: Font not installed, unclear warning

• #18891: SVG animation doesn't work in HTMLWriter due to wrong type

• #18222: It is painful as a new user, to figure out what AxesSubplot is

• #16153: gap size for contour labels is poorly estimated

• #17910: Improve accessibility of form controls in HTML widgets

• #18273: Surprising behavior of shared axes with categorical units

• #18731: Compact string notation for subplot_mosaic

• #18221: Add example of keys to explore 3D data

• #18882: Incorrect version requirement message from setup.py

• #18491: Mostly unused glossary still exists in our docs

• #18548: add_subplot(..., axes_cls=...)

• #8249: Bug in mpl_connect(): On Windows, with the wx backend, arrow keys are not reported

506 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/19099/
https://github.com/matplotlib/matplotlib/issues/19171/
https://github.com/matplotlib/matplotlib/issues/18112/
https://github.com/matplotlib/matplotlib/issues/19078/
https://github.com/matplotlib/matplotlib/issues/16123/
https://github.com/matplotlib/matplotlib/issues/15796/
https://github.com/matplotlib/matplotlib/issues/19091/
https://github.com/matplotlib/matplotlib/issues/7238/
https://github.com/matplotlib/matplotlib/issues/11147/
https://github.com/matplotlib/matplotlib/issues/17417/
https://github.com/matplotlib/matplotlib/issues/18917/
https://github.com/matplotlib/matplotlib/issues/18562/
https://github.com/matplotlib/matplotlib/issues/18942/
https://github.com/matplotlib/matplotlib/issues/11472/
https://github.com/matplotlib/matplotlib/issues/18898/
https://github.com/matplotlib/matplotlib/issues/18974/
https://github.com/matplotlib/matplotlib/issues/17708/
https://github.com/matplotlib/matplotlib/issues/18826/
https://github.com/matplotlib/matplotlib/issues/18959/
https://github.com/matplotlib/matplotlib/issues/18926/
https://github.com/matplotlib/matplotlib/issues/18891/
https://github.com/matplotlib/matplotlib/issues/18222/
https://github.com/matplotlib/matplotlib/issues/16153/
https://github.com/matplotlib/matplotlib/issues/17910/
https://github.com/matplotlib/matplotlib/issues/18273/
https://github.com/matplotlib/matplotlib/issues/18731/
https://github.com/matplotlib/matplotlib/issues/18221/
https://github.com/matplotlib/matplotlib/issues/18882/
https://github.com/matplotlib/matplotlib/issues/18491/
https://github.com/matplotlib/matplotlib/issues/18548/
https://github.com/matplotlib/matplotlib/issues/8249/

Matplotlib, Release 3.4.3

• #15609: [SPRINT] Update Named Colors Example

• #18800: Log-scale ticker fails at 1e-323

• #18392: scatter(): edgecolor takes precedence over edgecolors

• #18301: "How to use Matplotlib in a web application server" should be made an example

• #18386: Path3DCollection.set_color(self, c) does not change the color of scatter points.

• #8946: Axes with sharex can have divergent axes after setting tick markers

• #2294: tex option not respected by date x-axis

• #4382: use new binary comm in nbagg

• #17088: projection kwarg could be better documented.

• #18717: Tick formatting issues on horizontal histogram with datetime on 3.3.2

• #12636: Characters doesn't display correctly when figure saved as pdf with a custom font

• #18377: Matplotlib picks a headless backend on Linux if Wayland is available but X11 isn't

• #13199: Examples that use private APIs

• #18662: Inconsistent setting of axis limits with autoscale=False

• #18690: Class deprecation machinery and mixins

• #18510: Build fails on OS X: wrong minimum version

• #18641: Conversion cache cleaning is broken with xdist

• #15614: named color examples need borders

• #5519: The linestyle 'None', ' ' and '' not supported by PathPatch.

• #17487: Polygon selector with useblit=True - polygon dissapears

• #17476: RectangleSelector fails to clear itself after being toggled inactive and then back to active.

• #18600: plt.errorbar raises error when given marker=<matplotlib.markers.MarkerStyle object>

• #18355: Optional components required to build docs aren't documented

• #18428: small bug in the mtplotlib gallery

• #4438: inconsistent behaviour of the errorevery option in pyplot.errorbar() to the markevery keyword

• #5823: pleas dont include the Google Analytics tracking in the off-line doc

• #13035: Path3DCollection from 3D scatter cannot set_color

• #9725: scatter - set_facecolors is not working on Axes3D

• #3370: Patch3DCollection doesn't update color after calling set_color

• #18427: yaxis.set_label_position("right") resets "horizontalalignment"

• #3129: super-ify the code base

• #17518: Plotting legend throws error "font family ['serif'] not found. Falling back to DejaVu Sans"

7.1. Previous GitHub Stats 507

https://github.com/matplotlib/matplotlib/issues/15609/
https://github.com/matplotlib/matplotlib/issues/18800/
https://github.com/matplotlib/matplotlib/issues/18392/
https://github.com/matplotlib/matplotlib/issues/18301/
https://github.com/matplotlib/matplotlib/issues/18386/
https://github.com/matplotlib/matplotlib/issues/8946/
https://github.com/matplotlib/matplotlib/issues/2294/
https://github.com/matplotlib/matplotlib/issues/4382/
https://github.com/matplotlib/matplotlib/issues/17088/
https://github.com/matplotlib/matplotlib/issues/18717/
https://github.com/matplotlib/matplotlib/issues/12636/
https://github.com/matplotlib/matplotlib/issues/18377/
https://github.com/matplotlib/matplotlib/issues/13199/
https://github.com/matplotlib/matplotlib/issues/18662/
https://github.com/matplotlib/matplotlib/issues/18690/
https://github.com/matplotlib/matplotlib/issues/18510/
https://github.com/matplotlib/matplotlib/issues/18641/
https://github.com/matplotlib/matplotlib/issues/15614/
https://github.com/matplotlib/matplotlib/issues/5519/
https://github.com/matplotlib/matplotlib/issues/17487/
https://github.com/matplotlib/matplotlib/issues/17476/
https://github.com/matplotlib/matplotlib/issues/18600/
https://github.com/matplotlib/matplotlib/issues/18355/
https://github.com/matplotlib/matplotlib/issues/18428/
https://github.com/matplotlib/matplotlib/issues/4438/
https://github.com/matplotlib/matplotlib/issues/5823/
https://github.com/matplotlib/matplotlib/issues/13035/
https://github.com/matplotlib/matplotlib/issues/9725/
https://github.com/matplotlib/matplotlib/issues/3370/
https://github.com/matplotlib/matplotlib/issues/18427/
https://github.com/matplotlib/matplotlib/issues/3129/
https://github.com/matplotlib/matplotlib/issues/17518/

Matplotlib, Release 3.4.3

• #18282: Bad interaction between kerning and non-latin1 characters in pdf output

• #6669: [Feature request] Functions for "manually" plotting histograms

• #18411: 2-D array RGB and RGBA values not understood in plt.plot()

• #18404: Double-click events are not recognised in Jupyter notebook

• #12027: marker_props is never used in the constructor of RectangleSelector

• #18438: Warn when a non-started animation is gc'ed.

• #11259: Symbols appear as streaks with usetex=True, times font and PDF backend

• #18345: Specify what sharex and sharey do...

• #18082: Feature Request: Non overlapping Bubble Plots

• #568: Support error bars on 3D plots

• #17865: Earlier validation of color inputs

• #18363: ha="right" breaks AnchoredText placement.

• #11050: keyboard shortcuts don't get registered using the experimental toolmanager with qt

• #17906: Set mathtext.fontset per element

• #18311: Subplot scatter plot with categorical data on y-axis with 'sharey=True' option overwrites the
y-axis labels

• #10304: No link to shared axes for Axis.set_units

• #17712: constrained_layout fails on suptitle+colorbars+some figure sizes

• #14638: colorbar.make_axes doesn't anchor in constrained_layout

• #18299: New configure_subplots behaves badly on TkAgg backend

• #18300: Remove the examples category "Our Favorite Recipies"

• #18077: Imshow breaks if given a unyt_array input

• #7074: Using a linestyle cycler with plt.errorbar results in strange plots

• #18236: FuncAnimation fails to display with interval 0 on Tkagg backend

• #8107: invalid command name "..._on_timer" in FuncAnimation for (too) small interval

• #18272: Add CI Intervall to boxplot notch documentation

• #18137: axhspan() in empty plots changes the xlimits of plots sharing the X axis

• #18246: test_never_update is flaky

• #5856: Horizontal stem plot

• #18160: Add feature request template

• #17197: Missing character upon savefig() with Free Serif font

• #17013: Request: provide a contextmanager for ioff or allow plt.figure(draw_on_create=False)

508 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/18282/
https://github.com/matplotlib/matplotlib/issues/6669/
https://github.com/matplotlib/matplotlib/issues/18411/
https://github.com/matplotlib/matplotlib/issues/18404/
https://github.com/matplotlib/matplotlib/issues/12027/
https://github.com/matplotlib/matplotlib/issues/18438/
https://github.com/matplotlib/matplotlib/issues/11259/
https://github.com/matplotlib/matplotlib/issues/18345/
https://github.com/matplotlib/matplotlib/issues/18082/
https://github.com/matplotlib/matplotlib/issues/568/
https://github.com/matplotlib/matplotlib/issues/17865/
https://github.com/matplotlib/matplotlib/issues/18363/
https://github.com/matplotlib/matplotlib/issues/11050/
https://github.com/matplotlib/matplotlib/issues/17906/
https://github.com/matplotlib/matplotlib/issues/18311/
https://github.com/matplotlib/matplotlib/issues/10304/
https://github.com/matplotlib/matplotlib/issues/17712/
https://github.com/matplotlib/matplotlib/issues/14638/
https://github.com/matplotlib/matplotlib/issues/18299/
https://github.com/matplotlib/matplotlib/issues/18300/
https://github.com/matplotlib/matplotlib/issues/18077/
https://github.com/matplotlib/matplotlib/issues/7074/
https://github.com/matplotlib/matplotlib/issues/18236/
https://github.com/matplotlib/matplotlib/issues/8107/
https://github.com/matplotlib/matplotlib/issues/18272/
https://github.com/matplotlib/matplotlib/issues/18137/
https://github.com/matplotlib/matplotlib/issues/18246/
https://github.com/matplotlib/matplotlib/issues/5856/
https://github.com/matplotlib/matplotlib/issues/18160/
https://github.com/matplotlib/matplotlib/issues/17197/
https://github.com/matplotlib/matplotlib/issues/17013/

Matplotlib, Release 3.4.3

• #17537: hat graphs need an example...

• #17755: mplot3d: add_collection3d issues

• #18192: Cannot save SVG file with FIPS compliant Python

• #17574: Vertical alignment of tick labels containing minus in font size other than 10 with usetex=True

• #18097: Feature Request: Allow hexbin to use a string for parameter C to refer to column in data
(DataFrame)

• #17689: Add pause/resume methods to Animation baseclass

• #16087: Error with greek letters in pdf export when using usetex=True and mathptmx

• #17136: set_ticks() changes view limits of the axis

• #12198: axvline incorrectly tries to handle unitized ymin, ymax

• #9139: Python3 matplotlib 2.0.2 with Times New Roman misses unicode minus sign in pdf

• #5970: pyplot.scatter raises obscure error when mistakenly passed a third string param

• #17936: documenattion and behavior do not match for suppressing (PDF) metadata

• #17932: latex textrm does not work in Cairo backend

• #17714: Universal fullscreen command

• #4584: ColorbarBase draws edges in slightly wrong positions.

• #17878: flipping of imshow in specgram

• #6118: consider using qtpy for qt abstraction layer

• #17908: rcParams restrictions on frame_formats are out of sync with supported values (HTMLWriter)

• #17867: datetime plotting broken on master

• #16810: Docs do not build in parallel

• #17918: Extend hatch reference

• #17149: Rasterization creates multiple bitmap elements and large file sizes

• #17855: Add Hatch Example to gallery

• #15821: Should constrained_layout work as plt.figure() argument?

• #15616: Colormaps should have a _repr_html_ that is an image of the colormap

• #17579: BoundaryNorm yield a ZeroDivisionError: division by zero

• #17652: NEP 29 : Stop support fro Python 3.6 soon ?

• #11095: Repeated plot calls with xunits=None throws exception

• #17733: Rename "array" (and perhaps "fields") section of Axes API

• #15610: Link to most recent DevDocs when installing from Master Source

• #17817: (documentation, possible first-timer bug) Typo and grammar on Legends and Annotations
for tight layout guide page

7.1. Previous GitHub Stats 509

https://github.com/matplotlib/matplotlib/issues/17537/
https://github.com/matplotlib/matplotlib/issues/17755/
https://github.com/matplotlib/matplotlib/issues/18192/
https://github.com/matplotlib/matplotlib/issues/17574/
https://github.com/matplotlib/matplotlib/issues/18097/
https://github.com/matplotlib/matplotlib/issues/17689/
https://github.com/matplotlib/matplotlib/issues/16087/
https://github.com/matplotlib/matplotlib/issues/17136/
https://github.com/matplotlib/matplotlib/issues/12198/
https://github.com/matplotlib/matplotlib/issues/9139/
https://github.com/matplotlib/matplotlib/issues/5970/
https://github.com/matplotlib/matplotlib/issues/17936/
https://github.com/matplotlib/matplotlib/issues/17932/
https://github.com/matplotlib/matplotlib/issues/17714/
https://github.com/matplotlib/matplotlib/issues/4584/
https://github.com/matplotlib/matplotlib/issues/17878/
https://github.com/matplotlib/matplotlib/issues/6118/
https://github.com/matplotlib/matplotlib/issues/17908/
https://github.com/matplotlib/matplotlib/issues/17867/
https://github.com/matplotlib/matplotlib/issues/16810/
https://github.com/matplotlib/matplotlib/issues/17918/
https://github.com/matplotlib/matplotlib/issues/17149/
https://github.com/matplotlib/matplotlib/issues/17855/
https://github.com/matplotlib/matplotlib/issues/15821/
https://github.com/matplotlib/matplotlib/issues/15616/
https://github.com/matplotlib/matplotlib/issues/17579/
https://github.com/matplotlib/matplotlib/issues/17652/
https://github.com/matplotlib/matplotlib/issues/11095/
https://github.com/matplotlib/matplotlib/issues/17733/
https://github.com/matplotlib/matplotlib/issues/15610/
https://github.com/matplotlib/matplotlib/issues/17817/

Matplotlib, Release 3.4.3

• #17804: Setting the norm on imshow object removes colorbar ylabel

• #17758: bar, barh should take a list of hatches like it does of colors

• #17746: Antialiasing with colorbars?

• #17659: Enhancement: Set tick and ticklabel colors separately from matplotlib style file

• #17144: Wrong icon on windows task bar for figure windows

• #2870: Wrong symbols from a TrueType font

7.1.4 GitHub Stats for Matplotlib 3.3.4

GitHub stats for 2020/11/12 - 2021/01/28 (tag: v3.3.3)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 2 issues and merged 20 pull requests. The full list can be seen on GitHub

The following 7 authors contributed 43 commits.

• Antony Lee

• David Stansby

• Elliott Sales de Andrade

• Jody Klymak

• Mark Harfouche

• Thomas A Caswell

• Tim Hoffmann

GitHub issues and pull requests:

Pull Requests (20):

• PR #19386: Backport PR #19238 on branch v3.3.x (Fix build with LTO disabled in environment)

• PR #19238: Fix build with LTO disabled in environment

• PR #19382: Backport PR #19052 on branch v3.3.x (Always pass integers to wx.Size.)

• PR #19377: Backport PR #19371 on branch v3.3.x (Fix specgram test on NumPy 1.20.)

• PR #19371: Fix specgram test on NumPy 1.20.

• PR #19305: Backport PR #19301 on branch v3.3.x

• PR #19301: Fix several CI issues

• PR #19269: Backport PR #19266 on branch v3.3.x (Don't update homebrew on GitHub Actions)

• PR #19266: Don't update homebrew on GitHub Actions

• PR #19252: Backport PR #19245 on branch v3.3.x (handle usecase where QT_API is specified with
some capitals)

510 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/17804/
https://github.com/matplotlib/matplotlib/issues/17758/
https://github.com/matplotlib/matplotlib/issues/17746/
https://github.com/matplotlib/matplotlib/issues/17659/
https://github.com/matplotlib/matplotlib/issues/17144/
https://github.com/matplotlib/matplotlib/issues/2870/
https://github.com/matplotlib/matplotlib/milestone/60?closed=1
https://github.com/matplotlib/matplotlib/pull/19386/
https://github.com/matplotlib/matplotlib/pull/19238/
https://github.com/matplotlib/matplotlib/pull/19382/
https://github.com/matplotlib/matplotlib/pull/19377/
https://github.com/matplotlib/matplotlib/pull/19371/
https://github.com/matplotlib/matplotlib/pull/19305/
https://github.com/matplotlib/matplotlib/pull/19301/
https://github.com/matplotlib/matplotlib/pull/19269/
https://github.com/matplotlib/matplotlib/pull/19266/
https://github.com/matplotlib/matplotlib/pull/19252/

Matplotlib, Release 3.4.3

• PR #19245: handle usecase where QT_API is specified with some capitals

• PR #19143: Backport PR #19131 on branch v3.3.x (Fix WebAgg initialization)

• PR #19115: Backport PR #19108 on branch v3.3.x

• PR #19165: Backport PR #19163 on branch v3.3.x (Ignore missing _FancyAxislineStyle doc targets.)

• PR #19163: Ignore missing _FancyAxislineStyle doc targets.

• PR #19131: Fix WebAgg initialization

• PR #19052: Always pass integers to wx.Size.

• PR #19108: Fix failing animation test with pytest 6.2.

• PR #19062: Backport PR #19036 on branch v3.3.x

• PR #19036: Start testing using GitHub Actions

Issues (2):

• #19227: Matplotlib generates invalid ft2font if -fno-lto gcc CFLAGS used

• #19129: webAgg example broken - maybe mpl.js broken?

7.1.5 GitHub Stats for Matplotlib 3.3.3

GitHub stats for 2020/09/15 - 2020/11/11 (tag: v3.3.2)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 14 issues and merged 46 pull requests. The full list can be seen on GitHub

The following 11 authors contributed 73 commits.

• Antony Lee

• David Stansby

• Elliott Sales de Andrade

• Eric Larson

• Jody Klymak

• Jouni K. Seppänen

• Ryan May

• shevawen

• Stephen Sinclair

• Thomas A Caswell

• Tim Hoffmann

GitHub issues and pull requests:

Pull Requests (46):

7.1. Previous GitHub Stats 511

https://github.com/matplotlib/matplotlib/pull/19245/
https://github.com/matplotlib/matplotlib/pull/19143/
https://github.com/matplotlib/matplotlib/pull/19115/
https://github.com/matplotlib/matplotlib/pull/19165/
https://github.com/matplotlib/matplotlib/pull/19163/
https://github.com/matplotlib/matplotlib/pull/19131/
https://github.com/matplotlib/matplotlib/pull/19052/
https://github.com/matplotlib/matplotlib/pull/19108/
https://github.com/matplotlib/matplotlib/pull/19062/
https://github.com/matplotlib/matplotlib/pull/19036/
https://github.com/matplotlib/matplotlib/issues/19227/
https://github.com/matplotlib/matplotlib/issues/19129/
https://github.com/matplotlib/matplotlib/milestone/58?closed=1

Matplotlib, Release 3.4.3

• PR #18936: Backport PR #18929 on branch v3.3.x

• PR #18929: FIX: make sure scalarmappable updates are handled correctly in 3D

• PR #18928: Backport PR #18842 on branch v3.3.x (Add CPython 3.9 wheels.)

• PR #18842: Add CPython 3.9 wheels.

• PR #18921: Backport PR #18732 on branch v3.3.x (Add a ponyfill for ResizeObserver on older
browsers.)

• PR #18732: Add a ponyfill for ResizeObserver on older browsers.

• PR #18886: Backport #18860 on branch v3.3.x

• PR #18860: FIX: stop deprecation message colorbar

• PR #18845: Backport PR #18839 on branch v3.3.x

• PR #18843: Backport PR #18756 on branch v3.3.x (FIX: improve date performance regression)

• PR #18850: Backport CI fixes to v3.3.x

• PR #18839: MNT: make sure we do not mutate input in Text.update

• PR #18838: Fix ax.set_xticklabels(fontproperties=fp)

• PR #18756: FIX: improve date performance regression

• PR #18787: Backport PR #18769 on branch v3.3.x

• PR #18786: Backport PR #18754 on branch v3.3.x (FIX: make sure we have more than 1 tick with
small log ranges)

• PR #18754: FIX: make sure we have more than 1 tick with small log ranges

• PR #18769: Support ax.grid(visible=<bool>).

• PR #18778: Backport PR #18773 on branch v3.3.x (Update to latest cibuildwheel release.)

• PR #18773: Update to latest cibuildwheel release.

• PR #18755: Backport PR #18734 on branch v3.3.x (Fix deprecation warning in GitHub Actions.)

• PR #18734: Fix deprecation warning in GitHub Actions.

• PR #18725: Backport PR #18533 on branch v3.3.x

• PR #18723: Backport PR #18584 on branch v3.3.x (Fix setting 0-timeout timer with Tornado.)

• PR #18676: Backport PR #18670 on branch v3.3.x (MNT: make certifi actually optional)

• PR #18670: MNT: make certifi actually optional

• PR #18665: Backport PR #18639 on branch v3.3.x (nbagg: Don't close figures for bubbled events.)

• PR #18639: nbagg: Don't close figures for bubbled events.

• PR #18640: Backport PR #18636 on branch v3.3.x (BLD: certifi is not a run-time dependency)

• PR #18636: BLD: certifi is not a run-time dependency

• PR #18629: Backport PR #18621 on branch v3.3.x (Fix singleshot timers in wx.)

512 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/18936/
https://github.com/matplotlib/matplotlib/pull/18929/
https://github.com/matplotlib/matplotlib/pull/18928/
https://github.com/matplotlib/matplotlib/pull/18842/
https://github.com/matplotlib/matplotlib/pull/18921/
https://github.com/matplotlib/matplotlib/pull/18732/
https://github.com/matplotlib/matplotlib/pull/18886/
https://github.com/matplotlib/matplotlib/pull/18860/
https://github.com/matplotlib/matplotlib/pull/18845/
https://github.com/matplotlib/matplotlib/pull/18843/
https://github.com/matplotlib/matplotlib/pull/18850/
https://github.com/matplotlib/matplotlib/pull/18839/
https://github.com/matplotlib/matplotlib/pull/18838/
https://github.com/matplotlib/matplotlib/pull/18756/
https://github.com/matplotlib/matplotlib/pull/18787/
https://github.com/matplotlib/matplotlib/pull/18786/
https://github.com/matplotlib/matplotlib/pull/18754/
https://github.com/matplotlib/matplotlib/pull/18769/
https://github.com/matplotlib/matplotlib/pull/18778/
https://github.com/matplotlib/matplotlib/pull/18773/
https://github.com/matplotlib/matplotlib/pull/18755/
https://github.com/matplotlib/matplotlib/pull/18734/
https://github.com/matplotlib/matplotlib/pull/18725/
https://github.com/matplotlib/matplotlib/pull/18723/
https://github.com/matplotlib/matplotlib/pull/18676/
https://github.com/matplotlib/matplotlib/pull/18670/
https://github.com/matplotlib/matplotlib/pull/18665/
https://github.com/matplotlib/matplotlib/pull/18639/
https://github.com/matplotlib/matplotlib/pull/18640/
https://github.com/matplotlib/matplotlib/pull/18636/
https://github.com/matplotlib/matplotlib/pull/18629/

Matplotlib, Release 3.4.3

• PR #18621: Fix singleshot timers in wx.

• PR #18607: Backport PR #18604 on branch v3.3.x (Update test image to fix Ghostscript 9.53.)

• PR #18604: Update test image to fix Ghostscript 9.53.

• PR #18584: Fix setting 0-timeout timer with Tornado.

• PR #18550: backport pr 18549

• PR #18545: Backport PR #18540 on branch v3.3.x (Call to ExitStack.push should have been Exit-
Stack.callback.)

• PR #18549: FIX: unit-convert pcolorargs before interpolating

• PR #18540: Call to ExitStack.push should have been ExitStack.callback.

• PR #18533: Correctly remove support for stackrel.

• PR #18509: Backport PR #18505 on branch v3.3.x (Fix depth shading when edge/facecolor is none.)

• PR #18505: Fix depth shading when edge/facecolor is none.

• PR #18504: Backport PR #18500 on branch v3.3.x (BUG: Fix all-masked imshow)

• PR #18500: BUG: Fix all-masked imshow

• PR #18476: CI: skip qt, cairo, pygobject related installs on OSX on travis

• PR #18134: Build on xcode9

Issues (14):

• #18885: 3D Scatter Plot with Colorbar is not saved correctly with savefig

• #18922: pyplot.xticks(): Font property specification is not effective except 1st tick label.

• #18481: "%matplotlib notebook" not working in firefox with matplotlib 3.3.1

• #18595: Getting internal "MatplotlibDeprecationWarning: shading='flat' ..."

• #18743: from mpl 3.2.2 to 3.3.0 enormous increase in creation time

• #18317: pcolormesh: shading='nearest' and non-monotonic coordinates

• #18758: Using Axis.grid(visible=True) results in TypeError for multiple values for keyword argument

• #18638: matplotlib>=3.3.2 breaks ipywidgets.interact

• #18337: Error installing matplotlib-3.3.1 using pip due to old version of certifi on conda environment

• #18620: wx backend assertion error with fig.canvas.timer.start()

• #18551: test_transparent_markers[pdf] is broken on v3.3.x Travis macOS

• #18580: Animation freezes in Jupyter notebook

• #18547: pcolormesh x-axis with datetime broken for nearest shading

• #18539: Error in Axes.redraw_in_frame in use of ExitStack: push() takes 2 positional arguments but
3 were given

7.1. Previous GitHub Stats 513

https://github.com/matplotlib/matplotlib/pull/18621/
https://github.com/matplotlib/matplotlib/pull/18607/
https://github.com/matplotlib/matplotlib/pull/18604/
https://github.com/matplotlib/matplotlib/pull/18584/
https://github.com/matplotlib/matplotlib/pull/18550/
https://github.com/matplotlib/matplotlib/pull/18545/
https://github.com/matplotlib/matplotlib/pull/18549/
https://github.com/matplotlib/matplotlib/pull/18540/
https://github.com/matplotlib/matplotlib/pull/18533/
https://github.com/matplotlib/matplotlib/pull/18509/
https://github.com/matplotlib/matplotlib/pull/18505/
https://github.com/matplotlib/matplotlib/pull/18504/
https://github.com/matplotlib/matplotlib/pull/18500/
https://github.com/matplotlib/matplotlib/pull/18476/
https://github.com/matplotlib/matplotlib/pull/18134/
https://github.com/matplotlib/matplotlib/issues/18885/
https://github.com/matplotlib/matplotlib/issues/18922/
https://github.com/matplotlib/matplotlib/issues/18481/
https://github.com/matplotlib/matplotlib/issues/18595/
https://github.com/matplotlib/matplotlib/issues/18743/
https://github.com/matplotlib/matplotlib/issues/18317/
https://github.com/matplotlib/matplotlib/issues/18758/
https://github.com/matplotlib/matplotlib/issues/18638/
https://github.com/matplotlib/matplotlib/issues/18337/
https://github.com/matplotlib/matplotlib/issues/18620/
https://github.com/matplotlib/matplotlib/issues/18551/
https://github.com/matplotlib/matplotlib/issues/18580/
https://github.com/matplotlib/matplotlib/issues/18547/
https://github.com/matplotlib/matplotlib/issues/18539/

Matplotlib, Release 3.4.3

7.1.6 GitHub Stats for Matplotlib 3.3.2

GitHub stats for 2020/08/14 - 2020/09/15 (tag: v3.3.1)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 15 issues and merged 39 pull requests. The full list can be seen on GitHub

The following 13 authors contributed 61 commits.

• Antony Lee

• Bruno Beltran

• David Stansby

• David Young

• Elliott Sales de Andrade

• Greg Lucas

• Jody Klymak

• johnthagen

• Jouni K. Seppänen

• Richard Sheridan

• Ryan May

• Thomas A Caswell

• Tim Hoffmann

GitHub issues and pull requests:

Pull Requests (39):

• PR #18488: Backport PR #18483 on branch v3.3.x (DOC: reword non-monotonic cell center warning)

• PR #18483: DOC: reword non-monotonic cell center warning

• PR #18485: Backport PR #18475 on branch v3.3.x (BF: ensure exception caught if no kpeswitch)

• PR #18482: Backport PR #18398 on branch v3.3.x (Warn on non-increasing/decreasing pcolor coords)

• PR #18484: Backport PR #18458: Fix huge imshow range

• PR #18475: BF: ensure exception caught if no kpeswitch

• PR #18458: Fix huge imshow range

• PR #18398: Warn on non-increasing/decreasing pcolor coords

• PR #18479: Nbagg backports

• PR #18454: nbagg: Use OutputArea event to trigger figure close.

• PR #18469: Backport PR #18464 on branch v3.3.x (Remove extra stickies in barstacked histogram.)

514 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/milestone/57?closed=1
https://github.com/matplotlib/matplotlib/pull/18488/
https://github.com/matplotlib/matplotlib/pull/18483/
https://github.com/matplotlib/matplotlib/pull/18485/
https://github.com/matplotlib/matplotlib/pull/18482/
https://github.com/matplotlib/matplotlib/pull/18484/
https://github.com/matplotlib/matplotlib/pull/18475/
https://github.com/matplotlib/matplotlib/pull/18458/
https://github.com/matplotlib/matplotlib/pull/18398/
https://github.com/matplotlib/matplotlib/pull/18479/
https://github.com/matplotlib/matplotlib/pull/18454/
https://github.com/matplotlib/matplotlib/pull/18469/

Matplotlib, Release 3.4.3

• PR #18464: Remove extra stickies in barstacked histogram.

• PR #18459: Backport PR #18393 on branch v3.3.x (Fix Axis scale on twinned Axes.)

• PR #18393: Fix Axis scale on twinned Axes.

• PR #18441: Backport PR #18395: TkAgg bugfix: deselect buttons that are not the current _Mode

• PR #18395: TkAgg bugfix: deselect buttons that are not the current _Mode

• PR #18380: Backport PR #18374 on branch v3.3.x (FIX: make _reshape_2D accept pandas df with
string indices)

• PR #18374: FIX: make _reshape_2D accept pandas df with string indices

• PR #18376: Backport PR #18298 on branch v3.3.x (Include license files in built distribution)

• PR #18375: Backport PR #18293 on branch v3.3.x (Fix scatter3d color/linewidth re-projection)

• PR #18298: Include license files in built distribution

• PR #18293: Fix scatter3d color/linewidth re-projection

• PR #18361: nbagg: Store DPI ratio on figure instead of window.

• PR #18354: Backport PR #18352 on branch v3.3.x (Avoid triggering backend resolution during qt
initial import.)

• PR #18352: Avoid triggering backend resolution during qt initial import.

• PR #18335: Backport PR #18322 on branch v3.3.x (Disable FH4 so that we don't require VCRUN-
TIME140_1.dll.)

• PR #18322: Disable FH4 so that we don't require VCRUNTIME140_1.dll.

• PR #18333: Backport PR #18328 on branch v3.3.x (Add missing check for None in Qt toolmanager.)

• PR #18328: Add missing check for None in Qt toolmanager.

• PR #18309: Backport PR #18304 on branch v3.3.x (Fix canvas redraws during motion in figures with
a Button or TextBox)

• PR #18304: Fix canvas redraws during motion in figures with a Button or TextBox

• PR #18297: Backport PR #18288 on branch v3.3.x (FIX: check if axes is off page before repositioning
title)

• PR #18288: FIX: check if axes is off page before repositioning title

• PR #18269: Backport PR #18266 on branch v3.3.x (Fix Path.get_extents for empty paths.)

• PR #18266: Fix Path.get_extents for empty paths.

• PR #18263: Backport PR #18260 on branch v3.3.x (Add parent widget to IntVar)

• PR #18260: Add parent widget to IntVar

• PR #18253: Backport PR #18245 on branch v3.3.x

• PR #18245: MNT: do a better job guessing the GUI framework in use

Issues (15):

7.1. Previous GitHub Stats 515

https://github.com/matplotlib/matplotlib/pull/18464/
https://github.com/matplotlib/matplotlib/pull/18459/
https://github.com/matplotlib/matplotlib/pull/18393/
https://github.com/matplotlib/matplotlib/pull/18441/
https://github.com/matplotlib/matplotlib/pull/18395/
https://github.com/matplotlib/matplotlib/pull/18380/
https://github.com/matplotlib/matplotlib/pull/18374/
https://github.com/matplotlib/matplotlib/pull/18376/
https://github.com/matplotlib/matplotlib/pull/18375/
https://github.com/matplotlib/matplotlib/pull/18298/
https://github.com/matplotlib/matplotlib/pull/18293/
https://github.com/matplotlib/matplotlib/pull/18361/
https://github.com/matplotlib/matplotlib/pull/18354/
https://github.com/matplotlib/matplotlib/pull/18352/
https://github.com/matplotlib/matplotlib/pull/18335/
https://github.com/matplotlib/matplotlib/pull/18322/
https://github.com/matplotlib/matplotlib/pull/18333/
https://github.com/matplotlib/matplotlib/pull/18328/
https://github.com/matplotlib/matplotlib/pull/18309/
https://github.com/matplotlib/matplotlib/pull/18304/
https://github.com/matplotlib/matplotlib/pull/18297/
https://github.com/matplotlib/matplotlib/pull/18288/
https://github.com/matplotlib/matplotlib/pull/18269/
https://github.com/matplotlib/matplotlib/pull/18266/
https://github.com/matplotlib/matplotlib/pull/18263/
https://github.com/matplotlib/matplotlib/pull/18260/
https://github.com/matplotlib/matplotlib/pull/18253/
https://github.com/matplotlib/matplotlib/pull/18245/

Matplotlib, Release 3.4.3

• #18415: imshow with LogNorm crashes with certain inputs

• #18447: nbagg: Closing a figure from the notebook does not close the python figure

• #18470: interactive plots slow with matplotlib 3.3.1

• #18457: Incorrect log y-scale for histogram with partitioned and barstacked data

• #18385: twinx not respecting log-scale

• #18371: Plotting a pandas DataFrame with string MultiIndex

• #18296: LICENSE file(s) not included in published PyPI package

• #18287: scatter3D assigns wrong color to points for some plot orientations

• #18292: ImportError: DLL load failed with Matplotlib 3.3.1 on Windows

• #18327: Tool Manager: adding buttons to toolbar fails with matplotlib version 3.3.1 using Qt backend

• #18324: Poor UI responsiveness of 3.3.1 compared with 3.2.2 for interactive mode UI using widgets

• #18303: Canvas redraws during any motion when Button is present

• #18283: Automatic title placement wrong if parent axes is off the page

• #18254: scatter(..., marker='') raises on drawing with mpl3.3.1

• #18259: New IntVar needs a parent widget

7.1.7 GitHub Stats for Matplotlib 3.3.1

GitHub stats for 2020/07/16 - 2020/08/13 (tag: v3.3.0)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 25 issues and merged 73 pull requests. The full list can be seen on GitHub

The following 17 authors contributed 131 commits.

• Antony Lee

• Ben Root

• Bruno Beltran

• David Stansby

• Elliott Sales de Andrade

• Isuru Fernando

• jbhopkins

• Jody Klymak

• Jouni K. Seppänen

• Lee Johnston

• linchiwei123

516 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/18415/
https://github.com/matplotlib/matplotlib/issues/18447/
https://github.com/matplotlib/matplotlib/issues/18470/
https://github.com/matplotlib/matplotlib/issues/18457/
https://github.com/matplotlib/matplotlib/issues/18385/
https://github.com/matplotlib/matplotlib/issues/18371/
https://github.com/matplotlib/matplotlib/issues/18296/
https://github.com/matplotlib/matplotlib/issues/18287/
https://github.com/matplotlib/matplotlib/issues/18292/
https://github.com/matplotlib/matplotlib/issues/18327/
https://github.com/matplotlib/matplotlib/issues/18324/
https://github.com/matplotlib/matplotlib/issues/18303/
https://github.com/matplotlib/matplotlib/issues/18283/
https://github.com/matplotlib/matplotlib/issues/18254/
https://github.com/matplotlib/matplotlib/issues/18259/
https://github.com/matplotlib/matplotlib/milestone/56?closed=1

Matplotlib, Release 3.4.3

• Neilzon Viloria

• Ryan May

• Thomas A Caswell

• Tim Hoffmann

• Tom Neep

• Yichao Yu

GitHub issues and pull requests:

Pull Requests (73):

• PR #18243: Fix reshape list of strings

• PR #18240: Backport PR #18235 on branch v3.3.x

• PR #18239: Backport PR #18233 on branch v3.3.x (Fix cibuildwheel trigger condition.)

• PR #18235: FIX: check we have a back button in tk toolbar before we touch it

• PR #18233: Fix cibuildwheel trigger condition.

• PR #18231: Backport PR #18224 on branch v3.3.x (Try out cibuildwheel.)

• PR #18224: Try out cibuildwheel.

• PR #18230: Backport PR #18225 on branch v3.3.x (Use certifi when downloading bundled build
requirements.)

• PR #18225: Use certifi when downloading bundled build requirements.

• PR #18229: Backport PR #18219 on branch v3.3.x (Fixes an issue where WxAgg NavigationToolbar2
broke custom toolbars)

• PR #18219: Fixes an issue where WxAgg NavigationToolbar2 broke custom toolbars

• PR #18228: Backport PR #18227 on branch v3.3.x (Set pipefail when running flake8 linter.)

• PR #18227: Set pipefail when running flake8 linter.

• PR #18215: Backport PR #18185 on branch v3.3.x (FIX: fix reading from http/https urls via imread)

• PR #18214: Backport PR #18184 on branch v3.3.x (Go back to checking figures for their manager in
destroy.)

• PR #18185: FIX: fix reading from http/https urls via imread

• PR #18184: Go back to checking figures for their manager in destroy.

• PR #18183: Backport PR #17995 on branch v3.3.x (Avoid using Bbox machinery in Path.get_extents;
special case polylines.)

• PR #18182: Backport PR #17994 on branch v3.3.x (Special case degree-1 Bezier curves.)

• PR #18179: Backport PR #18175 on branch v3.3.x (Downgrade symbol substitution log to info level.)

• PR #18177: Backport PR #18092 on branch v3.3.x (Use same Make as FreeType's configure to build
it.)

7.1. Previous GitHub Stats 517

https://github.com/matplotlib/matplotlib/pull/18243/
https://github.com/matplotlib/matplotlib/pull/18240/
https://github.com/matplotlib/matplotlib/pull/18239/
https://github.com/matplotlib/matplotlib/pull/18235/
https://github.com/matplotlib/matplotlib/pull/18233/
https://github.com/matplotlib/matplotlib/pull/18231/
https://github.com/matplotlib/matplotlib/pull/18224/
https://github.com/matplotlib/matplotlib/pull/18230/
https://github.com/matplotlib/matplotlib/pull/18225/
https://github.com/matplotlib/matplotlib/pull/18229/
https://github.com/matplotlib/matplotlib/pull/18219/
https://github.com/matplotlib/matplotlib/pull/18228/
https://github.com/matplotlib/matplotlib/pull/18227/
https://github.com/matplotlib/matplotlib/pull/18215/
https://github.com/matplotlib/matplotlib/pull/18214/
https://github.com/matplotlib/matplotlib/pull/18185/
https://github.com/matplotlib/matplotlib/pull/18184/
https://github.com/matplotlib/matplotlib/pull/18183/
https://github.com/matplotlib/matplotlib/pull/18182/
https://github.com/matplotlib/matplotlib/pull/18179/
https://github.com/matplotlib/matplotlib/pull/18177/

Matplotlib, Release 3.4.3

• PR #18174: Backport PR #18167 on branch v3.3.x (Catch Pandas AssertionError on deprecated mul-
tidimensional indexing. Closes #18158)

• PR #18176: Backport PR #18173 on branch v3.3.x (Fix the return value of Axes.get_navigate_mode.)

• PR #18175: Downgrade symbol substitution log to info level.

• PR #18092: Use same Make as FreeType's configure to build it.

• PR #18173: Fix the return value of Axes.get_navigate_mode.

• PR #18167: Catch Pandas AssertionError on deprecated multidimensional indexing. Closes #18158

• PR #18162: Backport PR #18156 on branch v3.3.x (Fix IndexError when using scatter3d and
depthshade=False)

• PR #18156: Fix IndexError when using scatter3d and depthshade=False

• PR #18153: Backport PR #18142 on branch v3.3.x (Fix nbagg in Chrome 84)

• PR #18146: Backport PR #17989 on branch v3.3.x (gtk/tk: Ensure no flicker when hovering over
images.)

• PR #18142: Fix nbagg in Chrome 84

• PR #18147: Backport PR #18136 on branch v3.3.x (Sort 3d sizes along with other properties)

• PR #18136: Sort 3d sizes along with other properties

• PR #17989: gtk/tk: Ensure no flicker when hovering over images.

• PR #18102: Fix linting on v3.3.x

• PR #18111: Backport PR #18089 on branch v3.3.x

• PR #18109: Backport PR #18093 on branch v3.3.x (Improve saving animated GIF with ffmpeg)

• PR #18089: Revert "Convert adjust_bbox to use ExitStack."

• PR #18093: Improve saving animated GIF with ffmpeg

• PR #18104: Backport PR #18101 on branch v3.3.x (FIX: catch all multi-dim warnings pandas)

• PR #18101: FIX: catch all multi-dim warnings pandas

• PR #18091: ci: Fix linting being ignored by reviewdog

• PR #18083: Backport PR #18079 on branch v3.3.x (Set shading='auto' if invalid value passed to
pcolormesh)

• PR #18079: Set shading='auto' if invalid value passed to pcolormesh

• PR #18067: Backport PR #17956 on branch v3.3.x (ENH: Add version check for mac sdk version)

• PR #17956: ENH: Add version check for mac sdk version

• PR #18053: Backport PR #18021: FIX: update num2julian and julian2num

• PR #18021: FIX: update num2julian and julian2num

• PR #18041: Backport PR #18038 on branch v3.3.x (FIX: use internal _set_postion, not external)

518 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/18174/
https://github.com/matplotlib/matplotlib/pull/18176/
https://github.com/matplotlib/matplotlib/pull/18175/
https://github.com/matplotlib/matplotlib/pull/18092/
https://github.com/matplotlib/matplotlib/pull/18173/
https://github.com/matplotlib/matplotlib/pull/18167/
https://github.com/matplotlib/matplotlib/pull/18162/
https://github.com/matplotlib/matplotlib/pull/18156/
https://github.com/matplotlib/matplotlib/pull/18153/
https://github.com/matplotlib/matplotlib/pull/18146/
https://github.com/matplotlib/matplotlib/pull/18142/
https://github.com/matplotlib/matplotlib/pull/18147/
https://github.com/matplotlib/matplotlib/pull/18136/
https://github.com/matplotlib/matplotlib/pull/17989/
https://github.com/matplotlib/matplotlib/pull/18102/
https://github.com/matplotlib/matplotlib/pull/18111/
https://github.com/matplotlib/matplotlib/pull/18109/
https://github.com/matplotlib/matplotlib/pull/18089/
https://github.com/matplotlib/matplotlib/pull/18093/
https://github.com/matplotlib/matplotlib/pull/18104/
https://github.com/matplotlib/matplotlib/pull/18101/
https://github.com/matplotlib/matplotlib/pull/18091/
https://github.com/matplotlib/matplotlib/pull/18083/
https://github.com/matplotlib/matplotlib/pull/18079/
https://github.com/matplotlib/matplotlib/pull/18067/
https://github.com/matplotlib/matplotlib/pull/17956/
https://github.com/matplotlib/matplotlib/pull/18053/
https://github.com/matplotlib/matplotlib/pull/18021/
https://github.com/matplotlib/matplotlib/pull/18041/

Matplotlib, Release 3.4.3

• PR #18038: FIX: use internal _set_postion, not external

• PR #18036: Backport PR #18030 on branch v3.3.x (Fix PolyCollection.set_verts optimization.)

• PR #18030: Fix PolyCollection.set_verts optimization.

• PR #18032: Backport PR #18026 on branch v3.3.x (FIX: Be sure matplotlib.backends is imported
before we use it)

• PR #18026: FIX: Be sure matplotlib.backends is imported before we use it

• PR #18027: Backport PR #17981 on branch v3.3.x (gtk: Fix draw on unmapped windows.)

• PR #17981: gtk: Fix draw on unmapped windows.

• PR #18024: Backport PR #17963 on branch v3.3.x (TST: Ignore deprecations when switching back-
ends.)

• PR #18023: Backport PR #18014 on branch v3.3.x (Fix flipped paths in non-writable config dir warn-
ing.)

• PR #17963: TST: Ignore deprecations when switching backends.

• PR #18014: Fix flipped paths in non-writable config dir warning.

• PR #18008: Backport PR #17969 on branch v3.3.x (Honor 'Date': None in metadata)

• PR #18009: Backport PR #17982 on branch v3.3.x (BF: for degenerate polygons, add CLOSEPOLY
vertex)

• PR #17982: BF: for degenerate polygons, add CLOSEPOLY vertex

• PR #17969: Honor 'Date': None in metadata

• PR #17995: Avoid using Bbox machinery in Path.get_extents; special case polylines.

• PR #17994: Special case degree-1 Bezier curves.

• PR #17990: Manual backport of pr 17983 on v3.3.x

• PR #17984: Backport PR #17972 on branch v3.3.x (Fix PyPy compatiblity issue)

• PR #17985: Backport PR #17976 on branch v3.3.x (Fixed #17970 - Docstrings should not accessed
with -OO)

• PR #17983: FIX: undeprecate and update num2epoch/epoch2num

• PR #17976: Fixed #17970 - Docstrings should not accessed with -OO

• PR #17972: Fix PyPy compatiblity issue

Issues (25):

• #18234: _reshape_2D function behavior changed, breaks hist for some cases in 3.3.0

• #18232: different behaviour between 3.3.0 and 3.2.2 (and earlier) for ploting in a Tk canvas

• #18212: Updated WxAgg NavigationToolbar2 breaks custom toolbars

• #18129: Error reading png image from URL with imread in matplotlib 3.3

• #18163: Figure can not be closed if it has associated Agg canvas

7.1. Previous GitHub Stats 519

https://github.com/matplotlib/matplotlib/pull/18038/
https://github.com/matplotlib/matplotlib/pull/18036/
https://github.com/matplotlib/matplotlib/pull/18030/
https://github.com/matplotlib/matplotlib/pull/18032/
https://github.com/matplotlib/matplotlib/pull/18026/
https://github.com/matplotlib/matplotlib/pull/18027/
https://github.com/matplotlib/matplotlib/pull/17981/
https://github.com/matplotlib/matplotlib/pull/18024/
https://github.com/matplotlib/matplotlib/pull/18023/
https://github.com/matplotlib/matplotlib/pull/17963/
https://github.com/matplotlib/matplotlib/pull/18014/
https://github.com/matplotlib/matplotlib/pull/18008/
https://github.com/matplotlib/matplotlib/pull/18009/
https://github.com/matplotlib/matplotlib/pull/17982/
https://github.com/matplotlib/matplotlib/pull/17969/
https://github.com/matplotlib/matplotlib/pull/17995/
https://github.com/matplotlib/matplotlib/pull/17994/
https://github.com/matplotlib/matplotlib/pull/17990/
https://github.com/matplotlib/matplotlib/pull/17984/
https://github.com/matplotlib/matplotlib/pull/17985/
https://github.com/matplotlib/matplotlib/pull/17983/
https://github.com/matplotlib/matplotlib/pull/17976/
https://github.com/matplotlib/matplotlib/pull/17972/
https://github.com/matplotlib/matplotlib/issues/18234/
https://github.com/matplotlib/matplotlib/issues/18232/
https://github.com/matplotlib/matplotlib/issues/18212/
https://github.com/matplotlib/matplotlib/issues/18129/
https://github.com/matplotlib/matplotlib/issues/18163/

Matplotlib, Release 3.4.3

• #17974: Major speed regression introduced in "plt.bar" definition clipping between 3.0.3 and 3.3.0.

• #17998: New warning: Substituting symbol perp from STIXGeneral

• #18057: Fails to install in FreeBSD

• #18150: Regression in get_navigate_mode() return value

• #18158: X-axis that is Pandas Series time zone aware timestamps raises AssertionError

• #18037: Scatter3D: depthshade=False causes IndexError for Tkinter when plotting more than one
point.

• #18169: When running python with -OO option, an empty matplotlib docstring causes an exception.

• #18165: fig.colorbar() and using bbox='tight' in PDF export mess up figure dimensions

• #18132: A simple 3D scatter plot with %matplotlib notebook is not working

• #18135: Point size array in the Axes3D scatter() does not follow the same order as in the data points

• #18061: 3.3.0 regression in png backend with colorbar()

• #18076: pcolormesh + gourand shading + polar axes is broken

• #18010: 3.3.0: possible regression/bug with DateFormatter?

• #18033: v. 3.3.0: horizontal colorbar broken

• #18017: Optimisation in set_verts causes error if verts have irregular sizes

• #18022: AttributeError: module 'matplotlib' has no attribute 'backends'

• #18011: Confusing error message when home config directory not writable

• #17975: Computing the bounding box of a degenerate polygon throws an error

• #17968: Setting Date metadata to None does not remove the date metadata from the SVG file

• #17970: AttributeError when using PYTHONOPTIMIZE (due to stripped docstring)

7.1.8 GitHub Stats for Matplotlib 3.3.0

GitHub stats for 2020/03/03 - 2020/07/16 (tag: v3.2.0)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 198 issues and merged 1066 pull requests. The full list can be seen on GitHub

The following 144 authors contributed 3829 commits.

• Adam

• Adam Paszke

• Adam Ruszkowski

• Alex Henrie

• Alexander Rudy

520 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/17974/
https://github.com/matplotlib/matplotlib/issues/17998/
https://github.com/matplotlib/matplotlib/issues/18057/
https://github.com/matplotlib/matplotlib/issues/18150/
https://github.com/matplotlib/matplotlib/issues/18158/
https://github.com/matplotlib/matplotlib/issues/18037/
https://github.com/matplotlib/matplotlib/issues/18169/
https://github.com/matplotlib/matplotlib/issues/18165/
https://github.com/matplotlib/matplotlib/issues/18132/
https://github.com/matplotlib/matplotlib/issues/18135/
https://github.com/matplotlib/matplotlib/issues/18061/
https://github.com/matplotlib/matplotlib/issues/18076/
https://github.com/matplotlib/matplotlib/issues/18010/
https://github.com/matplotlib/matplotlib/issues/18033/
https://github.com/matplotlib/matplotlib/issues/18017/
https://github.com/matplotlib/matplotlib/issues/18022/
https://github.com/matplotlib/matplotlib/issues/18011/
https://github.com/matplotlib/matplotlib/issues/17975/
https://github.com/matplotlib/matplotlib/issues/17968/
https://github.com/matplotlib/matplotlib/issues/17970/
https://github.com/matplotlib/matplotlib/milestone/48?closed=1

Matplotlib, Release 3.4.3

• Amy Roberts

• andrzejnovak

• Antony Lee

• Ardie Orden

• Asaf Maman

• Avni Sharma

• Ben Root

• Bruno Beltran

• Bruno Pagani

• chaoyi1

• Cho Yin Yong

• Chris

• Christoph Pohl

• Cimarron Mittelsteadt

• Clemens Brunner

• Dan Hickstein

• Dan Stromberg

• David Chudzicki

• David Stansby

• Dennis Tismenko

• Dominik Schmidt

• donchanee

• Dora Fraeman Caswell

• Edoardo Pizzigoni

• Elan Ernest

• Elliott Sales de Andrade

• Emlyn Price

• Eric Firing

• Eric Larson

• Eric Relson

• Eric Wieser

• Fabien Maussion

7.1. Previous GitHub Stats 521

Matplotlib, Release 3.4.3

• Frank Sauerburger

• Gal Avineri

• Generated images

• Georg Raiser

• Gina

• Greg Lucas

• hannah

• Hanno Rein

• Harshal Prakash Patankar

• henryhu123

• Hugo van Kemenade

• Ian Hincks

• ImportanceOfBeingErnest

• Inception95

• Ingo Fründ

• Jake Lee

• Javad

• jbhopkins

• Jeroonk

• jess

• Jess Tiu

• jfbu

• Jiahao Chen

• Jody Klymak

• Jon Haitz Legarreta Gorroño

• Jose Manuel Martí

• Joshua Taillon

• Juanjo Bazán

• Julian Mehne

• Kacper Kowalik (Xarthisius)

• Kevin Mader

• kolibril13

522 Chapter 7. GitHub Stats

Matplotlib, Release 3.4.3

• kopytjuk

• ksafran

• Kyle Sunden

• Larry Bradley

• Laurent Thomas

• Lawrence D'Anna

• Leo Singer

• lepuchi

• Luke Davis

• Manan Kevadiya

• Manuel Nuno Melo

• Maoz Gelbart

• Marat K

• Marco Gorelli

• Matt Newville

• Matthias Bussonnier

• Max

• Max Chen

• Max Humber

• Maximilian Nöthe

• Michaël Defferrard

• Michele Mastropietro

• mikhailov

• MuhammadFarooq1234

• Mykola Dvornik

• Nelle Varoquaux

• Nelson Darkwah Oppong

• Nick Pope

• Nico Schlömer

• Nikita Kniazev

• Olivier Castany

• Omar Chehab

7.1. Previous GitHub Stats 523

Matplotlib, Release 3.4.3

• Paul Gierz

• Paul Hobson

• Paul Ivanov

• Pavel Fedin

• Peter Würtz

• Philippe Pinard

• pibion

• Po

• Pradeep Reddy Raamana

• Ram Rachum

• ranjanm

• Raphael

• Ricardo Mendes

• Riccardo Di Maio

• Ryan May

• Sadie Louise Bartholomew

• Sairam Pillai

• Samesh Lakhotia

• SamSchott

• Sandro Tosi

• Siddhesh Poyarekar

• Sidharth Bansal

• Snowhite

• SojiroFukuda

• Spencer McCoubrey

• Stefan Mitic

• Stephane Raynaud

• Steven G. Johnson

• Steven Munn

• Ted Drain

• Terence Honles

• Thomas A Caswell

524 Chapter 7. GitHub Stats

Matplotlib, Release 3.4.3

• Thomas Robitaille

• Till Stensitzki

• Tim Hoffmann

• Todd Jennings

• Tyrone Xiong

• Umar Javed

• Venkada

• vishalBindal

• Vitaly Buka

• Yue Zhihan

• Zulko

GitHub issues and pull requests:

Pull Requests (1066):

• PR #17943: Backport PR #17942 on branch v3.3.x (Increase heading level for 3.3 What's New)

• PR #17942: Increase heading level for 3.3 What's New

• PR #17941: Backport PR #17938 on branch v3.3.x (Don't allow 1D lists as subplot_moasic layout.)

• PR #17940: Backport PR #17885 on branch v3.3.x (BF: ignore CLOSEPOLY after NaN in PathNan-
Remover)

• PR #17937: Backport PR #17877 on branch v3.3.x (Fix drawing zoom rubberband on GTK backends.)

• PR #17938: Don't allow 1D lists as subplot_moasic layout.

• PR #17885: BF: ignore CLOSEPOLY after NaN in PathNanRemover

• PR #17877: Fix drawing zoom rubberband on GTK backends.

• PR #17933: Backport PR #17858 on branch v3.3.x (Refresh what's new page for 3.3.0)

• PR #17858: Refresh what's new page for 3.3.0

• PR #17919: Backport PR #17913 on branch v3.3.x (Revert using SVG inheritance diagrams)

• PR #17913: Revert using SVG inheritance diagrams

• PR #17911: Backport PR #17907 on branch v3.3.x (Fix release() method name in macosx backend)

• PR #17907: Fix release() method name in macosx backend

• PR #17903: Backport PR #17859 on branch v3.3.x (API: resolve unset vmin / vmax in all ScalarMap-
ple based methods)

• PR #17859: API: resolve unset vmin / vmax in all ScalarMapple based methods

• PR #17898: Backport PR #17882 on branch v3.3.x (Fix FFMpegBase.isAvailable with detached ter-
minals.)

7.1. Previous GitHub Stats 525

https://github.com/matplotlib/matplotlib/pull/17943/
https://github.com/matplotlib/matplotlib/pull/17942/
https://github.com/matplotlib/matplotlib/pull/17941/
https://github.com/matplotlib/matplotlib/pull/17940/
https://github.com/matplotlib/matplotlib/pull/17937/
https://github.com/matplotlib/matplotlib/pull/17938/
https://github.com/matplotlib/matplotlib/pull/17885/
https://github.com/matplotlib/matplotlib/pull/17877/
https://github.com/matplotlib/matplotlib/pull/17933/
https://github.com/matplotlib/matplotlib/pull/17858/
https://github.com/matplotlib/matplotlib/pull/17919/
https://github.com/matplotlib/matplotlib/pull/17913/
https://github.com/matplotlib/matplotlib/pull/17911/
https://github.com/matplotlib/matplotlib/pull/17907/
https://github.com/matplotlib/matplotlib/pull/17903/
https://github.com/matplotlib/matplotlib/pull/17859/
https://github.com/matplotlib/matplotlib/pull/17898/

Matplotlib, Release 3.4.3

• PR #17882: Fix FFMpegBase.isAvailable with detached terminals.

• PR #17881: Backport PR #17871 on branch v3.3.x (Mention single char colors shading inmore places)

• PR #17871: Mention single char colors shading in more places

• PR #17872: Backport PR #17800 on branch v3.3.x (Increase tolerance for alternate architectures)

• PR #17800: Increase tolerance for alternate architectures

• PR #17861: Revert "Fix linewidths and colors for scatter() with unfilled markers"

• PR #17864: Backport PR #17862 on branch v3.3.x (CI: Install, or upgrade, Python 3 on homebrew.)

• PR #17846: Backport PR #17844 on branch v3.3.x (Explain why Qt4 backends are deprecated)

• PR #17844: Explain why Qt4 backends are deprecated

• PR #17833: Backport PR #17831 on branch v3.3.x (BLD: default to system freetype on AIX)

• PR #17831: BLD: default to system freetype on AIX

• PR #17823: Backport PR #17821 on branch v3.3.x (FIX: Keep lists of lists of one scalar each 2D in
_reshape_2D)

• PR #17821: FIX: Keep lists of lists of one scalar each 2D in _reshape_2D

• PR #17811: Backport PR #17797 on branch v3.3.x (Fix running contour's test_internal_cpp_api di-
rectly.)

• PR #17812: Backport PR #17772 on branch v3.3.x (Partially fix rubberbanding in GTK3.)

• PR #17815: Backport PR #17814 on branch v3.3.x (Don't duplicate deprecated parameter addendum.)

• PR #17814: Don't duplicate deprecated parameter addendum.

• PR #17772: Partially fix rubberbanding in GTK3.

• PR #17797: Fix running contour's test_internal_cpp_api directly.

• PR #17809: Backport PR #17801 on branch v3.3.x (BUG: Fix implementation of _is_closed_polygon)

• PR #17801: BUG: Fix implementation of _is_closed_polygon

• PR #17796: Backport PR #17764 on branch v3.3.x (FIX: be more careful about not importing pyplot
early)

• PR #17795: Backport PR #17781 on branch v3.3.x (Fix limit setting after plotting empty data)

• PR #17764: FIX: be more careful about not importing pyplot early

• PR #17781: Fix limit setting after plotting empty data

• PR #17787: Backport PR #17784 on branch v3.3.x (Allow passing empty list of ticks to FixedLocator)

• PR #17784: Allow passing empty list of ticks to FixedLocator

• PR #17766: Backport PR #17752 on branch v3.3.x (Numpydoc-ify various functions)

• PR #17752: Numpydoc-ify various functions

• PR #17762: Backport PR #17742 on branch v3.3.x (Update tricontour[f] docs)

526 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/17882/
https://github.com/matplotlib/matplotlib/pull/17881/
https://github.com/matplotlib/matplotlib/pull/17871/
https://github.com/matplotlib/matplotlib/pull/17872/
https://github.com/matplotlib/matplotlib/pull/17800/
https://github.com/matplotlib/matplotlib/pull/17861/
https://github.com/matplotlib/matplotlib/pull/17864/
https://github.com/matplotlib/matplotlib/pull/17846/
https://github.com/matplotlib/matplotlib/pull/17844/
https://github.com/matplotlib/matplotlib/pull/17833/
https://github.com/matplotlib/matplotlib/pull/17831/
https://github.com/matplotlib/matplotlib/pull/17823/
https://github.com/matplotlib/matplotlib/pull/17821/
https://github.com/matplotlib/matplotlib/pull/17811/
https://github.com/matplotlib/matplotlib/pull/17812/
https://github.com/matplotlib/matplotlib/pull/17815/
https://github.com/matplotlib/matplotlib/pull/17814/
https://github.com/matplotlib/matplotlib/pull/17772/
https://github.com/matplotlib/matplotlib/pull/17797/
https://github.com/matplotlib/matplotlib/pull/17809/
https://github.com/matplotlib/matplotlib/pull/17801/
https://github.com/matplotlib/matplotlib/pull/17796/
https://github.com/matplotlib/matplotlib/pull/17795/
https://github.com/matplotlib/matplotlib/pull/17764/
https://github.com/matplotlib/matplotlib/pull/17781/
https://github.com/matplotlib/matplotlib/pull/17787/
https://github.com/matplotlib/matplotlib/pull/17784/
https://github.com/matplotlib/matplotlib/pull/17766/
https://github.com/matplotlib/matplotlib/pull/17752/
https://github.com/matplotlib/matplotlib/pull/17762/

Matplotlib, Release 3.4.3

• PR #17742: Update tricontour[f] docs

• PR #17760: Backport PR #17756 on branch v3.3.x (Fix tk tooltips for dark themes.)

• PR #17756: Fix tk tooltips for dark themes.

• PR #17747: Backport PR #17731 on branch v3.3.x ("Fix" tight_layout for template backend.)

• PR #17731: "Fix" tight_layout for template backend.

• PR #17739: Backport PR #17734 on branch v3.3.x (Oversample thumbnail x2)

• PR #17734: Oversample thumbnail x2

• PR #17738: Backport PR #17729 on branch v3.3.x (Fix type doc for scroll event "step" attribute.)

• PR #17729: Fix type doc for scroll event "step" attribute.

• PR #17724: Backport PR #17720 on branch v3.3.x (Fix check for manager = None.)

• PR #17720: Fix check for manager = None.

• PR #17719: Backport PR #17693 on branch v3.3.x (DOC: Add svg2pdf converter for generating PDF
docs.)

• PR #17693: DOC: Add svg2pdf converter for generating PDF docs.

• PR #17718: Backport PR #17715 on branch v3.3.x (Clarify gridspec error message for non-integer
inputs.)

• PR #17717: Backport PR #17705 on branch v3.3.x (Keep cachedRenderer as None when pickling
Figure.)

• PR #17715: Clarify gridspec error message for non-integer inputs.

• PR #17705: Keep cachedRenderer as None when pickling Figure.

• PR #17701: Backport PR #17687 on branch v3.3.x (Mention keyboard modifiers in toolbar tooltip
texts.)

• PR #17687: Mention keyboard modifiers in toolbar tooltip texts.

• PR #17698: Backport PR #17686 on branch v3.3.x (Fix tooltip for wx toolbar.)

• PR #17686: Fix tooltip for wx toolbar.

• PR #17692: Backport PR #17680 on branch v3.3.x (MNT: migrate away from deprecated c-api)

• PR #17680: MNT: migrate away from deprecated c-api

• PR #17688: Backport PR #17676 on branch v3.3.x (FIX: correctly process the tick label size)

• PR #17676: FIX: correctly process the tick label size

• PR #17677: Backport PR #17664 on branch v3.3.x (Clarify docs of AutoDateLocator.intervald)

• PR #17678: Backport PR #17665 on branch v3.3.x (Document that some single char colors are shaded)

• PR #17679: Backport PR #17675 on branch v3.3.x (DOC: specify that the LaTeX installation needs
to include cm-super)

• PR #17675: DOC: specify that the LaTeX installation needs to include cm-super

7.1. Previous GitHub Stats 527

https://github.com/matplotlib/matplotlib/pull/17742/
https://github.com/matplotlib/matplotlib/pull/17760/
https://github.com/matplotlib/matplotlib/pull/17756/
https://github.com/matplotlib/matplotlib/pull/17747/
https://github.com/matplotlib/matplotlib/pull/17731/
https://github.com/matplotlib/matplotlib/pull/17739/
https://github.com/matplotlib/matplotlib/pull/17734/
https://github.com/matplotlib/matplotlib/pull/17738/
https://github.com/matplotlib/matplotlib/pull/17729/
https://github.com/matplotlib/matplotlib/pull/17724/
https://github.com/matplotlib/matplotlib/pull/17720/
https://github.com/matplotlib/matplotlib/pull/17719/
https://github.com/matplotlib/matplotlib/pull/17693/
https://github.com/matplotlib/matplotlib/pull/17718/
https://github.com/matplotlib/matplotlib/pull/17717/
https://github.com/matplotlib/matplotlib/pull/17715/
https://github.com/matplotlib/matplotlib/pull/17705/
https://github.com/matplotlib/matplotlib/pull/17701/
https://github.com/matplotlib/matplotlib/pull/17687/
https://github.com/matplotlib/matplotlib/pull/17698/
https://github.com/matplotlib/matplotlib/pull/17686/
https://github.com/matplotlib/matplotlib/pull/17692/
https://github.com/matplotlib/matplotlib/pull/17680/
https://github.com/matplotlib/matplotlib/pull/17688/
https://github.com/matplotlib/matplotlib/pull/17676/
https://github.com/matplotlib/matplotlib/pull/17677/
https://github.com/matplotlib/matplotlib/pull/17678/
https://github.com/matplotlib/matplotlib/pull/17679/
https://github.com/matplotlib/matplotlib/pull/17675/

Matplotlib, Release 3.4.3

• PR #17665: Document that some single char colors are shaded

• PR #17664: Clarify docs of AutoDateLocator.intervald

• PR #17672: Backport PR #17668 on branch v3.3.x (Don't pass "wrong" indent=False in SVG
generation.)

• PR #17671: Backport PR #17667 on branch v3.3.x (Don't linewrap css in svg header.)

• PR #17668: Don't pass "wrong" indent=False in SVG generation.

• PR #17667: Don't linewrap css in svg header.

• PR #17666: Prepare for 3.3.0 rc1

• PR #17663: DOC: update the gh stats for v3.3.0

• PR #17656: Fix default colouring of Shadows

• PR #17657: V3.2.x mergeup

• PR #17623: Add a flag for disabling LTO.

• PR #17569: Delay usepackage{textcomp} until after the custom tex preamble.

• PR #17416: Reorder NavigationToolbar2 methods.

• PR #17604: DOC: Clarify offset notation and scientific notation

• PR #17617: Rewrite pdf test to use check_figures_equal.

• PR #17654: Small fixes to recent What's New

• PR #17649: MNT: make _setattr_cm more forgiving

• PR #17644: Doc 33 whats new consolidation

• PR #17647: Fix example in docstring of cbook._unfold.

• PR #10187: DOC: add a blitting tutorial

• PR #17471: Removed idiomatic constructs from interactive figures docs

• PR #17639: DOC: Update colormap deprecation warning to use Python's copy function.

• PR #17223: Warn on invalid savefig keyword arguments

• PR #17625: Give _DummyAxis instances a __name__

• PR #17636: Fix image vlim clipping again

• PR #17635: Fix autoscaling with tiny sticky values.

• PR #17620: MNT: make _setattr_cm more conservative

• PR #17621: FIX: restore ability to pass a tuple to axes_class in axes_grid

• PR #16603: axes collage

• PR #17622: Fix typo in description of savefig.bbox.

• PR #17619: Skip test_tmpconfigdir_warning when running as root.

528 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/17665/
https://github.com/matplotlib/matplotlib/pull/17664/
https://github.com/matplotlib/matplotlib/pull/17672/
https://github.com/matplotlib/matplotlib/pull/17671/
https://github.com/matplotlib/matplotlib/pull/17668/
https://github.com/matplotlib/matplotlib/pull/17667/
https://github.com/matplotlib/matplotlib/pull/17666/
https://github.com/matplotlib/matplotlib/pull/17663/
https://github.com/matplotlib/matplotlib/pull/17656/
https://github.com/matplotlib/matplotlib/pull/17657/
https://github.com/matplotlib/matplotlib/pull/17623/
https://github.com/matplotlib/matplotlib/pull/17569/
https://github.com/matplotlib/matplotlib/pull/17416/
https://github.com/matplotlib/matplotlib/pull/17604/
https://github.com/matplotlib/matplotlib/pull/17617/
https://github.com/matplotlib/matplotlib/pull/17654/
https://github.com/matplotlib/matplotlib/pull/17649/
https://github.com/matplotlib/matplotlib/pull/17644/
https://github.com/matplotlib/matplotlib/pull/17647/
https://github.com/matplotlib/matplotlib/pull/10187/
https://github.com/matplotlib/matplotlib/pull/17471/
https://github.com/matplotlib/matplotlib/pull/17639/
https://github.com/matplotlib/matplotlib/pull/17223/
https://github.com/matplotlib/matplotlib/pull/17625/
https://github.com/matplotlib/matplotlib/pull/17636/
https://github.com/matplotlib/matplotlib/pull/17635/
https://github.com/matplotlib/matplotlib/pull/17620/
https://github.com/matplotlib/matplotlib/pull/17621/
https://github.com/matplotlib/matplotlib/pull/16603/
https://github.com/matplotlib/matplotlib/pull/17622/
https://github.com/matplotlib/matplotlib/pull/17619/

Matplotlib, Release 3.4.3

• PR #17610: MNT: allow 0 sized figures

• PR #17163: Fix clipping of markers in PDF backend.

• PR #17556: DOC: Update contributor listing in credits

• PR #17221: Add metadata saving support to SVG.

• PR #17603: Replace image comparison in test_axes_grid1 by geometry checks.

• PR #17428: Doc start 33 merges

• PR #17607: Convert adjust_bbox to use ExitStack.

• PR #17575: DOCS: update collections.py docstrings to current doc conventions

• PR #15826: Fix bar3d bug with matching color string and array x lengths

• PR #14507: Simplify handling of Qt modifier keys.

• PR #17589: Fix doc build with Sphinx < 3.

• PR #17590: Clarify docs of set_powerlimits()

• PR #17597: MNT: cleanup minor style issues

• PR #17183: Update configuration of CircleCI builds

• PR #17592: Improve docstrings of ScalarFormatter

• PR #17456: Improve stackplot example

• PR #17545: Improve docs of markers

• PR #17233: Improve PDF metadata support in PGF

• PR #17086: Remove jQuery & jQuery UI

• PR #17580: Fix same_color() for 'none' color

• PR #17582: Fix link in doc

• PR #17491: DOC: Only link to overall Zenodo DOI.

• PR #17515: FIX: add set_box_aspect, improve tight bounding box for Axes3D + fix bbox_inches
support with fixed box_aspect

• PR #17581: DOC: Remove duplicate Returns in subplot2grid.

• PR #17550: Update subplot2grid doc to use Figure.add_gridspec, not GridSpec.

• PR #17544: markerfacecolor should not override fillstyle='none' in plot()

• PR #15672: Remove mention that tkagg was derived from PIL.

• PR #17573: Examples: fix formatting issue in 'Errorbar limit selection'

• PR #17543: Fix linewidths and colors for scatter() with unfilled markers

• PR #17448: Add example for drawing an error band around a curve

• PR #17572: Examples: clarity for 'set and get' example page

7.1. Previous GitHub Stats 529

https://github.com/matplotlib/matplotlib/pull/17610/
https://github.com/matplotlib/matplotlib/pull/17163/
https://github.com/matplotlib/matplotlib/pull/17556/
https://github.com/matplotlib/matplotlib/pull/17221/
https://github.com/matplotlib/matplotlib/pull/17603/
https://github.com/matplotlib/matplotlib/pull/17428/
https://github.com/matplotlib/matplotlib/pull/17607/
https://github.com/matplotlib/matplotlib/pull/17575/
https://github.com/matplotlib/matplotlib/pull/15826/
https://github.com/matplotlib/matplotlib/pull/14507/
https://github.com/matplotlib/matplotlib/pull/17589/
https://github.com/matplotlib/matplotlib/pull/17590/
https://github.com/matplotlib/matplotlib/pull/17597/
https://github.com/matplotlib/matplotlib/pull/17183/
https://github.com/matplotlib/matplotlib/pull/17592/
https://github.com/matplotlib/matplotlib/pull/17456/
https://github.com/matplotlib/matplotlib/pull/17545/
https://github.com/matplotlib/matplotlib/pull/17233/
https://github.com/matplotlib/matplotlib/pull/17086/
https://github.com/matplotlib/matplotlib/pull/17580/
https://github.com/matplotlib/matplotlib/pull/17582/
https://github.com/matplotlib/matplotlib/pull/17491/
https://github.com/matplotlib/matplotlib/pull/17515/
https://github.com/matplotlib/matplotlib/pull/17581/
https://github.com/matplotlib/matplotlib/pull/17550/
https://github.com/matplotlib/matplotlib/pull/17544/
https://github.com/matplotlib/matplotlib/pull/15672/
https://github.com/matplotlib/matplotlib/pull/17573/
https://github.com/matplotlib/matplotlib/pull/17543/
https://github.com/matplotlib/matplotlib/pull/17448/
https://github.com/matplotlib/matplotlib/pull/17572/

Matplotlib, Release 3.4.3

• PR #17276: Allow numpy arrays in markevery

• PR #17536: Consolidate some tests and fix a couple typos

• PR #17558: Simplify plot_date()

• PR #17534: Fmaussion extended boundary norm

• PR #17540: Fix help window on GTK.

• PR #17535: Update docs on subplot2grid / SubplotBase

• PR #17510: Fix exception handling in FT2Font init.

• PR #16953: Changed 'colors' paramater in PyPlot vlines/hlines and Axes vlines/hlines to default to
configured rcParams 'lines.color' option

• PR #17459: Use light icons on dark themes for wx and gtk, too.

• PR #17539: Use symbolic icons for buttons in GTK toolbar.

• PR #15435: Reuse png metadata handling of imsave() in FigureCanvasAgg.print_png().

• PR #5034: New "extend" keyword to colors.BoundaryNorm

• PR #17532: DOC: correct legend.title_fontsize docstring

• PR #17531: Remove unneeded check/comment re: multiprocessing in setup.py.

• PR #17522: Privatize ttconv module.

• PR #17517: Make sure _parent is in sync with Qt parent in NavigationToolbar2QT

• PR #17525: DOC/API: set __qualname__ when using class factory

• PR #17511: Fix offset legend tightbbox

• PR #16203: Port fontconfig's font weight detection to font_manager.

• PR #17485: Support marking a single artist as not-usetex.

• PR #17338: Support url on more Artists in svg

• PR #17519: Prefer demo'ing rcParams rather than rc in examples.

• PR #13457: Give AnnotationBbox an opinion about its extent

• PR #15037: Simplifications to errorbar().

• PR #17493: Update SVGs that use interpolation='none'.

• PR #15221: Don't fallback to agg in tight_layout.get_renderer.

• PR #17512: DOC: remove inkscape restriction in doc

• PR #17484: Deprecate ismath parameter to draw_tex and ismath="TeX!".

• PR #17492: Correctly set default linewidth for unfilled markers.

• PR #16908: Adding 2d support to quadmesh set_array

• PR #17506: Fix dicts unpacking for .plot

530 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/17276/
https://github.com/matplotlib/matplotlib/pull/17536/
https://github.com/matplotlib/matplotlib/pull/17558/
https://github.com/matplotlib/matplotlib/pull/17534/
https://github.com/matplotlib/matplotlib/pull/17540/
https://github.com/matplotlib/matplotlib/pull/17535/
https://github.com/matplotlib/matplotlib/pull/17510/
https://github.com/matplotlib/matplotlib/pull/16953/
https://github.com/matplotlib/matplotlib/pull/17459/
https://github.com/matplotlib/matplotlib/pull/17539/
https://github.com/matplotlib/matplotlib/pull/15435/
https://github.com/matplotlib/matplotlib/pull/5034/
https://github.com/matplotlib/matplotlib/pull/17532/
https://github.com/matplotlib/matplotlib/pull/17531/
https://github.com/matplotlib/matplotlib/pull/17522/
https://github.com/matplotlib/matplotlib/pull/17517/
https://github.com/matplotlib/matplotlib/pull/17525/
https://github.com/matplotlib/matplotlib/pull/17511/
https://github.com/matplotlib/matplotlib/pull/16203/
https://github.com/matplotlib/matplotlib/pull/17485/
https://github.com/matplotlib/matplotlib/pull/17338/
https://github.com/matplotlib/matplotlib/pull/17519/
https://github.com/matplotlib/matplotlib/pull/13457/
https://github.com/matplotlib/matplotlib/pull/15037/
https://github.com/matplotlib/matplotlib/pull/17493/
https://github.com/matplotlib/matplotlib/pull/15221/
https://github.com/matplotlib/matplotlib/pull/17512/
https://github.com/matplotlib/matplotlib/pull/17484/
https://github.com/matplotlib/matplotlib/pull/17492/
https://github.com/matplotlib/matplotlib/pull/16908/
https://github.com/matplotlib/matplotlib/pull/17506/

Matplotlib, Release 3.4.3

• PR #17496: Fix some incorrect image clipping

• PR #17340: convert some sample plots to use plt.subplots() instead of other methods

• PR #17504: Undocument parameter orientation of bar()

• PR #13884: Add some documentation for axisartist's ExtremeFinder, plus some cleanups.

• PR #17495: Fix Pillow import in testing.

• PR #17462: Inline FigureCanvasGtkFoo._render_figure.

• PR #17474: Numpydocify RectangleSelector docstring.

• PR #17003: Optimize extensions with LTO and hidden visibility

• PR #17489: BUG: Picking vertical line broken

• PR #17486: Simplify handling of fontproperties=None.

• PR #17478: Add support for blitting in qt5cairo.

• PR #15641: Make get_sample_data autoload npy/npz files.

• PR #17481: Fix LightSource.shade on fully unmasked array.

• PR #17289: Prepare for ragged array warnings in NumPy 1.19

• PR #17358: Fix masked CubicTriInterpolator

• PR #17477: DOC: Use Sphinx-gallery animation capture

• PR #17482: Shorten RectangleSelector._release.

• PR #17475: Cleanup RectangleSelector example.

• PR #17461: Deprecate the private FigureCanvasGTK3._renderer_init.

• PR #17464: Fold _make_nseq_validator into _listify_validator.

• PR #17469: Use qVersion, not QT_VERSION_STR -- the latter doesn't exist in PySide2.

• PR #4779: DOC: Start to document interactive figures

• PR #17458: Cleanup C++ code

• PR #17466: DOC: clarify that milestones are intentions not approvals

• PR #17062: Fix to "exported SVG files blurred in viewers"

• PR #17443: Fix rcParams validator for dashes.

• PR #17350: Move integerness checks to SubplotSpec._from_subplot_args.

• PR #17444: Support odd-length dash patterns in Agg.

• PR #17405: Show the failing line in bad-rcparams warnings.

• PR #17452: Make validate_date throw ValueError, not RuntimeError.

• PR #17439: Remove comment re: validation of datetime format strings.

• PR #17438: Discourage use of proprietary Matplotlib names for freetype hinting

7.1. Previous GitHub Stats 531

https://github.com/matplotlib/matplotlib/pull/17496/
https://github.com/matplotlib/matplotlib/pull/17340/
https://github.com/matplotlib/matplotlib/pull/17504/
https://github.com/matplotlib/matplotlib/pull/13884/
https://github.com/matplotlib/matplotlib/pull/17495/
https://github.com/matplotlib/matplotlib/pull/17462/
https://github.com/matplotlib/matplotlib/pull/17474/
https://github.com/matplotlib/matplotlib/pull/17003/
https://github.com/matplotlib/matplotlib/pull/17489/
https://github.com/matplotlib/matplotlib/pull/17486/
https://github.com/matplotlib/matplotlib/pull/17478/
https://github.com/matplotlib/matplotlib/pull/15641/
https://github.com/matplotlib/matplotlib/pull/17481/
https://github.com/matplotlib/matplotlib/pull/17289/
https://github.com/matplotlib/matplotlib/pull/17358/
https://github.com/matplotlib/matplotlib/pull/17477/
https://github.com/matplotlib/matplotlib/pull/17482/
https://github.com/matplotlib/matplotlib/pull/17475/
https://github.com/matplotlib/matplotlib/pull/17461/
https://github.com/matplotlib/matplotlib/pull/17464/
https://github.com/matplotlib/matplotlib/pull/17469/
https://github.com/matplotlib/matplotlib/pull/4779/
https://github.com/matplotlib/matplotlib/pull/17458/
https://github.com/matplotlib/matplotlib/pull/17466/
https://github.com/matplotlib/matplotlib/pull/17062/
https://github.com/matplotlib/matplotlib/pull/17443/
https://github.com/matplotlib/matplotlib/pull/17350/
https://github.com/matplotlib/matplotlib/pull/17444/
https://github.com/matplotlib/matplotlib/pull/17405/
https://github.com/matplotlib/matplotlib/pull/17452/
https://github.com/matplotlib/matplotlib/pull/17439/
https://github.com/matplotlib/matplotlib/pull/17438/

Matplotlib, Release 3.4.3

• PR #16990: update testing helpers

• PR #16340: Make set_x/ymargin() update axes limits, just like margins().

• PR #15029: Get default params from matplotlibrc.template.

• PR #17363: Fix toolbar separators in wx+toolmanager.

• PR #17348: Avoid creating a Tick in Axis.get_tick_space.

• PR #15725: Changed line color of boxplot for dark_background

• PR #17362: Remove status bars in toolmanager mode as well.

• PR #16551: DOC: be more opinionated about flags passed to pip

• PR #17328: Fixes icon clipping issue with WxAgg NavigationToolbar2 for wxpython 4.1.0

• PR #17425: fix typo in stem doc

• PR #17415: Cygwin fixes

• PR #17401: FIX: Fix for FFmpeg + GIF

• PR #16569: MNT: improve the error message in Path init

• PR #17404: Don't forget to dlclose() main_program in tkagg init.

• PR #17414: Keep validate_date private.

• PR #17413: Revert "DOC: drop the experimental tag constrained_layout and tight_layout"

• PR #17394: Deprecate passing keys to update_keymap as single comma-separated string

• PR #17395: TexManager fixes.

• PR #17399: Remove qt4 backends from backend fallback candidates.

• PR #17392: Clarify deprecation message re: tex/pgf preambles as list-of-strings.

• PR #17400: Cleanup wx examples.

• PR #17378: Fix marker overlap

• PR #17351: Fix running the test suite with inkscape>=1.

• PR #17382: FIX: properly check figure on gridspec

• PR #17390: Small updates to troubleshooting guide.

• PR #15104: Simplify file handling in ft2font.

• PR #17380: Support standard names for freetype hinting flags.

• PR #15594: Fix marker overlap

• PR #17372: Auto-set artist.mouseover based on if get_cursor_data is overridden.

• PR #17377: Remove code for sphinx < 1.8

• PR #17266: Keep explicit ticklabels in sync with ticks from FixedLocator

• PR #17359: Fix running test_internal_cpp_api directly.

532 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/16990/
https://github.com/matplotlib/matplotlib/pull/16340/
https://github.com/matplotlib/matplotlib/pull/15029/
https://github.com/matplotlib/matplotlib/pull/17363/
https://github.com/matplotlib/matplotlib/pull/17348/
https://github.com/matplotlib/matplotlib/pull/15725/
https://github.com/matplotlib/matplotlib/pull/17362/
https://github.com/matplotlib/matplotlib/pull/16551/
https://github.com/matplotlib/matplotlib/pull/17328/
https://github.com/matplotlib/matplotlib/pull/17425/
https://github.com/matplotlib/matplotlib/pull/17415/
https://github.com/matplotlib/matplotlib/pull/17401/
https://github.com/matplotlib/matplotlib/pull/16569/
https://github.com/matplotlib/matplotlib/pull/17404/
https://github.com/matplotlib/matplotlib/pull/17414/
https://github.com/matplotlib/matplotlib/pull/17413/
https://github.com/matplotlib/matplotlib/pull/17394/
https://github.com/matplotlib/matplotlib/pull/17395/
https://github.com/matplotlib/matplotlib/pull/17399/
https://github.com/matplotlib/matplotlib/pull/17392/
https://github.com/matplotlib/matplotlib/pull/17400/
https://github.com/matplotlib/matplotlib/pull/17378/
https://github.com/matplotlib/matplotlib/pull/17351/
https://github.com/matplotlib/matplotlib/pull/17382/
https://github.com/matplotlib/matplotlib/pull/17390/
https://github.com/matplotlib/matplotlib/pull/15104/
https://github.com/matplotlib/matplotlib/pull/17380/
https://github.com/matplotlib/matplotlib/pull/15594/
https://github.com/matplotlib/matplotlib/pull/17372/
https://github.com/matplotlib/matplotlib/pull/17377/
https://github.com/matplotlib/matplotlib/pull/17266/
https://github.com/matplotlib/matplotlib/pull/17359/

Matplotlib, Release 3.4.3

• PR #17355: Change subprocess for inkscape version detection

• PR #17369: CI: Add eslint for JS linting

• PR #17226: Replace backend_driver by new example runner.

• PR #17365: Also use light color tool buttons in qt+toolmanager+dark theme.

• PR #17366: Restrict Qt toolbars to top/bottom of canvas.

• PR #17361: Remove randomness from test_colorbar_get_ticks_2.

• PR #17151: Cleanup colors.py docstrings.

• PR #17287: Make API of get_tightbbox more consistent between Axes and Axis.

• PR #17092: Don't create a statusbar in Qt, wx backends.

• PR #17220: Simplify Annotation and Text bbox drawing.

• PR #17353: Make zooming work in qt-embedding example.

• PR #16727: Update xtick.alignment parameter in rcsetup to validate against correct values

• PR #17236: Add the "contour.linewidths" configuration option

• PR #16328: Make Artist.set() apply properties in the order in which they are given.

• PR #9696: FIX: set_url() without effect in the plot for instances of Tick

• PR #17002: Fix AnnotationBbox picking and a bit of cleanup

• PR #17256: Improve ps handling of individual usetex strings.

• PR #17267: Improve image comparison decorator

• PR #17332: Cleanup docstring of subplots().

• PR #16843: Deprecate is_pyqt5.

• PR #15898: New textcolor kwarg for legend

• PR #17333: Make sharex, etc. args of subplots() keyword-only.

• PR #17329: Improve docs of eventplot()

• PR #17330: Remove pnpoly license.

• PR #13656: For single datasets, don't wrap artist added by Axes.hist in silent_list

• PR #16247: DOC added kwargs and tight_layout description in plt.figure

• PR #16992: Implement FigureManager.resize for macosx backend

• PR #17324: DOC: add offset axes to secondary_axes

• PR #17311: Make pyplot signatures of rgrids() and thetagrids() explicit

• PR #17302: Fix alignment of offset text on top axis.

• PR #14421: Add GridSpec.subplots()

• PR #15111: By default, don't change the figure face/edgecolor on savefig().

7.1. Previous GitHub Stats 533

https://github.com/matplotlib/matplotlib/pull/17355/
https://github.com/matplotlib/matplotlib/pull/17369/
https://github.com/matplotlib/matplotlib/pull/17226/
https://github.com/matplotlib/matplotlib/pull/17365/
https://github.com/matplotlib/matplotlib/pull/17366/
https://github.com/matplotlib/matplotlib/pull/17361/
https://github.com/matplotlib/matplotlib/pull/17151/
https://github.com/matplotlib/matplotlib/pull/17287/
https://github.com/matplotlib/matplotlib/pull/17092/
https://github.com/matplotlib/matplotlib/pull/17220/
https://github.com/matplotlib/matplotlib/pull/17353/
https://github.com/matplotlib/matplotlib/pull/16727/
https://github.com/matplotlib/matplotlib/pull/17236/
https://github.com/matplotlib/matplotlib/pull/16328/
https://github.com/matplotlib/matplotlib/pull/9696/
https://github.com/matplotlib/matplotlib/pull/17002/
https://github.com/matplotlib/matplotlib/pull/17256/
https://github.com/matplotlib/matplotlib/pull/17267/
https://github.com/matplotlib/matplotlib/pull/17332/
https://github.com/matplotlib/matplotlib/pull/16843/
https://github.com/matplotlib/matplotlib/pull/15898/
https://github.com/matplotlib/matplotlib/pull/17333/
https://github.com/matplotlib/matplotlib/pull/17329/
https://github.com/matplotlib/matplotlib/pull/17330/
https://github.com/matplotlib/matplotlib/pull/13656/
https://github.com/matplotlib/matplotlib/pull/16247/
https://github.com/matplotlib/matplotlib/pull/16992/
https://github.com/matplotlib/matplotlib/pull/17324/
https://github.com/matplotlib/matplotlib/pull/17311/
https://github.com/matplotlib/matplotlib/pull/17302/
https://github.com/matplotlib/matplotlib/pull/14421/
https://github.com/matplotlib/matplotlib/pull/15111/

Matplotlib, Release 3.4.3

• PR #17318: both x and y should multiply the radius

• PR #17309: Cleanup parameter types in docstrings

• PR #17308: Improve docs of bar() and barh()

• PR #17312: changed axis to axes in lifecycle tutorial

• PR #16715: Automatically create tick formatters for str and callable inputs.

• PR #16959: Simplify and robustify ConnectionPatch coordinates conversion.

• PR #17306: FIX: CL more stable

• PR #17301: Use deprecate_privatize_attribute more.

• PR #16985: Adds normalize kwarg to pie function

• PR #5243: Enhancement of tick label offset text positioning

• PR #17292: Deprecate various wx Toolbar attributes.

• PR #17297: Simplify pickling support.

• PR #17298: Fix rubberband in tk.

• PR #17299: Avoid "dash motion" in qt zoom box.

• PR #17200: Implement set_history_buttons for Tk toolbar.

• PR #16798: Make the Qt interactive zoom rectangle black & white.

• PR #17296: Fix doc wording

• PR #17282: Don't divide by zero in Line2D.segment_hits.

• PR #17293: Fix incorrect deprecation.

• PR #17285: V32 mergeup

• PR #15933: Warn if a temporary config/cache dir must be created.

• PR #15911: Use os.getpid() in configdir, to avoid multiprocess concurrency issues

• PR #17277: Move slow FontManager warning to FontManager constructor.

• PR #17222: FIX: long titles x/ylabel layout

• PR #14960: Don't generate individual doc entries for inherited Axes/Axis/Tick methods

• PR #17175: Further sync axes_grid colorbars with standard colorbars.

• PR #17030: Move widget functions into matplotlib.testing.widgets.

• PR #16975: Fix "out of bounds" undefined behavior

• PR #17111: Deprecate NavigationToolbar2._init_toolbar.

• PR #15275: adds turbo colormap

• PR #17174: Inline RGBAxes._config_axes to its only call site.

• PR #17156: Deprecate text.latex.preview rcParam.

534 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/17318/
https://github.com/matplotlib/matplotlib/pull/17309/
https://github.com/matplotlib/matplotlib/pull/17308/
https://github.com/matplotlib/matplotlib/pull/17312/
https://github.com/matplotlib/matplotlib/pull/16715/
https://github.com/matplotlib/matplotlib/pull/16959/
https://github.com/matplotlib/matplotlib/pull/17306/
https://github.com/matplotlib/matplotlib/pull/17301/
https://github.com/matplotlib/matplotlib/pull/16985/
https://github.com/matplotlib/matplotlib/pull/5243/
https://github.com/matplotlib/matplotlib/pull/17292/
https://github.com/matplotlib/matplotlib/pull/17297/
https://github.com/matplotlib/matplotlib/pull/17298/
https://github.com/matplotlib/matplotlib/pull/17299/
https://github.com/matplotlib/matplotlib/pull/17200/
https://github.com/matplotlib/matplotlib/pull/16798/
https://github.com/matplotlib/matplotlib/pull/17296/
https://github.com/matplotlib/matplotlib/pull/17282/
https://github.com/matplotlib/matplotlib/pull/17293/
https://github.com/matplotlib/matplotlib/pull/17285/
https://github.com/matplotlib/matplotlib/pull/15933/
https://github.com/matplotlib/matplotlib/pull/15911/
https://github.com/matplotlib/matplotlib/pull/17277/
https://github.com/matplotlib/matplotlib/pull/17222/
https://github.com/matplotlib/matplotlib/pull/14960/
https://github.com/matplotlib/matplotlib/pull/17175/
https://github.com/matplotlib/matplotlib/pull/17030/
https://github.com/matplotlib/matplotlib/pull/16975/
https://github.com/matplotlib/matplotlib/pull/17111/
https://github.com/matplotlib/matplotlib/pull/15275/
https://github.com/matplotlib/matplotlib/pull/17174/
https://github.com/matplotlib/matplotlib/pull/17156/

Matplotlib, Release 3.4.3

• PR #17242: Make deprecations versions explicit

• PR #17165: Small optimizations to scale and translate of Affine2D

• PR #17181: Inline some private helper methods in ColorbarBase + small refactors.

• PR #17264: Don't trigger save when gtk save dialog is closed by escape.

• PR #17262: fix typo in set_clip_on doc

• PR #17234: Shorten and privatize qt's UiSubplotTool.

• PR #17137: Deprecate Toolbar.press/release; add helper to find overridden methods.

• PR #17245: Improve error handling in _parse_scatter_color_args

• PR #15008: ENH: add variable epoch

• PR #17260: Text Rotation Example: Correct roation_mode typo

• PR #17258: Improve info logged by tex subsystem.

• PR #17211: Deprecate support for running svg converter from path contaning newline.

• PR #17078: Improve nbAgg & WebAgg toolbars

• PR #17191: Inline unsampled-image path; remove renderer kwarg from _check_unsampled_image.

• PR #17213: Replace use of Bbox.bounds by appropriate properties.

• PR #17219: Add support for suptitle() in tight_layout().

• PR #17235: More axisartist cleanups

• PR #17239: Remove deprecations that expire in 3.3

• PR #13696: Deprecate offset_position="data".

• PR #16991: Begin warning on modifying global state of colormaps

• PR #17053: Replace most jQuery with vanilla JavaScript

• PR #17228: Make params to pyplot.tight_layout keyword-only.

• PR #17225: Remove Patch visibility tracking by Legend & OffsetBox.

• PR #17027: Fix saving nbAgg figure after a partial blit

• PR #16847: Ticks are not markers

• PR #17229: Autogenerate subplots_adjust with boilerplate.py.

• PR #17209: Simplify some axisartist code.

• PR #17204: Draw unfilled hist()s with the zorder of lines.

• PR #17205: Shorten tight_layout code.

• PR #17218: Document Transform.__add__ and .__sub__.

• PR #17215: Small cleanups.

• PR #17212: Cleanup text.py.

7.1. Previous GitHub Stats 535

https://github.com/matplotlib/matplotlib/pull/17242/
https://github.com/matplotlib/matplotlib/pull/17165/
https://github.com/matplotlib/matplotlib/pull/17181/
https://github.com/matplotlib/matplotlib/pull/17264/
https://github.com/matplotlib/matplotlib/pull/17262/
https://github.com/matplotlib/matplotlib/pull/17234/
https://github.com/matplotlib/matplotlib/pull/17137/
https://github.com/matplotlib/matplotlib/pull/17245/
https://github.com/matplotlib/matplotlib/pull/15008/
https://github.com/matplotlib/matplotlib/pull/17260/
https://github.com/matplotlib/matplotlib/pull/17258/
https://github.com/matplotlib/matplotlib/pull/17211/
https://github.com/matplotlib/matplotlib/pull/17078/
https://github.com/matplotlib/matplotlib/pull/17191/
https://github.com/matplotlib/matplotlib/pull/17213/
https://github.com/matplotlib/matplotlib/pull/17219/
https://github.com/matplotlib/matplotlib/pull/17235/
https://github.com/matplotlib/matplotlib/pull/17239/
https://github.com/matplotlib/matplotlib/pull/13696/
https://github.com/matplotlib/matplotlib/pull/16991/
https://github.com/matplotlib/matplotlib/pull/17053/
https://github.com/matplotlib/matplotlib/pull/17228/
https://github.com/matplotlib/matplotlib/pull/17225/
https://github.com/matplotlib/matplotlib/pull/17027/
https://github.com/matplotlib/matplotlib/pull/16847/
https://github.com/matplotlib/matplotlib/pull/17229/
https://github.com/matplotlib/matplotlib/pull/17209/
https://github.com/matplotlib/matplotlib/pull/17204/
https://github.com/matplotlib/matplotlib/pull/17205/
https://github.com/matplotlib/matplotlib/pull/17218/
https://github.com/matplotlib/matplotlib/pull/17215/
https://github.com/matplotlib/matplotlib/pull/17212/

Matplotlib, Release 3.4.3

• PR #17196: Move polar tests to their own module.

• PR #14747: Deprecate AxisArtist.dpi_transform.

• PR #13144: Deprecate NavigationToolbar2GTK3.ctx.

• PR #17202: DOC: Remove extra word

• PR #17194: Small cleanups/simplifications/fixes to pie().

• PR #17102: Switch tk pan/zoom to use togglable buttons.

• PR #16832: Correctly compute path extents

• PR #17193: Document docstring quote convention

• PR #17195: Fix polar tests.

• PR #17189: Make all parameters of ColorbarBase, except ax, keyword-only.

• PR #16717: Bugfix for issue 16501 raised ValueError polar subplot with (thetamax - thetamin) > 2pi

• PR #17180: Doc: spines arrows example

• PR #17184: Fix various small typos.

• PR #17143: Move linting to GitHub Actions with reviewdog.

• PR #17160: Correctly go through property setter when init'ing Timer interval.

• PR #17166: Deprecate ScalarMappable.check_update and associated machinery.

• PR #17177: Manually linewrap PS hexlines. Fixes #17176

• PR #17162: Update docs of rc_context()

• PR #17170: Convert SubplotZero example into centered-spines-with-arrows recipe.

• PR #17164: Fix Figure.add_axes(rect=...).

• PR #17154: DOC: Fix some warning and unreproducibility

• PR #17169: Clarify that draw_event occurs after the canvas draw.

• PR #17089: Cleanup some imports in tests

• PR #17040: Improve docs on automated tests

• PR #17145: CI: run pydocstyle with our custom options

• PR #16864: Check parameter type for legend(labels)

• PR #17146: FigureManager/NavigationToolbar2 cleanups.

• PR #16933: Add tests for toolmanager.

• PR #17127: ENH: allow title autopositioning to be turned off

• PR #17150: Many docstring cleanups.

• PR #17148: Fix most instances of D404 ("docstring should not start with 'this'").

• PR #17142: BUGFIX: conditional for add_axes arg deprecation

536 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/17196/
https://github.com/matplotlib/matplotlib/pull/14747/
https://github.com/matplotlib/matplotlib/pull/13144/
https://github.com/matplotlib/matplotlib/pull/17202/
https://github.com/matplotlib/matplotlib/pull/17194/
https://github.com/matplotlib/matplotlib/pull/17102/
https://github.com/matplotlib/matplotlib/pull/16832/
https://github.com/matplotlib/matplotlib/pull/17193/
https://github.com/matplotlib/matplotlib/pull/17195/
https://github.com/matplotlib/matplotlib/pull/17189/
https://github.com/matplotlib/matplotlib/pull/16717/
https://github.com/matplotlib/matplotlib/pull/17180/
https://github.com/matplotlib/matplotlib/pull/17184/
https://github.com/matplotlib/matplotlib/pull/17143/
https://github.com/matplotlib/matplotlib/pull/17160/
https://github.com/matplotlib/matplotlib/pull/17166/
https://github.com/matplotlib/matplotlib/pull/17177/
https://github.com/matplotlib/matplotlib/pull/17162/
https://github.com/matplotlib/matplotlib/pull/17170/
https://github.com/matplotlib/matplotlib/pull/17164/
https://github.com/matplotlib/matplotlib/pull/17154/
https://github.com/matplotlib/matplotlib/pull/17169/
https://github.com/matplotlib/matplotlib/pull/17089/
https://github.com/matplotlib/matplotlib/pull/17040/
https://github.com/matplotlib/matplotlib/pull/17145/
https://github.com/matplotlib/matplotlib/pull/16864/
https://github.com/matplotlib/matplotlib/pull/17146/
https://github.com/matplotlib/matplotlib/pull/16933/
https://github.com/matplotlib/matplotlib/pull/17127/
https://github.com/matplotlib/matplotlib/pull/17150/
https://github.com/matplotlib/matplotlib/pull/17148/
https://github.com/matplotlib/matplotlib/pull/17142/

Matplotlib, Release 3.4.3

• PR #17032: Fold table.CustomCell into Cell.

• PR #17117: TextBox improvements.

• PR #17108: Make widgets.TextBox work also when embedding.

• PR #17135: Simplify pan/zoom toggling.

• PR #17134: Don't override update() in NavigationToolbar2Tk.

• PR #17129: In docs remove 'optional' if 'default' can be given

• PR #16963: Deprecate Locator.refresh and associated helpers.

• PR #17133: Fix Button widget motion callback.

• PR #17125: Make multiline docstrings start with a newline.

• PR #17124: Widgets cleanup.

• PR #17123: Cleanup/Simplify Cell._set_text_position.

• PR #16862: FIX: turn off title autopos if pad is set

• PR #15214: Inline wx icon loading.

• PR #16831: Simplify interactive zoom handling.

• PR #17094: DOC: drop the experimental tag constrained_layout and tight_layout

• PR #17101: Avoid "wrapped C/C++ object has been deleted" when closing wx window.

• PR #17028: Changed return type of get_{x,y}ticklabels to plain list

• PR #16058: Deprecate {ContourSet,Quiver}.ax in favor of .axes.

• PR #15349: Use checkboxes as bullet points for the PR review checklists

• PR #17112: Fix some link redirects in docs

• PR #17090: DOCS: add examples of how one "should" use Bbox

• PR #17110: Simplify connection of the default key_press and button_press handlers.

• PR #17070: Cleanups to Qt backend.

• PR #16776: Make cursor text precision actually correspond to pointing precision.

• PR #17026: Add eslint & prettier, and re-format JS

• PR #17091: Make sure slider uses "x" sign before multiplicative factor.

• PR #17082: Cleanup TextBox implementation.

• PR #17067: Simplify and generalize _set_view_from_bbox.

• PR #17081: Update animation_api.rst

• PR #17077: Improve default formatter for Slider values.

• PR #17079: Use True instead of 1 for boolean parameters.

• PR #17074: Fixed a typo in Lifecycle of a Plot

7.1. Previous GitHub Stats 537

https://github.com/matplotlib/matplotlib/pull/17032/
https://github.com/matplotlib/matplotlib/pull/17117/
https://github.com/matplotlib/matplotlib/pull/17108/
https://github.com/matplotlib/matplotlib/pull/17135/
https://github.com/matplotlib/matplotlib/pull/17134/
https://github.com/matplotlib/matplotlib/pull/17129/
https://github.com/matplotlib/matplotlib/pull/16963/
https://github.com/matplotlib/matplotlib/pull/17133/
https://github.com/matplotlib/matplotlib/pull/17125/
https://github.com/matplotlib/matplotlib/pull/17124/
https://github.com/matplotlib/matplotlib/pull/17123/
https://github.com/matplotlib/matplotlib/pull/16862/
https://github.com/matplotlib/matplotlib/pull/15214/
https://github.com/matplotlib/matplotlib/pull/16831/
https://github.com/matplotlib/matplotlib/pull/17094/
https://github.com/matplotlib/matplotlib/pull/17101/
https://github.com/matplotlib/matplotlib/pull/17028/
https://github.com/matplotlib/matplotlib/pull/16058/
https://github.com/matplotlib/matplotlib/pull/15349/
https://github.com/matplotlib/matplotlib/pull/17112/
https://github.com/matplotlib/matplotlib/pull/17090/
https://github.com/matplotlib/matplotlib/pull/17110/
https://github.com/matplotlib/matplotlib/pull/17070/
https://github.com/matplotlib/matplotlib/pull/16776/
https://github.com/matplotlib/matplotlib/pull/17026/
https://github.com/matplotlib/matplotlib/pull/17091/
https://github.com/matplotlib/matplotlib/pull/17082/
https://github.com/matplotlib/matplotlib/pull/17067/
https://github.com/matplotlib/matplotlib/pull/17081/
https://github.com/matplotlib/matplotlib/pull/17077/
https://github.com/matplotlib/matplotlib/pull/17079/
https://github.com/matplotlib/matplotlib/pull/17074/

Matplotlib, Release 3.4.3

• PR #17072: Cleanup multi_image example.

• PR #15287: Allow sharex/y after axes creation.

• PR #16987: Deprecate case-insensitive properties.

• PR #17059: More missing refs fixes, and associated doc rewordings.

• PR #17057: Simplify subgridspec example/tutorial.

• PR #17058: Fix minor doc typos.

• PR #17024: Clarify docs of Rectangle

• PR #17043: Avoid spurious deprecation warning in TextBox.

• PR #17047: Highlighted .cbook.warn_deprecated() in contributing.rst

• PR #17054: Use slope in axline example

• PR #17048: More missing refs fixes.

• PR #17021: File name made more understandable

• PR #16903: Shorten implementation of Axes methods that just wrap Axis methods.

• PR #17039: Cleanups to contour docs.

• PR #17011: ci: Publish result images as Azure artifacts.

• PR #17038: Improve readability of documenting_mpl.rst

• PR #16996: Clean up get_proj() docstring (used view_init docstring as reference)

• PR #17019: Add return field to documentation of 'get_major_ticks'

• PR #16999: Add section on artifacts to imshow docs

• PR #17029: Fix table.Cell docstrings.

• PR #17025: Fix RecursionError when closing nbAgg figures.

• PR #16971: Don't change Figure DPI if value unchanged

• PR #16972: Fix resize bugs in GTK

• PR #17008: Change the description of Rectangle's xy parameter

• PR #16337: Create axline() using slope

• PR #16947: Fix missing parameter initialization in Axes.specgram()

• PR #17001: Cleanup imshow_extent tutorial.

• PR #17000: More stringent eventplot orientations.

• PR #16771: Deprecate non-string values as legend labels

• PR #15910: Simplify init of EventCollection.

• PR #16998: Made INSTALL.rst consistent

• PR #15393: Cleanup shape manipulations.

538 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/17072/
https://github.com/matplotlib/matplotlib/pull/15287/
https://github.com/matplotlib/matplotlib/pull/16987/
https://github.com/matplotlib/matplotlib/pull/17059/
https://github.com/matplotlib/matplotlib/pull/17057/
https://github.com/matplotlib/matplotlib/pull/17058/
https://github.com/matplotlib/matplotlib/pull/17024/
https://github.com/matplotlib/matplotlib/pull/17043/
https://github.com/matplotlib/matplotlib/pull/17047/
https://github.com/matplotlib/matplotlib/pull/17054/
https://github.com/matplotlib/matplotlib/pull/17048/
https://github.com/matplotlib/matplotlib/pull/17021/
https://github.com/matplotlib/matplotlib/pull/16903/
https://github.com/matplotlib/matplotlib/pull/17039/
https://github.com/matplotlib/matplotlib/pull/17011/
https://github.com/matplotlib/matplotlib/pull/17038/
https://github.com/matplotlib/matplotlib/pull/16996/
https://github.com/matplotlib/matplotlib/pull/17019/
https://github.com/matplotlib/matplotlib/pull/16999/
https://github.com/matplotlib/matplotlib/pull/17029/
https://github.com/matplotlib/matplotlib/pull/17025/
https://github.com/matplotlib/matplotlib/pull/16971/
https://github.com/matplotlib/matplotlib/pull/16972/
https://github.com/matplotlib/matplotlib/pull/17008/
https://github.com/matplotlib/matplotlib/pull/16337/
https://github.com/matplotlib/matplotlib/pull/16947/
https://github.com/matplotlib/matplotlib/pull/17001/
https://github.com/matplotlib/matplotlib/pull/17000/
https://github.com/matplotlib/matplotlib/pull/16771/
https://github.com/matplotlib/matplotlib/pull/15910/
https://github.com/matplotlib/matplotlib/pull/16998/
https://github.com/matplotlib/matplotlib/pull/15393/

Matplotlib, Release 3.4.3

• PR #10924: Clear() methods to Radio and CheckButtons and other improvements

• PR #16988: Make plt.{r,theta}grids act as setters even when all args are kwargs.

• PR #16986: update tox.ini to match pythons supported and allow flags for pytest

• PR #16111: Move locking of fontlist.json into json_dump.

• PR #13110: Slightly tighten the Bbox/Transform API.

• PR #16973: TST: don't actually render 1k+ date ticks

• PR #16967: Simplify animation writer fallback.

• PR #16812: Bezier/Path API Cleanup: fix circular import issue

• PR #16968: Add link to 3.2 min-supported-requirements.

• PR #16957: Remove unused, private aliases Polygon._{get,set}_xy.

• PR #16960: Improve error for quoted values in matplotlibrc.

• PR #16530: Fix violinplot support list of pandas.Series

• PR #16939: Cleanup/tighten axes_grid.

• PR #16942: Cleanup and avoid refleaks OSX Timer__timer_start.

• PR #16944: TST: update default junit_family

• PR #16823: Dedupe implementation of axes grid switching in toolmanager.

• PR #16951: Cleanup dates docstrings.

• PR #16769: Fix some small style issues

• PR #16936: FIX: Plot is now rendered with correct inital value

• PR #16937: Making sure to keep over/under/bad in cmap resample/reverse.

• PR #16915: Tighten/cleanup wx backend.

• PR #16923: Test the macosx backend on Travis.

• PR #15369: Update style docs

• PR #16893: Robustify AffineBase.__eq__ against comparing to other classes.

• PR #16904: Turn fontdict & minor into kwonly parameters for set_{x,y}ticklabels.

• PR #16917: Add test for close_event.

• PR #16920: Remove unused _read_ppm_image from macosx.m.

• PR #16877: Cleanup new_fixed_axis examples.

• PR #15049: Annotate argument in axes class match upstream

• PR #16774: Cleanup demo_axes_hbox_divider.

• PR #16873: More fixes to pydocstyle D403 (First word capitalization)

• PR #16896: set_tick_params(label1On=False) should also make offset text invisible.

7.1. Previous GitHub Stats 539

https://github.com/matplotlib/matplotlib/pull/10924/
https://github.com/matplotlib/matplotlib/pull/16988/
https://github.com/matplotlib/matplotlib/pull/16986/
https://github.com/matplotlib/matplotlib/pull/16111/
https://github.com/matplotlib/matplotlib/pull/13110/
https://github.com/matplotlib/matplotlib/pull/16973/
https://github.com/matplotlib/matplotlib/pull/16967/
https://github.com/matplotlib/matplotlib/pull/16812/
https://github.com/matplotlib/matplotlib/pull/16968/
https://github.com/matplotlib/matplotlib/pull/16957/
https://github.com/matplotlib/matplotlib/pull/16960/
https://github.com/matplotlib/matplotlib/pull/16530/
https://github.com/matplotlib/matplotlib/pull/16939/
https://github.com/matplotlib/matplotlib/pull/16942/
https://github.com/matplotlib/matplotlib/pull/16944/
https://github.com/matplotlib/matplotlib/pull/16823/
https://github.com/matplotlib/matplotlib/pull/16951/
https://github.com/matplotlib/matplotlib/pull/16769/
https://github.com/matplotlib/matplotlib/pull/16936/
https://github.com/matplotlib/matplotlib/pull/16937/
https://github.com/matplotlib/matplotlib/pull/16915/
https://github.com/matplotlib/matplotlib/pull/16923/
https://github.com/matplotlib/matplotlib/pull/15369/
https://github.com/matplotlib/matplotlib/pull/16893/
https://github.com/matplotlib/matplotlib/pull/16904/
https://github.com/matplotlib/matplotlib/pull/16917/
https://github.com/matplotlib/matplotlib/pull/16920/
https://github.com/matplotlib/matplotlib/pull/16877/
https://github.com/matplotlib/matplotlib/pull/15049/
https://github.com/matplotlib/matplotlib/pull/16774/
https://github.com/matplotlib/matplotlib/pull/16873/
https://github.com/matplotlib/matplotlib/pull/16896/

Matplotlib, Release 3.4.3

• PR #16907: Fix typo in implementation of quit_all_keys.

• PR #16900: Document and test common_texification()

• PR #16902: Remove dot from suffix in testing.compare.

• PR #16828: Use more _setattr_cm, thus fix Text('').get_window_extent(dpi=...)

• PR #16901: Cleanup many docstrings.

• PR #16840: Deprecate support for Qt4.

• PR #16899: Remove optional returns from TriAnalyzer._get_compressed_triangulation.

• PR #16618: Use SubplotSpec row/colspans more, and deprecate get_rows_columns.

• PR #15392: Autoscale for ax.arrow()

• PR #14626: Add support for minor ticks in 3d axes.

• PR #16897: Add back missing import.

• PR #14725: Move the debug-mode TransformNode.write_graphviz out.

• PR #15437: Improve handling of alpha when saving to jpeg.

• PR #15606: Simplify OldAutoLocator and AutoDateLocator.

• PR #16863: Shortcut for closing all figures

• PR #16876: Small cleanups to dviread.

• PR #15680: Use more kwonly arguments, less manual kwargs-popping.

• PR #15318: Deprecate unused rcParams["animation.html_args"].

• PR #15303: Make it possible to use rc_context as a decorator.

• PR #16890: Enables hatch alpha on SVG

• PR #16887: Shorter event mocking in tests.

• PR #16881: Validate tickdir strings

• PR #16846: Disconnect manager when resizing figure for animation saving.

• PR #16871: Shorter Path import in setupext.

• PR #16892: Warn in the docs that MouseEvent.key can be wrong.

• PR #16209: Dedupe boilerplate for "adoption" of figure into pyplot.

• PR #16098: Deprecate parameter props of Shadow

• PR #15747: Move Text init to end of Annotation init.

• PR #15679: np.concatenate cleanups.

• PR #16778: Remove more API deprecated in 3.1(part 7)

• PR #16886: Finish removing mentions of idle_event.

• PR #16882: Fix trivial docstring typos.

540 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/16907/
https://github.com/matplotlib/matplotlib/pull/16900/
https://github.com/matplotlib/matplotlib/pull/16902/
https://github.com/matplotlib/matplotlib/pull/16828/
https://github.com/matplotlib/matplotlib/pull/16901/
https://github.com/matplotlib/matplotlib/pull/16840/
https://github.com/matplotlib/matplotlib/pull/16899/
https://github.com/matplotlib/matplotlib/pull/16618/
https://github.com/matplotlib/matplotlib/pull/15392/
https://github.com/matplotlib/matplotlib/pull/14626/
https://github.com/matplotlib/matplotlib/pull/16897/
https://github.com/matplotlib/matplotlib/pull/14725/
https://github.com/matplotlib/matplotlib/pull/15437/
https://github.com/matplotlib/matplotlib/pull/15606/
https://github.com/matplotlib/matplotlib/pull/16863/
https://github.com/matplotlib/matplotlib/pull/16876/
https://github.com/matplotlib/matplotlib/pull/15680/
https://github.com/matplotlib/matplotlib/pull/15318/
https://github.com/matplotlib/matplotlib/pull/15303/
https://github.com/matplotlib/matplotlib/pull/16890/
https://github.com/matplotlib/matplotlib/pull/16887/
https://github.com/matplotlib/matplotlib/pull/16881/
https://github.com/matplotlib/matplotlib/pull/16846/
https://github.com/matplotlib/matplotlib/pull/16871/
https://github.com/matplotlib/matplotlib/pull/16892/
https://github.com/matplotlib/matplotlib/pull/16209/
https://github.com/matplotlib/matplotlib/pull/16098/
https://github.com/matplotlib/matplotlib/pull/15747/
https://github.com/matplotlib/matplotlib/pull/15679/
https://github.com/matplotlib/matplotlib/pull/16778/
https://github.com/matplotlib/matplotlib/pull/16886/
https://github.com/matplotlib/matplotlib/pull/16882/

Matplotlib, Release 3.4.3

• PR #16874: Fix pydocstyle D209 (Multi-line docstring closing separate line)

• PR #14044: Remove font preamble caching in TexManager.

• PR #16724: Fixed incorrect colour in ErrorBar when Nan value is presented

• PR #15254: Propagate signature-modifying decorators to pyplot wrappers.

• PR #16868: Update release guide

• PR #14442: In the build, declare all (compulsory) extension modules together.

• PR #16866: Cleanup/update deprecations.

• PR #16850: use validate_[cap/join]style

• PR #16858: Fix various numpydoc style issues

• PR #16848: Cleanup CI setup

• PR #16845: Fix checking of X11 builds with PySide2.

• PR #14199: Deprecate Path helpers in bezier.py

• PR #16838: Inline some more kwargs into setup.py's setup() call.

• PR #16841: Cleanup errorbar subsampling example

• PR #16839: spines doc cleanup

• PR #16844: fix example hist(density=...)

• PR #16827: Fix warnings in doc examples

• PR #16772: Remove more API deprecated in 3.1

• PR #16822: fix bug where make_compound_path kept all STOPs

• PR #16819: Destroy figures by manager instance, not by number.

• PR #16824: Deprecate NavigationToolbar2QT.parent.

• PR #16825: Don't use deprecated Gtk add_with_viewport.

• PR #16816: Merge v3.2.x into master

• PR #16786: Simple cleanups to formatters.

• PR #16807: Update barchart_demo.

• PR #16804: Deprecate some mathtext glue helper classes.

• PR #16808: One more instance of check_in_list.

• PR #16802: Fix incorrect super class of VCentered.

• PR #16789: Update markup for collections docstrings.

• PR #16781: Update image tutorial wrt. removal of native png handler.

• PR #16787: Avoid vstack() when possible.

• PR #16689: Add a fast path for NumPy arrays to Collection.set_verts

7.1. Previous GitHub Stats 541

https://github.com/matplotlib/matplotlib/pull/16874/
https://github.com/matplotlib/matplotlib/pull/14044/
https://github.com/matplotlib/matplotlib/pull/16724/
https://github.com/matplotlib/matplotlib/pull/15254/
https://github.com/matplotlib/matplotlib/pull/16868/
https://github.com/matplotlib/matplotlib/pull/14442/
https://github.com/matplotlib/matplotlib/pull/16866/
https://github.com/matplotlib/matplotlib/pull/16850/
https://github.com/matplotlib/matplotlib/pull/16858/
https://github.com/matplotlib/matplotlib/pull/16848/
https://github.com/matplotlib/matplotlib/pull/16845/
https://github.com/matplotlib/matplotlib/pull/14199/
https://github.com/matplotlib/matplotlib/pull/16838/
https://github.com/matplotlib/matplotlib/pull/16841/
https://github.com/matplotlib/matplotlib/pull/16839/
https://github.com/matplotlib/matplotlib/pull/16844/
https://github.com/matplotlib/matplotlib/pull/16827/
https://github.com/matplotlib/matplotlib/pull/16772/
https://github.com/matplotlib/matplotlib/pull/16822/
https://github.com/matplotlib/matplotlib/pull/16819/
https://github.com/matplotlib/matplotlib/pull/16824/
https://github.com/matplotlib/matplotlib/pull/16825/
https://github.com/matplotlib/matplotlib/pull/16816/
https://github.com/matplotlib/matplotlib/pull/16786/
https://github.com/matplotlib/matplotlib/pull/16807/
https://github.com/matplotlib/matplotlib/pull/16804/
https://github.com/matplotlib/matplotlib/pull/16808/
https://github.com/matplotlib/matplotlib/pull/16802/
https://github.com/matplotlib/matplotlib/pull/16789/
https://github.com/matplotlib/matplotlib/pull/16781/
https://github.com/matplotlib/matplotlib/pull/16787/
https://github.com/matplotlib/matplotlib/pull/16689/

Matplotlib, Release 3.4.3

• PR #15373: Further shorten quiver3d computation...

• PR #16780: Don't import rcParams but rather use mpl.rcParams (part 3)

• PR #16775: Cleanup axes_divider examples.

• PR #15949: Simplify implementation of SubplotTool.

• PR #14869: Deduplicate code for text-to-path conversion in svg backend.

• PR #16527: Validate positional parameters of add_subplot()

• PR #15622: Cleanup mpl_toolkits locators.

• PR #16744: Reword axes_divider tutorial.

• PR #16746: Reword colorbar-with-axes-divider example.

• PR #15211: Various backend cleanups.

• PR #15890: Remove API deprecated in 3.1 (part 2)

• PR #16757: Simplify interactive zoom handling.

• PR #15515: Combine withEffect PathEffect definitions.

• PR #15977: pgf backend cleanups.

• PR #15981: Reuse colorbar outline and patch when updating the colorbar.

• PR #14852: Use Path.arc() to interpolate polar arcs.

• PR #16686: Deprecate Substitution.from_params.

• PR #16675: Vectorize patch extraction in Axes3D.plot_surface

• PR #15846: Standardize signature mismatch error messages.

• PR #16740: Fix type of dpi in docstrings.

• PR #16741: Dedupe RGBAxes examples.

• PR #16755: Reword docstring of panning callbacks, and pass them a MouseButton.

• PR #16749: Document behavior of savefig("extensionless-name").

• PR #16754: Cleanup image.py.

• PR #14606: Generic cleanup to hist().

• PR #16692: Allow MarkerStyle instances as input for lines

• PR #15479: Cleanup axes_rgb.

• PR #16617: Use Path(..., closed=True) more.

• PR #16710: Make format_coord messagebox resize with the window and the content in osx backend

• PR #16681: Simplify docstring interpolation for Box/Arrow/ConnectionStyles.

• PR #16576: Deprecate arg-less calls to subplot_class_factory (and similar factories)

• PR #16652: Deprecate {Locator,Axis}.{pan,zoom}.

542 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/15373/
https://github.com/matplotlib/matplotlib/pull/16780/
https://github.com/matplotlib/matplotlib/pull/16775/
https://github.com/matplotlib/matplotlib/pull/15949/
https://github.com/matplotlib/matplotlib/pull/14869/
https://github.com/matplotlib/matplotlib/pull/16527/
https://github.com/matplotlib/matplotlib/pull/15622/
https://github.com/matplotlib/matplotlib/pull/16744/
https://github.com/matplotlib/matplotlib/pull/16746/
https://github.com/matplotlib/matplotlib/pull/15211/
https://github.com/matplotlib/matplotlib/pull/15890/
https://github.com/matplotlib/matplotlib/pull/16757/
https://github.com/matplotlib/matplotlib/pull/15515/
https://github.com/matplotlib/matplotlib/pull/15977/
https://github.com/matplotlib/matplotlib/pull/15981/
https://github.com/matplotlib/matplotlib/pull/14852/
https://github.com/matplotlib/matplotlib/pull/16686/
https://github.com/matplotlib/matplotlib/pull/16675/
https://github.com/matplotlib/matplotlib/pull/15846/
https://github.com/matplotlib/matplotlib/pull/16740/
https://github.com/matplotlib/matplotlib/pull/16741/
https://github.com/matplotlib/matplotlib/pull/16755/
https://github.com/matplotlib/matplotlib/pull/16749/
https://github.com/matplotlib/matplotlib/pull/16754/
https://github.com/matplotlib/matplotlib/pull/14606/
https://github.com/matplotlib/matplotlib/pull/16692/
https://github.com/matplotlib/matplotlib/pull/15479/
https://github.com/matplotlib/matplotlib/pull/16617/
https://github.com/matplotlib/matplotlib/pull/16710/
https://github.com/matplotlib/matplotlib/pull/16681/
https://github.com/matplotlib/matplotlib/pull/16576/
https://github.com/matplotlib/matplotlib/pull/16652/

Matplotlib, Release 3.4.3

• PR #16596: Deprecate dviread.Encoding.

• PR #16231: Deprecate JPEG-specific kwargs and rcParams to savefig.

• PR #16636: Deprecate autofmt_xdate(which=None) to mean which="major".

• PR #16644: Deprecate validate_webagg_address.

• PR #16619: Fix overindented lines.

• PR #15233: backend_ps cleanup.

• PR #16604: Deprecate more rc validators.

• PR #16601: Small unrelated cleanups.

• PR #16584: Rename font_bunch to psfont in textpath.

• PR #16023: Dedupe implementations of fill_between & fill_betweenx.

• PR #16485: Simplify validate_color_for_prop_cycle.

• PR #16285: Deprecate RendererCairo.font{weights,angles}

• PR #16410: Fix support for empty usetex strings.

• PR #11644: Add feature to fallback to stix font in mathtext

• PR #16537: Delay checking for existence of postscript distillers.

• PR #16351: Group all init of Legend.legendPatch together.

• PR #15988: Refactor Annotation properties.

• PR #16421: Shorten the type1-to-unicode name table.

• PR #16200: Deprecate Artist.{set,get}_contains.

• PR #15828: Deprecate support for dash-offset = None.

• PR #16338: Document SymmetricalLogLocator parameters.

• PR #16504: DOC: more pcolor fixes

• PR #15996: Cleanup axes_size.

• PR #16108: Deprecate DraggableBase.on_motion_blit.

• PR #16706: Fix exception causes all over the codebase

• PR #15855: Simplify 3d axes callback setup.

• PR #16219: Simplify CallbackRegistry pickling.

• PR #16002: relax two test tolerances on x86_64

• PR #16063: Make the signature of Axes.draw() consistent with Artist.draw().

• PR #16177: Further simplify setupext.

• PR #16191: Make Figure._axobservers a CallbackRegistry.

• PR #16698: Small edits to toolkits docs.

7.1. Previous GitHub Stats 543

https://github.com/matplotlib/matplotlib/pull/16596/
https://github.com/matplotlib/matplotlib/pull/16231/
https://github.com/matplotlib/matplotlib/pull/16636/
https://github.com/matplotlib/matplotlib/pull/16644/
https://github.com/matplotlib/matplotlib/pull/16619/
https://github.com/matplotlib/matplotlib/pull/15233/
https://github.com/matplotlib/matplotlib/pull/16604/
https://github.com/matplotlib/matplotlib/pull/16601/
https://github.com/matplotlib/matplotlib/pull/16584/
https://github.com/matplotlib/matplotlib/pull/16023/
https://github.com/matplotlib/matplotlib/pull/16485/
https://github.com/matplotlib/matplotlib/pull/16285/
https://github.com/matplotlib/matplotlib/pull/16410/
https://github.com/matplotlib/matplotlib/pull/11644/
https://github.com/matplotlib/matplotlib/pull/16537/
https://github.com/matplotlib/matplotlib/pull/16351/
https://github.com/matplotlib/matplotlib/pull/15988/
https://github.com/matplotlib/matplotlib/pull/16421/
https://github.com/matplotlib/matplotlib/pull/16200/
https://github.com/matplotlib/matplotlib/pull/15828/
https://github.com/matplotlib/matplotlib/pull/16338/
https://github.com/matplotlib/matplotlib/pull/16504/
https://github.com/matplotlib/matplotlib/pull/15996/
https://github.com/matplotlib/matplotlib/pull/16108/
https://github.com/matplotlib/matplotlib/pull/16706/
https://github.com/matplotlib/matplotlib/pull/15855/
https://github.com/matplotlib/matplotlib/pull/16219/
https://github.com/matplotlib/matplotlib/pull/16002/
https://github.com/matplotlib/matplotlib/pull/16063/
https://github.com/matplotlib/matplotlib/pull/16177/
https://github.com/matplotlib/matplotlib/pull/16191/
https://github.com/matplotlib/matplotlib/pull/16698/

Matplotlib, Release 3.4.3

• PR #15430: Simplify setupext.download_or_cache.

• PR #16694: Lower Text's FontProperties priority when updating

• PR #16511: Add more detailed kwargs docstrings to Axes methods.

• PR #16653: Tutorials: make path/URL option clearer in matplotlibrc tutorial

• PR #16697: Update docstrings for plot_directive.

• PR #16684: Fix exception causes in 19 modules

• PR #16674: Docstring + import cleanups to legend.py.

• PR #16683: Turn mathtext.GlueSpec into a (private) namedtuple.

• PR #16660: Cleanup fancybox_demo.

• PR #16691: Clarify tiny comment re: AnnotationBbox constructor.

• PR #16676: Cleanup animation docstrings.

• PR #16673: DOC: correct title_fontsize docstring

• PR #16669: DOC: update doc release guide

• PR #16563: Parametrize imshow antialiased tests.

• PR #16658: In docs, add multi-axes connectionpatches to Figure, not Axes.

• PR #16647: Update annotation tutorial.

• PR #16638: Remove unused, outdated division operators on jpl_units.

• PR #16509: Add custom math fallback

• PR #16609: Fix exception causes in rcsetup.py

• PR #16637: Update docstrings in figure.py.

• PR #16534: DOC: MaxNLocator and contour/contourf doc update (replaces #16428)

• PR #16597: close #16593: setting ecolor turns off color cycling

• PR #16615: Update custom boxstyles example.

• PR #16610: Added graphviz_docs to conf.py

• PR #16608: Stricter validation of rcParams["axes.axisbelow"].

• PR #16614: Cleanup quiver3d examples.

• PR #16556: Make backend_ps test robust against timestamp changes in ghostscript.

• PR #16602: Cleanup testing.compare.

• PR #16575: Style fix for dynamic axes subclass generation in mpl_toolkits.

• PR #16587: Remove warnings control from tests.py.

• PR #16599: Cleanup dolphin example.

• PR #16586: Deprecate recursionlimit kwarg to matplotlib.test().

544 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/15430/
https://github.com/matplotlib/matplotlib/pull/16694/
https://github.com/matplotlib/matplotlib/pull/16511/
https://github.com/matplotlib/matplotlib/pull/16653/
https://github.com/matplotlib/matplotlib/pull/16697/
https://github.com/matplotlib/matplotlib/pull/16684/
https://github.com/matplotlib/matplotlib/pull/16674/
https://github.com/matplotlib/matplotlib/pull/16683/
https://github.com/matplotlib/matplotlib/pull/16660/
https://github.com/matplotlib/matplotlib/pull/16691/
https://github.com/matplotlib/matplotlib/pull/16676/
https://github.com/matplotlib/matplotlib/pull/16673/
https://github.com/matplotlib/matplotlib/pull/16669/
https://github.com/matplotlib/matplotlib/pull/16563/
https://github.com/matplotlib/matplotlib/pull/16658/
https://github.com/matplotlib/matplotlib/pull/16647/
https://github.com/matplotlib/matplotlib/pull/16638/
https://github.com/matplotlib/matplotlib/pull/16509/
https://github.com/matplotlib/matplotlib/pull/16609/
https://github.com/matplotlib/matplotlib/pull/16637/
https://github.com/matplotlib/matplotlib/pull/16534/
https://github.com/matplotlib/matplotlib/pull/16597/
https://github.com/matplotlib/matplotlib/pull/16615/
https://github.com/matplotlib/matplotlib/pull/16610/
https://github.com/matplotlib/matplotlib/pull/16608/
https://github.com/matplotlib/matplotlib/pull/16614/
https://github.com/matplotlib/matplotlib/pull/16556/
https://github.com/matplotlib/matplotlib/pull/16602/
https://github.com/matplotlib/matplotlib/pull/16575/
https://github.com/matplotlib/matplotlib/pull/16587/
https://github.com/matplotlib/matplotlib/pull/16599/
https://github.com/matplotlib/matplotlib/pull/16586/

Matplotlib, Release 3.4.3

• PR #16595: Minor docstring/references update.

• PR #16579: Update usetex_fonteffects example.

• PR #16578: Use rc() less often in examples/tutorials.

• PR #16572: Remove some remnants of hist{,2d}(normed=...).

• PR #16491: Expire the _rename_parameters API changes.

• PR #14592: In SecondaryAxis.set_functions, reuse _set_scale's parent scale caching.

• PR #16279: STY: Fix underindented continuation lines.

• PR #16549: Improve documentation for examples/widgets/textbox.py

• PR #16560: Update URL to pyparsing.

• PR #16292: More edits to Normalize docstrings.

• PR #16536: API/TST: minimum versions

• PR #16559: 3D example avoid using statefull .gca()

• PR #16553: DOC: clarify the expected shapes of eventplot input

• PR #16535: Clarify docs of num parameter of plt.figure()

• PR #16547: Reformat/reword mathtext docstrings.

• PR #16545: Add a smoketest for ps.usedistiller="xpdf".

• PR #16529: Deprecate toggling axes navigatability using the keyboard.

• PR #16521: Remove more API deprecated in 3.1.

• PR #16481: Update set_thetalim documentation

• PR #16524: Cleanup docstrings

• PR #16540: Cleanup imports

• PR #16429: CI: update codecov

• PR #16533: Recommend to amend pull requests

• PR #16531: Also deprecate ignorecase ValidateInStrings.

• PR #16428: DOC: MaxNLocator and contour/contourf doc update

• PR #16525: Don't import rcParams but rather use mpl.rcParams (part 2)

• PR #16528: Improve test failure messages on warnings.

• PR #16393: Shorten PyFT2Font_get_charmap.

• PR #16483: Deprecate most ValidateInStrings validators.

• PR #16523: Reorder mathtext rcparams in matplotlibrc template.

• PR #16520: Update a comment re: minimum version of numpy working around bug.

• PR #16522: Fix deprecation warning

7.1. Previous GitHub Stats 545

https://github.com/matplotlib/matplotlib/pull/16595/
https://github.com/matplotlib/matplotlib/pull/16579/
https://github.com/matplotlib/matplotlib/pull/16578/
https://github.com/matplotlib/matplotlib/pull/16572/
https://github.com/matplotlib/matplotlib/pull/16491/
https://github.com/matplotlib/matplotlib/pull/14592/
https://github.com/matplotlib/matplotlib/pull/16279/
https://github.com/matplotlib/matplotlib/pull/16549/
https://github.com/matplotlib/matplotlib/pull/16560/
https://github.com/matplotlib/matplotlib/pull/16292/
https://github.com/matplotlib/matplotlib/pull/16536/
https://github.com/matplotlib/matplotlib/pull/16559/
https://github.com/matplotlib/matplotlib/pull/16553/
https://github.com/matplotlib/matplotlib/pull/16535/
https://github.com/matplotlib/matplotlib/pull/16547/
https://github.com/matplotlib/matplotlib/pull/16545/
https://github.com/matplotlib/matplotlib/pull/16529/
https://github.com/matplotlib/matplotlib/pull/16521/
https://github.com/matplotlib/matplotlib/pull/16481/
https://github.com/matplotlib/matplotlib/pull/16524/
https://github.com/matplotlib/matplotlib/pull/16540/
https://github.com/matplotlib/matplotlib/pull/16429/
https://github.com/matplotlib/matplotlib/pull/16533/
https://github.com/matplotlib/matplotlib/pull/16531/
https://github.com/matplotlib/matplotlib/pull/16428/
https://github.com/matplotlib/matplotlib/pull/16525/
https://github.com/matplotlib/matplotlib/pull/16528/
https://github.com/matplotlib/matplotlib/pull/16393/
https://github.com/matplotlib/matplotlib/pull/16483/
https://github.com/matplotlib/matplotlib/pull/16523/
https://github.com/matplotlib/matplotlib/pull/16520/
https://github.com/matplotlib/matplotlib/pull/16522/

Matplotlib, Release 3.4.3

• PR #16515: Fix doc for set_{x,y}label, and then some more.

• PR #16516: Fixes to boxplot() docstring & error messages.

• PR #16508: Multi-dim transforms are non-separable by default.

• PR #16507: Factor out common parts of __str__ for Transform subclasses.

• PR #16514: Various delayed PR reviews

• PR #16512: Fix a bunch of random typos.

• PR #16510: Doc markup cleanups.

• PR #16500: Dedupe timer attribute docs.

• PR #16503: DOC: suppress warning on pcolor demo

• PR #16495: Deemphasize basemap in user-facing docs.

• PR #16484: Don't forget to set stretch when exporting font as svg reference.

• PR #16486: Simplify validate_color, and make it slightly stricter.

• PR #16246: Avoid using FontProperties when not needed.

• PR #16432: Prefer geomspace() to logspace().

• PR #16099: Consistently name callback arguments event instead of evt

• PR #16477: Remove some APIs deprecated in mpl3.1.

• PR #16475: Use vlines() and plot(), not stem(), in timeline example.

• PR #16474: Switch default of stem(use_line_collection=...) to True.

• PR #16467: Convert named_colors example to use Rectangle

• PR #16047: Remove more API deprecated in 3.1

• PR #16373: Fix usetex_baseline_test.

• PR #16433: Simplify demo_curvelinear_grid2.

• PR #16472: Fix mplot3d projection

• PR #16092: Deprecate clear_temp param/attr of FileMovieWriter.

• PR #15504: Warn when trying to start a GUI event loop out of the main thread.

• PR #15023: Simplify formatting of matplotlibrc.template.

• PR #13535: Validate inputs to ScalarMappable constructor

• PR #16469: FIX: colorbar minorticks when rcParams['x/ytick.minor.visible'] = True

• PR #16401: BLD: Auto-detect PlatformToolset

• PR #16024: Keep parameter names in preprocess_data.

• PR #13390: Make sure that scatter3d copies its inputs.

• PR #16107: Deprecate DraggableBase.artist_picker.

546 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/16515/
https://github.com/matplotlib/matplotlib/pull/16516/
https://github.com/matplotlib/matplotlib/pull/16508/
https://github.com/matplotlib/matplotlib/pull/16507/
https://github.com/matplotlib/matplotlib/pull/16514/
https://github.com/matplotlib/matplotlib/pull/16512/
https://github.com/matplotlib/matplotlib/pull/16510/
https://github.com/matplotlib/matplotlib/pull/16500/
https://github.com/matplotlib/matplotlib/pull/16503/
https://github.com/matplotlib/matplotlib/pull/16495/
https://github.com/matplotlib/matplotlib/pull/16484/
https://github.com/matplotlib/matplotlib/pull/16486/
https://github.com/matplotlib/matplotlib/pull/16246/
https://github.com/matplotlib/matplotlib/pull/16432/
https://github.com/matplotlib/matplotlib/pull/16099/
https://github.com/matplotlib/matplotlib/pull/16477/
https://github.com/matplotlib/matplotlib/pull/16475/
https://github.com/matplotlib/matplotlib/pull/16474/
https://github.com/matplotlib/matplotlib/pull/16467/
https://github.com/matplotlib/matplotlib/pull/16047/
https://github.com/matplotlib/matplotlib/pull/16373/
https://github.com/matplotlib/matplotlib/pull/16433/
https://github.com/matplotlib/matplotlib/pull/16472/
https://github.com/matplotlib/matplotlib/pull/16092/
https://github.com/matplotlib/matplotlib/pull/15504/
https://github.com/matplotlib/matplotlib/pull/15023/
https://github.com/matplotlib/matplotlib/pull/13535/
https://github.com/matplotlib/matplotlib/pull/16469/
https://github.com/matplotlib/matplotlib/pull/16401/
https://github.com/matplotlib/matplotlib/pull/16024/
https://github.com/matplotlib/matplotlib/pull/13390/
https://github.com/matplotlib/matplotlib/pull/16107/

Matplotlib, Release 3.4.3

• PR #16455: Update some docstrings in colors.py

• PR #16456: Enable more font_manager tests to be run locally.

• PR #16459: Update backend dependency docs.

• PR #16444: Dedupe spectral plotting tests.

• PR #16460: Remove some mentions of avconv, following its deprecation.

• PR #16443: Parametrize some spectral tests.

• PR #16204: Expire deprecation of mathcircled

• PR #16446: Replace matshow baseline test by check_figures_equal.

• PR #16418: Backend timer simplifications.

• PR #16454: Use pytest.raises(match=...)

• PR #14916: Make kwargs names in scale.py not include the axis direction.

• PR #16258: ENH: add shading='nearest' and 'auto' to pcolormesh

• PR #16228: Allow directly passing explicit font paths.

• PR #16445: Remove a bunch of imports-within-tests.

• PR #16440: Expire deprecation of stackrel.

• PR #16439: Rework pylab docstring.

• PR #16441: Rework pylab docstring.

• PR #16442: Expire deprecation of stackrel.

• PR #16365: TST: test_acorr (replaced image comparison with figure comparion)

• PR #16206: Expire deprecation of stackrel

• PR #16437: Rework pylab docstring.

• PR #8896: Fix mplot3d projection

• PR #16430: Remove unnecessary calls to np.array in examples.

• PR #16407: Remove outdated comment re: PYTHONHASHSEED and pytest.

• PR #16225: Cleanup animation examples.

• PR #16336: Include axline() in infinite lines example

• PR #16395: Add set/get for ellipse width/height

• PR #16431: CI: add py38 to azure matrix

• PR #16415: Expire some APIs deprecated in mpl3.1.

• PR #16425: MNT: rename internal variable

• PR #16427: Style-fix some examples and update .flake8 per-file-ignores.

• PR #16423: Slightly improve streamplot code legibility.

7.1. Previous GitHub Stats 547

https://github.com/matplotlib/matplotlib/pull/16455/
https://github.com/matplotlib/matplotlib/pull/16456/
https://github.com/matplotlib/matplotlib/pull/16459/
https://github.com/matplotlib/matplotlib/pull/16444/
https://github.com/matplotlib/matplotlib/pull/16460/
https://github.com/matplotlib/matplotlib/pull/16443/
https://github.com/matplotlib/matplotlib/pull/16204/
https://github.com/matplotlib/matplotlib/pull/16446/
https://github.com/matplotlib/matplotlib/pull/16418/
https://github.com/matplotlib/matplotlib/pull/16454/
https://github.com/matplotlib/matplotlib/pull/14916/
https://github.com/matplotlib/matplotlib/pull/16258/
https://github.com/matplotlib/matplotlib/pull/16228/
https://github.com/matplotlib/matplotlib/pull/16445/
https://github.com/matplotlib/matplotlib/pull/16440/
https://github.com/matplotlib/matplotlib/pull/16439/
https://github.com/matplotlib/matplotlib/pull/16441/
https://github.com/matplotlib/matplotlib/pull/16442/
https://github.com/matplotlib/matplotlib/pull/16365/
https://github.com/matplotlib/matplotlib/pull/16206/
https://github.com/matplotlib/matplotlib/pull/16437/
https://github.com/matplotlib/matplotlib/pull/8896/
https://github.com/matplotlib/matplotlib/pull/16430/
https://github.com/matplotlib/matplotlib/pull/16407/
https://github.com/matplotlib/matplotlib/pull/16225/
https://github.com/matplotlib/matplotlib/pull/16336/
https://github.com/matplotlib/matplotlib/pull/16395/
https://github.com/matplotlib/matplotlib/pull/16431/
https://github.com/matplotlib/matplotlib/pull/16415/
https://github.com/matplotlib/matplotlib/pull/16425/
https://github.com/matplotlib/matplotlib/pull/16427/
https://github.com/matplotlib/matplotlib/pull/16423/

Matplotlib, Release 3.4.3

• PR #16414: DOC: Fix axes:plot method docstring verb tense

• PR #16408: Deprecate avconv animation writers.

• PR #16406: Don't import rcParams but rather use mpl.rcParams.

• PR #16326: Cleanup stack

• PR #16193: Catch shadowed imports in style checks.

• PR #16374: Log about font manager generation beforehand.

• PR #16372: Dedupe ImageGrid doc from tutorial and docstring.

• PR #16380: "gif" third-party package added to the extension page

• PR #16327: Cleanup list copying

• PR #16366: Special-case usetex minus to zero depth.

• PR #16350: TST: Improved test (getting rid of image comparison test for test_titletwiny)

• PR #16359: Make Text.update_from copy usetex state.

• PR #16355: typo in ticker.ScalarFormatter doc

• PR #15440: Use rcParams to control default "raise window" behavior (Qt,Gtk,Tk,Wx)

• PR #16302: Cleanup Legend._auto_legend_data.

• PR #16329: ENH: add zorder kwarg to contour clabel (and a better default value for zorder)

• PR #16341: Remove mention of now-removed --verbose-foo flags.

• PR #16265: Fix spy(..., marker=<not-None>, origin="lower")

• PR #16333: Document animation HTML writer.

• PR #16334: Fix doc regarding deprecation of properties.

• PR #16335: Fix some more missing references.

• PR #16304: Simplify Legend.get_children.

• PR #16309: Remove duplicated computations in Axes.get_tightbbox.

• PR #16314: Avoid repeatedly warning about too many figures open.

• PR #16319: Put doc for XAxis befor YAxis and likewise for XTick, YTick.

• PR #16313: Cleanup constrainedlayout_guide.

• PR #16312: Remove unnecessary Legend._approx_text_height.

• PR #16307: Cleanup axes_demo.

• PR #16303: Dedupe Legend.draw_frame which is the same as set_frame_on.

• PR #16261: TST: move the Qt-specific handling to conftest

• PR #16297: DOC: fix description of vmin/vmax in scatter

• PR #16288: Remove the private, unused _csv2rec.

548 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/16414/
https://github.com/matplotlib/matplotlib/pull/16408/
https://github.com/matplotlib/matplotlib/pull/16406/
https://github.com/matplotlib/matplotlib/pull/16326/
https://github.com/matplotlib/matplotlib/pull/16193/
https://github.com/matplotlib/matplotlib/pull/16374/
https://github.com/matplotlib/matplotlib/pull/16372/
https://github.com/matplotlib/matplotlib/pull/16380/
https://github.com/matplotlib/matplotlib/pull/16327/
https://github.com/matplotlib/matplotlib/pull/16366/
https://github.com/matplotlib/matplotlib/pull/16350/
https://github.com/matplotlib/matplotlib/pull/16359/
https://github.com/matplotlib/matplotlib/pull/16355/
https://github.com/matplotlib/matplotlib/pull/15440/
https://github.com/matplotlib/matplotlib/pull/16302/
https://github.com/matplotlib/matplotlib/pull/16329/
https://github.com/matplotlib/matplotlib/pull/16341/
https://github.com/matplotlib/matplotlib/pull/16265/
https://github.com/matplotlib/matplotlib/pull/16333/
https://github.com/matplotlib/matplotlib/pull/16334/
https://github.com/matplotlib/matplotlib/pull/16335/
https://github.com/matplotlib/matplotlib/pull/16304/
https://github.com/matplotlib/matplotlib/pull/16309/
https://github.com/matplotlib/matplotlib/pull/16314/
https://github.com/matplotlib/matplotlib/pull/16319/
https://github.com/matplotlib/matplotlib/pull/16313/
https://github.com/matplotlib/matplotlib/pull/16312/
https://github.com/matplotlib/matplotlib/pull/16307/
https://github.com/matplotlib/matplotlib/pull/16303/
https://github.com/matplotlib/matplotlib/pull/16261/
https://github.com/matplotlib/matplotlib/pull/16297/
https://github.com/matplotlib/matplotlib/pull/16288/

Matplotlib, Release 3.4.3

• PR #16281: Update/cleanup pgf tutorial.

• PR #16283: Cleanup backend_agg docstrings.

• PR #16282: Replace "unicode" by "str" in docs, messages when referring to the type.

• PR #16289: axisartist tutorial markup fixes.

• PR #16293: Revert "Fix doc CI by pointing to dev version of scipy docs."

• PR #16287: Improve markup for rcParams in docs.

• PR #16271: Clean up and clarify Normalize docs

• PR #16290: Fix doc CI by pointing to dev version of scipy docs.

• PR #16276: Cleanup docstring of print_figure, savefig.

• PR #16277: Prefer using MouseButton to numeric values in docs and defaults.

• PR #16270: numpydoc-ify SymLogNorm

• PR #16274: Tiny cleanups to set_xlabel(..., loc=...).

• PR #16273: DOC: Changing the spelling of co-ordinates.

• PR #15974: Enable set_{x|y|}label(loc={'left'|'right'|'center'}...)

• PR #16248: Update matplotlib.__doc__.

• PR #16262: Dedupe update of rcParams["backend"] in use() and in switch_backend()

• PR #9629: Make pcolor(mesh) preserve all data

• PR #16254: DOC: pdf.preamble --> pgf.preamble

• PR #16245: Cleanup image docs

• PR #16117: CI: Unify required dependencies installation

• PR #16240: Cleanup custom_scale example.

• PR #16227: Make Animation.repeat_delay an int, not an int-or-None.

• PR #16242: CI: Remove PYTHONUNBUFFERED=1 on Appveyor

• PR #16183: Remove some baseline images for plot() tests.

• PR #16229: And more missing refs.

• PR #16215: Concise dates test

• PR #16233: Reword ScalarFormatter docstrings.

• PR #16218: Cleanup animation docs.

• PR #16172: And more missing references.

• PR #16205: Deprecate the empty matplotlib.compat.

• PR #16214: Fix overindented line in AnchoredOffsetbox doc.

• PR #15943: Deprecate the TTFPATH & AFMPATH environment variables.

7.1. Previous GitHub Stats 549

https://github.com/matplotlib/matplotlib/pull/16281/
https://github.com/matplotlib/matplotlib/pull/16283/
https://github.com/matplotlib/matplotlib/pull/16282/
https://github.com/matplotlib/matplotlib/pull/16289/
https://github.com/matplotlib/matplotlib/pull/16293/
https://github.com/matplotlib/matplotlib/pull/16287/
https://github.com/matplotlib/matplotlib/pull/16271/
https://github.com/matplotlib/matplotlib/pull/16290/
https://github.com/matplotlib/matplotlib/pull/16276/
https://github.com/matplotlib/matplotlib/pull/16277/
https://github.com/matplotlib/matplotlib/pull/16270/
https://github.com/matplotlib/matplotlib/pull/16274/
https://github.com/matplotlib/matplotlib/pull/16273/
https://github.com/matplotlib/matplotlib/pull/15974/
https://github.com/matplotlib/matplotlib/pull/16248/
https://github.com/matplotlib/matplotlib/pull/16262/
https://github.com/matplotlib/matplotlib/pull/9629/
https://github.com/matplotlib/matplotlib/pull/16254/
https://github.com/matplotlib/matplotlib/pull/16245/
https://github.com/matplotlib/matplotlib/pull/16117/
https://github.com/matplotlib/matplotlib/pull/16240/
https://github.com/matplotlib/matplotlib/pull/16227/
https://github.com/matplotlib/matplotlib/pull/16242/
https://github.com/matplotlib/matplotlib/pull/16183/
https://github.com/matplotlib/matplotlib/pull/16229/
https://github.com/matplotlib/matplotlib/pull/16215/
https://github.com/matplotlib/matplotlib/pull/16233/
https://github.com/matplotlib/matplotlib/pull/16218/
https://github.com/matplotlib/matplotlib/pull/16172/
https://github.com/matplotlib/matplotlib/pull/16205/
https://github.com/matplotlib/matplotlib/pull/16214/
https://github.com/matplotlib/matplotlib/pull/15943/

Matplotlib, Release 3.4.3

• PR #16039: Deprecate unused features of normalize_kwargs.

• PR #16202: Remove outdated statement in tight_layout guide.

• PR #16201: UnCamelCase examples.

• PR #16194: Numpydoc ticklabel_format.

• PR #16195: Numpydoc ContourSet.find_nearest_contour.

• PR #16198: Remove em dash

• PR #16199: Do not use camel case for variables in examples

• PR #15644: Rewrite cursor example to include speedup possibilities

• PR #16196: Cleanup patches docstrings.

• PR #16184: Expire a mpl2.2-deprecated API

• PR #16188: Remove ref. to non-existent method in animation tests.

• PR #16170: Deprecate old and little used formatters.

• PR #16187: Fix overly long lines in examples & tutorials.

• PR #15982: Colorbar cleanup.

• PR #16154: Deprecate setting pickradius via set_picker

• PR #16174: Numpydocify artist.getp().

• PR #16165: Remove rcParams deprecated in mpl3.0/3.1.

• PR #16141: Update _base.py

• PR #16169: Add missing spaces after commas.

• PR #15847: Remove some dead branches from texmanager code.

• PR #16125: Fix more missing references again.

• PR #16150: Simplify transforms addition.

• PR #16152: Inline _init_axes_pad into Grid.__init__.

• PR #16129: Deprecate some Transform aliases in scale.py.

• PR #16162: (Mostly) avoid the term "command" in the docs.

• PR #16159: Simple cleanups for contour.py.

• PR #16164: Fix trivial typo in deprecation warning message.

• PR #16160: Cleanup hist() docstring.

• PR #16149: DOC: reword density desc in ax.hist

• PR #16151: Remove outdated comment re: blended transforms.

• PR #16102: Rework example "Scatter Star Poly" to "Marker examples"

• PR #16134: Validate Line2D pickradius when setting it, not when reading it.

550 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/16039/
https://github.com/matplotlib/matplotlib/pull/16202/
https://github.com/matplotlib/matplotlib/pull/16201/
https://github.com/matplotlib/matplotlib/pull/16194/
https://github.com/matplotlib/matplotlib/pull/16195/
https://github.com/matplotlib/matplotlib/pull/16198/
https://github.com/matplotlib/matplotlib/pull/16199/
https://github.com/matplotlib/matplotlib/pull/15644/
https://github.com/matplotlib/matplotlib/pull/16196/
https://github.com/matplotlib/matplotlib/pull/16184/
https://github.com/matplotlib/matplotlib/pull/16188/
https://github.com/matplotlib/matplotlib/pull/16170/
https://github.com/matplotlib/matplotlib/pull/16187/
https://github.com/matplotlib/matplotlib/pull/15982/
https://github.com/matplotlib/matplotlib/pull/16154/
https://github.com/matplotlib/matplotlib/pull/16174/
https://github.com/matplotlib/matplotlib/pull/16165/
https://github.com/matplotlib/matplotlib/pull/16141/
https://github.com/matplotlib/matplotlib/pull/16169/
https://github.com/matplotlib/matplotlib/pull/15847/
https://github.com/matplotlib/matplotlib/pull/16125/
https://github.com/matplotlib/matplotlib/pull/16150/
https://github.com/matplotlib/matplotlib/pull/16152/
https://github.com/matplotlib/matplotlib/pull/16129/
https://github.com/matplotlib/matplotlib/pull/16162/
https://github.com/matplotlib/matplotlib/pull/16159/
https://github.com/matplotlib/matplotlib/pull/16164/
https://github.com/matplotlib/matplotlib/pull/16160/
https://github.com/matplotlib/matplotlib/pull/16149/
https://github.com/matplotlib/matplotlib/pull/16151/
https://github.com/matplotlib/matplotlib/pull/16102/
https://github.com/matplotlib/matplotlib/pull/16134/

Matplotlib, Release 3.4.3

• PR #15019: Add step option where='edges' to facilitate pre-binned hist plots

• PR #16142: Avoid using np.r_, np.c_.

• PR #16146: Remove LICENSE_CONDA.

• PR #16133: Reword docstring of Line2D.contains.

• PR #16120: Minor fontproperty fixes.

• PR #15670: Reuse Grid.__init__ in ImageGrid.__init__.

• PR #16025: Deprecate update_datalim_bounds.

• PR #16001: Remove parameters deprecated in 3.1

• PR #16049: Add __repr__ to SubplotSpec.

• PR #16100: Consistently name event callbacks on_[event]

• PR #16106: In DraggableLegend, inherit DraggableBase.artist_picker.

• PR #16109: Name Axes variables ax instead of a

• PR #16115: Fix more missing references.

• PR #16096: Deprecate unused parameters

• PR #16085: Improve docstrings in offsetbox.py

• PR #16097: Cleanup unused variables

• PR #16101: Fix incorrect doc regarding projections.

• PR #16095: Deprecate MovieWriter.{exec,args}_key, making them private.

• PR #16078: Refactor a bit animation start/save interaction.

• PR #16081: Delay resolution of animation extra_args.

• PR #16088: Use C++ true/false in ttconv.

• PR #16082: Defaut to writing animation frames to a temporary directory.

• PR #16070: Make animation blit cache robust against 3d viewpoint changes.

• PR #5056: MNT: more control of colorbar with CountourSet

• PR #16051: Deprecate parameters to colorbar which have no effect.

• PR #16045: Use triple-double-quotes for docstrings

• PR #16076: Cleanup path_editor example.

• PR #16059: Simplify colorbar test.

• PR #16072: Cleanup category.py docstrings.

• PR #15769: scatter() should not rescale if norm is given

• PR #16060: Cleanup pcolor_demo.

• PR #16057: Trivial docstring fix for cbook.deprecated.

7.1. Previous GitHub Stats 551

https://github.com/matplotlib/matplotlib/pull/15019/
https://github.com/matplotlib/matplotlib/pull/16142/
https://github.com/matplotlib/matplotlib/pull/16146/
https://github.com/matplotlib/matplotlib/pull/16133/
https://github.com/matplotlib/matplotlib/pull/16120/
https://github.com/matplotlib/matplotlib/pull/15670/
https://github.com/matplotlib/matplotlib/pull/16025/
https://github.com/matplotlib/matplotlib/pull/16001/
https://github.com/matplotlib/matplotlib/pull/16049/
https://github.com/matplotlib/matplotlib/pull/16100/
https://github.com/matplotlib/matplotlib/pull/16106/
https://github.com/matplotlib/matplotlib/pull/16109/
https://github.com/matplotlib/matplotlib/pull/16115/
https://github.com/matplotlib/matplotlib/pull/16096/
https://github.com/matplotlib/matplotlib/pull/16085/
https://github.com/matplotlib/matplotlib/pull/16097/
https://github.com/matplotlib/matplotlib/pull/16101/
https://github.com/matplotlib/matplotlib/pull/16095/
https://github.com/matplotlib/matplotlib/pull/16078/
https://github.com/matplotlib/matplotlib/pull/16081/
https://github.com/matplotlib/matplotlib/pull/16088/
https://github.com/matplotlib/matplotlib/pull/16082/
https://github.com/matplotlib/matplotlib/pull/16070/
https://github.com/matplotlib/matplotlib/pull/5056/
https://github.com/matplotlib/matplotlib/pull/16051/
https://github.com/matplotlib/matplotlib/pull/16045/
https://github.com/matplotlib/matplotlib/pull/16076/
https://github.com/matplotlib/matplotlib/pull/16059/
https://github.com/matplotlib/matplotlib/pull/16072/
https://github.com/matplotlib/matplotlib/pull/15769/
https://github.com/matplotlib/matplotlib/pull/16060/
https://github.com/matplotlib/matplotlib/pull/16057/

Matplotlib, Release 3.4.3

• PR #16043: Simplify some comparisons

• PR #16044: Code style cleanup

• PR #15894: rcsetup cleanups.

• PR #16050: Unbreak CI.

• PR #16034: Update comments re: colors._vector_magnitude.

• PR #16035: Make eventplot use the standard alias resolution mechanism.

• PR #15798: Better default behavior for boxplots when rcParams['lines.marker'] is set

• PR #16004: Improve documentation of text module

• PR #15507: Use FixedFormatter only with FixedLocator

• PR #16008: Remove unused imports

• PR #16036: Rely on pytest to record warnings, rather than doing it manually.

• PR #15734: Fix home/forward/backward buttons for 3d plots.

• PR #16038: Cleanup contour_demo.

• PR #15998: Join marker reference and marker fiillstyle reference

• PR #15976: Cleanup span_where.

• PR #15990: Remove deprecated support for setting single property via multiple aliases

• PR #15940: Some unicode-support related cleanups.

• PR #15836: Compactify a bit the EventCollection tests.

• PR #16013: Relayout some conditions in axes_grid.

• PR #16010: Inherit the Artist.draw docstring in subclasses.

• PR #16017: Document support for no-args plt.subplot() call.

• PR #16014: Simplify calls to AxesGrid/ImageGrid.

• PR #16012: Normalize aspect="equal" to aspect=1 in the setter.

• PR #15997: Shorten wx _onMouseWheel.

• PR #15993: Style fixes for axes_divider.

• PR #15989: Simplify Artist.update.

• PR #16015: Some small extension cleanups

• PR #16011: Replace axes_size.Fraction by multiplication.

• PR #15719: Templatize spectral helpers.

• PR #15995: Remove toolkit functions deprecated in 3.1

• PR #16003: prevent needless float() conversion

• PR #16000: De-deprecate *min/*max parameters to set_x/y/zlim()

552 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/16043/
https://github.com/matplotlib/matplotlib/pull/16044/
https://github.com/matplotlib/matplotlib/pull/15894/
https://github.com/matplotlib/matplotlib/pull/16050/
https://github.com/matplotlib/matplotlib/pull/16034/
https://github.com/matplotlib/matplotlib/pull/16035/
https://github.com/matplotlib/matplotlib/pull/15798/
https://github.com/matplotlib/matplotlib/pull/16004/
https://github.com/matplotlib/matplotlib/pull/15507/
https://github.com/matplotlib/matplotlib/pull/16008/
https://github.com/matplotlib/matplotlib/pull/16036/
https://github.com/matplotlib/matplotlib/pull/15734/
https://github.com/matplotlib/matplotlib/pull/16038/
https://github.com/matplotlib/matplotlib/pull/15998/
https://github.com/matplotlib/matplotlib/pull/15976/
https://github.com/matplotlib/matplotlib/pull/15990/
https://github.com/matplotlib/matplotlib/pull/15940/
https://github.com/matplotlib/matplotlib/pull/15836/
https://github.com/matplotlib/matplotlib/pull/16013/
https://github.com/matplotlib/matplotlib/pull/16010/
https://github.com/matplotlib/matplotlib/pull/16017/
https://github.com/matplotlib/matplotlib/pull/16014/
https://github.com/matplotlib/matplotlib/pull/16012/
https://github.com/matplotlib/matplotlib/pull/15997/
https://github.com/matplotlib/matplotlib/pull/15993/
https://github.com/matplotlib/matplotlib/pull/15989/
https://github.com/matplotlib/matplotlib/pull/16015/
https://github.com/matplotlib/matplotlib/pull/16011/
https://github.com/matplotlib/matplotlib/pull/15719/
https://github.com/matplotlib/matplotlib/pull/15995/
https://github.com/matplotlib/matplotlib/pull/16003/
https://github.com/matplotlib/matplotlib/pull/16000/

Matplotlib, Release 3.4.3

• PR #15684: Avoid RuntimeError at wx exit.

• PR #15992: Avoid using np.matrix.

• PR #15961: Be more opinionated for setting up a dev env.

• PR #15991: Avoid setting dtypes as strings...

• PR #15985: Remove unnecessary :func:, :meth: from examples markup.

• PR #15983: Fix some examples docstrings.

• PR #15979: Remove references to scipy cookbook.

• PR #15966: FIX: check subplot kwargs

• PR #15947: Merge the two usetex demos.

• PR #15939: Exceptions should start with a capital letter

• PR #15948: Use rc_context more.

• PR #15962: Add tests for IndexFormatter

• PR #15965: Test registering cmaps

• PR #15950: Remove deprecated TextWithDash

• PR #15942: Update docs of type1font

• PR #15927: Trying to set the labels without setting ticks through pyplot now raises TypeError*

• PR #15944: Minor doc cleanups

• PR #15945: Do not use "object" or "instance" when documenting types

• PR #15897: Cleanup TriAnalyzer docs

• PR #15777: Don't bother disconnecting idle_draw at gtk shutdown.

• PR #15929: Remove unused cbook._lockstr.

• PR #15935: Raise an ValueError when Axes.pie accepts negative values #15923

• PR #15895: Deprecate unused illegal_s attribute.

• PR #15900: Rewrite test_cycles to avoid image comparison tests.

• PR #15892: Update docs of backend_manager

• PR #15878: Remove API deprecated in 3.1

• PR #15928: DOC: use markers as slanted breaks in broken axis example

• PR #14659: Update some widget docstrings.

• PR #15919: Remove mod_python specific code.

• PR #15883: Improve error when passing 0d array to scatter().

• PR #15907: More docstrings cleanup.

• PR #15906: Cleanup legend docstrings.

7.1. Previous GitHub Stats 553

https://github.com/matplotlib/matplotlib/pull/15684/
https://github.com/matplotlib/matplotlib/pull/15992/
https://github.com/matplotlib/matplotlib/pull/15961/
https://github.com/matplotlib/matplotlib/pull/15991/
https://github.com/matplotlib/matplotlib/pull/15985/
https://github.com/matplotlib/matplotlib/pull/15983/
https://github.com/matplotlib/matplotlib/pull/15979/
https://github.com/matplotlib/matplotlib/pull/15966/
https://github.com/matplotlib/matplotlib/pull/15947/
https://github.com/matplotlib/matplotlib/pull/15939/
https://github.com/matplotlib/matplotlib/pull/15948/
https://github.com/matplotlib/matplotlib/pull/15962/
https://github.com/matplotlib/matplotlib/pull/15965/
https://github.com/matplotlib/matplotlib/pull/15950/
https://github.com/matplotlib/matplotlib/pull/15942/
https://github.com/matplotlib/matplotlib/pull/15927/
https://github.com/matplotlib/matplotlib/pull/15944/
https://github.com/matplotlib/matplotlib/pull/15945/
https://github.com/matplotlib/matplotlib/pull/15897/
https://github.com/matplotlib/matplotlib/pull/15777/
https://github.com/matplotlib/matplotlib/pull/15929/
https://github.com/matplotlib/matplotlib/pull/15935/
https://github.com/matplotlib/matplotlib/pull/15895/
https://github.com/matplotlib/matplotlib/pull/15900/
https://github.com/matplotlib/matplotlib/pull/15892/
https://github.com/matplotlib/matplotlib/pull/15878/
https://github.com/matplotlib/matplotlib/pull/15928/
https://github.com/matplotlib/matplotlib/pull/14659/
https://github.com/matplotlib/matplotlib/pull/15919/
https://github.com/matplotlib/matplotlib/pull/15883/
https://github.com/matplotlib/matplotlib/pull/15907/
https://github.com/matplotlib/matplotlib/pull/15906/

Matplotlib, Release 3.4.3

• PR #15776: Improve doc for data kwarg.

• PR #15904: Deemphasize ACCEPTS blocks in documenting_mpl docs.

• PR #15891: Mark self.* expressions in docstrings as literal

• PR #15875: Deprecate implicit creation of colormaps in register_cmap()

• PR #15885: Cleanup text.py docstrings.

• PR #15888: Cleanup backend_bases docs.

• PR #15887: Fix AnnotationBbox docstring.

• PR #15858: Avoid some uses of len-1 tuples.

• PR #15873: Standardize parameter types in docs

• PR #15874: Cleanup backend_bases docs

• PR #15876: Deprecate case-insensitive capstyles and joinstyles.

• PR #15877: Suppress exception chaining on rc validator failure.

• PR #15880: Use True/False instead of 0/1 as booleans in backend_ps.

• PR #15827: Fix validation of linestyle in rcparams and cycler.

• PR #15850: Docstrings cleanup in matplotlib.axes

• PR #15853: np.abs -> (builtins).abs

• PR #15854: Simplify Axes3D init.

• PR #15822: More cleanup defaults in docstrings

• PR #15838: Remove some references to Py2.

• PR #15834: Optimize colors.to_rgba.

• PR #15830: Allow failure on nightly builds.

• PR #15788: Fixes pyplot xticks() and yticks() by allowing setting only the labels

• PR #15805: Improve docs on figure size

• PR #15783: Fix stepfilled histogram polygon bottom perimeter

• PR #15812: Cleanup defaults in docstrings

• PR #15804: Cleanup many docstrings.

• PR #15790: Update docs of PolyCollection

• PR #15792: Cleanup dviread docs.

• PR #15801: Cleanup some references to rcParams in docs.

• PR #15787: Cleanup Colormap.__call__.

• PR #15766: Shorten description on search page

• PR #15786: Slightly clarify the implementation of safe_masked_invalid.

554 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/15776/
https://github.com/matplotlib/matplotlib/pull/15904/
https://github.com/matplotlib/matplotlib/pull/15891/
https://github.com/matplotlib/matplotlib/pull/15875/
https://github.com/matplotlib/matplotlib/pull/15885/
https://github.com/matplotlib/matplotlib/pull/15888/
https://github.com/matplotlib/matplotlib/pull/15887/
https://github.com/matplotlib/matplotlib/pull/15858/
https://github.com/matplotlib/matplotlib/pull/15873/
https://github.com/matplotlib/matplotlib/pull/15874/
https://github.com/matplotlib/matplotlib/pull/15876/
https://github.com/matplotlib/matplotlib/pull/15877/
https://github.com/matplotlib/matplotlib/pull/15880/
https://github.com/matplotlib/matplotlib/pull/15827/
https://github.com/matplotlib/matplotlib/pull/15850/
https://github.com/matplotlib/matplotlib/pull/15853/
https://github.com/matplotlib/matplotlib/pull/15854/
https://github.com/matplotlib/matplotlib/pull/15822/
https://github.com/matplotlib/matplotlib/pull/15838/
https://github.com/matplotlib/matplotlib/pull/15834/
https://github.com/matplotlib/matplotlib/pull/15830/
https://github.com/matplotlib/matplotlib/pull/15788/
https://github.com/matplotlib/matplotlib/pull/15805/
https://github.com/matplotlib/matplotlib/pull/15783/
https://github.com/matplotlib/matplotlib/pull/15812/
https://github.com/matplotlib/matplotlib/pull/15804/
https://github.com/matplotlib/matplotlib/pull/15790/
https://github.com/matplotlib/matplotlib/pull/15792/
https://github.com/matplotlib/matplotlib/pull/15801/
https://github.com/matplotlib/matplotlib/pull/15787/
https://github.com/matplotlib/matplotlib/pull/15766/
https://github.com/matplotlib/matplotlib/pull/15786/

Matplotlib, Release 3.4.3

• PR #15767: Update badges in README.rst

• PR #15778: Fix typos and comma splices in legend guide

• PR #15775: Some pathlibification.

• PR #15772: Directly dedent the spectral parameter docs.

• PR #15765: Reword some docstrings.

• PR #15686: Simplify and unify character tracking in pdf and ps backends (with linked fonts)

• PR #9321: Add Axes method for drawing infinite lines

• PR #15749: Fix travis links in README

• PR #15673: Rely on findfont autofallback-to-default in pdf/ps backends.

• PR #15740: Small animation cleanup.

• PR #15739: ImageMagick animators now can use extra_args

• PR #15591: Remove FAQ on 'Search' -- already referenced in search file

• PR #15629: Consistently use realpaths to build XObject names

• PR #15696: Improve mathtext.fontset docs and fix :mathmpl: cache bug.

• PR #15721: Render default values in :rc: directive as literal

• PR #15720: Suppress triage_tests warning on Py3.8.

• PR #15709: Make 3d plot accept scalars as arguments.

• PR #15711: Don't explicitly list scalez kwarg in Axes3D constructor and docs.

• PR #14948: Simplify Tick and Axis initialization.

• PR #15693: Also test PySide2 on CI.

• PR #15701: Tried to solve Issue #15650: Print URL when webbrowser.open Fails

• PR #15704: Fix more broken refs.

• PR #15687: Add tooltips to HTML animation controls

• PR #15592: Offset text position

• PR #15697: Fix some broken doc refs.

• PR #15700: Parametrize some spectral tests.

• PR #15699: Fix some incorrect ValueErrors.

• PR #15698: Bump numpy dependency to >=1.15.

• PR #15694: Handle upcoming deprecation of np.float.

• PR #15691: Correctly handle high dpi in Pillow animation writer.

• PR #15676: Doc adopt nep29

• PR #15692: Update FUNDING.yml

7.1. Previous GitHub Stats 555

https://github.com/matplotlib/matplotlib/pull/15767/
https://github.com/matplotlib/matplotlib/pull/15778/
https://github.com/matplotlib/matplotlib/pull/15775/
https://github.com/matplotlib/matplotlib/pull/15772/
https://github.com/matplotlib/matplotlib/pull/15765/
https://github.com/matplotlib/matplotlib/pull/15686/
https://github.com/matplotlib/matplotlib/pull/9321/
https://github.com/matplotlib/matplotlib/pull/15749/
https://github.com/matplotlib/matplotlib/pull/15673/
https://github.com/matplotlib/matplotlib/pull/15740/
https://github.com/matplotlib/matplotlib/pull/15739/
https://github.com/matplotlib/matplotlib/pull/15591/
https://github.com/matplotlib/matplotlib/pull/15629/
https://github.com/matplotlib/matplotlib/pull/15696/
https://github.com/matplotlib/matplotlib/pull/15721/
https://github.com/matplotlib/matplotlib/pull/15720/
https://github.com/matplotlib/matplotlib/pull/15709/
https://github.com/matplotlib/matplotlib/pull/15711/
https://github.com/matplotlib/matplotlib/pull/14948/
https://github.com/matplotlib/matplotlib/pull/15693/
https://github.com/matplotlib/matplotlib/pull/15701/
https://github.com/matplotlib/matplotlib/pull/15704/
https://github.com/matplotlib/matplotlib/pull/15687/
https://github.com/matplotlib/matplotlib/pull/15592/
https://github.com/matplotlib/matplotlib/pull/15697/
https://github.com/matplotlib/matplotlib/pull/15700/
https://github.com/matplotlib/matplotlib/pull/15699/
https://github.com/matplotlib/matplotlib/pull/15698/
https://github.com/matplotlib/matplotlib/pull/15694/
https://github.com/matplotlib/matplotlib/pull/15691/
https://github.com/matplotlib/matplotlib/pull/15676/
https://github.com/matplotlib/matplotlib/pull/15692/

Matplotlib, Release 3.4.3

• PR #15645: Bump minimal numpy version to 1.12.

• PR #15646: Hide sphinx-gallery config comments

• PR #15642: Remove interpolation="nearest" from most examples.

• PR #15671: Don't mention tcl in tkagg commments anymore.

• PR #15607: Simplify tk loader.

• PR #15651: Simplify axes_pad handling in axes_grid.

• PR #15652: Remove mention of Enthought Canopy from the docs.

• PR #15655: Remove outdated license files.

• PR #15639: Simplify axes_grid.Grid/axes_grid.ImageGrid construction.

• PR #15640: Remove some commented-out code from axes_grid.

• PR #15643: Fix examples claiming matplotlib can't plot np.datetime64.

• PR #15375: Add note to hist docstring about speed

• PR #15461: Fix invalid checks for axes_class parameter in ImageGrid.

• PR #15635: Deprecate "U" mode passed to cbook.to_filehandle().

• PR #15563: In backend_pgf, directly open subprocess in utf8 mode.

• PR #15462: Simplify azure setup.

• PR #13075: Remove logic for optionally building Agg and TkAgg.

• PR #15262: Declare qt figureoptions tool in toolitems.

• PR #15292: Shorten RendererWx.get_wx_font.

• PR #15569: Allow linking against a system qhull as well.

• PR #15589: Make sure that figures are closed when check_figures_equal finishes

• PR #15465: Validate and simplify set_tick_params(which=...)

• PR #15090: Coerce MxNx1 images into MxN images for imshow

• PR #15578: BLD: set the max line length on the flake8 config

• PR #15564: Use True instead of 1 as filternorm default

• PR #15536: Add a backend kwarg to savefig.

• PR #15571: Cleanup following using Pillow as universal image reader

• PR #15476: Default to local_freetype builds.

• PR #15557: Skip failing pgf test when sfmath.sty is not present.

• PR #15555: Add pgf to list of builtin backends in docs.

• PR #15534: BLD: update pillow dependency

• PR #15427: Separate plots using #### in demo_fixed_size_axes.py

556 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/15645/
https://github.com/matplotlib/matplotlib/pull/15646/
https://github.com/matplotlib/matplotlib/pull/15642/
https://github.com/matplotlib/matplotlib/pull/15671/
https://github.com/matplotlib/matplotlib/pull/15607/
https://github.com/matplotlib/matplotlib/pull/15651/
https://github.com/matplotlib/matplotlib/pull/15652/
https://github.com/matplotlib/matplotlib/pull/15655/
https://github.com/matplotlib/matplotlib/pull/15639/
https://github.com/matplotlib/matplotlib/pull/15640/
https://github.com/matplotlib/matplotlib/pull/15643/
https://github.com/matplotlib/matplotlib/pull/15375/
https://github.com/matplotlib/matplotlib/pull/15461/
https://github.com/matplotlib/matplotlib/pull/15635/
https://github.com/matplotlib/matplotlib/pull/15563/
https://github.com/matplotlib/matplotlib/pull/15462/
https://github.com/matplotlib/matplotlib/pull/13075/
https://github.com/matplotlib/matplotlib/pull/15262/
https://github.com/matplotlib/matplotlib/pull/15292/
https://github.com/matplotlib/matplotlib/pull/15569/
https://github.com/matplotlib/matplotlib/pull/15589/
https://github.com/matplotlib/matplotlib/pull/15465/
https://github.com/matplotlib/matplotlib/pull/15090/
https://github.com/matplotlib/matplotlib/pull/15578/
https://github.com/matplotlib/matplotlib/pull/15564/
https://github.com/matplotlib/matplotlib/pull/15536/
https://github.com/matplotlib/matplotlib/pull/15571/
https://github.com/matplotlib/matplotlib/pull/15476/
https://github.com/matplotlib/matplotlib/pull/15557/
https://github.com/matplotlib/matplotlib/pull/15555/
https://github.com/matplotlib/matplotlib/pull/15534/
https://github.com/matplotlib/matplotlib/pull/15427/

Matplotlib, Release 3.4.3

• PR #15505: Cleanup axisartist tutorial.

• PR #15506: Rename locator.den to the clearer locator.nbins in mpl_toolkits.

• PR #15502: Get rid of trivial compiler warning.

• PR #15451: Ci py38

• PR #15484: Cleanup docs regarding compilers.

• PR #15467: Validate locator_params(axis=...)

• PR #15330: Add axes method for drawing infinite lines.

• PR #15482: Trivial style fixes to constrained_layout.

• PR #15418: Use correct pip/pytest on azure

• PR #15466: Update tick_params() docs

• PR #15463: Remove staticbuild option from setup.cfg.template.

• PR #15378: Don't link ft2font to zlib by default.

• PR #15270: When no gui event loop is running, propagate callback exceptions.

• PR #15447: Move testing of Py3.8 to Travis.

• PR #15431: Fix range(len()) usages

• PR #15390: Simplify implementation of vectorized date operations.

• PR #15403: Fix DeprecationWarning in nightly testing

• PR #15394: Deprecate {NonUniformImage,PcolorImage}.is_grayscale.

• PR #15400: Updated INSTALL.rst to correct install commands

• PR #13788: Autoscale for ax.arrow()

• PR #15367: Update the readme on providing API changes

• PR #15193: Switch to using pillow for png as well.

• PR #15346: vectorized calc_arrow loop in quiver

• PR #15011: Adding example for drawstyle

• PR #15371: Deprecate Colorbar.config_axis()

• PR #15361: Update next API changes to new structure

• PR #15274: NavigationToolbar2Tk: make packing optional.

• PR #15158: Change the way API changes are documented

• PR #15356: Fix broken imports.

• PR #15200: Simplify SubplotParams.update().

• PR #15210: Explicitly list allowed "unused" imports, remove the rest.

• PR #15348: Some figure and related docs cleanup

7.1. Previous GitHub Stats 557

https://github.com/matplotlib/matplotlib/pull/15505/
https://github.com/matplotlib/matplotlib/pull/15506/
https://github.com/matplotlib/matplotlib/pull/15502/
https://github.com/matplotlib/matplotlib/pull/15451/
https://github.com/matplotlib/matplotlib/pull/15484/
https://github.com/matplotlib/matplotlib/pull/15467/
https://github.com/matplotlib/matplotlib/pull/15330/
https://github.com/matplotlib/matplotlib/pull/15482/
https://github.com/matplotlib/matplotlib/pull/15418/
https://github.com/matplotlib/matplotlib/pull/15466/
https://github.com/matplotlib/matplotlib/pull/15463/
https://github.com/matplotlib/matplotlib/pull/15378/
https://github.com/matplotlib/matplotlib/pull/15270/
https://github.com/matplotlib/matplotlib/pull/15447/
https://github.com/matplotlib/matplotlib/pull/15431/
https://github.com/matplotlib/matplotlib/pull/15390/
https://github.com/matplotlib/matplotlib/pull/15403/
https://github.com/matplotlib/matplotlib/pull/15394/
https://github.com/matplotlib/matplotlib/pull/15400/
https://github.com/matplotlib/matplotlib/pull/13788/
https://github.com/matplotlib/matplotlib/pull/15367/
https://github.com/matplotlib/matplotlib/pull/15193/
https://github.com/matplotlib/matplotlib/pull/15346/
https://github.com/matplotlib/matplotlib/pull/15011/
https://github.com/matplotlib/matplotlib/pull/15371/
https://github.com/matplotlib/matplotlib/pull/15361/
https://github.com/matplotlib/matplotlib/pull/15274/
https://github.com/matplotlib/matplotlib/pull/15158/
https://github.com/matplotlib/matplotlib/pull/15356/
https://github.com/matplotlib/matplotlib/pull/15200/
https://github.com/matplotlib/matplotlib/pull/15210/
https://github.com/matplotlib/matplotlib/pull/15348/

Matplotlib, Release 3.4.3

• PR #13355: Simplify and generalize BezierSegment.

• PR #14917: ENH: box aspect for axes

• PR #14949: Use fix_minus in format_data_short.

• PR #15341: Move non-gui warning message to backend_bases.

• PR #15335: Add discourse link to readme

• PR #15293: Fixes for wx savefig dialog.

• PR #15324: Update PR guidelines

• PR #15301: Update colorbar docs

• PR #15340: Always attach a manager attribute (possibly None) on canvas.

• PR #15319: Make validate_movie_writer actually check registered writers.

• PR #10973: PGF: Replace pgfimage by includegraphics to fix import regression

• PR #15302: fix warning used by cbook.warn_deprecated()

• PR #15321: Sort missing_references.json.

• PR #15290: Unify fig.delaxes(ax) and ax.remove().

• PR #15309: Simplify sca().

• PR #15201: Autogenerate gca(), gci() from boilerplate.py.

• PR #15305: Autogenerate footer Copyright year

• PR #15294: Replace custom logging in wx by stdlib logging.

• PR #15288: More properties aliases.

• PR #15286: throw deprecation warning on empty call to fig.add_axes()

• PR #15282: Colorbar cleanup.

• PR #15250: Cleanup font_manager.

• PR #13581: Cleanup _pylab_helpers.

• PR #15273: DOC: don't use term units in transform tutorial

• PR #15263: Correctly setup comparisons in test_compare_images.

• PR #15226: Turn gtk3 pan/zoom button into togglable buttons.

• PR #14609: Simplify implementation of set_{x,y}bound.

• PR #15261: Change layout of test_triager to avoid cropping images.

• PR #15236: Dedupe SubplotSpec construction in mpl_toolkits.

• PR #14130: Add decorator to inherit keyword-only deprecations

• PR #15249: In findfont(fallback_to_default=False), throw if default font is missing

• PR #15175: Simplify pdf image output.

558 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/13355/
https://github.com/matplotlib/matplotlib/pull/14917/
https://github.com/matplotlib/matplotlib/pull/14949/
https://github.com/matplotlib/matplotlib/pull/15341/
https://github.com/matplotlib/matplotlib/pull/15335/
https://github.com/matplotlib/matplotlib/pull/15293/
https://github.com/matplotlib/matplotlib/pull/15324/
https://github.com/matplotlib/matplotlib/pull/15301/
https://github.com/matplotlib/matplotlib/pull/15340/
https://github.com/matplotlib/matplotlib/pull/15319/
https://github.com/matplotlib/matplotlib/pull/10973/
https://github.com/matplotlib/matplotlib/pull/15302/
https://github.com/matplotlib/matplotlib/pull/15321/
https://github.com/matplotlib/matplotlib/pull/15290/
https://github.com/matplotlib/matplotlib/pull/15309/
https://github.com/matplotlib/matplotlib/pull/15201/
https://github.com/matplotlib/matplotlib/pull/15305/
https://github.com/matplotlib/matplotlib/pull/15294/
https://github.com/matplotlib/matplotlib/pull/15288/
https://github.com/matplotlib/matplotlib/pull/15286/
https://github.com/matplotlib/matplotlib/pull/15282/
https://github.com/matplotlib/matplotlib/pull/15250/
https://github.com/matplotlib/matplotlib/pull/13581/
https://github.com/matplotlib/matplotlib/pull/15273/
https://github.com/matplotlib/matplotlib/pull/15263/
https://github.com/matplotlib/matplotlib/pull/15226/
https://github.com/matplotlib/matplotlib/pull/14609/
https://github.com/matplotlib/matplotlib/pull/15261/
https://github.com/matplotlib/matplotlib/pull/15236/
https://github.com/matplotlib/matplotlib/pull/14130/
https://github.com/matplotlib/matplotlib/pull/15249/
https://github.com/matplotlib/matplotlib/pull/15175/

Matplotlib, Release 3.4.3

• PR #7506: [WIP] Add Axes method for drawing infinite lines.

Issues (198):

• #16501: Setting a thetalim > 2pi gives odd results

• #15035: security exposure in the packaged jquery library

• #10375: Coordinate text wrapping in navigation toolbar

• #10720: Option to set the text color in legend to be same as the line

• #17868: plt.bar with nan input fails rendering in notebook using 3.3.0rc1

• #17773: gtk3 rubberband is invisible

• #5726: Cursor displays x, y coordinates with too much or too little precision

• #5164: Sort out qt_compat

• #17905: macosx backend warns when using the zoom method

• #17703: QuadMesh.get_clim changed behavior in 3.3.0rc1

• #17875: animation.writers['ffmpeg']" is hung when run in background.

• #17591: Single-character colors do not match long names

• #16905: if pie normalizes depends on input values

• #17829: trunk fails to build in AIX

• #17820: Regression: _reshape_2D no longer preserves the shape of lists of lists of one scalar each

• #17807: "%matplotlib notebook" Download is Noise After Interacting with Plot

• #17763: matplotlib.use('agg', force=True) does not ignore unavailable configured backend

• #17586: Surprising datetime autoscaling after passing empty data

• #17792: when using plt.tight_layout(), figure title overlaps subplot titles

• #17736: ax.set_xticklabels([]) for categorical plots is broken in 3.3.0rc1

• #17757: Plotting Hist with histtype 'stepfilled' does not respect bottom correctly

• #17744: BUG: AttributeError: 'FigureCanvasBase' object has no attribute 'print_png' in 3.3rc0

• #17730: Using backend Template and plt.tight_layout raises UnboundLocalError

• #17716: Error using "set_window_title" for canvas via backend_qt5agg

• #17681: PDF cannot be built due to Zenodo SVGs

• #17627: AttributeError: 'Figure' object has no attribute '_cachedRenderer'

• #17658: Feature request: Add advanced zoom and inspect feature to GUI for more productivity

• #17629: Use of Python deprecated APIs.

• #17670: BUG: Setting ticksize xx-small broken by #17348

• #17673: RuntimeError: latex was not able to process the following string: b'$\\mathdefault{-2}$'

7.1. Previous GitHub Stats 559

https://github.com/matplotlib/matplotlib/pull/7506/
https://github.com/matplotlib/matplotlib/issues/16501/
https://github.com/matplotlib/matplotlib/issues/15035/
https://github.com/matplotlib/matplotlib/issues/10375/
https://github.com/matplotlib/matplotlib/issues/10720/
https://github.com/matplotlib/matplotlib/issues/17868/
https://github.com/matplotlib/matplotlib/issues/17773/
https://github.com/matplotlib/matplotlib/issues/5726/
https://github.com/matplotlib/matplotlib/issues/5164/
https://github.com/matplotlib/matplotlib/issues/17905/
https://github.com/matplotlib/matplotlib/issues/17703/
https://github.com/matplotlib/matplotlib/issues/17875/
https://github.com/matplotlib/matplotlib/issues/17591/
https://github.com/matplotlib/matplotlib/issues/16905/
https://github.com/matplotlib/matplotlib/issues/17829/
https://github.com/matplotlib/matplotlib/issues/17820/
https://github.com/matplotlib/matplotlib/issues/17807/
https://github.com/matplotlib/matplotlib/issues/17763/
https://github.com/matplotlib/matplotlib/issues/17586/
https://github.com/matplotlib/matplotlib/issues/17792/
https://github.com/matplotlib/matplotlib/issues/17736/
https://github.com/matplotlib/matplotlib/issues/17757/
https://github.com/matplotlib/matplotlib/issues/17744/
https://github.com/matplotlib/matplotlib/issues/17730/
https://github.com/matplotlib/matplotlib/issues/17716/
https://github.com/matplotlib/matplotlib/issues/17681/
https://github.com/matplotlib/matplotlib/issues/17627/
https://github.com/matplotlib/matplotlib/issues/17658/
https://github.com/matplotlib/matplotlib/issues/17629/
https://github.com/matplotlib/matplotlib/issues/17670/
https://github.com/matplotlib/matplotlib/issues/17673/

Matplotlib, Release 3.4.3

• #17412: Document the dependency on the type1ec LaTeX package

• #17643: AutoDateLocator docs has a typo

• #9118: make TeXManager more user-configurable

• #11131: Make pyplot.pause not give focus to the figure window

• #17646: more conservative setattr_cm broke mplcairo

• #17634: Cannot copy LinearSegmentedColormap

• #16496: Single path optimisation for Collection w/ offsets broken

• #192: Savefig does not issue a warning on a non-existent keyword n

• #17624: _DummyAxis needs a __name__ attribute for ScalarFormatter

• #16910: Axes.imshow draws invalid color at value is 0 when max of 'X' not equal to vmax

• #17637: streamplot and sticky edges interaction

• #17633: Stackplot fails for small numbers

• #17616: waitforbuttonpress in Linux

• #17615: small bug in documentation of backend.FigureCanvasBase.start_event_loop

• #17093: Zero size figure use case

• #17608: How avoid PyQt5 to crash when I move Qslitter to the edge with a matplotlib figure in it?

• #9829: Vertices clipped for certain markers when plotting more than two points and saving as pdf

• #15815: bar3d color length bug

• #15376: ScalarFormatter.set_powerlimits documentation seems inconsistent

• #17595: Master doc builds broken

• #16482: Pyplot hlines and vlines do not use the 'lines.color' property in rcParams by default

• #16388: rethink how we display DOI svg badges

• #17172: set_aspect for 3D plots

• #16463: Jupyter "inline" backend seems to misinterpret "figsize" with Axes3D

• #17527: The markers are not hollow when I use ax.scatter() and set markers.MarkerStyle()'s fillstyle
to 'none'. My usage is wrong?

• #7491: sort out if the high-resolution ellipse code still works

• #17398: Plotting an error band along a curve

• #8550: Matplotlib chooses the wrong font for unrecognized weights

• #8788: Font issue: findfonts should differentiate between thin and regular ttf fonts

• #10194: legend is not present in the generated image if I use 'tight' for bbox_inches

• #17336: set_url without effect for instances of Line2D

560 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/17412/
https://github.com/matplotlib/matplotlib/issues/17643/
https://github.com/matplotlib/matplotlib/issues/9118/
https://github.com/matplotlib/matplotlib/issues/11131/
https://github.com/matplotlib/matplotlib/issues/17646/
https://github.com/matplotlib/matplotlib/issues/17634/
https://github.com/matplotlib/matplotlib/issues/16496/
https://github.com/matplotlib/matplotlib/issues/192/
https://github.com/matplotlib/matplotlib/issues/17624/
https://github.com/matplotlib/matplotlib/issues/16910/
https://github.com/matplotlib/matplotlib/issues/17637/
https://github.com/matplotlib/matplotlib/issues/17633/
https://github.com/matplotlib/matplotlib/issues/17616/
https://github.com/matplotlib/matplotlib/issues/17615/
https://github.com/matplotlib/matplotlib/issues/17093/
https://github.com/matplotlib/matplotlib/issues/17608/
https://github.com/matplotlib/matplotlib/issues/9829/
https://github.com/matplotlib/matplotlib/issues/15815/
https://github.com/matplotlib/matplotlib/issues/15376/
https://github.com/matplotlib/matplotlib/issues/17595/
https://github.com/matplotlib/matplotlib/issues/16482/
https://github.com/matplotlib/matplotlib/issues/16388/
https://github.com/matplotlib/matplotlib/issues/17172/
https://github.com/matplotlib/matplotlib/issues/16463/
https://github.com/matplotlib/matplotlib/issues/17527/
https://github.com/matplotlib/matplotlib/issues/7491/
https://github.com/matplotlib/matplotlib/issues/17398/
https://github.com/matplotlib/matplotlib/issues/8550/
https://github.com/matplotlib/matplotlib/issues/8788/
https://github.com/matplotlib/matplotlib/issues/10194/
https://github.com/matplotlib/matplotlib/issues/17336/

Matplotlib, Release 3.4.3

• #9695: set_url() without effect in the plot for instances of Tick

• #17192: How to change the thickness of the marker "x" when using scatter?

• #17507: pyplot.savefig() throwing warning suggesting a bug (possibly in figManger)

• #17502: dict unpacking broken for .plot in 3.2

• #15546: plt.imshow: clip_on=False has no effect

• #17023: DOC: Tutorial/Sample plots should use same fig/axis creation method

• #7537: Conflict between different AGG static libraries in a same binary

• #16836: Dropping support for PyQt4; preparing support for PyQt6.

• #17455: LightSource.shade fails on a masked array

• #16353: BUG: VisibleDeprecationWarning in boxplot

• #11820: Compressed Triangulation Masking in CubicTriInterpolator

• #11823: Animation Examples

• #15410: Change in OSX Catalina makes matplotlib + multiprocessing crash

• #17467: Bug Report: saved Figure ignores figure.facecolor

• #17343: Regression in add_subplot..

• #7093: ordering issues between set_xmargin and set_xscale

• #13971: Unnecessary drawing with NbAgg

• #17432: Scatter accepts marker=MarkerStyle(), but plot does not

• #15675: Boxplot line color with style dark_background should be bright

• #5962: No output from pyplot on cygwin64 python3 virtualenv

• #17393: TexManager.get_rgba fails

• #5830: Incorrect overlap of markers in scatter3D

• #11937: Limiting ticks on colorbar axes falsify tick labels.

• #17354: Converter detection fails for inkscape if on headless system without DISPLAY

• #17352: Zoom In-Out not behaving as expected in QT backend example

• #15409: Datetime plot fails with 'Agg' backend in interactive mode

• #14155: Adding GridSpec.subplots?

• #16583: matplotlibrc validates some parameters wrongly

• #16946: Pick_event on AnnotationBbox fires at wrong position

• #15131: set_size_inches doesn't resize window on macosx backend

• #7619: Figure background colors

• #15899: Describe possible kwargs that may be input into a function

7.1. Previous GitHub Stats 561

https://github.com/matplotlib/matplotlib/issues/9695/
https://github.com/matplotlib/matplotlib/issues/17192/
https://github.com/matplotlib/matplotlib/issues/17507/
https://github.com/matplotlib/matplotlib/issues/17502/
https://github.com/matplotlib/matplotlib/issues/15546/
https://github.com/matplotlib/matplotlib/issues/17023/
https://github.com/matplotlib/matplotlib/issues/7537/
https://github.com/matplotlib/matplotlib/issues/16836/
https://github.com/matplotlib/matplotlib/issues/17455/
https://github.com/matplotlib/matplotlib/issues/16353/
https://github.com/matplotlib/matplotlib/issues/11820/
https://github.com/matplotlib/matplotlib/issues/11823/
https://github.com/matplotlib/matplotlib/issues/15410/
https://github.com/matplotlib/matplotlib/issues/17467/
https://github.com/matplotlib/matplotlib/issues/17343/
https://github.com/matplotlib/matplotlib/issues/7093/
https://github.com/matplotlib/matplotlib/issues/13971/
https://github.com/matplotlib/matplotlib/issues/17432/
https://github.com/matplotlib/matplotlib/issues/15675/
https://github.com/matplotlib/matplotlib/issues/5962/
https://github.com/matplotlib/matplotlib/issues/17393/
https://github.com/matplotlib/matplotlib/issues/5830/
https://github.com/matplotlib/matplotlib/issues/11937/
https://github.com/matplotlib/matplotlib/issues/17354/
https://github.com/matplotlib/matplotlib/issues/17352/
https://github.com/matplotlib/matplotlib/issues/15409/
https://github.com/matplotlib/matplotlib/issues/14155/
https://github.com/matplotlib/matplotlib/issues/16583/
https://github.com/matplotlib/matplotlib/issues/16946/
https://github.com/matplotlib/matplotlib/issues/15131/
https://github.com/matplotlib/matplotlib/issues/7619/
https://github.com/matplotlib/matplotlib/issues/15899/

Matplotlib, Release 3.4.3

• #17304: constrained-layout gives wrong results when explicitly equal width ratios are set

• #17295: DOC: https://matplotlib.org/api/_as_gen/matplotlib.quiver.Quiver.html

• #17294: DOC: matplotlib.axes.Axes.annotate.html

• #17290: backend_svg fails with dashed line style

• #16677: tmp_config_or_cache_dir atexit cleanup fails after forks()

• #15091: Turbo color map

• #7372: Moving get_ax and do_event to testing

• #15225: Show offset text on subplots after sharing axis

• #7138: misplaced spines in dates plot

• #17243: Misleading error message in _parse_scatter_color_args

• #16461: Hexbin if singular and mincnt used

• #14596: forward port jquery removal from ipympl

• #17217: Transform operators are not publicly documented....

• #2253: matplotlib makes python lose focus

• #7184: margins does not handle bézier curves

• #16830: _path.get_extents does not correctly handle bezier curves

• #17176: Print figure using PS backend is needlessly slow

• #17141: flake8-docstrings does not check all of our requirements

• #16567: Let legend get the handles from the provided objects if not specified explicitly.

• #16805: Titles cannot be padded to negative numbers anymore.

• #17114: add_axes shows deprecation warning when called with only kwargs

• #16885: Change return type get_{x,y}ticklabels to plain list

• #17044: widgets.TextBox continuously creates new text objects and linecollection objects.

• #17066: documentation of animation contains non-working code example

• #16588: Rename next_api_changes to api_changes_3.x (whatever number makes sense)

• #17015: get_major_ticks docs missing return type

• #16976: Thin line color distortion on large scale

• #16934: gtk3 window immediately resizes down to zero-height upon showing up.

• #16941: test_determinism_check is failing (sometimes)

• #16982: pyplot.rgrids don't do anything

• #16952: How to solve an error of "ValueError: Key backend: Unrecognized backend string '"agg"'

• #15272: Axes.violinplot has small issue in using pandas.DataFrame without index 0.

562 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/17304/
https://github.com/matplotlib/matplotlib/issues/17295/
https://matplotlib.org/api/_as_gen/matplotlib.quiver.Quiver.html
https://github.com/matplotlib/matplotlib/issues/17294/
https://github.com/matplotlib/matplotlib/issues/17290/
https://github.com/matplotlib/matplotlib/issues/16677/
https://github.com/matplotlib/matplotlib/issues/15091/
https://github.com/matplotlib/matplotlib/issues/7372/
https://github.com/matplotlib/matplotlib/issues/15225/
https://github.com/matplotlib/matplotlib/issues/7138/
https://github.com/matplotlib/matplotlib/issues/17243/
https://github.com/matplotlib/matplotlib/issues/16461/
https://github.com/matplotlib/matplotlib/issues/14596/
https://github.com/matplotlib/matplotlib/issues/17217/
https://github.com/matplotlib/matplotlib/issues/2253/
https://github.com/matplotlib/matplotlib/issues/7184/
https://github.com/matplotlib/matplotlib/issues/16830/
https://github.com/matplotlib/matplotlib/issues/17176/
https://github.com/matplotlib/matplotlib/issues/17141/
https://github.com/matplotlib/matplotlib/issues/16567/
https://github.com/matplotlib/matplotlib/issues/16805/
https://github.com/matplotlib/matplotlib/issues/17114/
https://github.com/matplotlib/matplotlib/issues/16885/
https://github.com/matplotlib/matplotlib/issues/17044/
https://github.com/matplotlib/matplotlib/issues/17066/
https://github.com/matplotlib/matplotlib/issues/16588/
https://github.com/matplotlib/matplotlib/issues/17015/
https://github.com/matplotlib/matplotlib/issues/16976/
https://github.com/matplotlib/matplotlib/issues/16934/
https://github.com/matplotlib/matplotlib/issues/16941/
https://github.com/matplotlib/matplotlib/issues/16982/
https://github.com/matplotlib/matplotlib/issues/16952/
https://github.com/matplotlib/matplotlib/issues/15272/

Matplotlib, Release 3.4.3

• #16926: tk window immediately resizes down to zero-height upon showing up.

• #16919: wx backends don't send close_event if window is closed via "q" keypress

• #16854: small typo in the documentation

• #16895: offset text still visible with ImageGrid axis "L"

• #12712: Autoscale does not work for ax.arrow()

• #14208: shift + w does not close all figures (has no effect)

• #15745: Failed to add annotate to figure

• #11432: Pressing the "1" key kills the zoom/pan tool

• #13799: BUG: incorrect error bar colors when NaN values are present

• #16185: hist demo appears to incorrectly mention normed and something odd about density as
well.

• #15203: Closing figures is done by number

• #16016: Better argument checking of subplot definition in add_subplot()

• #15980: Is the reset of the colorbar's edgecolor when updating the corresponding image clim wanted
behaviour?

• #16718: Float figure DPI

• #16498: long string of format_coord in osx backend

• #8405: BUG: PDF export seems wrong with dash sequences that include a None offset

• #8619: Feature request: allowmathtext fallback font other than ComputerModern for custommathtext
setup

• #14996: format error saving eps figure using custom linestyle

• #16493: Example/tutorials warn due to new pcolormesh shading

• #16022: Cleanup Artist.draw() signatures

• #16389: “Size” ignored if placed before fontproperties

• #16687: Creating a figure of size (0, 0) raises an error

• #12729: Docs for contour levels argument is incorrect

• #16593: specifying ecolor in errobar turns off cycling

• #15621: secondary_xaxis doesn't seem to use formatters

• #16116: travis36minver.txt needs an update

• #16546: Problem with eventplot - error message claims events & lineoffsets are unequal sizes

• #16462: Allow wedges of polar plots to include theta = 0.

• #15142: pyplot.annotate() API deprecation

• #16479: font-stretch property missing in svg export

7.1. Previous GitHub Stats 563

https://github.com/matplotlib/matplotlib/issues/16926/
https://github.com/matplotlib/matplotlib/issues/16919/
https://github.com/matplotlib/matplotlib/issues/16854/
https://github.com/matplotlib/matplotlib/issues/16895/
https://github.com/matplotlib/matplotlib/issues/12712/
https://github.com/matplotlib/matplotlib/issues/14208/
https://github.com/matplotlib/matplotlib/issues/15745/
https://github.com/matplotlib/matplotlib/issues/11432/
https://github.com/matplotlib/matplotlib/issues/13799/
https://github.com/matplotlib/matplotlib/issues/16185/
https://github.com/matplotlib/matplotlib/issues/15203/
https://github.com/matplotlib/matplotlib/issues/16016/
https://github.com/matplotlib/matplotlib/issues/15980/
https://github.com/matplotlib/matplotlib/issues/16718/
https://github.com/matplotlib/matplotlib/issues/16498/
https://github.com/matplotlib/matplotlib/issues/8405/
https://github.com/matplotlib/matplotlib/issues/8619/
https://github.com/matplotlib/matplotlib/issues/14996/
https://github.com/matplotlib/matplotlib/issues/16493/
https://github.com/matplotlib/matplotlib/issues/16022/
https://github.com/matplotlib/matplotlib/issues/16389/
https://github.com/matplotlib/matplotlib/issues/16687/
https://github.com/matplotlib/matplotlib/issues/12729/
https://github.com/matplotlib/matplotlib/issues/16593/
https://github.com/matplotlib/matplotlib/issues/15621/
https://github.com/matplotlib/matplotlib/issues/16116/
https://github.com/matplotlib/matplotlib/issues/16546/
https://github.com/matplotlib/matplotlib/issues/16462/
https://github.com/matplotlib/matplotlib/issues/15142/
https://github.com/matplotlib/matplotlib/issues/16479/

Matplotlib, Release 3.4.3

• #14304: 'NSWindow drag regions should only be invalidated on the Main Thread!' - macos/python

• #12085: Tcl_AsyncDelete: async handler deleted by the wrong thread

• #14669: cm.ScalarMappable should fail early when norm input is wrong

• #16468: incorrect cbar minor ticks for extend regions when x/ytick.minor.visible is True

• #16243: windows builds: devenv freetype /update appears not to have an effect

• #11525: Axes3D scatter plot for Numpy arrays in F-order does not give correct z-values

• #8894: mplot3d projection results in non-orthogonal axes

• #1104: Resizing a GUI window with Axes3D

• #16371: Incomplete documentation in axes_grid1

• #6323: Vertical alignment of tick labels with usetex=True

• #7957: clabel not respecting zorder parameter

• #16252: axes.spy plotting function doesn't respect origin='lower' kwarg when marker is not None

• #16299: The interactive polar plot animation's axis label won't scale.

• #15182: More tests ConciseDateFormatter needed

• #16140: Unclear Documentation for get_xticklabels

• #16147: pp.hist parmeter 'density' does not scale data appropriately

• #16069: matplotlib glitch when rotating interactively a 3d animation

• #14603: Scatterplot: should vmin/vmax be ignored when a norm is specified?

• #15730: Setting lines.marker = s in matplotlibrc also sets markers in boxplots

• #11178: home/back/forward buttons do nothing in 3d mode

• #14520: pylab with wx backend not exiting cleanly

• #15964: Guard plt.subplot kwargs a bit better?

• #15404: Add python 3.8 tests

• #15773: Warning:... GLib.source_remove(self._idle_draw_id) when using plt.savefig()

• #15923: pie takes negative values

• #10317: Setting plt.rc('text', usetex=True) after ticker.ScalarFormatter(useMathText=True) causes
Error

• #15825: Customised dashed linstyle in matplotlib.cycler throws ValueError when using in
Axes.set_prop_cycle

• #9792: Error with linestyles rcParams entries under the form (on, off, ...) and a style context manager

• #15782: Invalid polygon in stepfilled histogram when bottom is set

• #15628: Invalid unicode characters in PDF when font is a symlink

• #8577: mplot3D scalar arguments for plot function

564 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/14304/
https://github.com/matplotlib/matplotlib/issues/12085/
https://github.com/matplotlib/matplotlib/issues/14669/
https://github.com/matplotlib/matplotlib/issues/16468/
https://github.com/matplotlib/matplotlib/issues/16243/
https://github.com/matplotlib/matplotlib/issues/11525/
https://github.com/matplotlib/matplotlib/issues/8894/
https://github.com/matplotlib/matplotlib/issues/1104/
https://github.com/matplotlib/matplotlib/issues/16371/
https://github.com/matplotlib/matplotlib/issues/6323/
https://github.com/matplotlib/matplotlib/issues/7957/
https://github.com/matplotlib/matplotlib/issues/16252/
https://github.com/matplotlib/matplotlib/issues/16299/
https://github.com/matplotlib/matplotlib/issues/15182/
https://github.com/matplotlib/matplotlib/issues/16140/
https://github.com/matplotlib/matplotlib/issues/16147/
https://github.com/matplotlib/matplotlib/issues/16069/
https://github.com/matplotlib/matplotlib/issues/14603/
https://github.com/matplotlib/matplotlib/issues/15730/
https://github.com/matplotlib/matplotlib/issues/11178/
https://github.com/matplotlib/matplotlib/issues/14520/
https://github.com/matplotlib/matplotlib/issues/15964/
https://github.com/matplotlib/matplotlib/issues/15404/
https://github.com/matplotlib/matplotlib/issues/15773/
https://github.com/matplotlib/matplotlib/issues/15923/
https://github.com/matplotlib/matplotlib/issues/10317/
https://github.com/matplotlib/matplotlib/issues/15825/
https://github.com/matplotlib/matplotlib/issues/9792/
https://github.com/matplotlib/matplotlib/issues/15782/
https://github.com/matplotlib/matplotlib/issues/15628/
https://github.com/matplotlib/matplotlib/issues/8577/

Matplotlib, Release 3.4.3

• #15650: URL is not shown when webagg failed to open the browser.

• #5238: the offset of the scientific notation in xaxis stays at bottom when axis is set to top

• #15678: Error at save animation with pillow

• #15079: check_figures_equal decorator reuses figures if called multiple times inside a single test.

• #15089: Coerce MxNx1 images into MxN images for imshow

• #5253: abline() - for drawing arbitrary lines on a plot, given specifications.

• #15165: Switch to requiring Pillow rather than having our own png wrapper?

• #15280: Add pull request checklist to Reviewers Guidlines

• #15289: cbook.warn_deprecated() should warn with a MatplotlibDeprecationWarning not a User-
Warning

• #15285: DOC: make copy right year auto-update

• #15059: fig.add_axes() with no arguments silently does nothing

• #14546: Setting lines.markeredgecolor in rcParams affects the ticks' mark color too

7.1.9 GitHub Stats for Matplotlib 3.2.2

GitHub stats for 2020/03/18 - 2020/06/17 (tag: v3.2.1)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 34 issues and merged 92 pull requests. The full list can be seen on GitHub

The following 19 authors contributed 183 commits.

• Antony Lee

• Ben Root

• Clemens Brunner

• David Stansby

• Elliott Sales de Andrade

• Eric Firing

• Eric Wieser

• hannah

• Jody Klymak

• Lawrence D'Anna

• Leo Singer

• Luke Davis

• Matt Newville

7.1. Previous GitHub Stats 565

https://github.com/matplotlib/matplotlib/issues/15650/
https://github.com/matplotlib/matplotlib/issues/5238/
https://github.com/matplotlib/matplotlib/issues/15678/
https://github.com/matplotlib/matplotlib/issues/15079/
https://github.com/matplotlib/matplotlib/issues/15089/
https://github.com/matplotlib/matplotlib/issues/5253/
https://github.com/matplotlib/matplotlib/issues/15165/
https://github.com/matplotlib/matplotlib/issues/15280/
https://github.com/matplotlib/matplotlib/issues/15289/
https://github.com/matplotlib/matplotlib/issues/15285/
https://github.com/matplotlib/matplotlib/issues/15059/
https://github.com/matplotlib/matplotlib/issues/14546/
https://github.com/matplotlib/matplotlib/milestone/52?closed=1

Matplotlib, Release 3.4.3

• Max

• Ryan May

• Sidharth Bansal

• Stefan Mitic

• Thomas A Caswell

• Tim Hoffmann

GitHub issues and pull requests:

Pull Requests (92):

• PR #17655: Auto backport of pr 17564 on v3.2.x

• PR #17564: FIX: correctly handle large arcs

• PR #17641: Qt backports

• PR #17640: More qt fractional DPI fixes

• PR #17638: V3.2.1 doc

• PR #15656: Support fractional HiDpi scaling with Qt backends

• PR #17600: FIX: work with PyQt 5.15

• PR #17598: DOC: remove banner

• PR #17618: Doc event loop

• PR #17614: DOC: Remove duplicated line.

• PR #17611: Backport #17606 to v3.2.x

• PR #17609: Backport PR #17602: FIX: propagate _is_saving state when changing can…

• PR #17606: Move codecov.yml to .github.

• PR #17602: FIX: propagate _is_saving state when changing canvases

• PR #17605: Backport PR #17560: FIX: do not let no-op monkey patches to renderer …

• PR #17601: Backport PR #16948 on branch v3.2.x (solution: All subclasses of LocationEvent could
be used in cbook.callbacks before being fully initialized - issue 15139)

• PR #17560: FIX: do not let no-op monkey patches to renderer leak out

• PR #16948: solution: All subclasses of LocationEvent could be used in cbook.callbacks before being
fully initialized - issue 15139

• PR #17588: Backport PR #17565: FIX: support Qt 5.15

• PR #17593: Backport PR #17587 on branch v3.2.x (Add a docstring to toolkit's BezierPath.__init__.)

• PR #17587: Add a docstring to toolkit's BezierPath.__init__.

• PR #17565: FIX: support Qt 5.15

• PR #17562: Backport PR #17470 on branch v3.2.x (FIX: add guardrails for too big tk figures)

566 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/17655/
https://github.com/matplotlib/matplotlib/pull/17564/
https://github.com/matplotlib/matplotlib/pull/17641/
https://github.com/matplotlib/matplotlib/pull/17640/
https://github.com/matplotlib/matplotlib/pull/17638/
https://github.com/matplotlib/matplotlib/pull/15656/
https://github.com/matplotlib/matplotlib/pull/17600/
https://github.com/matplotlib/matplotlib/pull/17598/
https://github.com/matplotlib/matplotlib/pull/17618/
https://github.com/matplotlib/matplotlib/pull/17614/
https://github.com/matplotlib/matplotlib/pull/17611/
https://github.com/matplotlib/matplotlib/pull/17609/
https://github.com/matplotlib/matplotlib/pull/17606/
https://github.com/matplotlib/matplotlib/pull/17602/
https://github.com/matplotlib/matplotlib/pull/17605/
https://github.com/matplotlib/matplotlib/pull/17601/
https://github.com/matplotlib/matplotlib/pull/17560/
https://github.com/matplotlib/matplotlib/pull/16948/
https://github.com/matplotlib/matplotlib/pull/17588/
https://github.com/matplotlib/matplotlib/pull/17593/
https://github.com/matplotlib/matplotlib/pull/17587/
https://github.com/matplotlib/matplotlib/pull/17565/
https://github.com/matplotlib/matplotlib/pull/17562/

Matplotlib, Release 3.4.3

• PR #17470: FIX: add guardrails for too big tk figures

• PR #17553: Backport PR #17552 on branch v3.2.x (ci: Add xcb libraries that were removed from
PyQt5.)

• PR #17552: ci: Add xcb libraries that were removed from PyQt5.

• PR #17533: Backport PR #17408 on branch v3.2.x

• PR #17408: FIX: cancel pending autoscale on manually setting limits

• PR #17501: Backport PR #17499: Fix scatter singlecolor

• PR #17499: Fix scatter singlecolor

• PR #17468: v3.2.x: Fix leaks in C++ code

• PR #17457: Backport PR #17391 on branch v3.2.x

• PR #17391: tk/wx: Fix saving after the window is closed

• PR #17435: Backport PR #17422: Unstale viewlims before draw()ing polar axes.

• PR #17422: Unstale viewlims before draw()ing polar axes.

• PR #17407: FIX: don't try to use non-standard functions on standard status bars

• PR #17346: Backport #17084 and #17210 to v3.2.x

• PR #17084: Fix macosx segfault

• PR #17300: Backport PR #17263 on branch v3.2.x (you can't call CGDataProviderCreateWithData
on a stack pointer)

• PR #17263: you can't call CGDataProviderCreateWithData on a stack pointer

• PR #17272: Backport PR #17271 on branch v3.2.x (MNT: do not try to import
xml.etree.cElementTree)

• PR #17271: MNT: do not try to import xml.etree.cElementTree

• PR #17268: Backport PR #17261 on branch v3.2.x (avoid calling wx.Bitmap() if width or height is
zero)

• PR #17261: avoid calling wx.Bitmap() if width or height is zero

• PR #17257: Backport eps work

• PR #17255: Fix eps + usetex combo.

• PR #17254: Backport PR #17252 on branch v3.2.x (Fix bug where matplotlib.style('default') resets
the backend)

• PR #17252: Fix bug where matplotlib.style('default') resets the backend

• PR #17250: Merge pull request #17206 from jklymak/fix-bypass-inverse-collection

• PR #17206: FIX: bypass inverse in collection

• PR #17241: Backport PR #17240 on branch v3.2.x (CI: Download wx wheels for the correct Ubuntu
version.)

7.1. Previous GitHub Stats 567

https://github.com/matplotlib/matplotlib/pull/17470/
https://github.com/matplotlib/matplotlib/pull/17553/
https://github.com/matplotlib/matplotlib/pull/17552/
https://github.com/matplotlib/matplotlib/pull/17533/
https://github.com/matplotlib/matplotlib/pull/17408/
https://github.com/matplotlib/matplotlib/pull/17501/
https://github.com/matplotlib/matplotlib/pull/17499/
https://github.com/matplotlib/matplotlib/pull/17468/
https://github.com/matplotlib/matplotlib/pull/17457/
https://github.com/matplotlib/matplotlib/pull/17391/
https://github.com/matplotlib/matplotlib/pull/17435/
https://github.com/matplotlib/matplotlib/pull/17422/
https://github.com/matplotlib/matplotlib/pull/17407/
https://github.com/matplotlib/matplotlib/pull/17346/
https://github.com/matplotlib/matplotlib/pull/17084/
https://github.com/matplotlib/matplotlib/pull/17300/
https://github.com/matplotlib/matplotlib/pull/17263/
https://github.com/matplotlib/matplotlib/pull/17272/
https://github.com/matplotlib/matplotlib/pull/17271/
https://github.com/matplotlib/matplotlib/pull/17268/
https://github.com/matplotlib/matplotlib/pull/17261/
https://github.com/matplotlib/matplotlib/pull/17257/
https://github.com/matplotlib/matplotlib/pull/17255/
https://github.com/matplotlib/matplotlib/pull/17254/
https://github.com/matplotlib/matplotlib/pull/17252/
https://github.com/matplotlib/matplotlib/pull/17250/
https://github.com/matplotlib/matplotlib/pull/17206/
https://github.com/matplotlib/matplotlib/pull/17241/

Matplotlib, Release 3.4.3

• PR #17240: CI: Download wx wheels for the correct Ubuntu version.

• PR #17210: Fix missing attribute in _SVGConverter.

• PR #17186: Backport PR #17131 on branch v3.2.x

• PR #17188: Backport PR #16958: MAINT: Replace uses of tostring with tobytes

• PR #17187: Backport PR #17076: Fix SyntaxErrors when running setup in old Python

• PR #16913: Fix use of psfrags in ps backend + usetex.

• PR #16476: Fix baseline alignment when using usetex.

• PR #17131: BUG: Fix formatting error in GridSpec.__repr__

• PR #17132: Backport PR #17126 on branch v3.2.x (Remove Python2/3 info box)

• PR #17126: Remove Python2/3 info box

• PR #17076: Fix SyntaxErrors when running setup in old Python

• PR #17071: Backport PR #17065 on branch v3.2.x (Fix macOS CI test failure)

• PR #17065: Fix macOS CI test failure

• PR #17051: Backport PR #17045: Fix missing-references.json.

• PR #17045: Fix missing-references.json.

• PR #17020: Merge pull request #17017 from jklymak/fix-blended-transform

• PR #17017: FIX: force blended transforms with data to be in data space

• PR #16989: Backport PR #16980 on branch v3.2.x (Correctly disable more drawing methods in
tight_bboxing renderer.)

• PR #16980: Correctly disable more drawing methods in tight_bboxing renderer.

• PR #16974: Backport PR #16940 on branch v3.2.x (DOC/FIX: clarify the docs for
check_figures_equal)

• PR #16979: Backport PR #16970 on branch v3.2.x (tk: Don't resize toolbar during resize event.)

• PR #16970: tk: Don't resize toolbar during resize event.

• PR #16940: DOC/FIX: clarify the docs for check_figures_equal

• PR #16969: Backport PR #16966 on branch v3.2.x (Fix animation writer fallback.)

• PR #16966: Fix animation writer fallback.

• PR #16958: MAINT: Replace uses of tostring with tobytes

• PR #16950: Backport PR #16949 on branch v3.2.x (TST: Don't modify actual pyplot file for boilerplate
test.)

• PR #16949: TST: Don't modify actual pyplot file for boilerplate test.

• PR #16932: Backport PR #16929 on branch v3.2.x (tk: Resize the canvas, not the figure.)

• PR #16929: tk: Resize the canvas, not the figure.

568 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/17240/
https://github.com/matplotlib/matplotlib/pull/17210/
https://github.com/matplotlib/matplotlib/pull/17186/
https://github.com/matplotlib/matplotlib/pull/17188/
https://github.com/matplotlib/matplotlib/pull/17187/
https://github.com/matplotlib/matplotlib/pull/16913/
https://github.com/matplotlib/matplotlib/pull/16476/
https://github.com/matplotlib/matplotlib/pull/17131/
https://github.com/matplotlib/matplotlib/pull/17132/
https://github.com/matplotlib/matplotlib/pull/17126/
https://github.com/matplotlib/matplotlib/pull/17076/
https://github.com/matplotlib/matplotlib/pull/17071/
https://github.com/matplotlib/matplotlib/pull/17065/
https://github.com/matplotlib/matplotlib/pull/17051/
https://github.com/matplotlib/matplotlib/pull/17045/
https://github.com/matplotlib/matplotlib/pull/17020/
https://github.com/matplotlib/matplotlib/pull/17017/
https://github.com/matplotlib/matplotlib/pull/16989/
https://github.com/matplotlib/matplotlib/pull/16980/
https://github.com/matplotlib/matplotlib/pull/16974/
https://github.com/matplotlib/matplotlib/pull/16979/
https://github.com/matplotlib/matplotlib/pull/16970/
https://github.com/matplotlib/matplotlib/pull/16940/
https://github.com/matplotlib/matplotlib/pull/16969/
https://github.com/matplotlib/matplotlib/pull/16966/
https://github.com/matplotlib/matplotlib/pull/16958/
https://github.com/matplotlib/matplotlib/pull/16950/
https://github.com/matplotlib/matplotlib/pull/16949/
https://github.com/matplotlib/matplotlib/pull/16932/
https://github.com/matplotlib/matplotlib/pull/16929/

Matplotlib, Release 3.4.3

• PR #16880: Backport PR #16870: Unbreak CI by xfailing wxAgg test on macOS

• PR #16870: Unbreak CI by xfailing wxAgg test on macOS

• PR #16869: Backport PR #16867 on branch v3.2.x (BLD: Auto-trigger macOS/Linux wheels on tags.)

• PR #16867: BLD: Auto-trigger macOS/Linux wheels on tags.

• PR #16852: Backport PR #16851 on branch v3.2.x (DOC: Fix docstring of Axes.secondary_yaxis.)

• PR #16855: Fix typo in deprecation warning

• PR #16851: DOC: Fix docstring of Axes.secondary_yaxis.

• PR #16842: Backport PR #16835 on branch v3.2.x (Don't forget to export isdeleted on Qt4.)

• PR #16835: Don't forget to export isdeleted on Qt4.

• PR #15695: Define mathdefault as a noop in the usetex preamble.

• PR #14694: Vectorize Arc.draw.

Issues (34):

• #17547: Arcs with large radii in small

• #17440: Low quality window plots on hidpi display

• #17104: input() caused _tkinter.TclError: invalid command name XXX after plot.close()

• #17613: Matplotlib.pdf duplication

• #15139: All subclasses of LocationEvent could be used in cbook.callbacks before being fully initial-
ized

• #17004: Output regression in 3.2 that affects SymPy's plotting

• #17599: Saving issue with pdf backend

• #17542: Matplotlib 3.2.1 savefig empty image when fig size matches data size exactly

• #17594: Cannot use Qt4Agg backend in mpl 3.2.1

• #17460: set_size_inches with a width over 14090 crashes Xorg

• #17331: Surprising/changed axis limit (autoscale) behavior

• #17423: Scatter produce multiple colors for a single RGB/RGBA input

• #17385: Matplotlib memory leaks when save figure in a file with qt5 backend

• #15474: Memory leak with log scale in pcolorfast, pcolormesh, imshow ...

• #17388: savefig error: tkinter.TclError: invalid command name "."

• #16909: plot save and plot show

• #17085: set_function not working properly in backend_wx

• #17418: Issue rendering polar plot (agg backend?) with rorigin set

• #17061: Segmentation fault with macosx backend

7.1. Previous GitHub Stats 569

https://github.com/matplotlib/matplotlib/pull/16880/
https://github.com/matplotlib/matplotlib/pull/16870/
https://github.com/matplotlib/matplotlib/pull/16869/
https://github.com/matplotlib/matplotlib/pull/16867/
https://github.com/matplotlib/matplotlib/pull/16852/
https://github.com/matplotlib/matplotlib/pull/16855/
https://github.com/matplotlib/matplotlib/pull/16851/
https://github.com/matplotlib/matplotlib/pull/16842/
https://github.com/matplotlib/matplotlib/pull/16835/
https://github.com/matplotlib/matplotlib/pull/15695/
https://github.com/matplotlib/matplotlib/pull/14694/
https://github.com/matplotlib/matplotlib/issues/17547/
https://github.com/matplotlib/matplotlib/issues/17440/
https://github.com/matplotlib/matplotlib/issues/17104/
https://github.com/matplotlib/matplotlib/issues/17613/
https://github.com/matplotlib/matplotlib/issues/15139/
https://github.com/matplotlib/matplotlib/issues/17004/
https://github.com/matplotlib/matplotlib/issues/17599/
https://github.com/matplotlib/matplotlib/issues/17542/
https://github.com/matplotlib/matplotlib/issues/17594/
https://github.com/matplotlib/matplotlib/issues/17460/
https://github.com/matplotlib/matplotlib/issues/17331/
https://github.com/matplotlib/matplotlib/issues/17423/
https://github.com/matplotlib/matplotlib/issues/17385/
https://github.com/matplotlib/matplotlib/issues/15474/
https://github.com/matplotlib/matplotlib/issues/17388/
https://github.com/matplotlib/matplotlib/issues/16909/
https://github.com/matplotlib/matplotlib/issues/17085/
https://github.com/matplotlib/matplotlib/issues/17418/
https://github.com/matplotlib/matplotlib/issues/17061/

Matplotlib, Release 3.4.3

• #17253: EPS + usetex is broken

• #16700: Deprecation warnings from stylelib

• #17203: Subplots using bad axis limits in 3.2

• #16898: EPS and usetex give blank output

• #16409: Confusing error on fully commented-out usetex strings

• #17075: Installation error downloading jquery on python3 on Ubuntu

• #17037: Travis Failing in many PRs

• #17033: Using a TextBox in current master produces a seemingly unrelated warning.

• #17016: Issues with autoscaling and transforms with 3.2+

• #16978: savefig("myplot.svgz", bbox_inches="tight") fails

• #16965: FuncAnimation.save throws TypeError

• #16916: check_figures_equal regression from 3.2.0 to 3.2.1

• #10566: blocking UI functions cause figure size to change

• #10083: Wrong figure height after set_size_inches within event handler

• #16834: Error importing FigureCanvas

7.1.10 GitHub Stats for Matplotlib 3.2.1

GitHub stats for 2020/03/03 - 2020/03/17 (tag: v3.2.0)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 11 issues and merged 52 pull requests. The full list can be seen on GitHub and on GitHub

The following 12 authors contributed 154 commits.

• Amy Roberts

• Antony Lee

• Elliott Sales de Andrade

• hannah

• Hugo van Kemenade

• Jody Klymak

• Kyle Sunden

• MarcoGorelli

• Maximilian Nöthe

• Sandro Tosi

• Thomas A Caswell

570 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/17253/
https://github.com/matplotlib/matplotlib/issues/16700/
https://github.com/matplotlib/matplotlib/issues/17203/
https://github.com/matplotlib/matplotlib/issues/16898/
https://github.com/matplotlib/matplotlib/issues/16409/
https://github.com/matplotlib/matplotlib/issues/17075/
https://github.com/matplotlib/matplotlib/issues/17037/
https://github.com/matplotlib/matplotlib/issues/17033/
https://github.com/matplotlib/matplotlib/issues/17016/
https://github.com/matplotlib/matplotlib/issues/16978/
https://github.com/matplotlib/matplotlib/issues/16965/
https://github.com/matplotlib/matplotlib/issues/16916/
https://github.com/matplotlib/matplotlib/issues/10566/
https://github.com/matplotlib/matplotlib/issues/10083/
https://github.com/matplotlib/matplotlib/issues/16834/
https://github.com/matplotlib/matplotlib/milestone/49?closed=1
https://github.com/matplotlib/matplotlib/milestone/51?closed=1

Matplotlib, Release 3.4.3

• Tim Hoffmann

GitHub issues and pull requests:

Pull Requests (52):

• PR #15199: MNT/TST: generalize check_figures_equal to work with pytest.marks

• PR #15685: Avoid a RuntimeError at animation shutdown with PySide2.

• PR #15969: Restart pgf's latex instance after bad latex inputs.

• PR #16640: ci: Fix Azure on v3.2.x

• PR #16648: Document filling of Poly3DCollection

• PR #16649: Fix typo in docs

• PR #16650: Backport PR #16649 on branch v3.2.x (Fix typo in docs)

• PR #16651: Docs: Change Python 2 note to past tense

• PR #16654: Backport PR #16651 on branch v3.2.0-doc (Docs: Change Python 2 note to past tense)

• PR #16656: Make test_imagegrid_cbar_mode_edge less flaky.

• PR #16661: added Framework :: Matplotlib to setup

• PR #16665: Backport PR #16661 on branch v3.2.x (added Framework :: Matplotlib to setup)

• PR #16671: Fix some readme bits

• PR #16672: Update CircleCI and add direct artifact link

• PR #16682: Avoid floating point rounding causing bezier.get_parallels to fail

• PR #16690: Backport PR #16682 on branch v3.2.x (Avoid floating point rounding causing
bezier.get_parallels to fail)

• PR #16693: TST: use pytest name in naming files for check_figures_equal

• PR #16695: Restart pgf's latex instance after bad latex inputs.

• PR #16705: Backport PR #16656 on branch v3.2.x (Make test_imagegrid_cbar_mode_edge less
flaky.)

• PR #16708: Backport PR #16671: Fix some readme bits

• PR #16709: Fix saving PNGs to file objects in some places

• PR #16722: Deprecate rcParams["datapath"] in favor of mpl.get_data_path().

• PR #16725: TST/CI: also try to run test_user_fonts_win32 on azure

• PR #16734: Disable draw_foo methods on renderer used to estimate tight extents.

• PR #16735: Make test_stem less flaky.

• PR #16736: xpdf: Set AutoRotatePages to None, not false.

• PR #16742: nbagg: Don't send events if manager is disconnected.

• PR #16745: Allow numbers to set uvc for all arrows in quiver.set_UVC, fixes #16743

7.1. Previous GitHub Stats 571

https://github.com/matplotlib/matplotlib/pull/15199/
https://github.com/matplotlib/matplotlib/pull/15685/
https://github.com/matplotlib/matplotlib/pull/15969/
https://github.com/matplotlib/matplotlib/pull/16640/
https://github.com/matplotlib/matplotlib/pull/16648/
https://github.com/matplotlib/matplotlib/pull/16649/
https://github.com/matplotlib/matplotlib/pull/16650/
https://github.com/matplotlib/matplotlib/pull/16651/
https://github.com/matplotlib/matplotlib/pull/16654/
https://github.com/matplotlib/matplotlib/pull/16656/
https://github.com/matplotlib/matplotlib/pull/16661/
https://github.com/matplotlib/matplotlib/pull/16665/
https://github.com/matplotlib/matplotlib/pull/16671/
https://github.com/matplotlib/matplotlib/pull/16672/
https://github.com/matplotlib/matplotlib/pull/16682/
https://github.com/matplotlib/matplotlib/pull/16690/
https://github.com/matplotlib/matplotlib/pull/16693/
https://github.com/matplotlib/matplotlib/pull/16695/
https://github.com/matplotlib/matplotlib/pull/16705/
https://github.com/matplotlib/matplotlib/pull/16708/
https://github.com/matplotlib/matplotlib/pull/16709/
https://github.com/matplotlib/matplotlib/pull/16722/
https://github.com/matplotlib/matplotlib/pull/16725/
https://github.com/matplotlib/matplotlib/pull/16734/
https://github.com/matplotlib/matplotlib/pull/16735/
https://github.com/matplotlib/matplotlib/pull/16736/
https://github.com/matplotlib/matplotlib/pull/16742/
https://github.com/matplotlib/matplotlib/pull/16745/

Matplotlib, Release 3.4.3

• PR #16751: Backport PR #16742 on branch v3.2.x (nbagg: Don't send events if manager is discon-
nected.)

• PR #16752: ci: Disallow pytest 5.4.0, which is crashing.

• PR #16753: Backport #16752 to v3.2.x

• PR #16760: Backport PR #16735 on branch v3.2.x (Make test_stem less flaky.)

• PR #16761: Backport PR #16745 on branch v3.2.x (Allow numbers to set uvc for all arrows in
quiver.set_UVC, fixes #16743)

• PR #16763: Backport PR #16648 on branch v3.2.x (Document filling of Poly3DCollection)

• PR #16764: Backport PR #16672 on branch v3.2.0-doc

• PR #16765: Backport PR #16736 on branch v3.2.x (xpdf: Set AutoRotatePages to None, not false.)

• PR #16766: Backport PR #16734 on branch v3.2.x (Disable draw_foo methods on renderer used to
estimate tight extents.)

• PR #16767: Backport PR #15685 on branch v3.2.x (Avoid a RuntimeError at animation shutdown
with PySide2.)

• PR #16768: Backport PR #16725 on branch v3.2.x (TST/CI: also try to run test_user_fonts_win32 on
azure)

• PR #16770: Fix tuple markers

• PR #16779: Documentation: make instructions for documentation contributions easier to find, add to
requirements for building docs

• PR #16784: Update CircleCI URL for downloading humor-sans.ttf.

• PR #16790: Backport PR #16784 on branch v3.2.x (Update CircleCI URL for downloading humor-
sans.ttf.)

• PR #16791: Backport PR #16770 on branch v3.2.x (Fix tuple markers)

• PR #16794: DOC: Don't mention drawstyle in set_linestyle docs.

• PR #16795: Backport PR #15199 on branch v3.2.x (MNT/TST: generalize check_figures_equal to
work with pytest.marks)

• PR #16797: Backport #15589 and #16693, fixes for check_figures_equal

• PR #16799: Backport PR #16794 on branch v3.2.0-doc (DOC: Don't mention drawstyle in
set_linestyle docs.)

• PR #16800: Fix check_figures_equal for tests that use its fixtures.

• PR #16803: Fix some doc issues

• PR #16806: Backport PR #16803 on branch v3.2.0-doc (Fix some doc issues)

• PR #16809: Backport PR #16779 on branch v3.2.0-doc (Documentation: make instructions for docu-
mentation contributions easier to find, add to requirements for building docs)

Issues (11):

572 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/16751/
https://github.com/matplotlib/matplotlib/pull/16752/
https://github.com/matplotlib/matplotlib/pull/16753/
https://github.com/matplotlib/matplotlib/pull/16760/
https://github.com/matplotlib/matplotlib/pull/16761/
https://github.com/matplotlib/matplotlib/pull/16763/
https://github.com/matplotlib/matplotlib/pull/16764/
https://github.com/matplotlib/matplotlib/pull/16765/
https://github.com/matplotlib/matplotlib/pull/16766/
https://github.com/matplotlib/matplotlib/pull/16767/
https://github.com/matplotlib/matplotlib/pull/16768/
https://github.com/matplotlib/matplotlib/pull/16770/
https://github.com/matplotlib/matplotlib/pull/16779/
https://github.com/matplotlib/matplotlib/pull/16784/
https://github.com/matplotlib/matplotlib/pull/16790/
https://github.com/matplotlib/matplotlib/pull/16791/
https://github.com/matplotlib/matplotlib/pull/16794/
https://github.com/matplotlib/matplotlib/pull/16795/
https://github.com/matplotlib/matplotlib/pull/16797/
https://github.com/matplotlib/matplotlib/pull/16799/
https://github.com/matplotlib/matplotlib/pull/16800/
https://github.com/matplotlib/matplotlib/pull/16803/
https://github.com/matplotlib/matplotlib/pull/16806/
https://github.com/matplotlib/matplotlib/pull/16809/

Matplotlib, Release 3.4.3

• #12820: [Annotations] ValueError: lines do not intersect when computing tight bounding box con-
taining arrow with filled paths

• #16538: xpdf distiller seems broken

• #16624: Azure pipelines are broken on v3.2.x

• #16633: Wrong drawing Poly3DCollection

• #16645: Minor typo in API document of patches.ConnectionPatch

• #16670: BLD: ascii codec decode on 3.2.0 in non-UTF8 locales

• #16704: 3.2.0: setup.py clean fails with NameError: name 'long_description'
is not defined

• #16721: nbAgg backend does not allow saving figures as png

• #16731: PGF backend + savefig.bbox results in I/O error in 3.2

• #16743: Breaking change in 3.2: quiver.set_UVC does not support single numbers any more

• #16801: Doc: figure for colormaps off

7.1.11 GitHub Stats for Matplotlib 3.2.0

GitHub stats for 2019/05/18 - 2020/03/03 (tag: v3.1.0)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 125 issues and merged 839 pull requests. The full list can be seen on GitHub

The following 164 authors contributed 3455 commits.

• Abhinav Sagar

• Abhinuv Nitin Pitale

• Adam Gomaa

• Akshay Nair

• Alex Rudy

• Alexander Rudy

• Antony Lee

• Ao Liu (frankliuao)

• Ardie Orden

• Ashley Whetter

• Ben Root

• Benjamin Bengfort

• Benjamin Congdon

7.1. Previous GitHub Stats 573

https://github.com/matplotlib/matplotlib/issues/12820/
https://github.com/matplotlib/matplotlib/issues/16538/
https://github.com/matplotlib/matplotlib/issues/16624/
https://github.com/matplotlib/matplotlib/issues/16633/
https://github.com/matplotlib/matplotlib/issues/16645/
https://github.com/matplotlib/matplotlib/issues/16670/
https://github.com/matplotlib/matplotlib/issues/16704/
https://github.com/matplotlib/matplotlib/issues/16721/
https://github.com/matplotlib/matplotlib/issues/16731/
https://github.com/matplotlib/matplotlib/issues/16743/
https://github.com/matplotlib/matplotlib/issues/16801/
https://github.com/matplotlib/matplotlib/milestone/43?closed=1

Matplotlib, Release 3.4.3

• Bharat123rox

• Bingyao Liu

• Brigitta Sipocz

• Bruno Pagani

• brut

• Carsten

• Carsten Schelp

• chaoyi1

• Cho Yin Yong

• Chris Barnes

• Christer Jensen

• Christian Brodbeck

• Christoph Pohl

• chuanzhu xu

• Colin

• Cong Ma

• dabana

• DanielMatu

• David Chudzicki

• David Stansby

• Deng Tian

• depano.carlos@gmail.com

• djdt

• donchanee

• Dora Fraeman Caswell

• Elan Ernest

• Elliott Sales de Andrade

• Emlyn Price

• Eric Firing

• Eric Wieser

• Federico Ariza

• Filipe Fernandes

574 Chapter 7. GitHub Stats

mailto:depano.carlos@gmail.com

Matplotlib, Release 3.4.3

• fourpoints

• fredrik-1

• Gazing

• Greg Lucas

• hannah

• Harshal Prakash Patankar

• Ian Hincks

• Ian Thomas

• ilopata1

• ImportanceOfBeingErnest

• Jacobson Okoro

• James A. Bednar

• Jarrod Millman

• Javad

• jb-leger

• Jean-Benoist Leger

• jfbu

• joaonsg

• Jody Klymak

• Joel Frederico

• Johannes H. Jensen

• Johnny Gill

• Jonas Camillus Jeppesen

• Jorge Moraleda

• Joscha Reimer

• Joseph Albert

• Jouni K. Seppänen

• Joy Bhalla

• Juanjo Bazán

• Julian Mehne

• kolibril13

• krishna katyal

7.1. Previous GitHub Stats 575

Matplotlib, Release 3.4.3

• ksunden

• Kyle Sunden

• Larry Bradley

• lepuchi

• luftek

• Maciej Dems

• Maik Riechert

• Marat K

• Mark Wolf

• Mark Wolfman

• Matte

• Matthias Bussonnier

• Matthias Geier

• MatthieuDartiailh

• Max Chen

• Max Humber

• Max Shinn

• MeeseeksMachine

• Michael Droettboom

• Mingkai Dong

• MinRK

• miquelastein

• Molly Rossow

• Nathan Goldbaum

• nathan78906

• Nelle Varoquaux

• Nick White

• Nicolas Courtemanche

• Nikita Kniazev

• njwhite

• O. Castany

• Oliver Natt

576 Chapter 7. GitHub Stats

Matplotlib, Release 3.4.3

• Olivier

• Om Sitapara

• omsitapara23

• Oriol (Prodesk)

• Oriol Abril

• Patrick Feiring

• Patrick Shriwise

• PatrickFeiring

• Paul

• Paul Hobson

• Paul Hoffman

• Paul Ivanov

• Peter Schutt

• pharshalp

• Phil Elson

• Philippe Pinard

• Rebecca W Perry

• ResidentMario

• Richard Ji-Cathriner

• RoryIAngus

• Ryan May

• S. Fukuda

• Samesh

• Samesh Lakhotia

• sasoripathos

• SBCV

• Sebastian Bullinger

• Sergey Royz

• Siddhesh Poyarekar

• Simon Legner

• SojiroFukuda

• Steve Dower

7.1. Previous GitHub Stats 577

Matplotlib, Release 3.4.3

• Taras

• Ted Drain

• teddyrendahl

• Thomas A Caswell

• Thomas Hisch

• Thomas Robitaille

• Till Hoffmann

• tillahoffmann

• Tim Hoffmann

• Tom Flannaghan

• Travis CI

• V. Armando Solé

• Vincent L.M. Mazoyer

• Viraj Mohile

• Wafa Soofi

• Warren Weckesser

• y1thof

• yeo

• Yong Cho Yin

• Yuya

• Zhili (Jerry) Pan

• zhoubecky

• Zulko

GitHub issues and pull requests:

Pull Requests (839):

• PR #16626: Updated Readme + Setup.py for PyPa

• PR #16627: ci: Restore nuget install step on Azure for v3.2.x.

• PR #16625: v3.2.x: Make Azure use local FreeType.

• PR #16622: Backport PR #16613 on branch v3.2.x (Fix edge-case in preprocess_data, if label_namer
is optional and unset.)

• PR #16613: Fix edge-case in preprocess_data, if label_namer is optional and unset.

• PR #16612: Backport PR #16605: CI: tweak the vm images we use on azure

578 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/16626/
https://github.com/matplotlib/matplotlib/pull/16627/
https://github.com/matplotlib/matplotlib/pull/16625/
https://github.com/matplotlib/matplotlib/pull/16622/
https://github.com/matplotlib/matplotlib/pull/16613/
https://github.com/matplotlib/matplotlib/pull/16612/

Matplotlib, Release 3.4.3

• PR #16611: Backport PR #16585 on branch v3.2.x (Fix _preprocess_data for Py3.9.)

• PR #16605: CI: tweak the vm images we use on azure

• PR #16585: Fix _preprocess_data for Py3.9.

• PR #16541: Merge pull request #16404 from jklymak/fix-add-base-symlognorm

• PR #16542: Backport PR #16006: Ignore pos in StrCategoryFormatter.__call__ to di…

• PR #16543: Backport PR #16532: Document default value of save_count parameter in…

• PR #16532: Document default value of save_count parameter in FuncAnimation

• PR #16526: Backport PR #16480 on v.3.2.x: Re-phrase doc for bottom kwarg to hist

• PR #16404: FIX: add base kwarg to symlognor

• PR #16518: Backport PR #16502 on branch v3.2.x (Document theta getters/setters)

• PR #16519: Backport PR #16513 on branch v3.2.x (Add more FreeType tarball hashes.)

• PR #16513: Add more FreeType tarball hashes.

• PR #16502: Document theta getters/setters

• PR #16506: Backport PR #16505 on branch v3.2.x (Add link to blog to front page)

• PR #16505: Add link to blog to front page

• PR #16480: Re-phrase doc for bottom kwarg to hist

• PR #16494: Backport PR #16490 on branch v3.2.x (Fix some typos on the front page)

• PR #16489: Backport PR #16272 on branch v3.2.x (Move mplot3d autoregistration api changes to
3.2.)

• PR #16490: Fix some typos on the front page

• PR #16465: Backport PR #16450 on branch v3.2.x (Fix interaction between sticky_edges and shared
axes.)

• PR #16466: Backport PR #16392: FIX colorbars for Norms that do not have a scale.

• PR #16392: FIX colorbars for Norms that do not have a scale.

• PR #16450: Fix interaction between sticky_edges and shared axes.

• PR #16453: Backport PR #16452 on branch v3.2.x (Don't make InvertedLogTransform inherit from
deprecated base class.)

• PR #16452: Don't make InvertedLogTransform inherit from deprecated base class.

• PR #16436: Backport PR #16435 on branch v3.2.x (Reword intro to colors api docs.)

• PR #16435: Reword intro to colors api docs.

• PR #16399: Backport PR #16396 on branch v3.2.x (font_manager docs cleanup.)

• PR #16396: font_manager docs cleanup.

7.1. Previous GitHub Stats 579

https://github.com/matplotlib/matplotlib/pull/16611/
https://github.com/matplotlib/matplotlib/pull/16605/
https://github.com/matplotlib/matplotlib/pull/16585/
https://github.com/matplotlib/matplotlib/pull/16541/
https://github.com/matplotlib/matplotlib/pull/16542/
https://github.com/matplotlib/matplotlib/pull/16543/
https://github.com/matplotlib/matplotlib/pull/16532/
https://github.com/matplotlib/matplotlib/pull/16526/
https://github.com/matplotlib/matplotlib/pull/16404/
https://github.com/matplotlib/matplotlib/pull/16518/
https://github.com/matplotlib/matplotlib/pull/16519/
https://github.com/matplotlib/matplotlib/pull/16513/
https://github.com/matplotlib/matplotlib/pull/16502/
https://github.com/matplotlib/matplotlib/pull/16506/
https://github.com/matplotlib/matplotlib/pull/16505/
https://github.com/matplotlib/matplotlib/pull/16480/
https://github.com/matplotlib/matplotlib/pull/16494/
https://github.com/matplotlib/matplotlib/pull/16489/
https://github.com/matplotlib/matplotlib/pull/16490/
https://github.com/matplotlib/matplotlib/pull/16465/
https://github.com/matplotlib/matplotlib/pull/16466/
https://github.com/matplotlib/matplotlib/pull/16392/
https://github.com/matplotlib/matplotlib/pull/16450/
https://github.com/matplotlib/matplotlib/pull/16453/
https://github.com/matplotlib/matplotlib/pull/16452/
https://github.com/matplotlib/matplotlib/pull/16436/
https://github.com/matplotlib/matplotlib/pull/16435/
https://github.com/matplotlib/matplotlib/pull/16399/
https://github.com/matplotlib/matplotlib/pull/16396/

Matplotlib, Release 3.4.3

• PR #16397: Backport PR #16394 on branch v3.2.x (Mark inkscape 1.0 as unsupported (at least for
now).)

• PR #16394: Mark inkscape 1.0 as unsupported (at least for now).

• PR #16286: Fix cbars for different norms

• PR #16385: Backport PR #16226 on branch v3.2.x: Reorganize intro section on main page

• PR #16383: Backport PR #16379 on branch v3.2.x (FIX: catch on message content, not module)

• PR #16226: Reorganize intro section on main page

• PR #16364: Backport PR #16344 on branch v3.2.x (Cast vmin/vmax to floats before nonsingular-
expanding them.)

• PR #16344: Cast vmin/vmax to floats before nonsingular-expanding them.

• PR #16360: Backport PR #16347 on branch v3.2.x (FIX: catch warnings from pandas in
cbook._check_1d)

• PR #16357: Backport PR #16330 on branch v3.2.x (Clearer signal handling)

• PR #16349: Backport PR #16255 on branch v3.2.x (Move version info to sidebar)

• PR #16346: Backport PR #16298 on branch v3.2.x (Don't recursively call draw_idle when updating
artists at draw time.)

• PR #16331: Backport PR #16308 on branch v3.2.x (CI: Use Ubuntu Bionic compatible package
names)

• PR #16332: Backport PR #16308 on v3.2.x: CI: Use Ubuntu Bionic compatible package names

• PR #16324: Backport PR #16323 on branch v3.2.x (Add sphinx doc for Axis.axis_name.)

• PR #16325: Backport PR #15462 on v3.2.x: Simplify azure setup.

• PR #16323: Add sphinx doc for Axis.axis_name.

• PR #16321: Backport PR #16311 on branch v3.2.x (don't override non-Python signal handlers)

• PR #16308: CI: Use Ubuntu Bionic compatible package names

• PR #16306: Backport PR #16300 on branch v3.2.x (Don't default to negative radii in polar plot.)

• PR #16305: Backport PR #16250 on branch v3.2.x (Fix zerolen intersect)

• PR #16300: Don't default to negative radii in polar plot.

• PR #16278: Backport PR #16273 on branch v3.2.x (DOC: Changing the spelling of co-ordinates.)

• PR #16260: Backport PR #16259 on branch v3.2.x (TST: something changed in pytest 5.3.3 that breaks
our qt fixtures)

• PR #16259: TST: something changed in pytest 5.3.3 that breaks our qt fixtures

• PR #16238: Backport PR #16235 on branch v3.2.x (FIX: AttributeError in TimerBase.start)

• PR #16211: DOC: ValidateInterval was deprecated in 3.2, not 3.1

580 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/16397/
https://github.com/matplotlib/matplotlib/pull/16394/
https://github.com/matplotlib/matplotlib/pull/16286/
https://github.com/matplotlib/matplotlib/pull/16385/
https://github.com/matplotlib/matplotlib/pull/16383/
https://github.com/matplotlib/matplotlib/pull/16226/
https://github.com/matplotlib/matplotlib/pull/16364/
https://github.com/matplotlib/matplotlib/pull/16344/
https://github.com/matplotlib/matplotlib/pull/16360/
https://github.com/matplotlib/matplotlib/pull/16357/
https://github.com/matplotlib/matplotlib/pull/16349/
https://github.com/matplotlib/matplotlib/pull/16346/
https://github.com/matplotlib/matplotlib/pull/16331/
https://github.com/matplotlib/matplotlib/pull/16332/
https://github.com/matplotlib/matplotlib/pull/16324/
https://github.com/matplotlib/matplotlib/pull/16325/
https://github.com/matplotlib/matplotlib/pull/16323/
https://github.com/matplotlib/matplotlib/pull/16321/
https://github.com/matplotlib/matplotlib/pull/16308/
https://github.com/matplotlib/matplotlib/pull/16306/
https://github.com/matplotlib/matplotlib/pull/16305/
https://github.com/matplotlib/matplotlib/pull/16300/
https://github.com/matplotlib/matplotlib/pull/16278/
https://github.com/matplotlib/matplotlib/pull/16260/
https://github.com/matplotlib/matplotlib/pull/16259/
https://github.com/matplotlib/matplotlib/pull/16238/
https://github.com/matplotlib/matplotlib/pull/16211/

Matplotlib, Release 3.4.3

• PR #16224: Backport PR #16223 on branch v3.2.x (Added DNA Features Viewer description +
screenshot in docs/thirdparty/)

• PR #16223: Added DNA Features Viewer description + screenshot in docs/thirdparty/

• PR #16222: Backport PR #16212 on branch v3.2.x (Fix deprecation from #13544)

• PR #16212: Fix deprecation from #13544

• PR #16207: Backport PR #16189 on branch v3.2.x (MNT: set default canvas when un-pickling)

• PR #16189: MNT: set default canvas when un-pickling

• PR #16179: Backport PR #16175: FIX: ignore axes that aren't visible

• PR #16175: FIX: ignore axes that aren't visible

• PR #16168: Backport PR #16166 on branch v3.2.x (Add badge for citing 3.1.2)

• PR #16148: Backport PR #16128 on branch v3.2.x (CI: Do not use nbformat 5.0.0/5.0.1 for testing)

• PR #16145: Backport PR #16053 on branch v3.2.x (Fix v_interval setter)

• PR #16128: CI: Do not use nbformat 5.0.0/5.0.1 for testing

• PR #16135: Backport PR #16112 on branch v3.2.x (CI: Fail when failed to install dependencies)

• PR #16132: Backport PR #16126 on branch v3.2.x (TST: test_fork: Missing join)

• PR #16124: Backport PR #16105 on branch v3.2.x (Fix legend dragging.)

• PR #16122: Backport PR #16113 on branch v3.2.x (Renderer Graphviz inheritance diagrams as svg)

• PR #16105: Fix legend dragging.

• PR #16113: Renderer Graphviz inheritance diagrams as svg

• PR #16112: CI: Fail when failed to install dependencies

• PR #16119: Backport PR #16065 on branch v3.2.x (Nicer formatting of community aspects on front
page)

• PR #16074: Backport PR #16061 on branch v3.2.x (Fix deprecation message for axes_grid1.colorbar.)

• PR #16093: Backport PR #16079 on branch v3.2.x (Fix restuctured text formatting)

• PR #16094: Backport PR #16080 on branch v3.2.x (Cleanup docstrings in backend_bases.py)

• PR #16086: FIX: use supported attribute to check pillow version

• PR #16084: Backport PR #16077 on branch v3.2.x (Fix some typos)

• PR #16077: Fix some typos

• PR #16079: Fix restuctured text formatting

• PR #16080: Cleanup docstrings in backend_bases.py

• PR #16061: Fix deprecation message for axes_grid1.colorbar.

• PR #16006: Ignore pos in StrCategoryFormatter.__call__ to display correct label in the preview win-
dow

7.1. Previous GitHub Stats 581

https://github.com/matplotlib/matplotlib/pull/16224/
https://github.com/matplotlib/matplotlib/pull/16223/
https://github.com/matplotlib/matplotlib/pull/16222/
https://github.com/matplotlib/matplotlib/pull/16212/
https://github.com/matplotlib/matplotlib/pull/16207/
https://github.com/matplotlib/matplotlib/pull/16189/
https://github.com/matplotlib/matplotlib/pull/16179/
https://github.com/matplotlib/matplotlib/pull/16175/
https://github.com/matplotlib/matplotlib/pull/16168/
https://github.com/matplotlib/matplotlib/pull/16148/
https://github.com/matplotlib/matplotlib/pull/16145/
https://github.com/matplotlib/matplotlib/pull/16128/
https://github.com/matplotlib/matplotlib/pull/16135/
https://github.com/matplotlib/matplotlib/pull/16132/
https://github.com/matplotlib/matplotlib/pull/16124/
https://github.com/matplotlib/matplotlib/pull/16122/
https://github.com/matplotlib/matplotlib/pull/16105/
https://github.com/matplotlib/matplotlib/pull/16113/
https://github.com/matplotlib/matplotlib/pull/16112/
https://github.com/matplotlib/matplotlib/pull/16119/
https://github.com/matplotlib/matplotlib/pull/16074/
https://github.com/matplotlib/matplotlib/pull/16093/
https://github.com/matplotlib/matplotlib/pull/16094/
https://github.com/matplotlib/matplotlib/pull/16086/
https://github.com/matplotlib/matplotlib/pull/16084/
https://github.com/matplotlib/matplotlib/pull/16077/
https://github.com/matplotlib/matplotlib/pull/16079/
https://github.com/matplotlib/matplotlib/pull/16080/
https://github.com/matplotlib/matplotlib/pull/16061/
https://github.com/matplotlib/matplotlib/pull/16006/

Matplotlib, Release 3.4.3

• PR #16056: Backport PR #15864 on branch v3.2.x ([Add the info of 'sviewgui' in thirdparty package])

• PR #15864: Add 'sviewgui' to list of thirdparty packages

• PR #16055: Backport PR #16037 on branch v3.2.x (Doc: use empty ScalarMappable for colorbars
with no associated image.)

• PR #16054: Backport PR #16048 on branch v3.2.x (Document that colorbar() takes a label kwarg.)

• PR #16037: Doc: use empty ScalarMappable for colorbars with no associated image.

• PR #16048: Document that colorbar() takes a label kwarg.

• PR #16042: Backport PR #16031 on branch v3.2.x (Fix docstring of hillshade().)

• PR #16033: Backport PR #16028 on branch v3.2.x (Prevent FigureCanvasQT_draw_idle recursively
calling itself.)

• PR #16021: Backport PR #16007 on branch v3.2.x (Fix search on nested pages)

• PR #16019: Backport PR #15735 on branch v3.2.x (Cleanup some mplot3d docstrings.)

• PR #15987: Backport PR #15886 on branch v3.2.x (Fix Annotation using different units and different
coords on x/y.)

• PR #15886: Fix Annotation using different units and different coords on x/y.

• PR #15984: Backport PR #15970 on branch v3.2.x (Process clip paths the same way as regular Paths.)

• PR #15970: Process clip paths the same way as regular Paths.

• PR #15963: Backport PR #15937 on branch v3.2.x (Don't hide exceptions in FontManager.addfont.)

• PR #15956: Backport PR #15901 on branch v3.2.x (Update backend_nbagg for removal of
Gcf._activeQue.)

• PR #15937: Don't hide exceptions in FontManager.addfont.

• PR #15959: Backport PR #15953 on branch v3.2.x (Update donation link)

• PR #15901: Update backend_nbagg for removal of Gcf._activeQue.

• PR #15954: Backport PR #15914 on branch v3.2.x (Example for sigmoid function with horizontal
lines)

• PR #15914: Example for sigmoid function with horizontal lines

• PR #15930: Backport PR #15925 on branch v3.2.x (Optimize setting units to None when they're
already None.)

• PR #15925: Optimize setting units to None when they're already None.

• PR #15915: Backport PR #15903 on branch v3.2.x (Correctly handle non-affine transData in Collec-
tion.get_datalim.)

• PR #15903: Correctly handle non-affine transData in Collection.get_datalim.

• PR #15908: Backport PR #15857 on branch v3.2.x (LassoSelection shouldn't useblit on canvas not
supporting blitting.)

• PR #15857: LassoSelection shouldn't useblit on canvas not supporting blitting.

582 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/16056/
https://github.com/matplotlib/matplotlib/pull/15864/
https://github.com/matplotlib/matplotlib/pull/16055/
https://github.com/matplotlib/matplotlib/pull/16054/
https://github.com/matplotlib/matplotlib/pull/16037/
https://github.com/matplotlib/matplotlib/pull/16048/
https://github.com/matplotlib/matplotlib/pull/16042/
https://github.com/matplotlib/matplotlib/pull/16033/
https://github.com/matplotlib/matplotlib/pull/16021/
https://github.com/matplotlib/matplotlib/pull/16019/
https://github.com/matplotlib/matplotlib/pull/15987/
https://github.com/matplotlib/matplotlib/pull/15886/
https://github.com/matplotlib/matplotlib/pull/15984/
https://github.com/matplotlib/matplotlib/pull/15970/
https://github.com/matplotlib/matplotlib/pull/15963/
https://github.com/matplotlib/matplotlib/pull/15956/
https://github.com/matplotlib/matplotlib/pull/15937/
https://github.com/matplotlib/matplotlib/pull/15959/
https://github.com/matplotlib/matplotlib/pull/15901/
https://github.com/matplotlib/matplotlib/pull/15954/
https://github.com/matplotlib/matplotlib/pull/15914/
https://github.com/matplotlib/matplotlib/pull/15930/
https://github.com/matplotlib/matplotlib/pull/15925/
https://github.com/matplotlib/matplotlib/pull/15915/
https://github.com/matplotlib/matplotlib/pull/15903/
https://github.com/matplotlib/matplotlib/pull/15908/
https://github.com/matplotlib/matplotlib/pull/15857/

Matplotlib, Release 3.4.3

• PR #15905: Backport PR #15763 on branch v3.2.x (Skip webagg test if tornado is not available.)

• PR #15882: Backport PR #15859 on branch v3.2.x (Doc: Move search field into nav bar)

• PR #15868: Backport PR #15848 on branch v3.2.x: Cleanup environment variables FAQ

• PR #15872: Backport PR #15869 on branch v3.2.x (Update markers docs.)

• PR #15869: Update markers docs.

• PR #15867: Backport PR #15789 on branch v3.2.x (Cleanup xticks/yticks docstrings.)

• PR #15870: Backport PR #15865 on branch v3.2.x (Fix a typo)

• PR #15871: Backport PR #15824 on branch v3.2.x (Document doc style for default values)

• PR #15824: Document doc style for default values

• PR #15865: Fix a typo

• PR #15789: Cleanup xticks/yticks docstrings.

• PR #15862: Backport PR #15851 on branch v3.2.x (ffmpeg is available on default ubuntu packages
now)

• PR #15848: Cleanup environment variables FAQ.

• PR #15844: Backport PR #15841 on branch v3.2.x (DOC: specify the expected shape in the Collec-
tion.set_offset)

• PR #15841: DOC: specify the expected shape in the Collection.set_offset

• PR #15837: Backport PR #15799 on branch v3.2.x (Improve display of author names on PDF titlepage
of matplotlib own docs)

• PR #15799: Improve display of author names on PDF titlepage of matplotlib own docs

• PR #15831: Backport PR #15829 on branch v3.2.x (In C extensions, use FutureWarning, not Depre-
cationWarning.)

• PR #15829: In C extensions, use FutureWarning, not DeprecationWarning.

• PR #15818: Backport PR #15619 on branch v3.2.x (Improve zorder demo)

• PR #15819: Backport PR #15601 on branch v3.2.x (Fix FontProperties conversion to/from strings)

• PR #15601: Fix FontProperties conversion to/from strings

• PR #15619: Improve zorder demo

• PR #15810: Backport PR #15809 on branch v3.2.x (Exclude artists from legend using label attributte)

• PR #15809: Exclude artists from legend using label attributte

• PR #15808: Backport PR #15513 on branch v3.2.x (Separate plots using #### in
make_room_for_ylabel_using_axesgrid.py)

• PR #15513: Separate plots using #### in make_room_for_ylabel_using_axesgrid.py

• PR #15807: Backport PR #15791 on branch v3.2.x (Cleanup backend_bases docstrings.)

• PR #15791: Cleanup backend_bases docstrings.

7.1. Previous GitHub Stats 583

https://github.com/matplotlib/matplotlib/pull/15905/
https://github.com/matplotlib/matplotlib/pull/15882/
https://github.com/matplotlib/matplotlib/pull/15868/
https://github.com/matplotlib/matplotlib/pull/15872/
https://github.com/matplotlib/matplotlib/pull/15869/
https://github.com/matplotlib/matplotlib/pull/15867/
https://github.com/matplotlib/matplotlib/pull/15870/
https://github.com/matplotlib/matplotlib/pull/15871/
https://github.com/matplotlib/matplotlib/pull/15824/
https://github.com/matplotlib/matplotlib/pull/15865/
https://github.com/matplotlib/matplotlib/pull/15789/
https://github.com/matplotlib/matplotlib/pull/15862/
https://github.com/matplotlib/matplotlib/pull/15848/
https://github.com/matplotlib/matplotlib/pull/15844/
https://github.com/matplotlib/matplotlib/pull/15841/
https://github.com/matplotlib/matplotlib/pull/15837/
https://github.com/matplotlib/matplotlib/pull/15799/
https://github.com/matplotlib/matplotlib/pull/15831/
https://github.com/matplotlib/matplotlib/pull/15829/
https://github.com/matplotlib/matplotlib/pull/15818/
https://github.com/matplotlib/matplotlib/pull/15819/
https://github.com/matplotlib/matplotlib/pull/15601/
https://github.com/matplotlib/matplotlib/pull/15619/
https://github.com/matplotlib/matplotlib/pull/15810/
https://github.com/matplotlib/matplotlib/pull/15809/
https://github.com/matplotlib/matplotlib/pull/15808/
https://github.com/matplotlib/matplotlib/pull/15513/
https://github.com/matplotlib/matplotlib/pull/15807/
https://github.com/matplotlib/matplotlib/pull/15791/

Matplotlib, Release 3.4.3

• PR #15803: Backport PR #15795 on branch v3.2.x (Remove incorrect statement re2: colorbars in
image tutorial.)

• PR #15795: Remove incorrect statement re: colorbars in image tutorial.

• PR #15794: Backport PR #15793 on branch v3.2.x (fix a couple typos in tutorials)

• PR #15793: fix a couple typos in tutorials

• PR #15774: Backport PR #15748 on branch v3.2.x (Fix incorrect macro in FT2Font setup.)

• PR #15748: Fix incorrect macro in FT2Font setup.

• PR #15759: Backport PR #15751 on branch v3.2.x (Modernize FAQ entry for plt.show().)

• PR #15762: Backport PR #15752 on branch v3.2.x (Update boxplot/violinplot faq.)

• PR #15755: Backport PR #15661 on branch v3.2.x (Document scope of 3D scatter depthshading.)

• PR #15742: Backport PR #15729 on branch v3.2.x (Catch correct parse error type for dateutil >=
2.8.1)

• PR #15738: Backport PR #15737 on branch v3.2.x (Fix env override in WebAgg backend test.)

• PR #15724: Backport PR #15718 on branch v3.2.x (Update donation link)

• PR #15716: Backport PR #15683 on branch v3.2.x (Cleanup dates.py docstrings.)

• PR #15683: Cleanup dates.py docstrings.

• PR #15688: Backport PR #15682 on branch v3.2.x (Make histogram_bin_edges private.)

• PR #15682: Make histogram_bin_edges private.

• PR #15666: Backport PR #15649 on branch v3.2.x (Fix searchindex.js loadingwhen ajax fails (because
e.g. CORS in embedded iframes))

• PR #15669: Backport PR #15654 on branch v3.2.x (Fix some broken links.)

• PR #15660: Backport PR #15647 on branch v3.2.x (Update some links)

• PR #15653: Backport PR #15623 on branch v3.2.x (Docstring for Artist.mouseover)

• PR #15623: Docstring for Artist.mouseover

• PR #15634: Backport PR #15626 on branch v3.2.x (Note minimum supported version for fontconfig.)

• PR #15633: Backport PR #15620 on branch v3.2.x (TST: Increase tolerance of some tests for aarch64)

• PR #15626: Note minimum supported version for fontconfig.

• PR #15632: Backport PR #15627 on branch v3.2.x (Make it easier to test various animation writers
in examples.)

• PR #15620: TST: Increase tolerance of some tests for aarch64

• PR #15627: Make it easier to test various animation writers in examples.

• PR #15618: Backport PR #15613 on branch v3.2.x (Revert "Don't bother with manually resizing the
Qt main window.")

• PR #15613: Revert "Don't bother with manually resizing the Qt main window."

584 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/15803/
https://github.com/matplotlib/matplotlib/pull/15795/
https://github.com/matplotlib/matplotlib/pull/15794/
https://github.com/matplotlib/matplotlib/pull/15793/
https://github.com/matplotlib/matplotlib/pull/15774/
https://github.com/matplotlib/matplotlib/pull/15748/
https://github.com/matplotlib/matplotlib/pull/15759/
https://github.com/matplotlib/matplotlib/pull/15762/
https://github.com/matplotlib/matplotlib/pull/15755/
https://github.com/matplotlib/matplotlib/pull/15742/
https://github.com/matplotlib/matplotlib/pull/15738/
https://github.com/matplotlib/matplotlib/pull/15724/
https://github.com/matplotlib/matplotlib/pull/15716/
https://github.com/matplotlib/matplotlib/pull/15683/
https://github.com/matplotlib/matplotlib/pull/15688/
https://github.com/matplotlib/matplotlib/pull/15682/
https://github.com/matplotlib/matplotlib/pull/15666/
https://github.com/matplotlib/matplotlib/pull/15669/
https://github.com/matplotlib/matplotlib/pull/15660/
https://github.com/matplotlib/matplotlib/pull/15653/
https://github.com/matplotlib/matplotlib/pull/15623/
https://github.com/matplotlib/matplotlib/pull/15634/
https://github.com/matplotlib/matplotlib/pull/15633/
https://github.com/matplotlib/matplotlib/pull/15626/
https://github.com/matplotlib/matplotlib/pull/15632/
https://github.com/matplotlib/matplotlib/pull/15620/
https://github.com/matplotlib/matplotlib/pull/15627/
https://github.com/matplotlib/matplotlib/pull/15618/
https://github.com/matplotlib/matplotlib/pull/15613/

Matplotlib, Release 3.4.3

• PR #15593: Backport PR #15590 on branch v3.2.x (Rename numpy to NumPy in docs.)

• PR #15590: Rename numpy to NumPy in docs.

• PR #15588: Backport PR #15478 on branch v3.2.x (Make ConciseDateFormatter obey timezone)

• PR #15478: Make ConciseDateFormatter obey timezone

• PR #15583: Backport PR #15512 on branch v3.2.x

• PR #15584: Backport PR #15579 on branch v3.2.x (Remove matplotlib.sphinxext.tests from
__init__.py)

• PR #15579: Remove matplotlib.sphinxext.tests from __init__.py

• PR #15577: Backport PR #14705 on branch v3.2.x (Correctly size non-ASCII characters in agg back-
end.)

• PR #14705: Correctly size non-ASCII characters in agg backend.

• PR #15572: Backport PR #15452 on branch v3.2.x (Improve example for tick formatters)

• PR #15570: Backport PR #15561 on branch v3.2.x (Update thirdparty scalebar)

• PR #15452: Improve example for tick formatters

• PR #15545: Backport PR #15429 on branch v3.2.x (Fix OSX build on azure)

• PR #15544: Backport PR #15537 on branch v3.2.x (Add a third party package in the doc: matplotlib-
scalebar)

• PR #15561: Update thirdparty scalebar

• PR #15567: Backport PR #15562 on branch v3.2.x (Improve docsting of AxesImage)

• PR #15562: Improve docsting of AxesImage

• PR #15565: Backport PR #15556 on branch v3.2.x (Fix test suite compat with ghostscript 9.50.)

• PR #15556: Fix test suite compat with ghostscript 9.50.

• PR #15560: Backport PR #15553 on branch v3.2.x (DOC: add cache-buster query string to css path)

• PR #15552: Backport PR #15528 on branch v3.2.x (Declutter home page)

• PR #15554: Backport PR #15523 on branch v3.2.x (numpydoc AxesImage)

• PR #15523: numpydoc AxesImage

• PR #15549: Backport PR #15516 on branch v3.2.x (Add logo like font)

• PR #15543: Backport PR #15539 on branch v3.2.x (Small cleanups to backend docs.)

• PR #15542: Backport PR #15540 on branch v3.2.x (axisartist tutorial fixes.)

• PR #15537: Add a third party package in the doc: matplotlib-scalebar

• PR #15541: Backport PR #15533 on branch v3.2.x (Use svg instead of png for website logo)

• PR #15539: Small cleanups to backend docs.

• PR #15540: axisartist tutorial fixes.

7.1. Previous GitHub Stats 585

https://github.com/matplotlib/matplotlib/pull/15593/
https://github.com/matplotlib/matplotlib/pull/15590/
https://github.com/matplotlib/matplotlib/pull/15588/
https://github.com/matplotlib/matplotlib/pull/15478/
https://github.com/matplotlib/matplotlib/pull/15583/
https://github.com/matplotlib/matplotlib/pull/15584/
https://github.com/matplotlib/matplotlib/pull/15579/
https://github.com/matplotlib/matplotlib/pull/15577/
https://github.com/matplotlib/matplotlib/pull/14705/
https://github.com/matplotlib/matplotlib/pull/15572/
https://github.com/matplotlib/matplotlib/pull/15570/
https://github.com/matplotlib/matplotlib/pull/15452/
https://github.com/matplotlib/matplotlib/pull/15545/
https://github.com/matplotlib/matplotlib/pull/15544/
https://github.com/matplotlib/matplotlib/pull/15561/
https://github.com/matplotlib/matplotlib/pull/15567/
https://github.com/matplotlib/matplotlib/pull/15562/
https://github.com/matplotlib/matplotlib/pull/15565/
https://github.com/matplotlib/matplotlib/pull/15556/
https://github.com/matplotlib/matplotlib/pull/15560/
https://github.com/matplotlib/matplotlib/pull/15552/
https://github.com/matplotlib/matplotlib/pull/15554/
https://github.com/matplotlib/matplotlib/pull/15523/
https://github.com/matplotlib/matplotlib/pull/15549/
https://github.com/matplotlib/matplotlib/pull/15543/
https://github.com/matplotlib/matplotlib/pull/15542/
https://github.com/matplotlib/matplotlib/pull/15537/
https://github.com/matplotlib/matplotlib/pull/15541/
https://github.com/matplotlib/matplotlib/pull/15539/
https://github.com/matplotlib/matplotlib/pull/15540/

Matplotlib, Release 3.4.3

• PR #15538: Backport PR #15535 on branch v3.2.x (Avoid really long lines in event handling docs.)

• PR #15535: Avoid really long lines in event handling docs.

• PR #15531: Backport PR #15527 on branch v3.2.x (Clarify imshow() docs concerning scaling and
grayscale images)

• PR #15527: Clarify imshow() docs concerning scaling and grayscale images

• PR #15522: Backport PR #15500 on branch v3.2.x (Improve antialiasing example)

• PR #15524: Backport PR #15499 on branch v3.2.x (Do not show path in font table example)

• PR #15525: Backport PR #15498 on branch v3.2.x (Simplify matshow example)

• PR #15498: Simplify matshow example

• PR #15499: Do not show path in font table example

• PR #15521: Backport PR #15519 on branch v3.2.x (FIX: fix anti-aliasing zoom bug)

• PR #15500: Improve antialiasing example

• PR #15519: FIX: fix anti-aliasing zoom bug

• PR #15510: Backport PR #15489 on branch v3.2.x (DOC: adding main nav to site)

• PR #15495: Backport PR #15486 on branch v3.2.x (Fixes an error in the documentation of Ellipse)

• PR #15488: Backport PR #15372 on branch v3.2.x (Add example for drawstyle)

• PR #15490: Backport PR #15487 on branch v3.2.x (Fix window not always raised in Qt example)

• PR #15487: Fix window not always raised in Qt example

• PR #15372: Add example for drawstyle

• PR #15485: Backport PR #15454 on branch v3.2.x (Rewrite Anscombe's quartet example)

• PR #15483: Backport PR #15480 on branch v3.2.x (Fix wording in [packages] section of setup.cfg)

• PR #15454: Rewrite Anscombe's quartet example

• PR #15480: Fix wording in [packages] section of setup.cfg

• PR #15477: Backport PR #15464 on branch v3.2.x (Remove unused code (remainder from #15453))

• PR #15471: Backport PR #15460 on branch v3.2.x (Fix incorrect value check in axes_grid.)

• PR #15456: Backport PR #15453 on branch v3.2.x (Improve example for tick locators)

• PR #15457: Backport PR #15450 on branch v3.2.x (API: rename DivergingNorm to TwoSlopeNorm)

• PR #15450: API: rename DivergingNorm to TwoSlopeNorm

• PR #15434: In imsave, let pnginfo have precedence over metadata.

• PR #15445: Backport PR #15439 on branch v3.2.x (DOC: mention discourse main page)

• PR #15425: Backport PR #15422 on branch v3.2.x (FIX: typo in attribute lookup)

• PR #15449: DOC: fix build

586 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/15538/
https://github.com/matplotlib/matplotlib/pull/15535/
https://github.com/matplotlib/matplotlib/pull/15531/
https://github.com/matplotlib/matplotlib/pull/15527/
https://github.com/matplotlib/matplotlib/pull/15522/
https://github.com/matplotlib/matplotlib/pull/15524/
https://github.com/matplotlib/matplotlib/pull/15525/
https://github.com/matplotlib/matplotlib/pull/15498/
https://github.com/matplotlib/matplotlib/pull/15499/
https://github.com/matplotlib/matplotlib/pull/15521/
https://github.com/matplotlib/matplotlib/pull/15500/
https://github.com/matplotlib/matplotlib/pull/15519/
https://github.com/matplotlib/matplotlib/pull/15510/
https://github.com/matplotlib/matplotlib/pull/15495/
https://github.com/matplotlib/matplotlib/pull/15488/
https://github.com/matplotlib/matplotlib/pull/15490/
https://github.com/matplotlib/matplotlib/pull/15487/
https://github.com/matplotlib/matplotlib/pull/15372/
https://github.com/matplotlib/matplotlib/pull/15485/
https://github.com/matplotlib/matplotlib/pull/15483/
https://github.com/matplotlib/matplotlib/pull/15454/
https://github.com/matplotlib/matplotlib/pull/15480/
https://github.com/matplotlib/matplotlib/pull/15477/
https://github.com/matplotlib/matplotlib/pull/15471/
https://github.com/matplotlib/matplotlib/pull/15456/
https://github.com/matplotlib/matplotlib/pull/15457/
https://github.com/matplotlib/matplotlib/pull/15450/
https://github.com/matplotlib/matplotlib/pull/15434/
https://github.com/matplotlib/matplotlib/pull/15445/
https://github.com/matplotlib/matplotlib/pull/15425/
https://github.com/matplotlib/matplotlib/pull/15449/

Matplotlib, Release 3.4.3

• PR #15429: Fix OSX build on azure

• PR #15420: Backport PR #15380 on branch v3.2.x (Update docs of BoxStyle)

• PR #15380: Update docs of BoxStyle

• PR #15300: CI: use python -m to make sure we are using the pip/pytest we want

• PR #15414: Backport PR #15413 on branch v3.2.x (catch OSError instead of FileNotFoundError in
_get_executable_info to resolve #15399)

• PR #15413: catch OSError instead of FileNotFoundError in _get_executable_info to resolve #15399

• PR #15406: Backport PR #15347 on branch v3.2.x (Fix axes.hist bins units)

• PR #15405: Backport PR #15391 on branch v3.2.x (Increase fontsize in inheritance graphs)

• PR #15347: Fix axes.hist bins units

• PR #15391: Increase fontsize in inheritance graphs

• PR #15389: Backport PR #15379 on branch v3.2.x (Document formatting strings in the docs)

• PR #15379: Document formatting strings in the docs

• PR #15386: Backport PR #15385 on branch v3.2.x (Reword hist() doc.)

• PR #15385: Reword hist() doc.

• PR #15377: Backport PR #15357 on branch v3.2.x (Add 'step' and 'barstacked' to histogram_histtypes
demo)

• PR #15357: Add 'step' and 'barstacked' to histogram_histtypes demo

• PR #15366: Backport PR #15364 on branch v3.2.x (DOC: fix typo in colormap docs)

• PR #15362: Backport PR #15350 on branch v3.2.x (Don't generate double-reversed cmaps
("viridis_r_r", ...).)

• PR #15360: Backport PR #15258 on branch v3.2.x (Don't fallback to view limits when autoscale()ing
no data.)

• PR #15350: Don't generate double-reversed cmaps ("viridis_r_r", ...).

• PR #15258: Don't fallback to view limits when autoscale()ing no data.

• PR #15299: Backport PR #15296 on branch v3.2.x (Fix typo/bug from 18cecf7)

• PR #15327: Backport PR #15326 on branch v3.2.x (List of minimal versions of dependencies)

• PR #15326: List of minimal versions of dependencies

• PR #15317: Backport PR #15291 on branch v3.2.x (Remove error_msg_qt from backend_qt4.)

• PR #15316: Backport PR #15283 on branch v3.2.x (Don't default axes_grid colorbar locator to MaxN-
Locator.)

• PR #15291: Remove error_msg_qt from backend_qt4.

• PR #15283: Don't default axes_grid colorbar locator to MaxNLocator.

• PR #15315: Backport PR #15308 on branch v3.2.x (Doc: Add close event to list of events)

7.1. Previous GitHub Stats 587

https://github.com/matplotlib/matplotlib/pull/15429/
https://github.com/matplotlib/matplotlib/pull/15420/
https://github.com/matplotlib/matplotlib/pull/15380/
https://github.com/matplotlib/matplotlib/pull/15300/
https://github.com/matplotlib/matplotlib/pull/15414/
https://github.com/matplotlib/matplotlib/pull/15413/
https://github.com/matplotlib/matplotlib/pull/15406/
https://github.com/matplotlib/matplotlib/pull/15405/
https://github.com/matplotlib/matplotlib/pull/15347/
https://github.com/matplotlib/matplotlib/pull/15391/
https://github.com/matplotlib/matplotlib/pull/15389/
https://github.com/matplotlib/matplotlib/pull/15379/
https://github.com/matplotlib/matplotlib/pull/15386/
https://github.com/matplotlib/matplotlib/pull/15385/
https://github.com/matplotlib/matplotlib/pull/15377/
https://github.com/matplotlib/matplotlib/pull/15357/
https://github.com/matplotlib/matplotlib/pull/15366/
https://github.com/matplotlib/matplotlib/pull/15362/
https://github.com/matplotlib/matplotlib/pull/15360/
https://github.com/matplotlib/matplotlib/pull/15350/
https://github.com/matplotlib/matplotlib/pull/15258/
https://github.com/matplotlib/matplotlib/pull/15299/
https://github.com/matplotlib/matplotlib/pull/15327/
https://github.com/matplotlib/matplotlib/pull/15326/
https://github.com/matplotlib/matplotlib/pull/15317/
https://github.com/matplotlib/matplotlib/pull/15316/
https://github.com/matplotlib/matplotlib/pull/15291/
https://github.com/matplotlib/matplotlib/pull/15283/
https://github.com/matplotlib/matplotlib/pull/15315/

Matplotlib, Release 3.4.3

• PR #15308: Doc: Add close event to list of events

• PR #15312: Backport PR #15307 on branch v3.2.x (DOC: center footer)

• PR #15307: DOC: center footer

• PR #15276: Backport PR #15271 on branch v3.2.x (Fix font weight validation)

• PR #15279: Backport PR #15252 on branch v3.2.x (Mention labels and milestones in PR review
guidelines)

• PR #15252: Mention labels and milestones in PR review guidelines

• PR #15268: Backport PR #15266 on branch v3.2.x (Embedding in Tk example: Fix toolbar being
clipped.)

• PR #15269: Backport PR #15267 on branch v3.2.x (added multi-letter example to mathtext tutorial)

• PR #15267: added multi-letter example to mathtext tutorial

• PR #15266: Embedding in Tk example: Fix toolbar being clipped.

• PR #15243: Move some new API changes to the correct place

• PR #15245: Fix incorrect calls to warn_deprecated.

• PR #15239: Composite against white, not the savefig.facecolor rc, in print_jpeg.

• PR #15227: contains_point() docstring fixes

• PR #15242: Cleanup widgets docstrings.

• PR #14889: Support pixel-by-pixel alpha in imshow.

• PR #14928: Logit scale nonsingular

• PR #14998: Fix nonlinear spine positions & inline Spine._calc_offset_transform into
get_spine_transform.

• PR #15231: Doc: Do not write default for non-existing rcParams

• PR #15222: Cleanup projections/__init__.py.

• PR #15228: Minor docstring style cleanup

• PR #15237: Cleanup widgets.py.

• PR #15229: Doc: Fix Bbox and BboxBase links

• PR #15235: Kill FigureManagerTk._num.

• PR #15234: Drop mention of msinttypes in Windows build.

• PR #15224: Avoid infinite loop when switching actions in qt backend.

• PR #15230: Doc: Remove hard-documented rcParams defaults

• PR #15149: pyplot.style.use() to accept pathlib.Path objects as arguments

• PR #15220: Correctly format floats passed to pgf backend.

• PR #15216: Update docstrings of contains_point(s) methods

588 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/15308/
https://github.com/matplotlib/matplotlib/pull/15312/
https://github.com/matplotlib/matplotlib/pull/15307/
https://github.com/matplotlib/matplotlib/pull/15276/
https://github.com/matplotlib/matplotlib/pull/15279/
https://github.com/matplotlib/matplotlib/pull/15252/
https://github.com/matplotlib/matplotlib/pull/15268/
https://github.com/matplotlib/matplotlib/pull/15269/
https://github.com/matplotlib/matplotlib/pull/15267/
https://github.com/matplotlib/matplotlib/pull/15266/
https://github.com/matplotlib/matplotlib/pull/15243/
https://github.com/matplotlib/matplotlib/pull/15245/
https://github.com/matplotlib/matplotlib/pull/15239/
https://github.com/matplotlib/matplotlib/pull/15227/
https://github.com/matplotlib/matplotlib/pull/15242/
https://github.com/matplotlib/matplotlib/pull/14889/
https://github.com/matplotlib/matplotlib/pull/14928/
https://github.com/matplotlib/matplotlib/pull/14998/
https://github.com/matplotlib/matplotlib/pull/15231/
https://github.com/matplotlib/matplotlib/pull/15222/
https://github.com/matplotlib/matplotlib/pull/15228/
https://github.com/matplotlib/matplotlib/pull/15237/
https://github.com/matplotlib/matplotlib/pull/15229/
https://github.com/matplotlib/matplotlib/pull/15235/
https://github.com/matplotlib/matplotlib/pull/15234/
https://github.com/matplotlib/matplotlib/pull/15224/
https://github.com/matplotlib/matplotlib/pull/15230/
https://github.com/matplotlib/matplotlib/pull/15149/
https://github.com/matplotlib/matplotlib/pull/15220/
https://github.com/matplotlib/matplotlib/pull/15216/

Matplotlib, Release 3.4.3

• PR #15209: Exclude s-g generated files from flake8 check.

• PR #15204: PEP8ify some variable names.

• PR #15196: Force html4 writer for sphinx 2

• PR #13544: Improve handling of subplots spanning multiple gridspec cells.

• PR #15194: Trivial style fixes.

• PR #15202: Deprecate the renderer parameter to Figure.tight_layout.

• PR #15195: Fix integers being passed as length to quiver3d.

• PR #15180: Add some more internal links to 3.2.0 what's new

• PR #13510: Change Locator MAXTICKS checking to emitting a log at WARNING level.

• PR #15184: Mark missing_references extension as parallel read safe

• PR #15150: Autodetect whether pgf can use includegraphics[interpolate].

• PR #15163: 3.2.0 API changes page

• PR #15176: What's new for 3.2.0

• PR #11947: Ensure streamplot Euler step is always called when going out of bounds.

• PR #13702: Deduplicate methods shared between Container and Artist.

• PR #15169: TST: verify warnings fail the test suite

• PR #14888: Replace some polar baseline images by check_figures_equal.

• PR #15027: More readability improvements on axis3d.

• PR #15171: Add useful error message when trying to add Slider to 3DAxes

• PR #13775: Doc: Scatter Hist example update

• PR #15164: removed a typo

• PR #15152: Support for shorthand hex colors.

• PR #15159: Follow up on #14424 for docstring

• PR #14424: ENH: Add argument size validation to quiver.

• PR #15137: DOC: add example to power limit API change note

• PR #15144: Improve local page contents CSS

• PR #15143: Restore doc references.

• PR #15124: Replace parameter lists with square brackets

• PR #13077: fix FreeType build on Azure

• PR #15123: Improve categorical example

• PR #15134: Fix missing references in doc build.

• PR #13937: Use PYTHONFAULTHANDLER to switch on the Python fault handler.

7.1. Previous GitHub Stats 589

https://github.com/matplotlib/matplotlib/pull/15209/
https://github.com/matplotlib/matplotlib/pull/15204/
https://github.com/matplotlib/matplotlib/pull/15196/
https://github.com/matplotlib/matplotlib/pull/13544/
https://github.com/matplotlib/matplotlib/pull/15194/
https://github.com/matplotlib/matplotlib/pull/15202/
https://github.com/matplotlib/matplotlib/pull/15195/
https://github.com/matplotlib/matplotlib/pull/15180/
https://github.com/matplotlib/matplotlib/pull/13510/
https://github.com/matplotlib/matplotlib/pull/15184/
https://github.com/matplotlib/matplotlib/pull/15150/
https://github.com/matplotlib/matplotlib/pull/15163/
https://github.com/matplotlib/matplotlib/pull/15176/
https://github.com/matplotlib/matplotlib/pull/11947/
https://github.com/matplotlib/matplotlib/pull/13702/
https://github.com/matplotlib/matplotlib/pull/15169/
https://github.com/matplotlib/matplotlib/pull/14888/
https://github.com/matplotlib/matplotlib/pull/15027/
https://github.com/matplotlib/matplotlib/pull/15171/
https://github.com/matplotlib/matplotlib/pull/13775/
https://github.com/matplotlib/matplotlib/pull/15164/
https://github.com/matplotlib/matplotlib/pull/15152/
https://github.com/matplotlib/matplotlib/pull/15159/
https://github.com/matplotlib/matplotlib/pull/14424/
https://github.com/matplotlib/matplotlib/pull/15137/
https://github.com/matplotlib/matplotlib/pull/15144/
https://github.com/matplotlib/matplotlib/pull/15143/
https://github.com/matplotlib/matplotlib/pull/15124/
https://github.com/matplotlib/matplotlib/pull/13077/
https://github.com/matplotlib/matplotlib/pull/15123/
https://github.com/matplotlib/matplotlib/pull/15134/
https://github.com/matplotlib/matplotlib/pull/13937/

Matplotlib, Release 3.4.3

• PR #13452: Replace axis_artist.AttributeCopier by normal inheritance.

• PR #15045: Resize canvas when changing figure size

• PR #15122: Fixed app creation in qt5 backend (see #15100)

• PR #15099: Add lightsource parameter to bar3d

• PR #14876: Inline some afm parsing code.

• PR #15119: Deprecate a validator for a deprecated rcParam value.

• PR #15121: Fix Stacked bar graph example

• PR #15113: Cleanup layout_from_subplotspec.

• PR #13543: Remove zip_safe=False flag from setup.py.

• PR #12860: ENH: LogLocator: check for correct dimension of subs added

• PR #14349: Replace ValidateInterval by simpler specialized validators.

• PR #14352: Remove redundant is_landscape kwarg from backend_ps helpers.

• PR #15087: Pass gid to renderer

• PR #14703: Don't bother with manually resizing the Qt main window.

• PR #14833: Reuse TexManager implementation in convert_psfrags.

• PR #14893: Update layout.html for sphinx themes

• PR #15098: Simplify symlog range determination logic

• PR #15112: Cleanup legend() docstring.

• PR #15108: Fix doc build and resync matplotlibrc.template with actual defaults.

• PR #14940: Fix text kerning calculations and some FT2Font cleanup

• PR #15082: Privatize font_manager.JSONEncoder.

• PR #15106: Update docs of GridSpec

• PR #14832: ENH:made default tick formatter to switch to scientific notation earlier

• PR #15086: Style fixes.

• PR #15073: Add entry for blume to thirdparty package index

• PR #15095: Simplify _png extension by handling file open/close in Python.

• PR #15092: MNT: Add test for aitoff-projection

• PR #15101: Doc: fix typo in contour doc

• PR #14624: Fix axis inversion with loglocator and logitlocator.

• PR #15088: Fix more doc references.

• PR #15063: Add Comic Neue as a fantasy font.

• PR #14867: Propose change to PR merging policy.

590 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/13452/
https://github.com/matplotlib/matplotlib/pull/15045/
https://github.com/matplotlib/matplotlib/pull/15122/
https://github.com/matplotlib/matplotlib/pull/15099/
https://github.com/matplotlib/matplotlib/pull/14876/
https://github.com/matplotlib/matplotlib/pull/15119/
https://github.com/matplotlib/matplotlib/pull/15121/
https://github.com/matplotlib/matplotlib/pull/15113/
https://github.com/matplotlib/matplotlib/pull/13543/
https://github.com/matplotlib/matplotlib/pull/12860/
https://github.com/matplotlib/matplotlib/pull/14349/
https://github.com/matplotlib/matplotlib/pull/14352/
https://github.com/matplotlib/matplotlib/pull/15087/
https://github.com/matplotlib/matplotlib/pull/14703/
https://github.com/matplotlib/matplotlib/pull/14833/
https://github.com/matplotlib/matplotlib/pull/14893/
https://github.com/matplotlib/matplotlib/pull/15098/
https://github.com/matplotlib/matplotlib/pull/15112/
https://github.com/matplotlib/matplotlib/pull/15108/
https://github.com/matplotlib/matplotlib/pull/14940/
https://github.com/matplotlib/matplotlib/pull/15082/
https://github.com/matplotlib/matplotlib/pull/15106/
https://github.com/matplotlib/matplotlib/pull/14832/
https://github.com/matplotlib/matplotlib/pull/15086/
https://github.com/matplotlib/matplotlib/pull/15073/
https://github.com/matplotlib/matplotlib/pull/15095/
https://github.com/matplotlib/matplotlib/pull/15092/
https://github.com/matplotlib/matplotlib/pull/15101/
https://github.com/matplotlib/matplotlib/pull/14624/
https://github.com/matplotlib/matplotlib/pull/15088/
https://github.com/matplotlib/matplotlib/pull/15063/
https://github.com/matplotlib/matplotlib/pull/14867/

Matplotlib, Release 3.4.3

• PR #15068: Add FontManager.addfont to register fonts at specific paths.

• PR #13397: Deprecate axes_grid1.colorbar (in favor of matplotlib's own).

• PR #14521: Move required_interactive_framework to canvas class.

• PR #15083: Cleanup spines example.

• PR #14997: Correctly set formatters and locators on removed shared axis

• PR #15064: Fix eps hatching in MacOS Preview

• PR #15074: Write all ACCEPTS markers in docstrings as comments.

• PR #15078: Clarify docstring of FT2Font.get_glyph_name.

• PR #15080: Fix cross-references in API changes < 3.0.0.

• PR #15072: Cleanup patheffects.

• PR #15071: Cleanup offsetbox.py.

• PR #15070: Fix cross-references in API changes < 2.0.0.

• PR #10691: Fix for shared axes diverging after setting tick markers

• PR #15069: Style fixes for font_manager.py.

• PR #15067: Fix cross-references in API changes < 1.0

• PR #15061: Fix cross-references in tutorials and FAQ

• PR #15060: Fix cross-references in examples.

• PR #14957: Documentation for using ConnectionPatch across Axes with constrained…

• PR #15053: Make citation bit of README less wordy

• PR #15044: numpydoc set_size_inches docstring

• PR #15050: Clarify unnecessary special handling for colons in paths.

• PR #14797: DOC: create a Agg figure without pyplot in buffer example

• PR #14844: Add citation info to README

• PR #14884: Do not allow canvas size to become smaller than MinSize in wx backend…

• PR #14941: Improvements to make_icons.py.

• PR #15048: DOC: more nitpick follow up

• PR #15043: Fix Docs: Don’t warn for unused ignores

• PR #15025: Re-write text wrapping logic

• PR #14840: Don't assume transform is valid on access to matrix.

• PR #14862: Make optional in docstrings optional

• PR #15028: Python version conf.py

• PR #15033: FIX: un-break nightly wheels on py37

7.1. Previous GitHub Stats 591

https://github.com/matplotlib/matplotlib/pull/15068/
https://github.com/matplotlib/matplotlib/pull/13397/
https://github.com/matplotlib/matplotlib/pull/14521/
https://github.com/matplotlib/matplotlib/pull/15083/
https://github.com/matplotlib/matplotlib/pull/14997/
https://github.com/matplotlib/matplotlib/pull/15064/
https://github.com/matplotlib/matplotlib/pull/15074/
https://github.com/matplotlib/matplotlib/pull/15078/
https://github.com/matplotlib/matplotlib/pull/15080/
https://github.com/matplotlib/matplotlib/pull/15072/
https://github.com/matplotlib/matplotlib/pull/15071/
https://github.com/matplotlib/matplotlib/pull/15070/
https://github.com/matplotlib/matplotlib/pull/10691/
https://github.com/matplotlib/matplotlib/pull/15069/
https://github.com/matplotlib/matplotlib/pull/15067/
https://github.com/matplotlib/matplotlib/pull/15061/
https://github.com/matplotlib/matplotlib/pull/15060/
https://github.com/matplotlib/matplotlib/pull/14957/
https://github.com/matplotlib/matplotlib/pull/15053/
https://github.com/matplotlib/matplotlib/pull/15044/
https://github.com/matplotlib/matplotlib/pull/15050/
https://github.com/matplotlib/matplotlib/pull/14797/
https://github.com/matplotlib/matplotlib/pull/14844/
https://github.com/matplotlib/matplotlib/pull/14884/
https://github.com/matplotlib/matplotlib/pull/14941/
https://github.com/matplotlib/matplotlib/pull/15048/
https://github.com/matplotlib/matplotlib/pull/15043/
https://github.com/matplotlib/matplotlib/pull/15025/
https://github.com/matplotlib/matplotlib/pull/14840/
https://github.com/matplotlib/matplotlib/pull/14862/
https://github.com/matplotlib/matplotlib/pull/15028/
https://github.com/matplotlib/matplotlib/pull/15033/

Matplotlib, Release 3.4.3

• PR #15046: v3.1.x merge up

• PR #15015: Fix bad missing-references.json due to PR merge race condition.

• PR #14581: Make logscale bar/hist autolimits more consistents.

• PR #15034: Doc fix nitpick

• PR #14614: Deprecate {x,y,z}axis_date.

• PR #14991: Handle inherited is_separable, has_inverse in transform props detection.

• PR #15032: Clarify effect of axis('equal') on explicit data limits

• PR #15031: Update docs of GridSpec

• PR #14106: Describe FigureManager

• PR #15024: Update docs of GridSpecBase

• PR #14906: Deprecate some FT2Image methods.

• PR #14963: More Axis3D cleanup.

• PR #15009: Provide signatures to some C-level classes and methods.

• PR #14968: DOC: colormap manipulation tutorial update

• PR #15006: Deprecate get/set_*ticks minor positional use

• PR #14989: DOC:Update axes documentation

• PR #14871: Parametrize determinism tests.

• PR #14768: DOC: Enable nitpicky

• PR #15013: Matplotlib requires Python 3.6, which in turn requires Mac OS X 10.6+

• PR #15012: Fix typesetting of "GitHub"

• PR #14954: Cleanup polar_legend example.

• PR #14519: Check parameters of ColorbarBase

• PR #14942: Make _classic_test style a tiny patch on top of classic.

• PR #14988: pathlibify/fstringify setup/setupext.

• PR #14511: Deprecate allowing scalars for fill_between where

• PR #14493: Remove deprecated fig parameter form GridSpecBase.get_subplot_params()

• PR #14995: Further improve backend tutorial.

• PR #15000: Use warnings.warn, not logging.warning, in microseconds locator warning.

• PR #14990: Fix nonsensical transform in mixed-mode axes aspect computation.

• PR #15002: No need to access filesystem in test_dates.py.

• PR #14549: Improve backends documentation

• PR #14774: Fix image bbox clip.

592 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/15046/
https://github.com/matplotlib/matplotlib/pull/15015/
https://github.com/matplotlib/matplotlib/pull/14581/
https://github.com/matplotlib/matplotlib/pull/15034/
https://github.com/matplotlib/matplotlib/pull/14614/
https://github.com/matplotlib/matplotlib/pull/14991/
https://github.com/matplotlib/matplotlib/pull/15032/
https://github.com/matplotlib/matplotlib/pull/15031/
https://github.com/matplotlib/matplotlib/pull/14106/
https://github.com/matplotlib/matplotlib/pull/15024/
https://github.com/matplotlib/matplotlib/pull/14906/
https://github.com/matplotlib/matplotlib/pull/14963/
https://github.com/matplotlib/matplotlib/pull/15009/
https://github.com/matplotlib/matplotlib/pull/14968/
https://github.com/matplotlib/matplotlib/pull/15006/
https://github.com/matplotlib/matplotlib/pull/14989/
https://github.com/matplotlib/matplotlib/pull/14871/
https://github.com/matplotlib/matplotlib/pull/14768/
https://github.com/matplotlib/matplotlib/pull/15013/
https://github.com/matplotlib/matplotlib/pull/15012/
https://github.com/matplotlib/matplotlib/pull/14954/
https://github.com/matplotlib/matplotlib/pull/14519/
https://github.com/matplotlib/matplotlib/pull/14942/
https://github.com/matplotlib/matplotlib/pull/14988/
https://github.com/matplotlib/matplotlib/pull/14511/
https://github.com/matplotlib/matplotlib/pull/14493/
https://github.com/matplotlib/matplotlib/pull/14995/
https://github.com/matplotlib/matplotlib/pull/15000/
https://github.com/matplotlib/matplotlib/pull/14990/
https://github.com/matplotlib/matplotlib/pull/15002/
https://github.com/matplotlib/matplotlib/pull/14549/
https://github.com/matplotlib/matplotlib/pull/14774/

Matplotlib, Release 3.4.3

• PR #14978: Typo fixes in pyplot.py

• PR #14702: Don't enlarge toolbar for Qt high-dpi.

• PR #14922: Autodetect some transform properties.

• PR #14962: Replace inspect.getfullargspec by inspect.signature.

• PR #14958: Improve docs of toplevel module.

• PR #14926: Save a matrix unpacking/repacking in offsetbox.

• PR #14961: Cleanup demo_agg_filter.

• PR #14924: Kill the C-level (private) RendererAgg.buffer_rgba, which returns a copy.

• PR #14946: Delete virtualenv faq.

• PR #14944: Shorten style.py.

• PR #14931: Deprecate some obscure rcParam synonyms.

• PR #14947: Fix inaccuracy re: backends in intro tutorial.

• PR #14904: Fix typo in secondary_axis.py example.

• PR #14925: Support passing spine bounds as single tuple.

• PR #14921: DOC: Make abbreviation of versus consistent.

• PR #14739: Improve indentation of Line2D properties in docstrings.

• PR #14923: In examples, prefer buffer_rgba to print_to_buffer.

• PR #14908: Make matplotlib.style.available sorted alphabetically.

• PR #13567: Deprecate MovieWriterRegistry cache-dirtyness system.

• PR #14879: Error out when unsupported kwargs are passed to Scale.

• PR #14512: Logit scale, changes in LogitLocator and LogitFormatter

• PR #12415: ENH: fig.set_size to allow non-inches units

• PR #13783: Deprecate disable_internet.

• PR #14886: Further simplify the flow of pdf text output.

• PR #14894: Make slowness warning for legend(loc="best") more accurate.

• PR #14891: Fix nightly test errors

• PR #14895: Fix typos

• PR #14890: Remove unused private helper method in mplot3d.

• PR #14872: Unify text layout paths.

• PR #8183: Allow array alpha for imshow

• PR #13832: Vectorize handling of stacked/cumulative in hist().

• PR #13630: Simplify PolarAxes.can_pan.

7.1. Previous GitHub Stats 593

https://github.com/matplotlib/matplotlib/pull/14978/
https://github.com/matplotlib/matplotlib/pull/14702/
https://github.com/matplotlib/matplotlib/pull/14922/
https://github.com/matplotlib/matplotlib/pull/14962/
https://github.com/matplotlib/matplotlib/pull/14958/
https://github.com/matplotlib/matplotlib/pull/14926/
https://github.com/matplotlib/matplotlib/pull/14961/
https://github.com/matplotlib/matplotlib/pull/14924/
https://github.com/matplotlib/matplotlib/pull/14946/
https://github.com/matplotlib/matplotlib/pull/14944/
https://github.com/matplotlib/matplotlib/pull/14931/
https://github.com/matplotlib/matplotlib/pull/14947/
https://github.com/matplotlib/matplotlib/pull/14904/
https://github.com/matplotlib/matplotlib/pull/14925/
https://github.com/matplotlib/matplotlib/pull/14921/
https://github.com/matplotlib/matplotlib/pull/14739/
https://github.com/matplotlib/matplotlib/pull/14923/
https://github.com/matplotlib/matplotlib/pull/14908/
https://github.com/matplotlib/matplotlib/pull/13567/
https://github.com/matplotlib/matplotlib/pull/14879/
https://github.com/matplotlib/matplotlib/pull/14512/
https://github.com/matplotlib/matplotlib/pull/12415/
https://github.com/matplotlib/matplotlib/pull/13783/
https://github.com/matplotlib/matplotlib/pull/14886/
https://github.com/matplotlib/matplotlib/pull/14894/
https://github.com/matplotlib/matplotlib/pull/14891/
https://github.com/matplotlib/matplotlib/pull/14895/
https://github.com/matplotlib/matplotlib/pull/14890/
https://github.com/matplotlib/matplotlib/pull/14872/
https://github.com/matplotlib/matplotlib/pull/8183/
https://github.com/matplotlib/matplotlib/pull/13832/
https://github.com/matplotlib/matplotlib/pull/13630/

Matplotlib, Release 3.4.3

• PR #14565: Rewrite an argument check to _check_getitem

• PR #14875: Cleanup afm module docstring.

• PR #14880: Fix animation blitting for plots with shared axes

• PR #14870: FT2Font.get_char_index never returns None.

• PR #13463: Deprecate Locator.autoscale.

• PR #13724: ENH: anti-alias down-sampled images

• PR #14848: Clearer error message for plt.axis()

• PR #14660: colorbar(label=None) should give an empty label

• PR #14654: Cleanup of docstrings of scales

• PR #14868: Update bar stacked example to directly manipulate axes.

• PR #14749: Fix get_canvas_width_height() for pgf backend.

• PR #14776: Make ExecutableUnavailableError

• PR #14843: Don't try to cleanup CallbackRegistry during interpreter shutdown.

• PR #14849: Improve tkagg icon resolution

• PR #14866: changed all readme headings to verbs

• PR #13364: Numpyfy tick handling code in Axis3D.

• PR #13642: FIX: get_datalim for collection

• PR #14860: Stopgap fix for pandas converters in tests.

• PR #6498: Check canvas identity in Artist.contains.

• PR #14707: Add titlecolor in rcParams

• PR #14853: Fix typo in set_adjustable check.

• PR #14845: More cleanups.

• PR #14809: Clearer calls to ConnectionPatch.

• PR #14716: Use str instead of string as type in docstrings

• PR #14338: Simplify/pathlibify image_comparison.

• PR #8930: timedelta formatter

• PR #14733: Deprecate FigureFrameWx.statusbar & NavigationToolbar2Wx.statbar.

• PR #14713: Unite masked and NaN plot examples

• PR #14576: Let Axes3D share have_units, _on_units_changed with 2d axes.

• PR #14575: Make ticklabel_format work both for 2D and 3D axes.

• PR #14834: DOC: Webpage not formatted correctly on gallery docs

• PR #14730: Factor out common parts of wx event handlers.

594 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/14565/
https://github.com/matplotlib/matplotlib/pull/14875/
https://github.com/matplotlib/matplotlib/pull/14880/
https://github.com/matplotlib/matplotlib/pull/14870/
https://github.com/matplotlib/matplotlib/pull/13463/
https://github.com/matplotlib/matplotlib/pull/13724/
https://github.com/matplotlib/matplotlib/pull/14848/
https://github.com/matplotlib/matplotlib/pull/14660/
https://github.com/matplotlib/matplotlib/pull/14654/
https://github.com/matplotlib/matplotlib/pull/14868/
https://github.com/matplotlib/matplotlib/pull/14749/
https://github.com/matplotlib/matplotlib/pull/14776/
https://github.com/matplotlib/matplotlib/pull/14843/
https://github.com/matplotlib/matplotlib/pull/14849/
https://github.com/matplotlib/matplotlib/pull/14866/
https://github.com/matplotlib/matplotlib/pull/13364/
https://github.com/matplotlib/matplotlib/pull/13642/
https://github.com/matplotlib/matplotlib/pull/14860/
https://github.com/matplotlib/matplotlib/pull/6498/
https://github.com/matplotlib/matplotlib/pull/14707/
https://github.com/matplotlib/matplotlib/pull/14853/
https://github.com/matplotlib/matplotlib/pull/14845/
https://github.com/matplotlib/matplotlib/pull/14809/
https://github.com/matplotlib/matplotlib/pull/14716/
https://github.com/matplotlib/matplotlib/pull/14338/
https://github.com/matplotlib/matplotlib/pull/8930/
https://github.com/matplotlib/matplotlib/pull/14733/
https://github.com/matplotlib/matplotlib/pull/14713/
https://github.com/matplotlib/matplotlib/pull/14576/
https://github.com/matplotlib/matplotlib/pull/14575/
https://github.com/matplotlib/matplotlib/pull/14834/
https://github.com/matplotlib/matplotlib/pull/14730/

Matplotlib, Release 3.4.3

• PR #14727: Fix axes aspect for non-linear, non-log, possibly mixed-scale axes.

• PR #14835: Only allow set_adjustable("datalim") for axes with standard data ratios.

• PR #14746: Simplify Arrow constructor.

• PR #14752: Doc changes to git setup

• PR #14732: Deduplicate wx configure_subplots tool.

• PR #14715: Use array-like in docs

• PR #14728: More floating_axes cleanup.

• PR #14719: Make Qt navtoolbar more robust against removal of either pan or zoom.

• PR #14695: Various small simplifications

• PR #14745: Replace Affine2D().scale(x, x) by Affine2D().scale(x).

• PR #14687: Add missing spaces after commas in docs

• PR #14810: Lighten icons of NavigationToolbar2QT on dark-themes

• PR #14786: Deprecate axis_artist.BezierPath.

• PR #14750: Misc. simplifications.

• PR #14807: API change note on automatic blitting detection for backends

• PR #11004: Deprecate smart_bounds handling in Axis and Spine

• PR #14785: Kill some never-used attributes.

• PR #14723: Cleanup some parameter descriptions in matplotlibrc.template

• PR #14808: Small docstring updates

• PR #14686: Inset orientation

• PR #14805: Simplify text_layout example.

• PR #12052: Make AxesImage.contains account for transforms

• PR #11860: Let MovieFileWriter save temp files in a new dir

• PR #11423: FigureCanvas Designer

• PR #10688: Add legend handler and artist for FancyArrow

• PR #8321: Added ContourSet clip_path kwarg and set_clip_path() method (#2369)

• PR #14641: Simplify _process_plot_var_args.

• PR #14631: Refactor from_levels_and_colors.

• PR #14790: DOC:Add link to style examples in matplotlib.style documentation

• PR #14799: Deprecate dates.mx2num.

• PR #14793: Remove sudo tag in travis

• PR #14795: Autodetect whether a canvas class supports blitting.

7.1. Previous GitHub Stats 595

https://github.com/matplotlib/matplotlib/pull/14727/
https://github.com/matplotlib/matplotlib/pull/14835/
https://github.com/matplotlib/matplotlib/pull/14746/
https://github.com/matplotlib/matplotlib/pull/14752/
https://github.com/matplotlib/matplotlib/pull/14732/
https://github.com/matplotlib/matplotlib/pull/14715/
https://github.com/matplotlib/matplotlib/pull/14728/
https://github.com/matplotlib/matplotlib/pull/14719/
https://github.com/matplotlib/matplotlib/pull/14695/
https://github.com/matplotlib/matplotlib/pull/14745/
https://github.com/matplotlib/matplotlib/pull/14687/
https://github.com/matplotlib/matplotlib/pull/14810/
https://github.com/matplotlib/matplotlib/pull/14786/
https://github.com/matplotlib/matplotlib/pull/14750/
https://github.com/matplotlib/matplotlib/pull/14807/
https://github.com/matplotlib/matplotlib/pull/11004/
https://github.com/matplotlib/matplotlib/pull/14785/
https://github.com/matplotlib/matplotlib/pull/14723/
https://github.com/matplotlib/matplotlib/pull/14808/
https://github.com/matplotlib/matplotlib/pull/14686/
https://github.com/matplotlib/matplotlib/pull/14805/
https://github.com/matplotlib/matplotlib/pull/12052/
https://github.com/matplotlib/matplotlib/pull/11860/
https://github.com/matplotlib/matplotlib/pull/11423/
https://github.com/matplotlib/matplotlib/pull/10688/
https://github.com/matplotlib/matplotlib/pull/8321/
https://github.com/matplotlib/matplotlib/pull/14641/
https://github.com/matplotlib/matplotlib/pull/14631/
https://github.com/matplotlib/matplotlib/pull/14790/
https://github.com/matplotlib/matplotlib/pull/14799/
https://github.com/matplotlib/matplotlib/pull/14793/
https://github.com/matplotlib/matplotlib/pull/14795/

Matplotlib, Release 3.4.3

• PR #14794: DOC: Update the documentation of homepage of website

• PR #14629: Delete HTML build sources to save on artefact upload time

• PR #14792: Fix spelling typos

• PR #14789: Prefer Affine2D.translate to offset_transform in examples.

• PR #14783: Cleanup mlab.detrend.

• PR #14791: Make 'extended' and 'expanded' synonymous in font_manager

• PR #14787: Remove axis_artist _update, which is always a noop.

• PR #14758: Compiling C-ext with incorrect FreeType libs makes future compiles break

• PR #14763: Deprecate math_symbol_table function directive

• PR #14762: Decrease uses of get_canvas_width_height.

• PR #14748: Cleanup demo_text_path.

• PR #14740: Remove sudo tag in travis

• PR #14737: Cleanup twin axes docstrings.

• PR #14729: Small simplifications.

• PR #14726: Trivial simplification to Axis3d._get_coord_info.

• PR #14718: Add explanations for single character color names.

• PR #14710: Pin pydocstyle<4.0

• PR #14709: Try to improve the readability and styling of matplotlibrc.template file

• PR #14278: Inset axes bug and docs fix

• PR #14478: MNT: protect from out-of-bounds data access at the c level

• PR #14569: More deduplication of backend_tools.

• PR #14652: Soft-deprecate transform_point.

• PR #14664: Improve error reporting for scatter c as invalid RGBA.

• PR #14625: Don't double-wrap in silent_list.

• PR #14689: Update embedding_in_wx4 example.

• PR #14679: Further simplify colormap reversal.

• PR #14667: Move most of pytest's conf to conftest.py.

• PR #14632: Remove reference to old Tk/Windows bug.

• PR #14673: More shortening of setup.py prints.

• PR #14678: Fix small typo

• PR #14680: Format parameters in descriptions with emph instead of backticks

• PR #14674: Simplify colormap reversal.

596 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/14794/
https://github.com/matplotlib/matplotlib/pull/14629/
https://github.com/matplotlib/matplotlib/pull/14792/
https://github.com/matplotlib/matplotlib/pull/14789/
https://github.com/matplotlib/matplotlib/pull/14783/
https://github.com/matplotlib/matplotlib/pull/14791/
https://github.com/matplotlib/matplotlib/pull/14787/
https://github.com/matplotlib/matplotlib/pull/14758/
https://github.com/matplotlib/matplotlib/pull/14763/
https://github.com/matplotlib/matplotlib/pull/14762/
https://github.com/matplotlib/matplotlib/pull/14748/
https://github.com/matplotlib/matplotlib/pull/14740/
https://github.com/matplotlib/matplotlib/pull/14737/
https://github.com/matplotlib/matplotlib/pull/14729/
https://github.com/matplotlib/matplotlib/pull/14726/
https://github.com/matplotlib/matplotlib/pull/14718/
https://github.com/matplotlib/matplotlib/pull/14710/
https://github.com/matplotlib/matplotlib/pull/14709/
https://github.com/matplotlib/matplotlib/pull/14278/
https://github.com/matplotlib/matplotlib/pull/14478/
https://github.com/matplotlib/matplotlib/pull/14569/
https://github.com/matplotlib/matplotlib/pull/14652/
https://github.com/matplotlib/matplotlib/pull/14664/
https://github.com/matplotlib/matplotlib/pull/14625/
https://github.com/matplotlib/matplotlib/pull/14689/
https://github.com/matplotlib/matplotlib/pull/14679/
https://github.com/matplotlib/matplotlib/pull/14667/
https://github.com/matplotlib/matplotlib/pull/14632/
https://github.com/matplotlib/matplotlib/pull/14673/
https://github.com/matplotlib/matplotlib/pull/14678/
https://github.com/matplotlib/matplotlib/pull/14680/
https://github.com/matplotlib/matplotlib/pull/14674/

Matplotlib, Release 3.4.3

• PR #14672: Artist tutorial fixes

• PR #14653: Remove some unnecessary prints from setup.py.

• PR #14662: Add a _check_getitem helper to go with _check_in_list/_check_isinstance.

• PR #14666: Update IPython's doc link in Image tutorial

• PR #14671: Improve readability of matplotlibrc.template

• PR #14665: Fix a typo in pyplot tutorial

• PR #14616: Use builtin round instead of np.round for scalars.

• PR #12554: backend_template docs and fixes

• PR #14635: Fix bug when setting negative limits and using log scale

• PR #14604: Update hist() docstring following removal of normed kwarg.

• PR #14630: Remove the private Tick._name attribute.

• PR #14555: Coding guidelines concerning the API

• PR #14516: Document and test _get_packed_offsets()

• PR #14628: matplotlib > Matplotlib in devel docs

• PR #14627: gitignore pip-wheel-metadta/ directory

• PR #14612: Update some mplot3d docs.

• PR #14617: Remove a Py2.4(!) backcompat fix.

• PR #14605: Update hist2d() docstring.

• PR #13084: When linking against libpng/zlib on Windows, use upstream lib names.

• PR #13685: Remove What's new fancy example

• PR #14573: Cleanup jpl_units.

• PR #14583: Fix overly long lines in setupext.

• PR #14588: Remove [status] suppress from setup.cfg.

• PR #14591: Style fixes for secondary_axis.

• PR #14594: DOC: Make temperature scale example use a closure for easier reusability

• PR #14447: FIX: allow secondary axes minor locators to be set

• PR #14567: Fix unicode_minus + usetex.

• PR #14351: Remove some redundant check_in_list calls.

• PR #14550: Restore thumbnail of usage guide

• PR #10222: Use symlinks instead of copies for test result_images.

• PR #14267: cbook docs cleanup

• PR #14556: Improve @deprecated's docstring.

7.1. Previous GitHub Stats 597

https://github.com/matplotlib/matplotlib/pull/14672/
https://github.com/matplotlib/matplotlib/pull/14653/
https://github.com/matplotlib/matplotlib/pull/14662/
https://github.com/matplotlib/matplotlib/pull/14666/
https://github.com/matplotlib/matplotlib/pull/14671/
https://github.com/matplotlib/matplotlib/pull/14665/
https://github.com/matplotlib/matplotlib/pull/14616/
https://github.com/matplotlib/matplotlib/pull/12554/
https://github.com/matplotlib/matplotlib/pull/14635/
https://github.com/matplotlib/matplotlib/pull/14604/
https://github.com/matplotlib/matplotlib/pull/14630/
https://github.com/matplotlib/matplotlib/pull/14555/
https://github.com/matplotlib/matplotlib/pull/14516/
https://github.com/matplotlib/matplotlib/pull/14628/
https://github.com/matplotlib/matplotlib/pull/14627/
https://github.com/matplotlib/matplotlib/pull/14612/
https://github.com/matplotlib/matplotlib/pull/14617/
https://github.com/matplotlib/matplotlib/pull/14605/
https://github.com/matplotlib/matplotlib/pull/13084/
https://github.com/matplotlib/matplotlib/pull/13685/
https://github.com/matplotlib/matplotlib/pull/14573/
https://github.com/matplotlib/matplotlib/pull/14583/
https://github.com/matplotlib/matplotlib/pull/14588/
https://github.com/matplotlib/matplotlib/pull/14591/
https://github.com/matplotlib/matplotlib/pull/14594/
https://github.com/matplotlib/matplotlib/pull/14447/
https://github.com/matplotlib/matplotlib/pull/14567/
https://github.com/matplotlib/matplotlib/pull/14351/
https://github.com/matplotlib/matplotlib/pull/14550/
https://github.com/matplotlib/matplotlib/pull/10222/
https://github.com/matplotlib/matplotlib/pull/14267/
https://github.com/matplotlib/matplotlib/pull/14556/

Matplotlib, Release 3.4.3

• PR #14557: Clarify how to work with threads.

• PR #14545: In contributing.rst, encourage kwonly args and minimizing public APIs.

• PR #14533: Misc. style fixes.

• PR #14542: Move plot_directive doc to main API index.

• PR #14499: Improve custom figure example

• PR #14543: Remove the "Developing a new backend" section from contributing guide.

• PR #14540: Simplify backend switching in plot_directive.

• PR #14539: Don't overindent enumerated list in plot_directive docstring.

• PR #14537: Slightly tighten the Bbox API.

• PR #14223: Rewrite intro to usage guide.

• PR #14495: Numpydocify axes_artist.py

• PR #14529: mpl_toolkits style fixes.

• PR #14528: mathtext style fixes.

• PR #13536: Make unit converters also handle instances of subclasses.

• PR #13730: Include FreeType error codes in FreeType exception messages.

• PR #14500: Fix pydocstyle D403 (First word of the first line should be properly capitalized) in exam-
ples

• PR #14506: Simplify Qt tests.

• PR #14513: More fixes to pydocstyle D403 (First word capitalization)

• PR #14496: Fix pydocstyle D208 (Docstring is over-indented)

• PR #14347: Deprecate rcsetup.validate_path_exists.

• PR #14383: Remove the ``package_data.dlls`` setup.cfg entry.

• PR #14346: Simplify various validators in rcsetup.

• PR #14366: Move test_rcparams test files inline into test_rcparams.py.

• PR #14401: Assume that mpl-data is in its standard location.

• PR #14454: Simplify implementation of svg.image_inline.

• PR #14470: Add _check_isinstance helper.

• PR #14479: fstringify backend_ps more.

• PR #14484: Support unicode minus with ps.useafm.

• PR #14494: Style fixes.

• PR #14465: Docstrings cleanups.

• PR #14466: Let SecondaryAxis inherit get_tightbbox from _AxesBase.

598 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/14557/
https://github.com/matplotlib/matplotlib/pull/14545/
https://github.com/matplotlib/matplotlib/pull/14533/
https://github.com/matplotlib/matplotlib/pull/14542/
https://github.com/matplotlib/matplotlib/pull/14499/
https://github.com/matplotlib/matplotlib/pull/14543/
https://github.com/matplotlib/matplotlib/pull/14540/
https://github.com/matplotlib/matplotlib/pull/14539/
https://github.com/matplotlib/matplotlib/pull/14537/
https://github.com/matplotlib/matplotlib/pull/14223/
https://github.com/matplotlib/matplotlib/pull/14495/
https://github.com/matplotlib/matplotlib/pull/14529/
https://github.com/matplotlib/matplotlib/pull/14528/
https://github.com/matplotlib/matplotlib/pull/13536/
https://github.com/matplotlib/matplotlib/pull/13730/
https://github.com/matplotlib/matplotlib/pull/14500/
https://github.com/matplotlib/matplotlib/pull/14506/
https://github.com/matplotlib/matplotlib/pull/14513/
https://github.com/matplotlib/matplotlib/pull/14496/
https://github.com/matplotlib/matplotlib/pull/14347/
https://github.com/matplotlib/matplotlib/pull/14383/
https://github.com/matplotlib/matplotlib/pull/14346/
https://github.com/matplotlib/matplotlib/pull/14366/
https://github.com/matplotlib/matplotlib/pull/14401/
https://github.com/matplotlib/matplotlib/pull/14454/
https://github.com/matplotlib/matplotlib/pull/14470/
https://github.com/matplotlib/matplotlib/pull/14479/
https://github.com/matplotlib/matplotlib/pull/14484/
https://github.com/matplotlib/matplotlib/pull/14494/
https://github.com/matplotlib/matplotlib/pull/14465/
https://github.com/matplotlib/matplotlib/pull/14466/

Matplotlib, Release 3.4.3

• PR #13940: Some more f-strings.

• PR #14379: Remove unnecessary uses of unittest.mock.

• PR #14483: Improve font weight guessing.

• PR #14419: Fix test_imshow_pil on Windows.

• PR #14460: canvas.blit() already defaults to blitting the full figure canvas.

• PR #14462: Register timeout pytest marker.

• PR #14414: FEATURE: Alpha channel in Gouraud triangles in the pdf backend

• PR #13659: Clarify behavior of the 'tight' kwarg to autoscale/autoscale_view.

• PR #13901: Only test png output for mplot3d.

• PR #13338: Replace list.extend by star-expansion or other constructs.

• PR #14448: Misc doc style cleanup

• PR #14310: Update to Bounding Box for Qt5 FigureCanvasATAgg.paintEvent()

• PR #14380: Inline $MPLLOCALFREETYPE/$PYTEST_ADDOPTS/$NPROC in .travis.yml.

• PR #14413: MAINT: small improvements to the pdf backend

• PR #14452: MAINT: Minor cleanup to make functions more self consisntent

• PR #14441: Misc. docstring cleanups.

• PR #14440: Interpolations example

• PR #14402: Prefer mpl.get_data_path(), and support Paths in FontProperties.

• PR #14420: MAINT: Upgrade pytest again

• PR #14423: Fix docstring of subplots().

• PR #14410: Use aspect=1, not aspect=True.

• PR #14412: MAINT: Don't install pytest 4.6.0 on Travis

• PR #14377: Rewrite assert np.* tests to use numpy.testing

• PR #14399: Improve warning for case where data kwarg entry is ambiguous.

• PR #14390: Cleanup docs of bezier

• PR #14400: Fix to_rgba_array() for empty input

• PR #14308: Small clean to SymmetricalLogLocator

• PR #14311: travis: add c code coverage measurements

• PR #14393: Remove remaining unicode-strings markers.

• PR #14391: Remove explicit inheritance from object

• PR #14343: acquiring and releaseing keypresslock when textbox is being activated

• PR #14353: Register flaky pytest marker.

7.1. Previous GitHub Stats 599

https://github.com/matplotlib/matplotlib/pull/13940/
https://github.com/matplotlib/matplotlib/pull/14379/
https://github.com/matplotlib/matplotlib/pull/14483/
https://github.com/matplotlib/matplotlib/pull/14419/
https://github.com/matplotlib/matplotlib/pull/14460/
https://github.com/matplotlib/matplotlib/pull/14462/
https://github.com/matplotlib/matplotlib/pull/14414/
https://github.com/matplotlib/matplotlib/pull/13659/
https://github.com/matplotlib/matplotlib/pull/13901/
https://github.com/matplotlib/matplotlib/pull/13338/
https://github.com/matplotlib/matplotlib/pull/14448/
https://github.com/matplotlib/matplotlib/pull/14310/
https://github.com/matplotlib/matplotlib/pull/14380/
https://github.com/matplotlib/matplotlib/pull/14413/
https://github.com/matplotlib/matplotlib/pull/14452/
https://github.com/matplotlib/matplotlib/pull/14441/
https://github.com/matplotlib/matplotlib/pull/14440/
https://github.com/matplotlib/matplotlib/pull/14402/
https://github.com/matplotlib/matplotlib/pull/14420/
https://github.com/matplotlib/matplotlib/pull/14423/
https://github.com/matplotlib/matplotlib/pull/14410/
https://github.com/matplotlib/matplotlib/pull/14412/
https://github.com/matplotlib/matplotlib/pull/14377/
https://github.com/matplotlib/matplotlib/pull/14399/
https://github.com/matplotlib/matplotlib/pull/14390/
https://github.com/matplotlib/matplotlib/pull/14400/
https://github.com/matplotlib/matplotlib/pull/14308/
https://github.com/matplotlib/matplotlib/pull/14311/
https://github.com/matplotlib/matplotlib/pull/14393/
https://github.com/matplotlib/matplotlib/pull/14391/
https://github.com/matplotlib/matplotlib/pull/14343/
https://github.com/matplotlib/matplotlib/pull/14353/

Matplotlib, Release 3.4.3

• PR #14373: Properly hide __has_include to support C++<17 compilers.

• PR #14378: Remove setup_method

• PR #14368: Finish removing jquery from the repo.

• PR #14360: Deprecate boxplot(..., whis="range").

• PR #14376: Simplify removal of figure patch from bbox calculations.

• PR #14363: Make is_natively_supported private.

• PR #14330: Remove remaining unittest.TestCase uses

• PR #13663: Kill the PkgConfig singleton in setupext.

• PR #13067: Simplify generation of error messages for missing libpng/freetype.

• PR #14358: DOC boxplot whis parameter

• PR #14014: Disallow figure argument for pyplot.subplot() and Figure.add_subplot()

• PR #14350: Use cbook._check_in_list more often.

• PR #14348: Cleanup markers.py.

• PR #14345: Use importorskip for tests depending on pytz.

• PR #14170: In setup.py, inline the packages that need to be installed into setup().

• PR #14332: Use raw docstrings instead of escaping backslashes

• PR #14336: Enforce pydocstyle D412

• PR #14144: Deprecate the 'warn' parameter to matplotlib.use().

• PR #14328: Remove explicit inheritance from object

• PR #14035: Improve properties formatting in interpolated docstrings.

• PR #14018: pep8ing.

• PR #13542: Move {setup,install}_requires from setupext.py to setup.py.

• PR #13670: Simplify the logic of axis().

• PR #14046: Deprecate checkdep_ps_distiller.

• PR #14236: Simplify StixFonts.get_sized_alternatives_for_symbol.

• PR #14101: Shorten _ImageBase._make_image.

• PR #14246: Deprecate public use of makeMappingArray

• PR #13740: Deprecate plotfile.

• PR #14216: Walk the artist tree when preparing for saving with tight bbox.

• PR #14305: Small grammatical error.

• PR #14104: Factor out retrieval of data relative to datapath

• PR #14016: pep8ify backends.

600 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/14373/
https://github.com/matplotlib/matplotlib/pull/14378/
https://github.com/matplotlib/matplotlib/pull/14368/
https://github.com/matplotlib/matplotlib/pull/14360/
https://github.com/matplotlib/matplotlib/pull/14376/
https://github.com/matplotlib/matplotlib/pull/14363/
https://github.com/matplotlib/matplotlib/pull/14330/
https://github.com/matplotlib/matplotlib/pull/13663/
https://github.com/matplotlib/matplotlib/pull/13067/
https://github.com/matplotlib/matplotlib/pull/14358/
https://github.com/matplotlib/matplotlib/pull/14014/
https://github.com/matplotlib/matplotlib/pull/14350/
https://github.com/matplotlib/matplotlib/pull/14348/
https://github.com/matplotlib/matplotlib/pull/14345/
https://github.com/matplotlib/matplotlib/pull/14170/
https://github.com/matplotlib/matplotlib/pull/14332/
https://github.com/matplotlib/matplotlib/pull/14336/
https://github.com/matplotlib/matplotlib/pull/14144/
https://github.com/matplotlib/matplotlib/pull/14328/
https://github.com/matplotlib/matplotlib/pull/14035/
https://github.com/matplotlib/matplotlib/pull/14018/
https://github.com/matplotlib/matplotlib/pull/13542/
https://github.com/matplotlib/matplotlib/pull/13670/
https://github.com/matplotlib/matplotlib/pull/14046/
https://github.com/matplotlib/matplotlib/pull/14236/
https://github.com/matplotlib/matplotlib/pull/14101/
https://github.com/matplotlib/matplotlib/pull/14246/
https://github.com/matplotlib/matplotlib/pull/13740/
https://github.com/matplotlib/matplotlib/pull/14216/
https://github.com/matplotlib/matplotlib/pull/14305/
https://github.com/matplotlib/matplotlib/pull/14104/
https://github.com/matplotlib/matplotlib/pull/14016/

Matplotlib, Release 3.4.3

• PR #14299: Fix #13711 by importing cbook.

• PR #14244: Remove APIs deprecated in mpl3.0.

• PR #14068: Alternative fix for passing iterator as frames to FuncAnimation

• PR #13711: Deprecate NavigationToolbar2Tk.set_active.

• PR #14280: Simplify validate_markevery logic.

• PR #14273: pep8ify a couple of variable names.

• PR #14115: Reorganize scatter arguments parsing.

• PR #14271: Replace some uses of np.iterable

• PR #14257: Changing cmap(np.nan) to 'bad' value rather than 'under' value

• PR #14259: Deprecate string as color sequence

• PR #13506: Change colorbar for contour to have the proper axes limits...

• PR #13494: Add colorbar annotation example plot to gallery

• PR #14266: Make matplotlib.figure.AxesStack private

• PR #14166: Shorten usage of @image_comparison.

• PR #14240: Merge up 31x

• PR #14242: Avoid a buffer copy in PillowWriter.

• PR #9672: Only set the wait cursor if the last draw was >1s ago.

• PR #14224: Update plt.show() doc

• PR #14218: Use stdlib mimetypes instead of hardcoding them.

• PR #14082: In tk backend, don't try to update mouse position after resize.

• PR #14084: Check number of positional arguments passed to quiver()

• PR #14214: Fix some docstring style issues.

• PR #14201: Fix E124 flake8 violations (closing bracket indentation).

• PR #14096: Consistently use axs to refer to a set of Axes

• PR #14204: Fix various flake8 indent problems.

• PR #14205: Obey flake8 "don't assign a lambda, use a def".

• PR #14198: Remove unused imports

• PR #14173: Prepare to change the default pad for AxesDivider.append_axes.

• PR #13738: Fix TypeError when plotting stacked bar chart with decimal

• PR #14151: Clarify error with usetex when cm-super is not installed.

• PR #14107: Feature: draw percentiles in violinplot

• PR #14172: Remove check_requirements from setupext.

7.1. Previous GitHub Stats 601

https://github.com/matplotlib/matplotlib/pull/14299/
https://github.com/matplotlib/matplotlib/pull/14244/
https://github.com/matplotlib/matplotlib/pull/14068/
https://github.com/matplotlib/matplotlib/pull/13711/
https://github.com/matplotlib/matplotlib/pull/14280/
https://github.com/matplotlib/matplotlib/pull/14273/
https://github.com/matplotlib/matplotlib/pull/14115/
https://github.com/matplotlib/matplotlib/pull/14271/
https://github.com/matplotlib/matplotlib/pull/14257/
https://github.com/matplotlib/matplotlib/pull/14259/
https://github.com/matplotlib/matplotlib/pull/13506/
https://github.com/matplotlib/matplotlib/pull/13494/
https://github.com/matplotlib/matplotlib/pull/14266/
https://github.com/matplotlib/matplotlib/pull/14166/
https://github.com/matplotlib/matplotlib/pull/14240/
https://github.com/matplotlib/matplotlib/pull/14242/
https://github.com/matplotlib/matplotlib/pull/9672/
https://github.com/matplotlib/matplotlib/pull/14224/
https://github.com/matplotlib/matplotlib/pull/14218/
https://github.com/matplotlib/matplotlib/pull/14082/
https://github.com/matplotlib/matplotlib/pull/14084/
https://github.com/matplotlib/matplotlib/pull/14214/
https://github.com/matplotlib/matplotlib/pull/14201/
https://github.com/matplotlib/matplotlib/pull/14096/
https://github.com/matplotlib/matplotlib/pull/14204/
https://github.com/matplotlib/matplotlib/pull/14205/
https://github.com/matplotlib/matplotlib/pull/14198/
https://github.com/matplotlib/matplotlib/pull/14173/
https://github.com/matplotlib/matplotlib/pull/13738/
https://github.com/matplotlib/matplotlib/pull/14151/
https://github.com/matplotlib/matplotlib/pull/14107/
https://github.com/matplotlib/matplotlib/pull/14172/

Matplotlib, Release 3.4.3

• PR #14158: Fix test_lazy_imports in presence of $MPLBACKEND or matplotlibrc.

• PR #14157: Isolate nbagg test from user ipython profile.

• PR #14147: Dedent overindented list in example docstring.

• PR #14134: Deprecate the dryrun parameter to print_foo().

• PR #14145: Remove warnings handling for fixed bugs.

• PR #13977: Always import pyplot when calling matplotlib.use().

• PR #14131: Make test suite fail on warnings.

• PR #13593: Only autoscale_view() when needed, not after every plotting call.

• PR #13902: Add support for metadata= and pil_kwargs= in imsave().

• PR #14140: Avoid backslash-quote by changing surrounding quotes.

• PR #14132: Move some toplevel strings into the only functions that use them.

• PR #13708: Annotation.contains shouldn't consider the text+arrow's joint bbox.

• PR #13980: Don't let margins expand polar plots to negative radii by default.

• PR #14075: Remove uninformative entries from glossary.

• PR #14002: Allow pandas DataFrames through norms

• PR #14114: Allow SVG Text-as-Text to Use Data Coordinates

• PR #14120: Remove mention of $QT_API in matplotlibrc example.

• PR #13878: Style fixes for floating_axes.

• PR #14108: Deprecate FigureCanvasMac.invalidate in favor of draw_idle.

• PR #13879: Clarify handling of "extreme" values in FloatingAxisArtistHelper.

• PR #5602: Automatic downsampling of images.

• PR #14112: Remove old code path in layout.html

• PR #13959: Scatter: make "c" and "s" argument handling more consistent.

• PR #14110: Simplify scatter_piecharts example.

• PR #14111: Trivial cleanups.

• PR #14085: Simplify get_current_fig_manager().

• PR #14083: Deprecate FigureCanvasBase.draw_cursor.

• PR #14089: Cleanup bar_stacked, bar_unit_demo examples.

• PR #14063: Add pydocstyle checks to flake8

• PR #14077: Fix tick label wobbling in animated Qt example

• PR #14070: Cleanup some pyplot docstrings.

• PR #6280: Added ability to offset errorbars when using errorevery.

602 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/14158/
https://github.com/matplotlib/matplotlib/pull/14157/
https://github.com/matplotlib/matplotlib/pull/14147/
https://github.com/matplotlib/matplotlib/pull/14134/
https://github.com/matplotlib/matplotlib/pull/14145/
https://github.com/matplotlib/matplotlib/pull/13977/
https://github.com/matplotlib/matplotlib/pull/14131/
https://github.com/matplotlib/matplotlib/pull/13593/
https://github.com/matplotlib/matplotlib/pull/13902/
https://github.com/matplotlib/matplotlib/pull/14140/
https://github.com/matplotlib/matplotlib/pull/14132/
https://github.com/matplotlib/matplotlib/pull/13708/
https://github.com/matplotlib/matplotlib/pull/13980/
https://github.com/matplotlib/matplotlib/pull/14075/
https://github.com/matplotlib/matplotlib/pull/14002/
https://github.com/matplotlib/matplotlib/pull/14114/
https://github.com/matplotlib/matplotlib/pull/14120/
https://github.com/matplotlib/matplotlib/pull/13878/
https://github.com/matplotlib/matplotlib/pull/14108/
https://github.com/matplotlib/matplotlib/pull/13879/
https://github.com/matplotlib/matplotlib/pull/5602/
https://github.com/matplotlib/matplotlib/pull/14112/
https://github.com/matplotlib/matplotlib/pull/13959/
https://github.com/matplotlib/matplotlib/pull/14110/
https://github.com/matplotlib/matplotlib/pull/14111/
https://github.com/matplotlib/matplotlib/pull/14085/
https://github.com/matplotlib/matplotlib/pull/14083/
https://github.com/matplotlib/matplotlib/pull/14089/
https://github.com/matplotlib/matplotlib/pull/14063/
https://github.com/matplotlib/matplotlib/pull/14077/
https://github.com/matplotlib/matplotlib/pull/14070/
https://github.com/matplotlib/matplotlib/pull/6280/

Matplotlib, Release 3.4.3

• PR #13679: Fix passing iterator as frames to FuncAnimation

• PR #14023: Improve Unicode minus example

• PR #14041: Pretty-format subprocess logs.

• PR #14038: Cleanup path.py docstrings.

• PR #13701: Small cleanups.

• PR #14020: Better error message when trying to use Gtk3Agg backend without cairo

• PR #14021: Fix ax.legend Returns markup

• PR #13986: Support RGBA for quadmesh mode of pcolorfast.

• PR #14009: Deprecate compare_versions.

• PR #14010: Deprecate get_home()

• PR #13932: Remove many unused variables.

• PR #13854: Cleanup contour.py.

• PR #13866: Switch PyArg_ParseTupleAndKeywords from "es" to "s".

• PR #13945: Make unicode_minus example more focused.

• PR #13876: Deprecate factor=None in axisartist.

• PR #13929: Better handle deprecated rcParams.

• PR #13851: Deprecate setting Axis.major.locator to non-Locator; idem for Formatters

• PR #13938: numpydocify quiverkey.

• PR #13936: Pathlibify animation.

• PR #13984: Allow setting tick colour on 3D axes

• PR #13987: Deprecate mlab.{apply_window,stride_repeat}.

• PR #13983: Fix locator/formatter setting when removing shared Axes

• PR #13957: Remove many unused variables in tests.

• PR #13981: Test cleanups.

• PR #13970: Check vmin/vmax are valid when doing inverse in LogNorm

• PR #13978: Make normalize_kwargs more convenient for third-party use.

• PR #13972: Remove _process_plot_var_args.set{line,patch}_props.

• PR #13795: Make _warn_external correctly report warnings arising from tests.

• PR #13885: Deprecate axisartist.grid_finder.GridFinderBase.

• PR #13913: Fix string numbers in to_rgba() and is_color_like()

• PR #13935: Deprecate the useless switch_backend_warn parameter to matplotlib.test.

• PR #13952: Cleanup animation tests.

7.1. Previous GitHub Stats 603

https://github.com/matplotlib/matplotlib/pull/13679/
https://github.com/matplotlib/matplotlib/pull/14023/
https://github.com/matplotlib/matplotlib/pull/14041/
https://github.com/matplotlib/matplotlib/pull/14038/
https://github.com/matplotlib/matplotlib/pull/13701/
https://github.com/matplotlib/matplotlib/pull/14020/
https://github.com/matplotlib/matplotlib/pull/14021/
https://github.com/matplotlib/matplotlib/pull/13986/
https://github.com/matplotlib/matplotlib/pull/14009/
https://github.com/matplotlib/matplotlib/pull/14010/
https://github.com/matplotlib/matplotlib/pull/13932/
https://github.com/matplotlib/matplotlib/pull/13854/
https://github.com/matplotlib/matplotlib/pull/13866/
https://github.com/matplotlib/matplotlib/pull/13945/
https://github.com/matplotlib/matplotlib/pull/13876/
https://github.com/matplotlib/matplotlib/pull/13929/
https://github.com/matplotlib/matplotlib/pull/13851/
https://github.com/matplotlib/matplotlib/pull/13938/
https://github.com/matplotlib/matplotlib/pull/13936/
https://github.com/matplotlib/matplotlib/pull/13984/
https://github.com/matplotlib/matplotlib/pull/13987/
https://github.com/matplotlib/matplotlib/pull/13983/
https://github.com/matplotlib/matplotlib/pull/13957/
https://github.com/matplotlib/matplotlib/pull/13981/
https://github.com/matplotlib/matplotlib/pull/13970/
https://github.com/matplotlib/matplotlib/pull/13978/
https://github.com/matplotlib/matplotlib/pull/13972/
https://github.com/matplotlib/matplotlib/pull/13795/
https://github.com/matplotlib/matplotlib/pull/13885/
https://github.com/matplotlib/matplotlib/pull/13913/
https://github.com/matplotlib/matplotlib/pull/13935/
https://github.com/matplotlib/matplotlib/pull/13952/

Matplotlib, Release 3.4.3

• PR #13942: Make Cursors an (Int)Enum.

• PR #13953: Unxfail a now fixed test in test_category.

• PR #13925: Fix passing Path to ps backend when text.usetex rc is True.

• PR #13943: Don't crash on str(figimage(...)).

• PR #13944: Document how to support unicode minus in pgf backend.

• PR #13802: New rcparam to set default axes title location

• PR #13855: a and b or c -> b if a else c

• PR #13923: Correctly handle invalid PNG metadata.

• PR #13926: Suppress warnings in tests.

• PR #13920: Style fixes for category.py.

• PR #13889: Shorten docstrings by removing unneeded :class:/:func: + rewordings.

• PR #13911: Fix joinstyles example

• PR #13917: Faster categorical tick formatter.

• PR #13918: Make matplotlib.testing assume pytest by default, not nose.

• PR #13894: Check for positive number of rows and cols

• PR #13895: Remove unused setupext.is_min_version.

• PR #13886: Shorten Figure.set_size_inches.

• PR #13859: Ensure figsize is positive finite

• PR #13877: zeros_like(x) + y -> full_like(x, y)

• PR #13875: Style fixes for grid_helper_curvelinear.

• PR #13873: Style fixes to grid_finder.

• PR #13782: Don't access internet during tests.

• PR #13833: Some more usage of _check_in_list.

• PR #13834: Cleanup FancyArrowPatch docstring

• PR #13811: Generate Figure method wrappers via boilerplate.py

• PR #13797: Move sphinxext test to matplotlib.tests like everyone else.

• PR #13770: broken_barh docstring

• PR #13757: Remove mention of "enabling fontconfig support".

• PR #13454: Add "c" as alias for "color" for Collections

• PR #13756: Reorder the logic of _update_title_position.

• PR #13744: Restructure boilerplate.py

• PR #13369: Use default colours for examples

604 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/13942/
https://github.com/matplotlib/matplotlib/pull/13953/
https://github.com/matplotlib/matplotlib/pull/13925/
https://github.com/matplotlib/matplotlib/pull/13943/
https://github.com/matplotlib/matplotlib/pull/13944/
https://github.com/matplotlib/matplotlib/pull/13802/
https://github.com/matplotlib/matplotlib/pull/13855/
https://github.com/matplotlib/matplotlib/pull/13923/
https://github.com/matplotlib/matplotlib/pull/13926/
https://github.com/matplotlib/matplotlib/pull/13920/
https://github.com/matplotlib/matplotlib/pull/13889/
https://github.com/matplotlib/matplotlib/pull/13911/
https://github.com/matplotlib/matplotlib/pull/13917/
https://github.com/matplotlib/matplotlib/pull/13918/
https://github.com/matplotlib/matplotlib/pull/13894/
https://github.com/matplotlib/matplotlib/pull/13895/
https://github.com/matplotlib/matplotlib/pull/13886/
https://github.com/matplotlib/matplotlib/pull/13859/
https://github.com/matplotlib/matplotlib/pull/13877/
https://github.com/matplotlib/matplotlib/pull/13875/
https://github.com/matplotlib/matplotlib/pull/13873/
https://github.com/matplotlib/matplotlib/pull/13782/
https://github.com/matplotlib/matplotlib/pull/13833/
https://github.com/matplotlib/matplotlib/pull/13834/
https://github.com/matplotlib/matplotlib/pull/13811/
https://github.com/matplotlib/matplotlib/pull/13797/
https://github.com/matplotlib/matplotlib/pull/13770/
https://github.com/matplotlib/matplotlib/pull/13757/
https://github.com/matplotlib/matplotlib/pull/13454/
https://github.com/matplotlib/matplotlib/pull/13756/
https://github.com/matplotlib/matplotlib/pull/13744/
https://github.com/matplotlib/matplotlib/pull/13369/

Matplotlib, Release 3.4.3

• PR #13697: Delete pyplot_scales example.

• PR #13726: Clarify a bit the implementation of blend_hsv.

• PR #13731: Check for already running QApplication in Qt embedding example.

• PR #13736: Deduplicate docstrings and validation for set_alpha.

• PR #13737: Remove duplicated methods in FixedAxisArtistHelper.

• PR #13721: Kill pyplot docstrings that get overwritten by @docstring.copy.

• PR #13690: Cleanup hexbin.

• PR #13683: Remove axes border for examples that list styles

• PR #13280: Add SubplotSpec.add_subplot.

• PR #11387: Deprecate Axes3D.w_{x,y,z}axis in favor of .{x,y,z}axis.

• PR #13671: Suppress some warnings in tests.

• PR #13657: DOC: fail the doc build on errors, but keep going to end

• PR #13647: Fix FancyArrowPatch joinstyle

• PR #13637: BLD: parameterize python_requires

• PR #13633: plot_directive: Avoid warning if plot_formats doesn't contain 'png'

• PR #13629: Small example simplification.

• PR #13620: Improve watermark example

• PR #13589: Kill Axes._connected.

• PR #13428: free cart pendulum animation example

• PR #10487: fixed transparency bug

• PR #13551: Fix IndexError for pyplot.legend() when plotting empty bar chart with label

• PR #13524: Cleanup docs for GraphicsContextBase.{get,set}_dashes.

• PR #13556: Cleanup warnings handling in tests.

• PR #8100: Deprecate MAXTICKS, Locator.raise_if_exceeds.

• PR #13534: More followup to autoregistering 3d axes.

• PR #13327: pcolorfast simplifications.

• PR #13532: More use of cbook._check_in_list.

• PR #13520: Register 3d projection by default.

• PR #13394: Deduplicate some code between floating_axes and grid_helper_curvelinear.

• PR #13527: Make SubplotSpec.num2 never None.

• PR #12249: Replaced noqa-comments by using Axes3D.name instead of '3d' for proje…

Issues (125):

7.1. Previous GitHub Stats 605

https://github.com/matplotlib/matplotlib/pull/13697/
https://github.com/matplotlib/matplotlib/pull/13726/
https://github.com/matplotlib/matplotlib/pull/13731/
https://github.com/matplotlib/matplotlib/pull/13736/
https://github.com/matplotlib/matplotlib/pull/13737/
https://github.com/matplotlib/matplotlib/pull/13721/
https://github.com/matplotlib/matplotlib/pull/13690/
https://github.com/matplotlib/matplotlib/pull/13683/
https://github.com/matplotlib/matplotlib/pull/13280/
https://github.com/matplotlib/matplotlib/pull/11387/
https://github.com/matplotlib/matplotlib/pull/13671/
https://github.com/matplotlib/matplotlib/pull/13657/
https://github.com/matplotlib/matplotlib/pull/13647/
https://github.com/matplotlib/matplotlib/pull/13637/
https://github.com/matplotlib/matplotlib/pull/13633/
https://github.com/matplotlib/matplotlib/pull/13629/
https://github.com/matplotlib/matplotlib/pull/13620/
https://github.com/matplotlib/matplotlib/pull/13589/
https://github.com/matplotlib/matplotlib/pull/13428/
https://github.com/matplotlib/matplotlib/pull/10487/
https://github.com/matplotlib/matplotlib/pull/13551/
https://github.com/matplotlib/matplotlib/pull/13524/
https://github.com/matplotlib/matplotlib/pull/13556/
https://github.com/matplotlib/matplotlib/pull/8100/
https://github.com/matplotlib/matplotlib/pull/13534/
https://github.com/matplotlib/matplotlib/pull/13327/
https://github.com/matplotlib/matplotlib/pull/13532/
https://github.com/matplotlib/matplotlib/pull/13520/
https://github.com/matplotlib/matplotlib/pull/13394/
https://github.com/matplotlib/matplotlib/pull/13527/
https://github.com/matplotlib/matplotlib/pull/12249/

Matplotlib, Release 3.4.3

• #16487: Add link to blog to front page

• #16478: The bottom parameter of plt.hist() shifts the data as well, not just the baseline

• #16280: SymLogNorm colorbar incorrect on master

• #16448: Bad interaction between shared axes and pcolormesh sticky edges

• #16451: InvertedLogTransform inherits from deprecated base

• #16420: Error when adding colorbar to pcolormesh of a boolean array

• #16114: Prose error on website (first paragraph)

• #8291: Unable to pickle.load(fig) with mpl in jupyter notebook

• #16173: Constrained_layout creates extra axes when used with subgridspec

• #16127: nbformat 5.0.0 missing schema files

• #15849: Using pandas.Timestamp in blended coordinate system of ax.annotate.

• #6015: scatterplot axis autoscale fails for small data values

• #15806: 3.2.0 may break some Cartopy tests

• #15852: Lasso selector does not show in Jupyter notebook

• #15820: Show incomplete tick labels when using mixed chinese and english characters

• #15770: DOCS 2D Line label option _nolegend_ is not documented

• #15332: Type promotion error with datetime bins in hist

• #15611: BUG: Qt5Agg window size regression

• #7130: Incorrect autoscaling of polar plot limits after scatter

• #15576: Multi-line ticks cause cut-offs

• #8609: Clipped tick labels

• #15517: antialiased image check seems wrong when used on zoomed image

• #13400: Qt Embedding w/ Spyder

• #14724: drawstyle parameter of line needs example

• #13619: Importing matplotlib.animation prevents python script from executing in the background

• #14270: Secondary axis called with [0, 1] might produce exceptions in case these are invalid data

• #15417: Why is smart_bounds() being deprecated?

• #9778: Blanks in colorbar just inside of 'extend' arrowpoints when using AxesGrid

• #15336: DivergingNorm is a misleading name

• #15399: OSError: [Errno 86] Bad CPU type in executable: 'convert' on import matplotlib.animation

• #15109: matplotlib.collections inheritance diagram small/blurry

• #15331: Log Scale: FloatingPointError: underflow encountered in power

606 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/16487/
https://github.com/matplotlib/matplotlib/issues/16478/
https://github.com/matplotlib/matplotlib/issues/16280/
https://github.com/matplotlib/matplotlib/issues/16448/
https://github.com/matplotlib/matplotlib/issues/16451/
https://github.com/matplotlib/matplotlib/issues/16420/
https://github.com/matplotlib/matplotlib/issues/16114/
https://github.com/matplotlib/matplotlib/issues/8291/
https://github.com/matplotlib/matplotlib/issues/16173/
https://github.com/matplotlib/matplotlib/issues/16127/
https://github.com/matplotlib/matplotlib/issues/15849/
https://github.com/matplotlib/matplotlib/issues/6015/
https://github.com/matplotlib/matplotlib/issues/15806/
https://github.com/matplotlib/matplotlib/issues/15852/
https://github.com/matplotlib/matplotlib/issues/15820/
https://github.com/matplotlib/matplotlib/issues/15770/
https://github.com/matplotlib/matplotlib/issues/15332/
https://github.com/matplotlib/matplotlib/issues/15611/
https://github.com/matplotlib/matplotlib/issues/7130/
https://github.com/matplotlib/matplotlib/issues/15576/
https://github.com/matplotlib/matplotlib/issues/8609/
https://github.com/matplotlib/matplotlib/issues/15517/
https://github.com/matplotlib/matplotlib/issues/13400/
https://github.com/matplotlib/matplotlib/issues/14724/
https://github.com/matplotlib/matplotlib/issues/13619/
https://github.com/matplotlib/matplotlib/issues/14270/
https://github.com/matplotlib/matplotlib/issues/15417/
https://github.com/matplotlib/matplotlib/issues/9778/
https://github.com/matplotlib/matplotlib/issues/15336/
https://github.com/matplotlib/matplotlib/issues/15399/
https://github.com/matplotlib/matplotlib/issues/15109/
https://github.com/matplotlib/matplotlib/issues/15331/

Matplotlib, Release 3.4.3

• #15251: Large memory growth with log scaling and linear ticking

• #15247: Colorbar tick placement issues with ImageGrid and LogNorm

• #15306: Footer off centre

• #13485: Matplotlib NavigationToolbar2Tk disappears when reducing window size

• #15232: DOC: Automatic default rcParam expansion creates misleading sentences

• #14141: setting spine position on a log plot fails

• #15138: Make plt.style.use accept path-like objects in addition to string

• #14207: Check if point is in path or not by contains_point

• #13591: Style issues when building the docs with (future) Sphinx 2.0

• #8089: Using Minute Locator to set x-axis ticks exceeds Locator.MAXTICKS

• #15075: sphinxext.missing_references does not specify if it supports parallel file read.

• #10963: Replace pgfimage by includegraphics in PGF backend

• #15156: ax.text fails with positional argument error

• #14439: hist() fails when all data points are np.nan

• #15042: How to handle sphinx nitpicky mode

• #14060: quiver(C=...) argument is not reasonably validated

• #11335: TST: testing not catching bad escape sequences in doc strings

• #15040: Wrong figure window size after calling fig.set_size_inches() repeatedly

• #15100: Issue with creating QApplication in QT backend

• #14887: kerning seems generally wrong

• #14800: default tick formatter could switch to scientific notation earlier

• #14503: Add a test for #14451

• #14907: ConnectionPatch across axes needs to be excluded from layout management

• #14911: Removing a shared axes via ax.remove() leads to an error.

• #12462: cbar.add_lines should allow manually adding lines, not just contour sets

• #14796: Show user how to use Agg buffer in example

• #14883: MinSize not respected using wx backend causes wxAssertionError. Bug fix included.

• #15014: Wrapping of text adds leading newline character if first word is long

• #14918: constrained_layout fails with hidden axis...

• #14981: Barplot call crashes when called with yscale="log" and bins with h=0

• #4621: Default bottom of Stepfilled histograms should be set according to ymin

• #15030: Doc build broken

7.1. Previous GitHub Stats 607

https://github.com/matplotlib/matplotlib/issues/15251/
https://github.com/matplotlib/matplotlib/issues/15247/
https://github.com/matplotlib/matplotlib/issues/15306/
https://github.com/matplotlib/matplotlib/issues/13485/
https://github.com/matplotlib/matplotlib/issues/15232/
https://github.com/matplotlib/matplotlib/issues/14141/
https://github.com/matplotlib/matplotlib/issues/15138/
https://github.com/matplotlib/matplotlib/issues/14207/
https://github.com/matplotlib/matplotlib/issues/13591/
https://github.com/matplotlib/matplotlib/issues/8089/
https://github.com/matplotlib/matplotlib/issues/15075/
https://github.com/matplotlib/matplotlib/issues/10963/
https://github.com/matplotlib/matplotlib/issues/15156/
https://github.com/matplotlib/matplotlib/issues/14439/
https://github.com/matplotlib/matplotlib/issues/15042/
https://github.com/matplotlib/matplotlib/issues/14060/
https://github.com/matplotlib/matplotlib/issues/11335/
https://github.com/matplotlib/matplotlib/issues/15040/
https://github.com/matplotlib/matplotlib/issues/15100/
https://github.com/matplotlib/matplotlib/issues/14887/
https://github.com/matplotlib/matplotlib/issues/14800/
https://github.com/matplotlib/matplotlib/issues/14503/
https://github.com/matplotlib/matplotlib/issues/14907/
https://github.com/matplotlib/matplotlib/issues/14911/
https://github.com/matplotlib/matplotlib/issues/12462/
https://github.com/matplotlib/matplotlib/issues/14796/
https://github.com/matplotlib/matplotlib/issues/14883/
https://github.com/matplotlib/matplotlib/issues/15014/
https://github.com/matplotlib/matplotlib/issues/14918/
https://github.com/matplotlib/matplotlib/issues/14981/
https://github.com/matplotlib/matplotlib/issues/4621/
https://github.com/matplotlib/matplotlib/issues/15030/

Matplotlib, Release 3.4.3

• #8093: set_ylim not working with plt.axis('equal')

• #6055: Serious problems on the axes documentation

• #9979: Axis limits are set badly with small values in scatter().

• #10842: Text bbox empty dict should be ignored

• #13698: The default logit minor locator should not display tick labels

• #14878: plt.yscale doesn't throw warning with invalid kwarg

• #5619: Symlog linear region

• #14564: Broken string interpolation

• #13668: Add better error message to plt.axis()

• #14563: colorbar label prints "None" when label=None

• #13660: Closing amatplotlib figure with event handling occasionally causes “TypeError: isinstance()”

• #13033: 'NoneType' has no attribute '_alive' when using plt in a context manager

• #13891: Blurry app icon on macOS

• #14656: Axes title default color

• #14831: DOC: Webpage not formatted correctly on gallery docs

• #13819: Aspect ratio for not so common scales

• #8878: Setting aspect ratio for semi-log plots

• #4900: UnboundLocalError: local variable 'aspect_scale_mode' referenced before assignment

• #14608: Issue with using plt.axis('equal') with plt.polar(theta,r) plot

• #12893: [PyQt] NavigationToolbar2QT : Error when removing tools

• #14670: indicate_inset rectangles is sensitive to axis-flipping

• #14362: Add link to style examples in matplotlib.style documentation

• #6295: restore_region is not documented as a method of FigureCanvas

• #14754: Better pointer to dev docs on website

• #14744: Savefig svg fails with "Cannot cast array data from dtype('<U7') to dtype('float64') according
to the rule 'safe'"

• #11919: Wrong Error Message

• #6824: Image comparison decorator: symlinks to baseline images

• #12180: Deprecate and remove pyplot.plotfile?

• #14180: ImageComparisonFailure: Image sizes do not match expected size

• #14443: Secondary axis does not show minor ticks.

• #8423: UnicodeDecodeError when making a plot using the 'classic' style and text.usetex=True

608 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/8093/
https://github.com/matplotlib/matplotlib/issues/6055/
https://github.com/matplotlib/matplotlib/issues/9979/
https://github.com/matplotlib/matplotlib/issues/10842/
https://github.com/matplotlib/matplotlib/issues/13698/
https://github.com/matplotlib/matplotlib/issues/14878/
https://github.com/matplotlib/matplotlib/issues/5619/
https://github.com/matplotlib/matplotlib/issues/14564/
https://github.com/matplotlib/matplotlib/issues/13668/
https://github.com/matplotlib/matplotlib/issues/14563/
https://github.com/matplotlib/matplotlib/issues/13660/
https://github.com/matplotlib/matplotlib/issues/13033/
https://github.com/matplotlib/matplotlib/issues/13891/
https://github.com/matplotlib/matplotlib/issues/14656/
https://github.com/matplotlib/matplotlib/issues/14831/
https://github.com/matplotlib/matplotlib/issues/13819/
https://github.com/matplotlib/matplotlib/issues/8878/
https://github.com/matplotlib/matplotlib/issues/4900/
https://github.com/matplotlib/matplotlib/issues/14608/
https://github.com/matplotlib/matplotlib/issues/12893/
https://github.com/matplotlib/matplotlib/issues/14670/
https://github.com/matplotlib/matplotlib/issues/14362/
https://github.com/matplotlib/matplotlib/issues/6295/
https://github.com/matplotlib/matplotlib/issues/14754/
https://github.com/matplotlib/matplotlib/issues/14744/
https://github.com/matplotlib/matplotlib/issues/11919/
https://github.com/matplotlib/matplotlib/issues/6824/
https://github.com/matplotlib/matplotlib/issues/12180/
https://github.com/matplotlib/matplotlib/issues/14180/
https://github.com/matplotlib/matplotlib/issues/14443/
https://github.com/matplotlib/matplotlib/issues/8423/

Matplotlib, Release 3.4.3

• #11275: A "TypeError" is raised if subclass inherited from "datetime" is used

• #9127: ps.useafm and axes.unicode_minus are incompatible

• #7571: matplotlib.widget.TextBox not correctly stopping keyboard shortcuts

• #14370: gcc error when building matplotlib dev from source

• #14011: TypeError on plt.subplot(figure=plt.figure())

• #13676: FuncAnimation with generator causes crash on StopIteration

• #9892: colormaps (cm) do not properly handle NaN values.

• #14122: Unexpected behavior in matplotlib.colors.to_rgba_array when passing unknown color name
string

• #9546: The busy cursor is annoying in some instances

• #10788: TypeError when plotting stacked bar chart with decimal

• #14146: Saving polar plots with MiKTeX on Windows fails for some file formats

• #8532: Feature Request: draw percentiles in violinplot

• #13883: In headless mode, matplotlib.use('tkagg') only errors after importing pyplot

• #13967: Creating colorbar without artist fails with LogNorm

• #12542: The plot function of the matplotlib 2 and 3 versions is much slower than 1.5.3

• #13292: Non-sensical negative radial scale minimum autoset in polar plot

• #10909: Calling a Normalize instance with a DataFrame

• #14076: Tick label positions wobble in animated Qt example

• #14007: GTK3Agg backend raises ImportError for missing cairo dependency

• #12911: Tick mark color cannot be set on Axes3D

• #12853: Remove()ing a shared axes prevents the remaining axes from using unit-provided formatters

• #13912: is_color_like returning erroneous value on strings of integers

• #13921: − with save fig in .pgf

• #13872: ValueError message requests impossible condition

• #13857: Zero-width figure crashes libpng

• #13768: broken_barh docstring incorrect information

• #13641: joinstyle is not respected for FancyArrowPatch (either the path or the arrow heads)

• #11923: ColorbarBase fails to show if the first two values map to the same result

• #11527: Inconsistent path intersection

• #13003: IndexError thrown by pyplot.legend() when plotting empty bar chart with label

7.1. Previous GitHub Stats 609

https://github.com/matplotlib/matplotlib/issues/11275/
https://github.com/matplotlib/matplotlib/issues/9127/
https://github.com/matplotlib/matplotlib/issues/7571/
https://github.com/matplotlib/matplotlib/issues/14370/
https://github.com/matplotlib/matplotlib/issues/14011/
https://github.com/matplotlib/matplotlib/issues/13676/
https://github.com/matplotlib/matplotlib/issues/9892/
https://github.com/matplotlib/matplotlib/issues/14122/
https://github.com/matplotlib/matplotlib/issues/9546/
https://github.com/matplotlib/matplotlib/issues/10788/
https://github.com/matplotlib/matplotlib/issues/14146/
https://github.com/matplotlib/matplotlib/issues/8532/
https://github.com/matplotlib/matplotlib/issues/13883/
https://github.com/matplotlib/matplotlib/issues/13967/
https://github.com/matplotlib/matplotlib/issues/12542/
https://github.com/matplotlib/matplotlib/issues/13292/
https://github.com/matplotlib/matplotlib/issues/10909/
https://github.com/matplotlib/matplotlib/issues/14076/
https://github.com/matplotlib/matplotlib/issues/14007/
https://github.com/matplotlib/matplotlib/issues/12911/
https://github.com/matplotlib/matplotlib/issues/12853/
https://github.com/matplotlib/matplotlib/issues/13912/
https://github.com/matplotlib/matplotlib/issues/13921/
https://github.com/matplotlib/matplotlib/issues/13872/
https://github.com/matplotlib/matplotlib/issues/13857/
https://github.com/matplotlib/matplotlib/issues/13768/
https://github.com/matplotlib/matplotlib/issues/13641/
https://github.com/matplotlib/matplotlib/issues/11923/
https://github.com/matplotlib/matplotlib/issues/11527/
https://github.com/matplotlib/matplotlib/issues/13003/

Matplotlib, Release 3.4.3

7.1.12 GitHub Stats for Matplotlib 3.1.2

GitHub stats for 2019/05/18 - 2019/06/30 (tag: v3.1.0)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 30 issues and merged 120 pulnl requests. The full list can be seen on GitHub

The following 30 authors contributed 323 commits.

• Adam Gomaa

• Antony Lee

• Ben Root

• Christer Jensen

• chuanzhu xu

• David Stansby

• Deng Tian

• djdt

• Dora Fraeman Caswell

• Elan Ernest

• Elliott Sales de Andrade

• Eric Firing

• Filipe Fernandes

• Ian Thomas

• ImportanceOfBeingErnest

• Jody Klymak

• Johannes H. Jensen

• Jonas Camillus Jeppesen

• LeiSurrre

• Matt Adamson

• MeeseeksMachine

• Molly Rossow

• Nathan Goldbaum

• Nelle Varoquaux

• Paul Ivanov

• RoryIAngus

610 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/milestone/46?closed=1

Matplotlib, Release 3.4.3

• Ryan May

• Thomas A Caswell

• Thomas Robitaille

• Tim Hoffmann

GitHub issues and pull requests:

Pull Requests (120):

• PR #14636: Don't capture stderr in _check_and_log_subprocess.

• PR #14655: Backport PR #14649 on branch v3.1.x (Fix appveyor conda py37)

• PR #14649: Fix appveyor conda py37

• PR #14646: Backport PR #14640 on branch v3.1.x (FIX: allow secondary axes to be non-linear)

• PR #14640: FIX: allow secondary axes to be non-linear

• PR #14643: Second attempt at fixing axis inversion (for mpl3.1).

• PR #14623: Fix axis inversion with loglocator and logitlocator.

• PR #14619: Backport PR #14598 on branch v3.1.x (Fix inversion of shared axes.)

• PR #14621: Backport PR #14613 on branch v3.1.x (Cleanup DateFormatter docstring.)

• PR #14622: Backport PR #14611 on branch v3.1.x (Update some axis docstrings.)

• PR #14611: Update some axis docstrings.

• PR #14613: Cleanup DateFormatter docstring.

• PR #14598: Fix inversion of shared axes.

• PR #14610: Backport PR #14579 on branch v3.1.x (Fix inversion of 3d axis.)

• PR #14579: Fix inversion of 3d axis.

• PR #14600: Backport PR #14599 on branch v3.1.x (DOC: Add numpngw to third party packages.)

• PR #14574: Backport PR #14568 on branch v3.1.x (Don't assume tk canvas have a manager attached.)

• PR #14568: Don't assume tk canvas have a manager attached.

• PR #14571: Backport PR #14566 on branch v3.1.x (Move setting of AA_EnableHighDpiScaling be-
fore creating QApplication.)

• PR #14566: Move setting of AA_EnableHighDpiScaling before creating QApplication.

• PR #14541: Backport PR #14535 on branch v3.1.x (Invalidate FT2Font cache when fork()ing.)

• PR #14535: Invalidate FT2Font cache when fork()ing.

• PR #14522: Backport PR #14040 on branch v3.1.x (Gracefully handle non-finite z in tricontour (issue
#10167))

• PR #14434: Backport PR #14296 on branch v3.1.x (Fix barbs to accept array of bool for flip_barb)

7.1. Previous GitHub Stats 611

https://github.com/matplotlib/matplotlib/pull/14636/
https://github.com/matplotlib/matplotlib/pull/14655/
https://github.com/matplotlib/matplotlib/pull/14649/
https://github.com/matplotlib/matplotlib/pull/14646/
https://github.com/matplotlib/matplotlib/pull/14640/
https://github.com/matplotlib/matplotlib/pull/14643/
https://github.com/matplotlib/matplotlib/pull/14623/
https://github.com/matplotlib/matplotlib/pull/14619/
https://github.com/matplotlib/matplotlib/pull/14621/
https://github.com/matplotlib/matplotlib/pull/14622/
https://github.com/matplotlib/matplotlib/pull/14611/
https://github.com/matplotlib/matplotlib/pull/14613/
https://github.com/matplotlib/matplotlib/pull/14598/
https://github.com/matplotlib/matplotlib/pull/14610/
https://github.com/matplotlib/matplotlib/pull/14579/
https://github.com/matplotlib/matplotlib/pull/14600/
https://github.com/matplotlib/matplotlib/pull/14574/
https://github.com/matplotlib/matplotlib/pull/14568/
https://github.com/matplotlib/matplotlib/pull/14571/
https://github.com/matplotlib/matplotlib/pull/14566/
https://github.com/matplotlib/matplotlib/pull/14541/
https://github.com/matplotlib/matplotlib/pull/14535/
https://github.com/matplotlib/matplotlib/pull/14522/
https://github.com/matplotlib/matplotlib/pull/14434/

Matplotlib, Release 3.4.3

• PR #14518: Backport PR #14509 on branch v3.1.x (Fix too large icon spacing in Qt5 on non-HiDPI
screens)

• PR #14509: Fix too large icon spacing in Qt5 on non-HiDPI screens

• PR #14514: Backport PR #14256 on branch v3.1.x (Improve docstring of Axes.barbs)

• PR #14256: Improve docstring of Axes.barbs

• PR #14505: Backport PR #14395 on branch v3.1.x (MAINT: work around non-zero exit status of
"pdftops -v" command.)

• PR #14504: Backport PR #14445 on branch v3.1.x (FIX: fastpath clipped artists)

• PR #14502: Backport PR #14451 on branch v3.1.x (FIX: return points rather than path to fix regres-
sion)

• PR #14445: FIX: fastpath clipped artists

• PR #14497: Backport PR #14491 on branch v3.1.x (Fix uses of PyObject_IsTrue.)

• PR #14491: Fix uses of PyObject_IsTrue.

• PR #14492: Backport PR #14490 on branch v3.1.x (Fix links of parameter types)

• PR #14490: Fix links of parameter types

• PR #14489: Backport PR #14459 on branch v3.1.x (Cleanup docstring of DraggableBase.)

• PR #14459: Cleanup docstring of DraggableBase.

• PR #14485: Backport #14429 on v3.1.x

• PR #14486: Backport #14403 on v3.1.

• PR #14429: FIX: if the first elements of an array are masked keep checking

• PR #14481: Backport PR #14475 on branch v3.1.x (change ginoput docstring to match behavior)

• PR #14482: Backport PR #14464 on branch v3.1.x (Mention origin and extent tutorial in API docs for
origin kwarg)

• PR #14464: Mention origin and extent tutorial in API docs for origin kwarg

• PR #14468: Backport PR #14449: Improve docs on gridspec

• PR #14475: change ginoput docstring to match behavior

• PR #14477: Backport PR #14461 on branch v3.1.x (Fix out of bounds read in backend_tk.)

• PR #14476: Backport PR #14474 on branch v3.1.x (Fix default value in docstring of errorbar func)

• PR #14461: Fix out of bounds read in backend_tk.

• PR #14474: Fix default value in docstring of errorbar func

• PR #14473: Backport PR #14472 on branch v3.1.x (Fix NameError in example code for setting label
via method)

• PR #14472: Fix NameError in example code for setting label via method

• PR #14449: Improve docs on gridspec

612 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/14518/
https://github.com/matplotlib/matplotlib/pull/14509/
https://github.com/matplotlib/matplotlib/pull/14514/
https://github.com/matplotlib/matplotlib/pull/14256/
https://github.com/matplotlib/matplotlib/pull/14505/
https://github.com/matplotlib/matplotlib/pull/14504/
https://github.com/matplotlib/matplotlib/pull/14502/
https://github.com/matplotlib/matplotlib/pull/14445/
https://github.com/matplotlib/matplotlib/pull/14497/
https://github.com/matplotlib/matplotlib/pull/14491/
https://github.com/matplotlib/matplotlib/pull/14492/
https://github.com/matplotlib/matplotlib/pull/14490/
https://github.com/matplotlib/matplotlib/pull/14489/
https://github.com/matplotlib/matplotlib/pull/14459/
https://github.com/matplotlib/matplotlib/pull/14485/
https://github.com/matplotlib/matplotlib/pull/14486/
https://github.com/matplotlib/matplotlib/pull/14429/
https://github.com/matplotlib/matplotlib/pull/14481/
https://github.com/matplotlib/matplotlib/pull/14482/
https://github.com/matplotlib/matplotlib/pull/14464/
https://github.com/matplotlib/matplotlib/pull/14468/
https://github.com/matplotlib/matplotlib/pull/14475/
https://github.com/matplotlib/matplotlib/pull/14477/
https://github.com/matplotlib/matplotlib/pull/14476/
https://github.com/matplotlib/matplotlib/pull/14461/
https://github.com/matplotlib/matplotlib/pull/14474/
https://github.com/matplotlib/matplotlib/pull/14473/
https://github.com/matplotlib/matplotlib/pull/14472/
https://github.com/matplotlib/matplotlib/pull/14449/

Matplotlib, Release 3.4.3

• PR #14450: Backport PR #14422 on branch v3.1.x (Fix ReST note in span selector example)

• PR #14446: Backport PR #14438 on branch v3.1.x (Issue #14372 - Add degrees to documentation)

• PR #14438: Issue #14372 - Add degrees to documentation

• PR #14437: Backport PR #14387 on branch v3.1.x (Fix clearing rubberband on nbagg)

• PR #14387: Fix clearing rubberband on nbagg

• PR #14435: Backport PR #14425 on branch v3.1.x (Lic restore license paint)

• PR #14296: Fix barbs to accept array of bool for flip_barb

• PR #14430: Backport PR #14397 on branch v3.1.x (Correctly set clip_path on pcolorfast return artist.)

• PR #14397: Correctly set clip_path on pcolorfast return artist.

• PR #14409: Backport PR #14335 on branch v3.1.x (Add explanation of animation.embed_limit to
matplotlibrc.template)

• PR #14335: Add explanation of animation.embed_limit to matplotlibrc.template

• PR #14403: Revert "Preserve whitespace in svg output."

• PR #14407: Backport PR #14406 on branch v3.1.x (Remove extra iint in math_symbol_table for
document)

• PR #14398: Backport PR #14394 on branch v3.1.x (Update link to "MathML torture test".)

• PR #14394: Update link to "MathML torture test".

• PR #14389: Backport PR #14388 on branch v3.1.x (Fixed one little spelling error)

• PR #14385: Backport PR #14316 on branch v3.1.x (Improve error message for kiwisolver import error
(DLL load failed))

• PR #14388: Fixed one little spelling error

• PR #14384: Backport PR #14369 on branch v3.1.x (Don't use deprecated mathcircled in docs.)

• PR #14316: Improve error message for kiwisolver import error (DLL load failed)

• PR #14369: Don't use deprecated mathcircled in docs.

• PR #14375: Backport PR #14374 on branch v3.1.x (Check that the figure patch is in bbox_artists
before trying to remove.)

• PR #14374: Check that the figure patch is in bbox_artists before trying to remove.

• PR #14040: Gracefully handle non-finite z in tricontour (issue #10167)

• PR #14342: Backport PR #14326 on branch v3.1.x (Correctly apply PNG palette when building Im-
ageBase through Pillow.)

• PR #14326: Correctly apply PNG palette when building ImageBase through Pillow.

• PR #14341: Backport PR #14337 on branch v3.1.x (Docstring cleanup)

• PR #14337: Docstring cleanup

• PR #14325: Backport PR #14126 on branch v3.1.x (Simplify grouped bar chart example)

7.1. Previous GitHub Stats 613

https://github.com/matplotlib/matplotlib/pull/14450/
https://github.com/matplotlib/matplotlib/pull/14446/
https://github.com/matplotlib/matplotlib/pull/14438/
https://github.com/matplotlib/matplotlib/pull/14437/
https://github.com/matplotlib/matplotlib/pull/14387/
https://github.com/matplotlib/matplotlib/pull/14435/
https://github.com/matplotlib/matplotlib/pull/14296/
https://github.com/matplotlib/matplotlib/pull/14430/
https://github.com/matplotlib/matplotlib/pull/14397/
https://github.com/matplotlib/matplotlib/pull/14409/
https://github.com/matplotlib/matplotlib/pull/14335/
https://github.com/matplotlib/matplotlib/pull/14403/
https://github.com/matplotlib/matplotlib/pull/14407/
https://github.com/matplotlib/matplotlib/pull/14398/
https://github.com/matplotlib/matplotlib/pull/14394/
https://github.com/matplotlib/matplotlib/pull/14389/
https://github.com/matplotlib/matplotlib/pull/14385/
https://github.com/matplotlib/matplotlib/pull/14388/
https://github.com/matplotlib/matplotlib/pull/14384/
https://github.com/matplotlib/matplotlib/pull/14316/
https://github.com/matplotlib/matplotlib/pull/14369/
https://github.com/matplotlib/matplotlib/pull/14375/
https://github.com/matplotlib/matplotlib/pull/14374/
https://github.com/matplotlib/matplotlib/pull/14040/
https://github.com/matplotlib/matplotlib/pull/14342/
https://github.com/matplotlib/matplotlib/pull/14326/
https://github.com/matplotlib/matplotlib/pull/14341/
https://github.com/matplotlib/matplotlib/pull/14337/
https://github.com/matplotlib/matplotlib/pull/14325/

Matplotlib, Release 3.4.3

• PR #14324: Backport PR #14139 on branch v3.1.x (TST: be more explicit about identifying qt4/qt5
imports)

• PR #14126: Simplify grouped bar chart example

• PR #14323: Backport PR #14290 on branch v3.1.x (Convert SymmetricalLogScale to numpydoc)

• PR #14139: TST: be more explicit about identifying qt4/qt5 imports

• PR #14290: Convert SymmetricalLogScale to numpydoc

• PR #14321: Backport PR #14313 on branch v3.1.x

• PR #14313: Support masked array inputs for to_rgba and to_rgba_array.

• PR #14320: Backport PR #14319 on branch v3.1.x (Don't set missing history buttons.)

• PR #14319: Don't set missing history buttons.

• PR #14317: Backport PR #14295: Fix bug in SymmetricalLogTransform.

• PR #14302: Backport PR #14255 on branch v3.1.x (Improve docsstring of Axes.streamplot)

• PR #14255: Improve docsstring of Axes.streamplot

• PR #14295: Fix bug in SymmetricalLogTransform.

• PR #14294: Backport PR #14282 on branch v3.1.x (Fix toolmanager's destroy subplots in tk)

• PR #14282: Fix toolmanager's destroy subplots in tk

• PR #14292: Backport PR #14289 on branch v3.1.x (BUG: Fix performance regression when plotting
values from Numpy array sub-classes)

• PR #14289: BUG: Fix performance regression when plotting values from Numpy array sub-classes

• PR #14287: Backport PR #14286 on branch v3.1.x (fix minor typo)

• PR #14284: Backport PR #14279 on branch v3.1.x (In case fallback to Agg fails, let the exception
propagate out.)

• PR #14254: Merge up 30x

• PR #14279: In case fallback to Agg fails, let the exception propagate out.

• PR #14268: Backport PR #14261 on branch v3.1.x (Updated polar documentation)

• PR #14261: Updated polar documentation

• PR #14264: Backport PR #14260 on branch v3.1.x (Remove old OSX FAQ page)

• PR #14260: Remove old OSX FAQ page

• PR #14249: Backport PR #14243 on branch v3.1.x (Update docstring of makeMappingArray)

• PR #14250: Backport PR #14149 on branch v3.1.x

• PR #14252: Backport PR #14248 on branch v3.1.x (Fix TextBox not respecting eventson)

• PR #14253: Backport PR #13596 on branch v3.1.x (Normalize properties passed to bxp().)

• PR #14251: Backport PR #14241 on branch v3.1.x (Fix linear segmented colormap with one element)

614 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/14324/
https://github.com/matplotlib/matplotlib/pull/14126/
https://github.com/matplotlib/matplotlib/pull/14323/
https://github.com/matplotlib/matplotlib/pull/14139/
https://github.com/matplotlib/matplotlib/pull/14290/
https://github.com/matplotlib/matplotlib/pull/14321/
https://github.com/matplotlib/matplotlib/pull/14313/
https://github.com/matplotlib/matplotlib/pull/14320/
https://github.com/matplotlib/matplotlib/pull/14319/
https://github.com/matplotlib/matplotlib/pull/14317/
https://github.com/matplotlib/matplotlib/pull/14302/
https://github.com/matplotlib/matplotlib/pull/14255/
https://github.com/matplotlib/matplotlib/pull/14295/
https://github.com/matplotlib/matplotlib/pull/14294/
https://github.com/matplotlib/matplotlib/pull/14282/
https://github.com/matplotlib/matplotlib/pull/14292/
https://github.com/matplotlib/matplotlib/pull/14289/
https://github.com/matplotlib/matplotlib/pull/14287/
https://github.com/matplotlib/matplotlib/pull/14284/
https://github.com/matplotlib/matplotlib/pull/14254/
https://github.com/matplotlib/matplotlib/pull/14279/
https://github.com/matplotlib/matplotlib/pull/14268/
https://github.com/matplotlib/matplotlib/pull/14261/
https://github.com/matplotlib/matplotlib/pull/14264/
https://github.com/matplotlib/matplotlib/pull/14260/
https://github.com/matplotlib/matplotlib/pull/14249/
https://github.com/matplotlib/matplotlib/pull/14250/
https://github.com/matplotlib/matplotlib/pull/14252/
https://github.com/matplotlib/matplotlib/pull/14253/
https://github.com/matplotlib/matplotlib/pull/14251/

Matplotlib, Release 3.4.3

• PR #13596: Normalize properties passed to bxp().

• PR #14248: Fix TextBox not respecting eventson

• PR #14241: Fix linear segmented colormap with one element

• PR #14243: Update docstring of makeMappingArray

• PR #14238: Backport PR #14164 on branch v3.1.x (Fix regexp for dvipng version detection)

• PR #14149: Avoid using axis([xlo, xhi, ylo, yhi]) in examples.

• PR #14164: Fix regexp for dvipng version detection

• PR #13739: Fix pressing tab breaks keymap in CanvasTk

Issues (30):

• #14620: Plotting on a log/logit scale overwrites axis inverting

• #14615: Inverting an axis using its limits does not work for log scale

• #14577: Calling invert_yaxis() on a 3D plot has either no effect or removes ticks

• #14602: NavigationToolbar2Tk save_figure function bug

• #1219: Show fails on figures created with the object-oriented system

• #10167: Segmentation fault with tricontour

• #13723: RuntimeError when saving PDFs via parallel processes (not threads!)

• #14315: Improvement: Better error message if kiwisolver fails to import

• #14356: matplotlib.units.ConversionError on scatter of dates with a NaN in the first position

• #14467: Docs for plt.ginput() have the wrong default value for show_clicks keyword argument.

• #14225: Matplotlib crashes on windows while maximizing plot window when using Multicursor

• #14458: DOC: small inconsistency in errobar docstring

• #14372: Document that view_init() arguments should be in degrees

• #12201: issues clearing rubberband on nbagg at non-default browser zoom

• #13576: pcolorfast misbehaves when changing axis limits

• #14303: Unable to import matplotlib on Windows 10 v1903

• #14283: RendererSVG CSS 'white-space' property conflicts with default HTML CSS

• #14293: imshow() producing "inverted" colors since 3.0.3

• #14322: Cannot import matplotlib with Python 3.7.x on Win10Pro

• #14137: Qt5 test auto-skip is not working correctly

• #14301: scatter() fails on nan-containing input when providing edgecolor

• #14318: Don't try to set missing history buttons.

• #14265: symlog looses some points since 3.1.0 (example given)

7.1. Previous GitHub Stats 615

https://github.com/matplotlib/matplotlib/pull/13596/
https://github.com/matplotlib/matplotlib/pull/14248/
https://github.com/matplotlib/matplotlib/pull/14241/
https://github.com/matplotlib/matplotlib/pull/14243/
https://github.com/matplotlib/matplotlib/pull/14238/
https://github.com/matplotlib/matplotlib/pull/14149/
https://github.com/matplotlib/matplotlib/pull/14164/
https://github.com/matplotlib/matplotlib/pull/13739/
https://github.com/matplotlib/matplotlib/issues/14620/
https://github.com/matplotlib/matplotlib/issues/14615/
https://github.com/matplotlib/matplotlib/issues/14577/
https://github.com/matplotlib/matplotlib/issues/14602/
https://github.com/matplotlib/matplotlib/issues/1219/
https://github.com/matplotlib/matplotlib/issues/10167/
https://github.com/matplotlib/matplotlib/issues/13723/
https://github.com/matplotlib/matplotlib/issues/14315/
https://github.com/matplotlib/matplotlib/issues/14356/
https://github.com/matplotlib/matplotlib/issues/14467/
https://github.com/matplotlib/matplotlib/issues/14225/
https://github.com/matplotlib/matplotlib/issues/14458/
https://github.com/matplotlib/matplotlib/issues/14372/
https://github.com/matplotlib/matplotlib/issues/12201/
https://github.com/matplotlib/matplotlib/issues/13576/
https://github.com/matplotlib/matplotlib/issues/14303/
https://github.com/matplotlib/matplotlib/issues/14283/
https://github.com/matplotlib/matplotlib/issues/14293/
https://github.com/matplotlib/matplotlib/issues/14322/
https://github.com/matplotlib/matplotlib/issues/14137/
https://github.com/matplotlib/matplotlib/issues/14301/
https://github.com/matplotlib/matplotlib/issues/14318/
https://github.com/matplotlib/matplotlib/issues/14265/

Matplotlib, Release 3.4.3

• #14274: BUG: plotting with Numpy array subclasses is slow with Matplotlib 3.1.0 (regression)

• #14263: import pyplot issue -

• #14227: Update "working with Mpl on OSX" docs

• #13448: boxplot doesn't normalize properties before applying them

• #14226: Modify matplotlib TextBox value without triggering callback

• #14232: LinearSegmentedColormap with N=1 gives confusing error message

• #10365: Scatter plot with non-sequence ´c´ color should give a better Error message.

7.1.13 GitHub Stats for Matplotlib 3.1.1

GitHub stats for 2019/05/18 - 2019/06/30 (tag: v3.1.0)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 30 issues and merged 120 pull requests. The full list can be seen on GitHub

The following 30 authors contributed 323 commits.

• Adam Gomaa

• Antony Lee

• Ben Root

• Christer Jensen

• chuanzhu xu

• David Stansby

• Deng Tian

• djdt

• Dora Fraeman Caswell

• Elan Ernest

• Elliott Sales de Andrade

• Eric Firing

• Filipe Fernandes

• Ian Thomas

• ImportanceOfBeingErnest

• Jody Klymak

• Johannes H. Jensen

• Jonas Camillus Jeppesen

• LeiSurrre

616 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/14274/
https://github.com/matplotlib/matplotlib/issues/14263/
https://github.com/matplotlib/matplotlib/issues/14227/
https://github.com/matplotlib/matplotlib/issues/13448/
https://github.com/matplotlib/matplotlib/issues/14226/
https://github.com/matplotlib/matplotlib/issues/14232/
https://github.com/matplotlib/matplotlib/issues/10365/
https://github.com/matplotlib/matplotlib/milestone/46?closed=1

Matplotlib, Release 3.4.3

• Matt Adamson

• MeeseeksMachine

• Molly Rossow

• Nathan Goldbaum

• Nelle Varoquaux

• Paul Ivanov

• RoryIAngus

• Ryan May

• Thomas A Caswell

• Thomas Robitaille

• Tim Hoffmann

GitHub issues and pull requests:

Pull Requests (120):

• PR #14636: Don't capture stderr in _check_and_log_subprocess.

• PR #14655: Backport PR #14649 on branch v3.1.x (Fix appveyor conda py37)

• PR #14649: Fix appveyor conda py37

• PR #14646: Backport PR #14640 on branch v3.1.x (FIX: allow secondary axes to be non-linear)

• PR #14640: FIX: allow secondary axes to be non-linear

• PR #14643: Second attempt at fixing axis inversion (for mpl3.1).

• PR #14623: Fix axis inversion with loglocator and logitlocator.

• PR #14619: Backport PR #14598 on branch v3.1.x (Fix inversion of shared axes.)

• PR #14621: Backport PR #14613 on branch v3.1.x (Cleanup DateFormatter docstring.)

• PR #14622: Backport PR #14611 on branch v3.1.x (Update some axis docstrings.)

• PR #14611: Update some axis docstrings.

• PR #14613: Cleanup DateFormatter docstring.

• PR #14598: Fix inversion of shared axes.

• PR #14610: Backport PR #14579 on branch v3.1.x (Fix inversion of 3d axis.)

• PR #14579: Fix inversion of 3d axis.

• PR #14600: Backport PR #14599 on branch v3.1.x (DOC: Add numpngw to third party packages.)

• PR #14574: Backport PR #14568 on branch v3.1.x (Don't assume tk canvas have a manager attached.)

• PR #14568: Don't assume tk canvas have a manager attached.

7.1. Previous GitHub Stats 617

https://github.com/matplotlib/matplotlib/pull/14636/
https://github.com/matplotlib/matplotlib/pull/14655/
https://github.com/matplotlib/matplotlib/pull/14649/
https://github.com/matplotlib/matplotlib/pull/14646/
https://github.com/matplotlib/matplotlib/pull/14640/
https://github.com/matplotlib/matplotlib/pull/14643/
https://github.com/matplotlib/matplotlib/pull/14623/
https://github.com/matplotlib/matplotlib/pull/14619/
https://github.com/matplotlib/matplotlib/pull/14621/
https://github.com/matplotlib/matplotlib/pull/14622/
https://github.com/matplotlib/matplotlib/pull/14611/
https://github.com/matplotlib/matplotlib/pull/14613/
https://github.com/matplotlib/matplotlib/pull/14598/
https://github.com/matplotlib/matplotlib/pull/14610/
https://github.com/matplotlib/matplotlib/pull/14579/
https://github.com/matplotlib/matplotlib/pull/14600/
https://github.com/matplotlib/matplotlib/pull/14574/
https://github.com/matplotlib/matplotlib/pull/14568/

Matplotlib, Release 3.4.3

• PR #14571: Backport PR #14566 on branch v3.1.x (Move setting of AA_EnableHighDpiScaling be-
fore creating QApplication.)

• PR #14566: Move setting of AA_EnableHighDpiScaling before creating QApplication.

• PR #14541: Backport PR #14535 on branch v3.1.x (Invalidate FT2Font cache when fork()ing.)

• PR #14535: Invalidate FT2Font cache when fork()ing.

• PR #14522: Backport PR #14040 on branch v3.1.x (Gracefully handle non-finite z in tricontour (issue
#10167))

• PR #14434: Backport PR #14296 on branch v3.1.x (Fix barbs to accept array of bool for flip_barb)

• PR #14518: Backport PR #14509 on branch v3.1.x (Fix too large icon spacing in Qt5 on non-HiDPI
screens)

• PR #14509: Fix too large icon spacing in Qt5 on non-HiDPI screens

• PR #14514: Backport PR #14256 on branch v3.1.x (Improve docstring of Axes.barbs)

• PR #14256: Improve docstring of Axes.barbs

• PR #14505: Backport PR #14395 on branch v3.1.x (MAINT: work around non-zero exit status of
"pdftops -v" command.)

• PR #14504: Backport PR #14445 on branch v3.1.x (FIX: fastpath clipped artists)

• PR #14502: Backport PR #14451 on branch v3.1.x (FIX: return points rather than path to fix regres-
sion)

• PR #14445: FIX: fastpath clipped artists

• PR #14497: Backport PR #14491 on branch v3.1.x (Fix uses of PyObject_IsTrue.)

• PR #14491: Fix uses of PyObject_IsTrue.

• PR #14492: Backport PR #14490 on branch v3.1.x (Fix links of parameter types)

• PR #14490: Fix links of parameter types

• PR #14489: Backport PR #14459 on branch v3.1.x (Cleanup docstring of DraggableBase.)

• PR #14459: Cleanup docstring of DraggableBase.

• PR #14485: Backport #14429 on v3.1.x

• PR #14486: Backport #14403 on v3.1.

• PR #14429: FIX: if the first elements of an array are masked keep checking

• PR #14481: Backport PR #14475 on branch v3.1.x (change ginoput docstring to match behavior)

• PR #14482: Backport PR #14464 on branch v3.1.x (Mention origin and extent tutorial in API docs for
origin kwarg)

• PR #14464: Mention origin and extent tutorial in API docs for origin kwarg

• PR #14468: Backport PR #14449: Improve docs on gridspec

• PR #14475: change ginoput docstring to match behavior

618 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/14571/
https://github.com/matplotlib/matplotlib/pull/14566/
https://github.com/matplotlib/matplotlib/pull/14541/
https://github.com/matplotlib/matplotlib/pull/14535/
https://github.com/matplotlib/matplotlib/pull/14522/
https://github.com/matplotlib/matplotlib/pull/14434/
https://github.com/matplotlib/matplotlib/pull/14518/
https://github.com/matplotlib/matplotlib/pull/14509/
https://github.com/matplotlib/matplotlib/pull/14514/
https://github.com/matplotlib/matplotlib/pull/14256/
https://github.com/matplotlib/matplotlib/pull/14505/
https://github.com/matplotlib/matplotlib/pull/14504/
https://github.com/matplotlib/matplotlib/pull/14502/
https://github.com/matplotlib/matplotlib/pull/14445/
https://github.com/matplotlib/matplotlib/pull/14497/
https://github.com/matplotlib/matplotlib/pull/14491/
https://github.com/matplotlib/matplotlib/pull/14492/
https://github.com/matplotlib/matplotlib/pull/14490/
https://github.com/matplotlib/matplotlib/pull/14489/
https://github.com/matplotlib/matplotlib/pull/14459/
https://github.com/matplotlib/matplotlib/pull/14485/
https://github.com/matplotlib/matplotlib/pull/14486/
https://github.com/matplotlib/matplotlib/pull/14429/
https://github.com/matplotlib/matplotlib/pull/14481/
https://github.com/matplotlib/matplotlib/pull/14482/
https://github.com/matplotlib/matplotlib/pull/14464/
https://github.com/matplotlib/matplotlib/pull/14468/
https://github.com/matplotlib/matplotlib/pull/14475/

Matplotlib, Release 3.4.3

• PR #14477: Backport PR #14461 on branch v3.1.x (Fix out of bounds read in backend_tk.)

• PR #14476: Backport PR #14474 on branch v3.1.x (Fix default value in docstring of errorbar func)

• PR #14461: Fix out of bounds read in backend_tk.

• PR #14474: Fix default value in docstring of errorbar func

• PR #14473: Backport PR #14472 on branch v3.1.x (Fix NameError in example code for setting label
via method)

• PR #14472: Fix NameError in example code for setting label via method

• PR #14449: Improve docs on gridspec

• PR #14450: Backport PR #14422 on branch v3.1.x (Fix ReST note in span selector example)

• PR #14446: Backport PR #14438 on branch v3.1.x (Issue #14372 - Add degrees to documentation)

• PR #14438: Issue #14372 - Add degrees to documentation

• PR #14437: Backport PR #14387 on branch v3.1.x (Fix clearing rubberband on nbagg)

• PR #14387: Fix clearing rubberband on nbagg

• PR #14435: Backport PR #14425 on branch v3.1.x (Lic restore license paint)

• PR #14296: Fix barbs to accept array of bool for flip_barb

• PR #14430: Backport PR #14397 on branch v3.1.x (Correctly set clip_path on pcolorfast return artist.)

• PR #14397: Correctly set clip_path on pcolorfast return artist.

• PR #14409: Backport PR #14335 on branch v3.1.x (Add explanation of animation.embed_limit to
matplotlibrc.template)

• PR #14335: Add explanation of animation.embed_limit to matplotlibrc.template

• PR #14403: Revert "Preserve whitespace in svg output."

• PR #14407: Backport PR #14406 on branch v3.1.x (Remove extra iint in math_symbol_table for
document)

• PR #14398: Backport PR #14394 on branch v3.1.x (Update link to "MathML torture test".)

• PR #14394: Update link to "MathML torture test".

• PR #14389: Backport PR #14388 on branch v3.1.x (Fixed one little spelling error)

• PR #14385: Backport PR #14316 on branch v3.1.x (Improve error message for kiwisolver import error
(DLL load failed))

• PR #14388: Fixed one little spelling error

• PR #14384: Backport PR #14369 on branch v3.1.x (Don't use deprecated mathcircled in docs.)

• PR #14316: Improve error message for kiwisolver import error (DLL load failed)

• PR #14369: Don't use deprecated mathcircled in docs.

• PR #14375: Backport PR #14374 on branch v3.1.x (Check that the figure patch is in bbox_artists
before trying to remove.)

7.1. Previous GitHub Stats 619

https://github.com/matplotlib/matplotlib/pull/14477/
https://github.com/matplotlib/matplotlib/pull/14476/
https://github.com/matplotlib/matplotlib/pull/14461/
https://github.com/matplotlib/matplotlib/pull/14474/
https://github.com/matplotlib/matplotlib/pull/14473/
https://github.com/matplotlib/matplotlib/pull/14472/
https://github.com/matplotlib/matplotlib/pull/14449/
https://github.com/matplotlib/matplotlib/pull/14450/
https://github.com/matplotlib/matplotlib/pull/14446/
https://github.com/matplotlib/matplotlib/pull/14438/
https://github.com/matplotlib/matplotlib/pull/14437/
https://github.com/matplotlib/matplotlib/pull/14387/
https://github.com/matplotlib/matplotlib/pull/14435/
https://github.com/matplotlib/matplotlib/pull/14296/
https://github.com/matplotlib/matplotlib/pull/14430/
https://github.com/matplotlib/matplotlib/pull/14397/
https://github.com/matplotlib/matplotlib/pull/14409/
https://github.com/matplotlib/matplotlib/pull/14335/
https://github.com/matplotlib/matplotlib/pull/14403/
https://github.com/matplotlib/matplotlib/pull/14407/
https://github.com/matplotlib/matplotlib/pull/14398/
https://github.com/matplotlib/matplotlib/pull/14394/
https://github.com/matplotlib/matplotlib/pull/14389/
https://github.com/matplotlib/matplotlib/pull/14385/
https://github.com/matplotlib/matplotlib/pull/14388/
https://github.com/matplotlib/matplotlib/pull/14384/
https://github.com/matplotlib/matplotlib/pull/14316/
https://github.com/matplotlib/matplotlib/pull/14369/
https://github.com/matplotlib/matplotlib/pull/14375/

Matplotlib, Release 3.4.3

• PR #14374: Check that the figure patch is in bbox_artists before trying to remove.

• PR #14040: Gracefully handle non-finite z in tricontour (issue #10167)

• PR #14342: Backport PR #14326 on branch v3.1.x (Correctly apply PNG palette when building Im-
ageBase through Pillow.)

• PR #14326: Correctly apply PNG palette when building ImageBase through Pillow.

• PR #14341: Backport PR #14337 on branch v3.1.x (Docstring cleanup)

• PR #14337: Docstring cleanup

• PR #14325: Backport PR #14126 on branch v3.1.x (Simplify grouped bar chart example)

• PR #14324: Backport PR #14139 on branch v3.1.x (TST: be more explicit about identifying qt4/qt5
imports)

• PR #14126: Simplify grouped bar chart example

• PR #14323: Backport PR #14290 on branch v3.1.x (Convert SymmetricalLogScale to numpydoc)

• PR #14139: TST: be more explicit about identifying qt4/qt5 imports

• PR #14290: Convert SymmetricalLogScale to numpydoc

• PR #14321: Backport PR #14313 on branch v3.1.x

• PR #14313: Support masked array inputs for to_rgba and to_rgba_array.

• PR #14320: Backport PR #14319 on branch v3.1.x (Don't set missing history buttons.)

• PR #14319: Don't set missing history buttons.

• PR #14317: Backport PR #14295: Fix bug in SymmetricalLogTransform.

• PR #14302: Backport PR #14255 on branch v3.1.x (Improve docsstring of Axes.streamplot)

• PR #14255: Improve docsstring of Axes.streamplot

• PR #14295: Fix bug in SymmetricalLogTransform.

• PR #14294: Backport PR #14282 on branch v3.1.x (Fix toolmanager's destroy subplots in tk)

• PR #14282: Fix toolmanager's destroy subplots in tk

• PR #14292: Backport PR #14289 on branch v3.1.x (BUG: Fix performance regression when plotting
values from Numpy array sub-classes)

• PR #14289: BUG: Fix performance regression when plotting values from Numpy array sub-classes

• PR #14287: Backport PR #14286 on branch v3.1.x (fix minor typo)

• PR #14284: Backport PR #14279 on branch v3.1.x (In case fallback to Agg fails, let the exception
propagate out.)

• PR #14254: Merge up 30x

• PR #14279: In case fallback to Agg fails, let the exception propagate out.

• PR #14268: Backport PR #14261 on branch v3.1.x (Updated polar documentation)

620 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/14374/
https://github.com/matplotlib/matplotlib/pull/14040/
https://github.com/matplotlib/matplotlib/pull/14342/
https://github.com/matplotlib/matplotlib/pull/14326/
https://github.com/matplotlib/matplotlib/pull/14341/
https://github.com/matplotlib/matplotlib/pull/14337/
https://github.com/matplotlib/matplotlib/pull/14325/
https://github.com/matplotlib/matplotlib/pull/14324/
https://github.com/matplotlib/matplotlib/pull/14126/
https://github.com/matplotlib/matplotlib/pull/14323/
https://github.com/matplotlib/matplotlib/pull/14139/
https://github.com/matplotlib/matplotlib/pull/14290/
https://github.com/matplotlib/matplotlib/pull/14321/
https://github.com/matplotlib/matplotlib/pull/14313/
https://github.com/matplotlib/matplotlib/pull/14320/
https://github.com/matplotlib/matplotlib/pull/14319/
https://github.com/matplotlib/matplotlib/pull/14317/
https://github.com/matplotlib/matplotlib/pull/14302/
https://github.com/matplotlib/matplotlib/pull/14255/
https://github.com/matplotlib/matplotlib/pull/14295/
https://github.com/matplotlib/matplotlib/pull/14294/
https://github.com/matplotlib/matplotlib/pull/14282/
https://github.com/matplotlib/matplotlib/pull/14292/
https://github.com/matplotlib/matplotlib/pull/14289/
https://github.com/matplotlib/matplotlib/pull/14287/
https://github.com/matplotlib/matplotlib/pull/14284/
https://github.com/matplotlib/matplotlib/pull/14254/
https://github.com/matplotlib/matplotlib/pull/14279/
https://github.com/matplotlib/matplotlib/pull/14268/

Matplotlib, Release 3.4.3

• PR #14261: Updated polar documentation

• PR #14264: Backport PR #14260 on branch v3.1.x (Remove old OSX FAQ page)

• PR #14260: Remove old OSX FAQ page

• PR #14249: Backport PR #14243 on branch v3.1.x (Update docstring of makeMappingArray)

• PR #14250: Backport PR #14149 on branch v3.1.x

• PR #14252: Backport PR #14248 on branch v3.1.x (Fix TextBox not respecting eventson)

• PR #14253: Backport PR #13596 on branch v3.1.x (Normalize properties passed to bxp().)

• PR #14251: Backport PR #14241 on branch v3.1.x (Fix linear segmented colormap with one element)

• PR #13596: Normalize properties passed to bxp().

• PR #14248: Fix TextBox not respecting eventson

• PR #14241: Fix linear segmented colormap with one element

• PR #14243: Update docstring of makeMappingArray

• PR #14238: Backport PR #14164 on branch v3.1.x (Fix regexp for dvipng version detection)

• PR #14149: Avoid using axis([xlo, xhi, ylo, yhi]) in examples.

• PR #14164: Fix regexp for dvipng version detection

• PR #13739: Fix pressing tab breaks keymap in CanvasTk

Issues (30):

• #14620: Plotting on a log/logit scale overwrites axis inverting

• #14615: Inverting an axis using its limits does not work for log scale

• #14577: Calling invert_yaxis() on a 3D plot has either no effect or removes ticks

• #14602: NavigationToolbar2Tk save_figure function bug

• #1219: Show fails on figures created with the object-oriented system

• #10167: Segmentation fault with tricontour

• #13723: RuntimeError when saving PDFs via parallel processes (not threads!)

• #14315: Improvement: Better error message if kiwisolver fails to import

• #14356: matplotlib.units.ConversionError on scatter of dates with a NaN in the first position

• #14467: Docs for plt.ginput() have the wrong default value for show_clicks keyword argument.

• #14225: Matplotlib crashes on windows while maximizing plot window when using Multicursor

• #14458: DOC: small inconsistency in errobar docstring

• #14372: Document that view_init() arguments should be in degrees

• #12201: issues clearing rubberband on nbagg at non-default browser zoom

• #13576: pcolorfast misbehaves when changing axis limits

7.1. Previous GitHub Stats 621

https://github.com/matplotlib/matplotlib/pull/14261/
https://github.com/matplotlib/matplotlib/pull/14264/
https://github.com/matplotlib/matplotlib/pull/14260/
https://github.com/matplotlib/matplotlib/pull/14249/
https://github.com/matplotlib/matplotlib/pull/14250/
https://github.com/matplotlib/matplotlib/pull/14252/
https://github.com/matplotlib/matplotlib/pull/14253/
https://github.com/matplotlib/matplotlib/pull/14251/
https://github.com/matplotlib/matplotlib/pull/13596/
https://github.com/matplotlib/matplotlib/pull/14248/
https://github.com/matplotlib/matplotlib/pull/14241/
https://github.com/matplotlib/matplotlib/pull/14243/
https://github.com/matplotlib/matplotlib/pull/14238/
https://github.com/matplotlib/matplotlib/pull/14149/
https://github.com/matplotlib/matplotlib/pull/14164/
https://github.com/matplotlib/matplotlib/pull/13739/
https://github.com/matplotlib/matplotlib/issues/14620/
https://github.com/matplotlib/matplotlib/issues/14615/
https://github.com/matplotlib/matplotlib/issues/14577/
https://github.com/matplotlib/matplotlib/issues/14602/
https://github.com/matplotlib/matplotlib/issues/1219/
https://github.com/matplotlib/matplotlib/issues/10167/
https://github.com/matplotlib/matplotlib/issues/13723/
https://github.com/matplotlib/matplotlib/issues/14315/
https://github.com/matplotlib/matplotlib/issues/14356/
https://github.com/matplotlib/matplotlib/issues/14467/
https://github.com/matplotlib/matplotlib/issues/14225/
https://github.com/matplotlib/matplotlib/issues/14458/
https://github.com/matplotlib/matplotlib/issues/14372/
https://github.com/matplotlib/matplotlib/issues/12201/
https://github.com/matplotlib/matplotlib/issues/13576/

Matplotlib, Release 3.4.3

• #14303: Unable to import matplotlib on Windows 10 v1903

• #14283: RendererSVG CSS 'white-space' property conflicts with default HTML CSS

• #14293: imshow() producing "inverted" colors since 3.0.3

• #14322: Cannot import matplotlib with Python 3.7.x on Win10Pro

• #14137: Qt5 test auto-skip is not working correctly

• #14301: scatter() fails on nan-containing input when providing edgecolor

• #14318: Don't try to set missing history buttons.

• #14265: symlog looses some points since 3.1.0 (example given)

• #14274: BUG: plotting with Numpy array subclasses is slow with Matplotlib 3.1.0 (regression)

• #14263: import pyplot issue -

• #14227: Update "working with Mpl on OSX" docs

• #13448: boxplot doesn't normalize properties before applying them

• #14226: Modify matplotlib TextBox value without triggering callback

• #14232: LinearSegmentedColormap with N=1 gives confusing error message

• #10365: Scatter plot with non-sequence ´c´ color should give a better Error message.

7.1.14 GitHub Stats for Matplotlib 3.1.0

GitHub stats for 2018/09/18 - 2019/05/13 (tag: v3.0.0)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 161 issues and merged 918 pull requests. The full list can be seen on GitHub

The following 150 authors contributed 3426 commits.

• Abhinuv Nitin Pitale

• Adam J. Stewart

• Alistair Muldal

• Alon Hershenhorn

• Andras Deak

• Ankur Dedania

• Antony Lee

• Anubhav Shrimal

• Ao Liu (frankliuao)

• Ayappan P

• azure-pipelines[bot]

622 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/14303/
https://github.com/matplotlib/matplotlib/issues/14283/
https://github.com/matplotlib/matplotlib/issues/14293/
https://github.com/matplotlib/matplotlib/issues/14322/
https://github.com/matplotlib/matplotlib/issues/14137/
https://github.com/matplotlib/matplotlib/issues/14301/
https://github.com/matplotlib/matplotlib/issues/14318/
https://github.com/matplotlib/matplotlib/issues/14265/
https://github.com/matplotlib/matplotlib/issues/14274/
https://github.com/matplotlib/matplotlib/issues/14263/
https://github.com/matplotlib/matplotlib/issues/14227/
https://github.com/matplotlib/matplotlib/issues/13448/
https://github.com/matplotlib/matplotlib/issues/14226/
https://github.com/matplotlib/matplotlib/issues/14232/
https://github.com/matplotlib/matplotlib/issues/10365/
https://github.com/matplotlib/matplotlib/milestones/v3.1.0

Matplotlib, Release 3.4.3

• Bas van Schaik

• Ben Root

• Benjamin Bengfort

• Benjamin Congdon

• Bharat123rox

• Brigitta Sipocz

• btang02

• Carsten

• Carsten Schelp

• Cho Yin Yong

• Chris Zimmerman

• Christer Jensen

• Christoph Gohlke

• Christoph Reiter

• Christopher Bradshaw

• Colin

• Colin Carroll

• dabana

• Dana-Farber

• Daniele Nicolodi

• DanielMatu

• David Haberthür

• David Stansby

• Dietmar Schwertberger

• Dmitry Mottl

• E. G. Patrick Bos

• Elan Ernest

• Elliott Sales de Andrade

• Eric Firing

• Eric Larson

• Eric Wieser

• esvhd

7.1. Previous GitHub Stats 623

Matplotlib, Release 3.4.3

• fredrik-1

• fuzzythecat

• Galen Lynch

• Gazing

• gwin-zegal

• hannah

• Harshal Prakash Patankar

• hershen

• Ildar Akhmetgaleev

• ImportanceOfBeingErnest

• Isa Hassen

• Jae-Joon Lee

• James A. Bednar

• James Adams

• Jan S. (Milania1)

• Jarrod Millman

• Jessica B. Hamrick

• Jody Klymak

• Joel T. Frederico

• Joel Wanner

• Johannes H. Jensen

• Joseph Albert

• Joshua Klein

• Jouni K. Seppänen

• Jun Tan

• Kai Muehlbauer

• Katrin Leinweber

• Kayla Ngan

• Kevin Rose

• Kjell Le

• KonradAdamczyk

• ksunden

624 Chapter 7. GitHub Stats

Matplotlib, Release 3.4.3

• Kyle Sunden

• Leon Loopik

• Levi Kilcher

• LevN0

• luftek

• Maik Riechert

• Marcel Martin

• Mark Harfouche

• Marko Baštovanović

• Matthias Bussonnier

• Matthias Geier

• Matti Picus

• MeeseeksMachine

• Michael Droettboom

• Michael Jancsy

• Mike Frysinger

• Molly Rossow

• MortenSHUTE

• mromanie

• nathan78906

• Nelle Varoquaux

• Nick Papior

• Nicolas Courtemanche

• Nikita Kniazev

• njwhite

• Oliver Natt

• Paul

• Paul Hobson

• Paul Ivanov

• Paul J. Koprowski

• pharshalp

• Phil Elson

7.1. Previous GitHub Stats 625

Matplotlib, Release 3.4.3

• Pierre Thibault

• QiCuiHub

• Rasmus Diederichsen

• Ratin_Kumar

• Rob Harrigan

• Roman Yurchak

• Ryan May

• Ryan Morshead

• Saket Choudhary

• saksmito

• SBCV

• Sebastian Bullinger

• Sebastian Hegler

• Seunghoon Park

• simon-kraeusel

• smheidrich

• Stephane Raynaud

• Stephen-Chilcote

• sxntxn

• Taehoon Lee

• Takafumi Arakaki

• Taras

• Taras Kuzyo

• teresy

• Thein Oo

• Thomas A Caswell

• Thomas Hisch

• Thomas Robitaille

• thoo

• Tim Hoffmann

• Tobia De Koninck

• Tobias Megies

626 Chapter 7. GitHub Stats

Matplotlib, Release 3.4.3

• Tyler Makaro

• V. Armando Solé

• Viraj Mohile

• Will Handley

• woclass

• Yasaman-Mah

• yeo

• Yuxin Wu

• Yuya

• Zhili (Jerry) Pan

• zhoubecky

GitHub issues and pull requests:

Pull Requests (918):

• PR #14209: Backport PR #14197 on branch v3.1.x (Minor cleanup of acorr/xcoor docs)

• PR #14210: Make intro tutorial less jargony.

• PR #14197: Minor cleanup of acorr/xcoor docs

• PR #14203: Backport PR #14202 on branch v3.1.x (Fix docstring of Line2D.set_data.)

• PR #14202: Fix docstring of Line2D.set_data.

• PR #14196: Backport PR #14188 on branch v3.1.x (Clarify scope of MouseEvent attributes)

• PR #14188: Clarify scope of MouseEvent attributes

• PR #14194: Backport PR #14167 on branch v3.1.x (Fix backend_pgf header.)

• PR #14193: Backport PR #14153 on branch v3.1.x (Update qt_compat.py test for already imported
binding.)

• PR #14167: Fix backend_pgf header.

• PR #14153: Update qt_compat.py test for already imported binding.

• PR #14190: Backport PR #14176 on branch v3.1.x (Merge doc/api/api_overview and doc/api/index.)

• PR #14192: Unbreak testsuite for pytest 4.5.

• PR #14189: Backport PR #14186 on branch v3.1.x (Update FancyBboxPatch docs to numpydoc style)

• PR #14176: Merge doc/api/api_overview and doc/api/index.

• PR #14186: Update FancyBboxPatch docs to numpydoc style

• PR #14187: Backport PR #13169 on branch v3.1.x (Add example code for current logo)

• PR #14165: Backport PR #14156 on branch v3.1.x (Fix glyph loading in textpath.)

7.1. Previous GitHub Stats 627

https://github.com/matplotlib/matplotlib/pull/14209/
https://github.com/matplotlib/matplotlib/pull/14210/
https://github.com/matplotlib/matplotlib/pull/14197/
https://github.com/matplotlib/matplotlib/pull/14203/
https://github.com/matplotlib/matplotlib/pull/14202/
https://github.com/matplotlib/matplotlib/pull/14196/
https://github.com/matplotlib/matplotlib/pull/14188/
https://github.com/matplotlib/matplotlib/pull/14194/
https://github.com/matplotlib/matplotlib/pull/14193/
https://github.com/matplotlib/matplotlib/pull/14167/
https://github.com/matplotlib/matplotlib/pull/14153/
https://github.com/matplotlib/matplotlib/pull/14190/
https://github.com/matplotlib/matplotlib/pull/14192/
https://github.com/matplotlib/matplotlib/pull/14189/
https://github.com/matplotlib/matplotlib/pull/14176/
https://github.com/matplotlib/matplotlib/pull/14186/
https://github.com/matplotlib/matplotlib/pull/14187/
https://github.com/matplotlib/matplotlib/pull/14165/

Matplotlib, Release 3.4.3

• PR #14156: Fix glyph loading in textpath.

• PR #14162: Backport PR #14150 on branch v3.1.x (Fix deprecation of withdash for figtext().)

• PR #14150: Fix deprecation of withdash for figtext().

• PR #14136: Backport PR #14109 on branch v3.1.x

• PR #14109: Some simple pyplot doc improvements

• PR #14129: Backport PR #14117 on branch v3.1.x (Simplify ribbon_box example.)

• PR #14128: Backport PR #14057 on branch v3.1.x (Improve Gradient bar example)

• PR #14127: Backport PR #14125 on branch v3.1.x (Remove extra keyword from pytest.skip call.)

• PR #14117: Simplify ribbon_box example.

• PR #14057: Improve Gradient bar example

• PR #14125: Remove extra keyword from pytest.skip call.

• PR #14123: Backport PR #14119 on branch v3.1.x (Add ridge_map to third party packages documen-
tation)

• PR #14119: Add ridge_map to third party packages documentation

• PR #14103: Backport PR #14088 on branch v3.1.x (Cleanup major_minor_demo.)

• PR #14102: Backport PR #14100 on branch v3.1.x (Improve docstring of axes_zoom_effect example.)

• PR #14099: Backport PR #14090 on branch v3.1.x (Pep8ify some variable names in examples.)

• PR #14100: Improve docstring of axes_zoom_effect example.

• PR #14088: Cleanup major_minor_demo.

• PR #14090: Pep8ify some variable names in examples.

• PR #14097: Backport PR #14079 on branch v3.1.x (Consistently use axs.flat instead of axs.flatten())

• PR #14095: Backport PR #14087 on branch v3.1.x (Cleanup date example.)

• PR #14094: Backport PR #14029 on branch v3.1.x (Fix doc building with numpydoc 0.9)

• PR #14093: Backport PR #14052 on branch v3.1.x (Check axes identity in image.contains.)

• PR #14092: Backport PR #14056 on branch v3.1.x (FIX: do not try to manage the visibility of un-
drawn ticks)

• PR #14091: Backport PR #14078 on branch v3.1.x (Minor fix in multiple subplots example)

• PR #14079: Consistently use axs.flat instead of axs.flatten()

• PR #14087: Cleanup date example.

• PR #14029: Fix doc building with numpydoc 0.9

• PR #14052: Check axes identity in image.contains.

• PR #14056: FIX: do not try to manage the visibility of un-drawn ticks

• PR #14078: Minor fix in multiple subplots example

628 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/14156/
https://github.com/matplotlib/matplotlib/pull/14162/
https://github.com/matplotlib/matplotlib/pull/14150/
https://github.com/matplotlib/matplotlib/pull/14136/
https://github.com/matplotlib/matplotlib/pull/14109/
https://github.com/matplotlib/matplotlib/pull/14129/
https://github.com/matplotlib/matplotlib/pull/14128/
https://github.com/matplotlib/matplotlib/pull/14127/
https://github.com/matplotlib/matplotlib/pull/14117/
https://github.com/matplotlib/matplotlib/pull/14057/
https://github.com/matplotlib/matplotlib/pull/14125/
https://github.com/matplotlib/matplotlib/pull/14123/
https://github.com/matplotlib/matplotlib/pull/14119/
https://github.com/matplotlib/matplotlib/pull/14103/
https://github.com/matplotlib/matplotlib/pull/14102/
https://github.com/matplotlib/matplotlib/pull/14099/
https://github.com/matplotlib/matplotlib/pull/14100/
https://github.com/matplotlib/matplotlib/pull/14088/
https://github.com/matplotlib/matplotlib/pull/14090/
https://github.com/matplotlib/matplotlib/pull/14097/
https://github.com/matplotlib/matplotlib/pull/14095/
https://github.com/matplotlib/matplotlib/pull/14094/
https://github.com/matplotlib/matplotlib/pull/14093/
https://github.com/matplotlib/matplotlib/pull/14092/
https://github.com/matplotlib/matplotlib/pull/14091/
https://github.com/matplotlib/matplotlib/pull/14079/
https://github.com/matplotlib/matplotlib/pull/14087/
https://github.com/matplotlib/matplotlib/pull/14029/
https://github.com/matplotlib/matplotlib/pull/14052/
https://github.com/matplotlib/matplotlib/pull/14056/
https://github.com/matplotlib/matplotlib/pull/14078/

Matplotlib, Release 3.4.3

• PR #14080: Backport PR #14069 on branch v3.1.x (Don't try to use the colorbar formatter to format
RGBA data.)

• PR #14069: Don't try to use the colorbar formatter to format RGBA data.

• PR #14074: Backport PR #14019 on branch v3.1.x (Update docstring of locator_params())

• PR #14019: Update docstring of locator_params()

• PR #14066: Backport PR #14053 on branch v3.1.x (Improve fill() example)

• PR #14065: Backport PR #14059 on branch v3.1.x (Improve Scatter hist example)

• PR #14067: Backport PR #14062 on branch v3.1.x (Improve advanced quiver example)

• PR #14062: Improve advanced quiver example

• PR #14053: Improve fill() example

• PR #14059: Improve Scatter hist example

• PR #14064: Backport PR #14043 on branch v3.1.x (Ensure errorbars are always drawn on top of bars
in ax.bar)

• PR #14043: Ensure errorbars are always drawn on top of bars in ax.bar

• PR #14061: Backport PR #14051 on branch v3.1.x (Add Yellowbrick to third party packages)

• PR #14051: Add Yellowbrick to third party packages

• PR #14050: Backport PR #14048 on branch v3.1.x (Fix Animation.save)

• PR #14049: Backport PR #14047 on branch v3.1.x (Remove references to "Draws" in mat-
plotlib.patches)

• PR #14048: Fix Animation.save

• PR #14047: Remove references to "Draws" in matplotlib.patches

• PR #14037: Backport PR #14033 on branch v3.1.x (Reword add_subplot docstring.)

• PR #14036: Backport PR #14001 on branch v3.1.x ([BUG] DOC: Remove broken references to vis-
check)

• PR #14033: Reword add_subplot docstring.

• PR #14032: Backport PR #14030 on branch v3.1.x (Update colorcet link)

• PR #14030: Update colorcet link

• PR #14027: Backport PR #14026 on branch v3.1.x (Fix bug in plot_directive that caused links to plots
in different formats to be missing)

• PR #14026: Fix bug in plot_directive that caused links to plots in different formats to be missing

• PR #14012: Backport PR #14008 on branch v3.1.x (Don't install tests by default.)

• PR #14017: Backport PR #14015 on branch v3.1.x (Fix docstring of pyplot.clim())

• PR #14015: Fix docstring of pyplot.clim()

• PR #14008: Don't install tests by default.

7.1. Previous GitHub Stats 629

https://github.com/matplotlib/matplotlib/pull/14080/
https://github.com/matplotlib/matplotlib/pull/14069/
https://github.com/matplotlib/matplotlib/pull/14074/
https://github.com/matplotlib/matplotlib/pull/14019/
https://github.com/matplotlib/matplotlib/pull/14066/
https://github.com/matplotlib/matplotlib/pull/14065/
https://github.com/matplotlib/matplotlib/pull/14067/
https://github.com/matplotlib/matplotlib/pull/14062/
https://github.com/matplotlib/matplotlib/pull/14053/
https://github.com/matplotlib/matplotlib/pull/14059/
https://github.com/matplotlib/matplotlib/pull/14064/
https://github.com/matplotlib/matplotlib/pull/14043/
https://github.com/matplotlib/matplotlib/pull/14061/
https://github.com/matplotlib/matplotlib/pull/14051/
https://github.com/matplotlib/matplotlib/pull/14050/
https://github.com/matplotlib/matplotlib/pull/14049/
https://github.com/matplotlib/matplotlib/pull/14048/
https://github.com/matplotlib/matplotlib/pull/14047/
https://github.com/matplotlib/matplotlib/pull/14037/
https://github.com/matplotlib/matplotlib/pull/14036/
https://github.com/matplotlib/matplotlib/pull/14033/
https://github.com/matplotlib/matplotlib/pull/14032/
https://github.com/matplotlib/matplotlib/pull/14030/
https://github.com/matplotlib/matplotlib/pull/14027/
https://github.com/matplotlib/matplotlib/pull/14026/
https://github.com/matplotlib/matplotlib/pull/14012/
https://github.com/matplotlib/matplotlib/pull/14017/
https://github.com/matplotlib/matplotlib/pull/14015/
https://github.com/matplotlib/matplotlib/pull/14008/

Matplotlib, Release 3.4.3

• PR #14006: Backport PR #13998 on branch v3.1.x (Fix patch contains logic for patches that don't
have any codes)

• PR #14005: Backport PR #14004 on branch v3.1.x (DOC: pin numpydoc to less than 0.9)

• PR #13998: Fix patch contains logic for patches that don't have any codes

• PR #13999: Backport PR #13992 on branch v3.1.x (FIX: undeprecate MaxNLocator default_params)

• PR #13997: Backport PR #13995 on branch v3.1.x (DOC: explain zorder for gridlines in grid doc-
string)

• PR #13992: FIX: undeprecate MaxNLocator default_params

• PR #13995: DOC: explain zorder for gridlines in grid docstring

• PR #13990: Backport PR #13989 on branch v3.1.x (FIX: update not replace hist_kwargs when density
is passed)

• PR #13989: FIX: update not replace hist_kwargs when density is passed

• PR #13975: Backport PR #13966 on branch v3.1.x (Fix colorbar setting without artist)

• PR #13976: Backport PR #13973 on branch v3.1.x (BUG: Ensure docstrings are not accessed with
-OO)

• PR #13856: What's new page for 3.1

• PR #13966: Fix colorbar setting without artist

• PR #13973: BUG: Ensure docstrings are not accessed with -OO

• PR #13969: Backport PR #13950 on branch v3.1.x (confidence_ellipse_markup)

• PR #13950: confidence_ellipse_markup

• PR #13965: Backport PR #13962 on branch v3.1.x (Fix typo in code example in docstring.)

• PR #13964: Backport PR #13870 on branch v3.1.x (3.1.0 API changes page)

• PR #13962: Fix typo in code example in docstring.

• PR #13870: 3.1.0 API changes page

• PR #13961: Backport PR #13914 on branch v3.1.x (Improve Rainbow text example)

• PR #13960: Backport PR #13958 on branch v3.1.x (Remove transparent fancy legend example)

• PR #13914: Improve Rainbow text example

• PR #13958: Remove transparent fancy legend example

• PR #13956: Backport PR #13908 on branch v3.1.x (Enh control tick deconflict2)

• PR #13955: Backport PR #13941 on branch v3.1.x (Add project_urls to setup)

• PR #13908: Enh control tick deconflict2

• PR #13954: Backport PR #13949 on branch v3.1.x (DOC: Add documentation to Text.set_fontfamily)

• PR #13941: Add project_urls to setup

630 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/14006/
https://github.com/matplotlib/matplotlib/pull/14005/
https://github.com/matplotlib/matplotlib/pull/13998/
https://github.com/matplotlib/matplotlib/pull/13999/
https://github.com/matplotlib/matplotlib/pull/13997/
https://github.com/matplotlib/matplotlib/pull/13992/
https://github.com/matplotlib/matplotlib/pull/13995/
https://github.com/matplotlib/matplotlib/pull/13990/
https://github.com/matplotlib/matplotlib/pull/13989/
https://github.com/matplotlib/matplotlib/pull/13975/
https://github.com/matplotlib/matplotlib/pull/13976/
https://github.com/matplotlib/matplotlib/pull/13856/
https://github.com/matplotlib/matplotlib/pull/13966/
https://github.com/matplotlib/matplotlib/pull/13973/
https://github.com/matplotlib/matplotlib/pull/13969/
https://github.com/matplotlib/matplotlib/pull/13950/
https://github.com/matplotlib/matplotlib/pull/13965/
https://github.com/matplotlib/matplotlib/pull/13964/
https://github.com/matplotlib/matplotlib/pull/13962/
https://github.com/matplotlib/matplotlib/pull/13870/
https://github.com/matplotlib/matplotlib/pull/13961/
https://github.com/matplotlib/matplotlib/pull/13960/
https://github.com/matplotlib/matplotlib/pull/13914/
https://github.com/matplotlib/matplotlib/pull/13958/
https://github.com/matplotlib/matplotlib/pull/13956/
https://github.com/matplotlib/matplotlib/pull/13955/
https://github.com/matplotlib/matplotlib/pull/13908/
https://github.com/matplotlib/matplotlib/pull/13954/
https://github.com/matplotlib/matplotlib/pull/13941/

Matplotlib, Release 3.4.3

• PR #13949: DOC: Add documentation to Text.set_fontfamily

• PR #13951: Backport PR #13939 on branch v3.1.x (Bunch of docstring cleanups.)

• PR #13939: Bunch of docstring cleanups.

• PR #13947: Backport PR #13897 on branch v3.1.x (numpydocification.)

• PR #13897: numpydocification.

• PR #13946: Backport PR #13924 on branch v3.1.x (Followup to deprecation of usetex parameter in
get_text_path.)

• PR #13924: Followup to deprecation of usetex parameter in get_text_path.

• PR #13916: Backport PR #13850 on branch v3.1.x (Cleanup STIX Font Demo)

• PR #13915: Backport PR #13835 on branch v3.1.x (Improve Conectionstyle Demo)

• PR #13850: Cleanup STIX Font Demo

• PR #13835: Improve Conectionstyle Demo

• PR #13846: Backport PR #13836 on branch v3.1.x (MNT: account for cpython deprecations)

• PR #13898: Backport PR #13896 on branch v3.1.x (Fix cbook.boxplot_stats docstring)

• PR #13896: Fix cbook.boxplot_stats docstring

• PR #13893: Backport PR #13890 on branch v3.1.x (rst seealso -> numpydoc "See Also".)

• PR #13890: rst seealso -> numpydoc "See Also".

• PR #13888: Backport PR #13862 on branch v3.1.x (Move 3.x API changes to prev_api_changes)

• PR #13862: Move 3.x API changes to prev_api_changes

• PR #13882: Backport PR #13867 on branch v3.1.x (Rename "docs" to "contents" in navigation bar)

• PR #13867: Rename "docs" to "contents" in navigation bar

• PR #13881: Backport PR #13874 on branch v3.1.x (Remove redundant call to Formatter.set_locs()
before .format_ticks().)

• PR #13874: Remove redundant call to Formatter.set_locs() before .format_ticks().

• PR #13871: Backport PR #13868 on branch v3.1.x (Correctly handle fallout of defining
PY_SSIZE_T_CLEAN on Windows.)

• PR #13869: Backport PR #13861 on branch v3.1.x (Fix remaining links in docs)

• PR #13868: Correctly handle fallout of defining PY_SSIZE_T_CLEAN on Windows.

• PR #13861: Fix remaining links in docs

• PR #13849: Backport PR #13845 on branch v3.1.x (Fix some broken documentation links)

• PR #13845: Fix some broken documentation links

• PR #13836: MNT: account for cpython deprecations

• PR #13841: Backport PR #12928 on branch v3.1.x (textpath encoding)

7.1. Previous GitHub Stats 631

https://github.com/matplotlib/matplotlib/pull/13949/
https://github.com/matplotlib/matplotlib/pull/13951/
https://github.com/matplotlib/matplotlib/pull/13939/
https://github.com/matplotlib/matplotlib/pull/13947/
https://github.com/matplotlib/matplotlib/pull/13897/
https://github.com/matplotlib/matplotlib/pull/13946/
https://github.com/matplotlib/matplotlib/pull/13924/
https://github.com/matplotlib/matplotlib/pull/13916/
https://github.com/matplotlib/matplotlib/pull/13915/
https://github.com/matplotlib/matplotlib/pull/13850/
https://github.com/matplotlib/matplotlib/pull/13835/
https://github.com/matplotlib/matplotlib/pull/13846/
https://github.com/matplotlib/matplotlib/pull/13898/
https://github.com/matplotlib/matplotlib/pull/13896/
https://github.com/matplotlib/matplotlib/pull/13893/
https://github.com/matplotlib/matplotlib/pull/13890/
https://github.com/matplotlib/matplotlib/pull/13888/
https://github.com/matplotlib/matplotlib/pull/13862/
https://github.com/matplotlib/matplotlib/pull/13882/
https://github.com/matplotlib/matplotlib/pull/13867/
https://github.com/matplotlib/matplotlib/pull/13881/
https://github.com/matplotlib/matplotlib/pull/13874/
https://github.com/matplotlib/matplotlib/pull/13871/
https://github.com/matplotlib/matplotlib/pull/13869/
https://github.com/matplotlib/matplotlib/pull/13868/
https://github.com/matplotlib/matplotlib/pull/13861/
https://github.com/matplotlib/matplotlib/pull/13849/
https://github.com/matplotlib/matplotlib/pull/13845/
https://github.com/matplotlib/matplotlib/pull/13836/
https://github.com/matplotlib/matplotlib/pull/13841/

Matplotlib, Release 3.4.3

• PR #13842: Backport PR #13827 on branch v3.1.x (Better MovieWriter init error message)

• PR #13838: Backport PR #13570 on branch v3.1.x (Add new example for plotting a confi-
dence_ellipse)

• PR #13827: Better MovieWriter init error message

• PR #13839: Backport PR #13815 on branch v3.1.x (Numpydocify FontManager.findfont())

• PR #13837: Backport PR #8638 on branch v3.1.x (FIX: if bins input to hist is str, treat like no bins)

• PR #12928: textpath encoding

• PR #13815: Numpydocify FontManager.findfont()

• PR #13570: Add new example for plotting a confidence_ellipse

• PR #8638: FIX: if bins input to hist is str, treat like no bins

• PR #13831: Backport PR #13780 on branch v3.1.x (numpydoc ListedColormap parameters)

• PR #13780: numpydoc ListedColormap parameters

• PR #13830: Backport PR #13829 on branch v3.1.x (numpydoc IndexFormatter)

• PR #13829: numpydoc IndexFormatter

• PR #13828: Backport PR #13821 on branch v3.1.x (Removemathcircled frommathtext docs following
its deprecation.)

• PR #13821: Remove mathcircled from mathtext docs following its deprecation.

• PR #13822: Backport PR #13817 on branch v3.1.x (Remove borders from barcode example)

• PR #13820: Backport PR #13816 on branch v3.1.x (Correct windows env variable format)

• PR #13816: Correct windows env variable format

• PR #13817: Remove borders from barcode example

• PR #13814: Merge pull request #13805 from timhoffm/pin-sphinx-1.x

• PR #13813: Backport PR #13764 on branch v3.1.x (Deprecate mathcircled.)

• PR #13764: Deprecate mathcircled.

• PR #13805: Pin Sphinx to 1.x

• PR #13807: Backport PR #13800 on branch v3.1.x (Doc typos.)

• PR #13800: Doc typos.

• PR #13806: Backport PR #13771 on branch v3.1.x (patches.Arc docstring update #13759)

• PR #13804: Backport PR #13766 on branch v3.1.x (Search for fonts in XDG directory as well.)

• PR #13771: patches.Arc docstring update #13759

• PR #13766: Search for fonts in XDG directory as well.

• PR #13794: Backport PR #13695 on branch v3.1.x (numpydocify transform_angles.)

• PR #13793: Backport PR #13762 on branch v3.1.x (Cleanup marker_reference example.)

632 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/13842/
https://github.com/matplotlib/matplotlib/pull/13838/
https://github.com/matplotlib/matplotlib/pull/13827/
https://github.com/matplotlib/matplotlib/pull/13839/
https://github.com/matplotlib/matplotlib/pull/13837/
https://github.com/matplotlib/matplotlib/pull/12928/
https://github.com/matplotlib/matplotlib/pull/13815/
https://github.com/matplotlib/matplotlib/pull/13570/
https://github.com/matplotlib/matplotlib/pull/8638/
https://github.com/matplotlib/matplotlib/pull/13831/
https://github.com/matplotlib/matplotlib/pull/13780/
https://github.com/matplotlib/matplotlib/pull/13830/
https://github.com/matplotlib/matplotlib/pull/13829/
https://github.com/matplotlib/matplotlib/pull/13828/
https://github.com/matplotlib/matplotlib/pull/13821/
https://github.com/matplotlib/matplotlib/pull/13822/
https://github.com/matplotlib/matplotlib/pull/13820/
https://github.com/matplotlib/matplotlib/pull/13816/
https://github.com/matplotlib/matplotlib/pull/13817/
https://github.com/matplotlib/matplotlib/pull/13814/
https://github.com/matplotlib/matplotlib/pull/13813/
https://github.com/matplotlib/matplotlib/pull/13764/
https://github.com/matplotlib/matplotlib/pull/13805/
https://github.com/matplotlib/matplotlib/pull/13807/
https://github.com/matplotlib/matplotlib/pull/13800/
https://github.com/matplotlib/matplotlib/pull/13806/
https://github.com/matplotlib/matplotlib/pull/13804/
https://github.com/matplotlib/matplotlib/pull/13771/
https://github.com/matplotlib/matplotlib/pull/13766/
https://github.com/matplotlib/matplotlib/pull/13794/
https://github.com/matplotlib/matplotlib/pull/13793/

Matplotlib, Release 3.4.3

• PR #13792: Backport PR #13789 on branch v3.1.x (BUG: Fix function signature mismatch for
set_clim)

• PR #13791: Backport PR #13787 on branch v3.1.x (Fix failure to import matplotlib.animation on
Windows.)

• PR #13695: numpydocify transform_angles.

• PR #13762: Cleanup marker_reference example.

• PR #13789: BUG: Fix function signature mismatch for set_clim

• PR #13787: Fix failure to import matplotlib.animation on Windows.

• PR #13781: Backport PR #13777 on branch v3.1.x (Use class-based directive for mathmpl sphinxext.)

• PR #13790: Backport PR #13564 on branch v3.1.x (Add an option to log progress while saving ani-
mations)

• PR #13564: Add an option to log progress while saving animations

• PR #13777: Use class-based directive for mathmpl sphinxext.

• PR #13765: Backport PR #13761 on branch v3.1.x (Deprecate verbose-related rcParams.)

• PR #13761: Deprecate verbose-related rcParams.

• PR #13760: Backport PR #13719 on branch v3.1.x (Doc: Update timeline example)

• PR #13704: Backport PR #13021 on branch v3.1.x (Undesirable behaviour of MixedModeRenderer)

• PR #13758: Backport PR #13674 on branch v3.1.x (Preserve whitespace in svg output.)

• PR #13719: Doc: Update timeline example

• PR #13674: Preserve whitespace in svg output.

• PR #13755: Backport PR #13741 on branch v3.1.x (FIX: make title move above ticklabels)

• PR #13754: Backport PR #13712 on branch v3.1.x (Deprecate NavigationToolbar2QT.adj_window
(unused and always None).)

• PR #13741: FIX: make title move above ticklabels

• PR #13712: Deprecate NavigationToolbar2QT.adj_window (unused and always None).

• PR #13752: Backport PR #13732 on branch v3.1.x (Fix doc markup.)

• PR #13753: Backport PR #13751 on branch v3.1.x (DOC/FIX: try merging comments)

• PR #13751: DOC/FIX: try merging comments

• PR #13732: Fix doc markup.

• PR #13750: Backport PR #13743 on branch v3.1.x (Fix doc warning)

• PR #13743: Fix doc warning

• PR #13747: Backport PR #13745 on branch v3.1.x (Fix stem(use_line_collection))

• PR #13748: Backport PR #13716 on branch v3.1.x (Kill attributes that are never used/updated.)

7.1. Previous GitHub Stats 633

https://github.com/matplotlib/matplotlib/pull/13792/
https://github.com/matplotlib/matplotlib/pull/13791/
https://github.com/matplotlib/matplotlib/pull/13695/
https://github.com/matplotlib/matplotlib/pull/13762/
https://github.com/matplotlib/matplotlib/pull/13789/
https://github.com/matplotlib/matplotlib/pull/13787/
https://github.com/matplotlib/matplotlib/pull/13781/
https://github.com/matplotlib/matplotlib/pull/13790/
https://github.com/matplotlib/matplotlib/pull/13564/
https://github.com/matplotlib/matplotlib/pull/13777/
https://github.com/matplotlib/matplotlib/pull/13765/
https://github.com/matplotlib/matplotlib/pull/13761/
https://github.com/matplotlib/matplotlib/pull/13760/
https://github.com/matplotlib/matplotlib/pull/13704/
https://github.com/matplotlib/matplotlib/pull/13758/
https://github.com/matplotlib/matplotlib/pull/13719/
https://github.com/matplotlib/matplotlib/pull/13674/
https://github.com/matplotlib/matplotlib/pull/13755/
https://github.com/matplotlib/matplotlib/pull/13754/
https://github.com/matplotlib/matplotlib/pull/13741/
https://github.com/matplotlib/matplotlib/pull/13712/
https://github.com/matplotlib/matplotlib/pull/13752/
https://github.com/matplotlib/matplotlib/pull/13753/
https://github.com/matplotlib/matplotlib/pull/13751/
https://github.com/matplotlib/matplotlib/pull/13732/
https://github.com/matplotlib/matplotlib/pull/13750/
https://github.com/matplotlib/matplotlib/pull/13743/
https://github.com/matplotlib/matplotlib/pull/13747/
https://github.com/matplotlib/matplotlib/pull/13748/

Matplotlib, Release 3.4.3

• PR #13716: Kill attributes that are never used/updated.

• PR #13745: Fix stem(use_line_collection)

• PR #13710: TST: only test agg_filter extensions with baseline images

• PR #13709: Backport PR #8690 on branch v3.1.x

• PR #13707: Backport PR #12760 on branch v3.1.x (Deduplicate implementation of per-backend
Tools.)

• PR #13706: Backport PR #13689 on branch v3.1.x (BUG: fix scaling of quiverkey when quiver
scale_units='xy')

• PR #13705: Backport PR #12419 on branch v3.1.x (Add DivergingNorm (again, again, again))

• PR #13703: Backport PR #12170 on branch v3.1.x (Deprecate considering *args, **kwargs in
Timer.remove_callback.)

• PR #12760: Deduplicate implementation of per-backend Tools.

• PR #13689: BUG: fix scaling of quiverkey when quiver scale_units='xy'

• PR #12419: Add DivergingNorm (again, again, again)

• PR #8690: Adds support for rgba and rgb images to pcolorfast

• PR #13021: Undesirable behaviour of MixedModeRenderer

• PR #12170: Deprecate considering *args, **kwargs in Timer.remove_callback.

• PR #13700: Backport PR #13588 on branch v3.1.x (FIX: fallback to viewlims if no data)

• PR #13694: Backport PR #13677 on branch v3.1.x (Log all failures to extract font properties.)

• PR #13588: FIX: fallback to viewlims if no data

• PR #13692: Backport PR #13677 on branch v3.0.x (Log all failures to extract font properties.)

• PR #13677: Log all failures to extract font properties.

• PR #13691: Backport PR #13687 on branch v3.1.x (Update stem example)

• PR #13687: Update stem example

• PR #13688: Backport PR #13684 on branch v3.1.x (Use format_data_short to format image cursor
data.)

• PR #13684: Use format_data_short to format image cursor data.

• PR #13686: Backport PR #13363 on branch v3.1.x (Inline iter_ticks into _update_ticks, and use that
in mplot3d.)

• PR #13363: Inline iter_ticks into _update_ticks, and use that in mplot3d.

• PR #13681: Backport PR #13678 on branch v3.1.x (Fix font deduplication logic in createFontList.)

• PR #13678: Fix font deduplication logic in createFontList.

• PR #13669: Backport PR #13667 on branch v3.1.x (Fix incorrect signature in axis() doc.)

• PR #13667: Fix incorrect signature in axis() doc.

634 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/13716/
https://github.com/matplotlib/matplotlib/pull/13745/
https://github.com/matplotlib/matplotlib/pull/13710/
https://github.com/matplotlib/matplotlib/pull/13709/
https://github.com/matplotlib/matplotlib/pull/13707/
https://github.com/matplotlib/matplotlib/pull/13706/
https://github.com/matplotlib/matplotlib/pull/13705/
https://github.com/matplotlib/matplotlib/pull/13703/
https://github.com/matplotlib/matplotlib/pull/12760/
https://github.com/matplotlib/matplotlib/pull/13689/
https://github.com/matplotlib/matplotlib/pull/12419/
https://github.com/matplotlib/matplotlib/pull/8690/
https://github.com/matplotlib/matplotlib/pull/13021/
https://github.com/matplotlib/matplotlib/pull/12170/
https://github.com/matplotlib/matplotlib/pull/13700/
https://github.com/matplotlib/matplotlib/pull/13694/
https://github.com/matplotlib/matplotlib/pull/13588/
https://github.com/matplotlib/matplotlib/pull/13692/
https://github.com/matplotlib/matplotlib/pull/13677/
https://github.com/matplotlib/matplotlib/pull/13691/
https://github.com/matplotlib/matplotlib/pull/13687/
https://github.com/matplotlib/matplotlib/pull/13688/
https://github.com/matplotlib/matplotlib/pull/13684/
https://github.com/matplotlib/matplotlib/pull/13686/
https://github.com/matplotlib/matplotlib/pull/13363/
https://github.com/matplotlib/matplotlib/pull/13681/
https://github.com/matplotlib/matplotlib/pull/13678/
https://github.com/matplotlib/matplotlib/pull/13669/
https://github.com/matplotlib/matplotlib/pull/13667/

Matplotlib, Release 3.4.3

• PR #13664: Backport PR #12637 on branch v3.1.x (Tell IPython the correct GUI event loop to use
for all backends.)

• PR #13665: Backport PR #13601 on branch v3.1.x (Add a make-parameter-keyword-only-with-
deprecation decorator.)

• PR #13601: Add a make-parameter-keyword-only-with-deprecation decorator.

• PR #12637: Tell IPython the correct GUI event loop to use for all backends.

• PR #13662: Backport PR #13064 on branch v3.1.x (Don't explicitly add default include paths to Ex-
tensions)

• PR #13064: Don't explicitly add default include paths to Extensions

• PR #13658: Backport PR #13652 on branch v3.1.x (Fix empty FancyArrow crash)

• PR #13652: Fix empty FancyArrow crash

• PR #13655: Backport PR #11692 on branch v3.1.x (Deprecate frameon kwarg and rcParam to savefig.)

• PR #13654: Backport PR #13614 on branch v3.1.x (Fix polar get window extent)

• PR #11692: Deprecate frameon kwarg and rcParam to savefig.

• PR #13614: Fix polar get window extent

• PR #13646: Backport PR #13645 on branch v3.1.x (widgets.py fix examples connect -> mpl_connect)

• PR #13645: widgets.py fix examples connect -> mpl_connect

• PR #13644: Backport PR #13612 on branch v3.1.x (Improve Demo Text Rotation Mode)

• PR #13612: Improve Demo Text Rotation Mode

• PR #13636: Backport PR #13621 on branch v3.1.x (Remove asfileobj=False from a bunch of
examples loading sample_data.)

• PR #13635: Backport PR #13632 on branch v3.1.x (Clarify tick collision API change doc.)

• PR #13634: Backport PR #13631 on branch v3.1.x (Switch deprecation of Tick.label to pending.)

• PR #13621: Remove asfileobj=False from a bunch of examples loading sample_data.

• PR #13632: Clarify tick collision API change doc.

• PR #13631: Switch deprecation of Tick.label to pending.

• PR #13628: Backport PR #13603 on branch v3.1.x

• PR #13603: FIX: continue to bail tight layout if rect supplied

• PR #13627: Backport PR #13622 on branch v3.1.x (Change title of named colors example)

• PR #13626: Backport PR #13549 on branch v3.1.x (Simplify some annotation() calls in examples.)

• PR #13624: Backport PR #13610 on branch v3.1.x (Update centered ticklabels example)

• PR #13625: Backport PR #13611 on branch v3.1.x (Fix text position in Fancytextbox demo)

• PR #13622: Change title of named colors example

7.1. Previous GitHub Stats 635

https://github.com/matplotlib/matplotlib/pull/13664/
https://github.com/matplotlib/matplotlib/pull/13665/
https://github.com/matplotlib/matplotlib/pull/13601/
https://github.com/matplotlib/matplotlib/pull/12637/
https://github.com/matplotlib/matplotlib/pull/13662/
https://github.com/matplotlib/matplotlib/pull/13064/
https://github.com/matplotlib/matplotlib/pull/13658/
https://github.com/matplotlib/matplotlib/pull/13652/
https://github.com/matplotlib/matplotlib/pull/13655/
https://github.com/matplotlib/matplotlib/pull/13654/
https://github.com/matplotlib/matplotlib/pull/11692/
https://github.com/matplotlib/matplotlib/pull/13614/
https://github.com/matplotlib/matplotlib/pull/13646/
https://github.com/matplotlib/matplotlib/pull/13645/
https://github.com/matplotlib/matplotlib/pull/13644/
https://github.com/matplotlib/matplotlib/pull/13612/
https://github.com/matplotlib/matplotlib/pull/13636/
https://github.com/matplotlib/matplotlib/pull/13635/
https://github.com/matplotlib/matplotlib/pull/13634/
https://github.com/matplotlib/matplotlib/pull/13621/
https://github.com/matplotlib/matplotlib/pull/13632/
https://github.com/matplotlib/matplotlib/pull/13631/
https://github.com/matplotlib/matplotlib/pull/13628/
https://github.com/matplotlib/matplotlib/pull/13603/
https://github.com/matplotlib/matplotlib/pull/13627/
https://github.com/matplotlib/matplotlib/pull/13626/
https://github.com/matplotlib/matplotlib/pull/13624/
https://github.com/matplotlib/matplotlib/pull/13625/
https://github.com/matplotlib/matplotlib/pull/13622/

Matplotlib, Release 3.4.3

• PR #13610: Update centered ticklabels example

• PR #13611: Fix text position in Fancytextbox demo

• PR #13607: Backport PR #13605 on branch v3.1.x (Warn on attempts at semi-transparent outputs in
ps backend.)

• PR #13608: Backport PR #13602 on branch v3.1.x (Deprecate cbook.is_hashable.)

• PR #13602: Deprecate cbook.is_hashable.

• PR #13605: Warn on attempts at semi-transparent outputs in ps backend.

• PR #13599: Backport PR #13590 on branch v3.1.x (Doc event loop requirements for Figure.show)

• PR #13590: Doc event loop requirements for Figure.show

• PR #13597: Backport PR #12359 on branch v3.1.x (ENH: Add boolean support for axis())

• PR #13594: Backport PR #13592 on branch v3.1.x (DOC: Make canonical URLs point to versioned
path.)

• PR #13592: DOC: Make canonical URLs point to versioned path.

• PR #12359: ENH: Add boolean support for axis()

• PR #13587: Backport PR #13573 on branch v3.1.x (Fix mplot3d transparency)

• PR #13573: Fix mplot3d transparency

• PR #13585: Backport PR #13578 on branch v3.1.x (Revert invalid change in Centered Ticklabels
example)

• PR #13584: Backport PR #13582 on branch v3.1.x (Cleanup two font-related examples.)

• PR #13578: Revert invalid change in Centered Ticklabels example

• PR #13582: Cleanup two font-related examples.

• PR #13579: Backport PR #13477 on branch v3.1.x (FIX: make EngFormatter respect
axes.unicode_minus rcParam)

• PR #13577: Backport PR #12832 on branch v3.1.x (Deprecate redundant log-scale transform classes.)

• PR #13477: FIX: make EngFormatter respect axes.unicode_minus rcParam

• PR #12832: Deprecate redundant log-scale transform classes.

• PR #13574: Backport PR #12856 on branch v3.1.x (added property usemathtext to EngFormatter)

• PR #12856: added property usemathtext to EngFormatter

• PR #13572: Backport PR #12899 on branch v3.1.x (Small cleanups.)

• PR #13571: Backport PR #11553 on branch v3.1.x (Improved Code for Segments Intersect)

• PR #12899: Small cleanups.

• PR #11553: Improved Code for Segments Intersect

• PR #13568: Backport PR #13563 on branch v3.1.x (FIX: inverted colorbar ticks)

636 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/13610/
https://github.com/matplotlib/matplotlib/pull/13611/
https://github.com/matplotlib/matplotlib/pull/13607/
https://github.com/matplotlib/matplotlib/pull/13608/
https://github.com/matplotlib/matplotlib/pull/13602/
https://github.com/matplotlib/matplotlib/pull/13605/
https://github.com/matplotlib/matplotlib/pull/13599/
https://github.com/matplotlib/matplotlib/pull/13590/
https://github.com/matplotlib/matplotlib/pull/13597/
https://github.com/matplotlib/matplotlib/pull/13594/
https://github.com/matplotlib/matplotlib/pull/13592/
https://github.com/matplotlib/matplotlib/pull/12359/
https://github.com/matplotlib/matplotlib/pull/13587/
https://github.com/matplotlib/matplotlib/pull/13573/
https://github.com/matplotlib/matplotlib/pull/13585/
https://github.com/matplotlib/matplotlib/pull/13584/
https://github.com/matplotlib/matplotlib/pull/13578/
https://github.com/matplotlib/matplotlib/pull/13582/
https://github.com/matplotlib/matplotlib/pull/13579/
https://github.com/matplotlib/matplotlib/pull/13577/
https://github.com/matplotlib/matplotlib/pull/13477/
https://github.com/matplotlib/matplotlib/pull/12832/
https://github.com/matplotlib/matplotlib/pull/13574/
https://github.com/matplotlib/matplotlib/pull/12856/
https://github.com/matplotlib/matplotlib/pull/13572/
https://github.com/matplotlib/matplotlib/pull/13571/
https://github.com/matplotlib/matplotlib/pull/12899/
https://github.com/matplotlib/matplotlib/pull/11553/
https://github.com/matplotlib/matplotlib/pull/13568/

Matplotlib, Release 3.4.3

• PR #13563: FIX: inverted colorbar ticks

• PR #13530: BUG: keep the ticks when the colorbar axis is inverted

• PR #13565: Backport PR #13550 on branch v3.1.x (Strip out Py2-compat in setupext.)

• PR #13550: Strip out Py2-compat in setupext.

• PR #13562: Backport PR #13560 on branch v3.1.x (Improve GridSpec doc)

• PR #13560: Improve GridSpec doc

• PR #13558: Backport PR #13546 on branch v3.1.x (Modified docstring of the set_ylabel and
set_xlabel)

• PR #13559: Backport PR #12062 on branch v3.1.x (Separate alpha and rbg interpolation then recom-
bine to fix issue11316)

• PR #13557: Backport PR #13548 on branch v3.1.x (Deprecate TextWithDash.)

• PR #12062: Separate alpha and rbg interpolation then recombine to fix issue11316

• PR #13546: Modified docstring of the set_ylabel and set_xlabel

• PR #13548: Deprecate TextWithDash.

• PR #13549: Simplify some annotation() calls in examples.

• PR #13552: Backport PR #11241 on branch v3.1.x (Deprecate theMATPLOTLIBDATA environment
variable.)

• PR #11241: Deprecate the MATPLOTLIBDATA environment variable.

• PR #13547: Backport PR #9314 on branch v3.1.x (Simplify units.Registry.get_converter.)

• PR #13545: Backport PR #13541 on branch v3.1.x (DOC: Remove mention of 'complex' mode in
specgram docstring)

• PR #9314: Simplify units.Registry.get_converter.

• PR #13541: DOC: Remove mention of 'complex' mode in specgram docstring

• PR #13539: Backport PR #12950 on branch v3.1.x (Inline or simplify FooFormatter.pprint_val.)

• PR #13538: Backport PR #12748 on branch v3.1.x (Use the builtin GTK3 FileChooser rather than our
custom subclass.)

• PR #13537: Backport PR #12781 on branch v3.1.x (Lazy import of private modules)

• PR #12950: Inline or simplify FooFormatter.pprint_val.

• PR #12748: Use the builtin GTK3 FileChooser rather than our custom subclass.

• PR #12781: Lazy import of private modules

• PR #11218: fix pkg-config handling to make cross-compiling work

• PR #13531: Backport PR #11964 on branch v3.1.x (Simplify extension setup.)

• PR #11964: Simplify extension setup.

• PR #13529: Backport PR #13525 on branch v3.1.x (Move some links in rst out of running text.)

7.1. Previous GitHub Stats 637

https://github.com/matplotlib/matplotlib/pull/13563/
https://github.com/matplotlib/matplotlib/pull/13530/
https://github.com/matplotlib/matplotlib/pull/13565/
https://github.com/matplotlib/matplotlib/pull/13550/
https://github.com/matplotlib/matplotlib/pull/13562/
https://github.com/matplotlib/matplotlib/pull/13560/
https://github.com/matplotlib/matplotlib/pull/13558/
https://github.com/matplotlib/matplotlib/pull/13559/
https://github.com/matplotlib/matplotlib/pull/13557/
https://github.com/matplotlib/matplotlib/pull/12062/
https://github.com/matplotlib/matplotlib/pull/13546/
https://github.com/matplotlib/matplotlib/pull/13548/
https://github.com/matplotlib/matplotlib/pull/13549/
https://github.com/matplotlib/matplotlib/pull/13552/
https://github.com/matplotlib/matplotlib/pull/11241/
https://github.com/matplotlib/matplotlib/pull/13547/
https://github.com/matplotlib/matplotlib/pull/13545/
https://github.com/matplotlib/matplotlib/pull/9314/
https://github.com/matplotlib/matplotlib/pull/13541/
https://github.com/matplotlib/matplotlib/pull/13539/
https://github.com/matplotlib/matplotlib/pull/13538/
https://github.com/matplotlib/matplotlib/pull/13537/
https://github.com/matplotlib/matplotlib/pull/12950/
https://github.com/matplotlib/matplotlib/pull/12748/
https://github.com/matplotlib/matplotlib/pull/12781/
https://github.com/matplotlib/matplotlib/pull/11218/
https://github.com/matplotlib/matplotlib/pull/13531/
https://github.com/matplotlib/matplotlib/pull/11964/
https://github.com/matplotlib/matplotlib/pull/13529/

Matplotlib, Release 3.4.3

• PR #13528: Backport PR #13526 on branch v3.1.x (DOC: fix Subplot calls)

• PR #13525: Move some links in rst out of running text.

• PR #13526: DOC: fix Subplot calls

• PR #13523: Backport PR #13521 on branch v3.1.x (Small cleanup to headings of 3d examples.)

• PR #13521: Small cleanup to headings of 3d examples.

• PR #13519: Backport PR #12716 on branch v3.1.x (FIX: return the actual ax.get_window_extent)

• PR #13518: Backport PR #12839 on branch v3.1.x (BUG: Prevent Tick params calls from overwriting
visibility without being told to)

• PR #12716: FIX: return the actual ax.get_window_extent

• PR #12839: BUG: Prevent Tick params calls from overwriting visibility without being told to

• PR #13517: Fix heading hierarchy in annotation tutorial.

• PR #13516: Backport PR #13514 on branch v3.1.x (Add missing show() at end of example.)

• PR #13514: Add missing show() at end of example.

• PR #13512: Backport PR #13511 on branch v3.1.x (Add missing plt.show() at end of example.)

• PR #13511: Add missing plt.show() at end of example.

• PR #13508: Backport PR #13413 on branch v3.1.x (Simplify decade up- and down-rounding, and
symmetrize expansion of degenerate log scales.)

• PR #13509: Backport PR #13492 on branch v3.1.x (Doc more release updates)

• PR #13492: Doc more release updates

• PR #13413: Simplify decade up- and down-rounding, and symmetrize expansion of degenerate log
scales.

• PR #13507: Backport PR #13488 on branch v3.1.x (Animation: interactive zoom/pan with blitting
does not work)

• PR #13488: Animation: interactive zoom/pan with blitting does not work

• PR #13505: Backport PR #13459 on branch v3.1.x (Document histogramming pre-binned data.)

• PR #13503: Backport PR #10776 on branch v3.1.x (fix FancyArrowPatch picker fails depending on
arrowstyle)

• PR #13504: Backport PR #13123 on branch v3.1.x (Add shading to Axes3D.voxels, and enable it by
default)

• PR #13502: Backport PR #13180 on branch v3.1.x (Various TextPath cleanups.)

• PR #13459: Document histogramming pre-binned data.

• PR #13501: Backport PR #13209 on branch v3.1.x (Deprecate support for (n, 1)-shaped error arrays
in errorbar().)

• PR #13500: Backport PR #12763 on branch v3.1.x (Remove deprecated rcParams.)

638 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/13528/
https://github.com/matplotlib/matplotlib/pull/13525/
https://github.com/matplotlib/matplotlib/pull/13526/
https://github.com/matplotlib/matplotlib/pull/13523/
https://github.com/matplotlib/matplotlib/pull/13521/
https://github.com/matplotlib/matplotlib/pull/13519/
https://github.com/matplotlib/matplotlib/pull/13518/
https://github.com/matplotlib/matplotlib/pull/12716/
https://github.com/matplotlib/matplotlib/pull/12839/
https://github.com/matplotlib/matplotlib/pull/13517/
https://github.com/matplotlib/matplotlib/pull/13516/
https://github.com/matplotlib/matplotlib/pull/13514/
https://github.com/matplotlib/matplotlib/pull/13512/
https://github.com/matplotlib/matplotlib/pull/13511/
https://github.com/matplotlib/matplotlib/pull/13508/
https://github.com/matplotlib/matplotlib/pull/13509/
https://github.com/matplotlib/matplotlib/pull/13492/
https://github.com/matplotlib/matplotlib/pull/13413/
https://github.com/matplotlib/matplotlib/pull/13507/
https://github.com/matplotlib/matplotlib/pull/13488/
https://github.com/matplotlib/matplotlib/pull/13505/
https://github.com/matplotlib/matplotlib/pull/13503/
https://github.com/matplotlib/matplotlib/pull/13504/
https://github.com/matplotlib/matplotlib/pull/13502/
https://github.com/matplotlib/matplotlib/pull/13459/
https://github.com/matplotlib/matplotlib/pull/13501/
https://github.com/matplotlib/matplotlib/pull/13500/

Matplotlib, Release 3.4.3

• PR #13123: Add shading to Axes3D.voxels, and enable it by default

• PR #13499: Backport PR #13303 on branch v3.1.x (Unify checking of executable info.)

• PR #10776: fix FancyArrowPatch picker fails depending on arrowstyle

• PR #13180: Various TextPath cleanups.

• PR #13498: Backport PR #13314 on branch v3.1.x (Move major/minor tick overstrike logic to Axis.)

• PR #13209: Deprecate support for (n, 1)-shaped error arrays in errorbar().

• PR #12763: Remove deprecated rcParams.

• PR #13303: Unify checking of executable info.

• PR #13497: Backport PR #13057 on branch v3.1.x (Simplify callable(self._contains) checks)

• PR #13314: Move major/minor tick overstrike logic to Axis.

• PR #13057: Simplify callable(self._contains) checks

• PR #13496: Backport PR #13465 on branch v3.1.x (FIX: polar set_rlim allow bottom-only call)

• PR #13465: FIX: polar set_rlim allow bottom-only call

• PR #13495: Backport PR #12232 on branch v3.1.x (Add helper function to check that an argument is
in a list of strings.)

• PR #12232: Add helper function to check that an argument is in a list of strings.

• PR #11708: Revert "Skip wx interactive tests on OSX."

• PR #13062: Update FAQ re: batch/webserver use.

• PR #12904: Support forward/backward mouse buttons

• PR #12150: Deprecate stackrel.

• PR #13449: Let boxplot() defer rcParams application to bxp()

• PR #13425: API: un-deprecate keyword only args to set_xlim, set_ylim

• PR #13447: Update axes_grid docs

• PR #13473: Deprecate backend_wx.IDLE_DELAY.

• PR #13476: Add font to pyplot.xkcd()

• PR #13475: Cleanup titles of embedding examples.

• PR #13468: Suppress chaining of cache lookup failure in color conversion.

• PR #13467: Add "c" shorthand for "color" for the Text class.

• PR #13398: FIX: let pandas IndexInt64 work for boxplot

• PR #13375: Improve Axes selection in Qt figure options.

• PR #13421: DOC: update release guide

• PR #13275: Simple logging interface.

7.1. Previous GitHub Stats 639

https://github.com/matplotlib/matplotlib/pull/13123/
https://github.com/matplotlib/matplotlib/pull/13499/
https://github.com/matplotlib/matplotlib/pull/10776/
https://github.com/matplotlib/matplotlib/pull/13180/
https://github.com/matplotlib/matplotlib/pull/13498/
https://github.com/matplotlib/matplotlib/pull/13209/
https://github.com/matplotlib/matplotlib/pull/12763/
https://github.com/matplotlib/matplotlib/pull/13303/
https://github.com/matplotlib/matplotlib/pull/13497/
https://github.com/matplotlib/matplotlib/pull/13314/
https://github.com/matplotlib/matplotlib/pull/13057/
https://github.com/matplotlib/matplotlib/pull/13496/
https://github.com/matplotlib/matplotlib/pull/13465/
https://github.com/matplotlib/matplotlib/pull/13495/
https://github.com/matplotlib/matplotlib/pull/12232/
https://github.com/matplotlib/matplotlib/pull/11708/
https://github.com/matplotlib/matplotlib/pull/13062/
https://github.com/matplotlib/matplotlib/pull/12904/
https://github.com/matplotlib/matplotlib/pull/12150/
https://github.com/matplotlib/matplotlib/pull/13449/
https://github.com/matplotlib/matplotlib/pull/13425/
https://github.com/matplotlib/matplotlib/pull/13447/
https://github.com/matplotlib/matplotlib/pull/13473/
https://github.com/matplotlib/matplotlib/pull/13476/
https://github.com/matplotlib/matplotlib/pull/13475/
https://github.com/matplotlib/matplotlib/pull/13468/
https://github.com/matplotlib/matplotlib/pull/13467/
https://github.com/matplotlib/matplotlib/pull/13398/
https://github.com/matplotlib/matplotlib/pull/13375/
https://github.com/matplotlib/matplotlib/pull/13421/
https://github.com/matplotlib/matplotlib/pull/13275/

Matplotlib, Release 3.4.3

• PR #13427: Simplify check for tight-bbox finiteness.

• PR #13444: Allow constructing boxplots over multiple calls.

• PR #13385: Remove/rework uses of np.where where possible.

• PR #13441: Make AFM parser both more compliant and less strict.

• PR #13384: Replace np.compress by boolean indexing.

• PR #13422: Clarify IndexError for out-of-bounds indexing of gridspec.

• PR #13443: Remove some outdated comments from rcsetup.py.

• PR #13357: Inherit some docstrings in backend code.

• PR #12380: Stem speedup2

• PR #13368: FIX: Fix shape of hist output when input is multidimensional empty list

• PR #5590: [mpl_toolkits] Fix picking for things drawn on parasite axes

• PR #13323: Move the call to Formatter.set_locs into Formatter.format_ticks.

• PR #13424: Deprecate Quiver.color in favor of Quiver.get_facecolor().

• PR #13434: More smoketesting of pcolorfast.

• PR #13395: Cleanup demo_curvelinear_grid.

• PR #13411: Deemphasize numeric locations for legend() in docs.

• PR #13419: FIX: secondary_axis resize

• PR #13020: Deprecate proj3d.mod.

• PR #13030: Deprecate internal functions exposed in the public API of mplot3d

• PR #13408: test_figure style fixes.

• PR #11127: Legend for Scatter

• PR #11855: Adding the possible to add full command line in animation

• PR #13409: Add nonsingular to the locator base class, and use it in set_*lim too.

• PR #11859: ENH: add secondary x/y axis

• PR #13235: Vectorize mplot3d.art3d.zalpha.

• PR #10411: New "accepts units" decorator

• PR #13403: FIX: remove idle_event

• PR #13069: 5 minor divisions when major ticks are 2.5 units apart

• PR #13402: Fix empty reshape2d

• PR #11683: Reuse axes_grid1's AxisDict in axisartist, instead of duplicating it.

• PR #12141: Let digits toggle axes nav only if they correspond to an existing axes.

• PR #9845: Add inaxes method to FigureCanvas to check whether point is in an axes.

640 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/13427/
https://github.com/matplotlib/matplotlib/pull/13444/
https://github.com/matplotlib/matplotlib/pull/13385/
https://github.com/matplotlib/matplotlib/pull/13441/
https://github.com/matplotlib/matplotlib/pull/13384/
https://github.com/matplotlib/matplotlib/pull/13422/
https://github.com/matplotlib/matplotlib/pull/13443/
https://github.com/matplotlib/matplotlib/pull/13357/
https://github.com/matplotlib/matplotlib/pull/12380/
https://github.com/matplotlib/matplotlib/pull/13368/
https://github.com/matplotlib/matplotlib/pull/5590/
https://github.com/matplotlib/matplotlib/pull/13323/
https://github.com/matplotlib/matplotlib/pull/13424/
https://github.com/matplotlib/matplotlib/pull/13434/
https://github.com/matplotlib/matplotlib/pull/13395/
https://github.com/matplotlib/matplotlib/pull/13411/
https://github.com/matplotlib/matplotlib/pull/13419/
https://github.com/matplotlib/matplotlib/pull/13020/
https://github.com/matplotlib/matplotlib/pull/13030/
https://github.com/matplotlib/matplotlib/pull/13408/
https://github.com/matplotlib/matplotlib/pull/11127/
https://github.com/matplotlib/matplotlib/pull/11855/
https://github.com/matplotlib/matplotlib/pull/13409/
https://github.com/matplotlib/matplotlib/pull/11859/
https://github.com/matplotlib/matplotlib/pull/13235/
https://github.com/matplotlib/matplotlib/pull/10411/
https://github.com/matplotlib/matplotlib/pull/13403/
https://github.com/matplotlib/matplotlib/pull/13069/
https://github.com/matplotlib/matplotlib/pull/13402/
https://github.com/matplotlib/matplotlib/pull/11683/
https://github.com/matplotlib/matplotlib/pull/12141/
https://github.com/matplotlib/matplotlib/pull/9845/

Matplotlib, Release 3.4.3

• PR #13396: mpl_toolkits style fixes.

• PR #11497: Make CI fail if interactive toolkits can't be tested

• PR #11595: test doc rendering

• PR #13393: Deprecate Spine.is_frame_like.

• PR #13391: Remove colour specification from some examples

• PR #13386: Replace use of np.<ufunc> by operators (</&/|).

• PR #13389: Inherit more docstrings.

• PR #13387: Fix regression in docstring.dedent_interpd.

• PR #13383: Replace np.take by normal indexing.

• PR #13381: Avoid unneeded copies from flatten().

• PR #13354: Properly deprecate non-1D inputs to pie().

• PR #13379: Remove citation entry from FAQ.

• PR #13380: Minor simplifications to scatter3d.

• PR #13173: Decorator for deleting a parameter with a deprecation period.

• PR #8205: [MRG+1] plot_date() after axhline() doesn't rescale axes

• PR #11027: Specify custom tick space heuristic in MaxNLocator

• PR #13262: Shorten setupext and remove uninformative build log entries.

• PR #13377: Add private helper to internally suppress deprecations.

• PR #13376: Undeprecate case-insensitive "long" colornames.

• PR #13373: Deprecate axis3d.Axis.get_tick_positions.

• PR #13362: Kill the unused, private _get_pixel_distance_along_axis.

• PR #12772: Improve plot() docstring.

• PR #13359: DOC: change language a bit

• PR #13351: Fix: Log Colorbar minorticks_off reverted if ticks set

• PR #13356: More spelling fixes.

• PR #13125: Simplify and tighten the docstring handling API.

• PR #13346: Simplify parsing of tuple in C extension code.

• PR #13282: MAINT install of pinned vers for travis

• PR #13234: FIX: allow colorbar mappable norm to change and do right thing

• PR #13269: Rework a bit axes addition.

• PR #13330: Add Axis.get_inverted and Axis.set_inverted.

• PR #13117: Cleanup matplotlib.use

7.1. Previous GitHub Stats 641

https://github.com/matplotlib/matplotlib/pull/13396/
https://github.com/matplotlib/matplotlib/pull/11497/
https://github.com/matplotlib/matplotlib/pull/11595/
https://github.com/matplotlib/matplotlib/pull/13393/
https://github.com/matplotlib/matplotlib/pull/13391/
https://github.com/matplotlib/matplotlib/pull/13386/
https://github.com/matplotlib/matplotlib/pull/13389/
https://github.com/matplotlib/matplotlib/pull/13387/
https://github.com/matplotlib/matplotlib/pull/13383/
https://github.com/matplotlib/matplotlib/pull/13381/
https://github.com/matplotlib/matplotlib/pull/13354/
https://github.com/matplotlib/matplotlib/pull/13379/
https://github.com/matplotlib/matplotlib/pull/13380/
https://github.com/matplotlib/matplotlib/pull/13173/
https://github.com/matplotlib/matplotlib/pull/8205/
https://github.com/matplotlib/matplotlib/pull/11027/
https://github.com/matplotlib/matplotlib/pull/13262/
https://github.com/matplotlib/matplotlib/pull/13377/
https://github.com/matplotlib/matplotlib/pull/13376/
https://github.com/matplotlib/matplotlib/pull/13373/
https://github.com/matplotlib/matplotlib/pull/13362/
https://github.com/matplotlib/matplotlib/pull/12772/
https://github.com/matplotlib/matplotlib/pull/13359/
https://github.com/matplotlib/matplotlib/pull/13351/
https://github.com/matplotlib/matplotlib/pull/13356/
https://github.com/matplotlib/matplotlib/pull/13125/
https://github.com/matplotlib/matplotlib/pull/13346/
https://github.com/matplotlib/matplotlib/pull/13282/
https://github.com/matplotlib/matplotlib/pull/13234/
https://github.com/matplotlib/matplotlib/pull/13269/
https://github.com/matplotlib/matplotlib/pull/13330/
https://github.com/matplotlib/matplotlib/pull/13117/

Matplotlib, Release 3.4.3

• PR #13335: Update and factor out Axis.get_tick_positions.

• PR #13324: Cleanup ScalarFormatter; preparatory to moving it to format_ticks.

• PR #13322: Update Axis docs

• PR #13342: Update some (mostly internal) docstrings in image.py.

• PR #11848: Country specific characters in Windows user folder name when locating .tfm-file

• PR #13309: bezier cleanups.

• PR #13334: Inherit some docstrings.

• PR #13332: Rewrite convert_to_string using std::string

• PR #13336: Update imshow docs.

• PR #13331: Try forcing font cache rebuild in flaky ttc test.

• PR #12105: API: make MaxNLocator trim out-of-view ticks before returning

• PR #13329: Pin flake8<3.7 to mitigate issues with flake8-per-file-ignores

• PR #13319: Deprecate dates.{str,bytes}pdate2num.

• PR #13320: Kill some private, unused functions in dates.py.

• PR #12909: Let Formatters format all ticks at once.

• PR #13313: Better explanation of ticks

• PR #13310: Replace *kw by *args.

• PR #13285: Defer checking of tex install to when it is actually used.

• PR #13128: Parameter-renaming decorator

• PR #13307: Spelling fixes.

• PR #13304: TST: deregister pandas

• PR #13300: Trivial bezier cleanups.

• PR #11664: FIX: clean up unit conversion unpacking of data, particularly for dates and pandas series

• PR #9639: Unify querying of executable versions

• PR #13224: numpydocify (some of) mpl_toolkits.

• PR #13301: Replace np.empty + ndarray.fill by np.full.

• PR #13229: Prevent exception when running animation on Agg backend.

• PR #13263: In imsave()'s Pillow-handled case, don't create a temporary figure.

• PR #13294: Simplify some calculations in polar.py.

• PR #13295: Kill some commented-out code.

• PR #13298: Add note about thread safety to FAQ.

• PR #13299: Don't emit a non-GUI warning when building the docs on Linux.

642 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/13335/
https://github.com/matplotlib/matplotlib/pull/13324/
https://github.com/matplotlib/matplotlib/pull/13322/
https://github.com/matplotlib/matplotlib/pull/13342/
https://github.com/matplotlib/matplotlib/pull/11848/
https://github.com/matplotlib/matplotlib/pull/13309/
https://github.com/matplotlib/matplotlib/pull/13334/
https://github.com/matplotlib/matplotlib/pull/13332/
https://github.com/matplotlib/matplotlib/pull/13336/
https://github.com/matplotlib/matplotlib/pull/13331/
https://github.com/matplotlib/matplotlib/pull/12105/
https://github.com/matplotlib/matplotlib/pull/13329/
https://github.com/matplotlib/matplotlib/pull/13319/
https://github.com/matplotlib/matplotlib/pull/13320/
https://github.com/matplotlib/matplotlib/pull/12909/
https://github.com/matplotlib/matplotlib/pull/13313/
https://github.com/matplotlib/matplotlib/pull/13310/
https://github.com/matplotlib/matplotlib/pull/13285/
https://github.com/matplotlib/matplotlib/pull/13128/
https://github.com/matplotlib/matplotlib/pull/13307/
https://github.com/matplotlib/matplotlib/pull/13304/
https://github.com/matplotlib/matplotlib/pull/13300/
https://github.com/matplotlib/matplotlib/pull/11664/
https://github.com/matplotlib/matplotlib/pull/9639/
https://github.com/matplotlib/matplotlib/pull/13224/
https://github.com/matplotlib/matplotlib/pull/13301/
https://github.com/matplotlib/matplotlib/pull/13229/
https://github.com/matplotlib/matplotlib/pull/13263/
https://github.com/matplotlib/matplotlib/pull/13294/
https://github.com/matplotlib/matplotlib/pull/13295/
https://github.com/matplotlib/matplotlib/pull/13298/
https://github.com/matplotlib/matplotlib/pull/13299/

Matplotlib, Release 3.4.3

• PR #13297: Minor cleanup to OSX FAQ.

• PR #13283: Fix doc style in add_gridspec()

• PR #13129: ENH: add a user-friendly verbose interface

• PR #13279: Remove a useless catch_warnings() from example.

• PR #13268: Select RadioButtons by closest in position.

• PR #13271: Fix animation speed in double_pendulum example

• PR #13265: Allow turning off minor ticks on Colorbar with LogNorm

• PR #13260: Improve docs for format determination in savefig()/imsave().

• PR #12379: MAINT Use np.full when possible

• PR #12905: Add optional parameter use_default_template to rc_file()

• PR #13218: Fix checking of 'labels' argument to Sankey.add.

• PR #13256: DOC: reject MEP25 due to being stalled

• PR #13255: TST pandas support bar

• PR #13251: DEBUG-log font-matching results, and print failing logs on CI.

• PR #12818: Enh arbitrary scale

• PR #13187: FIX: bar mixed units, allow ValueError as well

• PR #13232: Fix incorrect kwarg being passed to TextPath.

• PR #13250: Replace safezip() by more informative error message in errorbar().

• PR #13239: Improve sankey logging.

• PR #13247: Simplify and optimize png writing in backend_pdf.

• PR #12455: Warn when "best" loc of legend is used with lots of data

• PR #13233: Remove warning in image_annotated_heatmap, and numpydocify it.

• PR #13248: Remove an unused local variable in backend_gtk3.

• PR #13249: Deprecate an unused "internal" API.

• PR #13243: Rewrite subplots_demo

• PR #13240: FIX: spelling error of local variable in category

• PR #13026: MNT: add a logging call if a categorical string array is all convertible

• PR #13225: Fix a warning in the doc build.

• PR #13227: Make color lowercase in example to avoid warning.

• PR #13217: numpydocify Sankey.add.

• PR #10209: Various backend cleanups.

• PR #13113: Globally cache single TexManager instances.

7.1. Previous GitHub Stats 643

https://github.com/matplotlib/matplotlib/pull/13297/
https://github.com/matplotlib/matplotlib/pull/13283/
https://github.com/matplotlib/matplotlib/pull/13129/
https://github.com/matplotlib/matplotlib/pull/13279/
https://github.com/matplotlib/matplotlib/pull/13268/
https://github.com/matplotlib/matplotlib/pull/13271/
https://github.com/matplotlib/matplotlib/pull/13265/
https://github.com/matplotlib/matplotlib/pull/13260/
https://github.com/matplotlib/matplotlib/pull/12379/
https://github.com/matplotlib/matplotlib/pull/12905/
https://github.com/matplotlib/matplotlib/pull/13218/
https://github.com/matplotlib/matplotlib/pull/13256/
https://github.com/matplotlib/matplotlib/pull/13255/
https://github.com/matplotlib/matplotlib/pull/13251/
https://github.com/matplotlib/matplotlib/pull/12818/
https://github.com/matplotlib/matplotlib/pull/13187/
https://github.com/matplotlib/matplotlib/pull/13232/
https://github.com/matplotlib/matplotlib/pull/13250/
https://github.com/matplotlib/matplotlib/pull/13239/
https://github.com/matplotlib/matplotlib/pull/13247/
https://github.com/matplotlib/matplotlib/pull/12455/
https://github.com/matplotlib/matplotlib/pull/13233/
https://github.com/matplotlib/matplotlib/pull/13248/
https://github.com/matplotlib/matplotlib/pull/13249/
https://github.com/matplotlib/matplotlib/pull/13243/
https://github.com/matplotlib/matplotlib/pull/13240/
https://github.com/matplotlib/matplotlib/pull/13026/
https://github.com/matplotlib/matplotlib/pull/13225/
https://github.com/matplotlib/matplotlib/pull/13227/
https://github.com/matplotlib/matplotlib/pull/13217/
https://github.com/matplotlib/matplotlib/pull/10209/
https://github.com/matplotlib/matplotlib/pull/13113/

Matplotlib, Release 3.4.3

• PR #13213: Broadcast 'orientations' arg to Sankey.add.

• PR #13219: Fix some backend_bases docstrings.

• PR #13214: Reformat Sankey exceptions.

• PR #13211: Deprecate case-insensitive colors.

• PR #13210: Suppress a warning in the test suite.

• PR #13189: Remove cairo-based backends from backend fallback.

• PR #13207: Allow saving PNGs through Pillow instead of the builtin _png module.

• PR #13124: Simplify parsing of errorbar input.

• PR #13162: DOC: better argcheck bar

• PR #8531: Added compression option to save TIFF images

• PR #13094: Allow passing arguments to PIL.Image.save().

• PR #13202: Avoid private API in some examples.

• PR #13197: Cleanup the text of two mpl_toolkits examples.

• PR #13198: Cleanup SkewT example.

• PR #11914: Remove the system_monitor example.

• PR #13196: Deemphasize comment about extremely old Matplotlib versions in example.

• PR #13190: Show returncode when subprocess test fails

• PR #13163: Add explanatory comment to annotation box example

• PR #13104: Remove some more 1-tuples.

• PR #13105: Make GridSpec.update docstring match behavior.

• PR #13127: Deprecate add_subplot(<no positional args>) silently doing nothing.

• PR #13166: Simplify Text.get_usetex.

• PR #13188: Remove an outdated doc point regarding backend selection.

• PR #13107: Cleanup BboxBase docstrings.

• PR #13108: Capitalize some docstrings.

• PR #13115: Check for sphinx_copybutton when building the docs

• PR #13151: Update RadioButtons docs numpydoc style

• PR #13178: Remove :func: markup from mlab docstrings.

• PR #7461: [WIP] add matrix checking function for quiver input

• PR #13089: Ensure that arguments to quiver() are not matrices.

• PR #13179: Avoid calling a deprecated API in axis_artist.

• PR #13170: Don't try to find TeX-only fonts when layouting TeX text.

644 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/13213/
https://github.com/matplotlib/matplotlib/pull/13219/
https://github.com/matplotlib/matplotlib/pull/13214/
https://github.com/matplotlib/matplotlib/pull/13211/
https://github.com/matplotlib/matplotlib/pull/13210/
https://github.com/matplotlib/matplotlib/pull/13189/
https://github.com/matplotlib/matplotlib/pull/13207/
https://github.com/matplotlib/matplotlib/pull/13124/
https://github.com/matplotlib/matplotlib/pull/13162/
https://github.com/matplotlib/matplotlib/pull/8531/
https://github.com/matplotlib/matplotlib/pull/13094/
https://github.com/matplotlib/matplotlib/pull/13202/
https://github.com/matplotlib/matplotlib/pull/13197/
https://github.com/matplotlib/matplotlib/pull/13198/
https://github.com/matplotlib/matplotlib/pull/11914/
https://github.com/matplotlib/matplotlib/pull/13196/
https://github.com/matplotlib/matplotlib/pull/13190/
https://github.com/matplotlib/matplotlib/pull/13163/
https://github.com/matplotlib/matplotlib/pull/13104/
https://github.com/matplotlib/matplotlib/pull/13105/
https://github.com/matplotlib/matplotlib/pull/13127/
https://github.com/matplotlib/matplotlib/pull/13166/
https://github.com/matplotlib/matplotlib/pull/13188/
https://github.com/matplotlib/matplotlib/pull/13107/
https://github.com/matplotlib/matplotlib/pull/13108/
https://github.com/matplotlib/matplotlib/pull/13115/
https://github.com/matplotlib/matplotlib/pull/13151/
https://github.com/matplotlib/matplotlib/pull/13178/
https://github.com/matplotlib/matplotlib/pull/7461/
https://github.com/matplotlib/matplotlib/pull/13089/
https://github.com/matplotlib/matplotlib/pull/13179/
https://github.com/matplotlib/matplotlib/pull/13170/

Matplotlib, Release 3.4.3

• PR #12957: Search also for user fonts on Windows (#12954)

• PR #12951: Make Text._get_layout simpler to follow.

• PR #11385: Add a get_zaxis method for 3d axes.

• PR #13172: Hyperlink DOIs to preferred resolver

• PR #13171: Document how to make colorbars "without" a ScalarMappable.

• PR #12903: FIX: (broken)bar(h) math before units

• PR #13167: Typos on subplot comments and example

• PR #13005: Improve error messages for unit conversion

• PR #13147: Extend joinstyle example

• PR #13165: Change doc string for Axes.arrow()

• PR #13155: Let ffmpeg report errors.

• PR #13149: Update errorbar limits example

• PR #13074: Move _windowing extension into _tkagg.

• PR #13146: Remove an outdated comment in backend_wx.

• PR #13126: FIX: minor log ticks overwrite

• PR #13148: Update example Step Demo

• PR #13138: API: Use class-based directive in sphinxext

• PR #11894: add cache_frame_data kwarg into FuncAnimation. fixes #8528.

• PR #13136: Small cleanups.

• PR #13140: Remove an "cannot show figure in agg" warning in test suite.

• PR #13134: Simplify color conversion backcompat shim.

• PR #13141: Unpin pytest (pytest-cov's latest release is compatible with it).

• PR #13133: Simplify the polys3d example.

• PR #12158: MNT: simplify valid tick logic

• PR #9867: Factor out common code between pdf and ps backends.

• PR #10111: Add set_data_3d and get_data_3d to Line3d

• PR #12245: Remove (some) features deprecated in mpl2.2

• PR #13119: Deprecate TextToPath.glyph_to_path.

• PR #13122: Pin pytest<4.1 to unbreak CI tests

• PR #13100: Restore the font cache on Travis.

• PR #12792: BUG: Ensure that distinct polygon collections are shaded identically

• PR #13070: cairo backend: default to pycairo

7.1. Previous GitHub Stats 645

https://github.com/matplotlib/matplotlib/pull/12957/
https://github.com/matplotlib/matplotlib/pull/12951/
https://github.com/matplotlib/matplotlib/pull/11385/
https://github.com/matplotlib/matplotlib/pull/13172/
https://github.com/matplotlib/matplotlib/pull/13171/
https://github.com/matplotlib/matplotlib/pull/12903/
https://github.com/matplotlib/matplotlib/pull/13167/
https://github.com/matplotlib/matplotlib/pull/13005/
https://github.com/matplotlib/matplotlib/pull/13147/
https://github.com/matplotlib/matplotlib/pull/13165/
https://github.com/matplotlib/matplotlib/pull/13155/
https://github.com/matplotlib/matplotlib/pull/13149/
https://github.com/matplotlib/matplotlib/pull/13074/
https://github.com/matplotlib/matplotlib/pull/13146/
https://github.com/matplotlib/matplotlib/pull/13126/
https://github.com/matplotlib/matplotlib/pull/13148/
https://github.com/matplotlib/matplotlib/pull/13138/
https://github.com/matplotlib/matplotlib/pull/11894/
https://github.com/matplotlib/matplotlib/pull/13136/
https://github.com/matplotlib/matplotlib/pull/13140/
https://github.com/matplotlib/matplotlib/pull/13134/
https://github.com/matplotlib/matplotlib/pull/13141/
https://github.com/matplotlib/matplotlib/pull/13133/
https://github.com/matplotlib/matplotlib/pull/12158/
https://github.com/matplotlib/matplotlib/pull/9867/
https://github.com/matplotlib/matplotlib/pull/10111/
https://github.com/matplotlib/matplotlib/pull/12245/
https://github.com/matplotlib/matplotlib/pull/13119/
https://github.com/matplotlib/matplotlib/pull/13122/
https://github.com/matplotlib/matplotlib/pull/13100/
https://github.com/matplotlib/matplotlib/pull/12792/
https://github.com/matplotlib/matplotlib/pull/13070/

Matplotlib, Release 3.4.3

• PR #13114: BUG: calculate colorbar boundaries correctly from values

• PR #13111: Delete an unused private method.

• PR #10841: ENH: new date formatter

• PR #13093: Remove unused fontconfig conf file.

• PR #13063: Use default colour cycle in more examples

• PR #13103: Remove tight_bbox_test example.

• PR #13097: Replace 1-tuples by scalars where possible.

• PR #13027: Qt5 reset signals after non-interactive plotting

• PR #9787: Support (first font of) TTC files.

• PR #11780: ENH: Allow arbitrary coordinates for ConnectionPatch

• PR #12943: Update the font_table example.

• PR #13091: Improve MouseEvent str().

• PR #13095: Remove a duplicate attribute setting.

• PR #13090: Cleanup unused non-public imports.

• PR #13060: Move doc-requirements from root folder

• PR #13078: Convert streamplot to numpydoc

• PR #13088: Don't use deprecated np.random.random_integers.

• PR #13073: Drop pytest version check in setupext.py.

• PR #12933: Deprecate backend_pgf.LatexManagerFactory.

• PR #12969: Clarify the implementation of _process_plot_var_args.

• PR #12472: Make FontManager.defaultFont a property, to avoid hardcoding the prefix.

• PR #11806: Allow to not draw the labels on pie chart

• PR #11983: Simplify version checks for freetype and libpng.

• PR #13050: FIX: always eraseRect in Qt widget

• PR #13065: FIX: print out the correct ip address when starting webagg

• PR #13061: Make examples that load msft.csv robust against locale changes.

• PR #13042: cairo: remove the append_path() fast path

• PR #13058: pathlibify/cleanup triage_tests.py.

• PR #12995: Don't split creation of deprecation message and choice of warning class.

• PR #12998: Init MaxNLocator params only once

• PR #11691: Make Figure.frameon a thin wrapper for the patch visibility.

• PR #11735: Change {FigureCanvasAgg,RendererAgg}.buffer_rgba to return a memoryview.

646 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/13114/
https://github.com/matplotlib/matplotlib/pull/13111/
https://github.com/matplotlib/matplotlib/pull/10841/
https://github.com/matplotlib/matplotlib/pull/13093/
https://github.com/matplotlib/matplotlib/pull/13063/
https://github.com/matplotlib/matplotlib/pull/13103/
https://github.com/matplotlib/matplotlib/pull/13097/
https://github.com/matplotlib/matplotlib/pull/13027/
https://github.com/matplotlib/matplotlib/pull/9787/
https://github.com/matplotlib/matplotlib/pull/11780/
https://github.com/matplotlib/matplotlib/pull/12943/
https://github.com/matplotlib/matplotlib/pull/13091/
https://github.com/matplotlib/matplotlib/pull/13095/
https://github.com/matplotlib/matplotlib/pull/13090/
https://github.com/matplotlib/matplotlib/pull/13060/
https://github.com/matplotlib/matplotlib/pull/13078/
https://github.com/matplotlib/matplotlib/pull/13088/
https://github.com/matplotlib/matplotlib/pull/13073/
https://github.com/matplotlib/matplotlib/pull/12933/
https://github.com/matplotlib/matplotlib/pull/12969/
https://github.com/matplotlib/matplotlib/pull/12472/
https://github.com/matplotlib/matplotlib/pull/11806/
https://github.com/matplotlib/matplotlib/pull/11983/
https://github.com/matplotlib/matplotlib/pull/13050/
https://github.com/matplotlib/matplotlib/pull/13065/
https://github.com/matplotlib/matplotlib/pull/13061/
https://github.com/matplotlib/matplotlib/pull/13042/
https://github.com/matplotlib/matplotlib/pull/13058/
https://github.com/matplotlib/matplotlib/pull/12995/
https://github.com/matplotlib/matplotlib/pull/12998/
https://github.com/matplotlib/matplotlib/pull/11691/
https://github.com/matplotlib/matplotlib/pull/11735/

Matplotlib, Release 3.4.3

• PR #12831: Reuse scale from sharing axis when calling cla().

• PR #12962: Deprecate setting the same property under two different aliases.

• PR #12973: Fix item check for pandas Series

• PR #13049: Add boxplot.flierprops.markeredgewidth rcParam

• PR #13048: Fix section names for numpydoc

• PR #10928: Simplify (quite a bit...) _preprocess_data

• PR #13039: Speed up Path.iter_segments()

• PR #12992: Adding rcParams[‘scatter.edgecolors’] defaulting to ‘face’

• PR #13014: Drop pgi support for the GTK3 backend

• PR #12215: Cleanup initialization in text()

• PR #13029: Fix vertical alignment of text

• PR #12968: Simpler and stricter process_plot_format.

• PR #12989: Avoid spamming tests with warnings re: deprecation of pprint_val.

• PR #13032: fix typo in docstring in axis_artist.py

• PR #13025: MNT: add one more alias for tacaswell to mailmap

• PR #13010: Fix a format error in documenting_mpl.rst

• PR #12997: Add sphinx-copybutton to docs

• PR #12422: Scatter color: moving #10809 forward

• PR #12999: Format MaxNLocator with numpydoc

• PR #12991: Canonicalize weights extracted for AFM fonts.

• PR #12955: Cleanup cursor_demo.

• PR #12984: Cleanup GTK examples.

• PR #12986: Minor cleanup to double_pendulum example.

• PR #12959: Update the documentation of Cursor

• PR #12945: Correctly get weight & style hints from certain newer Microsoft fonts

• PR #12976: ENH: replace deprecated numpy header

• PR #12975: Fail-fast when trying to run tests with too-old pytest.

• PR #12970: Minor simplifications.

• PR #12974: Remove some checks for Py<3.6 in the test suite.

• PR #12779: Include scatter plots in Qt figure options editor.

• PR #12459: Improve formatting of imshow() cursor data when a colorbar exists.

• PR #12927: MAINT: Correctly handle empty lists in zip unpacking in mplot3d.art3d

7.1. Previous GitHub Stats 647

https://github.com/matplotlib/matplotlib/pull/12831/
https://github.com/matplotlib/matplotlib/pull/12962/
https://github.com/matplotlib/matplotlib/pull/12973/
https://github.com/matplotlib/matplotlib/pull/13049/
https://github.com/matplotlib/matplotlib/pull/13048/
https://github.com/matplotlib/matplotlib/pull/10928/
https://github.com/matplotlib/matplotlib/pull/13039/
https://github.com/matplotlib/matplotlib/pull/12992/
https://github.com/matplotlib/matplotlib/pull/13014/
https://github.com/matplotlib/matplotlib/pull/12215/
https://github.com/matplotlib/matplotlib/pull/13029/
https://github.com/matplotlib/matplotlib/pull/12968/
https://github.com/matplotlib/matplotlib/pull/12989/
https://github.com/matplotlib/matplotlib/pull/13032/
https://github.com/matplotlib/matplotlib/pull/13025/
https://github.com/matplotlib/matplotlib/pull/13010/
https://github.com/matplotlib/matplotlib/pull/12997/
https://github.com/matplotlib/matplotlib/pull/12422/
https://github.com/matplotlib/matplotlib/pull/12999/
https://github.com/matplotlib/matplotlib/pull/12991/
https://github.com/matplotlib/matplotlib/pull/12955/
https://github.com/matplotlib/matplotlib/pull/12984/
https://github.com/matplotlib/matplotlib/pull/12986/
https://github.com/matplotlib/matplotlib/pull/12959/
https://github.com/matplotlib/matplotlib/pull/12945/
https://github.com/matplotlib/matplotlib/pull/12976/
https://github.com/matplotlib/matplotlib/pull/12975/
https://github.com/matplotlib/matplotlib/pull/12970/
https://github.com/matplotlib/matplotlib/pull/12974/
https://github.com/matplotlib/matplotlib/pull/12779/
https://github.com/matplotlib/matplotlib/pull/12459/
https://github.com/matplotlib/matplotlib/pull/12927/

Matplotlib, Release 3.4.3

• PR #12919: Suppress deprecation warning when testing drawstyle conflict

• PR #12956: Misc. cleanups.

• PR #12924: Deprecate public use of Formatter.pprint_val.

• PR #12947: Support ~ as nonbreaking space in mathtext.

• PR #12944: Fix the title of testing_api

• PR #12136: MAINT: Unify calculation of normal vectors from polygons

• PR #12880: More table documentation

• PR #12940: Avoid pyplot in showcase examples.

• PR #12935: os.PathLike exists on all supported Pythons now.

• PR #12936: Minor updates following bump to Py3.6+.

• PR #12932: Simplify argument checking in Table.__getitem__.

• PR #12930: Shorten an argument check.

• PR #12538: MNT: drop 3.5 testing for 3.1 branch

• PR #12868: Simplify use of Path._fast_from_codes_and_verts.

• PR #12300: API: Polar: allow flipped y/rlims....

• PR #12861: Don't use deprecated wx.NewId().

• PR #12908: Allow all valid hist.bins strings to be set in the rcparams

• PR #12902: Kill dead code in textpath.

• PR #12885: Improve margins in formlayout

• PR #12877: fooImage -> foo_image in testing/compare.py

• PR #12845: Deprecate silent dropping of unknown arguments to TextPath().

• PR #12852: Cleanup collections docs.

• PR #12888: Properly enable forward/backward buttons on GTK3

• PR #12865: Avoid 1-tick or 0-tick log-scaled axis.

• PR #12844: Remove unused, private _process_text_args.

• PR #12881: Fix string comparison

• PR #12863: FIX: translate timedeltas in _to_ordinalf

• PR #12640: Introduce MouseButton enum for MouseEvent.

• PR #12897: Reword a bit the contour docs.

• PR #12898: Validate rcParams["image.origin"].

• PR #12882: Write error messages to logger instead of stderr

• PR #12889: Deprecate public access to the vendored formlayout module.

648 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/12919/
https://github.com/matplotlib/matplotlib/pull/12956/
https://github.com/matplotlib/matplotlib/pull/12924/
https://github.com/matplotlib/matplotlib/pull/12947/
https://github.com/matplotlib/matplotlib/pull/12944/
https://github.com/matplotlib/matplotlib/pull/12136/
https://github.com/matplotlib/matplotlib/pull/12880/
https://github.com/matplotlib/matplotlib/pull/12940/
https://github.com/matplotlib/matplotlib/pull/12935/
https://github.com/matplotlib/matplotlib/pull/12936/
https://github.com/matplotlib/matplotlib/pull/12932/
https://github.com/matplotlib/matplotlib/pull/12930/
https://github.com/matplotlib/matplotlib/pull/12538/
https://github.com/matplotlib/matplotlib/pull/12868/
https://github.com/matplotlib/matplotlib/pull/12300/
https://github.com/matplotlib/matplotlib/pull/12861/
https://github.com/matplotlib/matplotlib/pull/12908/
https://github.com/matplotlib/matplotlib/pull/12902/
https://github.com/matplotlib/matplotlib/pull/12885/
https://github.com/matplotlib/matplotlib/pull/12877/
https://github.com/matplotlib/matplotlib/pull/12845/
https://github.com/matplotlib/matplotlib/pull/12852/
https://github.com/matplotlib/matplotlib/pull/12888/
https://github.com/matplotlib/matplotlib/pull/12865/
https://github.com/matplotlib/matplotlib/pull/12844/
https://github.com/matplotlib/matplotlib/pull/12881/
https://github.com/matplotlib/matplotlib/pull/12863/
https://github.com/matplotlib/matplotlib/pull/12640/
https://github.com/matplotlib/matplotlib/pull/12897/
https://github.com/matplotlib/matplotlib/pull/12898/
https://github.com/matplotlib/matplotlib/pull/12882/
https://github.com/matplotlib/matplotlib/pull/12889/

Matplotlib, Release 3.4.3

• PR #12891: Add Azure Pipelines build badge

• PR #12883: MAINT Use list comprehension

• PR #12886: Properly enable forward/backward buttons on Qt

• PR #12858: Bump oldest supported numpy to 1.11.

• PR #12876: Fix a typo

• PR #12739: make Axes._parse_scatter_color_args static

• PR #12846: Deprecate Path.has_nonfinite.

• PR #12829: Remove unused variables

• PR #12872: Inline references to RendererPS in backend_ps.

• PR #12800: documenting dtype of hist counts

• PR #12842: Fix message in nbagg connection_info()

• PR #12855: Cleanup axes/_base.py.

• PR #12826: Minor code cleanup

• PR #12866: Simplify stride calculations in loglocator.

• PR #12867: Drop compat code for outdated MSVC.

• PR #12218: Improve table docs

• PR #12847: correctly format ticklabels when EngFormatter is used with usetex = True

• PR #12851: Keep Collections and Patches property aliases in sync.

• PR #12849: Update docstrings in path.py, and small cleanups.

• PR #12805: Don't insert spurious newlines by joining tex.preamble.

• PR #12827: Remove unused imports

• PR #12560: Add matplotlib.testing to the documentation

• PR #12821: MNT: remove debug from update_title_pos

• PR #12764: Cleanup Renderer/GraphicsContext docs.

• PR #12759: Warn on FreeType missing glyphs.

• PR #12799: Reword some colorbar docs.

• PR #12633: Added support for MacOSX backend for PyPy

• PR #12798: Replace assignments to array.shape by calls to reshape().

• PR #11851: Simpler check for whether a Framework Python build is being used.

• PR #12259: BUG: Fix face orientations of bar3d

• PR #12565: Make FontManager.score_weight less lenient.

• PR #12674: Allow "real" LaTeX code for pgf.preamble in matplotlibrc

7.1. Previous GitHub Stats 649

https://github.com/matplotlib/matplotlib/pull/12891/
https://github.com/matplotlib/matplotlib/pull/12883/
https://github.com/matplotlib/matplotlib/pull/12886/
https://github.com/matplotlib/matplotlib/pull/12858/
https://github.com/matplotlib/matplotlib/pull/12876/
https://github.com/matplotlib/matplotlib/pull/12739/
https://github.com/matplotlib/matplotlib/pull/12846/
https://github.com/matplotlib/matplotlib/pull/12829/
https://github.com/matplotlib/matplotlib/pull/12872/
https://github.com/matplotlib/matplotlib/pull/12800/
https://github.com/matplotlib/matplotlib/pull/12842/
https://github.com/matplotlib/matplotlib/pull/12855/
https://github.com/matplotlib/matplotlib/pull/12826/
https://github.com/matplotlib/matplotlib/pull/12866/
https://github.com/matplotlib/matplotlib/pull/12867/
https://github.com/matplotlib/matplotlib/pull/12218/
https://github.com/matplotlib/matplotlib/pull/12847/
https://github.com/matplotlib/matplotlib/pull/12851/
https://github.com/matplotlib/matplotlib/pull/12849/
https://github.com/matplotlib/matplotlib/pull/12805/
https://github.com/matplotlib/matplotlib/pull/12827/
https://github.com/matplotlib/matplotlib/pull/12560/
https://github.com/matplotlib/matplotlib/pull/12821/
https://github.com/matplotlib/matplotlib/pull/12764/
https://github.com/matplotlib/matplotlib/pull/12759/
https://github.com/matplotlib/matplotlib/pull/12799/
https://github.com/matplotlib/matplotlib/pull/12633/
https://github.com/matplotlib/matplotlib/pull/12798/
https://github.com/matplotlib/matplotlib/pull/11851/
https://github.com/matplotlib/matplotlib/pull/12259/
https://github.com/matplotlib/matplotlib/pull/12565/
https://github.com/matplotlib/matplotlib/pull/12674/

Matplotlib, Release 3.4.3

• PR #12770: Simplify implementation of FontProperties.copy().

• PR #12753: MNT: remove _hold shims to support basemap + cartopy

• PR #12450: Attach a FigureCanvasBase by default to Figures.

• PR #12643: Allow unit input to FancyArrowPatch

• PR #12767: Make colorbars constructible with dataless ScalarMappables.

• PR #12526: Rename jquery files

• PR #12552: Update docs for writing image comparison tests.

• PR #12746: Use skipif, not xfail, for uncomparable image formats.

• PR #12747: Prefer log.warning("%s", ...) to log.warning("%s" % ...).

• PR #11753: FIX: Apply aspect before drawing starts

• PR #12749: Move toolmanager warning from logging to warning.

• PR #12598: Support Cn colors with n>=10.

• PR #12727: Reorder API docs: separate file per module

• PR #12738: Add unobtrusive depreaction note to the first line of the docstring.

• PR #11663: Refactor color parsing of Axes.scatter

• PR #12736: Move deprecation note to end of docstring

• PR #12704: Rename tkinter import from Tk to tk.

• PR #12715: Cleanup dviread.

• PR #12717: Delete some if __name__ == "__main__" clauses.

• PR #10575: FIX patch.update_from to also copy _original_edge/facecolor

• PR #12537: Improve error message on failing test_pyplot_up_to_date

• PR #12721: Make get_scale_docs() internal

• PR #12706: Extend sphinx Makefile to cleanup completely

• PR #12481: Warn if plot_surface Z values contain NaN

• PR #12685: Make ticks in demo_axes_rgb.py visible

• PR #12523: Run flake8 before pytest on travis

• PR #12691: DOC: Link to "How to make a PR" tutorials as badge and in contributing

• PR #11974: Make code match comment in sankey.

• PR #12440: Make arguments to @deprecated/warn_deprecated keyword-only.

• PR #12470: Update AutoDateFormatter with locator

• PR #12586: Improve linestyles example

• PR #12006: Replace warnings.warn with cbook._warn_external or logging.warning

650 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/12770/
https://github.com/matplotlib/matplotlib/pull/12753/
https://github.com/matplotlib/matplotlib/pull/12450/
https://github.com/matplotlib/matplotlib/pull/12643/
https://github.com/matplotlib/matplotlib/pull/12767/
https://github.com/matplotlib/matplotlib/pull/12526/
https://github.com/matplotlib/matplotlib/pull/12552/
https://github.com/matplotlib/matplotlib/pull/12746/
https://github.com/matplotlib/matplotlib/pull/12747/
https://github.com/matplotlib/matplotlib/pull/11753/
https://github.com/matplotlib/matplotlib/pull/12749/
https://github.com/matplotlib/matplotlib/pull/12598/
https://github.com/matplotlib/matplotlib/pull/12727/
https://github.com/matplotlib/matplotlib/pull/12738/
https://github.com/matplotlib/matplotlib/pull/11663/
https://github.com/matplotlib/matplotlib/pull/12736/
https://github.com/matplotlib/matplotlib/pull/12704/
https://github.com/matplotlib/matplotlib/pull/12715/
https://github.com/matplotlib/matplotlib/pull/12717/
https://github.com/matplotlib/matplotlib/pull/10575/
https://github.com/matplotlib/matplotlib/pull/12537/
https://github.com/matplotlib/matplotlib/pull/12721/
https://github.com/matplotlib/matplotlib/pull/12706/
https://github.com/matplotlib/matplotlib/pull/12481/
https://github.com/matplotlib/matplotlib/pull/12685/
https://github.com/matplotlib/matplotlib/pull/12523/
https://github.com/matplotlib/matplotlib/pull/12691/
https://github.com/matplotlib/matplotlib/pull/11974/
https://github.com/matplotlib/matplotlib/pull/12440/
https://github.com/matplotlib/matplotlib/pull/12470/
https://github.com/matplotlib/matplotlib/pull/12586/
https://github.com/matplotlib/matplotlib/pull/12006/

Matplotlib, Release 3.4.3

• PR #12659: Add note that developer discussions are private

• PR #12543: Make rcsetup.py flak8 compliant

• PR #12642: Don't silence TypeErrors in fmt_{x,y}data.

• PR #12442: Deprecate passing drawstyle with linestyle as single string.

• PR #12625: Shorten some docstrings.

• PR #12627: Be a bit more stringent on invalid inputs.

• PR #12629: Fix issue with PyPy on macOS

• PR #10933: Remove "experimental" fontconfig font_manager backend.

• PR #12600: Minor style fixes.

• PR #12570: Fix mathtext tutorial for build with Sphinx 1.8.

• PR #12487: Update docs/tests for the deprecation of aname and label1On/label2On/etc.

• PR #12521: Improve docstring of draw_idle()

• PR #12574: Remove some unused imports

• PR #12568: Add note regarding builds of old Matplotlibs.

• PR #12547: Disable sticky edge accumulation if no autoscaling.

• PR #12546: Avoid quadratic behavior when accumulating stickies.

• PR #11789: endless looping GIFs with PillowWriter

• PR #12525: Fix some flake8 issues

• PR #12516: Don't handle impossible values for align in hist()

• PR #12500: Adjust the widths of the messages during the build.

• PR #12492: Simplify radar_chart example.

• PR #11984: Strip out pkg-config machinery for agg and libqhull.

• PR #12463: Document Artist.cursor_data() parameter

• PR #12482: Test slider orientation

• PR #12317: Always install mpl_toolkits.

• PR #12246: Be less tolerant of broken installs.

• PR #12477: Use N{MICRO SIGN} instead of N{GREEK SMALL LETTER MU} in EngFormatter.

• PR #12483: Kill FontManager.update_fonts.

• PR #12474: Throw ValueError when irregularly gridded data is passed to streamplot.

• PR #12466: np.fromstring -> np.frombuffer.

• PR #12369: Improved exception handling on animation failure

• PR #12460: Deprecate RendererBase.strip_math.

7.1. Previous GitHub Stats 651

https://github.com/matplotlib/matplotlib/pull/12659/
https://github.com/matplotlib/matplotlib/pull/12543/
https://github.com/matplotlib/matplotlib/pull/12642/
https://github.com/matplotlib/matplotlib/pull/12442/
https://github.com/matplotlib/matplotlib/pull/12625/
https://github.com/matplotlib/matplotlib/pull/12627/
https://github.com/matplotlib/matplotlib/pull/12629/
https://github.com/matplotlib/matplotlib/pull/10933/
https://github.com/matplotlib/matplotlib/pull/12600/
https://github.com/matplotlib/matplotlib/pull/12570/
https://github.com/matplotlib/matplotlib/pull/12487/
https://github.com/matplotlib/matplotlib/pull/12521/
https://github.com/matplotlib/matplotlib/pull/12574/
https://github.com/matplotlib/matplotlib/pull/12568/
https://github.com/matplotlib/matplotlib/pull/12547/
https://github.com/matplotlib/matplotlib/pull/12546/
https://github.com/matplotlib/matplotlib/pull/11789/
https://github.com/matplotlib/matplotlib/pull/12525/
https://github.com/matplotlib/matplotlib/pull/12516/
https://github.com/matplotlib/matplotlib/pull/12500/
https://github.com/matplotlib/matplotlib/pull/12492/
https://github.com/matplotlib/matplotlib/pull/11984/
https://github.com/matplotlib/matplotlib/pull/12463/
https://github.com/matplotlib/matplotlib/pull/12482/
https://github.com/matplotlib/matplotlib/pull/12317/
https://github.com/matplotlib/matplotlib/pull/12246/
https://github.com/matplotlib/matplotlib/pull/12477/
https://github.com/matplotlib/matplotlib/pull/12483/
https://github.com/matplotlib/matplotlib/pull/12474/
https://github.com/matplotlib/matplotlib/pull/12466/
https://github.com/matplotlib/matplotlib/pull/12369/
https://github.com/matplotlib/matplotlib/pull/12460/

Matplotlib, Release 3.4.3

• PR #12453: Rollback erroneous commit to whats_new.rst from #10746

• PR #12452: Minor updates to the FAQ.

• PR #10746: Adjusted matplotlib.widgets.Slider to have optional vertical orientatation

• PR #12441: Get rid of a signed-compare warning.

• PR #12430: Deprecate Axes3D.plot_surface(shade=None)

• PR #12435: Fix numpydoc parameter formatting

• PR #12434: Clarify documentation for textprops keyword parameter of TextArea

• PR #12427: Document Artist.get_cursor_data

• PR #10322: Use np.hypot wherever possible.

• PR #10809: Fix for scatter not showing points with valid x/y but invalid color

• PR #12423: Minor simplifications to backend_svg.

• PR #10356: fix detecting which artist(s) the mouse is over

• PR #10268: Dvi caching

• PR #10238: Call kpsewhich with more arguments at one time

• PR #10236: Cache kpsewhich results persistently

• PR #4675: Deprecate color keyword argument in scatter

• PR #5054: Diverging norm

• PR #12416: Move font cache rebuild out of exception handler

• PR #4762: Traitlets

• PR #5414: WIP: New FreeType wrappers

• PR #3875: ENH: passing colors (and other optional keyword arguments) to violinplot()

• PR #1959: PS backend optionally jpeg-compresses the embedded images

• PR #11891: Group some print()s in backend_ps.

• PR #12165: Remove deprecated mlab code

• PR #12387: Update HTML animation as slider is dragged

• PR #12333: ENH: add colorbar method to axes

• PR #10088: Deprecate Tick.{gridOn,tick1On,label1On,...} in favor of set_visible.

• PR #12393: Deprecate to-days converters in matplotlib dates

• PR #11232: FIX: fix figure.set_dpi when pixel ratio not 1

• PR #12247: Machinery for deprecating properties.

• PR #12371: Move check for ImageMagick Windows path to bin_path().

• PR #12384: Cleanup axislines style.

652 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/12453/
https://github.com/matplotlib/matplotlib/pull/12452/
https://github.com/matplotlib/matplotlib/pull/10746/
https://github.com/matplotlib/matplotlib/pull/12441/
https://github.com/matplotlib/matplotlib/pull/12430/
https://github.com/matplotlib/matplotlib/pull/12435/
https://github.com/matplotlib/matplotlib/pull/12434/
https://github.com/matplotlib/matplotlib/pull/12427/
https://github.com/matplotlib/matplotlib/pull/10322/
https://github.com/matplotlib/matplotlib/pull/10809/
https://github.com/matplotlib/matplotlib/pull/12423/
https://github.com/matplotlib/matplotlib/pull/10356/
https://github.com/matplotlib/matplotlib/pull/10268/
https://github.com/matplotlib/matplotlib/pull/10238/
https://github.com/matplotlib/matplotlib/pull/10236/
https://github.com/matplotlib/matplotlib/pull/4675/
https://github.com/matplotlib/matplotlib/pull/5054/
https://github.com/matplotlib/matplotlib/pull/12416/
https://github.com/matplotlib/matplotlib/pull/4762/
https://github.com/matplotlib/matplotlib/pull/5414/
https://github.com/matplotlib/matplotlib/pull/3875/
https://github.com/matplotlib/matplotlib/pull/1959/
https://github.com/matplotlib/matplotlib/pull/11891/
https://github.com/matplotlib/matplotlib/pull/12165/
https://github.com/matplotlib/matplotlib/pull/12387/
https://github.com/matplotlib/matplotlib/pull/12333/
https://github.com/matplotlib/matplotlib/pull/10088/
https://github.com/matplotlib/matplotlib/pull/12393/
https://github.com/matplotlib/matplotlib/pull/11232/
https://github.com/matplotlib/matplotlib/pull/12247/
https://github.com/matplotlib/matplotlib/pull/12371/
https://github.com/matplotlib/matplotlib/pull/12384/

Matplotlib, Release 3.4.3

• PR #9565: Stem performance boost

• PR #12368: Don't use stdlib private API in animation.py.

• PR #12351: dviread: find_tex_file: Ensure the encoding on windows

• PR #12372: Remove two examples.

• PR #12356: Fix stripping of CRLF on Windows.

• PR #12283: FIX: errorbar xywhere should return ndarray

• PR #12304: TST: Merge Qt tests into one file.

• PR #12340: Catch test deprecation warnings for mlab.demean

• PR #12296: Make FooConverter inherit from ConversionInterface in examples

• PR #12309: Deduplicate implementations of FooNorm.autoscale{,_None}

• PR #7716: [NF] Add 'truncate' and 'join' methods to colormaps.

• PR #12314: Deprecate axis('normal') in favor of axis('auto').

• PR #12307: Clarify missing-property error message.

• PR #12260: Fix docs : change from issue #12191, remove "if 1:" blocks in examples

• PR #12253: Handle utf-8 output by kpathsea on Windows.

• PR #12292: TST: Modify the bar3d test to show three more angles

• PR #12284: Don't try to autoscale if no data present to autoscale to

• PR #12255: Deduplicate inherited docstrings.

• PR #12222: Remove extraneous if 1 statements in demo_axisline_style.py

• PR #12137: MAINT: Vectorize bar3d

• PR #12219: Merge OSXInstalledFonts into findSystemFonts.

• PR #12229: Less ACCEPTS, more numpydoc.

• PR #11621: TST: make E402 a universal flake8 ignore

• PR #12231: CI: Speed up Appveyor repository cloning

• PR #11661: Update blocking_input.py

• PR #12199: Allow disabling specific mouse actions in blocking_input

• PR #12210: Axes.tick_params() argument checking

• PR #12211: Fix typo

• PR #12200: Slightly clarify some invalid shape exceptions for image data.

• PR #12151: Don't pretend @deprecated applies to classmethods.

• PR #12190: Remove some unused variables and imports

• PR #12192: Exclude examples from lgtm analysis

7.1. Previous GitHub Stats 653

https://github.com/matplotlib/matplotlib/pull/9565/
https://github.com/matplotlib/matplotlib/pull/12368/
https://github.com/matplotlib/matplotlib/pull/12351/
https://github.com/matplotlib/matplotlib/pull/12372/
https://github.com/matplotlib/matplotlib/pull/12356/
https://github.com/matplotlib/matplotlib/pull/12283/
https://github.com/matplotlib/matplotlib/pull/12304/
https://github.com/matplotlib/matplotlib/pull/12340/
https://github.com/matplotlib/matplotlib/pull/12296/
https://github.com/matplotlib/matplotlib/pull/12309/
https://github.com/matplotlib/matplotlib/pull/7716/
https://github.com/matplotlib/matplotlib/pull/12314/
https://github.com/matplotlib/matplotlib/pull/12307/
https://github.com/matplotlib/matplotlib/pull/12260/
https://github.com/matplotlib/matplotlib/pull/12253/
https://github.com/matplotlib/matplotlib/pull/12292/
https://github.com/matplotlib/matplotlib/pull/12284/
https://github.com/matplotlib/matplotlib/pull/12255/
https://github.com/matplotlib/matplotlib/pull/12222/
https://github.com/matplotlib/matplotlib/pull/12137/
https://github.com/matplotlib/matplotlib/pull/12219/
https://github.com/matplotlib/matplotlib/pull/12229/
https://github.com/matplotlib/matplotlib/pull/11621/
https://github.com/matplotlib/matplotlib/pull/12231/
https://github.com/matplotlib/matplotlib/pull/11661/
https://github.com/matplotlib/matplotlib/pull/12199/
https://github.com/matplotlib/matplotlib/pull/12210/
https://github.com/matplotlib/matplotlib/pull/12211/
https://github.com/matplotlib/matplotlib/pull/12200/
https://github.com/matplotlib/matplotlib/pull/12151/
https://github.com/matplotlib/matplotlib/pull/12190/
https://github.com/matplotlib/matplotlib/pull/12192/

Matplotlib, Release 3.4.3

• PR #12196: Give Carreau the ability to mention the backport bot.

• PR #12171: Remove internal warning due to zsort deprecation

• PR #12030: Speed up canvas redraw for GTK3Agg backend.

• PR #12156: Cleanup the GridSpec demos.

• PR #12144: Add explicit getters and setters for Annotation.anncoords.

• PR #12152: Use _warn_external for deprecations warnings.

• PR #12147: DOC: update the gh_stats code

• PR #12139: Unbreak build re: mplot3d style.

• PR #11367: Raise TypeError on unsupported kwargs of spy()

• PR #9990: Fix and document lightsource argument in mplot3d

• PR #12124: Correctly infer units from empty arrays

• PR #11994: Cleanup unused variables and imports

• PR #12122: MNT: re-add cbook import art3d

• PR #12086: FIX: make MaxNLocator only follow visible ticks for order of magnitude

• PR #12032: Remove unused imports

• PR #12093: Correct the removal of -Wstrict-prototypes from compiler flags.

• PR #12069: Style fixes for mplot3d.

• PR #11997: Cleanup some axes_grid1 examples

• PR #12098: Improve layout of HTML animation

• PR #12094: Fine-tune logging notes in contributing.rst.

• PR #12079: Clarifications to im_show() doc regarding interpolation='none'.

• PR #12068: More style fixes.

• PR #11499: FIX: layout for mixed descent multiline text objects

• PR #11921: FIX: allow reshape 2-D to return a bare 1-d list

• PR #12070: Avoid some uses of np.isscalar.

• PR #12067: DOC: make Line2D docstring definition easier to find

• PR #12054: More style fixes.

• PR #12066: fix indentation in docstring interpolation for spy.

• PR #11931: Remove separate autosummary_inher template.

• PR #12049: Make Poly3DCollection.set_zsort less lenient.

• PR #12050: Various cleanups.

• PR #12038: Modernize ArtistInspector a bit...

654 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/12196/
https://github.com/matplotlib/matplotlib/pull/12171/
https://github.com/matplotlib/matplotlib/pull/12030/
https://github.com/matplotlib/matplotlib/pull/12156/
https://github.com/matplotlib/matplotlib/pull/12144/
https://github.com/matplotlib/matplotlib/pull/12152/
https://github.com/matplotlib/matplotlib/pull/12147/
https://github.com/matplotlib/matplotlib/pull/12139/
https://github.com/matplotlib/matplotlib/pull/11367/
https://github.com/matplotlib/matplotlib/pull/9990/
https://github.com/matplotlib/matplotlib/pull/12124/
https://github.com/matplotlib/matplotlib/pull/11994/
https://github.com/matplotlib/matplotlib/pull/12122/
https://github.com/matplotlib/matplotlib/pull/12086/
https://github.com/matplotlib/matplotlib/pull/12032/
https://github.com/matplotlib/matplotlib/pull/12093/
https://github.com/matplotlib/matplotlib/pull/12069/
https://github.com/matplotlib/matplotlib/pull/11997/
https://github.com/matplotlib/matplotlib/pull/12098/
https://github.com/matplotlib/matplotlib/pull/12094/
https://github.com/matplotlib/matplotlib/pull/12079/
https://github.com/matplotlib/matplotlib/pull/12068/
https://github.com/matplotlib/matplotlib/pull/11499/
https://github.com/matplotlib/matplotlib/pull/11921/
https://github.com/matplotlib/matplotlib/pull/12070/
https://github.com/matplotlib/matplotlib/pull/12067/
https://github.com/matplotlib/matplotlib/pull/12054/
https://github.com/matplotlib/matplotlib/pull/12066/
https://github.com/matplotlib/matplotlib/pull/11931/
https://github.com/matplotlib/matplotlib/pull/12049/
https://github.com/matplotlib/matplotlib/pull/12050/
https://github.com/matplotlib/matplotlib/pull/12038/

Matplotlib, Release 3.4.3

• PR #12033: DOC: formatting fixes to mplot3d

• PR #12051: Is bool

• PR #12045: Fix 999.9... edge case in ticker.EngFormatter for negative numbers

• PR #12044: Update doc on the progressive and optimize keywords in savefig

• PR #12061: Small refactor/simplification.

• PR #12060: INSTALL.rst fixes

• PR #12055: Fix invalid escape in docstring.

• PR #12026: whitespace(-mostly) style cleanup.

• PR #12043: Deprecate get_py2exe_datafiles.

• PR #12046: Make HTMLWriter constructor a bit more strict.

• PR #12034: Doc markup fixes.

• PR #11972: FIX: close mem leak for repeated draw

• PR #12024: Fix typos

• PR #11996: Minor javascript cleanup

• PR #11989: Remove support for ghostscript 8.60.

• PR #12004: Update acorr and xcorr docs to match numpy docs

• PR #11998: No clf() needed after creating a figure

• PR #12001: Do not use an explicit figum in plt.figure(1, ...) in simple cases

• PR #11999: Do not use an explicit fignum plt.figure(1) in simple cases

• PR #11995: Don't use bare except statements

• PR #11993: DOC: fixed typos

• PR #11992: Use pytest.warns instead of home-baked warnings capture.

• PR #11975: Derive plt.figlegend.__doc__ from Figure.legend.__doc__.

• PR #11980: Remove __version__numpy__; simplify dependencies check.

• PR #11982: Remove and old keyword documentation.

• PR #11981: Some extra typos

• PR #11979: Fix a couple of typos.

• PR #11959: cbook.iterable -> np.iterable.

• PR #11965: Move the removal of the -Wstrict-prototypes flag to setup.py.

• PR #11958: Remove unused code

• PR #11960: Make jpl_units a bit less painful to read.

• PR #11951: Improve Artist docstrings

7.1. Previous GitHub Stats 655

https://github.com/matplotlib/matplotlib/pull/12033/
https://github.com/matplotlib/matplotlib/pull/12051/
https://github.com/matplotlib/matplotlib/pull/12045/
https://github.com/matplotlib/matplotlib/pull/12044/
https://github.com/matplotlib/matplotlib/pull/12061/
https://github.com/matplotlib/matplotlib/pull/12060/
https://github.com/matplotlib/matplotlib/pull/12055/
https://github.com/matplotlib/matplotlib/pull/12026/
https://github.com/matplotlib/matplotlib/pull/12043/
https://github.com/matplotlib/matplotlib/pull/12046/
https://github.com/matplotlib/matplotlib/pull/12034/
https://github.com/matplotlib/matplotlib/pull/11972/
https://github.com/matplotlib/matplotlib/pull/12024/
https://github.com/matplotlib/matplotlib/pull/11996/
https://github.com/matplotlib/matplotlib/pull/11989/
https://github.com/matplotlib/matplotlib/pull/12004/
https://github.com/matplotlib/matplotlib/pull/11998/
https://github.com/matplotlib/matplotlib/pull/12001/
https://github.com/matplotlib/matplotlib/pull/11999/
https://github.com/matplotlib/matplotlib/pull/11995/
https://github.com/matplotlib/matplotlib/pull/11993/
https://github.com/matplotlib/matplotlib/pull/11992/
https://github.com/matplotlib/matplotlib/pull/11975/
https://github.com/matplotlib/matplotlib/pull/11980/
https://github.com/matplotlib/matplotlib/pull/11982/
https://github.com/matplotlib/matplotlib/pull/11981/
https://github.com/matplotlib/matplotlib/pull/11979/
https://github.com/matplotlib/matplotlib/pull/11959/
https://github.com/matplotlib/matplotlib/pull/11965/
https://github.com/matplotlib/matplotlib/pull/11958/
https://github.com/matplotlib/matplotlib/pull/11960/
https://github.com/matplotlib/matplotlib/pull/11951/

Matplotlib, Release 3.4.3

• PR #11954: No need to define _log twice in matplotlib.dates.

• PR #11948: Minor fixes to docs and gitignore.

• PR #11777: Avoid incorrect warning in savefig

• PR #11942: Deprecate Artist.aname and Axes.aname

• PR #11935: Remove ginput demo example

• PR #11939: Improve alias signatures

• PR #11940: Do not use aliases of properties in internal code

• PR #11941: Fix test_large_subscript_title()

• PR #11938: More docstring cleanup of Line2D.

• PR #11920: Add LGTM.com code quality badge

• PR #11922: Improve docstrings of Line2D

• PR #11924: Minor formatting update on alias docstrings

• PR #11926: Minor fix to ginput_demo.

• PR #11912: BLD: update PR template for flake8

• PR #11909: Simplify linestyle and fillstyle reference docs.

• PR #11502: FIX: move title(s) up if subscripts hang too low.

• PR #11906: fix format of bar_of_pie example

• PR #11741: Factor out common code between Patch.draw and FancyArrowPatch.draw.

• PR #11784: Argument checking for grid()

• PR #11888: Factor out a subprocess log-and-check helper.

• PR #11740: Deprecate support for 3rd-party backends without set_hatch_color.

• PR #11884: Deprecate the tk_window_focus function.

• PR #11689: Don't cache the renderer on the Axes instance.

• PR #11698: For property, use decorator or lambdas.

• PR #11872: Make all builtin cmaps picklable.

• PR #11870: More style fixes.

• PR #11873: Remove mention of deprecated/removed methods from mlab's docstring.

• PR #11869: Style fixes.

• PR #11874: Remove some remnants of Py2-handling in test_rcparams.

• PR #11865: example file for making a bar of pie chart

• PR #11868: mathtext.py style fixes.

• PR #11854: Accept anything that's not a directory for $MATPLOTLIBRC.

656 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/11954/
https://github.com/matplotlib/matplotlib/pull/11948/
https://github.com/matplotlib/matplotlib/pull/11777/
https://github.com/matplotlib/matplotlib/pull/11942/
https://github.com/matplotlib/matplotlib/pull/11935/
https://github.com/matplotlib/matplotlib/pull/11939/
https://github.com/matplotlib/matplotlib/pull/11940/
https://github.com/matplotlib/matplotlib/pull/11941/
https://github.com/matplotlib/matplotlib/pull/11938/
https://github.com/matplotlib/matplotlib/pull/11920/
https://github.com/matplotlib/matplotlib/pull/11922/
https://github.com/matplotlib/matplotlib/pull/11924/
https://github.com/matplotlib/matplotlib/pull/11926/
https://github.com/matplotlib/matplotlib/pull/11912/
https://github.com/matplotlib/matplotlib/pull/11909/
https://github.com/matplotlib/matplotlib/pull/11502/
https://github.com/matplotlib/matplotlib/pull/11906/
https://github.com/matplotlib/matplotlib/pull/11741/
https://github.com/matplotlib/matplotlib/pull/11784/
https://github.com/matplotlib/matplotlib/pull/11888/
https://github.com/matplotlib/matplotlib/pull/11740/
https://github.com/matplotlib/matplotlib/pull/11884/
https://github.com/matplotlib/matplotlib/pull/11689/
https://github.com/matplotlib/matplotlib/pull/11698/
https://github.com/matplotlib/matplotlib/pull/11872/
https://github.com/matplotlib/matplotlib/pull/11870/
https://github.com/matplotlib/matplotlib/pull/11873/
https://github.com/matplotlib/matplotlib/pull/11869/
https://github.com/matplotlib/matplotlib/pull/11874/
https://github.com/matplotlib/matplotlib/pull/11865/
https://github.com/matplotlib/matplotlib/pull/11868/
https://github.com/matplotlib/matplotlib/pull/11854/

Matplotlib, Release 3.4.3

• PR #11589: WIP ENH secondary axes:

• PR #8449: Including Additional Metadata using the SVG Backend

• PR #11465: ENH: optimize Collection non-affine transform to call transform once

Issues (161):

• #4001: Qt5 Backend: dblclick is always False on 'mouse_release_event'

• #14152: qt_compat.py performing wrong test for PyQt5

• #10875: Annotation.contains and FancyArrow.contains return incorrect values

• #458: JPG quality keyword in savefig

• #4354: scatter not showing valid x/y points with invalid color

• #14113: scatter could not raise when colors are provided but position data are empty

• #14003: numpydoc 0.9 breaks doc build

• #14054: ticks sometimes disappear when zooming interactively

• #10189: The data decorator does not integrate well with numpydoc

• #14034: pyplot plot raises ValueError when plotting NaN against datetime dates

• #14039: bar plot yerr lines/caps should respect zorder

• #14042: dynamic_image.py + saving animation broken

• #14013: osx backend not usable with ipython/jupyter from conda?

• #13993: Tests files installed by default?

• #13991: MaxNLocator.default_params deprecation may break Cartopy

• #5045: Axes.grid() not honoring specified "zorder" kwarg

• #4371: LaTeX and PGF preambles do not allow commas

• #13982: hist() no longer respects range=... when density=True

• #13963: Dataless colorbars break when updated

• #10381: Issue when setting scatter color in separate method call

• #13618: Minor ticklabels are missing at positions of major ticks.

• #13880: Adding documentation for Text.fontfamily default, set_fontfamily(None)?

• #13865: Appveyor broken

• #8636: plt.hist chooses improper range when using string-based bin options

• #7300: weird mathtext doc markup

• #8862: Replace mathcircled by textcircled

• #13759: DOC: matplotlib.patches.Arc

• #13785: Imshow gives values out of the extent

7.1. Previous GitHub Stats 657

https://github.com/matplotlib/matplotlib/pull/11589/
https://github.com/matplotlib/matplotlib/pull/8449/
https://github.com/matplotlib/matplotlib/pull/11465/
https://github.com/matplotlib/matplotlib/issues/4001/
https://github.com/matplotlib/matplotlib/issues/14152/
https://github.com/matplotlib/matplotlib/issues/10875/
https://github.com/matplotlib/matplotlib/issues/458/
https://github.com/matplotlib/matplotlib/issues/4354/
https://github.com/matplotlib/matplotlib/issues/14113/
https://github.com/matplotlib/matplotlib/issues/14003/
https://github.com/matplotlib/matplotlib/issues/14054/
https://github.com/matplotlib/matplotlib/issues/10189/
https://github.com/matplotlib/matplotlib/issues/14034/
https://github.com/matplotlib/matplotlib/issues/14039/
https://github.com/matplotlib/matplotlib/issues/14042/
https://github.com/matplotlib/matplotlib/issues/14013/
https://github.com/matplotlib/matplotlib/issues/13993/
https://github.com/matplotlib/matplotlib/issues/13991/
https://github.com/matplotlib/matplotlib/issues/5045/
https://github.com/matplotlib/matplotlib/issues/4371/
https://github.com/matplotlib/matplotlib/issues/13982/
https://github.com/matplotlib/matplotlib/issues/13963/
https://github.com/matplotlib/matplotlib/issues/10381/
https://github.com/matplotlib/matplotlib/issues/13618/
https://github.com/matplotlib/matplotlib/issues/13880/
https://github.com/matplotlib/matplotlib/issues/13865/
https://github.com/matplotlib/matplotlib/issues/8636/
https://github.com/matplotlib/matplotlib/issues/7300/
https://github.com/matplotlib/matplotlib/issues/8862/
https://github.com/matplotlib/matplotlib/issues/13759/
https://github.com/matplotlib/matplotlib/issues/13785/

Matplotlib, Release 3.4.3

• #13786: Cannot import matplotlib.animation

• #13561: Progress of animation.save (for long animations)

• #13735: title doesn't move for ticklables....

• #12175: Example link near markevery in the "What's new in 3.0" page is malformed/broken

• #13713: Boxplot xlim not correctly calculated

• #11070: Add a "density" kwarg to hist2d

• #11337: Cannot plot fully masked array against datetimes

• #10165: Adapt stem plot

• #10976: ENH: secondary axis for a x or y scale.

• #10763: Cairo in 2.2.0 not working for new backends

• #9737: setupext should not explicitly add /usr/{,local/}include to the include path

• #11217: Crash on zero-length FancyArrow

• #13623: do not cause warning in seaborn

• #13480: Segfault on help('modules') command when matplotlib is installed

• #13604: legend's framealpha kwarg does not apply when writing to an eps file

• #12311: 'off' vs. False bug

• #10237: Setting an alpha value to a Poly3DCollection

• #11781: fill_between interpolation & nan issue

• #1077: 3d plots with aspect='equal'

• #11761: Still naming inconsistency in API on axes limits

• #11623: Regression: "TypeError: Period('2000-12-31', 'D') is not a string" when a Series with date
index was plotted

• #12655: auto-ticks do not handle values near bounds gracefully

• #13487: labelpad is not the spacing between the axis and the label

• #13540: Docs for matplotlib.pyplot.specgram() reference an unsupported mode setting

• #8997: Proposal: Grid arrangement by number of plots

• #6928: Cannot run setup.py build with numpy master

• #12697: Axes are drawn at wrong positions

• #13478: FuncAnimation: interactive zoom/pan with blitting does not work

• #11575: Setting axis ticks in log scale produces duplicate tick labels.

• #13464: set_rlim(bottom=...) no longer works

• #12628: Write canonical example of how to use Matplotlib inside a webserver

658 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/13786/
https://github.com/matplotlib/matplotlib/issues/13561/
https://github.com/matplotlib/matplotlib/issues/13735/
https://github.com/matplotlib/matplotlib/issues/12175/
https://github.com/matplotlib/matplotlib/issues/13713/
https://github.com/matplotlib/matplotlib/issues/11070/
https://github.com/matplotlib/matplotlib/issues/11337/
https://github.com/matplotlib/matplotlib/issues/10165/
https://github.com/matplotlib/matplotlib/issues/10976/
https://github.com/matplotlib/matplotlib/issues/10763/
https://github.com/matplotlib/matplotlib/issues/9737/
https://github.com/matplotlib/matplotlib/issues/11217/
https://github.com/matplotlib/matplotlib/issues/13623/
https://github.com/matplotlib/matplotlib/issues/13480/
https://github.com/matplotlib/matplotlib/issues/13604/
https://github.com/matplotlib/matplotlib/issues/12311/
https://github.com/matplotlib/matplotlib/issues/10237/
https://github.com/matplotlib/matplotlib/issues/11781/
https://github.com/matplotlib/matplotlib/issues/1077/
https://github.com/matplotlib/matplotlib/issues/11761/
https://github.com/matplotlib/matplotlib/issues/11623/
https://github.com/matplotlib/matplotlib/issues/12655/
https://github.com/matplotlib/matplotlib/issues/13487/
https://github.com/matplotlib/matplotlib/issues/13540/
https://github.com/matplotlib/matplotlib/issues/8997/
https://github.com/matplotlib/matplotlib/issues/6928/
https://github.com/matplotlib/matplotlib/issues/12697/
https://github.com/matplotlib/matplotlib/issues/13478/
https://github.com/matplotlib/matplotlib/issues/11575/
https://github.com/matplotlib/matplotlib/issues/13464/
https://github.com/matplotlib/matplotlib/issues/12628/

Matplotlib, Release 3.4.3

• #10022: boxplot: positions used to take Int64Index

• #11647: Disable buttons in ginput

• #12987: issues parsing AFM fonts

• #12667: Colorbar ticks....

• #13137: Travis for Python 3.7 sometimes fails due to missing font

• #7969: Stem is slow and will crash if I try to close the window

• #13002: Hist color kwarg broken for multiple empty datasets

• #5581: [mpl_toolkits] Things drawn on parasite axes don't fire pick events

• #13417: Secondary axis doesn't resize properly

• #8120: Inconsistent inset_axes position between show(), savefig(format='png') and save-
fig(format='pdf')

• #8947: Different result, slower runtime of heatmap between 2.0.0 and 2.0.1

• #13264: Use of logging in matplotlib

• #11602: animation error

• #12925: Python pandas datetime plot xticks in unexpected location

• #11025: AxesGrid ticks missing on x-axis

• #10974: Examples not shown in API docs for many methods.

• #13392: boxplot broken for empty inputs

• #12345: Need more tests for units and errorbar

• #10361: FigureCanvas.draw() with tight_layout () needs to be called twice with Matplotlib 2.1.0

• #11376: Temporary styling ignores color cycle

• #11546: import time

• #13286: AttributeError: 'float' object has no attribute 'deg2rad'

• #11508: bi-directional perceptually flat colormaps in matplotlib?

• #12918: Mac shows an icon in the dock when using matplotlib.pyplot.

• #13339: Log Colorbar minorticks_off reverted if ticks set...

• #13228: MPL 3 + Colorbar + PowerNorm bug

• #13096: Matplotlib.get_backend()/matplotlib.use() cause NSException with Anaconda

• #7712: Number of ticks for dates still gives overlapping labels

• #9978: General poor default formatting of datetimes on plot x-axis

• #13253: imsave outputs JPEG with wrong dimension

• #11391: Use data argument for scatter plotting timestamps from pandas

7.1. Previous GitHub Stats 659

https://github.com/matplotlib/matplotlib/issues/10022/
https://github.com/matplotlib/matplotlib/issues/11647/
https://github.com/matplotlib/matplotlib/issues/12987/
https://github.com/matplotlib/matplotlib/issues/12667/
https://github.com/matplotlib/matplotlib/issues/13137/
https://github.com/matplotlib/matplotlib/issues/7969/
https://github.com/matplotlib/matplotlib/issues/13002/
https://github.com/matplotlib/matplotlib/issues/5581/
https://github.com/matplotlib/matplotlib/issues/13417/
https://github.com/matplotlib/matplotlib/issues/8120/
https://github.com/matplotlib/matplotlib/issues/8947/
https://github.com/matplotlib/matplotlib/issues/13264/
https://github.com/matplotlib/matplotlib/issues/11602/
https://github.com/matplotlib/matplotlib/issues/12925/
https://github.com/matplotlib/matplotlib/issues/11025/
https://github.com/matplotlib/matplotlib/issues/10974/
https://github.com/matplotlib/matplotlib/issues/13392/
https://github.com/matplotlib/matplotlib/issues/12345/
https://github.com/matplotlib/matplotlib/issues/10361/
https://github.com/matplotlib/matplotlib/issues/11376/
https://github.com/matplotlib/matplotlib/issues/11546/
https://github.com/matplotlib/matplotlib/issues/13286/
https://github.com/matplotlib/matplotlib/issues/11508/
https://github.com/matplotlib/matplotlib/issues/12918/
https://github.com/matplotlib/matplotlib/issues/13339/
https://github.com/matplotlib/matplotlib/issues/13228/
https://github.com/matplotlib/matplotlib/issues/13096/
https://github.com/matplotlib/matplotlib/issues/7712/
https://github.com/matplotlib/matplotlib/issues/9978/
https://github.com/matplotlib/matplotlib/issues/13253/
https://github.com/matplotlib/matplotlib/issues/11391/

Matplotlib, Release 3.4.3

• #13145: widgets.RadioButtons: select by closest in position

• #13267: "double-pendulum" example's speed not correct / varying

• #13257: Allow turning off minorticks for Colorbar with LogNorm?

• #13237: Sankey basic gallery example is not rendered properly.

• #12836: matplotlib.rc_file resets to default template before updating rcparams

• #13186: ax.bar throws when x axis is pandas datetime

• #5397: Expose compression and filter PNG options through savefig

• #13142: Cannot plot bar graph with dates: "TypeError: ufunc subtract cannot use operands with types
dtype('<M8[ns]') and dtype('float64')"

• #8530: Feature request: TIFF LZW compression support in savefig()

• #13139: font family ['serif'] not found. Falling back to DejaVu Sans

• #1558: Graceful handling of a numpy matrix

• #12954: Fonts installed in the user directory are not detected (Windows 1809)

• #3644: Feature Request: manually set colorbar without mappable

• #12862: broken_barh appears not to work with datetime/timedelta objects

• #11290: ax.bar doesn't work correctly when width is a timedelta64 object

• #13156: DOC: matplotlib.pyplot.arrow

• #12990: Unclear error message for plt.xticks(names)

• #12769: Failing to save an animated graph with matplotlib.animation

• #13112: LogNorm colorbar prints double tick labels after set_ticks()

• #13132: BUG: matplotlib.sphinxext.plot_directive uses old function-based API

• #8528: Funcanimation memory leak?

• #8914: line3D set_data only takes in x and y data

• #8768: One one tick in a log-scale axis

• #13121: Tests fail with pytest 4.1

• #13098: Likely incorrect code(?) in colorbar.py

• #12562: Clean up unused imports

• #12106: plt.plot does not plot anything with named arguments

• #5145: Python [Error 17]No usable Temporary file name found

• #13012: qt5agg image quality changes when window is out of focus

• #13055: 127.0.0.1 hardcoded in webagg backend server

• #12971: Pandas Series not supported as data kwarg

660 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/13145/
https://github.com/matplotlib/matplotlib/issues/13267/
https://github.com/matplotlib/matplotlib/issues/13257/
https://github.com/matplotlib/matplotlib/issues/13237/
https://github.com/matplotlib/matplotlib/issues/12836/
https://github.com/matplotlib/matplotlib/issues/13186/
https://github.com/matplotlib/matplotlib/issues/5397/
https://github.com/matplotlib/matplotlib/issues/13142/
https://github.com/matplotlib/matplotlib/issues/8530/
https://github.com/matplotlib/matplotlib/issues/13139/
https://github.com/matplotlib/matplotlib/issues/1558/
https://github.com/matplotlib/matplotlib/issues/12954/
https://github.com/matplotlib/matplotlib/issues/3644/
https://github.com/matplotlib/matplotlib/issues/12862/
https://github.com/matplotlib/matplotlib/issues/11290/
https://github.com/matplotlib/matplotlib/issues/13156/
https://github.com/matplotlib/matplotlib/issues/12990/
https://github.com/matplotlib/matplotlib/issues/12769/
https://github.com/matplotlib/matplotlib/issues/13112/
https://github.com/matplotlib/matplotlib/issues/13132/
https://github.com/matplotlib/matplotlib/issues/8528/
https://github.com/matplotlib/matplotlib/issues/8914/
https://github.com/matplotlib/matplotlib/issues/8768/
https://github.com/matplotlib/matplotlib/issues/13121/
https://github.com/matplotlib/matplotlib/issues/13098/
https://github.com/matplotlib/matplotlib/issues/12562/
https://github.com/matplotlib/matplotlib/issues/12106/
https://github.com/matplotlib/matplotlib/issues/5145/
https://github.com/matplotlib/matplotlib/issues/13012/
https://github.com/matplotlib/matplotlib/issues/13055/
https://github.com/matplotlib/matplotlib/issues/12971/

Matplotlib, Release 3.4.3

• #13022: boxplot not showing symbols with seaborn style sheet

• #13028: Bad rotation_mode/center_baseline combination even if rotation=0

• #12745: Sphinx copy button for code block

• #12801: scatter() should not drop data points at nonfinite coordinates

• #12358: Dropping support for Py3.5 and numpy 1.10

• #12994: Axes range with set_xticks with categoricals

• #12993: Semantics of set_xticks for categoricals

• #12946: ~ in mathrm leads to Unknown symbol: mathrm

• #10704: Add documentation for set_rlim

• #11202: Using of ax.set_ylim() for polar plot leads to "posx and posy should be finite values" error

• #12859: DeprecationWarning: NewId() is deprecated in wxPython.

• #12817: Multiple places where Type Errors on cbook.warn_deprecated will happen

• #12308: #12253 FIX: Handle utf-8 output by kpathsea on Windows -- possibly causing issues

• #12804: Usetex produces preamble with one character per line

• #12808: Issue with minor tick spacing in colorbar with custom Normalize class

• #12138: Faces of Axes3d.bar3d are not oriented correctly

• #12591: Adding FancyArrowPatch with datetime coordinates fails

• #11139: "make clean" doesn't remove all the build doc files

• #11908: Improve linestyle documentation

• #10643: Most warnings calls do not set the stacklevel

• #12532: Incorrect rendering of math symbols

• #11787: Looping gifs with PillowWriter

• #9205: after the animation encoder (e.g. ffmpeg) fails, the animation framework itself fails internally
in various ways while trying to report the error

• #11154: Unexpected behavior for Axes3D.plot_surface(shade=None)

• #12121: Documentation of TextArea's fontprops keyword argument is misleading

• #12191: "if 1:" blocks in examples

• #12107: warnings re: deprecated pytest API with pytest 3.8

• #12010: Popover over plot is very slow

• #12118: Scatter: empty np.arrays with non-numeric dtypes cause TypeError

• #12072: MaxNLocator changes the scientific notation exponent with different number of tick labels

• #11795: Un-align animations created with to_jshtml()?

7.1. Previous GitHub Stats 661

https://github.com/matplotlib/matplotlib/issues/13022/
https://github.com/matplotlib/matplotlib/issues/13028/
https://github.com/matplotlib/matplotlib/issues/12745/
https://github.com/matplotlib/matplotlib/issues/12801/
https://github.com/matplotlib/matplotlib/issues/12358/
https://github.com/matplotlib/matplotlib/issues/12994/
https://github.com/matplotlib/matplotlib/issues/12993/
https://github.com/matplotlib/matplotlib/issues/12946/
https://github.com/matplotlib/matplotlib/issues/10704/
https://github.com/matplotlib/matplotlib/issues/11202/
https://github.com/matplotlib/matplotlib/issues/12859/
https://github.com/matplotlib/matplotlib/issues/12817/
https://github.com/matplotlib/matplotlib/issues/12308/
https://github.com/matplotlib/matplotlib/issues/12804/
https://github.com/matplotlib/matplotlib/issues/12808/
https://github.com/matplotlib/matplotlib/issues/12138/
https://github.com/matplotlib/matplotlib/issues/12591/
https://github.com/matplotlib/matplotlib/issues/11139/
https://github.com/matplotlib/matplotlib/issues/11908/
https://github.com/matplotlib/matplotlib/issues/10643/
https://github.com/matplotlib/matplotlib/issues/12532/
https://github.com/matplotlib/matplotlib/issues/11787/
https://github.com/matplotlib/matplotlib/issues/9205/
https://github.com/matplotlib/matplotlib/issues/11154/
https://github.com/matplotlib/matplotlib/issues/12121/
https://github.com/matplotlib/matplotlib/issues/12191/
https://github.com/matplotlib/matplotlib/issues/12107/
https://github.com/matplotlib/matplotlib/issues/12010/
https://github.com/matplotlib/matplotlib/issues/12118/
https://github.com/matplotlib/matplotlib/issues/12072/
https://github.com/matplotlib/matplotlib/issues/11795/

Matplotlib, Release 3.4.3

• #10201: Available fonts are ignored by font_manager

• #12065: Keyword interpolation behaving improperly while saving to SVG with savefig()
• #11498: Test layout with big descenders and multiple lines inconsistent.

• #11468: Layout managers have problems with titles containing MathText

• #11899: Histogram of list of datetimes

• #11956: apparent memory leak with live plotting

• #11587: Missing filled contours when using contourf

• #11716: errorbar pickling fails when specifying y error bars

• #11557: Hoping add a drawing function 'patch' in matplotlib

7.1.15 GitHub Stats for Matplotlib 3.0.2

GitHub stats for 2018/09/18 - 2018/11/09 (tag: v3.0.0)

These lists are automatically generated, and may be incomplete or contain duplicates.

We closed 170 issues and merged 224 pull requests.

The following 49 authors contributed 460 commits.

• Abhinuv Nitin Pitale

• Alon Hershenhorn

• Andras Deak

• Ankur Dedania

• Antony Lee

• Anubhav Shrimal

• Ayappan P

• azure-pipelines[bot]

• Ben Root

• Colin

• Colin Carroll

• Daniele Nicolodi

• David Haberthür

• David Stansby

• Dmitry Mottl

• Elan Ernest

• Elliott Sales de Andrade

662 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/10201/
https://github.com/matplotlib/matplotlib/issues/12065/
https://github.com/matplotlib/matplotlib/issues/11498/
https://github.com/matplotlib/matplotlib/issues/11468/
https://github.com/matplotlib/matplotlib/issues/11899/
https://github.com/matplotlib/matplotlib/issues/11956/
https://github.com/matplotlib/matplotlib/issues/11587/
https://github.com/matplotlib/matplotlib/issues/11716/
https://github.com/matplotlib/matplotlib/issues/11557/

Matplotlib, Release 3.4.3

• Eric Wieser

• esvhd

• Galen Lynch

• hannah

• Ildar Akhmetgaleev

• ImportanceOfBeingErnest

• Jody Klymak

• Joel Wanner

• Kai Muehlbauer

• Kevin Rose

• Kyle Sunden

• Marcel Martin

• Matthias Bussonnier

• MeeseeksMachine

• Michael Jancsy

• Nelle Varoquaux

• Nick Papior

• Nikita Kniazev

• Paul Hobson

• pharshalp

• Rasmus Diederichsen

• Ryan May

• saksmito

• Takafumi Arakaki

• teresy

• Thomas A Caswell

• thoo

• Tim Hoffmann

• Tobias Megies

• Tyler Makaro

• Will Handley

• Yuxin Wu

7.1. Previous GitHub Stats 663

Matplotlib, Release 3.4.3

GitHub issues and pull requests:

Pull Requests (224):

• PR #12785: Use level kwargs in irregular contour example

• PR #12767: Make colorbars constructible with dataless ScalarMappables.

• PR #12775: Add note to errorbar function about sign of errors

• PR #12776: Fix typo in example (on-borad -> on-board).

• PR #12771: Do not rely on external stack frame to exist

• PR #12526: Rename jquery files

• PR #12552: Update docs for writing image comparison tests.

• PR #12746: Use skipif, not xfail, for uncomparable image formats.

• PR #12747: Prefer log.warning("%s", ...) to log.warning("%s" % ...).

• PR #11753: FIX: Apply aspect before drawing starts

• PR #12749: Move toolmanager warning from logging to warning.

• PR #12708: Run flake8 in a separate travis environment

• PR #12737: Improve docstring of Arc

• PR #12598: Support Cn colors with n>=10.

• PR #12670: FIX: add setter for hold to un-break basemap

• PR #12693: Workaround Text3D breaking tight_layout()

• PR #12727: Reorder API docs: separate file per module

• PR #12738: Add unobtrusive depreaction note to the first line of the docstring.

• PR #12740: DOC: constrained layout guide (fix: Spacing with colorbars)

• PR #11663: Refactor color parsing of Axes.scatter

• PR #12736: Move deprecation note to end of docstring

• PR #12704: Rename tkinter import from Tk to tk.

• PR #12730: MNT: merge ignore lines in .flake8

• PR #12707: Fix tk error when closing first pyplot figure

• PR #12715: Cleanup dviread.

• PR #12717: Delete some if __name__ == "__main__" clauses.

• PR #12726: Fix test_non_gui_warning for Azure (and mplcairo).

• PR #12720: Improve docs on Axes scales

• PR #12537: Improve error message on failing test_pyplot_up_to_date

• PR #12721: Make get_scale_docs() internal

664 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/12785/
https://github.com/matplotlib/matplotlib/pull/12767/
https://github.com/matplotlib/matplotlib/pull/12775/
https://github.com/matplotlib/matplotlib/pull/12776/
https://github.com/matplotlib/matplotlib/pull/12771/
https://github.com/matplotlib/matplotlib/pull/12526/
https://github.com/matplotlib/matplotlib/pull/12552/
https://github.com/matplotlib/matplotlib/pull/12746/
https://github.com/matplotlib/matplotlib/pull/12747/
https://github.com/matplotlib/matplotlib/pull/11753/
https://github.com/matplotlib/matplotlib/pull/12749/
https://github.com/matplotlib/matplotlib/pull/12708/
https://github.com/matplotlib/matplotlib/pull/12737/
https://github.com/matplotlib/matplotlib/pull/12598/
https://github.com/matplotlib/matplotlib/pull/12670/
https://github.com/matplotlib/matplotlib/pull/12693/
https://github.com/matplotlib/matplotlib/pull/12727/
https://github.com/matplotlib/matplotlib/pull/12738/
https://github.com/matplotlib/matplotlib/pull/12740/
https://github.com/matplotlib/matplotlib/pull/11663/
https://github.com/matplotlib/matplotlib/pull/12736/
https://github.com/matplotlib/matplotlib/pull/12704/
https://github.com/matplotlib/matplotlib/pull/12730/
https://github.com/matplotlib/matplotlib/pull/12707/
https://github.com/matplotlib/matplotlib/pull/12715/
https://github.com/matplotlib/matplotlib/pull/12717/
https://github.com/matplotlib/matplotlib/pull/12726/
https://github.com/matplotlib/matplotlib/pull/12720/
https://github.com/matplotlib/matplotlib/pull/12537/
https://github.com/matplotlib/matplotlib/pull/12721/

Matplotlib, Release 3.4.3

• PR #12617: Set up CI with Azure Pipelines

• PR #12673: Fix for _axes.scatter() array index out of bound error

• PR #12676: Doc: document textpath module

• PR #12705: Improve docs on Axes limits and direction

• PR #12706: Extend sphinx Makefile to cleanup completely

• PR #12481: Warn if plot_surface Z values contain NaN

• PR #12709: Correctly remove nans when drawing paths with pycairo.

• PR #12685: Make ticks in demo_axes_rgb.py visible

• PR #12691: DOC: Link to "How to make a PR" tutorials as badge and in contributing

• PR #12684: Change ipython block to code-block

• PR #11974: Make code match comment in sankey.

• PR #12440: Make arguments to @deprecated/warn_deprecated keyword-only.

• PR #12683: TST: mark test_constrainedlayout.py::test_colorbar_location as flaky

• PR #12686: Remove deprecation warnings in tests

• PR #12470: Update AutoDateFormatter with locator

• PR #12656: FIX: fix error in colorbar.get_ticks not having valid data

• PR #12586: Improve linestyles example

• PR #12006: Added stacklevel=2 to all warnings.warn calls (issue 10643)

• PR #12651: FIX: ignore non-finite bbox

• PR #12653: Don't warn when accessing deprecated properties from the class.

• PR #12608: ENH: allow matplotlib.use after getbackend

• PR #12658: Do not warn-depreacted when iterating over rcParams

• PR #12635: FIX: allow non bbox_extra_artists calls

• PR #12659: Add note that developer discussions are private

• PR #12543: Make rcsetup.py flak8 compliant

• PR #12642: Don't silence TypeErrors in fmt_{x,y}data.

• PR #11667: DOC: update doc requirement

• PR #12442: Deprecate passing drawstyle with linestyle as single string.

• PR #12625: Shorten some docstrings.

• PR #12627: Be a bit more stringent on invalid inputs.

• PR #12561: Properly css-style exceptions in the documentation

• PR #12629: Fix issue with PyPy on macOS

7.1. Previous GitHub Stats 665

https://github.com/matplotlib/matplotlib/pull/12617/
https://github.com/matplotlib/matplotlib/pull/12673/
https://github.com/matplotlib/matplotlib/pull/12676/
https://github.com/matplotlib/matplotlib/pull/12705/
https://github.com/matplotlib/matplotlib/pull/12706/
https://github.com/matplotlib/matplotlib/pull/12481/
https://github.com/matplotlib/matplotlib/pull/12709/
https://github.com/matplotlib/matplotlib/pull/12685/
https://github.com/matplotlib/matplotlib/pull/12691/
https://github.com/matplotlib/matplotlib/pull/12684/
https://github.com/matplotlib/matplotlib/pull/11974/
https://github.com/matplotlib/matplotlib/pull/12440/
https://github.com/matplotlib/matplotlib/pull/12683/
https://github.com/matplotlib/matplotlib/pull/12686/
https://github.com/matplotlib/matplotlib/pull/12470/
https://github.com/matplotlib/matplotlib/pull/12656/
https://github.com/matplotlib/matplotlib/pull/12586/
https://github.com/matplotlib/matplotlib/pull/12006/
https://github.com/matplotlib/matplotlib/pull/12651/
https://github.com/matplotlib/matplotlib/pull/12653/
https://github.com/matplotlib/matplotlib/pull/12608/
https://github.com/matplotlib/matplotlib/pull/12658/
https://github.com/matplotlib/matplotlib/pull/12635/
https://github.com/matplotlib/matplotlib/pull/12659/
https://github.com/matplotlib/matplotlib/pull/12543/
https://github.com/matplotlib/matplotlib/pull/12642/
https://github.com/matplotlib/matplotlib/pull/11667/
https://github.com/matplotlib/matplotlib/pull/12442/
https://github.com/matplotlib/matplotlib/pull/12625/
https://github.com/matplotlib/matplotlib/pull/12627/
https://github.com/matplotlib/matplotlib/pull/12561/
https://github.com/matplotlib/matplotlib/pull/12629/

Matplotlib, Release 3.4.3

• PR #10933: Remove "experimental" fontconfig font_manager backend.

• PR #12630: Fix RcParams.__len__

• PR #12285: FIX: Don't apply tight_layout if axes collapse

• PR #12548: undef _XOPEN_SOURCE breaks the build in AIX

• PR #12615: Fix travis OSX build

• PR #12600: Minor style fixes.

• PR #12607: STY: fix whitespace and escaping

• PR #12603: FIX: don't import macosx to check if eventloop running

• PR #12599: Fix formatting of docstring

• PR #12569: Don't confuse uintptr_t and Py_ssize_t.

• PR #12572: Fix singleton hist labels

• PR #12581: Fix hist() error message

• PR #12570: Fix mathtext tutorial for build with Sphinx 1.8.

• PR #12487: Update docs/tests for the deprecation of aname and label1On/label2On/etc.

• PR #12521: Improve docstring of draw_idle()

• PR #12573: BUG: mplot3d: Don't crash if azim or elev are non-integral

• PR #12574: Remove some unused imports

• PR #12568: Add note regarding builds of old Matplotlibs.

• PR #12555: Clarify horizontalalignment and verticalalignment in suptitle

• PR #12547: Disable sticky edge accumulation if no autoscaling.

• PR #12546: Avoid quadratic behavior when accumulating stickies.

• PR #12159: FIX: colorbar re-check norm before draw for autolabels

• PR #12501: Rectified plot error

• PR #11789: endless looping GIFs with PillowWriter

• PR #12525: Fix some flake8 issues

• PR #12431: FIX: allow single-string color for scatter

• PR #12216: Doc: Fix search for sphinx >=1.8

• PR #12461: FIX: make add_lines work with new colorbar

• PR #12241: FIX: make unused spines invisible

• PR #12516: Don't handle impossible values for align in hist()

• PR #12504: DOC: clarify min supported version wording

• PR #12507: FIX: make minor ticks formatted with science formatter as well

666 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/10933/
https://github.com/matplotlib/matplotlib/pull/12630/
https://github.com/matplotlib/matplotlib/pull/12285/
https://github.com/matplotlib/matplotlib/pull/12548/
https://github.com/matplotlib/matplotlib/pull/12615/
https://github.com/matplotlib/matplotlib/pull/12600/
https://github.com/matplotlib/matplotlib/pull/12607/
https://github.com/matplotlib/matplotlib/pull/12603/
https://github.com/matplotlib/matplotlib/pull/12599/
https://github.com/matplotlib/matplotlib/pull/12569/
https://github.com/matplotlib/matplotlib/pull/12572/
https://github.com/matplotlib/matplotlib/pull/12581/
https://github.com/matplotlib/matplotlib/pull/12570/
https://github.com/matplotlib/matplotlib/pull/12487/
https://github.com/matplotlib/matplotlib/pull/12521/
https://github.com/matplotlib/matplotlib/pull/12573/
https://github.com/matplotlib/matplotlib/pull/12574/
https://github.com/matplotlib/matplotlib/pull/12568/
https://github.com/matplotlib/matplotlib/pull/12555/
https://github.com/matplotlib/matplotlib/pull/12547/
https://github.com/matplotlib/matplotlib/pull/12546/
https://github.com/matplotlib/matplotlib/pull/12159/
https://github.com/matplotlib/matplotlib/pull/12501/
https://github.com/matplotlib/matplotlib/pull/11789/
https://github.com/matplotlib/matplotlib/pull/12525/
https://github.com/matplotlib/matplotlib/pull/12431/
https://github.com/matplotlib/matplotlib/pull/12216/
https://github.com/matplotlib/matplotlib/pull/12461/
https://github.com/matplotlib/matplotlib/pull/12241/
https://github.com/matplotlib/matplotlib/pull/12516/
https://github.com/matplotlib/matplotlib/pull/12504/
https://github.com/matplotlib/matplotlib/pull/12507/

Matplotlib, Release 3.4.3

• PR #12500: Adjust the widths of the messages during the build.

• PR #12492: Simplify radar_chart example.

• PR #12478: MAINT: NumPy deprecates asscalar in 1.16

• PR #12363: FIX: errors in get_position changes

• PR #12495: Fix duplicate condition in pathpatch3d example

• PR #11984: Strip out pkg-config machinery for agg and libqhull.

• PR #12463: Document Artist.cursor_data() parameter

• PR #12489: Fix typo in documentation of ylim

• PR #12482: Test slider orientation

• PR #12317: Always install mpl_toolkits.

• PR #12246: Be less tolerant of broken installs.

• PR #12477: Use N{MICRO SIGN} instead of N{GREEK SMALL LETTER MU} in EngFormatter.

• PR #12483: Kill FontManager.update_fonts.

• PR #12448: Don't error if some font directories are not readable.

• PR #12474: Throw ValueError when irregularly gridded data is passed to streamplot.

• PR #12469: Clarify documentation of offsetbox.AnchoredText's prop kw argument

• PR #12468: Fix set_ylim unit handling

• PR #12466: np.fromstring -> np.frombuffer.

• PR #12369: Improved exception handling on animation failure

• PR #12460: Deprecate RendererBase.strip_math.

• PR #12457: Fix tutorial typos.

• PR #12453: Rollback erroneous commit to whats_new.rst from #10746

• PR #12452: Minor updates to the FAQ.

• PR #10746: Adjusted matplotlib.widgets.Slider to have optional vertical orientatation

• PR #12441: Get rid of a signed-compare warning.

• PR #12430: Deprecate Axes3D.plot_surface(shade=None)

• PR #12435: Fix numpydoc parameter formatting

• PR #12434: Clarify documentation for textprops keyword parameter of TextArea

• PR #12427: Document Artist.get_cursor_data

• PR #12277: FIX: datetime64 now recognized if in a list

• PR #10322: Use np.hypot wherever possible.

• PR #12423: Minor simplifications to backend_svg.

7.1. Previous GitHub Stats 667

https://github.com/matplotlib/matplotlib/pull/12500/
https://github.com/matplotlib/matplotlib/pull/12492/
https://github.com/matplotlib/matplotlib/pull/12478/
https://github.com/matplotlib/matplotlib/pull/12363/
https://github.com/matplotlib/matplotlib/pull/12495/
https://github.com/matplotlib/matplotlib/pull/11984/
https://github.com/matplotlib/matplotlib/pull/12463/
https://github.com/matplotlib/matplotlib/pull/12489/
https://github.com/matplotlib/matplotlib/pull/12482/
https://github.com/matplotlib/matplotlib/pull/12317/
https://github.com/matplotlib/matplotlib/pull/12246/
https://github.com/matplotlib/matplotlib/pull/12477/
https://github.com/matplotlib/matplotlib/pull/12483/
https://github.com/matplotlib/matplotlib/pull/12448/
https://github.com/matplotlib/matplotlib/pull/12474/
https://github.com/matplotlib/matplotlib/pull/12469/
https://github.com/matplotlib/matplotlib/pull/12468/
https://github.com/matplotlib/matplotlib/pull/12466/
https://github.com/matplotlib/matplotlib/pull/12369/
https://github.com/matplotlib/matplotlib/pull/12460/
https://github.com/matplotlib/matplotlib/pull/12457/
https://github.com/matplotlib/matplotlib/pull/12453/
https://github.com/matplotlib/matplotlib/pull/12452/
https://github.com/matplotlib/matplotlib/pull/10746/
https://github.com/matplotlib/matplotlib/pull/12441/
https://github.com/matplotlib/matplotlib/pull/12430/
https://github.com/matplotlib/matplotlib/pull/12435/
https://github.com/matplotlib/matplotlib/pull/12434/
https://github.com/matplotlib/matplotlib/pull/12427/
https://github.com/matplotlib/matplotlib/pull/12277/
https://github.com/matplotlib/matplotlib/pull/10322/
https://github.com/matplotlib/matplotlib/pull/12423/

Matplotlib, Release 3.4.3

• PR #12293: Make pyplot more tolerant wrt. 3rd-party subclasses.

• PR #12360: Replace axes_grid by axes_grid1 in test

• PR #10356: fix detecting which artist(s) the mouse is over

• PR #12416: Move font cache rebuild out of exception handler

• PR #11891: Group some print()s in backend_ps.

• PR #12165: Remove deprecated mlab code

• PR #12394: DOC: fix CL tutorial to give same output from saved file and example

• PR #12387: Update HTML animation as slider is dragged

• PR #12408: Don't crash on invalid registry font entries on Windows.

• PR #10088: Deprecate Tick.{gridOn,tick1On,label1On,...} in favor of set_visible.

• PR #12149: Mathtext tutorial fixes

• PR #12393: Deprecate to-days converters in matplotlib dates

• PR #12257: Document standard backends in matplotlib.use()

• PR #12383: Revert change of parameter name in annotate()

• PR #12385: CI: Added Appveyor Python 3.7 build

• PR #12247: Machinery for deprecating properties.

• PR #12371: Move check for ImageMagick Windows path to bin_path().

• PR #12384: Cleanup axislines style.

• PR #12353: Doc: clarify default parameters in scatter docs

• PR #12366: TST: Update test images for new Ghostscript.

• PR #11648: FIX: colorbar placement in constrained layout

• PR #12368: Don't use stdlib private API in animation.py.

• PR #12351: dviread: find_tex_file: Ensure the encoding on windows

• PR #12244: Merge barchart examples.

• PR #12372: Remove two examples.

• PR #12214: Improve docstring of Annotation

• PR #12347: DOC: add_child_axes to axes_api.rst

• PR #12304: TST: Merge Qt tests into one file.

• PR #12321: maint: setupext.py for freetype had a Catch case for missing ft2build.h

• PR #12340: Catch test deprecation warnings for mlab.demean

• PR #12334: Improve selection of inset indicator connectors.

• PR #12316: Fix some warnings from Travis

668 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/12293/
https://github.com/matplotlib/matplotlib/pull/12360/
https://github.com/matplotlib/matplotlib/pull/10356/
https://github.com/matplotlib/matplotlib/pull/12416/
https://github.com/matplotlib/matplotlib/pull/11891/
https://github.com/matplotlib/matplotlib/pull/12165/
https://github.com/matplotlib/matplotlib/pull/12394/
https://github.com/matplotlib/matplotlib/pull/12387/
https://github.com/matplotlib/matplotlib/pull/12408/
https://github.com/matplotlib/matplotlib/pull/10088/
https://github.com/matplotlib/matplotlib/pull/12149/
https://github.com/matplotlib/matplotlib/pull/12393/
https://github.com/matplotlib/matplotlib/pull/12257/
https://github.com/matplotlib/matplotlib/pull/12383/
https://github.com/matplotlib/matplotlib/pull/12385/
https://github.com/matplotlib/matplotlib/pull/12247/
https://github.com/matplotlib/matplotlib/pull/12371/
https://github.com/matplotlib/matplotlib/pull/12384/
https://github.com/matplotlib/matplotlib/pull/12353/
https://github.com/matplotlib/matplotlib/pull/12366/
https://github.com/matplotlib/matplotlib/pull/11648/
https://github.com/matplotlib/matplotlib/pull/12368/
https://github.com/matplotlib/matplotlib/pull/12351/
https://github.com/matplotlib/matplotlib/pull/12244/
https://github.com/matplotlib/matplotlib/pull/12372/
https://github.com/matplotlib/matplotlib/pull/12214/
https://github.com/matplotlib/matplotlib/pull/12347/
https://github.com/matplotlib/matplotlib/pull/12304/
https://github.com/matplotlib/matplotlib/pull/12321/
https://github.com/matplotlib/matplotlib/pull/12340/
https://github.com/matplotlib/matplotlib/pull/12334/
https://github.com/matplotlib/matplotlib/pull/12316/

Matplotlib, Release 3.4.3

• PR #12268: FIX: remove unnecessary self in super_-calls, fixes #12265

• PR #12212: font_manager: Fixed problems with Path(...).suffix

• PR #12326: fixed minor spelling error in docstring

• PR #12296: Make FooConverter inherit from ConversionInterface in examples

• PR #12322: Fix the docs build.

• PR #12319: Fix Travis 3.6 builds

• PR #12309: Deduplicate implementations of FooNorm.autoscale{,_None}

• PR #12314: Deprecate axis('normal') in favor of axis('auto').

• PR #12313: BUG: Fix typo in view_limits() for MultipleLocator

• PR #12307: Clarify missing-property error message.

• PR #12274: MNT: put back _hold as read-only attribute on AxesBase

• PR #12260: Fix docs : change from issue #12191, remove "if 1:" blocks in examples

• PR #12163: TST: Defer loading Qt framework until test is run.

• PR #12253: Handle utf-8 output by kpathsea on Windows.

• PR #12301: Ghostscript 9.0 requirement revisited

• PR #12294: Fix expand_dims warnings in triinterpolate

• PR #12292: TST: Modify the bar3d test to show three more angles

• PR #12297: Remove some pytest parameterising warnings

• PR #12261: FIX: parasite axis2 demo

• PR #12278: Document inheriting docstrings

• PR #12262: Simplify empty-rasterized pdf test.

• PR #12269: Add some param docs to BlockingInput methods

• PR #12272: Fix contrained to constrained

• PR #12255: Deduplicate inherited docstrings.

• PR #12254: Improve docstrings of Animations

• PR #12258: Fix CSS for module-level data

• PR #12222: Remove extraneous if 1 statements in demo_axisline_style.py

• PR #12137: MAINT: Vectorize bar3d

• PR #12219: Merge OSXInstalledFonts into findSystemFonts.

• PR #12229: Less ACCEPTS, more numpydoc.

• PR #12209: Doc: Sort named colors example by palette

• PR #12237: Use (float, float) as parameter type for 2D positions in docstrings

7.1. Previous GitHub Stats 669

https://github.com/matplotlib/matplotlib/pull/12268/
https://github.com/matplotlib/matplotlib/pull/12212/
https://github.com/matplotlib/matplotlib/pull/12326/
https://github.com/matplotlib/matplotlib/pull/12296/
https://github.com/matplotlib/matplotlib/pull/12322/
https://github.com/matplotlib/matplotlib/pull/12319/
https://github.com/matplotlib/matplotlib/pull/12309/
https://github.com/matplotlib/matplotlib/pull/12314/
https://github.com/matplotlib/matplotlib/pull/12313/
https://github.com/matplotlib/matplotlib/pull/12307/
https://github.com/matplotlib/matplotlib/pull/12274/
https://github.com/matplotlib/matplotlib/pull/12260/
https://github.com/matplotlib/matplotlib/pull/12163/
https://github.com/matplotlib/matplotlib/pull/12253/
https://github.com/matplotlib/matplotlib/pull/12301/
https://github.com/matplotlib/matplotlib/pull/12294/
https://github.com/matplotlib/matplotlib/pull/12292/
https://github.com/matplotlib/matplotlib/pull/12297/
https://github.com/matplotlib/matplotlib/pull/12261/
https://github.com/matplotlib/matplotlib/pull/12278/
https://github.com/matplotlib/matplotlib/pull/12262/
https://github.com/matplotlib/matplotlib/pull/12269/
https://github.com/matplotlib/matplotlib/pull/12272/
https://github.com/matplotlib/matplotlib/pull/12255/
https://github.com/matplotlib/matplotlib/pull/12254/
https://github.com/matplotlib/matplotlib/pull/12258/
https://github.com/matplotlib/matplotlib/pull/12222/
https://github.com/matplotlib/matplotlib/pull/12137/
https://github.com/matplotlib/matplotlib/pull/12219/
https://github.com/matplotlib/matplotlib/pull/12229/
https://github.com/matplotlib/matplotlib/pull/12209/
https://github.com/matplotlib/matplotlib/pull/12237/

Matplotlib, Release 3.4.3

• PR #12238: Typo in docs

• PR #12236: Make boilerplate-generated pyplot.py flake8 compliant

• PR #12231: CI: Speed up Appveyor repository cloning

• PR #12228: Fix trivial typo in docs.

• PR #12227: Use (float, float) as parameter type for 2D positions

• PR #12199: Allow disabling specific mouse actions in blocking_input

• PR #12213: Change win32InstalledFonts return value

• PR #12207: FIX: dont' check for interactive framework if none required

• PR #11688: Don't draw axis (spines, ticks, labels) twice when using parasite axes.

• PR #12210: Axes.tick_params() argument checking

• PR #12211: Fix typo

• PR #12200: Slightly clarify some invalid shape exceptions for image data.

• PR #12151: Don't pretend @deprecated applies to classmethods.

• PR #12190: Remove some unused variables and imports

• PR #12186: DOC: fix API note about get_tightbbox

• PR #12203: Document legend's slowness when "best" location is used

• PR #12192: Exclude examples from lgtm analysis

• PR #12196: Give Carreau the ability to mention the backport bot.

• PR #12187: DOC: Update INSTALL.rst

• PR #12164: Fix Annotation.contains.

• PR #12177: FIX: remove cwd from mac font path search

• PR #12182: Fix Flash of Unstyled Content by removing remaining Flipcause integration

• PR #12184: DOC: update "Previous What's New" for 2.2 with reference to cividis paper

• PR #12183: Doc: Don't use Sphinx 1.8

• PR #12171: Remove internal warning due to zsort deprecation

• PR #12166: Document preference order for backend auto selection

• PR #12154: Avoid triggering deprecation warnings with pytest 3.8.

• PR #12030: Speed up canvas redraw for GTK3Agg backend.

• PR #12157: Properly declare the interactive framework for the qt4foo backends.

• PR #12156: Cleanup the GridSpec demos.

• PR #12144: Add explicit getters and setters for Annotation.anncoords.

• PR #12152: Use _warn_external for deprecations warnings.

670 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/pull/12238/
https://github.com/matplotlib/matplotlib/pull/12236/
https://github.com/matplotlib/matplotlib/pull/12231/
https://github.com/matplotlib/matplotlib/pull/12228/
https://github.com/matplotlib/matplotlib/pull/12227/
https://github.com/matplotlib/matplotlib/pull/12199/
https://github.com/matplotlib/matplotlib/pull/12213/
https://github.com/matplotlib/matplotlib/pull/12207/
https://github.com/matplotlib/matplotlib/pull/11688/
https://github.com/matplotlib/matplotlib/pull/12210/
https://github.com/matplotlib/matplotlib/pull/12211/
https://github.com/matplotlib/matplotlib/pull/12200/
https://github.com/matplotlib/matplotlib/pull/12151/
https://github.com/matplotlib/matplotlib/pull/12190/
https://github.com/matplotlib/matplotlib/pull/12186/
https://github.com/matplotlib/matplotlib/pull/12203/
https://github.com/matplotlib/matplotlib/pull/12192/
https://github.com/matplotlib/matplotlib/pull/12196/
https://github.com/matplotlib/matplotlib/pull/12187/
https://github.com/matplotlib/matplotlib/pull/12164/
https://github.com/matplotlib/matplotlib/pull/12177/
https://github.com/matplotlib/matplotlib/pull/12182/
https://github.com/matplotlib/matplotlib/pull/12184/
https://github.com/matplotlib/matplotlib/pull/12183/
https://github.com/matplotlib/matplotlib/pull/12171/
https://github.com/matplotlib/matplotlib/pull/12166/
https://github.com/matplotlib/matplotlib/pull/12154/
https://github.com/matplotlib/matplotlib/pull/12030/
https://github.com/matplotlib/matplotlib/pull/12157/
https://github.com/matplotlib/matplotlib/pull/12156/
https://github.com/matplotlib/matplotlib/pull/12144/
https://github.com/matplotlib/matplotlib/pull/12152/

Matplotlib, Release 3.4.3

• PR #12148: BLD: pragmatic fix for building basic_unit example on py37

• PR #12147: DOC: update the gh_stats code

Issues (170):

• #12699: Annotations get cropped out of figures saved with bbox_inches='tight'

• #9217: Weirdness with inline figure DPI settings in Jupyter Notebook

• #4853: %matplotlib notebook creates much bigger figures than %matplotlib inline

• #12780: Vague/misleading exception message in scatter()

• #10239: Weird interaction with Tkinter

• #10045: subplots_adjust() breaks layout of tick labels

• #12765: Matplotlib draws incorrect color

• #11800: Gridspec tutorial

• #12757: up the figure

• #12724: Importing pyplot steals focus on macOS

• #12669: fixing _hold on cartopy broke basemap

• #12687: Plotting text on 3d axes before tight_layout() breaks tight_layout()

• #12734: Wishlist: functionally linked twin axes

• #12576: RcParams is fundamentally broken

• #12641: _axes.py.scatter() array index out of bound / calling from seaborn

• #12703: Error when closing first of several pyplot figures in TkAgg

• #12728: Deprecation Warnings

• #4124: Provide canonical examples of mpl in web frameworks

• #10574: Default color after setting alptha to Patch in legened

• #12702: couldn't find or load Qt platform plugin "windows" in "".

• #11139: "make clean" doesn't remove all the build doc files

• #12701: semilogy with NaN prevents display of Title (cairo backend)

• #12696: Process finished with exit code -1 due to matplotlib configuration

• #12692: matplotlib.plot.show always blocks the execution of python script

• #12433: Travis error is MacOS image tolerance of 0.005 for test_constrained_layout.
py::test_colorbar_location

• #10017: unicode_literals considered harmful

• #12682: using AxesImage.set_clim() shrinks the colorbar

• #12620: Overlapping 3D objects

7.1. Previous GitHub Stats 671

https://github.com/matplotlib/matplotlib/pull/12148/
https://github.com/matplotlib/matplotlib/pull/12147/
https://github.com/matplotlib/matplotlib/issues/12699/
https://github.com/matplotlib/matplotlib/issues/9217/
https://github.com/matplotlib/matplotlib/issues/4853/
https://github.com/matplotlib/matplotlib/issues/12780/
https://github.com/matplotlib/matplotlib/issues/10239/
https://github.com/matplotlib/matplotlib/issues/10045/
https://github.com/matplotlib/matplotlib/issues/12765/
https://github.com/matplotlib/matplotlib/issues/11800/
https://github.com/matplotlib/matplotlib/issues/12757/
https://github.com/matplotlib/matplotlib/issues/12724/
https://github.com/matplotlib/matplotlib/issues/12669/
https://github.com/matplotlib/matplotlib/issues/12687/
https://github.com/matplotlib/matplotlib/issues/12734/
https://github.com/matplotlib/matplotlib/issues/12576/
https://github.com/matplotlib/matplotlib/issues/12641/
https://github.com/matplotlib/matplotlib/issues/12703/
https://github.com/matplotlib/matplotlib/issues/12728/
https://github.com/matplotlib/matplotlib/issues/4124/
https://github.com/matplotlib/matplotlib/issues/10574/
https://github.com/matplotlib/matplotlib/issues/12702/
https://github.com/matplotlib/matplotlib/issues/11139/
https://github.com/matplotlib/matplotlib/issues/12701/
https://github.com/matplotlib/matplotlib/issues/12696/
https://github.com/matplotlib/matplotlib/issues/12692/
https://github.com/matplotlib/matplotlib/issues/12433/
https://github.com/matplotlib/matplotlib/issues/10017/
https://github.com/matplotlib/matplotlib/issues/12682/
https://github.com/matplotlib/matplotlib/issues/12620/

Matplotlib, Release 3.4.3

• #12680: matplotlib ui in thread still blocked

• #11908: Improve linestyle documentation

• #12650: Deprecation warnings when calling help(matplotlib)

• #10643: Most warnings calls do not set the stacklevel

• #12671: make_axes_locatable breaks with matplotlib 3.0

• #12664: plt.scatter crashes because overwrites the colors to an empty list

• #12188: matplotlib 3 pyplot on MacOS bounces rocket icon in dock

• #12648: Regression when calling annotate with nan values for the position

• #12362: In 3.0.0 backend cannot be set if 'get_backend()' is run first

• #12649: Over-verbose deprecation warning about examples.directory

• #12661: In version 3.0.0 make_axes_locatable + colorbar does not produce expected result

• #12634: axes_grid1 axes have no keyword argument 'bbox_extra_artists'

• #12654: Broken 'Developer Discussions' link

• #12657: With v3.0.0 mpl_toolkits.axes_grid1.make_axes_locatable().append_axes breaks in Jupyter

• #12645: Markers are offset when 'facecolor' or 'edgecolor' are set to 'none' when plotting data

• #12644: Memory leak with plt.plot in Jupyter Notebooks?

• #12632: Do we need input hooks macosx?

• #12535: AIX Support - Do not undef _XOPEN_SOURCE

• #12626: AttributeError: module 'matplotlib' has no attribute 'artist'

• #11034: Doc Typo: matplotlib.axes.Axes.get_yticklabels / Axis.get_ticklabels

• #12624: make_axes_locatable : Colorbar in the middle instead of bottom while saving a pdf, png.

• #11094: can not use GUI backends inside django request handlers

• #12613: transiently linked interactivity of unshared pair of axes generated with make_axes_locatable

• #12578: macOS builds are broken

• #12612: gui backends do not work inside of flask request handlers

• #12611: Matplotlib 3.0.0 Likely bug TypeError: stackplot() got multiple values for argument 'x'

• #12610: matplotlibrc causes import to fail 3.0.0 (didn't crash 2.y.z series)

• #12601: Can't import matplotlib

• #12597: Please soon add Chinese language support!! It's to difficult for new people handle character

• #12590: Matplotlib pypi distribution lacks packages for Python 2.7

• #3869: Numeric labels do not work with plt.hist

• #12580: Incorrect hist error message with bad color size

672 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/12680/
https://github.com/matplotlib/matplotlib/issues/11908/
https://github.com/matplotlib/matplotlib/issues/12650/
https://github.com/matplotlib/matplotlib/issues/10643/
https://github.com/matplotlib/matplotlib/issues/12671/
https://github.com/matplotlib/matplotlib/issues/12664/
https://github.com/matplotlib/matplotlib/issues/12188/
https://github.com/matplotlib/matplotlib/issues/12648/
https://github.com/matplotlib/matplotlib/issues/12362/
https://github.com/matplotlib/matplotlib/issues/12649/
https://github.com/matplotlib/matplotlib/issues/12661/
https://github.com/matplotlib/matplotlib/issues/12634/
https://github.com/matplotlib/matplotlib/issues/12654/
https://github.com/matplotlib/matplotlib/issues/12657/
https://github.com/matplotlib/matplotlib/issues/12645/
https://github.com/matplotlib/matplotlib/issues/12644/
https://github.com/matplotlib/matplotlib/issues/12632/
https://github.com/matplotlib/matplotlib/issues/12535/
https://github.com/matplotlib/matplotlib/issues/12626/
https://github.com/matplotlib/matplotlib/issues/11034/
https://github.com/matplotlib/matplotlib/issues/12624/
https://github.com/matplotlib/matplotlib/issues/11094/
https://github.com/matplotlib/matplotlib/issues/12613/
https://github.com/matplotlib/matplotlib/issues/12578/
https://github.com/matplotlib/matplotlib/issues/12612/
https://github.com/matplotlib/matplotlib/issues/12611/
https://github.com/matplotlib/matplotlib/issues/12610/
https://github.com/matplotlib/matplotlib/issues/12601/
https://github.com/matplotlib/matplotlib/issues/12597/
https://github.com/matplotlib/matplotlib/issues/12590/
https://github.com/matplotlib/matplotlib/issues/3869/
https://github.com/matplotlib/matplotlib/issues/12580/

Matplotlib, Release 3.4.3

• #12100: document where to get nightly wheels

• #7205: Converting docstrings to numpydoc

• #12564: Saving plot as PNG file prunes tick labels

• #12161: Problems of using sharex options with lines plots and colormesh with colorbar

• #12256: tight_layout for plot with non-clipped screen-unit items causes issues on zoom

• #12545: Program quit unormally without reporting error

• #12532: Incorrect rendering of math symbols

• #12567: Calling pyplot.show() with TkAgg backend on x86 machine raises OverflowError.

• #12571: cannot install because Fatal Python error: initfsencoding: Unable to get the locale encoding

• #12566: Problem installing Version 1.3.1 -> missing pkg-config freetype and libagg

• #12556: Matplotlib 3.0.0 import hangs in clean environment

• #12197: Weird behaviour of suptitle() when horizontalalignment is not 'center'

• #12550: colorbar resizes in animation

• #12155: Incorrect placement of Colorbar ticks using LogNorm

• #11787: Looping gifs with PillowWriter

• #12533: Plotting with alpha=0 with rasterized=True causes ValueError on saving to pdf

• #12438: Scatter doesn't accept a list of strings as color spec.

• #12429: scatter() does not accept gray strings anymore

• #12499: run my code failed after i Import pylab failed, python version is 3.6.6

• #12458: add_lines misses lines for matplotlib.colorbar.ColorbarBase

• #12239: 3d axes are collapsed by tight_layout

• #12414: Function to draw angle between two lines

• #12488: inconsistent colorbar tick labels for LogNorm

• #12515: pyplot.step broken in 3.0.0?

• #12355: Error for bbox_inches='tight' in savefig with make_axes_locatable

• #12505: ImageGrid in 3.0

• #12502: How can I put the ticks of logarithmic coordinate in the axes?

• #12496: Maplotlib Can't Plot a Dataset

• #12486: rotate label of legend ?

• #12291: Importing pyplot crashes on macOS due to missing fontlist-v300.json and then Permission
denied: '/opt/local/share/fonts'

• #12480: "close_event" for nbagg/notebook backend

7.1. Previous GitHub Stats 673

https://github.com/matplotlib/matplotlib/issues/12100/
https://github.com/matplotlib/matplotlib/issues/7205/
https://github.com/matplotlib/matplotlib/issues/12564/
https://github.com/matplotlib/matplotlib/issues/12161/
https://github.com/matplotlib/matplotlib/issues/12256/
https://github.com/matplotlib/matplotlib/issues/12545/
https://github.com/matplotlib/matplotlib/issues/12532/
https://github.com/matplotlib/matplotlib/issues/12567/
https://github.com/matplotlib/matplotlib/issues/12571/
https://github.com/matplotlib/matplotlib/issues/12566/
https://github.com/matplotlib/matplotlib/issues/12556/
https://github.com/matplotlib/matplotlib/issues/12197/
https://github.com/matplotlib/matplotlib/issues/12550/
https://github.com/matplotlib/matplotlib/issues/12155/
https://github.com/matplotlib/matplotlib/issues/11787/
https://github.com/matplotlib/matplotlib/issues/12533/
https://github.com/matplotlib/matplotlib/issues/12438/
https://github.com/matplotlib/matplotlib/issues/12429/
https://github.com/matplotlib/matplotlib/issues/12499/
https://github.com/matplotlib/matplotlib/issues/12458/
https://github.com/matplotlib/matplotlib/issues/12239/
https://github.com/matplotlib/matplotlib/issues/12414/
https://github.com/matplotlib/matplotlib/issues/12488/
https://github.com/matplotlib/matplotlib/issues/12515/
https://github.com/matplotlib/matplotlib/issues/12355/
https://github.com/matplotlib/matplotlib/issues/12505/
https://github.com/matplotlib/matplotlib/issues/12502/
https://github.com/matplotlib/matplotlib/issues/12496/
https://github.com/matplotlib/matplotlib/issues/12486/
https://github.com/matplotlib/matplotlib/issues/12291/
https://github.com/matplotlib/matplotlib/issues/12480/

Matplotlib, Release 3.4.3

• #12467: Documentation of AnchoredText's prop keyword argument is misleading

• #12288: New function signatures in pyplot break Cartopy

• #12445: Error on colorbar

• #8760: Traceback from animation.MovieWriter.saving method is confusing because it provides no
useful information

• #9205: after the animation encoder (e.g. ffmpeg) fails, the animation framework itself fails internally
in various ways while trying to report the error

• #12357: Unclear error when saving Animation using FFMpeg

• #12454: Formatting numerical legend

• #9636: matplotlib crashes upon window resize

• #11473: Continuous plotting cause memory leak 20-50kb/sec

• #12018: No image pop-up or display for plt.imshow() and plt.show()

• #11583: How to draw parallelepiped with real size scaling?

• #12446: Polar Contour - float() argument must be a string or a number, not 'AxesParasiteParasiteAux-
Trans'

• #12444: Issues with gridspec/tight_layout in matplotlib version 2.2.3

• #11154: Unexpected behavior for Axes3D.plot_surface(shade=None)

• #12409: Calling savefig() multiple times causes crash of Spyder IDE / IPython Kernel dying.

• #9799: FigureCanvasTkAgg - "buffer is of wrong type" error during blit

• #12439: FileNotFoundError for font_manager

• #12437: matplotlib-mac

• #12121: Documentation of TextArea's fontprops keyword argument is misleading

• #12279: Axes.format_cursor_data lacks documentation and seems unused

• #12428: Simple plot spacing bug: ylabel gets wrongfully removed from plot

• #11190: Images in the docs are too large.

• #12271: error with errorbar with datetime64

• #12405: plt.stackplot() does not work with 3.0.0

• #12282: Axes.imshow tooltip does not get updated when another call to Axes.imshow is made

• #12420: How to remove Rectangle Selector from figure?

• #12391: Constrained Layout tutorial needs some cleanup....

• #12406: Bug with font finding, and here is my fix as well.

• #9051: ParasiteAxes over plotting

• #12325: Annotation change from "s" to "text" in 3.0- documentation

674 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/12467/
https://github.com/matplotlib/matplotlib/issues/12288/
https://github.com/matplotlib/matplotlib/issues/12445/
https://github.com/matplotlib/matplotlib/issues/8760/
https://github.com/matplotlib/matplotlib/issues/9205/
https://github.com/matplotlib/matplotlib/issues/12357/
https://github.com/matplotlib/matplotlib/issues/12454/
https://github.com/matplotlib/matplotlib/issues/9636/
https://github.com/matplotlib/matplotlib/issues/11473/
https://github.com/matplotlib/matplotlib/issues/12018/
https://github.com/matplotlib/matplotlib/issues/11583/
https://github.com/matplotlib/matplotlib/issues/12446/
https://github.com/matplotlib/matplotlib/issues/12444/
https://github.com/matplotlib/matplotlib/issues/11154/
https://github.com/matplotlib/matplotlib/issues/12409/
https://github.com/matplotlib/matplotlib/issues/9799/
https://github.com/matplotlib/matplotlib/issues/12439/
https://github.com/matplotlib/matplotlib/issues/12437/
https://github.com/matplotlib/matplotlib/issues/12121/
https://github.com/matplotlib/matplotlib/issues/12279/
https://github.com/matplotlib/matplotlib/issues/12428/
https://github.com/matplotlib/matplotlib/issues/11190/
https://github.com/matplotlib/matplotlib/issues/12271/
https://github.com/matplotlib/matplotlib/issues/12405/
https://github.com/matplotlib/matplotlib/issues/12282/
https://github.com/matplotlib/matplotlib/issues/12420/
https://github.com/matplotlib/matplotlib/issues/12391/
https://github.com/matplotlib/matplotlib/issues/12406/
https://github.com/matplotlib/matplotlib/issues/9051/
https://github.com/matplotlib/matplotlib/issues/12325/

Matplotlib, Release 3.4.3

• #12397: plt.show() not working (can't get figures to display in external window) when using jupyter
QTconsole

• #12396: Defining arrowprops in draggable annotation disables the pick_event

• #12389: Setting row edge color of matplotlib table

• #12376: The output figure file is strange: there is a lot of blank area on the output figure.

• #11641: constrained_layout and colorbar for a subset of axes

• #12373: Unexpected outcome with matplotlib.pyplot.pcolor()

• #12370: ImageGrid bug when using inline backend

• #12364: pdf image generated by matplotlib with semi transparent lines missing in Word on Windows.

• #12352: TeX rendering broken on master with windows

• #12354: Too many levels of symbolic links

• #12323: indicate_inset_zoom sometimes draws incorrect connector lines

• #12341: Figures not rendering in docker

• #12335: Matplotlib plt.Rectangle Incoherent Results

• #12265: ParasiteAxesAuxTrans pcolor/pcolormesh and contour/contourf broken

• #12337: AttributeError: module 'matplotlib.pyplot' has no attribute 'hold'

• #11673: Inconsistent font settings when changing style context

• #11693: The rcParams setting for figure.figsize does not change when run from another notebook

• #11725: New mode between non-interactive and interactive?

• #12134: tight_layout flips images when making plots without displaying them

• #12310: plot fails with datetime64[ns] timezone aware objects (for example datetime64[ns,
UTC+00:00])

• #12191: "if 1:" blocks in examples

• #11288: FR: Figure.subplots add optional SubplotSpec parameter

• #12298: c and cmap for plot

• #12286: Sample code given in Matplotlib's site does not work.

• #11955: UnicodeDecodeError on importing pyplot in python2

• #12208: parasite axis2 demo now crashes with log x-axis

• #8871: Error when using quantities when plotting errorbars

• #6658: literature reference for 'viridis' colormap

• #6789: Tutorial pyplot_scales.py crashes when used with plt.tight_layout()

• #6922: imshow does not immediately update shared axes

• #11879: Unable to change filename when saving from figure window

7.1. Previous GitHub Stats 675

https://github.com/matplotlib/matplotlib/issues/12397/
https://github.com/matplotlib/matplotlib/issues/12396/
https://github.com/matplotlib/matplotlib/issues/12389/
https://github.com/matplotlib/matplotlib/issues/12376/
https://github.com/matplotlib/matplotlib/issues/11641/
https://github.com/matplotlib/matplotlib/issues/12373/
https://github.com/matplotlib/matplotlib/issues/12370/
https://github.com/matplotlib/matplotlib/issues/12364/
https://github.com/matplotlib/matplotlib/issues/12352/
https://github.com/matplotlib/matplotlib/issues/12354/
https://github.com/matplotlib/matplotlib/issues/12323/
https://github.com/matplotlib/matplotlib/issues/12341/
https://github.com/matplotlib/matplotlib/issues/12335/
https://github.com/matplotlib/matplotlib/issues/12265/
https://github.com/matplotlib/matplotlib/issues/12337/
https://github.com/matplotlib/matplotlib/issues/11673/
https://github.com/matplotlib/matplotlib/issues/11693/
https://github.com/matplotlib/matplotlib/issues/11725/
https://github.com/matplotlib/matplotlib/issues/12134/
https://github.com/matplotlib/matplotlib/issues/12310/
https://github.com/matplotlib/matplotlib/issues/12191/
https://github.com/matplotlib/matplotlib/issues/11288/
https://github.com/matplotlib/matplotlib/issues/12298/
https://github.com/matplotlib/matplotlib/issues/12286/
https://github.com/matplotlib/matplotlib/issues/11955/
https://github.com/matplotlib/matplotlib/issues/12208/
https://github.com/matplotlib/matplotlib/issues/8871/
https://github.com/matplotlib/matplotlib/issues/6658/
https://github.com/matplotlib/matplotlib/issues/6789/
https://github.com/matplotlib/matplotlib/issues/6922/
https://github.com/matplotlib/matplotlib/issues/11879/

Matplotlib, Release 3.4.3

• #12225: In histogram, bars whose count is larger than 2**31 sometimes become negative

• #1461: DOC: keyword arguments to plt.axes, plt.subpot, and fig.add_subplot

• #12173: Cannot import pyplot

• #12217: Python will suddenly not plot anymore

• #12120: Default legend behavior (loc='best') very slow for large amounts of data.

• #12176: import pyplot on MacOS without font cache will search entire subtree of current dir

• #12146: fix pdf docs

• #12160: MacOS: Cannot import name 'format_exc'

• #12169: Cannot install 3.0.0 "python setup.py egg_info" failed (freetype & png)

• #12168: pip install v3.0.0 'failed with exit status 1181'

• #12107: warnings re: deprecated pytest API with pytest 3.8

• #12162: https://matplotlib.org/users/beginner.html is outdated

• #12010: Popover over plot is very slow

• #6739: Make matplotlib fail more gracefully in headless environments

• #3679: Runtime detection for default backend

• #11340: matplotlib fails to install from source with intel compiler

• #11838: docs do not build on py3.7 due to small change in python handling of -m

• #12115: Plot in JS Animation has larger margin than "normal" PNG plot

676 Chapter 7. GitHub Stats

https://github.com/matplotlib/matplotlib/issues/12225/
https://github.com/matplotlib/matplotlib/issues/1461/
https://github.com/matplotlib/matplotlib/issues/12173/
https://github.com/matplotlib/matplotlib/issues/12217/
https://github.com/matplotlib/matplotlib/issues/12120/
https://github.com/matplotlib/matplotlib/issues/12176/
https://github.com/matplotlib/matplotlib/issues/12146/
https://github.com/matplotlib/matplotlib/issues/12160/
https://github.com/matplotlib/matplotlib/issues/12169/
https://github.com/matplotlib/matplotlib/issues/12168/
https://github.com/matplotlib/matplotlib/issues/12107/
https://github.com/matplotlib/matplotlib/issues/12162/
https://matplotlib.org/users/beginner.html
https://github.com/matplotlib/matplotlib/issues/12010/
https://github.com/matplotlib/matplotlib/issues/6739/
https://github.com/matplotlib/matplotlib/issues/3679/
https://github.com/matplotlib/matplotlib/issues/11340/
https://github.com/matplotlib/matplotlib/issues/11838/
https://github.com/matplotlib/matplotlib/issues/12115/

CHAPTER

EIGHT

PREVIOUS WHAT'S NEW

8.1 What's new in Matplotlib 3.3.0

For a list of all of the issues and pull requests since the last revision, see the GitHub Stats.

Table of Contents

• What's new in Matplotlib 3.3.0

– Figure and Axes creation / management

∗ Provisional API for composing semantic axes layouts from text or nested lists

∗ GridSpec.subplots()

∗ New Axes.sharex, Axes.sharey methods

∗ tight_layout now supports suptitle

∗ Setting axes box aspect

– Colors and colormaps

∗ Turbo colormap

∗ colors.BoundaryNorm supports extend keyword argument

∗ Text color for legend labels

∗ Pcolor and Pcolormesh now accept shading='nearest' and 'auto'

– Titles, ticks, and labels

∗ Align labels to Axes edges

∗ Allow tick formatters to be set with str or function inputs

∗ Axes.set_title gains a y keyword argument to control auto positioning

∗ Offset text is now set to the top when using axis.tick_top()

∗ Set zorder of contour labels

– Other changes

677

Matplotlib, Release 3.4.3

∗ New Axes.axline method

∗ imshow now coerces 3D arrays with depth 1 to 2D

∗ Better control of Axes.pie normalization

∗ Dates use a modern epoch

∗ Lines now accept MarkerStyle instances as input

– Fonts

∗ Simple syntax to select fonts by absolute path

∗ Improved font weight detection

– rcParams improvements

∗ matplotlib.rc_context can be used as a decorator

∗ rcParams for controlling default "raise window" behavior

∗ Add generalized mathtext.fallback to rcParams

∗ Add contour.linewidth to rcParams

– 3D Axes improvements

∗ Axes3D no longer distorts the 3D plot to match the 2D aspect ratio

∗ 3D axes now support minor ticks

∗ Home/Forward/Backward buttons now work with 3D axes

– Interactive tool improvements

∗ More consistent toolbar behavior across backends

∗ Toolbar icons are now styled for dark themes

∗ Cursor text now uses a number of significant digits matching pointing precision

∗ GTK / Qt zoom rectangle now black and white

∗ Event handler simplifications

– Functions to compute a Path's size

∗ Better interface for Path segment iteration

∗ Fixed bug that computed a Path's Bbox incorrectly

– Backend-specific improvements

∗ savefig() gained a backend keyword argument

∗ The SVG backend can now render hatches with transparency

∗ SVG supports URLs on more artists

∗ Images in SVG will no longer be blurred in some viewers

678 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

∗ Saving SVG now supports adding metadata

∗ Saving PDF metadata via PGF now consistent with PDF backend

∗ NbAgg and WebAgg no longer use jQuery & jQuery UI

8.1.1 Figure and Axes creation / management

Provisional API for composing semantic axes layouts from text or nested lists

The Figure class has a provisional method to generate complex grids of named axes.Axes based on
nested list input or ASCII art:

axd = plt.figure(constrained_layout=True).subplot_mosaic(
[['.', 'histx'],
['histy', 'scat']]

)
for k, ax in axd.items():

ax.text(0.5, 0.5, k,
ha='center', va='center', fontsize=36,
color='darkgrey')

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

histx

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

histy
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

scat

or as a string (with single-character Axes labels):

8.1. What's new in Matplotlib 3.3.0 679

Matplotlib, Release 3.4.3

axd = plt.figure(constrained_layout=True).subplot_mosaic(
"""
TTE
L.E
""")

for k, ax in axd.items():
ax.text(0.5, 0.5, k,

ha='center', va='center', fontsize=36,
color='darkgrey')

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

T

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

L

See Complex and semantic figure composition for more details and examples.

GridSpec.subplots()

The GridSpec class gained a subplots method, so that one can write

fig.add_gridspec(2, 2, height_ratios=[3, 1]).subplots()

as an alternative to

fig.subplots(2, 2, gridspec_kw={"height_ratios": [3, 1]})

680 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

New Axes.sharex, Axes.sharey methods

These new methods allow sharing axes immediately after creating them. Note that behavior is indeterminate
if axes are not shared immediately after creation.

For example, they can be used to selectively link some axes created all together using subplot_mosaic:

fig = plt.figure(constrained_layout=True)
axd = fig.subplot_mosaic([['.', 'histx'], ['histy', 'scat']],

gridspec_kw={'width_ratios': [1, 7],
'height_ratios': [2, 7]})

axd['histx'].sharex(axd['scat'])
axd['histy'].sharey(axd['scat'])

20 40 60 80 100 120
0

10

010

30

40

50

60

70

20 40 60 80 100 120

30

40

50

60

70

0.4 0.2 0.0 0.2 0.4

8.1. What's new in Matplotlib 3.3.0 681

Matplotlib, Release 3.4.3

tight_layout now supports suptitle

Previous versions did not consider Figure.suptitle, so it may overlap with other artists after calling
tight_layout:

0 2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Axes 0

0 2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Axes 1

0 2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Axes 2suptitle

From now on, the suptitle will be considered:

Setting axes box aspect

It is now possible to set the aspect of an axes box directly via set_box_aspect. The box aspect is the
ratio between axes height and axes width in physical units, independent of the data limits. This is useful to,
e.g., produce a square plot, independent of the data it contains, or to have a non-image plot with the same
axes dimensions next to an image plot with fixed (data-)aspect.

For use cases check out the Axes box aspect example.

682 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

0 2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
Axes 0

0 2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
Axes 1

0 2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
Axes 2

suptitle

8.1.2 Colors and colormaps

Turbo colormap

Turbo is an improved rainbow colormap for visualization, created by the Google AI team for computer vision
and machine learning. Its purpose is to display depth and disparity data. Please see the Google AI Blog for
further details.

colors.BoundaryNorm supports extend keyword argument

BoundaryNorm now has an extend keyword argument, analogous to extend in contourf. When set to
'both', 'min', or 'max', it maps the corresponding out-of-range values to Colormap lookup-table indices
near the appropriate ends of their range so that the colors for out-of range values are adjacent to, but dis-
tinct from, their in-range neighbors. The colorbar inherits the extend argument from the norm, so with
extend='both', for example, the colorbar will have triangular extensions for out-of-range values with
colors that differ from adjacent in-range colors.

8.1. What's new in Matplotlib 3.3.0 683

https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html

Matplotlib, Release 3.4.3

turbo

jet

gist_rainbow_r

hsv_r

Text color for legend labels

The text color of legend labels can now be set by passing a parameter labelcolor to legend. The
labelcolor keyword can be:

• A single color (either a string or RGBA tuple), which adjusts the text color of all the labels.

• A list or tuple, allowing the text color of each label to be set individually.

• linecolor, which sets the text color of each label to match the corresponding line color.

• markerfacecolor, which sets the text color of each label to match the corresponding marker face
color.

• markeredgecolor, which sets the text color of each label to match the corresponding marker edge
color.

684 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

1

2

3

4

5
Colorbar with extend='both'

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1

2

3

4

5
BoundaryNorm with extend='both'

0.8

0.5

0.2

0.2

0.5

0.8

0.8

0.5

0.2

0.2

0.5

0.8

Pcolor and Pcolormesh now accept shading='nearest' and 'auto'

Previously axes.Axes.pcolor and axes.Axes.pcolormesh handled the situation where x and y
have the same (respective) size as C by dropping the last row and column of C, and x and y are regarded as
the edges of the remaining rows and columns in C. However, many users want x and y centered on the rows
and columns of C.

To accommodate this, shading='nearest' and shading='auto' are new allowed strings for the
shading keyword argument. 'nearest'will center the color on x and y if x and y have the same dimensions
as C (otherwise an error will be thrown). shading='auto' will choose 'flat' or 'nearest' based on the size
of X, Y, C.

If shading='flat' then X, and Y should have dimensions one larger than C. If X and Y have the same
dimensions as C, then the previous behavior is used and the last row and column of C are dropped, and a
DeprecationWarning is emitted.

Users can also specify this by the new rcParams["pcolor.shading"] (default: 'flat') in their
.matplotlibrc or via rcParams.

See pcolormesh for examples.

8.1. What's new in Matplotlib 3.3.0 685

../../tutorials/introductory/customizing.html?highlight=pcolor.shading#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0
labelcolor='C3'
a line

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0
labelcolor='linecolor'

a line

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0
labelcolor='markerfacecolor'

a line

0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0
labelcolor='markeredgecolor'

a line

8.1.3 Titles, ticks, and labels

Align labels to Axes edges

set_xlabel, set_ylabel andColorbarBase.set_label support a parameterloc for simplified
positioning. For the xlabel, the supported values are 'left', 'center', or 'right'. For the ylabel, the supported
values are 'bottom', 'center', or 'top'.

The default is controlled via rcParams["xaxis.labelposition"] and rcParams["yaxis.
labelposition"]; the Colorbar label takes the rcParam based on its orientation.

Allow tick formatters to be set with str or function inputs

set_major_formatter and set_minor_formatter now accept str or function inputs in addition
to Formatter instances. For a str a StrMethodFormatter is automatically generated and used. For
a function a FuncFormatter is automatically generated and used. In other words,

ax.xaxis.set_major_formatter('{x} km')
ax.xaxis.set_minor_formatter(lambda x, pos: str(x-5))

are shortcuts for:

686 Chapter 8. Previous What's New

../../tutorials/introductory/customizing.html?highlight=xaxis.labelposition#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=yaxis.labelposition#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=yaxis.labelposition#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
xlabel loc='left'

1

2

3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
xlabel loc='center'

1

2

3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
xlabel loc='right'

1

2

3

import matplotlib.ticker as mticker

ax.xaxis.set_major_formatter(mticker.StrMethodFormatter('{x} km'))
ax.xaxis.set_minor_formatter(

mticker.FuncFormatter(lambda x, pos: str(x-5))

Axes.set_title gains a y keyword argument to control auto positioning

set_title tries to auto-position the title to avoid any decorators on the top x-axis. This is not always
desirable so now y is an explicit keyword argument of set_title. It defaults to None which means to use
auto-positioning. If a value is supplied (i.e. the pre-3.0 default was y=1.0) then auto-positioning is turned
off. This can also be set with the new rcParameter rcParams["axes.titley"] (default: None).

8.1. What's new in Matplotlib 3.3.0 687

../../tutorials/introductory/customizing.html?highlight=axes.titley#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

0 2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
yl

ab
el

 lo
c=

'b
ot

to
m

'

0 2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

yl
ab

el
 lo

c=
'ce

nt
er

'

0 2

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

yl
ab

el
 lo

c=
'to

p'

0.0 km 1.0 km 2.0 km 3.0 km 4.0 km 5.0 km

ax.xaxis.set_major_formatter('{x} km')

-5.0 -4.0 -3.0 -2.0 -1.0 0.0

ax.xaxis.set_major_formatter(lambda x, pos: str(x-5))

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0 y=0.7

jn
xj

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

y=None

jn
xj

688 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

Offset text is now set to the top when using axis.tick_top()

Solves the issue that the power indicator (e.g., 1e4) stayed on the bottom, even if the ticks were on the top.

Set zorder of contour labels

clabel now accepts a zorder keyword argument making it easier to set the zorder of contour labels. If not
specified, the default zorder of clabels used to always be 3 (i.e. the default zorder of Text) irrespective of
the zorder passed to contour/contourf. The new default zorder for clabels has been changed to (2 +
zorder passed to contour / contourf).

8.1.4 Other changes

New Axes.axline method

A new axline method has been added to draw infinitely long lines that pass through two points.

fig, ax = plt.subplots()

ax.axline((.1, .1), slope=5, color='C0', label='by slope')
ax.axline((.1, .2), (.8, .7), color='C3', label='by points')

ax.legend()

imshow now coerces 3D arrays with depth 1 to 2D

Starting from this version arrays of size MxNx1 will be coerced into MxN for displaying. This means com-
mands like plt.imshow(np.random.rand(3, 3, 1)) will no longer return an error message that
the image shape is invalid.

Better control of Axes.pie normalization

Previously, Axes.pie would normalize its input x if sum(x) > 1, but would do nothing if the sum were
less than 1. This can be confusing, so an explicit keyword argument normalize has been added. By default,
the old behavior is preserved.

By passing normalize, one can explicitly control whether any rescaling takes place or whether partial pies
should be created. If normalization is disabled, and sum(x) > 1, then an error is raised.

8.1. What's new in Matplotlib 3.3.0 689

Matplotlib, Release 3.4.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

by slope
by points

Dates use a modern epoch

Matplotlib converts dates to days since an epoch using dates.date2num (via matplotlib.units).
Previously, an epoch of 0000-12-31T00:00:00 was used so that 0001-01-01 was converted to 1.0.
An epoch so distant in the past meant that a modern date was not able to preserve microseconds because
2000 years times the 2^(-52) resolution of a 64-bit float gives 14 microseconds.

Here we change the default epoch to the more reasonable UNIX default of 1970-01-01T00:00:00
which for a modern date has 0.35 microsecond resolution. (Finer resolution is not possible because we rely
on datetime.datetime for the date locators). Access to the epoch is provided by get_epoch, and
there is a newrcParams["date.epoch"] (default: '1970-01-01T00:00:00') rcParam. The user
may also call set_epoch, but it must be set before any date conversion or plotting is used.

If you have data stored as ordinal floats in the old epoch, you can convert them to the new ordinal using the
following formula:

new_ordinal = old_ordinal + mdates.date2num(np.datetime64('0000-12-31'))

690 Chapter 8. Previous What's New

https://docs.python.org/3/library/datetime.html#datetime.datetime
../../tutorials/introductory/customizing.html?highlight=date.epoch#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

0.25
25.0%

0.3
30.0%

0.3

30.0%

normalize=False

0.25
29.41%

0.3 35.29%

0.3

35.29%

normalize=True

0.25
25.00%

0.3
30.00%

0.3

30.00%

normalize unspecified
sum(x) < 1

2.5
29.41%

3.0 35.29%

3.0

35.29%

normalize unspecified
sum(x) > 1

Lines now accept MarkerStyle instances as input

Similar to scatter, plot and Line2D now accept MarkerStyle instances as input for the marker
parameter:

plt.plot(..., marker=matplotlib.markers.MarkerStyle("D"))

8.1.5 Fonts

Simple syntax to select fonts by absolute path

Fonts can now be selected by passing an absolute pathlib.Path to the font keyword argument of Text.

8.1. What's new in Matplotlib 3.3.0 691

https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Improved font weight detection

Matplotlib is now better able to determine the weight of fonts from their metadata, allowing to differentiate
between fonts within the same family more accurately.

8.1.6 rcParams improvements

matplotlib.rc_context can be used as a decorator

matplotlib.rc_context can now be used as a decorator (technically, it is now implemented as a
contextlib.contextmanager), e.g.,

@rc_context({"lines.linewidth": 2})
def some_function(...):

...

rcParams for controlling default "raise window" behavior

The new config option rcParams["figure.raise_window"] (default: True) allows disabling of
the raising of the plot window when calling show or pause. The MacOSX backend is currently not sup-
ported.

Add generalized mathtext.fallback to rcParams

New rcParams["mathtext.fallback"] (default: 'cm') rcParam. Takes "cm", "stix", "stixsans"
or "none" to turn fallback off. The rcParam mathtext.fallback_to_cm is deprecated, but if used, will override
new fallback.

Add contour.linewidth to rcParams

The new config option rcParams["contour.linewidth"] (default: None) allows to control the de-
fault line width of contours as a float. When set to None, the line widths fall back to rcParams["lines.
linewidth"] (default: 1.5). The config value is overridden as usual by the linewidths argument passed
to contour when it is not set to None.

8.1.7 3D Axes improvements

Axes3D no longer distorts the 3D plot to match the 2D aspect ratio

Plots made with Axes3Dwere previously stretched to fit a square bounding box. As this stretching was done
after the projection from 3D to 2D, it resulted in distorted images if non-square bounding boxes were used.
As of 3.3, this no longer occurs.

692 Chapter 8. Previous What's New

https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
../../tutorials/introductory/customizing.html?highlight=figure.raise_window#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=mathtext.fallback#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Currently, modes of setting the aspect (via set_aspect) in data space are not supported for Axes3D
but may be in the future. If you want to simulate having equal aspect in data space, set the ratio of your
data limits to match the value of get_box_aspect. To control these ratios use the set_box_aspect
method which accepts the ratios as a 3-tuple of X:Y:Z. The default aspect ratio is 4:4:3.

3D axes now support minor ticks

ax = plt.figure().add_subplot(projection='3d')

ax.scatter([0, 1, 2], [1, 3, 5], [30, 50, 70])

ax.set_xticks([0.25, 0.75, 1.25, 1.75], minor=True)
ax.set_xticklabels(['a', 'b', 'c', 'd'], minor=True)

ax.set_yticks([1.5, 2.5, 3.5, 4.5], minor=True)
ax.set_yticklabels(['A', 'B', 'C', 'D'], minor=True)

ax.set_zticks([35, 45, 55, 65], minor=True)
ax.set_zticklabels([r'α', r'β', r'δ', r'γ'],

minor=True)

ax.tick_params(which='major', color='C0', labelcolor='C0', width=5)
ax.tick_params(which='minor', color='C1', labelcolor='C1', width=3)

0.0
0.5

1.0
1.5

2.0

a
b

c
d 1

2
3

4
5

A
B

C
D

30

40

50

60

70

8.1. What's new in Matplotlib 3.3.0 693

Matplotlib, Release 3.4.3

Home/Forward/Backward buttons now work with 3D axes

8.1.8 Interactive tool improvements

More consistent toolbar behavior across backends

Toolbar features are now more consistent across backends. The history buttons will auto-disable when there
is no further action in a direction. The pan and zoom buttons will be marked active when they are in use.

In NbAgg and WebAgg, the toolbar buttons are now grouped similarly to other backends. The WebAgg
toolbar now uses the same icons as other backends.

Toolbar icons are now styled for dark themes

On dark themes, toolbar icons will now be inverted. When using the GTK3Agg backend, toolbar icons
are now symbolic, and both foreground and background colors will follow the theme. Tooltips should also
behave correctly.

Cursor text now uses a number of significant digits matching pointing precision

Previously, the x/y position displayed by the cursor text would usually include far more significant digits than
the mouse pointing precision (typically one pixel). This is now fixed for linear scales.

GTK / Qt zoom rectangle now black and white

This makes it visible even over a dark background.

Event handler simplifications

The backend_bases.key_press_handler and backend_bases.button_press_handler
event handlers can now be directly connected to a canvas with canvas.
mpl_connect("key_press_event", key_press_handler) and canvas.
mpl_connect("button_press_event", button_press_handler), rather than having
to write wrapper functions that fill in the (now optional) canvas and toolbar parameters.

8.1.9 Functions to compute a Path's size

Various functions were added to BezierSegment and Path to allow computation of the shape/size of a
Path and its composite Bezier curves.

In addition to the fixes below, BezierSegment has gained more documentation and usability improve-
ments, including properties that contain its dimension, degree, control_points, and more.

694 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

Better interface for Path segment iteration

iter_bezier iterates through the BezierSegment's that make up the Path. This is much more useful
typically than the existing iter_segments function, which returns the absolute minimum amount of
information possible to reconstruct the Path.

Fixed bug that computed a Path's Bbox incorrectly

Historically, get_extents has always simply returned the Bbox of a curve's control points, instead of the
Bbox of the curve itself. While this is a correct upper bound for the path's extents, it can differ dramatically
from the Path's actual extents for non-linear Bezier curves.

8.1.10 Backend-specific improvements

savefig() gained a backend keyword argument

The backend keyword argument to savefig can now be used to pick the rendering backend without having
to globally set the backend; e.g., one can save PDFs using the pgf backend with savefig("file.pdf",
backend="pgf").

The SVG backend can now render hatches with transparency

The SVG backend now respects the hatch stroke alpha. Useful applications are, among others, semi-
transparent hatches as a subtle way to differentiate columns in bar plots.

SVG supports URLs on more artists

URLs on more artists (i.e., from Artist.set_url) will now be saved in SVG files, namely, Ticks and
Line2Ds are now supported.

Images in SVG will no longer be blurred in some viewers

A style is now supplied to images without interpolation (imshow(..., interpolation='none')
so that SVG image viewers will no longer perform interpolation when rendering themselves.

8.1. What's new in Matplotlib 3.3.0 695

Matplotlib, Release 3.4.3

Saving SVG now supports adding metadata

When saving SVG files, metadata can now be passed which will be saved in the file using Dublin Core and
RDF. A list of valid metadata can be found in the documentation for FigureCanvasSVG.print_svg.

Saving PDF metadata via PGF now consistent with PDF backend

When saving PDF files using the PGF backend, passed metadata will be interpreted in the same way as with
the PDF backend. Previously, this metadata was only accepted by the PGF backend when saving a multi-page
PDF with backend_pgf.PdfPages, but is now allowed when saving a single figure, as well.

NbAgg and WebAgg no longer use jQuery & jQuery UI

Instead, they are implemented using vanilla JavaScript. Please report any issues with browsers.

8.2 What's new in Matplotlib 3.2

For a list of all of the issues and pull requests since the last revision, see the GitHub Stats.

Table of Contents

• What's new in Matplotlib 3.2

– Unit converters recognize subclasses

– imsave accepts metadata and PIL options

– cbook.normalize_kwargs

– FontProperties accepts os.PathLike

– Gouraud-shading alpha channel in PDF backend

– Kerning adjustments now use correct values

– bar3d lightsource shading

– Shifting errorbars

– Improvements in Logit scale ticker and formatter

– rcParams for axes title location and color

– 3-digit and 4-digit hex colors

– Added support for RGB(A) images in pcolorfast

696 Chapter 8. Previous What's New

https://www.dublincore.org/specifications/dublin-core/
https://www.w3.org/1999/.status/PR-rdf-syntax-19990105/status

Matplotlib, Release 3.4.3

8.2.1 Unit converters recognize subclasses

Unit converters now also handle instances of subclasses of the class they have been registered for.

8.2.2 imsave accepts metadata and PIL options

imsave has gained support for the metadata and pil_kwargs parameters. These parameters behave
similarly as for the Figure.savefig() method.

8.2.3 cbook.normalize_kwargs

cbook.normalize_kwargs now presents a convenient interface to normalize artist properties (e.g.,
from "lw" to "linewidth"):

>>> cbook.normalize_kwargs({"lw": 1}, Line2D)
{"linewidth": 1}

The first argument is the mapping to be normalized, and the second argument can be an artist class or an
artist instance (it can also be a mapping in a specific format; see the function's docstring for details).

8.2.4 FontProperties accepts os.PathLike

The fname argument to FontProperties can now be an os.PathLike, e.g.

>>> FontProperties(fname=pathlib.Path("/path/to/font.ttf"))

8.2.5 Gouraud-shading alpha channel in PDF backend

The pdf backend now supports an alpha channel in Gouraud-shaded triangle meshes.

8.2.6 Kerning adjustments now use correct values

Due to an error in how kerning adjustments were applied, previous versions of Matplotlib would under-
correct kerning. This version will now correctly apply kerning (for fonts supported by FreeType). To restore
the old behavior (e.g., for test images), you may set rcParams["text.kerning_factor"] (default:
0) to 6 (instead of 0). Other values have undefined behavior.

Note how the spacing between characters is uniform between their bounding boxes (above). With corrected
kerning (below), slanted characters (e.g., AV or VA) will be spaced closer together, as well as various other
character pairs, depending on font support (e.g., T and e, or the period after the W).

8.2. What's new in Matplotlib 3.2 697

https://docs.python.org/3/library/os.html#os.PathLike
../../tutorials/introductory/customizing.html?highlight=text.kerning_factor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 BRAVO
AWKWARD
VAT
W.Test

Before (text.kerning_factor = 6)

8.2.7 bar3d lightsource shading

bar3d() now supports lighting from different angles when the shade parameter is True, which can be
configured using the lightsource parameter.

8.2.8 Shifting errorbars

Previously, errorbar() accepted a keyword argument errorevery such that the command plt.
errorbar(x, y, yerr, errorevery=6) would add error bars to datapoints x[::6], y[::6].

errorbar() now also accepts a tuple for errorevery such that plt.errorbar(x, y, yerr,
errorevery=(start, N)) adds error bars to points x[start::N], y[start::N].

698 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 BRAVO
AWKWARD
VAT
W.Test

After (text.kerning_factor = 0)

8.2.9 Improvements in Logit scale ticker and formatter

Introduced in version 1.5, the logit scale didn't have an appropriate ticker and formatter. Previously, the
location of ticks was not zoom dependent, too many labels were displayed causing overlapping which broke
readability, and label formatting did not adapt to precision.

Starting from this version, the logit locator has nearly the same behavior as the locator for the log scale or the
linear scale, depending on used zoom. The number of ticks is controlled. Some minor labels are displayed
adaptively as sublabels in log scale. Formatting is adapted for probabilities and the precision adapts to the
scale.

8.2.10 rcParams for axes title location and color

Two new rcParams have been added: rcParams["axes.titlelocation"] (default: 'center')
denotes the default axes title alignment, and rcParams["axes.titlecolor"] (default: 'auto')
the default axes title color.

Valid values for axes.titlelocation are: left, center, and right. Valid values for axes.
titlecolor are: auto or a color. Setting it to auto will fall back to previous behaviour, which is using the
color in text.color.

8.2. What's new in Matplotlib 3.2 699

../../tutorials/introductory/customizing.html?highlight=axes.titlelocation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.titlecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

8.2.11 3-digit and 4-digit hex colors

Colors can now be specified using 3-digit or 4-digit hex colors, shorthand for the colors obtained by dupli-
cating each character, e.g. #123 is equivalent to #112233 and #123a is equivalent to #112233aa.

8.2.12 Added support for RGB(A) images in pcolorfast

Axes.pcolorfast now accepts 3D images (RGB or RGBA) arrays.

8.3 What's new in Matplotlib 3.1

For a list of all of the issues and pull requests since the last revision, see the GitHub Stats.

Table of Contents

• What's new in Matplotlib 3.1

– New Features

∗ ConciseDateFormatter

∗ Secondary x/y Axis support

∗ FuncScale for arbitrary axes scales

∗ Legend for scatter

∗ Matplotlib no longer requires framework app build on MacOSX backend

– Figure, FigureCanvas, and Backends

∗ Figure.frameon is now a direct proxy for the Figure patch visibility state

∗ pil_kwargs argument added to savefig

∗ Add inaxes method to FigureCanvasBase

∗ cairo backend defaults to pycairo instead of cairocffi

– Axes and Artists

∗ axes_grid1 and axisartist Axes no longer draw spines twice

∗ Return type of ArtistInspector.get_aliases changed

∗ ConnectionPatch accepts arbitrary transforms

∗ mplot3d Line3D now allows {set,get}_data_3d

∗ Axes3D.voxels now shades the resulting voxels

– Axis and Ticks

∗ Added Axis.get_inverted and Axis.set_inverted

700 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

∗ Adjust default minor tick spacing

∗ EngFormatter now accepts usetex, useMathText as keyword only arguments

– Animation and Interactivity

∗ Support for forward/backward mouse buttons

∗ progress_callback argument to save()

∗ Add cache_frame_data keyword-only argument into animation.
FuncAnimation

∗ Endless Looping GIFs with PillowWriter

∗ Adjusted matplotlib.widgets.Slider to have vertical orientation

∗ Improved formatting of image values under cursor when a colorbar is present

∗ MouseEvent button attribute is now an IntEnum

– Configuration, Install, and Development

∗ The MATPLOTLIBRC environment variable can now point to any "file" path

∗ Allow LaTeX code pgf.preamble and text.latex.preamble in MATPLOTLI-
BRC file

∗ New logging API

8.3.1 New Features

ConciseDateFormatter

The automatic date formatter used by default can be quite verbose. A new formatter can be accessed that
tries to make the tick labels appropriately concise.

Secondary x/y Axis support

A new method provides the ability to add a second axis to an existing axes via Axes.secondary_xaxis
and Axes.secondary_yaxis. See /gallery/subplots_axes_and_figures/secondary_axis for examples.

8.3. What's new in Matplotlib 3.1 701

Matplotlib, Release 3.4.3

Feb 08 15 22 Mar 08 15 22 Apr
2005-Apr

0

25

Concise Date Formatter

03 05 07 09 11 13 15
2005-Feb

0

25

12:00 15:00 18:00 21:00 Feb-04 03:00 06:00 09:00 12:00
2005-Feb-04

0

25

0 1 2 3 4 5 6

0 50 100 150 200 250 300 350
0

50
100
150
200
250
300
350

702 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

FuncScale for arbitrary axes scales

A new FuncScale class was added (and FuncTransform) to allow the user to have arbitrary scale
transformations without having to write a new subclass of ScaleBase. This can be accessed by:

ax.set_yscale('function', functions=(forward, inverse))

where forward and inverse are callables that return the scale transform and its inverse. See the last
example in /gallery/scales/scales.

Legend for scatter

A new method for creating legends for scatter plots has been introduced. Previously, in order to obtain
a legend for a scatter() plot, one could either plot several scatters, each with an individual label, or
create proxy artists to show in the legend manually. Now, PathCollection provides a method leg-
end_elements() to obtain the handles and labels for a scatter plot in an automated way. This makes
creating a legend for a scatter plot as easy as

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00 2
3
7

An example can be found in automatedlegendcreation.

8.3. What's new in Matplotlib 3.1 703

Matplotlib, Release 3.4.3

Matplotlib no longer requires framework app build on MacOSX backend

Previous versions of matplotlib required a Framework build of python to work. The app type was updated to
no longer require this, so the MacOSX backend should work with non-framework python.

This also adds support for the MacOSX backend for PyPy3.

8.3.2 Figure, FigureCanvas, and Backends

Figure.frameon is now a direct proxy for the Figure patch visibility state

Accessing Figure.frameon (including via get_frameon and set_frameon now directly forwards
to the visibility of the underlying Rectangle artist (Figure.patch.get_frameon, Figure.patch.
set_frameon).

pil_kwargs argument added to savefig

Matplotlib uses Pillow to handle saving to the JPEG and TIFF formats. The savefig() function gained a
pil_kwargs keyword argument, which can be used to forward arguments to Pillow's PIL.Image.Image.
save.

The pil_kwargs argument can also be used when saving to PNG. In that case, Matplotlib also uses Pillow's
PIL.Image.Image.save instead of going through its own builtin PNG support.

Add inaxes method to FigureCanvasBase

The FigureCanvasBase class has now an inaxes method to check whether a point is in an axes and
returns the topmost axes, else None.

cairo backend defaults to pycairo instead of cairocffi

This leads to faster import/runtime performance in some cases. The backend will fall back to cairocffi in
case pycairo isn't available.

8.3.3 Axes and Artists

axes_grid1 and axisartist Axes no longer draw spines twice

Previously, spines of axes_grid1 and axisartist Axes would be drawn twice, leading to a "bold"
appearance. This is no longer the case.

704 Chapter 8. Previous What's New

https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save

Matplotlib, Release 3.4.3

Return type of ArtistInspector.get_aliases changed

ArtistInspector.get_aliases previously returned the set of aliases as {fullname:
{alias1: None, alias2: None, ...}}. The dict-to-None mapping was used to simu-
late a set in earlier versions of Python. It has now been replaced by a set, i.e. {fullname: {alias1,
alias2, ...}}.

This value is also stored in ArtistInspector.aliasd, which has likewise changed.

ConnectionPatch accepts arbitrary transforms

Alternatively to strings like "data" or "axes fraction", ConnectionPatch now accepts any
Transform as input for the coordsA and coordsB arguments. This allows to draw lines between points
defined in different user defined coordinate systems. Also see the Connect Simple01 example.

mplot3d Line3D now allows {set,get}_data_3d

Lines created with the 3d projection in mplot3d can now access the data using get_data_3d() which
returns a tuple of array_likes containing the (x, y, z) data. The equivalent set_data_3d can be used to
modify the data of an existing Line3D.

Axes3D.voxels now shades the resulting voxels

The Axes3D.voxelsmethod now takes a shade parameter that defaults to True. This shades faces based
on their orientation, behaving just like the matching parameters to plot_trisurf() and bar3d(). The
plot below shows how this affects the output.

0
2

4
6

8 0
2

4
6

8
0

2

4

6

8

Unshaded

0
2

4
6

8 0
2

4
6

8
0

2

4

6

8

Shaded (default)

8.3. What's new in Matplotlib 3.1 705

https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

8.3.4 Axis and Ticks

Added Axis.get_inverted and Axis.set_inverted

The Axis.get_inverted and Axis.set_inverted methods query and set whether the axis uses
"inverted" orientation (i.e. increasing to the left for the x-axis and to the bottom for the y-axis).

They perform tasks similar to Axes.xaxis_inverted, Axes.yaxis_inverted, Axes.
invert_xaxis, and Axes.invert_yaxis, with the specific difference that Axis.set_inverted
makes it easier to set the inversion of an axis regardless of whether it had previously been inverted before.

Adjust default minor tick spacing

Default minor tick spacing was changed from 0.625 to 0.5 for major ticks spaced 2.5 units apart.

EngFormatter now accepts usetex, useMathText as keyword only arguments

A public API has been added to EngFormatter to control how the numbers in the ticklabels will be
rendered. By default, useMathText evaluates to rcParams["axes.formatter.use_mathtext'"]
and usetex evaluates to rcParams["'text.usetex'"].

If either is True then the numbers will be encapsulated by $ signs. When using TeX this implies that the
numbers will be shown in TeX's math font. When using mathtext, the $ signs around numbers will ensure
Unicode rendering (as implied bymathtext). This will make sure that the minus signs in the ticks are rendered
as the Unicode minus (U+2212) when using mathtext (without relying on the fix_minus method).

8.3.5 Animation and Interactivity

Support for forward/backward mouse buttons

Figure managers now support a button_press event for mouse buttons, similar to the key_press
events. This allows binding actions to mouse buttons (see MouseButton) The first application of this
mechanism is support of forward/backward mouse buttons in figures created with the Qt5 backend.

progress_callback argument to save()

The method Animation.save gained an optional progress_callback argument to notify the saving
progress.

706 Chapter 8. Previous What's New

../../tutorials/introductory/customizing.html?highlight=axes.formatter.use_mathtext\XeTeXglyph \numexpr \XeTeXcharglyph "0027\relax #a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=\XeTeXglyph \numexpr \XeTeXcharglyph "0027\relax text.usetex\XeTeXglyph \numexpr \XeTeXcharglyph "0027\relax #a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

Add cache_frame_data keyword-only argument into animation.FuncAnimation

matplotlib.animation.FuncAnimation has been caching frame data by default; however, this
caching is not ideal in certain cases e.g. When FuncAnimation needs to be only drawn(not saved) in-
teractively and memory required by frame data is quite large. By adding cache_frame_data keyword-only
argument, users can now disable this caching; thereby, this new argument provides a fix for issue #8528.

Endless Looping GIFs with PillowWriter

We acknowledge that most people want to watch a GIF more than once. Saving an animation as a GIF with
PillowWriter now produces an endless looping GIF.

Adjusted matplotlib.widgets.Slider to have vertical orientation

The matplotlib.widgets.Slider widget now takes an optional argument orientation which indi-
cates the direction ('horizontal' or 'vertical') that the slider should take.

Improved formatting of image values under cursor when a colorbar is present

When a colorbar is present, its formatter is now used to format the image values under the mouse cursor in the
status bar. For example, for an image displaying the values 10,000 and 10,001, the statusbar will now (using
default settings) display the values as 10000 and 10001), whereas both values were previously displayed
as 1e+04.

MouseEvent button attribute is now an IntEnum

The button attribute of MouseEvent instances can take the values None, 1 (left button), 2 (middle but-
ton), 3 (right button), "up" (scroll), and "down" (scroll). For better legibility, the 1, 2, and 3 values are
now represented using the enum.IntEnum class matplotlib.backend_bases.MouseButton,
with the values MouseButton.LEFT (== 1), MouseButton.MIDDLE (== 2), and MouseButton.
RIGHT (== 3).

8.3.6 Configuration, Install, and Development

The MATPLOTLIBRC environment variable can now point to any "file" path

This includes device files; in particular, on Unix systems, one can set MATPLOTLIBRC to /dev/null to
ignore the user's matplotlibrc file and fall back to Matplotlib's defaults.

As a reminder, if MATPLOTLIBRC points to a directory, Matplotlib will try to load the matplotlibrc file from
$MATPLOTLIBRC/matplotlibrc.

8.3. What's new in Matplotlib 3.1 707

https://github.com/matplotlib/matplotlib/issues/8528/
https://docs.python.org/3/library/enum.html#enum.IntEnum

Matplotlib, Release 3.4.3

Allow LaTeX code pgf.preamble and text.latex.preamble in MATPLOTLIBRC file

Previously, the rc file keys rcParams["pgf.preamble"] (default: '') and rcParams["text.
latex.preamble"] (default: '') were parsed using commas as separators. This would break valid
LaTeX code, such as:

\usepackage[protrusion=true, expansion=false]{microtype}

The parsing has been modified to pass the complete line to the LaTeX system, keeping all commas. Passing
a list of strings from within a Python script still works as it used to.

New logging API

matplotlib.set_loglevel / pyplot.set_loglevel can be called to display more (or less) de-
tailed logging output.

8.4 New in Matplotlib 3.0

8.4.1 Improved default backend selection

The default backend no longer must be set as part of the build process. Instead, at run time, the builtin
backends are tried in sequence until one of them imports.

Headless Linux servers (identified by the DISPLAY environment variable not being defined) will not select
a GUI backend.

8.4.2 Cyclic colormaps

Two new colormaps named 'twilight' and 'twilight_shifted' have been added. These colormaps start and end
on the same color, and have two symmetric halves with equal lightness, but diverging color. Since they wrap
around, they are a good choice for cyclic data such as phase angles, compass directions, or time of day. Like
viridis and cividis, twilight is perceptually uniform and colorblind friendly.

8.4.3 Ability to scale axis by a fixed order of magnitude

To scale an axis by a fixed order of magnitude, set the scilimits argument of Axes.ticklabel_format
to the same (non-zero) lower and upper limits. Say to scale the y axis by a million (1e6), use

ax.ticklabel_format(style='sci', scilimits=(6, 6), axis='y')

The behavior of scilimits=(0, 0) is unchanged. With this setting, Matplotlib will adjust the order of
magnitude depending on the axis values, rather than keeping it fixed. Previously, setting scilimits=(m,
m) was equivalent to setting scilimits=(0, 0).

708 Chapter 8. Previous What's New

../../tutorials/introductory/customizing.html?highlight=pgf.preamble#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=text.latex.preamble#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=text.latex.preamble#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

8.4.4 Add AnchoredDirectionArrows feature to mpl_toolkits

A new mpl_toolkits class AnchoredDirectionArrows draws a pair of orthogonal arrows to indicate
directions on a 2D plot. A minimal working example takes in the transformation object for the coordinate
system (typically ax.transAxes), and arrow labels. There are several optional parameters that can be used
to alter layout. For example, the arrow pairs can be rotated and the color can be changed. By default the
labels and arrows have the same color, but the class may also pass arguments for customizing arrow and
text layout, these are passed to matplotlib.textpath.TextPath and matplotlib.patches.
FancyArrowPatch. Location, length and width for both arrow tail and head can be adjusted, the direction
arrows and labels can have a frame. Padding and separation parameters can be adjusted.

8.4.5 Add minorticks_on()/off() methods for colorbar

A new method colorbar.Colobar.minorticks_on() has been added to correctly display minor
ticks on a colorbar. This method doesn't allow the minor ticks to extend into the regions beyond vmin and
vmax when the extend keyword argument (used while creating the colorbar) is set to 'both', 'max' or 'min'.
A complementary method colorbar.Colobar.minorticks_off() has also been added to remove
the minor ticks on the colorbar.

8.4.6 Colorbar ticks can now be automatic

The number of ticks placed on colorbars was previously appropriate for a large colorbar, but looked bad if
the colorbar was made smaller (i.e. via the shrink keyword argument). This has been changed so that the
number of ticks is now responsive to how large the colorbar is.

8.4.7 Don't automatically rename duplicate file names

Previously, when saving a figure to a file using the GUI's save dialog box, if the default filename (based on the
figure window title) already existed on disk, Matplotlib would append a suffix (e.g. Figure_1-1.png),
preventing the dialog from prompting to overwrite the file. This behaviour has been removed. Now if the
file name exists on disk, the user is prompted whether or not to overwrite it. This eliminates guesswork,
and allows intentional overwriting, especially when the figure name has been manually set using figure.
Figure.canvas.set_window_title().

8.4.8 Legend now has a title_fontsize keyword argument (and rcParam)

The title for a Figure.legend and Axes.legend can now have its font size set via the title_fontsize
keyword argument. There is also a new rcParams["legend.title_fontsize"] (default: None).
Both default to None, which means the legend title will have the same font size as the axes default font size
(not the legend font size, set by the fontsize keyword argument or rcParams["legend.fontsize"]
(default: 'medium')).

8.4. New in Matplotlib 3.0 709

../../tutorials/introductory/customizing.html?highlight=legend.title_fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

8.4.9 Support for axes.prop_cycle property markevery in rcParams

TheMatplotlibrcParams settings object now supports configuration of the attribute rcParams["axes.
prop_cycle"] (default: cycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c',
'#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22',
'#17becf'])) with cyclers using the markevery Line2D object property. An example of this feature
is provided at /gallery/lines_bars_and_markers/markevery_prop_cycle.

8.4.10 Multi-page PDF support for pgf backend

The pgf backend now also supports multi-page PDF files.

from matplotlib.backends.backend_pgf import PdfPages
import matplotlib.pyplot as plt

with PdfPages('multipage.pdf') as pdf:
page 1
plt.plot([2, 1, 3])
pdf.savefig()

page 2
plt.cla()
plt.plot([3, 1, 2])
pdf.savefig()

8.4.11 Pie charts are now circular by default

We acknowledge that the majority of people do not like egg-shaped pies. Therefore, an axes to which a pie
chart is plotted will be set to have equal aspect ratio by default. This ensures that the pie appears circular
independent on the axes size or units. To revert to the previous behaviour set the axes' aspect ratio to automatic
by using ax.set_aspect("auto") or plt.axis("auto").

8.4.12 Add ax.get_gridspec to SubplotBase

New method SubplotBase.get_gridspec is added so that users can easily get the gridspec that went
into making an axes:

import matplotlib.pyplot as plt

fig, axs = plt.subplots(3, 2)
gs = axs[0, -1].get_gridspec()

remove the last column
for ax in axs[:,-1].flatten():

ax.remove()

make a subplot in last column that spans rows.

(continues on next page)

710 Chapter 8. Previous What's New

../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

(continued from previous page)
ax = fig.add_subplot(gs[:, -1])
plt.show()

8.4.13 Axes titles will no longer overlap xaxis

Previously an axes title had to be moved manually if an xaxis overlapped (usually when the xaxis was put on
the top of the axes). Now, the title will be automatically moved above the xaxis and its decorators (including
the xlabel) if they are at the top.

If desired, the title can still be placedmanually. There is a slight kludge; the algorithm checks if the y-position
of the title is 1.0 (the default), and moves if it is. If the user places the title in the default location (i.e. ax.
title.set_position(0.5, 1.0)), the title will still be moved above the xaxis. If the user wants to
avoid this, they can specify a number that is close (i.e. ax.title.set_position(0.5, 1.01)) and
the title will not be moved via this algorithm.

8.4.14 New convenience methods for GridSpec

There are new convenience methods for gridspec.GridSpec and gridspec.
GridSpecFromSubplotSpec. Instead of the former we can now call Figure.add_gridspec and
for the latter SubplotSpec.subgridspec.

import matplotlib.pyplot as plt

fig = plt.figure()
gs0 = fig.add_gridspec(3, 1)
ax1 = fig.add_subplot(gs0[0])
ax2 = fig.add_subplot(gs0[1])
gssub = gs0[2].subgridspec(1, 3)
for i in range(3):

fig.add_subplot(gssub[0, i])

8.4.15 Figure has an add_artist method

A method add_artist has been added to the Figure class, which allows artists to be added directly to
a figure. E.g.

circ = plt.Circle((.7, .5), .05)
fig.add_artist(circ)

In case the added artist has no transform set previously, it will be set to the figure transform (fig.
transFigure). This new method may be useful for adding artists to figures without axes or to easily
position static elements in figure coordinates.

8.4. New in Matplotlib 3.0 711

Matplotlib, Release 3.4.3

8.4.16 :math: directive renamed to :mathmpl:

The :math: rst role provided by matplotlib.sphinxext.mathmpl has been renamed to
:mathmpl: to avoid conflicting with the :math: role that Sphinx 1.8 provides by default. (:mathmpl:
uses Matplotlib to render math expressions to images embedded in html, whereas Sphinx uses MathJax.)

When using Sphinx<1.8, both names (:math: and :mathmpl:) remain available for backwards-
compatibility.

8.5 New in Matplotlib 2.2

8.5.1 Constrained Layout Manager

Warning: Constrained Layout is experimental. The behaviour and API are subject to change, or the
whole functionality may be removed without a deprecation period.

A new method to automatically decide spacing between subplots and their organizing GridSpec instances
has been added. It is meant to replace the venerable tight_layout method. It is invoked via a new
constrained_layout=True kwarg to Figure or subplots.

There are new rcParams for this package, and spacing can be more finely tuned with the new
set_constrained_layout_pads.

Features include:

• Automatic spacing for subplots with a fixed-size padding in inches around subplots and all
their decorators, and space between as a fraction of subplot size between subplots.

• Spacing for suptitle, and colorbars that are attached to more than one axes.

• Nested GridSpec layouts using GridSpecFromSubplotSpec.

For more details and capabilities please see the new tutorial: Constrained Layout Guide

Note the new API to access this:

New plt.figure and plt.subplots kwarg: constrained_layout

figure() and subplots() can now be called with constrained_layout=True kwarg to enable
constrained_layout.

712 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

New ax.set_position behaviour

Axes.set_position now makes the specified axis no longer responsive to constrained_layout,
consistent with the idea that the user wants to place an axis manually.

Internally, this means that old ax.set_position calls inside the library are changed to private ax.
_set_position calls so that constrained_layout will still work with these axes.

New figure kwarg for GridSpec

In order to facilitate constrained_layout, GridSpec now accepts a figure keyword. This is back-
wards compatible, in that not supplying this will simply cause constrained_layout to not operate on
the subplots orgainzed by this GridSpec instance. Routines that use GridSpec (e.g. fig.subplots)
have been modified to pass the figure to GridSpec.

8.5.2 xlabels and ylabels can now be automatically aligned

Subplot axes ylabels can be misaligned horizontally if the tick labels are very different widths. The same
can happen to xlabels if the ticklabels are rotated on one subplot (for instance). The new methods on the
Figure class: Figure.align_xlabels and Figure.align_ylabelswill now align these labels
horizontally or vertically. If the user only wants to align some axes, a list of axes can be passed. If no list is
passed, the algorithm looks at all the labels on the figure.

Only labels that have the same subplot locations are aligned. i.e. the ylabels are aligned only if the subplots
are in the same column of the subplot layout.

Alignment is persistent and automatic after these are called.

A convenience wrapper Figure.align_labels calls both functions at once.

0 200 400 600 800 1000
0

1

Te
st

1e6

0.0 0.5 1.0
Hello

0.0

0.5

1.0

Bo
oo

oo

0.0 0.5 1.0

Hello

0.0

0.5

1.0

Bo
oo

oo

8.5. New in Matplotlib 2.2 713

Matplotlib, Release 3.4.3

8.5.3 Axes legends now included in tight_bbox

Legends created via ax.legend can sometimes overspill the limits of the axis. Tools like fig.
tight_layout() and fig.savefig(bbox_inches='tight') would clip these legends. A
change was made to include them in the tight calculations.

8.5.4 Cividis colormap

A new dark blue/yellow colormap named 'cividis' was added. Like viridis, cividis is perceptually uniform
and colorblind friendly. However, cividis also goes a step further: not only is it usable by colorblind users, it
should actually look effectively identical to colorblind and non-colorblind users. For more details see Nuñez
J, Anderton C, and Renslow R: "Optimizing colormaps with consideration for color vision deficiency to
enable accurate interpretation of scientific data".

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0.2

0.4

0.6

0.8

714 Chapter 8. Previous What's New

https://doi.org/10.1371/journal.pone.0199239
https://doi.org/10.1371/journal.pone.0199239
https://doi.org/10.1371/journal.pone.0199239

Matplotlib, Release 3.4.3

8.5.5 New style colorblind-friendly color cycle

A new style defining a color cycle has been added, tableau-colorblind10, to provide another option for
colorblind-friendly plots. A demonstration of this new style can be found in the reference of style sheets. To
load this color cycle in place of the default one:

import matplotlib.pyplot as plt
plt.style.use('tableau-colorblind10')

8.5.6 Support for numpy.datetime64

Matplotlib has supported datetime.datetime dates for a long time in matplotlib.dates. We
now support numpy.datetime64 dates as well. Anywhere that datetime.datetime could be used,
numpy.datetime64 can be used. eg:

time = np.arange('2005-02-01', '2005-02-02', dtype='datetime64[h]')
plt.plot(time)

8.5.7 Writing animations with Pillow

It is now possible to use Pillow as an animation writer. Supported output formats are currently gif (Pil-
low>=3.4) and webp (Pillow>=5.0). Use e.g. as

from __future__ import division

from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter

fig, ax = plt.subplots()
line, = plt.plot([0, 1])

def animate(i):
line.set_ydata([0, i / 20])
return [line]

anim = FuncAnimation(fig, animate, 20, blit=True)
anim.save("movie.gif", writer=PillowWriter(fps=24))
plt.show()

8.5. New in Matplotlib 2.2 715

https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64

Matplotlib, Release 3.4.3

8.5.8 Slider UI widget can snap to discrete values

The slider UI widget can take the optional argument valstep. Doing so forces the slider to take on only
discrete values, starting from valmin and counting up to valmax with steps of size valstep.

If closedmax==True, then the slider will snap to valmax as well.

8.5.9 capstyle and joinstyle attributes added to Collection

The Collection class now has customizable capstyle and joinstyle attributes. This allows the
user for example to set the capstyle of errorbars.

8.5.10 pad kwarg added to ax.set_title

The method Axes.set_title now has a pad kwarg, that specifies the distance from the top of an axes
to where the title is drawn. The units of pad is points, and the default is the value of the (already-existing)
rcParams["axes.titlepad"] (default: 6.0).

8.5.11 Comparison of 2 colors in Matplotlib

As the colors in Matplotlib can be specified with a wide variety of ways, the matplotlib.colors.
same_color method has been added which checks if two colors are the same.

8.5.12 Autoscaling a polar plot snaps to the origin

Setting the limits automatically in a polar plot now snaps the radial limit to zero if the automatic limit is
nearby. This means plotting from zero doesn't automatically scale to include small negative values on the
radial axis.

The limits can still be set manually in the usual way using set_ylim.

8.5.13 PathLike support

On Python 3.6+, savefig, imsave, imread, and animation writers now accept os.PathLikes as
input.

716 Chapter 8. Previous What's New

../../tutorials/introductory/customizing.html?highlight=axes.titlepad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/os.html#os.PathLike

Matplotlib, Release 3.4.3

8.5.14 Axes.tick_params can set gridline properties

Tick objects hold gridlines as well as the tick mark and its label. Axis.set_tick_params, Axes.
tick_params and pyplot.tick_params now have keyword arguments 'grid_color', 'grid_alpha',
'grid_linewidth', and 'grid_linestyle' for overriding the defaults in rcParams: 'grid.color', etc.

8.5.15 Axes.imshow clips RGB values to the valid range

When Axes.imshow is passed an RGB or RGBA value with out-of-range values, it now logs a warning
and clips them to the valid range. The old behaviour, wrapping back in to the range, often hid outliers and
made interpreting RGB images unreliable.

8.5.16 Properties in matplotlibrc to place xaxis and yaxis tick labels

Introducing four new boolean properties in matplotlibrc for default positions of xaxis and yaxis
tick labels, namely, rcParams["xtick.labeltop"] (default: False), rcParams["xtick.
labelbottom"] (default: True), rcParams["ytick.labelright"] (default: False) and
rcParams["ytick.labelleft"] (default: True). These can also be changed in rcParams.

8.5.17 PGI bindings for gtk3

The GTK3 backends can now use PGI instead of PyGObject. PGI is a fairly incomplete binding for GObject,
thus its use is not recommended; its main benefit is its availability on Travis (thus allowing CI testing for the
gtk3agg and gtk3cairo backends).

The binding selection rules are as follows: - if gi has already been imported, use it; else - if pgi has already
been imported, use it; else - if gi can be imported, use it; else - if pgi can be imported, use it; else - error
out.

Thus, to force usage of PGI when both bindings are installed, import it first.

8.5.18 Cairo rendering for Qt, WX, and Tk canvases

The new Qt4Cairo, Qt5Cairo, WXCairo, and TkCairo backends allow Qt, Wx, and Tk canvases to
use Cairo rendering instead of Agg.

8.5.19 Added support for QT in new ToolManager

Now it is possible to use the ToolManager with Qt5 For example

import matplotlib

matplotlib.use('QT5AGG') matplotlib.rcParams['toolbar'] = 'toolmanager' import mat-
plotlib.pyplot as plt

plt.plot([1,2,3]) plt.show()

8.5. New in Matplotlib 2.2 717

../../tutorials/introductory/customizing.html?highlight=xtick.labeltop#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xtick.labelbottom#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xtick.labelbottom#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ytick.labelright#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ytick.labelleft#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://pgi.readthedocs.io/en/latest/
https://pygobject.readthedocs.io/en/latest/

Matplotlib, Release 3.4.3

Treat the new Tool classes experimental for now, the API will likely change and perhaps the rcParam as well

The main example /gallery/user_interfaces/toolmanager_sgskip shows more details, just adjust the header to
use QT instead of GTK3

8.5.20 TkAgg backend reworked to support PyPy

PyPy can now plot using the TkAgg backend, supported on PyPy 5.9 and greater (both PyPy for python 2.7
and PyPy for python 3.5).

8.5.21 Python logging library used for debug output

Matplotlib has in the past (sporadically) used an internal verbose-output reporter. This version converts those
calls to using the standard python logging library.

Support for the old rcParams verbose.level and verbose.fileo is dropped.

The command-line options --verbose-helpful and --verbose-debug are still accepted, but dep-
recated. They are now equivalent to setting logging.INFO and logging.DEBUG.

The logger's root name is matplotlib and can be accessed from programs as:

import logging
mlog = logging.getLogger('matplotlib')

Instructions for basic usage are in Troubleshooting and for developers in Contributing.

8.5.22 Improved repr for Transforms

Transforms now indent their reprs in a more legible manner:

In [1]: l, = plt.plot([]); l.get_transform()
Out[1]:
CompositeGenericTransform(

TransformWrapper(
BlendedAffine2D(

IdentityTransform(),
IdentityTransform())),

CompositeGenericTransform(
BboxTransformFrom(

TransformedBbox(
Bbox(x0=-0.05500000000000001, y0=-0.05500000000000001, x1=0.

↪05500000000000001, y1=0.05500000000000001),
TransformWrapper(

BlendedAffine2D(
IdentityTransform(),
IdentityTransform())))),

BboxTransformTo(
TransformedBbox(

(continues on next page)

718 Chapter 8. Previous What's New

https://www.pypy.org/
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/functions.html#repr

Matplotlib, Release 3.4.3

(continued from previous page)
Bbox(x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo(

TransformedBbox(
Bbox(x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D(

[[100. 0. 0.]
[0. 100. 0.]
[0. 0. 1.]])))))))

8.6 New in Matplotlib 2.1.0

8.6.1 Documentation

The examples have been migrated to use sphinx gallery. This allows better mixing of prose and code in
the examples, provides links to download the examples as both a Python script and a Jupyter notebook, and
improves the thumbnail galleries. The examples have been re-organized into Tutorials and a gallery.

Many docstrings and examples have been clarified and improved.

8.6.2 New features

String categorical values

All plotting functions now support string categorical values as input. For example:

data = {'apples': 10, 'oranges': 15, 'lemons': 5, 'limes': 20}
fig, ax = plt.subplots()
ax.bar(data.keys(), data.values(), color='lightgray')

Interactive JS widgets for animation

Jake Vanderplas' JSAnimation package has been merged into Matplotlib. This adds to Matplotlib the HTML-
Writer class for generating a JavaScript HTML animation, suitable for the IPython notebook. This can
be activated by default by setting the animation.html rc parameter to jshtml. One can also call the
to_jshtmlmethod to manually convert an animation. This can be displayed using IPython's HTML display
class:

from IPython.display import HTML
HTML(animation.to_jshtml())

The HTMLWriter class can also be used to generate an HTML file by asking for the html writer.

8.6. New in Matplotlib 2.1.0 719

https://sphinx-gallery.readthedocs.io/en/latest/

Matplotlib, Release 3.4.3

apples oranges lemons limes
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Enhancements to polar plot

The polar axes transforms have been greatly re-factored to allow for more customization of view limits and
tick labelling. Additional options for view limits allow for creating an annulus, a sector, or some combination
of the two.

The set_rorigin()method may be used to provide an offset to the minimum plotting radius, producing
an annulus.

The set_theta_zero_location() method now has an optional offset argument. This argument
may be used to further specify the zero location based on the given anchor point.

The set_thetamin() and set_thetamax()methods may be used to limit the range of angles plotted,
producing sectors of a circle.

Previous releases allowed plots containing negative radii for which the negative values are simply used as
labels, and the real radius is shifted by the configured minimum. This release also allows negative radii to
be used for grids and ticks, which were previously silently ignored.

Radial ticks have been modified to be parallel to the circular grid line, and angular ticks have been modified
to be parallel to the grid line. It may also be useful to rotate tick labels to match the boundary. Call-
ing ax.tick_params(rotation='auto') will enable the new behavior: radial tick labels will be
parallel to the circular grid line, and angular tick labels will be perpendicular to the grid line (i.e., paral-
lel to the outer boundary). Additionally, tick labels now obey the padding settings that previously only
worked on Cartesian plots. Consequently, the frac argument to PolarAxes.set_thetagrids is no

720 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

Fig. 1: Polar Offset Demo

Fig. 2: Polar Sector Demo

8.6. New in Matplotlib 2.1.0 721

../../gallery/pie_and_polar_charts/polar_scatter.html#scatter-plot-on-polar-axis-with-offset-origin
../../gallery/pie_and_polar_charts/polar_scatter.html#scatter-plot-on-polar-axis-confined-to-a-sector

Matplotlib, Release 3.4.3

longer applied. Tick padding can be modified with the pad argument to Axes.tick_params or Axis.
set_tick_params.

Figure class now has subplots method

The Figure class now has a subplots() method which behaves the same as pyplot.subplots()
but on an existing figure.

Metadata savefig keyword argument

savefig() now accepts metadata as a keyword argument. It can be used to store key/value pairs in the
image metadata.

• 'png' with Agg backend

• 'pdf' with PDF backend (see writeInfoDict() for a list of supported keywords)

• 'eps' and 'ps' with PS backend (only 'Creator' key is accepted)

plt.savefig('test.png', metadata={'Software': 'My awesome software'})

Busy Cursor

The interactive GUI backends will now change the cursor to busy when Matplotlib is rendering the canvas.

PolygonSelector

A PolygonSelector class has been added to matplotlib.widgets. See
/gallery/widgets/polygon_selector_demo for details.

Added matplotlib.ticker.PercentFormatter

The new PercentFormatter formatter has some nice features like being able to convert from arbitrary
data scales to percents, a customizable percent symbol and either automatic or manual control over the
decimal points.

Reproducible PS, PDF and SVG output

The SOURCE_DATE_EPOCH environment variable can now be used to set the timestamp value in the PS
and PDF outputs. See source date epoch.

Alternatively, calling savefig with metadata={'CreationDate': None} will omit the times-
tamp altogether for the PDF backend.

The reproducibility of the output from the PS and PDF backends has so far been tested using various plot
elements but only default values of options such as {ps,pdf}.fonttype that can affect the output at a

722 Chapter 8. Previous What's New

https://reproducible-builds.org/specs/source-date-epoch/

Matplotlib, Release 3.4.3

low level, and not with the mathtext or usetex features. When Matplotlib calls external tools (such as PS
distillers or LaTeX) their versions need to be kept constant for reproducibility, and they may add sources of
nondeterminism outside the control of Matplotlib.

For SVG output, the svg.hashsalt rc parameter has been added in an earlier release. This parameter
changes some random identifiers in the SVG file to be deterministic. The downside of this setting is that if
more than one file is generated using deterministic identifiers and they end up as parts of one larger document,
the identifiers can collide and cause the different parts to affect each other.

These features are now enabled in the tests for the PDF and SVG backends, so most test output files (but not
all of them) are now deterministic.

Orthographic projection for mplot3d

Axes3D now acceptsproj_type keyword argument and has amethodset_proj_type(). The default
option is 'persp' as before, and supplying 'ortho' enables orthographic view.

Compare the z-axis which is vertical in orthographic view, but slightly skewed in the perspective view.

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(4, 6))
ax1 = fig.add_subplot(2, 1, 1, projection='3d')
ax1.set_proj_type('persp')
ax1.set_title('Perspective (default)')

ax2 = fig.add_subplot(2, 1, 2, projection='3d')
ax2.set_proj_type('ortho')
ax2.set_title('Orthographic')

plt.show()

voxels function for mplot3d

Axes3D now has a voxels method, for visualizing boolean 3D data. Uses could include plotting a sparse
3D heat map, or visualizing a volumetric model.

8.6.3 Improvements

CheckButtons widget get_status function

A get_status() method has been added to the matplotlib.widgets.CheckButtons class.
This get_statusmethod allows user to query the status (True/False) of all of the buttons in the Check-
Buttons object.

8.6. New in Matplotlib 2.1.0 723

Matplotlib, Release 3.4.3

0.00.20.40.60.81.0 0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Perspective (default)

0.00.20.40.60.81.0 0.00.20.40.60.81.0
0.0
0.2
0.4
0.6
0.8
1.0

Orthographic

724 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

Fig. 3: Voxel Demo

Add fill_bar argument to AnchoredSizeBar

The mpl_toolkits class AnchoredSizeBar now has an additional fill_bar argument, which
makes the size bar a solid rectangle instead of just drawing the border of the rectangle. The default is
None, and whether or not the bar will be filled by default depends on the value of size_vertical.
If size_vertical is nonzero, fill_bar will be set to True. If size_vertical is zero then
fill_bar will be set to False. If you wish to override this default behavior, set fill_bar to True or
False to unconditionally always or never use a filled patch rectangle for the size bar.

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.anchored_artists import AnchoredSizeBar

fig, ax = plt.subplots(figsize=(3, 3))

bar0 = AnchoredSizeBar(ax.transData, 0.3, 'unfilled', loc='lower left',
frameon=False, size_vertical=0.05, fill_bar=False)

ax.add_artist(bar0)
bar1 = AnchoredSizeBar(ax.transData, 0.3, 'filled', loc='lower right',

frameon=False, size_vertical=0.05, fill_bar=True)
ax.add_artist(bar1)

plt.show()

8.6. New in Matplotlib 2.1.0 725

../../gallery/mplot3d/voxels_numpy_logo.html

Matplotlib, Release 3.4.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

unfilled filled

Annotation can use a default arrow style

Annotations now use the default arrow style when setting arrowprops={}, rather than no arrow (the new
behavior actually matches the documentation).

Barbs and Quiver Support Dates

When using the quiver() and barbs() plotting methods, it is now possible to pass dates, just like for
other methods like plot(). This also allows these functions to handle values that need unit-conversion
applied.

Hexbin default line color

The default linecolor keyword argument for hexbin() is now 'face', and supplying 'none' now
prevents lines from being drawn around the hexagons.

Figure.legend() can be called without arguments

Calling Figure.legend() can now be done with no arguments. In this case a legend will be created that
contains all the artists on all the axes contained within the figure.

726 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

Multiple legend keys for legend entries

A legend entry can now contain more than one legend key. The extended HandlerTuple class now
accepts two parameters: ndivide divides the legend area in the specified number of sections; pad changes
the padding between the legend keys.

Fig. 4: Multiple Legend Keys

New parameter clear for figure()

When the pyplot's function figure() is called with a num parameter, a new window is only created if no
existing window with the same value exists. A new bool parameter clear was added for explicitly clearing
its existing contents. This is particularly useful when utilized in interactive sessions. Since subplots()
also accepts keyword arguments from figure(), it can also be used there:

import matplotlib.pyplot as plt

fig0 = plt.figure(num=1)
fig0.suptitle("A fancy plot")
print("fig0.texts: ", [t.get_text() for t in fig0.texts])

fig1 = plt.figure(num=1, clear=False) # do not clear contents of window
fig1.text(0.5, 0.5, "Really fancy!")
print("fig0 is fig1: ", fig0 is fig1)
print("fig1.texts: ", [t.get_text() for t in fig1.texts])

fig2, ax2 = plt.subplots(2, 1, num=1, clear=True) # clear contents
print("fig0 is fig2: ", fig0 is fig2)
print("fig2.texts: ", [t.get_text() for t in fig2.texts])

(continues on next page)

8.6. New in Matplotlib 2.1.0 727

../../gallery/text_labels_and_annotations/legend_demo.html

Matplotlib, Release 3.4.3

(continued from previous page)

The output:
fig0.texts: ['A fancy plot']
fig0 is fig1: True
fig1.texts: ['A fancy plot', 'Really fancy!']
fig0 is fig2: True
fig2.texts: []

Specify minimum value to format as scalar for LogFormatterMathtext

LogFormatterMathtext now includes the option to specify a minimum value exponent to format as a
scalar (i.e., 0.001 instead of 10-3).

New quiverkey angle keyword argument

Plotting a quiverkey() now admits the angle keyword argument, which sets the angle at which to draw
the key arrow.

Colormap reversed method

The methods matplotlib.colors.LinearSegmentedColormap.reversed() and
matplotlib.colors.ListedColormap.reversed() return a reversed instance of the Col-
ormap. This implements a way for any Colormap to be reversed.

artist.setp (and pyplot.setp) accept a file argument

The argument is keyword-only. It allows an output file other than sys.stdout to be specified. It works
exactly like the file argument to print.

streamplot streamline generation more configurable

The starting point, direction, and length of the stream lines can now be configured. This allows to follow the
vector field for a longer time and can enhance the visibility of the flow pattern in some use cases.

Axis.set_tick_params now responds to rotation

Bulk setting of tick label rotation is now possible via tick_params() using the rotation keyword.

ax.tick_params(which='both', rotation=90)

728 Chapter 8. Previous What's New

https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/functions.html#print

Matplotlib, Release 3.4.3

Ticklabels are turned off instead of being invisible

Internally, the Tick's label1On() attribute is now used to hide tick labels instead of setting the visibility
on the tick label objects. This improves overall performance and fixes some issues. As a consequence, in
case those labels ought to be shown, tick_params() needs to be used, e.g.

ax.tick_params(labelbottom=True)

Shading in 3D bar plots

A new shade parameter has been added the 3D bar plotting method. The default behavior remains to
shade the bars, but now users have the option of setting shade to False.

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

x = np.arange(2)
y = np.arange(3)
x2d, y2d = np.meshgrid(x, y)
x, y = x2d.ravel(), y2d.ravel()
z = np.zeros_like(x)
dz = x + y

fig = plt.figure(figsize=(4, 6))
ax1 = fig.add_subplot(2, 1, 1, projection='3d')
ax1.bar3d(x, y, z, 1, 1, dz, shade=True)
ax1.set_title('Shading On')

ax2 = fig.add_subplot(2, 1, 2, projection='3d')
ax2.bar3d(x, y, z, 1, 1, dz, shade=False)
ax2.set_title('Shading Off')

plt.show()

New which Parameter for autofmt_xdate

A which parameter now exists for the method autofmt_xdate(). This allows a user to format major,
minor or both tick labels selectively. The default behavior will rotate and align the major tick labels.

fig.autofmt_xdate(bottom=0.2, rotation=30, ha='right', which='minor')

8.6. New in Matplotlib 2.1.0 729

Matplotlib, Release 3.4.3

0.0 0.5 1.0 1.5 2.0 0
1

2
3

0
1
2
3

Shading On

0.0 0.5 1.0 1.5 2.0 0
1

2
3

0
1
2
3

Shading Off

730 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

New Figure Parameter for subplot2grid

A fig parameter now exists for the function subplot2grid(). This allows a user to specify the figure
where the subplots will be created. If fig is None (default) then the method will use the current figure
retrieved by gcf().

subplot2grid(shape, loc, rowspan=1, colspan=1, fig=myfig)

Interpolation in fill_betweenx

The interpolate parameter now exists for the method fill_betweenx(). This allows a user to
interpolate the data and fill the areas in the crossover points, similarly to fill_between().

New keyword argument sep for EngFormatter

A new sep keyword argument has been added to EngFormatter and provides a means to define the
string that will be used between the value and its unit. The default string is " ", which preserves the former
behavior. Additionally, the separator is now present between the value and its unit even in the absence of
SI prefix. There was formerly a bug that was causing strings like "3.14V" to be returned instead of the
expected "3.14 V" (with the default behavior).

Extend MATPLOTLIBRC behavior

The environmental variable can now specify the full file path or the path to a directory containing a mat-
plotlibrc file.

density kwarg to hist

The hist() method now prefers density to normed to control if the histogram should be normalized,
following a change upstream to NumPy. This will reduce confusion as the behavior has always been that the
integral of the histogram is 1 (rather than sum or maximum value).

8.6.4 Internals

New TransformedPatchPath caching object

A newly added TransformedPatchPath provides a means to transform a Patch into a Path via a
Transform while caching the resulting path. If neither the patch nor the transform have changed, a cached
copy of the path is returned.

This class differs from the older TransformedPath in that it is able to refresh itself based on the under-
lying patch while the older class uses an immutable path.

8.6. New in Matplotlib 2.1.0 731

Matplotlib, Release 3.4.3

Abstract base class for movie writers

The new AbstractMovieWriter class defines the API required by a class that is to be used
as the writer in the matplotlib.animation.Animation.save() method. The existing
MovieWriter class now derives from the new abstract base class.

Stricter validation of line style rcParams

The validation of rcParams that are related to line styles (lines.linestyle, boxplot.*.
linestyle, grid.linestyle and contour.negative_linestyle) now effectively checks that
the values are valid line styles. Strings like 'dashed' or '--' are accepted, as well as even-length se-
quences of on-off ink like [1, 1.65]. In this latter case, the offset value is handled internally and should
not be provided by the user.

The new validation scheme replaces the former one used for the contour.negative_linestyle rc-
Params, that was limited to 'solid' and 'dashed' line styles.

The validation is case-insensitive. The following are now valid:

grid.linestyle : (1, 3) # loosely dotted grid lines
contour.negative_linestyle : dashdot # previously only solid or dashed

pytest

The automated tests have been switched from nose to pytest.

8.6.5 Performance

Path simplification updates

Line simplification controlled by the path.simplify and path.simplify_threshold parameters
has been improved. You should notice better rendering performance when plotting large amounts of data (as
long as the above parameters are set accordingly). Only the line segment portion of paths will be simplified --
if you are also drawing markers and experiencing problems with rendering speed, you should consider using
the markevery option to plot. See the Performance section in the usage tutorial for more information.

The simplification works by iteratively merging line segments into a single vector until the next line seg-
ment's perpendicular distance to the vector (measured in display-coordinate space) is greater than the path.
simplify_threshold parameter. Thus, higher values of path.simplify_threshold result in
quicker rendering times. If you are plotting just to explore data and not for publication quality, pixel perfect
plots, then a value of 1.0 can be safely used. If you want to make sure your plot reflects your data exactly,
then you should set path.simplify to false and/or path.simplify_threshold to 0. Matplotlib
currently defaults to a conservative value of 1/9, smaller values are unlikely to cause any visible differences
in your plots.

732 Chapter 8. Previous What's New

https://nose.readthedocs.io/
https://pytest.org

Matplotlib, Release 3.4.3

Implement intersects_bbox in c++

intersects_bbox() has been implemented in c++ which improves the performance of automatically
placing the legend.

8.7 New in matplotlib 2.0

Note: matplotlib 2.0 supports Python 2.7, and 3.4+

8.7.1 Default style changes

The major changes in v2.0 are related to overhauling the default styles.

Changes to the default style

The most important changes in matplotlib 2.0 are the changes to the default style.

While it is impossible to select the best default for all cases, these are designed to work well in the most
common cases.

A 'classic' style sheet is provided so reverting to the 1.x default values is a single line of python

import matplotlib.style
import matplotlib as mpl
mpl.style.use('classic')

See The matplotlibrc file for details about how to persistently and selectively revert many of these changes.

Table of Contents

• Colors, color cycles, and colormaps

– Colors in default property cycle

– Colormap

– Interactive figures

– Grid lines

• Figure size, font size, and screen dpi

• Plotting functions

– scatter

– plot

8.7. New in matplotlib 2.0 733

Matplotlib, Release 3.4.3

– errorbar

– boxplot

– fill_between and fill_betweenx

– Patch edges and color

– hexbin

– bar and barh

• Hatching

• Fonts

– Normal text

– Math text

• Legends

• Image

– Interpolation

– Colormapping pipeline

– Shading

• Plot layout

– Auto limits

– Z-order

– Ticks

– Tick label formatting

• mplot3d

Colors, color cycles, and colormaps

Colors in default property cycle

The colors in the default property cycle have been changed from ['b', 'g', 'r', 'c', 'm', 'y',
'k'] to the category10 color palette used by Vega and d3 originally developed at Tableau.

In addition to changing the colors, an additional method to specify colors was added. Previously, the de-
fault colors were the single character short-hand notations for red, green, blue, cyan, magenta, yellow,
and black. This made them easy to type and usable in the abbreviated style string in plot, however the
new default colors are only specified via hex values. To access these colors outside of the property cy-
cling the notation for colors 'CN', where N takes values 0-9, was added to denote the first 10 colors in
rcParams["axes.prop_cycle"] (default: cycler('color', ['#1f77b4', '#ff7f0e',
'#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',

734 Chapter 8. Previous What's New

https://github.com/vega/vega/wiki/Scales#scale-range-literals
https://github.com/d3/d3-3.x-api-reference/blob/master/Ordinal-Scales.md#category10
../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

'C0' 'b'

'C1' 'g'

'C2' 'r'

'C3' 'c'

'C4' 'm'

'C5' 'y'

'C6' 'k'

classic

'C0' '#1f77b4'
'C1' '#ff7f0e'
'C2' '#2ca02c'
'C3' '#d62728'
'C4' '#9467bd'
'C5' '#8c564b'
'C6' '#e377c2'
'C7' '#7f7f7f'
'C8' '#bcbd22'
'C9' '#17becf'

v2.0

'#bcbd22', '#17becf'])). See Specifying Colors for more details.

To restore the old color cycle use

from cycler import cycler
mpl.rcParams['axes.prop_cycle'] = cycler(color='bgrcmyk')

or set

axes.prop_cycle : cycler('color', 'bgrcmyk')

in your matplotlibrc file.

Colormap

The new default colormap used by matplotlib.cm.ScalarMappable instances is 'viridis' (aka option
D).

For an introduction to color theory and how 'viridis' was generated watch Nathaniel Smith and Stéfan van der
Walt's talk from SciPy2015. See here for many more details about the other alternatives and the tools used
to create the color map. For details on all of the colormaps available in matplotlib see Choosing Colormaps
in Matplotlib.

The previous default can be restored using

mpl.rcParams['image.cmap'] = 'jet'

or setting

image.cmap : 'jet'

in your matplotlibrc file; however this is strongly discouraged.

8.7. New in matplotlib 2.0 735

https://bids.github.io/colormap/
https://bids.github.io/colormap/
https://bids.github.io/colormap/

Matplotlib, Release 3.4.3

0 50 100 150 200
0

50

100

150

200
classic: 'jet'

0 50 100 150 200
0

50

100

150

200
v2.0: 'viridis'

0.5

0.0

0.5

0.5

0.0

0.5

Interactive figures

The default interactive figure background color has changed from grey to white, which matches the default
background color used when saving.

The previous defaults can be restored by

mpl.rcParams['figure.facecolor'] = '0.75'

or by setting

figure.facecolor : '0.75'

in your matplotlibrc file.

Grid lines

The default style of grid lines was changed from black dashed lines to thicker solid light grey lines.

The previous default can be restored by using:

mpl.rcParams['grid.color'] = 'k'
mpl.rcParams['grid.linestyle'] = ':'
mpl.rcParams['grid.linewidth'] = 0.5

or by setting:

grid.color : k # grid color
grid.linestyle : : # dotted
grid.linewidth : 0.5 # in points

in your matplotlibrc file.

736 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
classic

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
v2.0

Figure size, font size, and screen dpi

The default dpi used for on-screen display was changed from 80 dpi to 100 dpi, the same as the default dpi
for saving files. Due to this change, the on-screen display is now more what-you-see-is-what-you-get for
saved files. To keep the figure the same size in terms of pixels, in order to maintain approximately the same
size on the screen, the default figure size was reduced from 8x6 inches to 6.4x4.8 inches. As a consequence
of this the default font sizes used for the title, tick labels, and axes labels were reduced to maintain their size
relative to the overall size of the figure. By default the dpi of the saved image is now the dpi of the Figure
instance being saved.

This will have consequences if you are trying to match text in a figure directly with external text.

The previous defaults can be restored by

mpl.rcParams['figure.figsize'] = [8.0, 6.0]
mpl.rcParams['figure.dpi'] = 80
mpl.rcParams['savefig.dpi'] = 100

mpl.rcParams['font.size'] = 12
mpl.rcParams['legend.fontsize'] = 'large'
mpl.rcParams['figure.titlesize'] = 'medium'

or by setting:

figure.figsize : [8.0, 6.0]
figure.dpi : 80
savefig.dpi : 100

font.size : 12.0
legend.fontsize : 'large'
figure.titlesize : 'medium'

In your matplotlibrc file.

8.7. New in matplotlib 2.0 737

Matplotlib, Release 3.4.3

In addition, the forward kwarg to set_size_inches now defaults to True to improve the interactive
experience. Backend canvases that adjust the size of their bound matplotlib.figure.Figure must
pass forward=False to avoid circular behavior. This default is not configurable.

Plotting functions

scatter

The following changes were made to the default behavior of scatter

• The default size of the elements in a scatter plot is now based on rcParams["lines.
markersize"] (default: 6.0) so it is consistent with plot(X, Y, 'o'). The old value was
20, and the new value is 36 (6^2).

• Scatter markers no longer have a black edge.

• If the color of the markers is not specified it will follow the property cycle, pulling from the 'patches'
cycle on the Axes.

0 5 10
0.0

0.2

0.4

0.6

0.8

classic
a
b

0 5 10
0.0

0.2

0.4

0.6

0.8

v2.0
a
b

The classic default behavior of scatter can only be recovered through mpl.style.
use('classic'). The marker size can be recovered via

mpl.rcParam['lines.markersize'] = np.sqrt(20)

however, this will also affect the default marker size of plot. To recover the classic behavior on a per-call
basis pass the following kwargs:

classic_kwargs = {'s': 20, 'edgecolors': 'k', 'c': 'b'}

738 Chapter 8. Previous What's New

https://docs.python.org/3/library/constants.html#True
../tutorials/introductory/customizing.html?highlight=lines.markersize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=lines.markersize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

plot

The following changes were made to the default behavior of plot

• the default linewidth increased from 1 to 1.5

• the dash patterns associated with '--', ':', and '-.' have changed

• the dash patterns now scale with line width

classic v2.0

The previous defaults can be restored by setting:

mpl.rcParams['lines.linewidth'] = 1.0
mpl.rcParams['lines.dashed_pattern'] = [6, 6]
mpl.rcParams['lines.dashdot_pattern'] = [3, 5, 1, 5]
mpl.rcParams['lines.dotted_pattern'] = [1, 3]
mpl.rcParams['lines.scale_dashes'] = False

or by setting:

lines.linewidth : 1.0
lines.dashed_pattern : 6, 6
lines.dashdot_pattern : 3, 5, 1, 5
lines.dotted_pattern : 1, 3
lines.scale_dashes: False

in your matplotlibrc file.

8.7. New in matplotlib 2.0 739

Matplotlib, Release 3.4.3

errorbar

By default, caps on the ends of errorbars are not present.

0 1 2 3

0.25

0.00

0.25

0.50

0.75

1.00

1.25

classic

0 1 2 3

0.25

0.00

0.25

0.50

0.75

1.00

1.25

v2.0

This also changes the return value of errorbar() as the list of 'caplines' will be empty by default.

The previous defaults can be restored by setting:

mpl.rcParams['errorbar.capsize'] = 3

or by setting

errorbar.capsize : 3

in your matplotlibrc file.

boxplot

Previously, boxplots were composed of a mish-mash of styles that were, for better for worse, inherited from
Matlab. Most of the elements were blue, but the medians were red. The fliers (outliers) were black plus-
symbols ('+') and the whiskers were dashed lines, which created ambiguity if the (solid and black) caps were
not drawn.

For the new defaults, everything is black except for the median and mean lines (if drawn), which are set to
the first two elements of the current color cycle. Also, the default flier markers are now hollow circles, which
maintain the ability of the plus-symbols to overlap without obscuring data too much.

The previous defaults can be restored by setting:

mpl.rcParams['boxplot.flierprops.color'] = 'k'
mpl.rcParams['boxplot.flierprops.marker'] = '+'
mpl.rcParams['boxplot.flierprops.markerfacecolor'] = 'none'

(continues on next page)

740 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

A B C D

10 1

100

101

classic

A B C D

v2.0

(continued from previous page)
mpl.rcParams['boxplot.flierprops.markeredgecolor'] = 'k'
mpl.rcParams['boxplot.boxprops.color'] = 'b'
mpl.rcParams['boxplot.whiskerprops.color'] = 'b'
mpl.rcParams['boxplot.whiskerprops.linestyle'] = '--'
mpl.rcParams['boxplot.medianprops.color'] = 'r'
mpl.rcParams['boxplot.meanprops.color'] = 'r'
mpl.rcParams['boxplot.meanprops.marker'] = '^'
mpl.rcParams['boxplot.meanprops.markerfacecolor'] = 'r'
mpl.rcParams['boxplot.meanprops.markeredgecolor'] = 'k'
mpl.rcParams['boxplot.meanprops.markersize'] = 6
mpl.rcParams['boxplot.meanprops.linestyle'] = '--'
mpl.rcParams['boxplot.meanprops.linewidth'] = 1.0

or by setting:

boxplot.flierprops.color: 'k'
boxplot.flierprops.marker: '+'
boxplot.flierprops.markerfacecolor: 'none'
boxplot.flierprops.markeredgecolor: 'k'
boxplot.boxprops.color: 'b'
boxplot.whiskerprops.color: 'b'
boxplot.whiskerprops.linestyle: '--'
boxplot.medianprops.color: 'r'

(continues on next page)

8.7. New in matplotlib 2.0 741

Matplotlib, Release 3.4.3

(continued from previous page)
boxplot.meanprops.color: 'r'
boxplot.meanprops.marker: '^'
boxplot.meanprops.markerfacecolor: 'r'
boxplot.meanprops.markeredgecolor: 'k'
boxplot.meanprops.markersize: 6
boxplot.meanprops.linestyle: '--'
boxplot.meanprops.linewidth: 1.0

in your matplotlibrc file.

fill_between and fill_betweenx

fill_between and fill_betweenx both follow the patch color cycle.

0 2 4 6
1.0

0.5

0.0

0.5

1.0
classic

0 2 4 6
1.0

0.5

0.0

0.5

1.0
v2.0

If the facecolor is set via the facecolors or color keyword argument, then the color is not cycled.

To restore the previous behavior, explicitly pass the keyword argument facecolors='C0' to the method
call.

Patch edges and color

Most artists drawn with a patch (~matplotlib.axes.Axes.bar, ~matplotlib.axes.Axes.
pie, etc) no longer have a black edge by default. The default face color is now 'C0' instead of 'b'.

The previous defaults can be restored by setting:

mpl.rcParams['patch.force_edgecolor'] = True
mpl.rcParams['patch.facecolor'] = 'b'

or by setting:

742 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

Frogs

Hogs

Dogs

Logs

classic

Frogs

Hogs

Dogs

Logs

v2.0

Frogs
Hogs

Dogs
Logs

0

10

20

30

40

Frogs
Hogs

Dogs
Logs

0

10

20

30

40

8.7. New in matplotlib 2.0 743

Matplotlib, Release 3.4.3

patch.facecolor : b
patch.force_edgecolor : True

in your matplotlibrc file.

hexbin

The default value of the linecolor keyword argument for hexbin has changed from 'none' to 'face'.
If 'none' is now supplied, no line edges are drawn around the hexagons.

bar and barh

The default value of the align kwarg for both bar and barh is changed from 'edge' to 'center'.

a b c
0

1

2

3
classic

a b c
0

1

2

3
v2.0

0 1 2 3
a

b

c

0 1 2 3

a

b

c

To restore the previous behavior explicitly pass the keyword argument align='edge' to the method call.

744 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

Hatching

The color of the lines in the hatch is now determined by

• If an edge color is explicitly set, use that for the hatch color

• If the edge color is not explicitly set, use rcParams["hatch.color"] (default: 'black')
which is looked up at artist creation time.

The width of the lines in a hatch pattern is now configurable by the rcParams rcParams["hatch.
linewidth"] (default: 1.0), which defaults to 1 point. The old behavior for the line width was different
depending on backend:

• PDF: 0.1 pt

• SVG: 1.0 pt

• PS: 1 px

• Agg: 1 px

The old line width behavior can not be restored across all backends simultaneously, but can be restored for a
single backend by setting:

mpl.rcParams['hatch.linewidth'] = 0.1 # previous pdf hatch linewidth
mpl.rcParams['hatch.linewidth'] = 1.0 # previous svg hatch linewidth

The behavior of the PS and Agg backends was DPI dependent, thus:

mpl.rcParams['figure.dpi'] = dpi
mpl.rcParams['savefig.dpi'] = dpi # or leave as default 'figure'
mpl.rcParams['hatch.linewidth'] = 1.0 / dpi # previous ps and Agg hatch␣

↪linewidth

There is no direct API level control of the hatch color or linewidth.

Hatching patterns are now rendered at a consistent density, regardless of DPI. Formerly, high DPI figures
would be more dense than the default, and low DPI figures would be less dense. This old behavior cannot
be directly restored, but the density may be increased by repeating the hatch specifier.

Fonts

Normal text

The default font has changed from "Bitstream Vera Sans" to "DejaVu Sans". DejaVu Sans has additional
international and math characters, but otherwise has the same appearance as Bitstream Vera Sans. Latin,
Greek, Cyrillic, Armenian, Georgian, Hebrew, and Arabic are all supported (but right-to-left rendering is
still not handled by matplotlib). In addition, DejaVu contains a sub-set of emoji symbols.

See the DejaVu Sans PDF sample for full coverage.

8.7. New in matplotlib 2.0 745

../tutorials/introductory/customizing.html?highlight=hatch.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=hatch.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=hatch.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://dejavu-fonts.github.io/
http://dejavu.sourceforge.net/samples/DejaVuSans.pdf

Matplotlib, Release 3.4.3

0

5

10

15

20

25

Math text

The default math font when using the built-in math rendering engine (mathtext) has changed from "Computer
Modern" (i.e. LaTeX-like) to "DejaVu Sans". This change has no effect if the TeX backend is used (i.e.
text.usetex is True).

To revert to the old behavior set the:

mpl.rcParams['mathtext.fontset'] = 'cm'
mpl.rcParams['mathtext.rm'] = 'serif'

or set:

mathtext.fontset: cm
mathtext.rm : serif

in your matplotlibrc file.

This rcParam is consulted when the text is drawn, not when the artist is created. Thus all mathtext on a
given canvas will use the same fontset.

746 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

0 5 10
0
2
4
6
8

10
12
14

classic

int: 15

∫ ∞

0

dx

0 5 10
0
2
4
6
8

10
12
14

v2.0

int: 15 0 dx

8.7. New in matplotlib 2.0 747

Matplotlib, Release 3.4.3

Legends

• By default, the number of points displayed in a legend is now 1.

• The default legend location is 'best', so the legend will be automatically placed in a location to
minimize overlap with data.

• The legend defaults now include rounded corners, a lighter boundary, and partially transparent bound-
ary and background.

0 10 20

6

4

2

0

classic

plot
fill
scatter

0 10 20

6

4

2

0

v2.0

plot
fill
scatter

The previous defaults can be restored by setting:

mpl.rcParams['legend.fancybox'] = False
mpl.rcParams['legend.loc'] = 'upper right'
mpl.rcParams['legend.numpoints'] = 2
mpl.rcParams['legend.fontsize'] = 'large'
mpl.rcParams['legend.framealpha'] = None
mpl.rcParams['legend.scatterpoints'] = 3
mpl.rcParams['legend.edgecolor'] = 'inherit'

or by setting:

legend.fancybox : False
legend.loc : upper right
legend.numpoints : 2 # the number of points in the legend line
legend.fontsize : large
legend.framealpha : None # opacity of legend frame
legend.scatterpoints : 3 # number of scatter points
legend.edgecolor : inherit # legend edge color ('inherit'

means it uses axes.edgecolor)

in your matplotlibrc file.

748 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

Image

Interpolation

The default interpolation method for imshow is now 'nearest' and by default it resamples the data (both
up and down sampling) before colormapping.

0 1 2 3 4

0

1

2

3

4

classic

0 1 2 3 4

0

1

2

3

4

v2.0

To restore the previous behavior set:

mpl.rcParams['image.interpolation'] = 'bilinear'
mpl.rcParams['image.resample'] = False

or set:

image.interpolation : bilinear # see help(imshow) for options
image.resample : False

in your matplotlibrc file.

Colormapping pipeline

Previously, the input data was normalized, then colormapped, and then resampled to the resolution required
for the screen. This meant that the final resampling was being done in color space. Because the color maps
are not generally linear in RGB space, colors not in the colormap may appear in the final image. This bug
was addressed by an almost complete overhaul of the image handling code.

The input data is now normalized, then resampled to the correct resolution (in normalized dataspace), and
then colormapped to RGB space. This ensures that only colors from the colormap appear in the final image.
(If your viewer subsequently resamples the image, the artifact may reappear.)

The previous behavior cannot be restored.

8.7. New in matplotlib 2.0 749

Matplotlib, Release 3.4.3

Shading

• The default shading mode for light source shading, in matplotlib.colors.LightSource.
shade, is now overlay. Formerly, it was hsv.

Plot layout

Auto limits

The previous auto-scaling behavior was to find 'nice' round numbers as view limits that enclosed the data
limits, but this could produce bad plots if the data happened to fall on a vertical or horizontal line near the
chosen 'round number' limit. The new default sets the view limits to 5% wider than the data range.

0 200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0
classic

0 250 500 750 1000
0.0

0.2

0.4

0.6

0.8

1.0
v2.0

The size of the padding in the x and y directions is controlled by the 'axes.xmargin' and 'axes.
ymargin' rcParams respectively. Whether the view limits should be 'round numbers' is controlled by
rcParams["axes.autolimit_mode"] (default: 'data'). In the original 'round_number'
mode, the view limits coincide with ticks.

The previous default can be restored by using:

mpl.rcParams['axes.autolimit_mode'] = 'round_numbers'
mpl.rcParams['axes.xmargin'] = 0
mpl.rcParams['axes.ymargin'] = 0

or setting:

axes.autolimit_mode: round_numbers
axes.xmargin: 0
axes.ymargin: 0

in your matplotlibrc file.

750 Chapter 8. Previous What's New

../tutorials/introductory/customizing.html?highlight=axes.autolimit_mode#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Z-order

• Ticks and grids are now plotted above solid elements such as filled contours, but below lines. To
return to the previous behavior of plotting ticks and grids above lines, set rcParams['axes.
axisbelow'] = False.

Ticks

Direction

To reduce the collision of tick marks with data, the default ticks now point outward by default. In addition,
ticks are now drawn only on the bottom and left spines to prevent a porcupine appearance, and for a cleaner
separation between subplots.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

classic

0 1 2 3 4

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

v2.0

0 1 2 3 4

0

1

2

3

4

8.7. New in matplotlib 2.0 751

Matplotlib, Release 3.4.3

To restore the previous behavior set:

mpl.rcParams['xtick.direction'] = 'in'
mpl.rcParams['ytick.direction'] = 'in'
mpl.rcParams['xtick.top'] = True
mpl.rcParams['ytick.right'] = True

or set:

xtick.top: True
xtick.direction: in

ytick.right: True
ytick.direction: in

in your matplotlibrc file.

Number of ticks

The default Locator used for the x and y axis is AutoLocator which tries to find, up to some maximum
number, 'nicely' spaced ticks. The locator now includes an algorithm to estimate the maximum number of
ticks that will leave room for the tick labels. By default it also ensures that there are at least two ticks visible.

0.000.020.040.060.080.10
0.0

0.2

0.4

0.6

0.8

1.0
classic

0.00 0.05 0.10
0.0

0.2

0.4

0.6

0.8

1.0
v2.0

There is no way, other than using mpl.style.use('classic'), to restore the previous behavior as
the default. On an axis-by-axis basis you may either control the existing locator via:

ax.xaxis.get_major_locator().set_params(nbins=9, steps=[1, 2, 5, 10])

or create a new MaxNLocator:

import matplotlib.ticker as mticker
ax.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10])

752 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

The algorithm used by MaxNLocator has been improved, and this may change the choice of tick locations
in some cases. This also affects AutoLocator, which uses MaxNLocator internally.

For a log-scaled axis the default locator is the LogLocator. Previously the maximum number of ticks was
set to 15, and could not be changed. Now there is a numticks kwarg for setting the maximum to any integer
value, to the string 'auto', or to its default value of None which is equivalent to 'auto'. With the 'auto' setting
the maximum number will be no larger than 9, and will be reduced depending on the length of the axis in
units of the tick font size. As in the case of the AutoLocator, the heuristic algorithm reduces the incidence
of overlapping tick labels but does not prevent it.

Tick label formatting

LogFormatter labeling of minor ticks

Minor ticks on a log axis are now labeled when the axis view limits span a range less than or equal to the
interval between two major ticks. See LogFormatter for details. The minor tick labeling is turned off
when using mpl.style.use('classic'), but cannot be controlled independently via rcParams.

0.8 1.0 1.2 1.4 1.6
100

101

102 classic

0.8 1.0 1.2 1.4 1.6
100

101

102 v2.0

ScalarFormatter tick label formatting with offsets

With the default rcParams["axes.formatter.useoffset"] (default: True), an offset will be
used when it will save 4 or more digits. This can be controlled with the new rcParams["axes.
formatter.offset_threshold"] (default: 4). To restore the previous behavior of using an offset
to save 2 or more digits, use rcParams['axes.formatter.offset_threshold'] = 2.

8.7. New in matplotlib 2.0 753

../tutorials/introductory/customizing.html?highlight=axes.formatter.useoffset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.formatter.offset_threshold#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.formatter.offset_threshold#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

0 2 4 6 8
+2e3

1

0

1

2

+5e4 classic

2000 2002 2004 2006 2008
1

0

1

2

+5e4 v2.0

AutoDateFormatter format strings

The default date formats are now all based on ISO format, i.e., with the slowest-moving value first. The date
formatters are configurable through the date.autoformatter.* rcParams.

Threshold (tick interval
>= than)

rcParam classic v2.0

365 days 'date.autoformatter.year' '%Y' '%Y'

30 days 'date.autoformatter.
month'

'%b %Y' '%Y-%m'

1 day 'date.autoformatter.day' '%b %d %Y' '%Y-%m-%d'

1 hour 'date.autoformatter.hour' '%H:%M:%S' '%H:%M'

1 minute 'date.autoformatter.
minute'

'%H:%M:%S.
%f'

'%H:%M:%S'

1 second 'date.autoformatter.
second'

'%H:%M:%S.
%f'

'%H:%M:%S'

1 microsecond 'date.autoformatter.
microsecond'

'%H:%M:%S.
%f'

'%H:%M:%S.
%f'

Python's %x and %X date formats may be of particular interest to format dates based on the current locale.

The previous default can be restored by:

mpl.rcParams['date.autoformatter.year'] = '%Y'
mpl.rcParams['date.autoformatter.month'] = '%b %Y'
mpl.rcParams['date.autoformatter.day'] = '%b %d %Y'
mpl.rcParams['date.autoformatter.hour'] = '%H:%M:%S'
mpl.rcParams['date.autoformatter.minute'] = '%H:%M:%S.%f'
mpl.rcParams['date.autoformatter.second'] = '%H:%M:%S.%f'
mpl.rcParams['date.autoformatter.microsecond'] = '%H:%M:%S.%f'

754 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

or setting

date.autoformatter.year : %Y
date.autoformatter.month : %b %Y
date.autoformatter.day : %b %d %Y
date.autoformatter.hour : %H:%M:%S
date.autoformatter.minute : %H:%M:%S.%f
date.autoformatter.second : %H:%M:%S.%f
date.autoformatter.microsecond : %H:%M:%S.%f

in your matplotlibrc file.

mplot3d

• mplot3d now obeys some style-related rcParams, rather than using hard-coded defaults. These include:

– xtick.major.width

– ytick.major.width

– xtick.color

– ytick.color

– axes.linewidth

– axes.edgecolor

– grid.color

– grid.linewidth

– grid.linestyle

8.7.2 Improved color conversion API and RGBA support

The colors gained a new color conversion API with full support for the alpha channel. The main public
functions are is_color_like(), matplotlib.colors.to_rgba(), matplotlib.colors.
to_rgba_array() and to_hex(). RGBA quadruplets are encoded in hex format as "#rrggbbaa".

A side benefit is that the Qt options editor now allows setting the alpha channel of the artists as well.

8.7.3 New Configuration (rcParams)

New rcparams added

8.7. New in matplotlib 2.0 755

Matplotlib, Release 3.4.3

Parameter Description
rcParams["date.autoformatter.year"] (default: '%Y') format string for

'year' scale dates
rcParams["date.autoformatter.month"] (default: '%Y-%m') format string for

'month' scale dates
rcParams["date.autoformatter.day"] (default: '%Y-%m-%d') format string for

'day' scale dates
rcParams["date.autoformatter.hour"] (default: '%m-%d %H') format string for

'hour' scale times
rcParams["date.autoformatter.minute"] (default: '%d %H:%M') format string for

'minute' scale
times

rcParams["date.autoformatter.second"] (default: '%H:%M:%S') format string for
'second' scale
times

rcParams["date.autoformatter.microsecond"] (default:
'%M:%S.%f')

format string for
'microsecond'
scale times

rcParams["scatter.marker"] (default: 'o') default marker for
scatter plot

rcParams["svg.hashsalt"] (default: None) see note
rcParams["xtick.top"] (default: False), rcParams["xtick.
major.top"] (default: True) rcParams["xtick.minor.
top"] (default: True), rcParams["xtick.bottom"] (de-
fault: True), rcParams["xtick.major.bottom"] (default:
True) rcParams["xtick.minor.bottom"] (default: True),
rcParams["ytick.left"] (default: True), rcParams["ytick.
minor.left"] (default: True), rcParams["ytick.major.
left"] (default: True) rcParams["ytick.right"] (default:
False), rcParams["ytick.minor.right"] (default: True),
rcParams["ytick.major.right"] (default: True)

Control where ma-
jor and minor ticks
are drawn. The
global values are
anded with the
corresponding ma-
jor/minor values.
corresponding
major/minor
values.

rcParams["hist.bins"] (default: 10) The default num-
ber of bins to use
in hist. This can
be an int, a list of
floats, or 'auto'
if numpy >= 1.11
is installed.

rcParams["lines.scale_dashes"] (default: True) Whether the line
dash patterns
should scale with
linewidth.

rcParams["axes.formatter.offset_threshold"] (default: 4) Minimum number
of digits saved in
tick labels that
triggers using an
offset.

756 Chapter 8. Previous What's New

../../tutorials/introductory/customizing.html?highlight=date.autoformatter.year#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=date.autoformatter.month#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=date.autoformatter.day#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=date.autoformatter.hour#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=date.autoformatter.minute#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=date.autoformatter.second#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=date.autoformatter.microsecond#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=scatter.marker#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=svg.hashsalt#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xtick.top#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xtick.major.top#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xtick.major.top#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xtick.minor.top#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xtick.minor.top#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xtick.bottom#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xtick.major.bottom#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xtick.minor.bottom#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ytick.left#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ytick.minor.left#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ytick.minor.left#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ytick.major.left#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ytick.major.left#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ytick.right#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ytick.minor.right#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ytick.major.right#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=hist.bins#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/functions.html#int
../../tutorials/introductory/customizing.html?highlight=lines.scale_dashes#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.offset_threshold#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Added svg.hashsalt key to rcParams

If svg.hashsalt is None (which it is by default), the svg backend uses uuid4 to generate the hash
salt. If it is not None, it must be a string that is used as the hash salt instead of uuid4. This allows for
deterministic SVG output.

Removed the svg.image_noscale rcParam

As a result of the extensive changes to image handling, the svg.image_noscale rcParam has been
removed. The same functionality may be achieved by setting interpolation='none' on individual
images or globally using the image.interpolation rcParam.

8.7.4 Qualitative colormaps

ColorBrewer's "qualitative" colormaps ("Accent", "Dark2", "Paired", "Pastel1", "Pastel2", "Set1", "Set2",
"Set3") were intended for discrete categorical data, with no implication of value, and therefore have been
converted to ListedColormap instead of LinearSegmentedColormap, so the colors will no longer
be interpolated and they can be used for choropleths, labeled image features, etc.

8.7.5 Axis offset label now responds to labelcolor

Axis offset labels are now colored the same as axis tick markers when labelcolor is altered.

8.7.6 Improved offset text choice

The default offset-text choice was changed to only use significant digits that are common to all ticks (e.g.
1231..1239 -> 1230, instead of 1231), except when they straddle a relatively large multiple of a power of
ten, in which case that multiple is chosen (e.g. 1999..2001->2000).

8.7.7 Style parameter blacklist

In order to prevent unexpected consequences from using a style, style files are no longer able to set parameters
that affect things unrelated to style. These parameters include:

'interactive', 'backend', 'backend.qt4', 'webagg.port',
'webagg.port_retries', 'webagg.open_in_browser', 'backend_fallback',
'toolbar', 'timezone', 'datapath', 'figure.max_open_warning',
'savefig.directory', 'tk.window_focus', 'docstring.hardcopy'

8.7. New in matplotlib 2.0 757

Matplotlib, Release 3.4.3

8.7.8 Change in default font

The default font used by matplotlib in text has been changed to DejaVu Sans and DejaVu Serif for the sans-
serif and serif families, respectively. The DejaVu font family is based on the previous matplotlib default
--Bitstream Vera-- but includes a much wider range of characters.

The default mathtext font has been changed from Computer Modern to the DejaVu family to maintain con-
sistency with regular text. Two new options for the mathtext.fontset configuration parameter have
been added: dejavusans (default) and dejavuserif. Both of these options use DejaVu glyphs when-
ever possible and fall back to STIX symbols when a glyph is not found in DejaVu. To return to the previous
behavior, set the rcParam mathtext.fontset to cm.

8.7.9 Faster text rendering

Rendering text in the Agg backend is now less fuzzy and about 20% faster to draw.

8.7.10 Improvements for the Qt figure options editor

Various usability improvements were implemented for the Qt figure options editor, among which:

• Line style entries are now sorted without duplicates.

• The colormap and normalization limits can now be set for images.

• Line edits for floating values now display only as many digits as necessary to avoid precision loss.
An important bug was also fixed regarding input validation using Qt5 and a locale where the decimal
separator is ",".

• The axes selector now uses shorter, more user-friendly names for axes, and does not crash if there are
no axes.

• Line and image entries using the default labels ("_lineX", "_imageX") are now sorted numerically
even when there are more than 10 entries.

8.7.11 Improved image support

Prior to version 2.0, matplotlib resampled images by first applying the colormap and then resizing the result.
Since the resampling was performed on the colored image, this introduced colors in the output image that
didn't actually exist in the colormap. Now, images are resampled first (and entirely in floating-point, if the
input image is floating-point), and then the colormap is applied.

In order to make this important change, the image handling code was almost entirely rewritten. As a side
effect, image resampling uses less memory and fewer datatype conversions than before.

The experimental private feature where one could "skew" an image by setting the private member _im-
age_skew_coordinate has been removed. Instead, images will obey the transform of the axes on
which they are drawn.

758 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

Non-linear scales on image plots

imshow now draws data at the requested points in data space after the application of non-linear scales.

The image on the left demonstrates the new, correct behavior. The old behavior can be recreated using
pcolormesh as demonstrated on the right.

0 1 2 3 4 5 6
100

101

102

103

104

105
Using ax.imshow

0 1 2 3 4 5 6
100

101

102

103

104

105
Using ax.pcolormesh

This can be understood by analogy to plotting a histogramwith linearly spaced bins with a logarithmic x-axis.
Equal sized bins will be displayed as wider for small x and narrower for large x.

8.7.12 Support for HiDPI (Retina) displays in the NbAgg and WebAgg backends

The NbAgg and WebAgg backends will now use the full resolution of your high-pixel-density display.

8.7.13 Change in the default animation codec

The default animation codec has been changed from mpeg4 to h264, which is more efficient. It can be set
via the animation.codec rcParam.

8.7.14 Deprecated support for mencoder in animation

The use of mencoder for writing video files with mpl is problematic; switching to ffmpeg is strongly advised.
All support for mencoder will be removed in version 2.2.

8.7. New in matplotlib 2.0 759

Matplotlib, Release 3.4.3

8.7.15 Boxplot Zorder Keyword Argument

The zorder parameter now exists for boxplot. This allows the zorder of a boxplot to be set in the plotting
function call.

boxplot(np.arange(10), zorder=10)

8.7.16 Filled + and x markers

New fillable plus and xmarkers have been added. See the markersmodule and marker reference examples.

8.7.17 rcount and ccount for plot_surface

As of v2.0, mplot3d's plot_surface now accepts rcount and ccount arguments for controlling the sam-
pling of the input data for plotting. These arguments specify the maximum number of evenly spaced samples
to take from the input data. These arguments are also the new default sampling method for the function, and
is considered a style change.

The old rstride and cstride arguments, which specified the size of the evenly spaced samples, become the
default when 'classic' mode is invoked, and are still available for use. There are no plans for deprecating these
arguments.

8.7.18 Streamplot Zorder Keyword Argument Changes

The zorder parameter for streamplot now has default value of None instead of 2. If None is given
as zorder, streamplot has a default zorder of matplotlib.lines.Line2D.zorder.

8.7.19 Extension to matplotlib.backend_bases.GraphicsContextBase

To support standardizing hatch behavior across the backends we ship the matplotlib.
backend_bases.GraphicsContextBase.get_hatch_color method as added to
matplotlib.backend_bases.GraphicsContextBase. This is only used during the ren-
der process in the backends we ship so will not break any third-party backends.

If you maintain a third-party backend which extends GraphicsContextBase this method is now avail-
able to you and should be used to color hatch patterns.

760 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

8.8 New in matplotlib 1.5

Table of Contents

• New in matplotlib 1.5

– Interactive OO usage

– Working with labeled data like pandas DataFrames

– Added axes.prop_cycle key to rcParams

– New Colormaps

– Styles

– Backends

– Configuration (rcParams)

– Widgets

– New plotting features

– ToolManager

– cbook.is_sequence_of_strings recognizes string objects

– New close-figs argument for plot directive

– Support for URL string arguments to imread

– Display hook for animations in the IPython notebook

– Prefixed pkg-config for building

Note: matplotlib 1.5 supports Python 2.7, 3.4, and 3.5

8.8.1 Interactive OO usage

All Artists now keep track of if their internal state has been changed but not reflected in the display ('stale')
by a call to draw. It is thus possible to pragmatically determine if a given Figure needs to be re-drawn in
an interactive session.

To facilitate interactive usage a draw_allmethod has been added to pyplot which will redraw all of the
figures which are 'stale'.

To make this convenient for interactive use matplotlib now registers a function either with IPython's
'post_execute' event or with the displayhook in the standard python REPL to automatically call plt.
draw_all just before control is returned to the REPL. This ensures that the draw command is deferred
and only called once.

8.8. New in matplotlib 1.5 761

Matplotlib, Release 3.4.3

The upshot of this is that for interactive backends (including %matplotlib notebook) in interactive
mode (with plt.ion())

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ln, = ax.plot([0, 1, 4, 9, 16])
plt.show()
ln.set_color('g')

will automatically update the plot to be green. Any subsequent modifications to the Artist objects will do
likewise.

This is the first step of a larger consolidation and simplification of the pyplot internals.

8.8.2 Working with labeled data like pandas DataFrames

Plot methods which take arrays as inputs can now also work with labeled data and unpack such data.

This means that the following two examples produce the same plot:

Example

df = pandas.DataFrame({"var1":[1,2,3,4,5,6], "var2":[1,2,3,4,5,6]})
plt.plot(df["var1"], df["var2"])

Example

plt.plot("var1", "var2", data=df)

This works for most plotting methods, which expect arrays/sequences as inputs. data can be anything
which supports __getitem__ (dict, pandas.DataFrame, h5py, ...) to access array like values
with string keys.

In addition to this, some other changes were made, which makes working with labeled data (ex pandas.
Series) easier:

• For plotting methods with label keyword argument, one of the data inputs is designated as the label
source. If the user does not supply a label that value object will be introspected for a label, currently
by looking for a name attribute. If the value object does not have a name attribute but was specified
by as a key into the data kwarg, then the key is used. In the above examples, this results in an implicit
label="var2" for both cases.

• plot() now uses the index of a Series instead of np.arange(len(y)), if no x argument is
supplied.

762 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

8.8.3 Added axes.prop_cycle key to rcParams

This is a more generic form of the now-deprecated axes.color_cycle param. Now, we can cycle more
than just colors, but also linestyles, hatches, and just about any other artist property. Cycler notation is used
for defining property cycles. Adding cyclers together will be like you are zip-ing together two or more
property cycles together:

axes.prop_cycle: cycler('color', 'rgb') + cycler('lw', [1, 2, 3])

You can even multiply cyclers, which is like using itertools.product on two or more property cycles.

Fig. 5: Color Cycle

8.8.4 New Colormaps

All four of the colormaps proposed as the new default are available as 'viridis' (the new default in 2.0),
'magma', 'plasma', and 'inferno'

8.8.5 Styles

Several new styles have been added, including many styles from the Seaborn project. Additionally, in order
to prep for the upcoming 2.0 style-change release, a 'classic' and 'default' style has been added. For this
release, the 'default' and 'classic' styles are identical. By using them now in your scripts, you can help ensure
a smooth transition during future upgrades of matplotlib, so that you can upgrade to the snazzy new defaults
when you are ready!

import matplotlib.style
matplotlib.style.use('classic')

The 'default' style will give you matplotlib's latest plotting styles:

matplotlib.style.use('default')

8.8. New in matplotlib 1.5 763

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/itertools.html#itertools.product
../../tutorials/intermediate/color_cycle.html

Matplotlib, Release 3.4.3

0 100

0

50

100

150

viridis

0 100

0

50

100

150

magma

0 100

0

50

100

150

plasma

0 100

0

50

100

150

inferno

8.8.6 Backends

New backend selection

The environment variable MPLBACKEND can now be used to set the matplotlib backend.

wx backend has been updated

The wx backend can now be used with both wxPython classic and Phoenix.

wxPython classic has to be at least version 2.8.12 and works on Python 2.x. As of May 2015 no official
release of wxPython Phoenix is available but a current snapshot will work on Python 2.7+ and 3.4+.

If you have multiple versions of wxPython installed, then the user code is responsible setting the
wxPython version. How to do this is explained in the comment at the beginning of the example
/gallery/user_interfaces/embedding_in_wx2_sgskip.

764 Chapter 8. Previous What's New

https://wxpython.org/Phoenix/docs/html/main.html

Matplotlib, Release 3.4.3

8.8.7 Configuration (rcParams)

Some parameters have been added, others have been improved.

Parameter Description
rcParams["xaxis.labelpad"],
rcParams["yaxis.labelpad"]

mplot3d now respects these parameters

rcParams["axes.labelpad"] (de-
fault: 4.0)

Default space between the axis and the label

rcParams["errorbar.capsize"]
(default: 0.0)

Default length of end caps on error bars

rcParams["xtick.minor.
visible"] (default: False),
rcParams["ytick.minor.
visible"] (default: False)

Default visibility of minor x/y ticks

rcParams["legend.
framealpha"] (default: 0.8)

Default transparency of the legend frame box

rcParams["legend.facecolor"]
(default: 'inherit')

Default facecolor of legend frame box (or 'inherit'
from rcParams["axes.facecolor"] (default:
'white'))

rcParams["legend.edgecolor"]
(default: '0.8')

Default edgecolor of legend frame box (or 'inherit'
from rcParams["axes.edgecolor"] (default:
'black'))

rcParams["figure.titlesize"]
(default: 'large')

Default font size for figure suptitles

rcParams["figure.
titleweight"] (default: 'normal')

Default font weight for figure suptitles

rcParams["image.
composite_image"] (default:
True)

Whether a vector graphics backend should composite sev-
eral images into a single image or not when saving. Useful
when needing to edit the files further in Inkscape or other
programs.

rcParams["markers.
fillstyle"] (default: 'full')

Default fillstyle of markers. Possible values are 'full'
(the default), 'left', 'right', 'bottom', 'top' and
'none'

rcParams["toolbar"] (default:
'toolbar2')

Added 'toolmanager' as a valid value, enabling the ex-
perimental ToolManager feature.

8.8.8 Widgets

Active state of Selectors

All selectors now implement set_active and get_active methods (also called when accessing the
active property) to properly update and query whether they are active.

8.8. New in matplotlib 1.5 765

../../tutorials/introductory/customizing.html?highlight=xaxis.labelpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=yaxis.labelpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.labelpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=errorbar.capsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xtick.minor.visible#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xtick.minor.visible#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ytick.minor.visible#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ytick.minor.visible#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.framealpha#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.framealpha#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.composite_image#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.composite_image#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=markers.fillstyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=markers.fillstyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=toolbar#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Moved ignore, set_active, and get_active methods to base class Widget

Pushes up duplicate methods in child class to parent class to avoid duplication of code.

Adds enable/disable feature to MultiCursor

A MultiCursor object can be disabled (and enabled) after it has been created without destroying the object.
Example:

multi_cursor.active = False

Improved RectangleSelector and new EllipseSelector Widget

Adds an interactive keywordwhich enables visible handles formanipulating the shape after it has been drawn.

Adds keyboard modifiers for:

• Moving the existing shape (default key = 'space')

• Making the shape square (default 'shift')

• Make the initial point the center of the shape (default 'control')

• Square and center can be combined

Allow Artists to Display Pixel Data in Cursor

Adds get_cursor_data and format_cursor_data methods to artists which can be used to add
zdata to the cursor display in the status bar. Also adds an implementation for Images.

8.8.9 New plotting features

Auto-wrapping Text

Added the keyword argument "wrap" to Text, which automatically breaks long lines of text when being
drawn. Works for any rotated text, different modes of alignment, and for text that are either labels or titles.
This breaks at the Figure, not Axes edge.

766 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

This is a really long string that should
be wrapped so that it does not go
outside the figure.

Contour plot corner masking

Ian Thomas rewrote the C++ code that calculates contours to add support for corner masking. This is
controlled by a new keyword argument corner_mask in the functions contour() and contourf().
The previous behaviour, which is now obtained using corner_mask=False, was for a single masked
point to completely mask out all four quads touching that point. The new behaviour, obtained using cor-
ner_mask=True, only masks the corners of those quads touching the point; any triangular corners com-
prising three unmasked points are contoured as usual. If the corner_mask keyword argument is not
specified, the default value is taken from rcParams.

Mostly unified linestyles for Line2D, Patch and Collection

The handling of linestyles for Lines, Patches and Collections has been unified. Now they all support defining
linestyles with short symbols, like "--", as well as with full names, like "dashed". Also the definition using a
dash pattern ((0., [3., 3.])) is supported for all methods using Line2D, Patch or Collection.

8.8. New in matplotlib 1.5 767

Matplotlib, Release 3.4.3

Fig. 6: Contour Corner Mask

Legend marker order

Added ability to place the label before the marker in a legend box with markerfirst keyword

Support for legend for PolyCollection and stackplot

Added a legend_handler for PolyCollection as well as a labels argument to stackplot().

Support for alternate pivots in mplot3d quiver plot

Added a pivot kwarg to quiver() that controls the pivot point around which the quiver line rotates. This
also determines the placement of the arrow head along the quiver line.

Logit Scale

Added support for the 'logit' axis scale, a nonlinear transformation

𝑥− > log 10(𝑥/(1 − 𝑥))

for data between 0 and 1 excluded.

Add step kwargs to fill_between

Added step kwarg to Axes.fill_between to allow to fill between lines drawn using the 'step' draw
style. The values of step match those of the where kwarg of Axes.step. The asymmetry of of the
kwargs names is not ideal, but Axes.fill_between already has a where kwarg.

This is particularly useful for plotting pre-binned histograms.

768 Chapter 8. Previous What's New

../../gallery/images_contours_and_fields/contour_corner_mask.html

Matplotlib, Release 3.4.3

Fig. 7: Filled Step

Square Plot

Implemented square plots feature as a new parameter in the axis function. When argument 'square' is speci-
fied, equal scaling is set, and the limits are set such that xmax-xmin == ymax-ymin.

Updated figimage to take optional resize parameter

Added the ability to plot simple 2D-Array using plt.figimage(X, resize=True). This is useful
for plotting simple 2D-Array without the Axes or whitespacing around the image.

Updated Figure.savefig() can now use figure's dpi

Added support to save the figure with the same dpi as the figure on the screen using dpi='figure':.

Example:

f = plt.figure(dpi=25) # dpi set to 25
S = plt.scatter([1,2,3],[4,5,6])
f.savefig('output.png', dpi='figure') # output savefig dpi set to 25 (same␣

↪as figure)

Updated Table to control edge visibility

Added the ability to toggle the visibility of lines in Tables. Functionality added to the pyplot.table
factory function under the keyword argument "edges". Values can be the strings "open", "closed", "horizon-
tal", "vertical" or combinations of the letters "L", "R", "T", "B" which represent left, right, top, and bottom
respectively.

Example:

8.8. New in matplotlib 1.5 769

../../gallery/lines_bars_and_markers/filled_step.html

Matplotlib, Release 3.4.3

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

table(..., edges="open") # No line visible
table(..., edges="closed") # All lines visible
table(..., edges="horizontal") # Only top and bottom lines visible
table(..., edges="LT") # Only left and top lines visible.

Zero r/cstride support in plot_wireframe

Adam Hughes added support to mplot3d's plot_wireframe to draw only row or column line plots.

Plot bar and barh with labels

Added kwarg tick_label to bar and barh to support plotting bar graphs with a text label for each bar.

770 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

8.8. New in matplotlib 1.5 771

Matplotlib, Release 3.4.3

30 20 10 0 10 20 30 30
20

10
0

10
20

30

60
40
20
0
20
40
60
80

Added center and frame kwargs to pie

These control where the center of the pie graph are and if the Axes frame is shown.

Fixed 3D filled contour plot polygon rendering

Certain cases of 3D filled contour plots that produce polygons with multiple holes produced improper render-
ing due to a loss of path information between PolyCollection and Poly3DCollection. A function
set_verts_and_codes() was added to allow path information to be retained for proper rendering.

Dense colorbars are rasterized

Vector file formats (pdf, ps, svg) are efficient for many types of plot element, but for some they can yield
excessive file size and even rendering artifacts, depending on the renderer used for screen display. This is a
problem for colorbars that show a large number of shades, as is most commonly the case. Now, if a colorbar
is showing 50 or more colors, it will be rasterized in vector backends.

772 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

bar1 bar2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

DateFormatter strftime

DateFormatter's __call__() method will format a datetime.datetime object with the format
string passed to the formatter's constructor. This method accepts datetimes with years before 1900, unlike
datetime.datetime.strftime().

Artist-level {get,set}_usetex for text

Add {get,set}_usetex methods to Text objects which allow artist-level control of LaTeX rendering
vs. the internal mathtex rendering.

Axes.remove() works as expected

As with artists added to an Axes, Axes objects can be removed from their figure via remove().

8.8. New in matplotlib 1.5 773

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strftime

Matplotlib, Release 3.4.3

API Consistency fix within Locators set_params() function

set_params() function, which sets parameters within a Locator type instance, is now available to all
Locator types. The implementation also prevents unsafe usage by strictly defining the parameters that a
user can set.

To use, call set_params() on a Locator instance with desired arguments:

loc = matplotlib.ticker.LogLocator()
Set given attributes for loc.
loc.set_params(numticks=8, numdecs=8, subs=[2.0], base=8)
The below will error, as there is no such parameter for LogLocator
named foo
loc.set_params(foo='bar')

Date Locators

Date Locators (derived fromDateLocator) now implement thetick_valuesmethod. This is expected
of all Locators derived from Locator.

The Date Locators can now be used easily without creating axes

from datetime import datetime
from matplotlib.dates import YearLocator
t0 = datetime(2002, 10, 9, 12, 10)
tf = datetime(2005, 10, 9, 12, 15)
loc = YearLocator()
values = loc.tick_values(t0, tf)

OffsetBoxes now support clipping

Artists draw onto objects of type OffsetBox through DrawingArea and TextArea. The
TextArea calculates the required space for the text and so the text is always within the bounds, for this
nothing has changed.

However, DrawingArea acts as a parent for zero or more Artists that draw on it and may do so beyond
the bounds. Now child Artists can be clipped to the bounds of the DrawingArea.

OffsetBoxes now considered by tight_layout

When tight_layout() or Figure.tight_layout or GridSpec.tight_layout() is called,
OffsetBoxes that are anchored outside the axes will not get chopped out. The OffsetBoxes will also
not get overlapped by other axes in case of multiple subplots.

774 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

Per-page pdf notes in multi-page pdfs (PdfPages)

Add a new method attach_note() to the PdfPages class, allowing the attachment of simple text notes to
pages in a multi-page pdf of figures. The new note is visible in the list of pdf annotations in a viewer that has
this facility (Adobe Reader, OSX Preview, Skim, etc.). Per default the note itself is kept off-page to prevent
it to appear in print-outs.

PdfPages.attach_note needs to be called before savefig in order to be added to the correct figure.

Updated fignum_exists to take figure name

Added the ability to check the existence of a figure using its name instead of just the figure number. Example:

figure('figure')
fignum_exists('figure') #true

8.8.10 ToolManager

Federico Ariza wrote the new ToolManager that comes as replacement for NavigationToolbar2

ToolManager offers a newway of looking at the user interactions with the figures. Before we had theNav-
igationToolbar2 with its own tools like zoom/pan/home/save/... and also we had the short-
cuts like yscale/grid/quit/..... ToolManager relocate all those actions as Tools (located in
backend_tools), and defines a way to access/trigger/reconfigure them.

The Toolbars are replaced for ToolContainers that are just GUI interfaces to trigger the tools.
But don't worry the default backends include a ToolContainer called toolbar

Note: At the moment, we release this primarily for feedback purposes and should be treated as experimental
until further notice as API changes will occur. For the moment the ToolManager works only with the
GTK3 and Tk backends. Make sure you use one of those. Port for the rest of the backends is coming soon.

To activate the ToolManager include the following at the top of your file

>>> matplotlib.rcParams['toolbar'] = 'toolmanager'

Interact with the ToolContainer

The most important feature is the ability to easily reconfigure the ToolContainer (aka toolbar). For example,
if we want to remove the "forward" button we would just do.

>>> fig.canvas.manager.toolmanager.remove_tool('forward')

Now if you want to programmatically trigger the "home" button

8.8. New in matplotlib 1.5 775

Matplotlib, Release 3.4.3

>>> fig.canvas.manager.toolmanager.trigger_tool('home')

New Tools for ToolManager

It is possible to add new tools to the ToolManager

A very simple tool that prints "You're awesome" would be:

from matplotlib.backend_tools import ToolBase
class AwesomeTool(ToolBase):

def trigger(self, *args, **kwargs):
print("You're awesome")

To add this tool to ToolManager

>>> fig.canvas.manager.toolmanager.add_tool('Awesome', AwesomeTool)

If we want to add a shortcut ("d") for the tool

>>> fig.canvas.manager.toolmanager.update_keymap('Awesome', 'd')

To add it to the toolbar inside the group 'foo'

>>> fig.canvas.manager.toolbar.add_tool('Awesome', 'foo')

There is a second class of tools, "Toggleable Tools", this are almost the same as our basic tools, just that
belong to a group, and are mutually exclusive inside that group. For tools derived from ToolToggleBase
there are two basic methods enable and disable that are called automatically whenever it is toggled.

A full example is located in /gallery/user_interfaces/toolmanager_sgskip

8.8.11 cbook.is_sequence_of_strings recognizes string objects

This is primarily how pandas stores a sequence of strings

import pandas as pd
import matplotlib.cbook as cbook

a = np.array(['a', 'b', 'c'])
print(cbook.is_sequence_of_strings(a)) # True

a = np.array(['a', 'b', 'c'], dtype=object)
print(cbook.is_sequence_of_strings(a)) # True

s = pd.Series(['a', 'b', 'c'])
print(cbook.is_sequence_of_strings(s)) # True

Previously, the last two prints returned false.

776 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

8.8.12 New close-figs argument for plot directive

Matplotlib has a sphinx extension plot_directive that creates plots for inclusion in sphinx documents.
Matplotlib 1.5 adds a new option to the plot directive - close-figs - that closes any previous figure
windows before creating the plots. This can help avoid some surprising duplicates of plots when using
plot_directive.

8.8.13 Support for URL string arguments to imread

The imread() function now accepts URL strings that point to remote PNG files. This circumvents the
generation of a HTTPResponse object directly.

8.8.14 Display hook for animations in the IPython notebook

Animation instances gained a _repr_html_method to support inline display of animations in the note-
book. The method used to display is controlled by the animation.html rc parameter, which currently
supports values of none and html5. none is the default, performing no display. html5 converts the
animation to an h264 encoded video, which is embedded directly in the notebook.

Users not wishing to use the _repr_html_ display hook can also manually call the to_html5_video
method to get the HTML and display using IPython's HTML display class:

from IPython.display import HTML
HTML(anim.to_html5_video())

8.8.15 Prefixed pkg-config for building

Handling of pkg-config has been fixed in so far as it is now possible to set it using the environment variable
PKG_CONFIG. This is important if your toolchain is prefixed. This is done in a simpilar way as setting CC
or CXX before building. An example follows.

export PKG_CONFIG=x86_64-pc-linux-gnu-pkg-config

8.9 New in matplotlib 1.4

Thomas A. Caswell served as the release manager for the 1.4 release.

Table of Contents

• New in matplotlib 1.4

– New colormap

– The nbagg backend

8.9. New in matplotlib 1.4 777

Matplotlib, Release 3.4.3

– New plotting features

– Date handling

– Configuration (rcParams)

– style package added

– Backends

– Text

– Sphinx extensions

– Legend and PathEffects documentation

– Widgets

– GAE integration

Note: matplotlib 1.4 supports Python 2.6, 2.7, 3.3, and 3.4

8.9.1 New colormap

In heatmaps, a green-to-red spectrum is often used to indicate intensity of activity, but this can be problematic
for the red/green colorblind. A new, colorblind-friendly colormap is now available at matplotlib.cm.
Wistia. This colormapmaintains the red/green symbolismwhile achieving deuteranopic legibility through
brightness variations. See here for more information.

8.9.2 The nbagg backend

Phil Elson added a new backend, named "nbagg", which enables interactive figures in a live IPython notebook
session. The backend makes use of the infrastructure developed for the webagg backend, which itself gives
standalone server backed interactive figures in the browser, however nbagg does not require a dedicated
matplotlib server as all communications are handled through the IPython Comm machinery.

As with other backends nbagg can be enabled inside the IPython notebook with:

import matplotlib
matplotlib.use('nbagg')

Once figures are created and then subsequently shown, they will placed in an interactive widget inside the
notebook allowing panning and zooming in the same way as any other matplotlib backend. Because figures
require a connection to the IPython notebook server for their interactivity, once the notebook is saved, each
figure will be rendered as a static image - thus allowing non-interactive viewing of figures on services such
as nbviewer.

778 Chapter 8. Previous What's New

https://github.com/wistia/heatmap-palette
https://nbviewer.ipython.org/

Matplotlib, Release 3.4.3

8.9.3 New plotting features

Power-law normalization

Ben Gamari added a power-law normalization method, PowerNorm. This class maps a range of values to
the interval [0,1] with power-law scaling with the exponent provided by the constructor's gamma argument.
Power law normalization can be useful for, e.g., emphasizing small populations in a histogram.

Fully customizable boxplots

Paul Hobson overhauled the boxplot() method such that it is now completely customizable in terms of
the styles and positions of the individual artists. Under the hood, boxplot() relies on a new function
(boxplot_stats()), which accepts any data structure currently compatible with boxplot(), and re-
turns a list of dictionaries containing the positions for each element of the boxplots. Then a second method,
bxp is called to draw the boxplots based on the stats.

The boxplot() function can be used as before to generate boxplots from data in one step. But now the user
has the flexibility to generate the statistics independently, or to modify the output of boxplot_stats()
prior to plotting with bxp.

Lastly, each artist (e.g., the box, outliers, cap, notches) can now be toggled on or off and their styles can be
passed in through individual kwargs. See the examples: /gallery/statistics/boxplot and /gallery/statistics/bxp

Added a bool kwarg, manage_xticks, which if False disables the management of the ticks and limits on
the x-axis by bxp().

Support for datetime axes in 2d plots

Andrew Dawson added support for datetime axes to contour(), contourf(), pcolormesh() and
pcolor().

Support for additional spectrum types

Todd Jennings added support for new types of frequency spectrum plots: magnitude_spectrum(),
phase_spectrum(), and angle_spectrum(), as well as corresponding functions in mlab.

He also added these spectrum types to specgram(), as well as adding support for linear scaling there (in
addition to the existing dB scaling). Support for additional spectrum types was also added to specgram().

He also increased the performance for all of these functions and plot types.

8.9. New in matplotlib 1.4 779

Matplotlib, Release 3.4.3

Support for detrending and windowing 2D arrays in mlab

Todd Jennings added support for 2D arrays in the detrend_mean(), detrend_none(), and de-
trend(), as well as adding matplotlib.mlab.apply_window which support windowing 2D ar-
rays.

Support for strides in mlab

Todd Jennings added some functions to mlab to make it easier to use NumPy strides to create memory-
efficient 2D arrays. This includes matplotlib.mlab.stride_repeat, which repeats an array to
create a 2D array, and stride_windows(), which uses a moving window to create a 2D array from a 1D
array.

Formatter for new-style formatting strings

Added StrMethodFormatter which does the same job as FormatStrFormatter, but accepts new-
style formatting strings instead of printf-style formatting strings

Consistent grid sizes in streamplots

streamplot() uses a base grid size of 30x30 for both density=1 and density=(1, 1). Previously
a grid size of 30x30 was used for density=1, but a grid size of 25x25 was used for density=(1, 1).

Get a list of all tick labels (major and minor)

Added the kwarg 'which' to Axes.get_xticklabels, Axes.get_yticklabels and Axis.
get_ticklabels. 'which' can be 'major', 'minor', or 'both' select which ticks to return, like
set_ticks_position(). If 'which' is None then the old behaviour (controlled by the bool minor).

Separate horizontal/vertical axes padding support in ImageGrid

The kwarg 'axes_pad' to mpl_toolkits.axes_grid1.axes_grid.ImageGrid can now be a tuple
if separate horizontal/vertical padding is needed. This is supposed to be very helpful when you have a labelled
legend next to every subplot and you need to make some space for legend's labels.

780 Chapter 8. Previous What's New

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

Support for skewed transformations

The Affine2D gained additional methods skew and skew_deg to create skewed transformations. Addi-
tionally, matplotlib internals were cleaned up to support using such transforms in Axes. This transform is
important for some plot types, specifically the Skew-T used in meteorology.

Fig. 8: Skewt

Support for specifying properties of wedge and text in pie charts.

Added the kwargs 'wedgeprops' and 'textprops' to pie to accept properties for wedge and text objects in a
pie. For example, one can specify wedgeprops = {'linewidth':3} to specify the width of the borders of the
wedges in the pie. For more properties that the user can specify, look at the docs for the wedge and text
objects.

8.9. New in matplotlib 1.4 781

../../gallery/specialty_plots/skewt.html

Matplotlib, Release 3.4.3

Fixed the direction of errorbar upper/lower limits

Larry Bradley fixed the errorbar()method such that the upper and lower limits (lolims, uplims, xlolims,
xuplims) now point in the correct direction.

More consistent add-object API for Axes

Added the Axes method add_image to put image handling on a par with artists, collections, containers,
lines, patches, and tables.

Violin Plots

Per Parker, Gregory Kelsie, Adam Ortiz, Kevin Chan, Geoffrey Lee, Deokjae Donald Seo, and Taesu Terry
Lim added a basic implementation for violin plots. Violin plots can be used to represent the distribution of
sample data. They are similar to box plots, but use a kernel density estimation function to present a smooth
approximation of the data sample used. The added features are:

violin - Renders a violin plot from a collection of statistics. violin_stats() - Produces a collection
of statistics suitable for rendering a violin plot. violinplot() - Creates a violin plot from a set of sample
data. This method makes use of violin_stats() to process the input data, and violin_stats() to
do the actual rendering. Users are also free to modify or replace the output of violin_stats() in order
to customize the violin plots to their liking.

This feature was implemented for a software engineering course at the University of Toronto, Scarborough,
run in Winter 2014 by Anya Tafliovich.

More markevery options to show only a subset of markers

Rohan Walker extended the markevery property in Line2D. You can now specify a subset of markers to
show with an int, slice object, numpy fancy indexing, or float. Using a float shows markers at approximately
equal display-coordinate-distances along the line.

Added size related functions to specialized Collections

Added the get_size and set_size functions to control the size of elements of specialized collections
(AsteriskPolygonCollection BrokenBarHCollection CircleCollection PathCol-
lection PolyCollection RegularPolyCollection StarPolygonCollection).

782 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

Fixed the mouse coordinates giving the wrong theta value in Polar graph

Added code to transform_non_affine() to ensure that the calculated theta value was between the
range of 0 and 2 * pi since the problem was that the value can become negative after applying the direction
and rotation to the theta calculation.

Simple quiver plot for mplot3d toolkit

A team of students in an Engineering Large Software Systems course, taught by Prof. Anya Tafliovich at the
University of Toronto, implemented a simple version of a quiver plot in 3D space for the mplot3d toolkit as
one of their term project. This feature is documented in quiver(). The team members are: Ryan Steve
D'Souza, Victor B, xbtsw, Yang Wang, David, Caradec Bisesar and Vlad Vassilovski.

Fig. 9: Quiver3d

polar-plot r-tick locations

Added the ability to control the angular position of the r-tick labels on a polar plot via
set_rlabel_position.

8.9.4 Date handling

n-d array support for date conversion

Andrew Dawson added support for n-d array handling to matplotlib.dates.num2date(),
matplotlib.dates.date2num() and matplotlib.dates.datestr2num(). Support is also
added to the unit conversion interfaces matplotlib.dates.DateConverter and matplotlib.
units.Registry.

8.9. New in matplotlib 1.4 783

../../gallery/mplot3d/quiver3d.html

Matplotlib, Release 3.4.3

8.9.5 Configuration (rcParams)

savefig.transparent added

Controls whether figures are saved with a transparent background by default. Previously savefig always
defaulted to a non-transparent background.

axes.titleweight

Added rcParam to control the weight of the title

axes.formatter.useoffset added

Controls the default value of useOffset in ScalarFormatter. If True and the data range is much smaller
than the data average, then an offset will be determined such that the tick labels are meaningful. If False
then the full number will be formatted in all conditions.

nbagg.transparent added

Controls whether nbagg figures have a transparent background. nbagg.transparent isTrue by default.

XDG compliance

Matplotlib now looks for configuration files (both rcparams and style) in XDG compliant locations.

8.9.6 style package added

You can now easily switch between different styles using the new style package:

>>> from matplotlib import style
>>> style.use('dark_background')

Subsequent plots will use updated colors, sizes, etc. To list all available styles, use:

>>> print style.available

You can add your own custom <style name>.mplstyle files to ~/.matplotlib/stylelib or
call use with a URL pointing to a file with matplotlibrc settings.

Note that this is an experimental feature, and the interface may change as users test out this new feature.

784 Chapter 8. Previous What's New

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Matplotlib, Release 3.4.3

8.9.7 Backends

Qt5 backend

Martin Fitzpatrick and Tom Badran implemented a Qt5 backend. The differences in namespace locations
between Qt4 and Qt5 was dealt with by shimming Qt4 to look like Qt5, thus the Qt5 implementation is the
primary implementation. Backwards compatibility for Qt4 is maintained by wrapping the Qt5 implementa-
tion.

The Qt5Agg backend currently does not work with IPython's %matplotlib magic.

The 1.4.0 release has a known bug where the toolbar is broken. This can be fixed by:

cd path/to/installed/matplotlib
wget https://github.com/matplotlib/matplotlib/pull/3322.diff
unix2dos 3322.diff (if on windows to fix line endings)
patch -p2 < 3322.diff

Qt4 backend

Rudolf Höfler changed the appearance of the subplottool. All sliders are vertically arranged now, buttons for
tight layout and reset were added. Furthermore, the subplottool is now implemented as a modal dialog. It
was previously a QMainWindow, leaving the SPT open if one closed the plot window.

In the figure options dialog one can now choose to (re-)generate a simple automatic legend. Any explicitly
set legend entries will be lost, but changes to the curves' label, linestyle, et cetera will now be updated in the
legend.

Interactive performance of the Qt4 backend has been dramatically improved under windows.

The mapping of key-signals from Qt to values matplotlib understands was greatly improved (For both Qt4
and Qt5).

Cairo backends

The Cairo backends are now able to use the cairocffi bindings which are more actively maintained than the
pycairo bindings.

Gtk3Agg backend

The Gtk3Agg backend now works on Python 3.x, if the cairocffi bindings are installed.

8.9. New in matplotlib 1.4 785

https://github.com/SimonSapin/cairocffi
https://www.cairographics.org/pycairo/
https://github.com/SimonSapin/cairocffi

Matplotlib, Release 3.4.3

PDF backend

Added context manager for saving to multi-page PDFs.

8.9.8 Text

Text URLs supported by SVG backend

The SVG backend will now render Text objects' url as a link in output SVGs. This allows one to make
clickable text in saved figures using the url kwarg of the Text class.

Anchored sizebar font

Added the fontproperties kwarg to AnchoredSizeBar to control the font properties.

8.9.9 Sphinx extensions

The :context: directive in the plot_directive Sphinx extension can now accept an optional reset
setting, which will cause the context to be reset. This allows more than one distinct context to be present
in documentation. To enable this option, use :context: reset instead of :context: any time you
want to reset the context.

8.9.10 Legend and PathEffects documentation

The Legend guide and Path effects guide have both been updated to better reflect the full potential of each of
these powerful features.

8.9.11 Widgets

Span Selector

Added an option span_stays to the SpanSelector which makes the selector rectangle stay on the axes
after you release the mouse.

8.9.12 GAE integration

Matplotlib will now run on google app engine.

786 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

8.10 New in matplotlib 1.3

Table of Contents

• New in matplotlib 1.3

– New in 1.3.1

– New plotting features

– Updated Axes3D.contour methods

– Drawing

– Text

– Configuration (rcParams)

– Backends

– Documentation and examples

– Infrastructure

Note: matplotlib 1.3 supports Python 2.6, 2.7, 3.2, and 3.3

8.10.1 New in 1.3.1

1.3.1 is a bugfix release, primarily dealing with improved setup and handling of dependencies, and correcting
and enhancing the documentation.

The following changes were made in 1.3.1 since 1.3.0.

Enhancements

• Added a context manager for creating multi-page pdfs (see matplotlib.backends.
backend_pdf.PdfPages).

• The WebAgg backend should now have lower latency over heterogeneous Internet connections.

8.10. New in matplotlib 1.3 787

Matplotlib, Release 3.4.3

Bug fixes

• Histogram plots now contain the endline.

• Fixes to the Molleweide projection.

• Handling recent fonts from Microsoft and Macintosh-style fonts with non-ascii metadata is improved.

• Hatching of fill between plots now works correctly in the PDF backend.

• Tight bounding box support now works in the PGF backend.

• Transparent figures now display correctly in the Qt4Agg backend.

• Drawing lines from one subplot to another now works.

• Unit handling on masked arrays has been improved.

Setup and dependencies

• Now works with any version of pyparsing 1.5.6 or later, without displaying hundreds of warnings.

• Now works with 64-bit versions of Ghostscript on MS-Windows.

• When installing from source into an environment without Numpy, Numpy will first be downloaded
and built and then used to build matplotlib.

• Externally installed backends are now always imported using a fully-qualified path to the module.

• Works with newer version of wxPython.

• Can now build with a PyCXX installed globally on the system from source.

• Better detection of Gtk3 dependencies.

Testing

• Tests should now work in non-English locales.

• PEP8 conformance tests now report on locations of issues.

8.10.2 New plotting features

xkcd-style sketch plotting

To give your plots a sense of authority that they may be missing, Michael Droettboom (inspired by
the work of many others in PR #1329) has added an xkcd-style sketch plotting mode. To use it, sim-
ply call matplotlib.pyplot.xkcd before creating your plot. For really fine control, it is also
possible to modify each artist's sketch parameters individually with matplotlib.artist.Artist.
set_sketch_params().

788 Chapter 8. Previous What's New

https://github.com/matplotlib/matplotlib/pull/1329/
https://xkcd.com/

Matplotlib, Release 3.4.3

Fig. 10: xkcd

8.10.3 Updated Axes3D.contour methods

Damon McDougall updated the tricontour() and tricontourf() methods to allow 3D contour
plots on abitrary unstructured user-specified triangulations.

Fig. 11: Tricontour3d

New eventplot plot type

Todd Jennings added a eventplot() function to create multiple rows or columns of identical line seg-
ments

As part of this feature, there is a new EventCollection class that allows for plotting and manipulating
rows or columns of identical line segments.

8.10. New in matplotlib 1.3 789

../../gallery/showcase/xkcd.html
../../gallery/mplot3d/tricontour3d.html

Matplotlib, Release 3.4.3

Fig. 12: Eventplot Demo

Triangular grid interpolation

Geoffroy Billotey and Ian Thomas added classes to perform interpolation within triangular grids: (Linear-
TriInterpolator and CubicTriInterpolator) and a utility class to find the triangles in which
points lie (TrapezoidMapTriFinder). A helper class to perform mesh refinement and smooth contour-
ing was also added (UniformTriRefiner). Finally, a class implementing some basic tools for triangular
mesh improvement was added (TriAnalyzer).

Fig. 13: Tricontour Smooth User

790 Chapter 8. Previous What's New

../../gallery/lines_bars_and_markers/eventplot_demo.html
../../gallery/images_contours_and_fields/tricontour_smooth_user.html

Matplotlib, Release 3.4.3

Baselines for stackplot

Till Stensitzki added non-zero baselines to stackplot(). They may be symmetric or weighted.

Fig. 14: Stackplot Demo2

Rectangular colorbar extensions

Andrew Dawson added a new keyword argument extendrect to colorbar() to optionally make colorbar
extensions rectangular instead of triangular.

More robust boxplots

Paul Hobson provided a fix to the boxplot() method that prevent whiskers from being drawn inside the
box for oddly distributed data sets.

Calling subplot() without arguments

A call to subplot() without any arguments now acts the same as subplot(111) or subplot(1,
1, 1) -- it creates one axes for the whole figure. This was already the behavior for both axes() and
subplots(), and now this consistency is shared with subplot().

8.10.4 Drawing

Independent alpha values for face and edge colors

Wes Campaigne modified how Patch objects are drawn such that (for backends supporting transparency)
you can set different alpha values for faces and edges, by specifying their colors in RGBA format. Note
that if you set the alpha attribute for the patch object (e.g. using set_alpha() or the alpha keyword
argument), that value will override the alpha components set in both the face and edge colors.

8.10. New in matplotlib 1.3 791

../../gallery/lines_bars_and_markers/stackplot_demo.html

Matplotlib, Release 3.4.3

Path effects on lines

Thanks to Jae-Joon Lee, path effects now also work on plot lines.

Fig. 15: Patheffect Demo

Easier creation of colormap and normalizer for levels with colors

Phil Elson added the matplotlib.colors.from_levels_and_colors() function to easily cre-
ate a colormap and normalizer for representation of discrete colors for plot types such as matplotlib.
pyplot.pcolormesh(), with a similar interface to that of matplotlib.pyplot.contourf.

Full control of the background color

Wes Campaigne and Phil Elson fixed the Agg backend such that PNGs are now saved with the correct back-
ground color when fig.patch.get_alpha() is not 1.

Improved bbox_inches="tight" functionality

Passing bbox_inches="tight" through to pyplot.savefig now takes into account all artists on a
figure - this was previously not the case and led to several corner cases which did not function as expected.

Initialize a rotated rectangle

Damon McDougall extended the Rectangle constructor to accept an angle kwarg, specifying the rotation
of a rectangle in degrees.

792 Chapter 8. Previous What's New

../../gallery/misc/patheffect_demo.html

Matplotlib, Release 3.4.3

8.10.5 Text

Anchored text support

The SVG and pgf backends are now able to save text alignment information to their output formats. This
allows to edit text elements in saved figures, using Inkscape for example, while preserving their intended po-
sition. For SVG please note that you'll have to disable the default text-to-path conversion (mpl.rc('svg',
fonttype='none')).

Better vertical text alignment and multi-line text

The vertical alignment of text is now consistent across backends. You may see small differences in text
placement, particularly with rotated text.

If you are using a custom backend, note that the draw_text renderer method is now passed the location
of the baseline, not the location of the bottom of the text bounding box.

Multi-line text will now leave enough room for the height of very tall or very low text, such as superscripts
and subscripts.

Left and right side axes titles

Andrew Dawson added the ability to add axes titles flush with the left and right sides of the top of the axes
using a new keyword argument loc to title().

Improved manual contour plot label positioning

Brian Mattern modified the manual contour plot label positioning code to interpolate along line segments
and find the actual closest point on a contour to the requested position. Previously, the closest path vertex
was used, which, in the case of straight contours was sometimes quite distant from the requested location.
Much more precise label positioning is now possible.

8.10.6 Configuration (rcParams)

Quickly find rcParams

Phil Elson made it easier to search for rcParameters by passing a valid regular expression to matplotlib.
RcParams.find_all(). matplotlib.RcParams now also has a pretty repr and str representation
so that search results are printed prettily:

>>> import matplotlib
>>> print(matplotlib.rcParams.find_all('\.size'))
RcParams({'font.size': 12,

'xtick.major.size': 4,
'xtick.minor.size': 2,

(continues on next page)

8.10. New in matplotlib 1.3 793

Matplotlib, Release 3.4.3

(continued from previous page)
'ytick.major.size': 4,
'ytick.minor.size': 2})

axes.xmargin and axes.ymargin added to rcParams

rcParams["axes.xmargin"] (default: 0.05) and rcParams["axes.ymargin"] (default: 0.
05) were added to configure the default margins used. Previously they were hard-coded to default to 0,
default value of both rcParam values is 0.

Changes to font rcParams

The font.* rcParams now affect only text objects created after the rcParam has been set, and will not
retroactively affect already existing text objects. This brings their behavior in line with most other rcParams.

Added rcParams["savefig.jpeg_quality"] (default: 95)

rcParam value rcParams["savefig.jpeg_quality"] (default: 95) was added so that the user can
configure the default quality used when a figure is written as a JPEG. The default quality is 95; previously,
the default quality was 75. This change minimizes the artifacting inherent in JPEG images, particularly with
images that have sharp changes in color as plots often do.

8.10.7 Backends

WebAgg backend

Michael Droettboom, Phil Elson and others have developed a new backend, WebAgg, to display figures in a
web browser. It works with animations as well as being fully interactive.

794 Chapter 8. Previous What's New

../../tutorials/introductory/customizing.html?highlight=axes.xmargin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.ymargin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=savefig.jpeg_quality#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Future versions of matplotlib will integrate this backend with the IPython notebook for a fully web browser
based plotting frontend.

Remember save directory

Martin Spacek made the save figure dialog remember the last directory saved to. The default is configurable
with the new rcParams["savefig.directory"] (default: '~') rcParam in matplotlibrc.

8.10.8 Documentation and examples

Numpydoc docstrings

Nelle Varoquaux has started an ongoing project to convert matplotlib's docstrings to numpydoc format. See
MEP10 for more information.

8.10. New in matplotlib 1.3 795

../../tutorials/introductory/customizing.html?highlight=savefig.directory#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://github.com/matplotlib/matplotlib/wiki/Mep10

Matplotlib, Release 3.4.3

Example reorganization

Tony Yu has begun work reorganizing the examples into more meaningful categories. The new gallery page
is the fruit of this ongoing work. See MEP12 for more information.

Examples now use subplots()

For the sake of brevity and clarity, most of the examples now use the newer subplots(), which creates a
figure and one (or multiple) axes object(s) in one call. The old way involved a call to figure(), followed
by one (or multiple) subplot() calls.

8.10.9 Infrastructure

Housecleaning

A number of features that were deprecated in 1.2 or earlier, or have not been in a working state for a long
time have been removed. Highlights include removing the Qt version 3 backends, and the FltkAgg and Emf
backends. See Changes in 1.3.x for a complete list.

New setup script

matplotlib 1.3 includes an entirely rewritten setup script. We now ship fewer dependencies with the tarballs
and installers themselves. Notably, pytz, dateutil, pyparsing and six are no longer included with matplotlib.
You can either install them manually first, or let pip install them as dependencies along with matplotlib. It
is now possible to not include certain subcomponents, such as the unit test data, in the install. See setup.
cfg.template for more information.

XDG base directory support

On Linux, matplotlib now uses the XDG base directory specification to find the matplotlibrc con-
figuration file. matplotlibrc should now be kept in ~/.config/matplotlib, rather than ~/.
matplotlib. If your configuration is found in the old location, it will still be used, but a warning will be
displayed.

Catch opening too many figures using pyplot

Figures created through pyplot.figure are retained until they are explicitly closed. It is therefore com-
mon for new users of matplotlib to run out of memory when creating a large series of figures in a loop without
closing them.

matplotlib will now display a RuntimeWarning when too many figures have been opened at once. By
default, this is displayed for 20 or more figures, but the exact number may be controlled using the figure.
max_open_warning rcParam.

796 Chapter 8. Previous What's New

https://github.com/matplotlib/matplotlib/wiki/MEP12
https://pypi.org/project/pytz/
https://pypi.org/project/python-dateutil/
https://pypi.org/project/pyparsing/
https://pypi.org/project/six/
https://pypi.org/project/pip/
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://docs.python.org/3/library/exceptions.html#RuntimeWarning

Matplotlib, Release 3.4.3

8.11 New in matplotlib 1.2.2

Table of Contents

• New in matplotlib 1.2.2

– Improved collections

– Multiple images on same axes are correctly transparent

8.11.1 Improved collections

The individual items of a collection may now have different alpha values and be rendered correctly. This
also fixes a bug where collections were always filled in the PDF backend.

8.11.2 Multiple images on same axes are correctly transparent

When putting multiple images onto the same axes, the background color of the axes will now show through
correctly.

8.12 New in matplotlib 1.2

Table of Contents

• New in matplotlib 1.2

– Python 3.x support

– PGF/TikZ backend

– Locator interface

– Tri-Surface Plots

– Control the lengths of colorbar extensions

– Figures are picklable

– Set default bounding box in matplotlibrc

– New Boxplot Functionality

– New RC parameter functionality

– Streamplot

– New hist functionality

8.11. New in matplotlib 1.2.2 797

Matplotlib, Release 3.4.3

– Updated shipped dependencies

– Face-centred colors in tripcolor plots

– Hatching patterns in filled contour plots, with legends

– Known issues in the matplotlib 1.2 release

Note: matplotlib 1.2 supports Python 2.6, 2.7, and 3.1

8.12.1 Python 3.x support

Matplotlib 1.2 is the first version to support Python 3.x, specifically Python 3.1 and 3.2. To make this happen
in a reasonable way, we also had to drop support for Python versions earlier than 2.6.

This work was done by Michael Droettboom, the Cape Town Python Users' Group, many others and sup-
ported financially in part by the SAGE project.

The following GUI backends work under Python 3.x: Gtk3Cairo, Qt4Agg, TkAgg and MacOSX. The other
GUI backends do not yet have adequate bindings for Python 3.x, but continue to work on Python 2.6 and
2.7, particularly the Qt and QtAgg backends (which have been deprecated). The non-GUI backends, such as
PDF, PS and SVG, work on both Python 2.x and 3.x.

Features that depend on the Python Imaging Library, such as JPEG handling, do not work, since the version
of PIL for Python 3.x is not sufficiently mature.

8.12.2 PGF/TikZ backend

PeterWürtz wrote a backend that allows matplotlib to export figures as drawing commands for LaTeX. These
can be processed by PdfLaTeX, XeLaTeX or LuaLaTeX using the PGF/TikZ package. Usage examples and
documentation are found in Typesetting With XeLaTeX/LuaLaTeX.

..

0.0
.

0.5
.

1.0
.

1.5
.

2.0
.

2.5
.

3.0
.

3.5
.

4.0
.

unicode text: я, ψ, €, ü, 10 °/µm
.

0.0

.

0.5

.

1.0

.

1.5

.

2.0

.

2.5

.

3.0

.

3.5

.

4.0

.

X Ǝ
LA T
EX

.

unicode math: 𝜆 =
∞

�්�
𝜇2

𝑖

798 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

8.12.3 Locator interface

Philip Elson exposed the intelligence behind the tick Locator classes with a simple interface. For instance,
to get no more than 5 sensible steps which span the values 10 and 19.5:

>>> import matplotlib.ticker as mticker
>>> locator = mticker.MaxNLocator(nbins=5)
>>> print(locator.tick_values(10, 19.5))
[10. 12. 14. 16. 18. 20.]

8.12.4 Tri-Surface Plots

Damon McDougall added a new plotting method for the mplot3d toolkit called plot_trisurf().

Fig. 16: Trisurf3d

8.12.5 Control the lengths of colorbar extensions

Andrew Dawson added a new keyword argument extendfrac to colorbar() to control the length of min-
imum and maximum colorbar extensions.

8.12.6 Figures are picklable

Philip Elson added an experimental feature to make figures picklable for quick and easy short-term storage
of plots. Pickle files are not designed for long term storage, are unsupported when restoring a pickle saved in
another matplotlib version and are insecure when restoring a pickle from an untrusted source. Having said
this, they are useful for short term storage for later modification inside matplotlib.

8.12. New in matplotlib 1.2 799

../../gallery/mplot3d/trisurf3d.html

Matplotlib, Release 3.4.3

0 1 2 3 4 5 6
0.0

2.5

5.0

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Default length colorbar extensions

0 1 2 3 4 5 6
0.0

2.5

5.0

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Custom length colorbar extensions

8.12.7 Set default bounding box in matplotlibrc

Two new defaults are available in the matplotlibrc configuration file: savefig.bbox, which can be set to
'standard' or 'tight', and savefig.pad_inches, which controls the bounding box padding.

8.12.8 New Boxplot Functionality

Users can now incorporate their own methods for computing the median and its confidence intervals into
the boxplot method. For every column of data passed to boxplot, the user can specify an accompanying
median and confidence interval.

8.12.9 New RC parameter functionality

Matthew Emmett added a function and a context manager to help manage RC parameters: rc_file() and
rc_context. To load RC parameters from a file:

>>> mpl.rc_file('mpl.rc')

To temporarily use RC parameters:

800 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

Fig. 17: Boxplot Demo3

>>> with mpl.rc_context(fname='mpl.rc', rc={'text.usetex': True}):
>>> ...

8.12.10 Streamplot

Tom Flannaghan and Tony Yu have added a new streamplot() function to plot the streamlines of a
vector field. This has been a long-requested feature and complements the existing quiver() function for
plotting vector fields. In addition to simply plotting the streamlines of the vector field, streamplot()
allows users to map the colors and/or line widths of the streamlines to a separate parameter, such as the
speed or local intensity of the vector field.

8.12.11 New hist functionality

Nic Eggert added a new stacked kwarg to hist() that allows creation of stacked histograms using any of
the histogram types. Previously, this functionality was only available by using the "barstacked" histogram
type. Now, when stacked=True is passed to the function, any of the histogram types can be stacked. The
"barstacked" histogram type retains its previous functionality for backwards compatibility.

8.12. New in matplotlib 1.2 801

../../gallery/statistics/boxplot_demo.html

Matplotlib, Release 3.4.3

Fig. 18: Plot Streamplot

802 Chapter 8. Previous What's New

../../gallery/images_contours_and_fields/plot_streamplot.html

Matplotlib, Release 3.4.3

8.12.12 Updated shipped dependencies

The following dependencies that ship with matplotlib and are optionally installed alongside it have been
updated:

• pytz 2012d

• dateutil 1.5 on Python 2.x,
and 2.1 on Python 3.x

8.12.13 Face-centred colors in tripcolor plots

Ian Thomas extended tripcolor() to allow one color value to be specified for each triangular face rather
than for each point in a triangulation.

Fig. 19: Tripcolor Demo

8.12.14 Hatching patterns in filled contour plots, with legends

Phil Elson added support for hatching to contourf(), together with the ability to use a legend to identify
contoured ranges.

8.12.15 Known issues in the matplotlib 1.2 release

• When using the Qt4Agg backend with IPython 0.11 or later, the save dialog will not display. This
should be fixed in a future version of IPython.

8.12. New in matplotlib 1.2 803

http://pytz.sf.net/
http://labix.org/python-dateutil
../../gallery/images_contours_and_fields/tripcolor_demo.html

Matplotlib, Release 3.4.3

Fig. 20: Contourf Hatching

8.13 New in matplotlib 1.1

Table of Contents

• New in matplotlib 1.1

– Sankey Diagrams

– Animation

– Tight Layout

– PyQT4, PySide, and IPython

– Legend

– mplot3d

– Numerix support removed

– Markers

– Other improvements

Note: matplotlib 1.1 supports Python 2.4 to 2.7

804 Chapter 8. Previous What's New

../../gallery/images_contours_and_fields/contourf_hatching.html

Matplotlib, Release 3.4.3

8.13.1 Sankey Diagrams

Kevin Davies has extended Yannick Copin's original Sankey example into a module (sankey)
and provided new examples (/gallery/specialty_plots/sankey_basics, /gallery/specialty_plots/sankey_links,
/gallery/specialty_plots/sankey_rankine).

Fig. 21: Sankey Rankine

8.13.2 Animation

Ryan May has written a backend-independent framework for creating animated figures. The animation
module is intended to replace the backend-specific examples formerly in the examples-index listings. Ex-
amples using the new framework are in animation-examples-index; see the entrancing double pen-
dulum <gallery/animation/double_pendulum_sgskip.py> which uses matplotlib.
animation.Animation.save() to create the movie below.

This should be considered as a beta release of the framework; please try it and provide feedback.

8.13. New in matplotlib 1.1 805

../../gallery/specialty_plots/sankey_rankine.html

Matplotlib, Release 3.4.3

8.13.3 Tight Layout

A frequent issue raised by users of matplotlib is the lack of a layout engine to nicely space out elements of
the plots. While matplotlib still adheres to the philosophy of giving users complete control over the place-
ment of plot elements, Jae-Joon Lee created the tight_layout module and introduced a new command
tight_layout() to address the most common layout issues.

0.0 0.2 0.4 0.6 0.8 1.0
x-label

0.0

0.5

1.0

y-
la

be
l

before tight_layout

0.05 0.00 0.05
x-label

0.05

0.00

0.05

y-
la

be
l

before tight_layout

0.0 0.2 0.4 0.6 0.8 1.0
x-label

0.0

0.5

1.0

y-
la

be
l

after tight_layout

0.05 0.00 0.05
x-label

0.05
0.00
0.05

y-
la

be
l

after tight_layout

The usage of this functionality can be as simple as

plt.tight_layout()

and it will adjust the spacing between subplots so that the axis labels do not overlapwith neighboring subplots.
A Tight Layout guide has been created to show how to use this new tool.

806 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

8.13.4 PyQT4, PySide, and IPython

Gerald Storer made the Qt4 backend compatible with PySide as well as PyQT4. At present, however, PySide
does not support the PyOS_InputHook mechanism for handling gui events while waiting for text input, so
it cannot be used with the new version 0.11 of IPython. Until this feature appears in PySide, IPython users
should use the PyQT4 wrapper for QT4, which remains the matplotlib default.

An rcParam entry, "backend.qt4", has been added to allow users to select PyQt4, PyQt4v2, or PySide. The
latter two use the Version 2 Qt API. In most cases, users can ignore this rcParam variable; it is available to
aid in testing, and to provide control for users who are embedding matplotlib in a PyQt4 or PySide app.

8.13.5 Legend

Jae-Joon Lee has improved plot legends. First, legends for complex plots such as stem() plots will now
display correctly. Second, the 'best' placement of a legend has been improved in the presence of NANs.

See the Legend guide for more detailed explanation and examples.

Fig. 22: Legend Demo4

8.13.6 mplot3d

In continuing the efforts to make 3D plotting in matplotlib just as easy as 2D plotting, Ben Root has made
several improvements to the mplot3d module.

• Axes3D has been improved to bring the class towards feature-parity with regular Axes objects

• Documentation for Getting started was significantly expanded

• Axis labels and orientation improved

• Most 3D plotting functions now support empty inputs

• Ticker offset display added:

• contourf() gains zdir and offset kwargs. You can now do this:

8.13. New in matplotlib 1.1 807

http://ipython.org
../../gallery/text_labels_and_annotations/legend_demo.html

Matplotlib, Release 3.4.3

Fig. 23: Offset

Fig. 24: Contourf3d 2

808 Chapter 8. Previous What's New

../../gallery/mplot3d/offset.html
../../gallery/mplot3d/contourf3d_2.html

Matplotlib, Release 3.4.3

8.13.7 Numerix support removed

After more than two years of deprecation warnings, Numerix support has now been completely removed
from matplotlib.

8.13.8 Markers

The list of available markers for plot() and scatter() has now been merged. While they were mostly
similar, some markers existed for one function, but not the other. This merge did result in a conflict for the 'd'
diamond marker. Now, 'd' will be interpreted to always mean "thin" diamond while 'D' will mean "regular"
diamond.

Thanks to Michael Droettboom for this effort.

8.13.9 Other improvements

• Unit support for polar axes and arrow()

• PolarAxes gains getters and setters for "theta_direction", and "theta_offset" to allow for theta to go
in either the clock-wise or counter-clockwise direction and to specify where zero degrees should be
placed. set_theta_zero_location() is an added convenience function.

• Fixed error in argument handling for tri-functions such as tripcolor()

• axes.labelweight parameter added to rcParams.

• For imshow(), interpolation='nearest' will now always perform an interpolation. A "none" option
has been added to indicate no interpolation at all.

• An error in the Hammer projection has been fixed.

• clabel for contour() now accepts a callable. Thanks to Daniel Hyams for the original patch.

• Jae-Joon Lee added the HBoxDivider and VBoxDivider classes.

• Christoph Gohlke reduced memory usage in imshow().

• scatter() now accepts empty inputs.

• The behavior for 'symlog' scale has been fixed, but this may result in some minor changes to existing
plots. This work was refined by ssyr.

• Peter Butterworth added named figure support to figure().

• Michiel de Hoon has modified the MacOSX backend to make its interactive behavior consistent with
the other backends.

• Pim Schellart added a new colormap called "cubehelix". Sameer Grover also added a colormap called
"coolwarm". See it and all other colormaps here.

• Many bug fixes and documentation improvements.

8.13. New in matplotlib 1.1 809

Matplotlib, Release 3.4.3

8.14 New in matplotlib 1.0

Table of Contents

• New in matplotlib 1.0

– HTML5/Canvas backend

– Sophisticated subplot grid layout

– Easy pythonic subplots

– Contour fixes and and triplot

– multiple calls to show supported

– mplot3d graphs can be embedded in arbitrary axes

– tick_params

– Lots of performance and feature enhancements

– Much improved software carpentry

– Bugfix marathon

8.14.1 HTML5/Canvas backend

SimonRatcliffe and Ludwig Schwardt have released anHTML5/Canvas backend formatplotlib. The backend
is almost feature complete, and they have done a lot of work comparing their html5 rendered images with
our core renderer Agg. The backend features client/server interactive navigation of matplotlib figures in an
html5 compliant browser.

8.14.2 Sophisticated subplot grid layout

Jae-Joon Lee has written gridspec, a new module for doing complex subplot layouts, featuring row and
column spans and more. See Customizing Figure Layouts Using GridSpec and Other Functions for a tutorial
overview.

8.14.3 Easy pythonic subplots

Fernando Perez got tired of all the boilerplate code needed to create a figure and multiple subplots when
using the matplotlib API, and wrote a subplots() helper function. Basic usage allows you to create the
figure and an array of subplots with numpy indexing (starts with 0). e.g.:

fig, axarr = plt.subplots(2, 2)
axarr[0,0].plot([1,2,3]) # upper, left

See /gallery/subplots_axes_and_figures/subplot_demo for several code examples.

810 Chapter 8. Previous What's New

http://code.google.com/p/mplh5canvas/

Matplotlib, Release 3.4.3

Fig. 25: Demo Gridspec01

8.14.4 Contour fixes and and triplot

Ian Thomas has fixed a long-standing bug that has vexed our most talented developers for years. con-
tourf() now handles interior masked regions, and the boundaries of line and filled contours coincide.

Additionally, he has contributed a new module tri and helper function triplot() for creating and plot-
ting unstructured triangular grids.

Fig. 26: Triplot Demo

8.14. New in matplotlib 1.0 811

../../gallery/userdemo/demo_gridspec01.html
../../gallery/images_contours_and_fields/triplot_demo.html

Matplotlib, Release 3.4.3

8.14.5 multiple calls to show supported

A long standing request is to support multiple calls to show(). This has been difficult because it is hard
to get consistent behavior across operating systems, user interface toolkits and versions. Eric Firing has
done a lot of work on rationalizing show across backends, with the desired behavior to make show raise all
newly created figures and block execution until they are closed. Repeated calls to show should raise newly
created figures since the last call. Eric has done a lot of testing on the user interface toolkits and versions and
platforms he has access to, but it is not possible to test them all, so please report problems to the mailing list
and bug tracker.

8.14.6 mplot3d graphs can be embedded in arbitrary axes

You can now place an mplot3d graph into an arbitrary axes location, supporting mixing of 2D and 3D graphs
in the same figure, and/or multiple 3D graphs in a single figure, using the "projection" keyword argument to
add_axes or add_subplot. Thanks Ben Root.

Fig. 27: What's New 1 Subplot3d

8.14.7 tick_params

Eric Firing wrote tick_params, a convenience method for changing the appearance of ticks and tick labels.
See pyplot function tick_params() and associated Axes method tick_params().

8.14.8 Lots of performance and feature enhancements

• Faster magnification of large images, and the ability to zoom in to a single pixel

• Local installs of documentation work better

• Improved "widgets" -- mouse grabbing is supported

• More accurate snapping of lines to pixel boundaries

• More consistent handling of color, particularly the alpha channel, throughout the API

812 Chapter 8. Previous What's New

https://mail.python.org/mailman/listinfo/matplotlib-users
https://github.com/matplotlib/matplotlib/issues
../../gallery/pyplots/whats_new_1_subplot3d.html

Matplotlib, Release 3.4.3

8.14.9 Much improved software carpentry

Thematplotlib trunk is probably in as good a shape as it has ever been, thanks to improved software carpentry.
We now have a buildbot which runs a suite of nose regression tests on every svn commit, auto-generating
a set of images and comparing them against a set of known-goods, sending emails to developers on failures
with a pixel-by-pixel image comparison. Releases and release bugfixes happen in branches, allowing active
new feature development to happen in the trunk while keeping the release branches stable. Thanks to Andrew
Straw, Michael Droettboom and other matplotlib developers for the heavy lifting.

8.14.10 Bugfix marathon

Eric Firing went on a bug fixing and closing marathon, closing over 100 bugs on the (now-closed) Source-
Forge bug tracker with help from Jae-Joon Lee, Michael Droettboom, Christoph Gohlke and Michiel de
Hoon.

8.15 New in matplotlib 0.99

Table of Contents

• New in matplotlib 0.99

– New documentation

– mplot3d

– axes grid toolkit

– Axis spine placement

8.15.1 New documentation

Jae-Joon Lee has written two new guides Legend guide and Advanced Annotations. Michael Sarahan has
written Image tutorial. John Hunter has written two new tutorials on working with paths and transformations:
Path Tutorial and Transformations Tutorial.

8.15.2 mplot3d

Reinier Heeres has ported John Porter's mplot3d over to the new matplotlib transformations framework, and
it is now available as a toolkit mpl_toolkits.mplot3d (which now comes standard with all mpl installs). See
mplot3d-examples-index and Getting started

8.15. New in matplotlib 0.99 813

https://software-carpentry.org/
https://buildbot.net
http://code.google.com/p/python-nose/

Matplotlib, Release 3.4.3

Fig. 28: What's New 99 Mplot3d

8.15.3 axes grid toolkit

Jae-Joon Lee has added a new toolkit to ease displaying multiple images in matplotlib, as well as some
support for curvilinear grids to support the world coordinate system. The toolkit is included standard with
all new mpl installs. See axes_grid1-examples-index, axisartist-examples-index,What is axes_grid1 toolkit?
and axisartist

Fig. 29: What's New 99 Axes Grid

814 Chapter 8. Previous What's New

../../gallery/pyplots/whats_new_99_mplot3d.html
../../gallery/pyplots/whats_new_99_axes_grid.html

Matplotlib, Release 3.4.3

8.15.4 Axis spine placement

Andrew Straw has added the ability to place "axis spines" -- the lines that denote the data limits -- in various
arbitrary locations. No longer are your axis lines constrained to be a simple rectangle around the figure --
you can turn on or off left, bottom, right and top, as well as "detach" the spine to offset it away from the data.
See /gallery/ticks_and_spines/spine_placement_demo and matplotlib.spines.Spine.

Fig. 30: What's New 99 Spines

8.16 New in matplotlib 0.98.4

Table of Contents

• New in matplotlib 0.98.4

– Legend enhancements

– Fancy annotations and arrows

– Native OS X backend

– psd amplitude scaling

– Fill between

– Lots more

It's been four months since the last matplotlib release, and there are a lot of new features and bug-fixes.

Thanks to Charlie Moad for testing and preparing the source release, including binaries for OS X and
Windows for python 2.4 and 2.5 (2.6 and 3.0 will not be available until numpy is available on those re-
leases). Thanks to the many developers who contributed to this release, with contributions from Jae-Joon
Lee, Michael Droettboom, Ryan May, Eric Firing, Manuel Metz, Jouni K. Seppänen, Jeff Whitaker, Darren
Dale, David Kaplan, Michiel de Hoon and many others who submitted patches

8.16. New in matplotlib 0.98.4 815

../../gallery/pyplots/whats_new_99_spines.html

Matplotlib, Release 3.4.3

8.16.1 Legend enhancements

Jae-Joon has rewritten the legend class, and added support for multiple columns and rows, as well as fancy
box drawing. See legend() and matplotlib.legend.Legend.

Fig. 31: What's New 98 4 Legend

8.16.2 Fancy annotations and arrows

Jae-Joon has added lots of support to annotations for drawing fancy boxes and connectors in annotations.
See annotate() and BoxStyle, ArrowStyle, and ConnectionStyle.

8.16.3 Native OS X backend

Michiel de Hoon has provided a native Mac OSX backend that is almost completely implemented in C. The
backend can therefore use Quartz directly and, depending on the application, can be orders of magnitude
faster than the existing backends. In addition, no third-party libraries are needed other than Python and
NumPy. The backend is interactive from the usual terminal application on Mac using regular Python. It
hasn't been tested with ipython yet, but in principle it should to work there as well. Set 'backend : macosx'
in your matplotlibrc file, or run your script with:

> python myfile.py -dmacosx

8.16.4 psd amplitude scaling

Ryan May did a lot of work to rationalize the amplitude scaling of psd() and friends. See
/gallery/lines_bars_and_markers/psd_demo. The changes should increase MATLAB compatibility and in-
crease scaling options.

816 Chapter 8. Previous What's New

../../gallery/pyplots/whats_new_98_4_legend.html

Matplotlib, Release 3.4.3

circle
darrow
larrow
rarrow
round

round4
roundtooth
sawtooth
square

<|-
<|-|>

]-
]-[

fancy
simple
wedge

|-|

8.16.5 Fill between

Added a fill_between() function to make it easier to do shaded region plots in the presence of masked
data. You can pass an x array and a ylower and yupper array to fill between, and an optional where argument
which is a logical mask where you want to do the filling.

8.16.6 Lots more

Here are the 0.98.4 notes from the CHANGELOG:

Added mdehoon's native macosx backend from sf patch 2179017 - JDH

Removed the prints in the set_*style commands. Return the list of
pretty-printed strings instead - JDH

Some of the changes Michael made to improve the output of the
property tables in the rest docs broke of made difficult to use
some of the interactive doc helpers, e.g., setp and getp. Having all
the rest markup in the ipython shell also confused the docstrings.
I added a new rc param docstring.harcopy, to format the docstrings
differently for hardcopy and other use. The ArtistInspector
could use a little refactoring now since there is duplication of
effort between the rest out put and the non-rest output - JDH

Updated spectral methods (psd, csd, etc.) to scale one-sided

(continues on next page)

8.16. New in matplotlib 0.98.4 817

Matplotlib, Release 3.4.3

Fig. 32: What's New 98 4 Fill Between

(continued from previous page)
densities by a factor of 2 and, optionally, scale all densities by
the sampling frequency. This gives better MATLAB
compatibility. -RM

Fixed alignment of ticks in colorbars. -MGD

drop the deprecated "new" keyword of np.histogram() for numpy 1.2
or later. -JJL

Fixed a bug in svg backend that new_figure_manager() ignores
keywords arguments such as figsize, etc. -JJL

Fixed a bug that the handlelength of the new legend class set too
short when numpoints=1 -JJL

Added support for data with units (e.g., dates) to
Axes.fill_between. -RM

Added fancybox keyword to legend. Also applied some changes for
better look, including baseline adjustment of the multiline texts
so that it is center aligned. -JJL

The transmuter classes in the patches.py are reorganized as
subclasses of the Style classes. A few more box and arrow styles
are added. -JJL

Fixed a bug in the new legend class that didn't allowed a tuple of
coordinate values as loc. -JJL

Improve checks for external dependencies, using subprocess
(instead of deprecated popen*) and distutils (for version
checking) - DSD

(continues on next page)

818 Chapter 8. Previous What's New

../../gallery/pyplots/whats_new_98_4_fill_between.html

Matplotlib, Release 3.4.3

(continued from previous page)
Reimplementation of the legend which supports baseline alignment,
multi-column, and expand mode. - JJL

Fixed histogram autoscaling bug when bins or range are given
explicitly (fixes Debian bug 503148) - MM

Added rcParam axes.unicode_minus which allows plain hyphen for
minus when False - JDH

Added scatterpoints support in Legend. patch by Erik Tollerud -
JJL

Fix crash in log ticking. - MGD

Added static helper method BrokenHBarCollection.span_where and
Axes/pyplot method fill_between. See
examples/pylab/fill_between.py - JDH

Add x_isdata and y_isdata attributes to Artist instances, and use
them to determine whether either or both coordinates are used when
updating dataLim. This is used to fix autoscaling problems that
had been triggered by axhline, axhspan, axvline, axvspan. - EF

Update the psd(), csd(), cohere(), and specgram() methods of Axes
and the csd() cohere(), and specgram() functions in mlab to be in
sync with the changes to psd(). In fact, under the hood, these
all call the same core to do computations. - RM

Add 'pad_to' and 'sides' parameters to mlab.psd() to allow
controlling of zero padding and returning of negative frequency
components, respectively. These are added in a way that does not
change the API. - RM

Fix handling of c kwarg by scatter; generalize is_string_like to
accept numpy and numpy.ma string array scalars. - RM and EF

Fix a possible EINTR problem in dviread, which might help when
saving pdf files from the qt backend. - JKS

Fix bug with zoom to rectangle and twin axes - MGD

Added Jae Joon's fancy arrow, box and annotation enhancements --
see examples/pylab_examples/annotation_demo2.py

Autoscaling is now supported with shared axes - EF

Fixed exception in dviread that happened with Minion - JKS

set_xlim, ylim now return a copy of the viewlim array to avoid
modify inplace surprises

Added image thumbnail generating function
(continues on next page)

8.16. New in matplotlib 0.98.4 819

Matplotlib, Release 3.4.3

(continued from previous page)
matplotlib.image.thumbnail. See examples/misc/image_thumbnail.py
- JDH

Applied scatleg patch based on ideas and work by Erik Tollerud and
Jae-Joon Lee. - MM

Fixed bug in pdf backend: if you pass a file object for output
instead of a filename, e.g., in a wep app, we now flush the object
at the end. - JKS

Add path simplification support to paths with gaps. - EF

Fix problem with AFM files that don't specify the font's full name
or family name. - JKS

Added 'scilimits' kwarg to Axes.ticklabel_format() method, for
easy access to the set_powerlimits method of the major
ScalarFormatter. - EF

Experimental new kwarg borderpad to replace pad in legend, based
on suggestion by Jae-Joon Lee. - EF

Allow spy to ignore zero values in sparse arrays, based on patch
by Tony Yu. Also fixed plot to handle empty data arrays, and
fixed handling of markers in figlegend. - EF

Introduce drawstyles for lines. Transparently split linestyles
like 'steps--' into drawstyle 'steps' and linestyle '--'. Legends
always use drawstyle 'default'. - MM

Fixed quiver and quiverkey bugs (failure to scale properly when
resizing) and added additional methods for determining the arrow
angles - EF

Fix polar interpolation to handle negative values of theta - MGD

Reorganized cbook and mlab methods related to numerical
calculations that have little to do with the goals of those two
modules into a separate module numerical_methods.py Also, added
ability to select points and stop point selection with keyboard in
ginput and manual contour labeling code. Finally, fixed contour
labeling bug. - DMK

Fix backtick in Postscript output. - MGD

[2089958] Path simplification for vector output backends
Leverage the simplification code exposed through path_to_polygons
to simplify certain well-behaved paths in the vector backends
(PDF, PS and SVG). "path.simplify" must be set to True in
matplotlibrc for this to work. - MGD

Add "filled" kwarg to Path.intersects_path and
(continues on next page)

820 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

(continued from previous page)
Path.intersects_bbox. - MGD

Changed full arrows slightly to avoid an xpdf rendering problem
reported by Friedrich Hagedorn. - JKS

Fix conversion of quadratic to cubic Bezier curves in PDF and PS
backends. Patch by Jae-Joon Lee. - JKS

Added 5-point star marker to plot command q- EF

Fix hatching in PS backend - MGD

Fix log with base 2 - MGD

Added support for bilinear interpolation in
NonUniformImage; patch by Gregory Lielens. - EF

Added support for multiple histograms with data of
different length - MM

Fix step plots with log scale - MGD

Fix masked arrays with markers in non-Agg backends - MGD

Fix clip_on kwarg so it actually works correctly - MGD

Fix locale problems in SVG backend - MGD

fix quiver so masked values are not plotted - JSW

improve interactive pan/zoom in qt4 backend on windows - DSD

Fix more bugs in NaN/inf handling. In particular, path
simplification (which does not handle NaNs or infs) will be turned
off automatically when infs or NaNs are present. Also masked
arrays are now converted to arrays with NaNs for consistent
handling of masks and NaNs - MGD and EF

Added support for arbitrary rasterization resolutions to the SVG
backend. - MW

8.17 List of changes to Matplotlib prior to 2015

This is a list of the changes made to Matplotlib from 2003 to 2015. For more recent changes, please refer to
the what's new or the API changes.

2015-11-16 Levels passed to contour(f) and tricontour(f) must be in increasing
order.

2015-10-21 Added TextBox widget

8.17. List of changes to Matplotlib prior to 2015 821

../whats_new.html
../../api/api_changes.html

Matplotlib, Release 3.4.3

2015-10-21 Added get_ticks_direction()

2015-02-27 Added the rcParam 'image.composite_image' to permit users
to decide whether they want the vector graphics backends to combine all images within a set of axes
into a single composite image. (If images do not get combined, users can open vector graphics files in
Adobe Illustrator or Inkscape and edit each image individually.)

2015-02-19 Rewrite of C++ code that calculates contours to add support for
corner masking. This is controlled by the 'corner_mask' keyword in plotting commands 'contour' and
'contourf'. - IMT

2015-01-23 Text bounding boxes are now computed with advance width rather than
ink area. This may result in slightly different placement of text.

2014-10-27 Allowed selection of the backend using the MPLBACKEND environment
variable. Added documentation on backend selection methods.

2014-09-27 Overhauled colors.LightSource. Added LightSource.hillshade to
allow the independent generation of illumination maps. Added new types of blending for creating
more visually appealing shaded relief plots (e.g. blend_mode="overlay", etc, in addition to the
legacy "hsv" mode).

2014-06-10 Added Colorbar.remove()

2014-06-07 Fixed bug so radial plots can be saved as ps in py3k.

2014-06-01 Changed the fmt kwarg of errorbar to support the
the mpl convention that "none" means "don't draw it", and to default to the empty string, so that plotting
of data points is done with the plot() function defaults. Deprecated use of the None object in place
"none".

2014-05-22 Allow the linscale keyword parameter of symlog scale to be
smaller than one.

2014-05-20 Added logic to in FontManager to invalidate font-cache if
if font-family rcparams have changed.

2014-05-16 Fixed the positioning of multi-line text in the PGF backend.

2014-05-14 Added Axes.add_image() as the standard way to add AxesImage
instances to Axes. This improves the consistency with add_artist(), add_collection(), add_container(),
add_line(), add_patch(), and add_table().

2014-05-02 Added colorblind-friendly colormap, named 'Wistia'.

2014-04-27 Improved input clean up in Axes.{h|v}lines
Coerce input into a 1D ndarrays (after dealing with units).

2014-04-27 removed un-needed cast to float in stem

822 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2014-04-23 Updated references to "ipython -pylab"
The preferred method for invoking pylab is now using the "%pylab" magic. -Chris G.

2014-04-22 Added (re-)generate a simple automatic legend to "Figure Options"
dialog of the Qt4Agg backend.

2014-04-22 Added an example showing the difference between
interpolation = 'none' and interpolation = 'nearest' in imshow when saving vector graphics files.

2014-04-22 Added violin plotting functions. See Axes.violinplot,
Axes.violin, cbook.violin_stats and mlab.GaussianKDE for details.

2014-04-10 Fixed the triangular marker rendering error. The "Up" triangle was
rendered instead of "Right" triangle and vice-versa.

2014-04-08 Fixed a bug in parasite_axes.py by making a list out
of a generator at line 263.

2014-04-02 Added clipon=False to patch creation of wedges and shadows
in pie.

2014-02-25 In backend_qt4agg changed from using update -> repaint under
windows. See comment in source near self._priv_update for longer explanation.

2014-03-27 Added tests for pie ccw parameter. Removed pdf and svg images
from tests for pie linewidth parameter.

2014-03-24 Changed the behaviour of axes to not ignore leading or trailing
patches of height 0 (or width 0) while calculating the x and y axis limits. Patches having both height
== 0 and width == 0 are ignored.

2014-03-24 Added bool kwarg (manage_xticks) to boxplot to enable/disable
the managemnet of the xlimits and ticks when making a boxplot. Default in True which maintains
current behavior by default.

2014-03-23 Fixed a bug in projections/polar.py by making sure that the theta
value being calculated when given the mouse coordinates stays within the range of 0 and 2 * pi.

2014-03-22 Added the keyword arguments wedgeprops and textprops to pie.
Users can control the wedge and text properties of the pie in more detail, if they choose.

2014-03-17 Bug was fixed in append_axes from the AxesDivider class would not
append axes in the right location with respect to the reference locator axes

2014-03-13 Add parameter 'clockwise' to function pie, True by default.

2014-02-28 Added 'origin' kwarg to spy

8.17. List of changes to Matplotlib prior to 2015 823

Matplotlib, Release 3.4.3

2014-02-27 Implemented separate horizontal/vertical axes padding to the
ImageGrid in the AxesGrid toolkit

2014-02-27 Allowed markevery property of matplotlib.lines.Line2D to be, an int
numpy fancy index, slice object, or float. The float behaviour turns on markers at approximately equal
display-coordinate-distances along the line.

2014-02-25 In backend_qt4agg changed from using update -> repaint under
windows. See comment in source near self._priv_update for longer explanation.

2014-01-02 triplot now returns the artist it adds and support of line and
marker kwargs has been improved. GBY

2013-12-30 Made streamplot grid size consistent for different types of density
argument. A 30x30 grid is now used for both density=1 and density=(1, 1).

2013-12-03 Added a pure boxplot-drawing method that allow a more complete
customization of boxplots. It takes a list of dicts contains stats. Also created a function (cbook.
boxplot_stats) that generates the stats needed.

2013-11-28 Added qhull extension module to perform Delaunay triangulation more
robustly than before. It is used by tri.Triangulation (and hence all pyplot.tri* methods) and
mlab.griddata. Deprecated matplotlib.delaunay module. - IMT

2013-11-05 Add power-law normalization method. This is useful for,
e.g., showing small populations in a "hist2d" histogram.

2013-10-27 Added get_rlabel_position and set_rlabel_position methods to
PolarAxes to control angular position of radial tick labels.

2013-10-06 Add stride-based functions to mlab for easy creation of 2D arrays
with less memory.

2013-10-06 Improve window and detrend functions in mlab, particulart support for
2D arrays.

2013-10-06 Improve performance of all spectrum-related mlab functions and plots.

2013-10-06 Added support for magnitude, phase, and angle spectrums to
axes.specgram, and support for magnitude, phase, angle, and complex spectrums to mlab-specgram.

2013-10-06 Added magnitude_spectrum, angle_spectrum, and phase_spectrum plots,
as well as magnitude_spectrum, angle_spectrum, phase_spectrum, and complex_spectrum functions
to mlab

2013-07-12 Added support for datetime axes to 2d plots. Axis values are passed
through Axes.convert_xunits/Axes.convert_yunits before being used by contour/contourf, pcolormesh
and pcolor.

824 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2013-07-12 Allowed matplotlib.dates.date2num, matplotlib.dates.num2date,
and matplotlib.dates.datestr2num to accept n-d inputs. Also factored in support for n-d arrays to mat-
plotlib.dates.DateConverter and matplotlib.units.Registry.

2013-06-26 Refactored the axes module: the axes module is now a folder,
containing the following submodule:

• _subplots.py, containing all the subplots helper methods

• _base.py, containing several private methods and a new _AxesBase class. This _AxesBase
class contains all the methods that are not directly linked to plots of the "old" Axes

• _axes.py contains the Axes class. This class now inherits from _AxesBase: it contains all
"plotting" methods and labelling methods.

This refactoring should not affect the API. Only private methods are not importable from the axes
module anymore.

2013-05-18 Added support for arbitrary rasterization resolutions to the
SVG backend. Previously the resolution was hard coded to 72 dpi. Now the backend class takes a
image_dpi argument for its constructor, adjusts the image bounding box accordingly and forwards
a magnification factor to the image renderer. The code and results now resemble those of the PDF
backend. - MW

2013-05-08 Changed behavior of hist when given stacked=True and normed=True.
Histograms are now stacked first, then the sum is normalized. Previously, each histogram was nor-
malized, then they were stacked.

2013-04-25 Changed all instances of:

from matplotlib import MatplotlibDeprecationWarning as mplDeprecation to:

from cbook import mplDeprecation

and removed the import into the matplotlib namespace in __init__.py Thomas Caswell

2013-04-15 Added 'axes.xmargin' and 'axes.ymargin' to rpParams to set default
margins on auto-scaleing. - TAC

2013-04-16 Added patheffect support for Line2D objects. -JJL

2013-03-31 Added support for arbitrary unstructured user-specified
triangulations to Axes3D.tricontour[f] - Damon McDougall

2013-03-19 Added support for passing linestyle kwarg to step so all plot
kwargs are passed to the underlying plot call. -TAC

2013-02-25 Added classes CubicTriInterpolator, UniformTriRefiner, TriAnalyzer
to matplotlib.tri module. - GBy

2013-01-23 Add 'savefig.directory' to rcParams to remember and fill in the last
directory saved to for figure save dialogs - Martin Spacek

8.17. List of changes to Matplotlib prior to 2015 825

Matplotlib, Release 3.4.3

2013-01-13 Add eventplot method to axes and pyplot and EventCollection class
to collections.

2013-01-08 Added two extra titles to axes which are flush with the left and
right edges of the plot respectively. Andrew Dawson

2013-01-07 Add framealpha keyword argument to legend - PO

2013-01-16 Till Stensitzki added a baseline feature to stackplot

2012-12-22 Added classes for interpolation within triangular grids
(LinearTriInterpolator) and to find the triangles in which points lie (TrapezoidMapTriFinder) to mat-
plotlib.tri module. - IMT

2012-12-05 Added MatplotlibDeprecationWarning class for signaling deprecation.
Matplotlib developers can use this class as follows:

from matplotlib import MatplotlibDeprecationWarning as mplDeprecation

In light of the fact that Python builtin DeprecationWarnings are ignored by default as of Python 2.7,
this class was put in to allow for the signaling of deprecation, but via UserWarnings which are not
ignored by default. - PI

2012-11-27 Added the mtext parameter for supplying matplotlib.text.Text
instances to RendererBase.draw_tex and RendererBase.draw_text. This allows backends to utilize
additional text attributes, like the alignment of text elements. - pwuertz

2012-11-26 deprecate matplotlib/mpl.py, which was used only in pylab.py and is
now replaced by the more suitable import matplotlib as mpl. - PI

2012-11-25 Make rc_context available via pyplot interface - PI

2012-11-16 plt.set_cmap no longer throws errors if there is not already
an active colorable artist, such as an image, and just sets up the colormap to use from that point forward.
- PI

2012-11-16 Added the funcction _get_rbga_face, which is identical to
_get_rbg_face except it return a (r,g,b,a) tuble, to line2D.Modified Line2D.draw to use _get_rbga_face
to get the markerface color so that any alpha set by markerfacecolor will respected. - Thomas Caswell

2012-11-13 Add a symmetric log normalization class to colors.py.
Also added some tests for the normalization class. Till Stensitzki

2012-11-12 Make axes.stem take at least one argument.
Uses a default range(n) when the first arg not provided. Damon McDougall

2012-11-09 Make plt.subplot() without arguments act as subplot(111) - PI

2012-11-08 Replaced plt.figure and plt.subplot calls by the newer, more
convenient single call to plt.subplots() in the documentation examples - PI

826 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2012-10-05 Add support for saving animations as animated GIFs. - JVDP

2012-08-11 Fix path-closing bug in patches.Polygon, so that regardless
of whether the path is the initial one or was subsequently set by set_xy(), get_xy() will return a closed
path if and only if get_closed() is True. Thanks to Jacob Vanderplas. - EF

2012-08-05 When a norm is passed to contourf, either or both of the
vmin, vmax attributes of that norm are now respected. Formerly they were respected only if both were
specified. In addition, vmin and/or vmax can now be passed to contourf directly as kwargs. - EF

2012-07-24 Contourf handles the extend kwarg by mapping the extended
ranges outside the normed 0-1 range so that they are handled by colormap colors determined by the
set_under and set_over methods. Previously the extended ranges were mapped to 0 or 1 so that the
"under" and "over" colormap colors were ignored. This change also increases slightly the color contrast
for a given set of contour levels. - EF

2012-06-24 Make use of mathtext in tick labels configurable - DSD

2012-06-05 Images loaded through PIL are now ordered correctly - CG

2012-06-02 Add new Axes method and pyplot function, hist2d. - PO

2012-05-31 Remove support for 'cairo.<format>' style of backend specification.
Deprecate 'cairo.format' and 'savefig.extension' rcParams and replace with 'savefig.format'. - Martin
Spacek

2012-05-29 pcolormesh now obeys the passed in "edgecolor" kwarg.
To support this, the "shading" argument to pcolormesh now only takes "flat" or "gouraud". To achieve
the old "faceted" behavior, pass "edgecolors='k'". - MGD

2012-05-22 Added radius kwarg to pie charts. - HH

2012-05-22 Collections now have a setting "offset_position" to select whether
the offsets are given in "screen" coordinates (default, following the old behavior) or "data" coordinates.
This is currently used internally to improve the performance of hexbin.

As a result, the "draw_path_collection" backend methods have grown a new argument "off-
set_position". - MGD

2012-05-04 Add a new argument to pie charts - startingangle - that
allows one to specify the angle offset for the first wedge of the chart. - EP

2012-05-03 symlog scale now obeys the logarithmic base. Previously, it was
completely ignored and always treated as base e. - MGD

2012-05-03 Allow linscalex/y keyword to symlog scale that allows the size of
the linear portion relative to the logarithmic portion to be adjusted. - MGD

2012-04-14 Added new plot style: stackplot. This new feature supports stacked
area plots. - Damon McDougall

8.17. List of changes to Matplotlib prior to 2015 827

Matplotlib, Release 3.4.3

2012-04-06 When path clipping changes a LINETO to a MOVETO, it also
changes any CLOSEPOLY command to a LINETO to the initial point. This fixes a problem with pdf
and svg where the CLOSEPOLY would then draw a line to the latest MOVETO position instead of the
intended initial position. - JKS

2012-03-27 Add support to ImageGrid for placing colorbars only at
one edge of each column/row. - RMM

2012-03-07 Refactor movie writing into useful classes that make use
of pipes to write image data to ffmpeg or mencoder. Also improve settings for these and the ability to
pass custom options. - RMM

2012-02-29 errorevery keyword added to errorbar to enable errorbar
subsampling. fixes issue #600.

2012-02-28 Added plot_trisurf to the mplot3d toolkit. This supports plotting
three dimensional surfaces on an irregular grid. - Damon McDougall

2012-01-23 The radius labels in polar plots no longer use a fixed
padding, but use a different alignment depending on the quadrant they are in. This fixes numerical
problems when (rmax - rmin) gets too small. - MGD

2012-01-08 Add axes.streamplot to plot streamlines of a velocity field.
Adapted from Tom Flannaghan streamplot implementation. -TSY

2011-12-29 ps and pdf markers are now stroked only if the line width
is nonzero for consistency with agg, fixes issue #621. - JKS

2011-12-27 Work around an EINTR bug in some versions of subprocess. - JKS

2011-10-25 added support for operatorname to mathtext,
including the ability to insert spaces, such as $operatorname{arg,max}$ - PI

2011-08-18 Change api of Axes.get_tightbbox and add an optional
keyword parameter call_axes_locator. - JJL

2011-07-29 A new rcParam "axes.formatter.use_locale" was added, that,
when True, will use the current locale to format tick labels. This means that, for example, in the fr_FR
locale, ',' will be used as a decimal separator. - MGD

2011-07-15 The set of markers available in the plot() and scatter()
commands has been unified. In general, this gives more options to both than were previously available,
however, there is one backward-incompatible change to the markers in scatter:

"d" used to mean "diamond", it now means "narrow diamond". "D" can be used for a
"diamond".

-MGD

828 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2011-07-13 Fix numerical problems in symlog scale, particularly when
linthresh <= 1.0. Symlog plots may look different if one was depending on the old broken behavior -
MGD

2011-07-10 Fixed argument handling error in tripcolor/triplot/tricontour,
issue #203. - IMT

2011-07-08 Many functions added to mplot3d.axes3d to bring Axes3D
objects more feature-parity with regular Axes objects. Significant revisions to the documentation as
well. - BVR

2011-07-07 Added compatibility with IPython strategy for picking
a version of Qt4 support, and an rcParam for making the choice explicitly: backend.qt4. - EF

2011-07-07 Modified AutoMinorLocator to improve automatic choice of
the number of minor intervals per major interval, and to allow one to specify this number via a kwarg.
- EF

2011-06-28 3D versions of scatter, plot, plot_wireframe, plot_surface,
bar3d, and some other functions now support empty inputs. - BVR

2011-06-22 Add set_theta_offset, set_theta_direction and
set_theta_zero_location to polar axes to control the location of 0 and directionality of theta. - MGD

2011-06-22 Add axes.labelweight parameter to set font weight to axis
labels - MGD.

2011-06-20 Add pause function to pyplot. - EF

2011-06-16 Added bottom keyword parameter for the stem command.
Also, implemented a legend handler for the stem plot. - JJL

2011-06-16 Added legend.frameon rcParams. - Mike Kaufman

2011-05-31 Made backend_qt4 compatible with PySide . - Gerald Storer

2011-04-17 Disable keyboard auto-repeat in qt4 backend by ignoring
key events resulting from auto-repeat. This makes constrained zoom/pan work. - EF

2011-04-14 interpolation="nearest" always interpolate images. A new
mode "none" is introduced for no interpolation - JJL

2011-04-03 Fixed broken pick interface to AsteriskCollection objects
used by scatter. - EF

2011-04-01 The plot directive Sphinx extension now supports all of the
features in the Numpy fork of that extension. These include doctest formatting, an 'include-source'
option, and a number of new configuration options. - MGD

8.17. List of changes to Matplotlib prior to 2015 829

Matplotlib, Release 3.4.3

2011-03-29 Wrapped ViewVCCachedServer definition in a factory function.
This class now inherits from urllib2.HTTPSHandler in order to fetch data from github, but HTTP-
SHandler is not defined if python was built without SSL support. - DSD

2011-03-10 Update pytz version to 2011c, thanks to Simon Cross. - JKS

2011-03-06 Add standalone tests.py test runner script. - JKS

2011-03-06 Set edgecolor to 'face' for scatter asterisk-type
symbols; this fixes a bug in which these symbols were not responding to the c kwarg. The symbols
have no face area, so only the edgecolor is visible. - EF

2011-02-27 Support libpng version 1.5.x; suggestion by Michael
Albert. Changed installation specification to a minimum of libpng version 1.2. - EF

2011-02-20 clabel accepts a callable as an fmt kwarg; modified
patch by Daniel Hyams. - EF

2011-02-18 scatter([], []) is now valid. Also fixed issues
with empty collections - BVR

2011-02-07 Quick workaround for dviread bug #3175113 - JKS

2011-02-05 Add cbook memory monitoring for Windows, using
tasklist. - EF

2011-02-05 Speed up Normalize and LogNorm by using in-place
operations and by using float32 for float32 inputs and for ints of 2 bytes or shorter; based on patch by
Christoph Gohlke. - EF

2011-02-04 Changed imshow to use rgba as uint8 from start to
finish, instead of going through an intermediate step as double precision; thanks to Christoph Gohlke.
- EF

2011-01-13 Added zdir and offset arguments to contourf3d to
bring contourf3d in feature parity with contour3d. - BVR

2011-01-04 Tag 1.0.1 for release at r8896

2011-01-03 Added display of ticker offset to 3d plots. - BVR

2011-01-03 Turn off tick labeling on interior subplots for
pyplots.subplots when sharex/sharey is True. - JDH

2010-12-29 Implement axes_divider.HBox and VBox. -JJL

2010-11-22 Fixed error with Hammer projection. - BVR

2010-11-12 Fixed the placement and angle of axis labels in 3D plots. - BVR

830 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2010-11-07 New rc parameters examples.download and examples.directory
allow bypassing the download mechanism in get_sample_data. - JKS

2010-10-04 Fix JPEG saving bug: only accept the kwargs documented
by PIL for JPEG files. - JKS

2010-09-15 Remove unused _wxagg extension and numerix.h. - EF

2010-08-25 Add new framework for doing animations with examples.- RM

2010-08-21 Remove unused and inappropriate methods from Tick classes:
set_view_interval, get_minpos, and get_data_interval are properly found in the Axis class and don't
need to be duplicated in XTick and YTick. - EF

2010-08-21 Change Axis.set_view_interval() so that when updating an
existing interval, it respects the orientation of that interval, and can enlarge but not reduce the interval.
This fixes a bug in which Axis.set_ticks would change the view limits of an inverted axis. Whether
set_ticks should be affecting the viewLim at all remains an open question. - EF

2010-08-16 Handle NaN's correctly in path analysis routines. Fixes a
bug where the best location for a legend was not calculated correctly when the line contains NaNs. -
MGD

2010-08-14 Fix bug in patch alpha handling, and in bar color kwarg - EF

2010-08-12 Removed all traces of numerix module after 17 months of
deprecation warnings. - EF

2010-08-05 Added keyword arguments 'thetaunits' and 'runits' for polar
plots. Fixed PolarAxes so that when it set default Formatters, it marked them as such. Fixed semilogx
and semilogy to no longer blindly reset the ticker information on the non-log axis. Axes.arrow can
now accept unitized data. - JRE

2010-08-03 Add support for MPLSETUPCFG variable for custom setup.cfg
filename. Used by sage buildbot to build an mpl w/ no gui support - JDH

2010-08-01 Create directory specified by MPLCONFIGDIR if it does
not exist. - ADS

2010-07-20 Return Qt4's default cursor when leaving the canvas - DSD

2010-07-06 Tagging for mpl 1.0 at r8502

2010-07-05 Added Ben Root's patch to put 3D plots in arbitrary axes,
allowing you to mix 3d and 2d in different axes/subplots or to have multiple 3D plots in one figure.
See examples/mplot3d/subplot3d_demo.py - JDH

2010-07-05 Preferred kwarg names in set_xlim are now 'left' and
'right'; in set_ylim, 'bottom' and 'top'; original kwargs are still accepted without complaint. - EF

8.17. List of changes to Matplotlib prior to 2015 831

Matplotlib, Release 3.4.3

2010-07-05 TkAgg and FltkAgg backends are now consistent with other
interactive backends: when used in scripts from the command line (not from ipython -pylab), show
blocks, and can be called more than once. - EF

2010-07-02 Modified CXX/WrapPython.h to fix "swab bug" on solaris so
mpl can compile on Solaris with CXX6 in the trunk. Closes tracker bug 3022815 - JDH

2010-06-30 Added autoscale convenience method and corresponding
pyplot function for simplified control of autoscaling; and changed axis, set_xlim, and set_ylim so that
by default, they turn off the autoscaling on the relevant axis or axes. Therefore one can call set_xlim
before plotting a line, for example, and the limits will be retained. - EF

2010-06-20 Added Axes.tick_params and corresponding pyplot function
to control tick and tick label appearance after an Axes has been created. - EF

2010-06-09 Allow Axes.grid to control minor gridlines; allow
Axes.grid and Axis.grid to control major and minor gridlines in the same method call. - EF

2010-06-06 Change the way we do split/dividend adjustments in
finance.py to handle dividends and fix the zero division bug reported in sf bug 2949906 and 2123566.
Note that volume is not adjusted because the Yahoo CSV does not distinguish between share split and
dividend adjustments making it near impossible to get volume adjustment right (unless we want to
guess based on the size of the adjustment or scrape the html tables, which we don't) - JDH

2010-06-06 Updated dateutil to 1.5 and pytz to 2010h.

2010-06-02 Add error_kw kwarg to Axes.bar(). - EF

2010-06-01 Fix pcolormesh() and QuadMesh to pass on kwargs as
appropriate. - RM

2010-05-18 Merge mpl_toolkits.gridspec into the main tree. - JJL

2010-05-04 Improve backend_qt4 so it displays figures with the
correct size - DSD

2010-04-20 Added generic support for connecting to a timer for events. This
adds TimerBase, TimerGTK, TimerQT, TimerWx, and TimerTk to the backends and a new_timer()
method to each backend's canvas to allow ease of creating a new timer. - RM

2010-04-20 Added margins() Axes method and pyplot function. - EF

2010-04-18 update the axes_grid documentation. -JJL

2010-04-18 Control MaxNLocator parameters after instantiation,
and via Axes.locator_params method, with corresponding pyplot function. -EF

2010-04-18 Control ScalarFormatter offsets directly and via the
Axes.ticklabel_format() method, and add that to pyplot. -EF

832 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2010-04-16 Add a close_event to the backends. -RM

2010-04-06 modify axes_grid examples to use axes_grid1 and axisartist. -JJL

2010-04-06 rebase axes_grid using axes_grid1 and axisartist modules. -JJL

2010-04-06 axes_grid toolkit is split into two separate modules,
axes_grid1 and axisartist. -JJL

2010-04-05 Speed up import: import pytz only if and when it is
needed. It is not needed if the rc timezone is UTC. - EF

2010-04-03 Added color kwarg to Axes.hist(), based on work by
Jeff Klukas. - EF

2010-03-24 refactor colorbar code so that no cla() is necessary when
mappable is changed. -JJL

2010-03-22 fix incorrect rubber band during the zoom mode when mouse
leaves the axes. -JJL

2010-03-21 x/y key during the zoom mode only changes the x/y limits. -JJL

2010-03-20 Added pyplot.sca() function suggested by JJL. - EF

2010-03-20 Added conditional support for new Tooltip API in gtk backend. - EF

2010-03-20 Changed plt.fig_subplot() to plt.subplots() after discussion on
list, and changed its API to return axes as a numpy object array (with control of dimensions via squeeze
keyword). FP.

2010-03-13 Manually brought in commits from branch:

--
r8191 | leejjoon | 2010-03-13 17:27:57 -0500 (Sat, 13 Mar 2010) | 1 line

fix the bug that handles for scatter are incorrectly set when dpi!=72.
Thanks to Ray Speth for the bug report.

2010-03-03 Manually brought in commits from branch via diff/patch (svnmerge is broken):

--
r8175 | leejjoon | 2010-03-03 10:03:30 -0800 (Wed, 03 Mar 2010) | 1 line

fix arguments of allow_rasterization.draw_wrapper
--
r8174 | jdh2358 | 2010-03-03 09:15:58 -0800 (Wed, 03 Mar 2010) | 1 line

added support for favicon in docs build
--
r8173 | jdh2358 | 2010-03-03 08:56:16 -0800 (Wed, 03 Mar 2010) | 1 line

(continues on next page)

8.17. List of changes to Matplotlib prior to 2015 833

Matplotlib, Release 3.4.3

(continued from previous page)
applied Mattias get_bounds patch
--
r8172 | jdh2358 | 2010-03-03 08:31:42 -0800 (Wed, 03 Mar 2010) | 1 line

fix svnmerge download instructions
--
r8171 | jdh2358 | 2010-03-03 07:47:48 -0800 (Wed, 03 Mar 2010) | 1 line

2010-02-25 add annotation_demo3.py that demonstrates new functionality. -JJL

2010-02-25 refactor Annotation to support arbitrary Transform as xycoords
or textcoords. Also, if a tuple of two coordinates is provided, they are interpreted as coordinates for
each x and y position. -JJL

2010-02-24 Added pyplot.fig_subplot(), to create a figure and a group of
subplots in a single call. This offers an easier pattern than manually making figures and calling
add_subplot() multiple times. FP

2010-02-17 Added Gokhan's and Mattias' customizable keybindings patch
for the toolbar. You can now set the keymap.* properties in the matplotlibrc file. Newbindings were
added for toggling log scaling on the x-axis. JDH

2010-02-16 Committed TJ's filled marker patch for
left|right|bottom|top|full filled markers. See examples/pylab_examples/filledmarker_demo.py. JDH

2010-02-11 Added 'bootstrap' option to boxplot. This allows bootstrap
estimates of median confidence intervals. Based on an initial patch by Paul Hobson. - ADS

2010-02-06 Added setup.cfg "basedirlist" option to override setting
in setupext.py "basedir" dictionary; added "gnu0" platform requested by Benjamin Drung. - EF

2010-02-06 Added 'xy' scaling option to EllipseCollection. - EF

2010-02-03 Made plot_directive use a custom PlotWarning category, so that
warnings can be turned into fatal errors easily if desired. - FP

2010-01-29 Added draggable method to Legend to allow mouse drag
placement. Thanks Adam Fraser. JDH

2010-01-25 Fixed a bug reported by Olle Engdegard, when using
histograms with stepfilled and log=True - MM

2010-01-16 Upgraded CXX to 6.1.1 - JDH

2009-01-16 Don't create minor ticks on top of existing major
ticks. Patch by Neil Crighton. -ADS

834 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2009-01-16 Ensure three minor ticks always drawn (SF# 2924245). Patch
by Neil Crighton. -ADS

2010-01-16 Applied patch by Ian Thomas to fix two contouring
problems: now contourf handles interior masked regions, and the boundaries of line and filled contours
coincide. - EF

2009-01-11 The color of legend patch follows the rc parameters
axes.facecolor and axes.edgecolor. -JJL

2009-01-11 adjustable of Axes can be "box-forced" which allow
sharing axes. -JJL

2009-01-11 Add add_click and pop_click methods in
BlockingContourLabeler. -JJL

2010-01-03 Added rcParams['axes.color_cycle'] - EF

2010-01-03 Added Pierre's qt4 formlayout editor and toolbar button - JDH

2009-12-31 Add support for using math text as marker symbols (Thanks to tcb)
• MGD

2009-12-31 Commit a workaround for a regression in PyQt4-4.6.{0,1} - DSD

2009-12-22 Fix cmap data for gist_earth_r, etc. -JJL

2009-12-20 spines: put spines in data coordinates, add set_bounds()
call. -ADS

2009-12-18 Don't limit notch size in boxplot to q1-q3 range, as this
is effectively making the data look better than it is. - ADS

2009-12-18 mlab.prctile handles even-length data, such that the median
is the mean of the two middle values. - ADS

2009-12-15 Add raw-image (unsampled) support for the ps backend. - JJL

2009-12-14 Add patch_artist kwarg to boxplot, but keep old default.
Convert boxplot_demo2.py to use the new patch_artist. - ADS

2009-12-06 axes_grid: reimplemented AxisArtist with FloatingAxes support.
Added new examples. - JJL

2009-12-01 Applied Laurent Dufrechou's patch to improve blitting with
the qt4 backend - DSD

2009-11-13 The pdf backend now allows changing the contents of
a pdf file's information dictionary via PdfPages.infodict. - JKS

8.17. List of changes to Matplotlib prior to 2015 835

Matplotlib, Release 3.4.3

2009-11-12 font_manager.py should no longer cause EINTR on Python 2.6
(but will on the 2.5 version of subprocess). Also the fc-list command in that file was fixed so now it
should actually find the list of fontconfig fonts. - JKS

2009-11-10 Single images, and all images in renderers with
option_image_nocomposite (i.e. agg, macosx and the svg backend when rc-
Params['svg.image_noscale'] is True), are now drawn respecting the zorder relative to other
artists. (Note that there may now be inconsistencies across backends when more than one image is
drawn at varying zorders, but this change introduces correct behavior for the backends in which it's
easy to do so.)

2009-10-21 Make AutoDateLocator more configurable by adding options
to control the maximum and minimum number of ticks. Also add control of the intervals to be used
for ticking. This does not change behavior but opens previously hard-coded behavior to runtime mod-
ification`. - RMM

2009-10-19 Add "path_effects" support for Text and Patch. See
examples/pylab_examples/patheffect_demo.py -JJL

2009-10-19 Add "use_clabeltext" option to clabel. If True, clabels
will be created with ClabelText class, which recalculates rotation angle of the label during the drawing
time. -JJL

2009-10-16 Make AutoDateFormatter actually use any specified
timezone setting.This was only working correctly when no timezone was specified. - RMM

2009-09-27 Beginnings of a capability to test the pdf backend. - JKS

2009-09-27 Add a savefig.extension rcparam to control the default
filename extension used by savefig. - JKS

2009-09-21 Tagged for release 0.99.1

2009-09-20 Fix usetex spacing errors in pdf backend. - JKS

2009-09-20 Add Sphinx extension to highlight IPython console sessions,
originally authored (I think) by Michael Droetboom. - FP

2009-09-20 Fix off-by-one error in dviread.Tfm, and additionally protect
against exceptions in case a dvi font is missing some metrics. - JKS

2009-09-15 Implement draw_text and draw_tex method of backend_base using
the textpath module. Implement draw_tex method of the svg backend. - JJL

2009-09-15 Don't fail on AFM files containing floating-point bounding boxes - JKS

2009-09-13 AxesGrid
[add modified version of colorbar. Add colorbar] location howto. - JJL

836 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2009-09-07 AxesGrid
[implemented axisline style.] Added a demo examples/axes_grid/demo_axisline_style.py- JJL

2009-09-04 Make the textpath class as a separate module
(textpath.py). Add support for mathtext and tex.- JJL

2009-09-01 Added support for Gouraud interpolated triangles.
pcolormesh now accepts shading='gouraud' as an option. - MGD

2009-08-29 Added matplotlib.testing package, which contains a Nose
plugin and a decorator that lets tests be marked as KnownFailures - ADS

2009-08-20 Added scaled dict to AutoDateFormatter for customized
scales - JDH

2009-08-15 Pyplot interface: the current image is now tracked at the
figure and axes level, addressing tracker item 1656374. - EF

2009-08-15 Docstrings are now manipulated with decorators defined
in a new module, docstring.py, thanks to Jason Coombs. - EF

2009-08-14 Add support for image filtering for agg back end. See the example
demo_agg_filter.py. -JJL

2009-08-09 AnnotationBbox added. Similar to Annotation, but works with
OffsetBox instead of Text. See the example demo_annotation_box.py. -JJL

2009-08-07 BboxImage implemented. Two examples, demo_bboximage.py and
demo_ribbon_box.py added. - JJL

2009-08-07 In an effort to simplify the backend API, all clipping rectangles
and paths are now passed in usingGraphicsContext objects, even on collections and images. Therefore:

draw_path_collection(self, master_transform, cliprect, clippath,
clippath_trans, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors,
linewidths, linestyles, antialiaseds, urls)

becomes:

draw_path_collection(self, gc, master_transform, paths, all_transforms,
offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls)

draw_quad_mesh(self, master_transform, cliprect, clippath,
clippath_trans, meshWidth, meshHeight, coordinates, offsets, offsetTrans, facecolors,
antialiased, showedges)

becomes:

8.17. List of changes to Matplotlib prior to 2015 837

Matplotlib, Release 3.4.3

draw_quad_mesh(self, gc, master_transform, meshWidth, meshHeight,
coordinates, offsets, offsetTrans, facecolors, antialiased, showedges)

draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None)

becomes:

draw_image(self, gc, x, y, im)

• MGD

2009-08-06 Tagging the 0.99.0 release at svn r7397 - JDH

• fixed an alpha colormapping bug posted on sf 2832575

• fix typo in axes_divider.py. use nanmin, nanmax in angle_helper.py (patch by Christoph Gohlke)

• remove dup gui event in enter/leave events in gtk

• lots of fixes for os x binaries (Thanks Russell Owen)

• attach gtk events to mpl events -- fixes sf bug 2816580

• applied sf patch 2815064 (middle button events for wx) and patch 2818092 (resize events for wx)

• fixed boilerplate.py so it doesn't break the ReST docs.

• removed a couple of cases of mlab.load

• fixed rec2csv win32 file handle bug from sf patch 2831018

• added two examples from Josh Hemann: examples/pylab_examples/barchart_demo2.py and exam-
ples/pylab_examples/boxplot_demo2.py

• handled sf bugs 2831556 and 2830525; better bar error messages and backend driver configs

• added miktex win32 patch from sf patch 2820194

• apply sf patches 2830233 and 2823885 for osx setup and 64 bit; thanks Michiel

2009-08-04 Made cbook.get_sample_data make use of the ETag and Last-Modified
headers of mod_dav_svn. - JKS

2009-08-03 Add PathCollection; modify contourf to use complex
paths instead of simple paths with cuts. - EF

2009-08-03 Fixed boilerplate.py so it doesn't break the ReST docs. - JKS

2009-08-03 pylab no longer provides a load and save function. These
are available in matplotlib.mlab, or you can use numpy.loadtxt and numpy.savetxt for text files, or
np.save and np.load for binary numpy arrays. - JDH

2009-07-31 Added cbook.get_sample_data for urllib enabled fetching and
caching of data needed for examples. See examples/misc/sample_data_demo.py - JDH

2009-07-31 Tagging 0.99.0.rc1 at 7314 - MGD

838 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2009-07-30 Add set_cmap and register_cmap, and improve get_cmap,
to provide convenient handling of user-generated colormaps. Reorganized _cm and cm modules. - EF

2009-07-28 Quiver speed improved, thanks to tip by Ray Speth. -EF

2009-07-27 Simplify argument handling code for plot method. -EF

2009-07-25 Allow "plot(1, 2, 'r*')" to work. - EF

2009-07-22 Added an 'interp' keyword to griddata so the faster linear
interpolation method can be chosen. Default is 'nn', so default behavior (using natural neighbor
method) is unchanged (JSW)

2009-07-22 Improved boilerplate.py so that it generates the correct
signatures for pyplot functions. - JKS

2009-07-19 Fixed the docstring of Axes.step to reflect the correct
meaning of the kwargs "pre" and "post" - See SF bug https://sourceforge.net/tracker/index.php?func=detail&aid=2823304&group_id=80706&atid=560720
- JDH

2009-07-18 Fix support for hatches without color fills to pdf and svg
backends. Add an example of that to hatch_demo.py. - JKS

2009-07-17 Removed fossils from swig version of agg backend. - EF

2009-07-14 initial submission of the annotation guide. -JJL

2009-07-14 axes_grid
[minor improvements in anchored_artists and] inset_locator. -JJL

2009-07-14 Fix a few bugs in ConnectionStyle algorithms. Add
ConnectionPatch class. -JJL

2009-07-11 Added a fillstyle Line2D property for half filled markers
-- see examples/pylab_examples/fillstyle_demo.py JDH

2009-07-08 Attempt to improve performance of qt4 backend, do not call
qApp.processEvents while processing an event. Thanks Ole Streicher for tracking this down - DSD

2009-06-24 Add withheader option to mlab.rec2csv and changed
use_mrecords default to False in mlab.csv2rec since this is partially broken - JDH

2009-06-24 backend_agg.draw_marker quantizes the main path (as in the
draw_path). - JJL

2009-06-24 axes_grid: floating axis support added. - JJL

2009-06-14 Add new command line options to backend_driver.py to support
running only some directories of tests - JKS

2009-06-13 partial cleanup of mlab and its importation in pylab - EF

8.17. List of changes to Matplotlib prior to 2015 839

Matplotlib, Release 3.4.3

2009-06-13 Introduce a rotation_mode property for the Text artist. See
examples/pylab_examples/demo_text_rotation_mode.py -JJL

2009-06-07 add support for bz2 files per sf support request 2794556 -
JDH

2009-06-06 added a properties method to the artist and inspector to
return a dict mapping property name -> value; see sf feature request 2792183 - JDH

2009-06-06 added Neil's auto minor tick patch; sf patch #2789713 - JDH

2009-06-06 do not apply alpha to rgba color conversion if input is
already rgba - JDH

2009-06-03 axes_grid
[Initial check-in of curvelinear grid support. See] examples/axes_grid/demo_curvelinear_grid.py - JJL

2009-06-01 Add set_color method to Patch - EF

2009-06-01 Spine is now derived from Patch - ADS

2009-06-01 use cbook.is_string_like() instead of isinstance() for spines - ADS

2009-06-01 cla() support for spines - ADS

2009-06-01 Removed support for gtk < 2.4. - EF

2009-05-29 Improved the animation_blit_qt4 example, which was a mix
of the object-oriented and pylab interfaces. It is now strictly object-oriented - DSD

2009-05-28 Fix axes_grid toolkit to work with spine patch by ADS. - JJL

2009-05-28 Applied fbianco's patch to handle scroll wheel events in
the qt4 backend - DSD

2009-05-26 Add support for "axis spines" to have arbitrary location. -ADS

2009-05-20 Add an empty matplotlibrc to the tests/ directory so that running
tests will use the default set of rcparams rather than the user's config. - RMM

2009-05-19 Axis.grid(): allow use of which='major,minor' to have grid
on major and minor ticks. -ADS

2009-05-18 Make psd(), csd(), and cohere() wrap properly for complex/two-sided
versions, like specgram() (SF #2791686) - RMM

2009-05-18 Fix the linespacing bug of multiline text (#1239682). See
examples/pylab_examples/multiline.py -JJL

2009-05-18 Add annotation_clip attr. for text.Annotation class.
If True, annotation is only drawn when the annotated point is inside the axes area. -JJL

840 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2009-05-17 Fix bug(#2749174) that some properties of minor ticks are
not conserved -JJL

2009-05-17 applied Michiel's sf patch 2790638 to turn off gtk event
loop in setupext for pygtk>=2.15.10 - JDH

2009-05-17 applied Michiel's sf patch 2792742 to speed up Cairo and
macosx collections; speedups can be 20x. Also fixes some bugs in which gc got into inconsistent state

2008-05-17 Release 0.98.5.3 at r7107 from the branch - JDH

2009-05-13 An optional offset and bbox support in restore_bbox.
Add animation_blit_gtk2.py. -JJL

2009-05-13 psfrag in backend_ps now uses baseline-alignment
when preview.sty is used ((default is bottom-alignment). Also, a small API improvement in OffsetBox-
JJL

2009-05-13 When the x-coordinate of a line is monotonically
increasing, it is now automatically clipped at the stage of generating the transformed path in the draw
method; this greatly speeds up zooming and panning when one is looking at a short segment of a long
time series, for example. - EF

2009-05-11 aspect=1 in log-log plot gives square decades. -JJL

2009-05-08 clabel takes new kwarg, rightside_up; if False, labels
will not be flipped to keep them rightside-up. This allows the use of clabel to make streamfunction
arrows, as requested by Evan Mason. - EF

2009-05-07 'labelpad' can now be passed when setting x/y labels. This
allows controlling the spacing between the label and its axis. - RMM

2009-05-06 print_ps now uses mixed-mode renderer. Axes.draw rasterize
artists whose zorder smaller than rasterization_zorder. -JJL

2009-05-06 Per-artist Rasterization, originally by Eric Bruning. -JJ

2009-05-05 Add an example that shows how to make a plot that updates
using data from another process. Thanks to Robert Cimrman - RMM

2009-05-05 Add Axes.get_legend_handles_labels method. - JJL

2009-05-04 Fix bug that Text.Annotation is still drawn while set to
not visible. - JJL

2009-05-04 Added TJ's fill_betweenx patch - JDH

8.17. List of changes to Matplotlib prior to 2015 841

Matplotlib, Release 3.4.3

2009-05-02 Added options to plotfile based on question from
Joseph Smidt and patch by Matthias Michler. - EF

2009-05-01 Changed add_artist and similar Axes methods to
return their argument. - EF

2009-04-30 Incorrect eps bbox for landscape mode fixed - JJL

2009-04-28 Fixed incorrect bbox of eps output when usetex=True. - JJL

2009-04-24 Changed use of os.open* to instead use subprocess.Popen.
os.popen* are deprecated in 2.6 and are removed in 3.0. - RMM

2009-04-20 Worked on axes_grid documentation. Added
axes_grid.inset_locator. - JJL

2009-04-17 Initial check-in of the axes_grid toolkit. - JJL

2009-04-17 Added a support for bbox_to_anchor in
offsetbox.AnchoredOffsetbox. Improved a documentation. - JJL

2009-04-16 Fixed a offsetbox bug that multiline texts are not
correctly aligned. - JJL

2009-04-16 Fixed a bug in mixed mode renderer that images produced by
an rasterizing backend are placed with incorrect size. - JJL

2009-04-14 Added Jonathan Taylor's Reinier Heeres' port of John
Porters' mplot3d to svn trunk. Package in mpl_toolkits.mplot3d and demo is exam-
ples/mplot3d/demo.py. Thanks Reiner

2009-04-06 The pdf backend now escapes newlines and linefeeds in strings.
Fixes sf bug #2708559; thanks to Tiago Pereira for the report.

2009-04-06 texmanager.make_dvi now raises an error if LaTeX failed to
create an output file. Thanks to Joao Luis Silva for reporting this. - JKS

2009-04-05 _png.read_png() reads 12 bit PNGs (patch from
Tobias Wood) - ADS

2009-04-04 Allow log axis scale to clip non-positive values to
small positive value; this is useful for errorbars. - EF

2009-03-28 Make images handle nan in their array argument.
A helper, cbook.safe_masked_invalid() was added. - EF

2009-03-25 Make contour and contourf handle nan in their Z argument. - EF

842 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2009-03-20 Add AuxTransformBox in offsetbox.py to support some transformation.
anchored_text.py example is enhanced and renamed (anchored_artists.py). - JJL

2009-03-20 Add "bar" connection style for annotation - JJL

2009-03-17 Fix bugs in edge color handling by contourf, found
by Jae-Joon Lee. - EF

2009-03-14 Added 'LightSource' class to colors module for
creating shaded relief maps. shading_example.py added to illustrate usage. - JSW

2009-03-11 Ensure wx version >= 2.8; thanks to Sandro Tosi and
Chris Barker. - EF

2009-03-10 Fix join style bug in pdf. - JKS

2009-03-07 Add pyplot access to figure number list - EF

2009-02-28 hashing of FontProperties accounts current rcParams - JJL

2009-02-28 Prevent double-rendering of shared axis in twinx, twiny - EF

2009-02-26 Add optional bbox_to_anchor argument for legend class - JJL

2009-02-26 Support image clipping in pdf backend. - JKS

2009-02-25 Improve tick location subset choice in FixedLocator. - EF

2009-02-24 Deprecate numerix, and strip out all but the numpy
part of the code. - EF

2009-02-21 Improve scatter argument handling; add an early error
message, allow inputs to have more than one dimension. - EF

2009-02-16 Move plot_directive.py to the installed source tree. Add
support for inline code content - MGD

2009-02-16 Move mathmpl.py to the installed source tree so it is
available to other projects. - MGD

2009-02-14 Added the legend title support - JJL

2009-02-10 Fixed a bug in backend_pdf so it doesn't break when the setting
pdf.use14corefonts=True is used. Added test case in unit/test_pdf_use14corefonts.py. - NGR

2009-02-08 Added a new imsave function to image.py and exposed it in
the pyplot interface - GR

2009-02-04 Some reorgnization of the legend code. anchored_text.py
added as an example. - JJL

8.17. List of changes to Matplotlib prior to 2015 843

Matplotlib, Release 3.4.3

2009-02-04 Add extent keyword arg to hexbin - ADS

2009-02-04 Fix bug in mathtext related to dots and ldots - MGD

2009-02-03 Change default joinstyle to round - MGD

2009-02-02 Reduce number of marker XObjects in pdf output - JKS

2009-02-02 Change default resolution on polar plot to 1 - MGD

2009-02-02 Avoid malloc errors in ttconv for fonts that don't have
e.g., PostName (a version of Tahoma triggered this) - JKS

2009-01-30 Remove support for pyExcelerator in exceltools -- use xlwt
instead - JDH

2009-01-29 Document 'resolution' kwarg for polar plots. Support it
when using pyplot.polar, not just Figure.add_axes. - MGD

2009-01-29 Rework the nan-handling/clipping/quantizing/simplification
framework so each is an independent part of a pipeline. Expose the C++-implementation of all of
this so it can be used from all Python backends. Add rcParam "path.simplify_threshold" to control the
threshold of similarity below which vertices will be removed.

2009-01-26 Improved tight bbox option of the savefig. - JJL

2009-01-26 Make curves and NaNs play nice together - MGD

2009-01-21 Changed the defaults of acorr and xcorr to use
usevlines=True, maxlags=10 and normed=True since these are the best defaults

2009-01-19 Fix bug in quiver argument handling. - EF

2009-01-19 Fix bug in backend_gtk: don't delete nonexistent toolbar. - EF

2009-01-16 Implement bbox_inches option for savefig. If bbox_inches is
"tight", try to determine the tight bounding box. - JJL

2009-01-16 Fix bug in is_string_like so it doesn't raise an
unnecessary exception. - EF

2009-01-16 Fix an infinite recursion in the unit registry when searching
for a converter for a sequence of strings. Add a corresponding test. - RM

2009-01-16 Bugfix of C typedef of MPL_Int64 that was failing on
Windows XP 64 bit, as reported by George Goussard on numpy mailing list. - ADS

2009-01-16 Added helper function LinearSegmentedColormap.from_list to
facilitate building simple custom colomaps. See examples/pylab_examples/custom_cmap_fromlist.py
- JDH

844 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2009-01-16 Applied Michiel's patch for macosx backend to fix rounding
bug. Closed sf bug 2508440 - JSW

2009-01-10 Applied Michiel's hatch patch for macosx backend and
draw_idle patch for qt. Closes sf patched 2497785 and 2468809 - JDH

2009-01-10 Fix bug in pan/zoom with log coordinates. - EF

2009-01-06 Fix bug in setting of dashed negative contours. - EF

2009-01-06 Be fault tolerant when len(linestyles)>NLev in contour. - MM

2009-01-06 Added marginals kwarg to hexbin to plot marginal densities
JDH

2009-01-06 Change user-visible multipage pdf object to PdfPages to
avoid accidents with the file-like PdfFile. - JKS

2009-01-05 Fix a bug in pdf usetex: allow using non-embedded fonts. - JKS

2009-01-05 optional use of preview.sty in usetex mode. - JJL

2009-01-02 Allow multipage pdf files. - JKS

2008-12-31 Improve pdf usetex by adding support for font effects
(slanting and extending). - JKS

2008-12-29 Fix a bug in pdf usetex support, which occurred if the same
Type-1 font was used with different encodings, e.g., with Minion Pro and MnSymbol. - JKS

2008-12-20 fix the dpi-dependent offset of Shadow. - JJL

2008-12-20 fix the hatch bug in the pdf backend. minor update
in docs and example - JJL

2008-12-19 Add axes_locator attribute in Axes. Two examples are added.
• JJL

2008-12-19 Update Axes.legend documentation. /api/api_changes.rst is also
updated to describe changes in keyword parameters. Issue a warning if old keyword parameters are
used. - JJL

2008-12-18 add new arrow style, a line + filled triangles. -JJL

2008-12-18 Re-Released 0.98.5.2 from v0_98_5_maint at r6679
Released 0.98.5.2 from v0_98_5_maint at r6667

2008-12-18 Removed configobj, experimental traits and doc/mpl_data link - JDH

8.17. List of changes to Matplotlib prior to 2015 845

Matplotlib, Release 3.4.3

2008-12-18 Fix bug where a line with NULL data limits prevents
subsequent data limits from calculating correctly - MGD

2008-12-17 Major documentation generator changes - MGD

2008-12-17 Applied macosx backend patch with support for path
collections, quadmesh, etc... - JDH

2008-12-17 fix dpi-dependent behavior of text bbox and arrow in annotate
-JJL

2008-12-17 Add group id support in artist. Two examples which
demonstrate svg filter are added. -JJL

2008-12-16 Another attempt to fix dpi-dependent behavior of Legend. -JJL

2008-12-16 Fixed dpi-dependent behavior of Legend and fancybox in Text.

2008-12-16 Added markevery property to Line2D to support subsampling
of markers - JDH

2008-12-15 Removed mpl_data symlink in docs. On platforms that do not
support symlinks, these become copies, and the font files are large, so the distro becomes unnecessarily
bloated. Keeping the mpl_examples dir because relative links are harder for the plot directive and the
*.py files are not so large. - JDH

2008-12-15 Fix $ in non-math text with usetex off. Document
differences between usetex on/off - MGD

2008-12-15 Fix anti-aliasing when auto-snapping - MGD

2008-12-15 Fix grid lines not moving correctly during pan and zoom - MGD

2008-12-12 Preparations to eliminate maskedarray rcParams key: its
use will now generate a warning. Similarly, importing the obsolote numerix.npyma will generate a
warning. - EF

2008-12-12 Added support for the numpy.histogram() weights parameter
to the axes hist() method. Docs taken from numpy - MM

2008-12-12 Fixed warning in hist() with numpy 1.2 - MM

2008-12-12 Removed external packages: configobj and enthought.traits
which are only required by the experimental traited config and are somewhat out of date. If needed,
install them independently, see:

http://code.enthought.com/pages/traits.html

and:

http://www.voidspace.org.uk/python/configobj.html

846 Chapter 8. Previous What's New

http://code.enthought.com/pages/traits.html
http://www.voidspace.org.uk/python/configobj.html

Matplotlib, Release 3.4.3

2008-12-12 Added support to assign labels to histograms of multiple
data. - MM

2008-12-11 Released 0.98.5 at svn r6573

2008-12-11 Use subprocess.Popen instead of os.popen in dviread
(Windows problem reported by Jorgen Stenarson) - JKS

2008-12-10 Added Michael's font_manager fix and Jae-Joon's
figure/subplot fix. Bumped version number to 0.98.5 - JDH

2008-12-09 Released 0.98.4 at svn r6536

2008-12-08 Added mdehoon's native macosx backend from sf patch 2179017 - JDH

2008-12-08 Removed the prints in the set_*style commands. Return the
list of pprinted strings instead - JDH

2008-12-08 Some of the changes Michael made to improve the output of
the property tables in the rest docs broke of made difficult to use some of the interactive doc helpers,
e.g., setp and getp. Having all the rest markup in the ipython shell also confused the docstrings. I
added a new rc param docstring.hardcopy, to format the docstrings differently for hard copy and other
use. The ArtistInspector could use a little refactoring now since there is duplication of effort between
the rest out put and the non-rest output - JDH

2008-12-08 Updated spectral methods (psd, csd, etc.) to scale one-sided
densities by a factor of 2 and, optionally, scale all densities by the sampling frequency. This gives
better MatLab compatibility. -RM

2008-12-08 Fixed alignment of ticks in colorbars. -MGD

2008-12-07 drop the deprecated "new" keyword of np.histogram() for
numpy 1.2 or later. -JJL

2008-12-06 Fixed a bug in svg backend that new_figure_manager()
ignores keywords arguments such as figsize, etc. -JJL

2008-12-05 Fixed a bug that the handlelength of the new legend class
set too short when numpoints=1 -JJL

2008-12-04 Added support for data with units (e.g., dates) to
Axes.fill_between. -RM

2008-12-04 Added fancybox keyword to legend. Also applied some changes
for better look, including baseline adjustment of the multiline texts so that it is center aligned. -JJL

8.17. List of changes to Matplotlib prior to 2015 847

Matplotlib, Release 3.4.3

2008-12-02 The transmuter classes in the patches.py are reorganized as
subclasses of the Style classes. A few more box and arrow styles are added. -JJL

2008-12-02 Fixed a bug in the new legend class that didn't allowed
a tuple of coordinate values as loc. -JJL

2008-12-02 Improve checks for external dependencies, using subprocess
(instead of deprecated popen*) and distutils (for version checking) - DSD

2008-11-30 Reimplementation of the legend which supports baseline alignment,
multi-column, and expand mode. - JJL

2008-12-01 Fixed histogram autoscaling bug when bins or range are given
explicitly (fixes Debian bug 503148) - MM

2008-11-25 Added rcParam axes.unicode_minus which allows plain hyphen
for minus when False - JDH

2008-11-25 Added scatterpoints support in Legend. patch by Erik
Tollerud - JJL

2008-11-24 Fix crash in log ticking. - MGD

2008-11-20 Added static helper method BrokenHBarCollection.span_where
and Axes/pyplot method fill_between. See examples/pylab/fill_between.py - JDH

2008-11-12 Add x_isdata and y_isdata attributes to Artist instances,
and use them to determine whether either or both coordinates are used when updating dataLim. This
is used to fix autoscaling problems that had been triggered by axhline, axhspan, axvline, axvspan. -
EF

2008-11-11 Update the psd(), csd(), cohere(), and specgram() methods
of Axes and the csd() cohere(), and specgram() functions in mlab to be in sync with the changes to
psd(). In fact, under the hood, these all call the same core to do computations. - RM

2008-11-11 Add 'pad_to' and 'sides' parameters to mlab.psd() to
allow controlling of zero padding and returning of negative frequency components, respecitively.
These are added in a way that does not change the API. - RM

2008-11-10 Fix handling of c kwarg by scatter; generalize
is_string_like to accept numpy and numpy.ma string array scalars. - RM and EF

2008-11-09 Fix a possible EINTR problem in dviread, which might help
when saving pdf files from the qt backend. - JKS

2008-11-05 Fix bug with zoom to rectangle and twin axes - MGD

848 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2008-10-24 Added Jae Joon's fancy arrow, box and annotation
enhancements -- see examples/pylab_examples/annotation_demo2.py

2008-10-23 Autoscaling is now supported with shared axes - EF

2008-10-23 Fixed exception in dviread that happened with Minion - JKS

2008-10-21 set_xlim, ylim now return a copy of the viewlim array to
avoid modify inplace surprises

2008-10-20 Added image thumbnail generating function
matplotlib.image.thumbnail. See examples/misc/image_thumbnail.py - JDH

2008-10-20 Applied scatleg patch based on ideas and work by Erik
Tollerud and Jae-Joon Lee. - MM

2008-10-11 Fixed bug in pdf backend: if you pass a file object for
output instead of a filename, e.g., in a wep app, we now flush the object at the end. - JKS

2008-10-08 Add path simplification support to paths with gaps. - EF

2008-10-05 Fix problem with AFM files that don't specify the font's
full name or family name. - JKS

2008-10-04 Added 'scilimits' kwarg to Axes.ticklabel_format() method,
for easy access to the set_powerlimits method of the major ScalarFormatter. - EF

2008-10-04 Experimental new kwarg borderpad to replace pad in legend,
based on suggestion by Jae-Joon Lee. - EF

2008-09-27 Allow spy to ignore zero values in sparse arrays, based
on patch by Tony Yu. Also fixed plot to handle empty data arrays, and fixed handling of markers in
figlegend. - EF

2008-09-24 Introduce drawstyles for lines. Transparently split linestyles
like 'steps--' into drawstyle 'steps' and linestyle '--'. Legends always use drawstyle 'default'. - MM

2008-09-18 Fixed quiver and quiverkey bugs (failure to scale properly
when resizing) and added additional methods for determining the arrow angles - EF

2008-09-18 Fix polar interpolation to handle negative values of theta - MGD

2008-09-14 Reorganized cbook and mlab methods related to numerical
calculations that have little to do with the goals of those two modules into a separate module numer-
ical_methods.py Also, added ability to select points and stop point selection with keyboard in ginput
and manual contour labeling code. Finally, fixed contour labeling bug. - DMK

2008-09-11 Fix backtick in Postscript output. - MGD

8.17. List of changes to Matplotlib prior to 2015 849

Matplotlib, Release 3.4.3

2008-09-10 [2089958] Path simplification for vector output backends
Leverage the simplification code exposed through path_to_polygons to simplify certain well-behaved
paths in the vector backends (PDF, PS and SVG). "path.simplify" must be set to True in matplotlibrc
for this to work. - MGD

2008-09-10 Add "filled" kwarg to Path.intersects_path and
Path.intersects_bbox. - MGD

2008-09-07 Changed full arrows slightly to avoid an xpdf rendering
problem reported by Friedrich Hagedorn. - JKS

2008-09-07 Fix conversion of quadratic to cubic Bezier curves in PDF
and PS backends. Patch by Jae-Joon Lee. - JKS

2008-09-06 Added 5-point star marker to plot command - EF

2008-09-05 Fix hatching in PS backend - MGD

2008-09-03 Fix log with base 2 - MGD

2008-09-01 Added support for bilinear interpolation in
NonUniformImage; patch by Gregory Lielens. - EF

2008-08-28 Added support for multiple histograms with data of
different length - MM

2008-08-28 Fix step plots with log scale - MGD

2008-08-28 Fix masked arrays with markers in non-Agg backends - MGD

2008-08-28 Fix clip_on kwarg so it actually works correctly - MGD

2008-08-25 Fix locale problems in SVG backend - MGD

2008-08-22 fix quiver so masked values are not plotted - JSW

2008-08-18 improve interactive pan/zoom in qt4 backend on windows - DSD

2008-08-11 Fix more bugs in NaN/inf handling. In particular, path simplification
(which does not handle NaNs or infs) will be turned off automatically when infs or NaNs are present.
Also masked arrays are now converted to arrays with NaNs for consistent handling of masks and NaNs
- MGD and EF

2008-08-03 Released 0.98.3 at svn r5947

2008-08-01 Backported memory leak fixes in _ttconv.cpp - MGD

2008-07-31 Added masked array support to griddata. - JSW

2008-07-26 Added optional C and reduce_C_function arguments to
axes.hexbin(). This allows hexbin to accumulate the values of C based on the x,y coordinates and
display in hexagonal bins. - ADS

850 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2008-07-24 Deprecated (raise NotImplementedError) all the mlab2
functions from matplotlib.mlab out of concern that some of them were not clean room implementa-
tions. JDH

2008-07-24 Rewrite of a significant portion of the clabel code (class
ContourLabeler) to improve inlining. - DMK

2008-07-22 Added Barbs polygon collection (similar to Quiver) for plotting
wind barbs. Added corresponding helpers to Axes and pyplot as well. (exam-
ples/pylab_examples/barb_demo.py shows it off.) - RMM

2008-07-21 Added scikits.delaunay as matplotlib.delaunay. Added griddata
function in matplotlib.mlab, with example (griddata_demo.py) in pylab_examples. griddata function
will use mpl_toolkits._natgrid if installed. - JSW

2008-07-21 Re-introduced offset_copy that works in the context of the
new transforms. - MGD

2008-07-21 Committed patch by Ryan May to add get_offsets and
set_offsets to Collections base class - EF

2008-07-21 Changed the "asarray" strategy in image.py so that
colormapping of masked input should work for all image types (thanks Klaus Zimmerman) - EF

2008-07-20 Rewrote cbook.delete_masked_points and corresponding
unit test to support rgb color array inputs, datetime inputs, etc. - EF

2008-07-20 Renamed unit/axes_unit.py to cbook_unit.py and modified
in accord with Ryan's move of delete_masked_points from axes to cbook. - EF

2008-07-18 Check for nan and inf in axes.delete_masked_points().
This should help hexbin and scatter deal with nans. - ADS

2008-07-17 Added ability to manually select contour label locations.
Also added a waitforbuttonpress function. - DMK

2008-07-17 Fix bug with NaNs at end of path (thanks, Andrew Straw for
the report) - MGD

2008-07-16 Improve error handling in texmanager, thanks to Ian Henry
for reporting - DSD

2008-07-12 Added support for external backends with the
"module://my_backend" syntax - JDH

2008-07-11 Fix memory leak related to shared axes. Grouper should
store weak references. - MGD

8.17. List of changes to Matplotlib prior to 2015 851

Matplotlib, Release 3.4.3

2008-07-10 Bugfix: crash displaying fontconfig pattern - MGD

2008-07-10 Bugfix: [2013963] update_datalim_bounds in Axes not works - MGD

2008-07-10 Bugfix: [2014183] multiple imshow() causes gray edges - MGD

2008-07-09 Fix rectangular axes patch on polar plots bug - MGD

2008-07-09 Improve mathtext radical rendering - MGD

2008-07-08 Improve mathtext superscript placement - MGD

2008-07-07 Fix custom scales in pcolormesh (thanks Matthew Turk) - MGD

2008-07-03 Implemented findobj method for artist and pyplot - see
examples/pylab_examples/findobj_demo.py - JDH

2008-06-30 Another attempt to fix TextWithDash - DSD

2008-06-30 Removed Qt4 NavigationToolbar2.destroy -- it appears to
have been unnecessary and caused a bug reported by P. Raybaut - DSD

2008-06-27 Fixed tick positioning bug - MM

2008-06-27 Fix dashed text bug where text was at the wrong end of the
dash - MGD

2008-06-26 Fix mathtext bug for expressions like $x_{leftarrow}$ - MGD

2008-06-26 Fix direction of horizontal/vertical hatches - MGD

2008-06-25 Figure.figurePatch renamed Figure.patch, Axes.axesPatch
renamed Axes.patch, Axes.axesFrame renamed Axes.frame, Axes.get_frame, which returns
Axes.patch, is deprecated. Examples and users guide updated - JDH

2008-06-25 Fix rendering quality of pcolor - MGD

2008-06-24 Released 0.98.2 at svn r5667 - (source only for debian) JDH

2008-06-24 Added "transparent" kwarg to savefig. - MGD

2008-06-24 Applied Stefan's patch to draw a single centered marker over
a line with numpoints==1 - JDH

2008-06-23 Use splines to render circles in scatter plots - MGD

2008-06-22 Released 0.98.1 at revision 5637

2008-06-22 Removed axes3d support and replaced it with a
NotImplementedError for one release cycle

2008-06-21 fix marker placement bug in backend_ps - DSD

2008-06-20 [1978629] scale documentation missing/incorrect for log - MGD

852 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2008-06-20 Added closed kwarg to PolyCollection. Fixes bug [1994535
] still missing lines on graph with svn (r 5548). - MGD

2008-06-20 Added set/get_closed method to Polygon; fixes error
in hist - MM

2008-06-19 Use relative font sizes (e.g., 'medium' and 'large') in
rcsetup.py and matplotlibrc.template so that text will be scaled by default when changing rc-
Params['font.size'] - EF

2008-06-17 Add a generic PatchCollection class that can contain any
kind of patch. - MGD

2008-06-13 Change pie chart label alignment to avoid having labels
overwrite the pie - MGD

2008-06-12 Added some helper functions to the mathtext parser to
return bitmap arrays or write pngs to make it easier to use mathtext outside the context of an mpl
figure. modified the mathpng sphinxext to use the mathtext png save functionality - see exam-
ples/api/mathtext_asarray.py - JDH

2008-06-11 Use matplotlib.mathtext to render math expressions in
online docs - MGD

2008-06-11 Move PNG loading/saving to its own extension module, and
remove duplicate code in _backend_agg.cpp and _image.cpp that does the same thing - MGD

2008-06-11 Numerous mathtext bugfixes, primarily related to
dpi-independence - MGD

2008-06-10 Bar now applies the label only to the first patch only, and
sets '_nolegend_' for the other patch labels. This lets autolegend work as expected for hist and bar - see
https://sourceforge.net/tracker/index.php?func=detail&aid=1986597&group_id=80706&atid=560720
JDH

2008-06-10 Fix text baseline alignment bug. [1985420] Repair of
baseline alignment in Text._get_layout. Thanks Stan West - MGD

2008-06-09 Committed Gregor's image resample patch to downsampling
images with new rcparam image.resample - JDH

2008-06-09 Don't install Enthought.Traits along with matplotlib. For
matplotlib developers convenience, it can still be installed by setting an option in setup.cfg while we
figure decide if there is a future for the traited config - DSD

2008-06-09 Added range keyword arg to hist() - MM

8.17. List of changes to Matplotlib prior to 2015 853

Matplotlib, Release 3.4.3

2008-06-07 Moved list of backends to rcsetup.py; made use of lower
case for backend names consistent; use validate_backend when importing backends subpackage - EF

2008-06-06 hist() revision, applied ideas proposed by Erik Tollerud and
Olle Engdegard: make histtype='step' unfilled by default and introduce histtype='stepfilled'; use de-
fault color cycle; introduce reverse cumulative histogram; new align keyword - MM

2008-06-06 Fix closed polygon patch and also provide the option to
not close the polygon - MGD

2008-06-05 Fix some dpi-changing-related problems with PolyCollection,
as called by Axes.scatter() - MGD

2008-06-05 Fix image drawing so there is no extra space to the right
or bottom - MGD

2006-06-04 Added a figure title command suptitle as a Figure method
and pyplot command -- see examples/figure_title.py - JDH

2008-06-02 Added support for log to hist with histtype='step' and fixed
a bug for log-scale stacked histograms - MM

2008-05-29 Released 0.98.0 at revision 5314

2008-05-29 matplotlib.image.imread now no longer always returns RGBA
-- if the image is luminance or RGB, it will return a MxN or MxNx3 array if possible. Also uint8 is
no longer always forced to float.

2008-05-29 Implement path clipping in PS backend - JDH

2008-05-29 Fixed two bugs in texmanager.py:
improved comparison of dvipng versions fixed a bug introduced when get_grey method was added -
DSD

2008-05-28 Fix crashing of PDFs in xpdf and ghostscript when two-byte
characters are used with Type 3 fonts - MGD

2008-05-28 Allow keyword args to configure widget properties as
requested in http://sourceforge.net/tracker/index.php?func=detail&aid=1866207&group_id=80706&atid=560722
- JDH

2008-05-28 Replaced '-' with u'u2212' for minus sign as requested in
http://sourceforge.net/tracker/index.php?func=detail&aid=1962574&group_id=80706&atid=560720

2008-05-28 zero width/height Rectangles no longer influence the
autoscaler. Useful for log histograms with empty bins - JDH

854 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2008-05-28 Fix rendering of composite glyphs in Type 3 conversion
(particularly as evidenced in the Eunjin.ttf Korean font) Thanks Jae-Joon Lee for finding this!

2008-05-27 Rewrote the cm.ScalarMappable callback infrastructure to
use cbook.CallbackRegistry rather than custom callback handling. Amy users of add_observer/notify
of the cm.ScalarMappable should uae the cm.ScalarMappable.callbacksSM CallbackRegistry instead.
JDH

2008-05-27 Fix TkAgg build on Ubuntu 8.04 (and hopefully a more
general solution for other platforms, too.)

2008-05-24 Added PIL support for loading images to imread (if PIL is
available) - JDH

2008-05-23 Provided a function and a method for controlling the
plot color cycle. - EF

2008-05-23 Major revision of hist(). Can handle 2D arrays and create
stacked histogram plots; keyword 'width' deprecated and rwidth (relative width) introduced;
align='edge' changed to center of bin - MM

2008-05-22 Added support for ReST-based doumentation using Sphinx.
Documents are located in doc/, and are broken up into a users guide and an API reference. To build,
run the make.py files. Sphinx-0.4 is needed to build generate xml, which will be useful for rendering
equations with mathml, use sphinx from svn until 0.4 is released - DSD

2008-05-21 Fix segfault in TkAgg backend - MGD

2008-05-21 Fix a "local variable unreferenced" bug in plotfile - MM

2008-05-19 Fix crash when Windows can not access the registry to
determine font path [Bug 1966974, thanks Patrik Simons] - MGD

2008-05-16 removed some unneeded code w/ the python 2.4 requirement.
cbook no longer provides compatibility for reversed, enumerate, set or izip. removed lib/subprocess,
mpl1, sandbox/units, and the swig code. This stuff should remain on the maintenance branch for
archival purposes. JDH

2008-05-16 Reorganized examples dir - JDH

2008-05-16 Added 'elinewidth' keyword arg to errorbar, based on patch
by Christopher Brown - MM

2008-05-16 Added 'cumulative' keyword arg to hist to plot cumulative
histograms. For normed hists, this is normalized to one - MM

2008-05-15 Fix Tk backend segfault on some machines - MGD

2008-05-14 Don't use stat on Windows (fixes font embedding problem) - MGD

8.17. List of changes to Matplotlib prior to 2015 855

Matplotlib, Release 3.4.3

2008-05-09 Fix /singlequote (') in Postscript backend - MGD

2008-05-08 Fix kerning in SVG when embedding character outlines - MGD

2008-05-07 Switched to future numpy histogram semantic in hist - MM

2008-05-06 Fix strange colors when blitting in QtAgg and Qt4Agg - MGD

2008-05-05 pass notify_axes_change to the figure's add_axobserver
in the qt backends, like we do for the other backends. Thanks Glenn Jones for the report - DSD

2008-05-02 Added step histograms, based on patch by Erik Tollerud. - MM

2008-05-02 On PyQt <= 3.14 there is no way to determine the underlying
Qt version. [1851364] - MGD

2008-05-02 Don't call sys.exit() when pyemf is not found [1924199] -
MGD

2008-05-02 Update _subprocess.c from upstream Python 2.5.2 to get a
few memory and reference-counting-related bugfixes. See bug 1949978. - MGD

2008-04-30 Added some record array editing widgets for gtk -- see
examples/rec_edit*.py - JDH

2008-04-29 Fix bug in mlab.sqrtm - MM

2008-04-28 Fix bug in SVG text with Mozilla-based viewers (the symbol
tag is not supported) - MGD

2008-04-27 Applied patch by Michiel de Hoon to add hexbin
axes method and pyplot function - EF

2008-04-25 Enforce python >= 2.4; remove subprocess build - EF

2008-04-25 Enforce the numpy requirement at build time - JDH

2008-04-24 Make numpy 1.1 and python 2.3 required when importing
matplotlib - EF

2008-04-24 Fix compilation issues on VS2003 (Thanks Martin Spacek for
all the help) - MGD

2008-04-24 Fix sub/superscripts when the size of the font has been
changed - MGD

2008-04-22 Use "svg.embed_char_paths" consistently everywhere - MGD

2008-04-20 Add support to MaxNLocator for symmetric axis autoscaling. - EF

2008-04-20 Fix double-zoom bug. - MM

2008-04-15 Speed up colormapping. - EF

856 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2008-04-12 Speed up zooming and panning of dense images. - EF

2008-04-11 Fix global font rcParam setting after initialization
time. - MGD

2008-04-11 Revert commits 5002 and 5031, which were intended to
avoid an unnecessary call to draw(). 5002 broke saving figures before show(). 5031 fixed the problem
created in 5002, but broke interactive plotting. Unnecessary call to draw still needs resolution - DSD

2008-04-07 Improve color validation in rc handling, suggested
by Lev Givon - EF

2008-04-02 Allow to use both linestyle definition arguments, '-' and
'solid' etc. in plots/collections - MM

2008-03-27 Fix saving to Unicode filenames with Agg backend
(other backends appear to already work...) (Thanks, Christopher Barker) - MGD

2008-03-26 Fix SVG backend bug that prevents copying and pasting in
Inkscape (thanks Kaushik Ghose) - MGD

2008-03-24 Removed an unnecessary call to draw() in the backend_qt*
mouseReleaseEvent. Thanks to Ted Drain - DSD

2008-03-23 Fix a pdf backend bug which sometimes caused the outermost
gsave to not be balanced with a grestore. - JKS

2008-03-20 Fixed a minor bug in ContourSet._process_linestyles when
len(linestyles)==Nlev - MM

2008-03-19 Changed ma import statements to "from numpy import ma";
this should work with past and future versions of numpy, whereas "import numpy.ma as ma" will work
only with numpy >= 1.05, and "import numerix.npyma as ma" is obsolete now that maskedarray is
replacing the earlier implementation, as of numpy 1.05.

2008-03-14 Removed an apparently unnecessary call to
FigureCanvasAgg.draw in backend_qt*agg. Thanks to Ted Drain - DSD

2008-03-10 Workaround a bug in backend_qt4agg's blitting due to a
buffer width/bbox width mismatch in _backend_agg's copy_from_bbox - DSD

2008-02-29 Fix class Wx toolbar pan and zoom functions (Thanks Jeff
Peery) - MGD

2008-02-16 Added some new rec array functionality to mlab
(rec_summarize, rec2txt and rec_groupby). See examples/rec_groupby_demo.py. Thanks to Tim M
for rec2txt.

8.17. List of changes to Matplotlib prior to 2015 857

Matplotlib, Release 3.4.3

2008-02-12 Applied Erik Tollerud's span selector patch - JDH

2008-02-11 Update plotting() doc string to refer to getp/setp. - JKS

2008-02-10 Fixed a problem with square roots in the pdf backend with
usetex. - JKS

2008-02-08 Fixed minor __str__ bugs so getp(gca()) works. - JKS

2008-02-05 Added getters for title, xlabel, ylabel, as requested
by Brandon Kieth - EF

2008-02-05 Applied Gael's ginput patch and created
examples/ginput_demo.py - JDH

2008-02-03 Expose interpnames, a list of valid interpolation
methods, as an AxesImage class attribute. - EF

2008-02-03 Added BoundaryNorm, with examples in colorbar_only.py
and image_masked.py. - EF

2008-02-03 Force dpi=72 in pdf backend to fix picture size bug. - JKS

2008-02-01 Fix doubly-included font problem in Postscript backend - MGD

2008-02-01 Fix reference leak in ft2font Glyph objects. - MGD

2008-01-31 Don't use unicode strings with usetex by default - DSD

2008-01-31 Fix text spacing problems in PDF backend with some fonts,
such as STIXGeneral.

2008-01-31 Fix sqrt with radical number (broken by making [and]
work below) - MGD

2008-01-27 Applied Martin Teichmann's patch to improve the Qt4
backend. Uses Qt's builtin toolbars and statusbars. See bug 1828848 - DSD

2008-01-10 Moved toolkits to mpl_toolkits, made mpl_toolkits
a namespace package - JSWHIT

2008-01-10 Use setup.cfg to set the default parameters (tkagg,
numpy) when building windows installers - DSD

2008-01-10 Fix bug displaying [and] in mathtext - MGD

2008-01-10 Fix bug when displaying a tick value offset with scientific
notation. (Manifests itself as a warning that the times symbol can not be found). - MGD

2008-01-10 Use setup.cfg to set the default parameters (tkagg,
numpy) when building windows installers - DSD

858 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2008-01-06 Released 0.91.2 at revision 4802

2007-12-26 Reduce too-late use of matplotlib.use() to a warning
instead of an exception, for backwards compatibility - EF

2007-12-25 Fix bug in errorbar, identified by Noriko Minakawa - EF

2007-12-25 Changed masked array importing to work with the upcoming
numpy 1.05 (now the maskedarray branch) as well as with earlier versions. - EF

2007-12-16 rec2csv saves doubles without losing precision. Also, it
does not close filehandles passed in open. - JDH,ADS

2007-12-13 Moved rec2gtk to matplotlib.toolkits.gtktools and rec2excel
to matplotlib.toolkits.exceltools - JDH

2007-12-12 Support alpha-blended text in the Agg and Svg backends -
MGD

2007-12-10 Fix SVG text rendering bug. - MGD

2007-12-10 Increase accuracy of circle and ellipse drawing by using an
8-piece bezier approximation, rather than a 4-piece one. Fix PDF, SVG and Cairo backends so they
can draw paths (meaning ellipses as well). - MGD

2007-12-07 Issue a warning when drawing an image on a non-linear axis. - MGD

2007-12-06 let widgets.Cursor initialize to the lower x and y bounds
rather than 0,0, which can cause havoc for dates and other transforms - DSD

2007-12-06 updated references to mpl data directories for py2exe - DSD

2007-12-06 fixed a bug in rcsetup, see bug 1845057 - DSD

2007-12-05 Fix how fonts are cached to avoid loading the same one multiple times.
(This was a regression since 0.90 caused by the refactoring of font_manager.py) - MGD

2007-12-05 Support arbitrary rotation of usetex text in Agg backend. - MGD

2007-12-04 Support '|' as a character in mathtext - MGD

2007-11-27 Released 0.91.1 at revision 4517

2007-11-27 Released 0.91.0 at revision 4478

2007-11-13 All backends now support writing to a file-like object, not
just a regular file. savefig() can be passed a file-like object in place of a file path. - MGD

8.17. List of changes to Matplotlib prior to 2015 859

Matplotlib, Release 3.4.3

2007-11-13 Improved the default backend selection at build time:
SVG -> Agg -> TkAgg ->WXAgg -> GTK -> GTKAgg. The last usable backend in this progression
will be chosen in the default config file. If a backend is defined in setup.cfg, that will be the default
backend - DSD

2007-11-13 Improved creation of default config files at build time for
traited config package - DSD

2007-11-12 Exposed all the build options in setup.cfg. These options are
read into a dict called "options" by setupext.py. Also, added "-mpl" tags to the version strings for pack-
ages provided by matplotlib. Versions provided by mpl will be identified and updated on subsequent
installs - DSD

2007-11-12 Added support for STIX fonts. A new rcParam,
mathtext.fontset, can be used to choose between:

'cm':
The TeX/LaTeX Computer Modern fonts

'stix':
The STIX fonts (see stixfonts.org)

'stixsans':
The STIX fonts, using sans-serif glyphs by default

'custom':
A generic Unicode font, in which case the mathtext font must be specified using mathtext.bf,
mathtext.it, mathtext.sf etc.

Added a new example, stix_fonts_demo.py to show how to access different fonts and unusual symbols.

• MGD

2007-11-12 Options to disable building backend extension modules moved
from setup.py to setup.cfg - DSD

2007-11-09 Applied Martin Teichmann's patch 1828813: a QPainter is used in
paintEvent, which has to be destroyed using the method end(). If matplotlib raises an exception before
the call to end - and it does if you feed it with bad data - this method end() is never called and Qt4 will
start spitting error messages

2007-11-09 Moved pyparsing back into matplotlib namespace. Don't use
system pyparsing, API is too variable from one release to the next - DSD

2007-11-08 Made pylab use straight numpy instead of oldnumeric
by default - EF

860 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2007-11-08 Added additional record array utilities to mlab (rec2excel,
rec2gtk, rec_join, rec_append_field, rec_drop_field) - JDH

2007-11-08 Updated pytz to version 2007g - DSD

2007-11-08 Updated pyparsing to version 1.4.8 - DSD

2007-11-08 Moved csv2rec to recutils and added other record array
utilities - JDH

2007-11-08 If available, use existing pyparsing installation - DSD

2007-11-07 Removed old enthought.traits from lib/matplotlib, added
Gael Varoquaux's enthought.traits-2.6b1, which is stripped of setuptools. The package is installed to
site-packages if not already available - DSD

2007-11-05 Added easy access to minor tick properties; slight mod
of patch by Pierre G-M - EF

2007-11-02 Committed Phil Thompson's patch 1599876, fixes to Qt4Agg
backend and qt4 blitting demo - DSD

2007-11-02 Committed Phil Thompson's patch 1599876, fixes to Qt4Agg
backend and qt4 blitting demo - DSD

2007-10-31 Made log color scale easier to use with contourf;
automatic level generation now works. - EF

2007-10-29 TRANSFORMS REFACTORING

The primary goal of this refactoring was to make it easier to extend matplotlib to support new
kinds of projections. This is primarily an internal improvement, and the possible user-visible
changes it allows are yet to come.

The transformation framework was completely rewritten in Python (with Numpy). This will
make it easier to add news kinds of transformations without writing C/C++ code.

Transforms are composed into a 'transform tree', made of transforms whose value depends on
other transforms (their children). When the contents of children change, their parents are auto-
matically updated to reflect those changes. To do this an "invalidation" method is used: when
children change, all of their ancestors are marked as "invalid". When the value of a transform
is accessed at a later time, its value is recomputed only if it is invalid, otherwise a cached value
may be used. This prevents unnecessary recomputations of transforms, and contributes to better
interactive performance.

The framework can be used for both affine and non-affine transformations. However, for speed,
we want use the backend renderers to perform affine transformations whenever possible. There-
fore, it is possible to perform just the affine or non-affine part of a transformation on a set of
data. The affine is always assumed to occur after the non-affine. For any transform:

full transform == non-affine + affine

8.17. List of changes to Matplotlib prior to 2015 861

Matplotlib, Release 3.4.3

Much of the drawing has been refactored in terms of compound paths. Therefore, many methods
have been removed from the backend interface and replaced with a a handful to draw compound
paths. This will make updating the backends easier, since there is less to update. It also should
make the backends more consistent in terms of functionality.

User visible changes:

• POLAR PLOTS: Polar plots are now interactively zoomable, and the r-axis labels can be
interactively rotated. Straight line segments are now interpolated to follow the curve of the
r-axis.

• Non-rectangular clipping works in more backends and with more types of objects.

• Sharing an axis across figures is now done in exactly the same way as sharing an axis
between two axes in the same figure:

fig1 = figure()
fig2 = figure()

ax1 = fig1.add_subplot(111)
ax2 = fig2.add_subplot(111, sharex=ax1, sharey=ax1)

• linestyles now include steps-pre, steps-post and steps-mid. The old step still works and is
equivalent to step-pre.

• Multiple line styles may be provided to a collection.

See API_CHANGES for more low-level information about this refactoring.

2007-10-24 Added ax kwarg to Figure.colorbar and pyplot.colorbar - EF

2007-10-19 Removed a gsave/grestore pair surrounding _draw_ps, which
was causing a loss graphics state info (see "EPS output problem - scatter & edgecolors" on mpl-dev,
2007-10-29) - DSD

2007-10-15 Fixed a bug in patches.Ellipse that was broken for
aspect='auto'. Scale free ellipses now work properly for equal and auto on Agg and PS, and they fall
back on a polygonal approximation for nonlinear transformations until we convince oursleves that the
spline approximation holds for nonlinear transformations. Added unit/ellipse_compare.py to compare
spline with vertex approx for both aspects. JDH

2007-10-05 remove generator expressions from texmanager and mpltraits.
generator expressions are not supported by python-2.3 - DSD

2007-10-01 Made matplotlib.use() raise an exception if called after
backends has been imported. - EF

2007-09-30 Modified update* methods of Bbox and Interval so they
work with reversed axes. Prior to this, trying to set the ticks on a reversed axis failed with an uninfor-
mative error message. - EF

2007-09-30 Applied patches to axes3d to fix index error problem - EF

862 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2007-09-24 Applied Eike Welk's patch reported on mpl-dev on 2007-09-22
Fixes a bug with multiple plot windows in the qt backend, ported the changes to backend_qt4 as well
- DSD

2007-09-21 Changed cbook.reversed to yield the same result as the
python reversed builtin - DSD

2007-09-13 The usetex support in the pdf backend is more usable now,
so I am enabling it. - JKS

2007-09-12 Fixed a Axes.bar unit bug - JDH

2007-09-10 Made skiprows=1 the default on csv2rec - JDH

2007-09-09 Split out the plotting part of pylab and put it in
pyplot.py; removed numerix from the remaining pylab.py, which imports everything from pyplot.py.
The intention is that apart from cleanups, the result of importing from pylab is nearly unchanged, but
there is the new alternative of importing from pyplot to get the state-engine graphics without all the
numeric functions. Numpified examples; deleted two that were obsolete; modified some to use pyplot.
- EF

2007-09-08 Eliminated gd and paint backends - EF

2007-09-06 .bmp file format is now longer an alias for .raw

2007-09-07 Added clip path support to pdf backend. - JKS

2007-09-06 Fixed a bug in the embedding of Type 1 fonts in PDF.
Now it doesn't crash Preview.app. - JKS

2007-09-06 Refactored image saving code so that all GUI backends can
save most image types. See FILETYPES for a matrix of backends and their supported file types.
Backend canvases should no longer write their own print_figure() method -- instead they should write
a print_xxx method for each filetype they can output and add an entry to their class-scoped filetypes
dictionary. - MGD

2007-09-05 Fixed Qt version reporting in setupext.py - DSD

2007-09-04 Embedding Type 1 fonts in PDF, and thus usetex support
via dviread, sort of works. To test, enable it by renaming _draw_tex to draw_tex. - JKS

2007-09-03 Added ability of errorbar show limits via caret or
arrowhead ends on the bars; patch by Manual Metz. - EF

2007-09-03 Created type1font.py, added features to AFM and FT2Font
(see API_CHANGES), started work on embedding Type 1 fonts in pdf files. - JKS

2007-09-02 Continued work on dviread.py. - JKS

2007-08-16 Added a set_extent method to AxesImage, allow data extent
to be modified after initial call to imshow - DSD

8.17. List of changes to Matplotlib prior to 2015 863

Matplotlib, Release 3.4.3

2007-08-14 Fixed a bug in pyqt4 subplots-adjust. Thanks to
Xavier Gnata for the report and suggested fix - DSD

2007-08-13 Use pickle to cache entire fontManager; change to using
font_manager module-level function findfont wrapper for the fontManager.findfont method - EF

2007-08-11 Numpification and cleanup of mlab.py and some examples - EF

2007-08-06 Removed mathtext2

2007-07-31 Refactoring of distutils scripts.
• Will not fail on the entire build if an optional Python package (e.g., Tkinter) is installed but its

development headers are not (e.g., tk-devel). Instead, it will continue to build all other extensions.

• Provide an overview at the top of the output to display what dependencies and their versions were
found, and (by extension) what will be built.

• Use pkg-config, when available, to find freetype2, since this was broken on Mac OS-X when
using MacPorts in a non- standard location.

2007-07-30 Reorganized configuration code to work with traited config
objects. The new config system is located in the matplotlib.config package, but it is disabled by default.
To enable it, set NEWCONFIG=True in matplotlib.__init__.py. The new configuration system will
still use the old matplotlibrc files by default. To switch to the experimental, traited configuration, set
USE_TRAITED_CONFIG=True in config.__init__.py.

2007-07-29 Changed default pcolor shading to flat; added aliases
to make collection kwargs agree with setter names, so updating works; related minor cleanups. Re-
moved quiver_classic, scatter_classic, pcolor_classic. - EF

2007-07-26 Major rewrite of mathtext.py, using the TeX box layout model.

There is one (known) backward incompatible change. The font commands (cal, rm, it, tt) now
behave as TeX does: they are in effect until the next font change command or the end of the
grouping. Therefore uses of $cal{R}$ should be changed to ${cal R}$. Alternatively, you may
use the new LaTeX-style font commands (mathcal, mathrm, mathit, mathtt) which do affect the
following group, e.g., $mathcal{R}$.

Other new features include:

• Math may be interspersed with non-math text. Any text with an even number of $'s (non-
escaped) will be sent to the mathtext parser for layout.

• Sub/superscripts are less likely to accidentally overlap.

• Support for sub/superscripts in either order, e.g., x^i_j and x_j^i are equivalent.

• Double sub/superscripts (e.g., x_i_j) are considered ambiguous and raise an exception.
Use braces to disambiguate.

• $frac{x}{y}$ can be used for displaying fractions.

• $sqrt[3]{x}$ can be used to display the radical symbol with a root number and body.

864 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

• $left(frac{x}{y}right)$ may be used to create parentheses and other delimiters that auto-
matically resize to the height of their contents.

• Spacing around operators etc. is now generally more like TeX.

• Added support (and fonts) for boldface (bf) and sans-serif (sf) symbols.

• Log-like function name shortcuts are supported. For example, $sin(x)$ may be used in-
stead of ${rm sin}(x)$

• Limited use of kerning for the easy case (same font)

Behind the scenes, the pyparsing.py module used for doing the math parsing was updated to the
latest stable version (1.4.6). A lot of duplicate code was refactored out of the Font classes.

• MGD

2007-07-19 completed numpification of most trivial cases - NN

2007-07-19 converted non-numpy relicts throughout the code - NN

2007-07-19 replaced the Python code in numerix/ by a minimal wrapper around
numpy that explicitly mentions all symbols that need to be addressed for further numpification - NN

2007-07-18 make usetex respect changes to rcParams. texmanager used to
only configure itself when it was created, now it reconfigures when rcParams are changed. Thank you
Alexander Schmolck for contributing a patch - DSD

2007-07-17 added validation to setting and changing rcParams - DSD

2007-07-17 bugfix segfault in transforms module. Thanks Ben North for
the patch. - ADS

2007-07-16 clean up some code in ticker.ScalarFormatter, use unicode to
render multiplication sign in offset ticklabel - DSD

2007-07-16 fixed a formatting bug in ticker.ScalarFormatter's scientific
notation (10^0 was being rendered as 10 in some cases) - DSD

2007-07-13 Add MPL_isfinite64() and MPL_isinf64() for testing
doubles in (the now misnamed) MPL_isnan.h. - ADS

2007-07-13 The matplotlib._isnan module removed (use numpy.isnan) - ADS

2007-07-13 Some minor cleanups in _transforms.cpp - ADS

2007-07-13 Removed the rest of the numerix extension code detritus,
numpified axes.py, and cleaned up the imports in axes.py - JDH

2007-07-13 Added legend.loc as configurable option that could in
future default to 'best'. - NN

8.17. List of changes to Matplotlib prior to 2015 865

Matplotlib, Release 3.4.3

2007-07-12 Bugfixes in mlab.py to coerce inputs into numpy arrays. -ADS

2007-07-11 Added linespacing kwarg to text.Text - EF

2007-07-11 Added code to store font paths in SVG files. - MGD

2007-07-10 Store subset of TTF font as a Type 3 font in PDF files. - MGD

2007-07-09 Store subset of TTF font as a Type 3 font in PS files. - MGD

2007-07-09 Applied Paul's pick restructure pick and add pickers,
sourceforge patch 1749829 - JDH

2007-07-09 Applied Allan's draw_lines agg optimization. JDH

2007-07-08 Applied Carl Worth's patch to fix cairo draw_arc - SC

2007-07-07 fixed bug 1712099: xpdf distiller on windows - DSD

2007-06-30 Applied patches to tkagg, gtk, and wx backends to reduce
memory leakage. Patches supplied by Mike Droettboom; see tracker numbers 1745400, 1745406,
1745408. Also made unit/memleak_gui.py more flexible with command-line options. - EF

2007-06-30 Split defaultParams into separate file rcdefaults (together with
validation code). Some heavy refactoring was necessary to do so, but the overall behavior should be
the same as before. - NN

2007-06-27 Added MPLCONFIGDIR for the default location for mpl data
and configuration. useful for some apache installs where HOME is not writable. Tried to clean up
the logic in _get_config_dir to support non-writable HOME where are writable HOME/.matplotlib
already exists - JDH

2007-06-27 Fixed locale bug reported at
http://sourceforge.net/tracker/index.php?func=detail&aid=1744154&group_id=80706&atid=560720
by adding a cbook.unicode_safe function - JDH

2007-06-27 Applied Micheal's tk savefig bugfix described at
http://sourceforge.net/tracker/index.php?func=detail&aid=1716732&group_id=80706&atid=560720
Thanks Michael!

2007-06-27 Patch for get_py2exe_datafiles() to work with new directory
layout. (Thanks Tocer and also Werner Bruhin.) -ADS

2007-06-27 Added a scroll event to the mpl event handling system and
implemented it for backends GTK* -- other backend users/developers/maintainers, please add support
for your backend. - JDH

2007-06-25 Changed default to clip=False in colors.Normalize;
modified ColorbarBase for easier colormap display - EF

866 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2007-06-13 Added maskedarray option to rc, numerix - EF

2007-06-11 Python 2.5 compatibility fix for mlab.py - EF

2007-06-10 In matplotlibrc file, use 'dashed' | 'solid' instead
of a pair of floats for contour.negative_linestyle - EF

2007-06-08 Allow plot and fill fmt string to be any mpl string
colorspec - EF

2007-06-08 Added gnuplot file plotfile function to pylab -- see
examples/plotfile_demo.py - JDH

2007-06-07 Disable build of numarray and Numeric extensions for
internal MPL use and the numerix layer. - ADS

2007-06-07 Added csv2rec to matplotlib.mlab to support automatically
converting csv files to record arrays using type introspection, and turned on native datetime support
using the new units support in matplotlib.dates. See examples/loadrec.py ! JDH

2007-06-07 Simplified internal code of _auto_legend_data - NN

2007-06-04 Added labeldistance arg to Axes.pie to control the raidal
distance of the wedge labels - JDH

2007-06-03 Turned mathtext in SVG into single <text> with multiple <tspan>
objects (easier to edit in inkscape). - NN

2007-06-02 Released 0.90.1 at revision 3352

2007-06-02 Display only meaningful labels when calling legend()
without args. - NN

2007-06-02 Have errorbar follow the color cycle even if line is not plotted.
Suppress plotting of errorbar caps for capsize=0. - NN

2007-06-02 Set markers to same alpha value as line. - NN

2007-06-02 Fix mathtext position in svg backend. - NN

2007-06-01 Deprecate Numeric and numarray for use as numerix. Props to
Travis -- job well done. - ADS

2007-05-18 Added LaTeX unicode support. Enable with the
'text.latex.unicode' rcParam. This requires the ucs and inputenc LaTeX packages. - ADS

2007-04-23 Fixed some problems with polar -- added general polygon
clipping to clip the lines and grids to the polar axes. Added support for set_rmax to easily change the
maximum radial grid. Added support for polar legend - JDH

8.17. List of changes to Matplotlib prior to 2015 867

Matplotlib, Release 3.4.3

2007-04-16 Added Figure.autofmt_xdate to handle adjusting the bottom
and rotating the tick labels for date plots when the ticks often overlap - JDH

2007-04-09 Beginnings of usetex support for pdf backend. -JKS

2007-04-07 Fixed legend/LineCollection bug. Added label support
to collections. - EF

2007-04-06 Removed deprecated support for a float value as a gray-scale;
now it must be a string, like '0.5'. Added alpha kwarg to ColorConverter.to_rgba_list. - EF

2007-04-06 Fixed rotation of ellipses in pdf backend
(sf bug #1690559) -JKS

2007-04-04 More matshow tweaks; documentation updates; new method
set_bounds() for formatters and locators. - EF

2007-04-02 Fixed problem with imshow and matshow of integer arrays;
fixed problems with changes to color autoscaling. - EF

2007-04-01 Made image color autoscaling work correctly with
a tracking colorbar; norm.autoscale now scales unconditionally, while norm.autoscale_None changes
only None-valued vmin, vmax. - EF

2007-03-31 Added a qt-based subplot-adjustment dialog - DSD

2007-03-30 Fixed a bug in backend_qt4, reported on mpl-dev - DSD

2007-03-26 Removed colorbar_classic from figure.py; fixed bug in
Figure.clf() in which _axobservers was not getting cleared. Modernization and cleanups. - EF

2007-03-26 Refactored some of the units support -- units now live in
the respective x and y Axis instances. See also API_CHANGES for some alterations to the conversion
interface. JDH

2007-03-25 Fix masked array handling in quiver.py for numpy. (Numeric
and numarray support for masked arrays is broken in other ways when using quiver. I didn't pursue
that.) - ADS

2007-03-23 Made font_manager.py close opened files. - JKS

2007-03-22 Made imshow default extent match matshow - EF

2007-03-22 Some more niceties for xcorr -- a maxlags option, normed
now works for xcorr as well as axorr, usevlines is supported, and a zero correlation hline is added. See
examples/xcorr_demo.py. Thanks Sameer for the patch. - JDH

2007-03-21 Axes.vlines and Axes.hlines now create and returns a

868 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

LineCollection, not a list of lines. This is much faster. The kwarg signature has changed, so consult the
docs. Modified Axes.errorbar which uses vlines and hlines. See API_CHANGES; the return signature
for these three functions is now different

2007-03-20 Refactored units support and added new examples - JDH

2007-03-19 Added Mike's units patch - JDH

2007-03-18 Matshow as an Axes method; test version matshow1() in
pylab; added 'integer' Boolean kwarg to MaxNLocator initializer to force ticks at integer locations. -
EF

2007-03-17 Preliminary support for clipping to paths agg - JDH

2007-03-17 Text.set_text() accepts anything convertible with '%s' - EF

2007-03-14 Add masked-array support to hist. - EF

2007-03-03 Change barh to take a kwargs dict and pass it to bar.
Fixes sf bug #1669506.

2007-03-02 Add rc parameter pdf.inheritcolor, which disables all
color-setting operations in the pdf backend. The idea is that you include the resulting file in another
program and set the colors (both stroke and fill color) there, so you can use the same pdf file for e.g., a
paper and a presentation and have them in the surrounding color. You will probably not want to draw
figure and axis frames in that case, since they would be filled in the same color. - JKS

2007-02-26 Prevent building _wxagg.so with broken Mac OS X wxPython. - ADS

2007-02-23 Require setuptools for Python 2.3 - ADS

2007-02-22 WXAgg accelerator updates - KM
WXAgg's C++ accelerator has been fixed to use the correct wxBitmap constructor.

The backend has been updated to use new wxPython functionality to provide fast blit() animation
without the C++ accelerator. This requires wxPython 2.8 or later. Previous versions of wxPython can
use the C++ acclerator or the old pure Python routines.

setup.py no longer builds the C++ accelerator when wxPython >= 2.8 is present.

The blit() method is now faster regardless of which agg/wxPython conversion routines are used.

2007-02-21 Applied the PDF backend patch by Nicolas Grilly.
This impacts several files and directories in matplotlib:

• Created the directory lib/matplotlib/mpl-data/fonts/pdfcorefonts, holding AFM files for the 14
PDF core fonts. These fonts are embedded in every PDF viewing application.

• setup.py: Added the directory pdfcorefonts to package_data.

• lib/matplotlib/__init__.py: Added the default parameter 'pdf.use14corefonts'. When True, the
PDF backend uses only the 14 PDF core fonts.

• lib/matplotlib/afm.py: Added some keywords found in recent AFM files. Added a little
workaround to handle Euro symbol.

8.17. List of changes to Matplotlib prior to 2015 869

Matplotlib, Release 3.4.3

• lib/matplotlib/fontmanager.py: Added support for the 14 PDF core fonts. These fonts have a
dedicated cache (file pdfcorefont.cache), not the same as for other AFMfiles (file .afmfont.cache).
Also cleaned comments to conform to CODING_GUIDE.

• lib/matplotlib/backends/backend_pdf.py: Added support for 14 PDF core fonts. Fixed some is-
sues with incorrect character widths and encodings (works only for the most common encoding,
WinAnsiEncoding, defined by the official PDF Reference). Removed parameter 'dpi' because it
causes alignment issues.

-JKS (patch by Nicolas Grilly)

2007-02-17 Changed ft2font.get_charmap, and updated all the files where
get_charmap is mentioned - ES

2007-02-13 Added barcode demo- JDH

2007-02-13 Added binary colormap to cm - JDH

2007-02-13 Added twiny to pylab - JDH

2007-02-12 Moved data files into lib/matplotlib so that setuptools'
develop mode works. Re-organized the mpl-data layout so that this source structure is maintained in
the installation. (i.e., the 'fonts' and 'images' sub-directories are maintained in site-packages.) Suggest
removing site-packages/matplotlib/mpl-data and ~/.matplotlib/ttffont.cache before installing - ADS

2007-02-07 Committed Rob Hetland's patch for qt4: remove
references to text()/latin1(), plus some improvements to the toolbar layout - DSD

2007-02-06 Released 0.90.0 at revision 3003

2007-01-22 Extended the new picker API to text, patches and patch
collections. Added support for user customizable pick hit testing and attribute tagging of the PickEvent
- Details and examples in examples/pick_event_demo.py - JDH

2007-01-16 Begun work on a new pick API using the mpl event handling
frameowrk. Artists will define their own pick method with a configurable epsilon tolerance and return
pick attrs. All artists that meet the tolerance threshold will fire a PickEvent with artist dependent attrs;
e.g., a Line2D can set the indices attribute that shows the indices into the line that are within epsilon
of the pick point. See examples/pick_event_demo.py. The implementation of pick for the remaining
Artists remains to be done, but the core infrastructure at the level of event handling is in place with a
proof-of-concept implementation for Line2D - JDH

2007-01-16 src/_image.cpp: update to use Py_ssize_t (for 64-bit systems).
Use return value of fread() to prevent warning messages - SC.

2007-01-15 src/_image.cpp: combine buffer_argb32() and buffer_bgra32() into
a new method color_conv(format) - SC

870 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2007-01-14 backend_cairo.py: update draw_arc() so that
examples/arctest.py looks correct - SC

2007-01-12 backend_cairo.py: enable clipping. Update draw_image() so that
examples/contour_demo.py looks correct - SC

2007-01-12 backend_cairo.py: fix draw_image() so that examples/image_demo.py
now looks correct - SC

2007-01-11 Added Axes.xcorr and Axes.acorr to plot the cross
correlation of x vs. y or the autocorrelation of x. pylab wrappers also provided. See exam-
ples/xcorr_demo.py - JDH

2007-01-10 Added "Subplot.label_outer" method. It will set the
visibility of the ticklabels so that yticklabels are only visible in the first column and xticklabels are
only visible in the last row - JDH

2007-01-02 Added additional kwarg documentation - JDH

2006-12-28 Improved error message for nonpositive input to log
transform; added log kwarg to bar, barh, and hist, and modified bar method to behave sensibly by
default when the ordinate has a log scale. (This only works if the log scale is set before or by the call
to bar, hence the utility of the log kwarg.) - EF

2006-12-27 backend_cairo.py: update draw_image() and _draw_mathtext() to work
with numpy - SC

2006-12-20 Fixed xpdf dependency check, which was failing on windows.
Removed ps2eps dependency check. - DSD

2006-12-19 Added Tim Leslie's spectral patch - JDH

2006-12-17 Added rc param 'axes.formatter.limits' to control
the default threshold for switching to scientific notation. Added convenience method
Axes.ticklabel_format() for turning scientific notation on or off on either or both axes. - EF

2006-12-16 Added ability to turn control scientific notation
in ScalarFormatter - EF

2006-12-16 Enhanced boxplot to handle more flexible inputs - EF

2006-12-13 Replaced calls to where() in colors.py with much faster
clip() and putmask() calls; removed inappropriate uses of getmaskorNone (which should be needed
only very rarely); all in response to profiling by David Cournapeau. Also fixed bugs in my 2-D array
support from 12-09. - EF

2006-12-09 Replaced spy and spy2 with the new spy that combines
marker and image capabilities - EF

8.17. List of changes to Matplotlib prior to 2015 871

Matplotlib, Release 3.4.3

2006-12-09 Added support for plotting 2-D arrays with plot:
columns are plotted as in Matlab - EF

2006-12-09 Added linewidth kwarg to bar and barh; fixed arg
checking bugs - EF

2006-12-07 Made pcolormesh argument handling match pcolor;
fixed kwarg handling problem noted by Pierre GM - EF

2006-12-06 Made pcolor support vector X and/or Y instead of
requiring 2-D arrays - EF

2006-12-05 Made the default Artist._transform None (rather than
invoking identity_transform for each artist only to have it overridden later). Use artist.get_transform()
rather than artist._transform, even in derived classes, so that the default transform will be created lazily
as needed - JDH

2006-12-03 Added LogNorm to colors.py as illustrated by
examples/pcolor_log.py, based on suggestion by Jim McDonald. Colorbar modified to handle Log-
Norm. Norms have additional "inverse" method. - EF

2006-12-02 Changed class names in colors.py to match convention:
normalize -> Normalize, no_norm -> NoNorm. Old names are still available. Changed __init__.py
rc defaults to match those in matplotlibrc - EF

2006-11-22 Fixed bug in set_*lim that I had introduced on 11-15 - EF

2006-11-22 Added examples/clippedline.py, which shows how to clip line
data based on view limits -- it also changes the marker style when zoomed in - JDH

2006-11-21 Some spy bug-fixes and added precision arg per Robert C's
suggestion - JDH

2006-11-19 Added semi-automatic docstring generation detailing all the
kwargs that functions take using the artist introspection tools; e.g., 'help text now details the scatter
kwargs that control the Text properties - JDH

2006-11-17 Removed obsolete scatter_classic, leaving a stub to
raise NotImplementedError; same for pcolor_classic - EF

2006-11-15 Removed obsolete pcolor_classic - EF

2006-11-15 Fixed 1588908 reported by Russel Owen; factored
nonsingular method out of ticker.py, put it into transforms.py as a function, and used it in set_xlim and
set_ylim. - EF

2006-11-14 Applied patch 1591716 by Ulf Larssen to fix a bug in

872 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

apply_aspect. Modified and applied patch 1594894 by mdehoon to fix bugs and improve formatting
in lines.py. Applied patch 1573008 by Greg Willden to make psd etc. plot full frequency range for
complex inputs. - EF

2006-11-14 Improved the ability of the colorbar to track
changes in corresponding image, pcolor, or contourf. - EF

2006-11-11 Fixed bug that broke Numeric compatibility;
added support for alpha to colorbar. The alpha information is taken from the mappable object, not
specified as a kwarg. - EF

2006-11-05 Added broken_barh function for makring a sequence of
horizontal bars broken by gaps -- see examples/broken_barh.py

2006-11-05 Removed lineprops and markerprops from the Annotation code
and replaced them with an arrow configurable with kwarg arrowprops. See exam-
ples/annotation_demo.py - JDH

2006-11-02 Fixed a pylab subplot bug that was causing axes to be
deleted with hspace or wspace equals zero in subplots_adjust - JDH

2006-10-31 Applied axes3d patch 1587359
http://sourceforge.net/tracker/index.php?func=detail&aid=1587359&group_id=80706&atid=560722
JDH

2006-10-26 Released 0.87.7 at revision 2835

2006-10-25 Made "tiny" kwarg in Locator.nonsingular much smaller - EF

2006-10-17 Closed sf bug 1562496 update line props dash/solid/cap/join
styles - JDH

2006-10-17 Complete overhaul of the annotations API and example code -
See matplotlib.text.Annotation and examples/annotation_demo.py JDH

2006-10-12 Committed Manuel Metz's StarPolygon code and
examples/scatter_star_poly.py - JDH

2006-10-11 commented out all default values in matplotlibrc.template
Default values should generally be taken from defaultParam in __init__.py - the file matplotlib should
only contain those values that the user wants to explicitly change from the default. (see thread "marker
color handling" on matplotlib-devel)

2006-10-10 Changed default comment character for load to '#' - JDH

2006-10-10 deactivated rcfile-configurability of markerfacecolor
and markeredgecolor. Both are now hardcoded to the special value 'auto' to follow the line color.
Configurability at run-time (using function arguments) remains functional. - NN

8.17. List of changes to Matplotlib prior to 2015 873

Matplotlib, Release 3.4.3

2006-10-07 introduced dummy argument magnification=1.0 to
FigImage.make_image to satisfy unit test figimage_demo.py The argument is not yet handled correctly,
which should only show up when using non-standard DPI settings in PS backend, introduced by patch
#1562394. - NN

2006-10-06 add backend-agnostic example: simple3d.py - NN

2006-09-29 fix line-breaking for SVG-inline images (purely cosmetic) - NN

2006-09-29 reworked set_linestyle and set_marker
markeredgecolor and markerfacecolor now default to a special value "auto" that keeps the color in
sync with the line color further, the intelligence of axes.plot is cleaned up, improved and simplified.
Complete compatibility cannot be guaranteed, but the new behavior should be much more predictable
(see patch #1104615 for details) - NN

2006-09-29 changed implementation of clip-path in SVG to work around a
limitation in inkscape - NN

2006-09-29 added two options to matplotlibrc:
svg.image_inline svg.image_noscale see patch #1533010 for details - NN

2006-09-29 axes.py: cleaned up kwargs checking - NN

2006-09-29 setup.py: cleaned up setup logic - NN

2006-09-29 setup.py: check for required pygtk versions, fixes bug #1460783 - SC

2006-09-27 Released 0.87.6 at revision 2783

2006-09-24 Added line pointers to the Annotation code, and a pylab
interface. See matplotlib.text.Annotation, examples/annotation_demo.py and exam-
ples/annotation_demo_pylab.py - JDH

2006-09-18 mathtext2.py: The SVG backend now supports the same things that
the AGG backend does. Fixed some bugs with rendering, and out of bounds errors in the AGG backend
- ES. Changed the return values of math_parse_s_ft2font_svg to support lines (fractions etc.)

2006-09-17 Added an Annotation class to facilitate annotating objects
and an examples file examples/annotation_demo.py. I want to add dash support as in TextWithDash,
but haven't decided yet whether inheriting from TextWithDash is the right base class or if another
approach is needed - JDH

2006-09-05 Released 0.87.5 at revision 2761

2006-09-04 Added nxutils for some numeric add-on extension code --
specifically a better/more efficient inside polygon tester (see unit/inside_poly_*.py) - JDH

2006-09-04 Made bitstream fonts the rc default - JDH

874 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2006-08-31 Fixed alpha-handling bug in ColorConverter, affecting
collections in general and contour/contourf in particular. - EF

2006-08-30 ft2font.cpp: Added draw_rect_filled method (now used by mathtext2
to draw the fraction bar) to FT2Font - ES

2006-08-29 setupext.py: wrap calls to tk.getvar() with str(). On some
systems, getvar returns a Tcl_Obj instead of a string - DSD

2006-08-28 mathtext2.py: Sub/superscripts can now be complex (i.e.
fractions etc.). The demo is also updated - ES

2006-08-28 font_manager.py: Added /usr/local/share/fonts to list of
X11 font directories - DSD

2006-08-28 mahtext2.py: Initial support for complex fractions. Also,
rendering is now completely separated from parsing. The sub/superscripts now work better. Updated
the mathtext2_demo.py - ES

2006-08-27 qt backends: don't create a QApplication when backend is
imported, do it when the FigureCanvasQt is created. Simplifies applications where mpl is embedded
in qt. Updated embedding_in_qt* examples - DSD

2006-08-27 mahtext2.py: Now the fonts are searched in the OS font dir and
in the mpl-data dir. Also env is not a dict anymore. - ES

2006-08-26 minor changes to __init__.py, mathtex2_demo.py. Added matplotlibrc
key "mathtext.mathtext2" (removed the key "mathtext2") - ES

2006-08-21 mathtext2.py: Initial support for fractions
Updated the mathtext2_demo.py _mathtext_data.py: removed "" from the unicode dicts mathtext.py:
Minor modification (because of _mathtext_data.py)- ES

2006-08-20 Added mathtext2.py: Replacement for mathtext.py. Supports _ ^,
rm, cal etc., sin, cos etc., unicode, recursive nestings, inline math mode. The only backend currently
supported is Agg __init__.py: added new rc params for mathtext2 added mathtext2_demo.py example
- ES

2006-08-19 Added embedding_in_qt4.py example - DSD

2006-08-11 Added scale free Ellipse patch for Agg - CM

2006-08-10 Added converters to and from julian dates to matplotlib.dates
(num2julian and julian2num) - JDH

2006-08-08 Fixed widget locking so multiple widgets could share the
event handling - JDH

8.17. List of changes to Matplotlib prior to 2015 875

Matplotlib, Release 3.4.3

2006-08-07 Added scale free Ellipse patch to SVG and PS - CM

2006-08-05 Re-organized imports in numerix for numpy 1.0b2 -- TEO

2006-08-04 Added draw_markers to PDF backend. - JKS

2006-08-01 Fixed a bug in postscript's rendering of dashed lines - DSD

2006-08-01 figure.py: savefig() update docstring to add support for 'format'
argument. backend_cairo.py: print_figure() add support 'format' argument. - SC

2006-07-31 Don't let postscript's xpdf distiller compress images - DSD

2006-07-31 Added shallowcopy() methods to all Transformations;
removed copy_bbox_transform and copy_bbox_transform_shallow from transforms.py; added off-
set_copy() function to transforms.py to facilitate positioning artists with offsets. See exam-
ples/transoffset.py. - EF

2006-07-31 Don't let postscript's xpdf distiller compress images - DSD

2006-07-29 Fixed numerix polygon bug reported by Nick Fotopoulos.
Added inverse_numerix_xy() transform method. Made autoscale_view() preserve axis direction (e.g.,
increasing down).- EF

2006-07-28 Added shallow bbox copy routine for transforms -- mainly
useful for copying transforms to apply offset to. - JDH

2006-07-28 Added resize method to FigureManager class
for Qt and Gtk backend - CM

2006-07-28 Added subplots_adjust button to Qt backend - CM

2006-07-26 Use numerix more in collections.
Quiver now handles masked arrays. - EF

2006-07-22 Fixed bug #1209354 - DSD

2006-07-22 make scatter() work with the kwarg "color". Closes bug
1285750 - DSD

2006-07-20 backend_cairo.py: require pycairo 1.2.0.
print_figure() update to output SVG using cairo.

2006-07-19 Added blitting for Qt4Agg - CM

2006-07-19 Added lasso widget and example examples/lasso_demo.py - JDH

2006-07-18 Added blitting for QtAgg backend - CM

2006-07-17 Fixed bug #1523585: skip nans in semilog plots - DSD

2006-07-12 Add support to render the scientific notation label
over the right-side y-axis - DSD

876 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2006-07-11 Released 0.87.4 at revision 2558

2006-07-07 Fixed a usetex bug with older versions of latex - DSD

2006-07-07 Add compatibility for NumPy 1.0 - TEO

2006-06-29 Added a Qt4Agg backend. Thank you James Amundson - DSD

2006-06-26 Fixed a usetex bug. On Windows, usetex will process
postscript output in the current directory rather than in a temp directory. This is due to the use of
spaces and tildes in windows paths, which cause problems with latex. The subprocess module is no
longer used. - DSD

2006-06-22 Various changes to bar(), barh(), and hist().
Added 'edgecolor' keyword arg to bar() and barh(). The x and y args in barh() have been renamed to
width and bottom respectively, and their order has been swapped to maintain a (position, value) order
ala matlab. left, height, width and bottom args can now all be scalars or sequences. barh() now defaults
to edge alignment instead of center alignment. Added a keyword arg 'align' to bar(), barh() and hist()
that controls between edge or center bar alignment. Fixed ignoring the rcParams['patch.facecolor']
for bar color in bar() and barh(). Fixed ignoring the rcParams['lines.color'] for error bar color in
bar() and barh(). Fixed a bug where patches would be cleared when error bars were plotted if rc-
Params['axes.hold'] was False. - MAS

2006-06-22 Added support for numerix 2-D arrays as alternatives to
a sequence of (x,y) tuples for specifying paths in collections, quiver, contour, pcolor, transforms. Fixed
contour bug involving setting limits for colormapping. Added numpy-style all() to numerix. - EF

2006-06-20 Added custom FigureClass hook to pylab interface - see
examples/custom_figure_class.py

2006-06-16 Added colormaps from gist (gist_earth, gist_stern,
gist_rainbow, gist_gray, gist_yarg, gist_heat, gist_ncar) - JW

2006-06-16 Added a pointer to parent in figure canvas so you can
access the container with fig.canvas.manager. Useful if you want to set the window title, e.g., in gtk
fig.canvas.manager.window.set_title, though a GUI neutral method would be preferable JDH

2006-06-16 Fixed colorbar.py to handle indexed colors (i.e.,
norm = no_norm()) by centering each colored region on its index. - EF

2006-06-15 Added scalex and scaley to Axes.autoscale_view to support
selective autoscaling just the x or y axis, and supported these command in plot so you can say
plot(something, scaley=False) and just the x axis will be autoscaled. Modified axvline and axhline
to support this, so for example axvline will no longer autoscale the y axis. JDH

2006-06-13 Fix so numpy updates are backward compatible - TEO

8.17. List of changes to Matplotlib prior to 2015 877

Matplotlib, Release 3.4.3

2006-06-12 Updated numerix to handle numpy restructuring of
oldnumeric - TEO

2006-06-12 Updated numerix.fft to handle numpy restructuring
Added ImportError to numerix.linear_algebra for numpy -TEO

2006-06-11 Added quiverkey command to pylab and Axes, using
QuiverKey class in quiver.py. Changed pylab and Axes to use quiver2 if possible, but drop back to the
newly-renamed quiver_classic if necessary. Modified examples/quiver_demo.py to illustrate the new
quiver and quiverkey. Changed LineCollection implementation slightly to improve compatibility with
PolyCollection. - EF

2006-06-11 Fixed a usetex bug for windows, running latex on files
with spaces in their names or paths was failing - DSD

2006-06-09 Made additions to numerix, changes to quiver to make it
work with all numeric flavors. - EF

2006-06-09 Added quiver2 function to pylab and method to axes,
with implementation via a Quiver class in quiver.py. quiver2 will replace quiver before the next release;
it is placed alongside it initially to facilitate testing and transition. See also examples/quiver2_demo.py.
- EF

2006-06-08 Minor bug fix to make ticker.py draw proper minus signs
with usetex - DSD

2006-06-06 Released 0.87.3 at revision 2432

2006-05-30 More partial support for polygons with outline or fill,
but not both. Made LineCollection inherit from ScalarMappable. - EF

2006-05-29 Yet another revision of aspect-ratio handling. - EF

2006-05-27 Committed a patch to prevent stroking zero-width lines in
the svg backend - DSD

2006-05-24 Fixed colorbar positioning bug identified by Helge
Avlesen, and improved the algorithm; added a 'pad' kwarg to control the spacing between colorbar and
parent axes. - EF

2006-05-23 Changed color handling so that collection initializers
can take any mpl color arg or sequence of args; deprecated float as grayscale, replaced by string rep-
resentation of float. - EF

2006-05-19 Fixed bug: plot failed if all points were masked - EF

2006-05-19 Added custom symbol option to scatter - JDH

878 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2006-05-18 New example, multi_image.py; colorbar fixed to show
offset text when the ScalarFormatter is used; FixedFormatter augmented to accept and display offset
text. - EF

2006-05-14 New colorbar; old one is renamed to colorbar_classic.
New colorbar code is in colorbar.py, with wrappers in figure.py and pylab.py. Fixed aspect-handling
bug reported by Michael Mossey. Made backend_bases.draw_quad_mesh() run.- EF

2006-05-08 Changed handling of end ranges in contourf: replaced
"clip-ends" kwarg with "extend". See docstring for details. -EF

2006-05-08 Added axisbelow to rc - JDH

2006-05-08 If using PyGTK require version 2.2+ - SC

2006-04-19 Added compression support to PDF backend, controlled by
new pdf.compression rc setting. - JKS

2006-04-19 Added Jouni's PDF backend

2006-04-18 Fixed a bug that caused agg to not render long lines

2006-04-16 Masked array support for pcolormesh; made pcolormesh support the
same combinations of X,Y,C dimensions as pcolor does; improved (I hope) description of grid used
in pcolor, pcolormesh. - EF

2006-04-14 Reorganized axes.py - EF

2006-04-13 Fixed a bug Ryan found using usetex with sans-serif fonts and
exponential tick labels - DSD

2006-04-11 Refactored backend_ps and backend_agg to prevent module-level
texmanager imports. Now these imports only occur if text.usetex rc setting is true - DSD

2006-04-10 Committed changes required for building mpl on win32
platforms with visual studio. This allows wxpython blitting for fast animations. - CM

2006-04-10 Fixed an off-by-one bug in Axes.change_geometry.

2006-04-10 Fixed bug in pie charts where wedge wouldn't have label in
legend. Submitted by Simon Hildebrandt. - ADS

2006-05-06 Usetex makes temporary latex and dvi files in a temporary
directory, rather than in the user's current working directory - DSD

2006-04-05 Applied Ken's wx deprecation warning patch closing sf patch
#1465371 - JDH

2006-04-05 Added support for the new API in the postscript backend.
Allows values to be masked using nan's, and faster file creation - DSD

8.17. List of changes to Matplotlib prior to 2015 879

Matplotlib, Release 3.4.3

2006-04-05 Use python's subprocess module for usetex calls to
external programs. subprocess catches when they exit abnormally so an error can be raised. - DSD

2006-04-03 Fixed the bug in which widgets would not respond to
events. This regressed the twinx functionality, so I also updated subplots_adjust to update axes that
share an x or y with a subplot instance. - CM

2006-04-02 Moved PBox class to transforms and deleted pbox.py;
made pylab axis command a thin wrapper for Axes.axis; more tweaks to aspect-ratio handling; fixed
Axes.specgram to account for the new imshow default of unit aspect ratio; made contour set the
Axes.dataLim. - EF

2006-03-31 Fixed the Qt "Underlying C/C++ object deleted" bug. - JRE

2006-03-31 Applied Vasily Sulatskov's Qt Navigation Toolbar enhancement. - JRE

2006-03-31 Ported Norbert's rewriting of Halldor's stineman_interp
algorithm to make it numerix compatible and added code to matplotlib.mlab. See exam-
ples/interp_demo.py - JDH

2006-03-30 Fixed a bug in aspect ratio handling; blocked potential
crashes when panning with button 3; added axis('image') support. - EF

2006-03-28 More changes to aspect ratio handling; new PBox class
in new file pbox.py to facilitate resizing and repositioning axes; made PolarAxes maintain unit aspect
ratio. - EF

2006-03-23 Refactored TextWithDash class to inherit from, rather than
delegate to, the Text class. Improves object inspection and closes bug # 1357969 - DSD

2006-03-22 Improved aspect ratio handling, including pylab interface.
Interactive resizing, pan, zoom of images and plots (including panels with a shared axis) should work.
Additions and possible refactoring are still likely. - EF

2006-03-21 Added another colorbrewer colormap (RdYlBu) - JSWHIT

2006-03-21 Fixed tickmarks for logscale plots over very large ranges.
Closes bug # 1232920 - DSD

2006-03-21 Added Rob Knight's arrow code; see examples/arrow_demo.py - JDH

2006-03-20 Added support for masking values with nan's, using ADS's
isnan module and the new API. Works for *Agg backends - DSD

2006-03-20 Added contour.negative_linestyle rcParam - ADS

2006-03-20 Added _isnan extension module to test for nan with Numeric
• ADS

880 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2006-03-17 Added Paul and Alex's support for faceting with quadmesh
in sf patch 1411223 - JDH

2006-03-17 Added Charle Twardy's pie patch to support colors=None.
Closes sf patch 1387861 - JDH

2006-03-17 Applied sophana's patch to support overlapping axes with
toolbar navigation by toggling activation with the 'a' key. Closes sf patch 1432252 - JDH

2006-03-17 Applied Aarre's linestyle patch for backend EMF; closes sf
patch 1449279 - JDH

2006-03-17 Applied Jordan Dawe's patch to support kwarg properties
for grid lines in the grid command. Closes sf patch 1451661 - JDH

2006-03-17 Center postscript output on page when using usetex - DSD

2006-03-17 subprocess module built if Python <2.4 even if subprocess
can be imported from an egg - ADS

2006-03-17 Added _subprocess.c from Python upstream and hopefully
enabled building (without breaking) on Windows, although not tested. - ADS

2006-03-17 Updated subprocess.py to latest Python upstream and
reverted name back to subprocess.py - ADS

2006-03-16 Added John Porter's 3D handling code

2006-03-16 Released 0.87.2 at revision 2150

2006-03-15 Fixed bug in MaxNLocator revealed by daigos@infinito.it.
The main change is that Locator.nonsingular now adjusts vmin and vmax if they are nearly the same,
not just if they are equal. A new kwarg, "tiny", sets the threshold. - EF

2006-03-14 Added import of compatibility library for newer numpy
linear_algebra - TEO

2006-03-12 Extended "load" function to support individual columns and
moved "load" and "save" into matplotlib.mlab so they can be used outside of pylab -- see exam-
ples/load_converter.py - JDH

2006-03-12 Added AutoDateFormatter and AutoDateLocator submitted
by James Evans. Try the load_converter.py example for a demo. - ADS

2006-03-11 Added subprocess module from python-2.4 - DSD

8.17. List of changes to Matplotlib prior to 2015 881

mailto:daigos@infinito.it

Matplotlib, Release 3.4.3

2006-03-11 Fixed landscape orientation support with the usetex
option. The backend_ps print_figure method was getting complicated, I added a _print_figure_tex
method to maintain some degree of sanity - DSD

2006-03-11 Added "papertype" savefig kwarg for setting
postscript papersizes. papertype and ps.papersize rc setting can also be set to "auto" to autoscale
pagesizes - DSD

2006-03-09 Apply P-J's patch to make pstoeps work on windows
patch report # 1445612 - DSD

2006-03-09 Make backend rc parameter case-insensitive - DSD

2006-03-07 Fixed bug in backend_ps related to C0-C6 papersizes,
which were causing problems with postscript viewers. Supported page sizes include letter, legal,
ledger, A0-A10, and B0-B10 - DSD

2006-03-07 Released 0.87.1

2006-03-04 backend_cairo.py:
fix get_rgb() bug reported by Keith Briggs. Require pycairo 1.0.2. Support saving png to file-like
objects. - SC

2006-03-03 Fixed pcolor handling of vmin, vmax - EF

2006-03-02 improve page sizing with usetex with the latex
geometry package. Closes bug # 1441629 - DSD

2006-03-02 Fixed dpi problem with usetex png output. Accepted a
modified version of patch # 1441809 - DSD

2006-03-01 Fixed axis('scaled') to deal with case xmax < xmin - JSWHIT

2006-03-01 Added reversed colormaps (with '_r' appended to name) - JSWHIT

2006-02-27 Improved eps bounding boxes with usetex - DSD

2006-02-27 Test svn commit, again!

2006-02-27 Fixed two dependency checking bugs related to usetex
on Windows - DSD

2006-02-27 Made the rc deprecation warnings a little more human
readable.

2006-02-26 Update the previous gtk.main_quit() bug fix to use gtk.main_level()
• SC

2006-02-24 Implemented alpha support in contour and contourf - EF

882 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2006-02-22 Fixed gtk main quit bug when quit was called before
mainloop. - JDH

2006-02-22 Small change to colors.py to workaround apparent
bug in numpy masked array module - JSWHIT

2006-02-22 Fixed bug in ScalarMappable.to_rgba() reported by
Ray Jones, and fixed incorrect fix found by Jeff Whitaker - EF

2006-02-22 Released 0.87

2006-02-21 Fixed portrait/landscape orientation in postscript backend - DSD

2006-02-21 Fix bug introduced in yesterday's bug fix - SC

2006-02-20 backend_gtk.py FigureCanvasGTK.draw(): fix bug reported by
David Tremouilles - SC

2006-02-20 Remove the "pygtk.require('2.4')" error from
examples/embedding_in_gtk2.py - SC

2006-02-18 backend_gtk.py FigureCanvasGTK.draw(): simplify to use (rather than
duplicate) the expose_event() drawing code - SC

2006-02-12 Added stagger or waterfall plot capability to LineCollection;
illustrated in examples/collections.py. - EF

2006-02-11 Massive cleanup of the usetex code in the postscript backend. Possibly
fixed the clipping issue users were reporting with older versions of ghostscript - DSD

2006-02-11 Added autolim kwarg to axes.add_collection. Changed
collection get_verts() methods accordingly. - EF

2006-02-09 added a temporary rc parameter text.dvipnghack, to allow Mac users to get nice
results with the usetex option. - DSD

2006-02-09 Fixed a bug related to setting font sizes with the usetex option. - DSD

2006-02-09 Fixed a bug related to usetex's latex code. - DSD

2006-02-09 Modified behavior of font.size rc setting. You should define font.size in pts,
which will set the "medium" or default fontsize. Special text sizes like axis labels or tick labels can be
given relative font sizes like small, large, x-large, etc. and will scale accordingly. - DSD

2006-02-08 Added py2exe specific datapath check again. Also added new
py2exe helper function get_py2exe_datafiles for use in py2exe setup.py scripts. - CM

2006-02-02 Added box function to pylab

8.17. List of changes to Matplotlib prior to 2015 883

Matplotlib, Release 3.4.3

2006-02-02 Fixed a problem in setupext.py, tk library formatted in unicode
caused build problems - DSD

2006-02-01 Dropped TeX engine support in usetex to focus on LaTeX. - DSD

2006-01-29 Improved usetex option to respect the serif, sans-serif, monospace,
and cursive rc settings. Removed the font.latex.package rc setting, it is no longer required - DSD

2006-01-29 Fixed tex's caching to include font.family rc information - DSD

2006-01-29 Fixed subpixel rendering bug in *Agg that was causing
uneven gridlines - JDH

2006-01-28 Added fontcmd to backend_ps's RendererPS.draw_tex, to support other
font families in eps output - DSD

2006-01-28 Added MaxNLocator to ticker.py, and changed contour.py to
use it by default. - EF

2006-01-28 Added fontcmd to backend_ps's RendererPS.draw_tex, to support other
font families in eps output - DSD

2006-01-27 Buffered reading of matplotlibrc parameters in order to allow
'verbose' settings to be processed first (allows verbose.report during rc validation process) - DSD

2006-01-27 Removed setuptools support from setup.py and created a
separate setupegg.py file to replace it. - CM

2006-01-26 Replaced the ugly datapath logic with a cleaner approach from
http://wiki.python.org/moin/DistutilsInstallDataScattered. Overrides the install_data command. - CM

2006-01-24 Don't use character typecodes in cntr.c --- changed to use
defined typenumbers instead. - TEO

2006-01-24 Fixed some bugs in usetex's and ps.usedistiller's dependency

2006-01-24 Added masked array support to scatter - EF

2006-01-24 Fixed some bugs in usetex's and ps.usedistiller's dependency
checking - DSD

2006-01-24 Released 0.86.2

2006-01-20 Added a converters dict to pylab load to convert selected
columns to float -- especially useful for files with date strings, uses a datestr2num converter - JDH

2006-01-20 Added datestr2num to matplotlib dates to convert a string
or sequence of strings to a matplotlib datenum

884 Chapter 8. Previous What's New

http://wiki.python.org/moin/DistutilsInstallDataScattered

Matplotlib, Release 3.4.3

2006-01-18 Added quadrilateral pcolormesh patch 1409190 by Alex Mont
and Paul Kienzle -- this is *Agg only for now. See examples/quadmesh_demo.py - JDH

2006-01-18 Added Jouni's boxplot patch - JDH

2006-01-18 Added comma delimiter for pylab save - JDH

2006-01-12 Added Ryan's legend patch - JDH

2006-1-12 Fixed numpy / numeric to use .dtype.char to keep in SYNC with numpy SVN

2006-1-11 Released 0.86.1

2006-1-11 Fixed setup.py for win32 build and added rc template to the MANIFEST.in

2006-1-10 Added xpdf distiller option. matplotlibrc ps.usedistiller can now be
none, false, ghostscript, or xpdf. Validation checks for dependencies. This needs testing, but the xpdf
option should produce the highest-quality output and small file sizes - DSD

2006-01-10 For the usetex option, backend_ps now does all the LaTeX work in the
os's temp directory - DSD

2006-1-10 Added checks for usetex dependencies. - DSD

2006-1-9 Released 0.86

2006-1-4 Changed to support numpy (new name for scipy_core) - TEO

2006-1-4 Added Mark's scaled axes patch for shared axis

2005-12-28 Added Chris Barker's build_wxagg patch - JDH

2005-12-27 Altered numerix/scipy to support new scipy package
structure - TEO

2005-12-20 Fixed Jame's Boyles date tick reversal problem - JDH

2005-12-20 Added Jouni's rc patch to support lists of keys to set on -
JDH

2005-12-12 Updated pyparsing and mathtext for some speed enhancements
(Thanks Paul McGuire) and minor fixes to scipy numerix and setuptools

2005-12-12 Matplotlib data is now installed as package_data in
the matplotlib module. This gets rid of checking the many possibilities in matplotlib._get_data_path()
- CM

2005-12-11 Support for setuptools/pkg_resources to build and use
matplotlib as an egg. Still allows matplotlib to exist using a traditional distutils install. - ADS

8.17. List of changes to Matplotlib prior to 2015 885

Matplotlib, Release 3.4.3

2005-12-03 Modified setup to build matplotlibrc based on compile time
findings. It will set numerix in the order of scipy, numarray, Numeric depending on which are founds,
and backend as in preference order GTKAgg, WXAgg, TkAgg, GTK, Agg, PS

2005-12-03 Modified scipy patch to support Numeric, scipy and numarray
Some work remains to be done because some of the scipy imports are broken if only the core is in-
stalled. e.g., apparently we need from scipy.basic.fftpack import * rather than from scipy.fftpack im-
port *

2005-12-03 Applied some fixes to Nicholas Young's nonuniform image
patch

2005-12-01 Applied Alex Gontmakher hatch patch - PS only for now

2005-11-30 Added Rob McMullen's EMF patch

2005-11-30 Added Daishi's patch for scipy

2005-11-30 Fixed out of bounds draw markers segfault in agg

2005-11-28 Got TkAgg blitting working 100% (cross fingers) correctly. - CM

2005-11-27 Multiple changes in cm.py, colors.py, figure.py, image.py,
contour.py, contour_demo.py; new _cm.py, examples/image_masked.py. 1) Separated the color table
data from cm.py out into a new file, _cm.py, to make it easier to find the actual code in cm.py and
to add new colormaps. Also added some line breaks to the color data dictionaries. Everything from
_cm.py is imported by cm.py, so the split should be transparent. 2) Enabled automatic generation of
a colormap from a list of colors in contour; see modified examples/contour_demo.py. 3) Support for
imshow of a masked array, with the ability to specify colors (or no color at all) for masked regions,
and for regions that are above or below the normally mapped region. See examples/image_masked.py.
4) In support of the above, added two new classes, ListedColormap, and no_norm, to colors.py, and
modified the Colormap class to include common functionality. Added a clip kwarg to the normalize
class. Reworked color handling in contour.py, especially in the ContourLabeller mixin. - EF

2005-11-25 Changed text.py to ensure color is hashable. EF

2005-11-16 Released 0.85

2005-11-16 Changed the default default linewidth in rc to 1.0

2005-11-16 Replaced agg_to_gtk_drawable with pure pygtk pixbuf code in
backend_gtkagg. When the equivalent is doe for blit, the agg extension code will no longer be needed

2005-11-16 Added a maxdict item to cbook to prevent caches from
growing w/o bounds

2005-11-15 Fixed a colorup/colordown reversal bug in finance.py --
Thanks Gilles

2005-11-15 Applied Jouni K Steppanen's boxplot patch SF patch#1349997

886 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

• JDH

2005-11-09 added axisbelow attr for Axes to determine whether ticks and such
are above or below the actors

2005-11-08 Added Nicolas' irregularly spaced image patch

2005-11-08 Deprecated HorizontalSpanSelector and replaced with
SpanSelection that takes a third arg, direction. The new SpanSelector supports horizontal and vertical
span selection, and the appropriate min/max is returned. - CM

2005-11-08 Added lineprops dialog for gtk

2005-11-03 Added FIFOBuffer class to mlab to support real time feeds
and examples/fifo_buffer.py

2005-11-01 Contributed Nickolas Young's patch for afm mathtext to
support mathtext based upon the standard postscript Symbol font when ps.usetex = True.

2005-10-26 Added support for scatter legends - thanks John Gill

2005-10-20 Fixed image clipping bug that made some tex labels
disappear. JDH

2005-10-14 Removed sqrt from dvipng 1.6 alpha channel mask.

2005-10-14 Added width kwarg to hist function

2005-10-10 Replaced all instances of os.rename with shutil.move

2005-10-05 Added Michael Brady's ydate patch

2005-10-04 Added rkern's texmanager patch

2005-09-25 contour.py modified to use a single ContourSet class
that handles filled contours, line contours, and labels; added keyword arg (clip_ends) to contourf. Col-
orbar modified to work with new ContourSet object; if the ContourSet has lines rather than polygons,
the colorbar will follow suit. Fixed a bug introduced in 0.84, in which contourf(...,colors=...) was
broken - EF

2005-09-19 Released 0.84

2005-09-14 Added a new 'resize_event' which triggers a callback with a
backend_bases.ResizeEvent object - JDH

2005-09-14 font_manager.py: removed chkfontpath from x11FontDirectory() - SC

2005-09-14 Factored out auto date locator/formatter factory code into
matplotlib.date.date_ticker_factory; applies John Bryne's quiver patch.

2005-09-13 Added Mark's axes positions history patch #1286915

8.17. List of changes to Matplotlib prior to 2015 887

Matplotlib, Release 3.4.3

2005-09-09 Added support for auto canvas resizing with
fig.set_figsize_inches(9,5,forward=True) # inches OR fig.resize(400,300) # pixels

2005-09-07 figure.py: update Figure.draw() to use the updated
renderer.draw_image() so that examples/figimage_demo.py works again. examples/stock_demo.py:
remove data_clipping (which no longer exists) - SC

2005-09-06 Added Eric's tick.direction patch: in or out in rc

2005-09-06 Added Martin's rectangle selector widget

2005-09-04 Fixed a logic err in text.py that was preventing rgxsuper
from matching - JDH

2005-08-29 Committed Ken's wx blit patch #1275002

2005-08-26 colorbar modifications - now uses contourf instead of imshow
so that colors used by contourf are displayed correctly. Added two new keyword args (cspacing and
clabels) that are only relevant for ContourMappable images - JSWHIT

2005-08-24 Fixed a PS image bug reported by Darren - JDH

2005-08-23 colors.py: change hex2color() to accept unicode strings as well as
normal strings. Use isinstance() instead of types.IntType etc - SC

2005-08-16 removed data_clipping line and rc property - JDH

2005-08-22 backend_svg.py: Remove redundant "x=0.0 y=0.0" from svg element.
Increase svg version from 1.0 to 1.1. Add viewBox attribute to svg element to allow SVG documents
to scale-to-fit into an arbitrary viewport - SC

2005-08-16 Added Eric's dot marker patch - JDH

2005-08-08 Added blitting/animation for TkAgg - CM

2005-08-05 Fixed duplicate tickline bug - JDH

2005-08-05 Fixed a GTK animation bug that cropped up when doing
animations in gtk//gtkagg canvases that had widgets packed above them

2005-08-05 Added Clovis Goldemberg patch to the tk save dialog

2005-08-04 Removed origin kwarg from backend.draw_image. origin is
handled entirely by the frontend now.

2005-07-03 Fixed a bug related to TeX commands in backend_ps

2005-08-03 Fixed SVG images to respect upper and lower origins.

2005-08-03 Added flipud method to image and removed it from to_str.

2005-07-29 Modified figure.figaspect to take an array or number;
modified backend_svg to write utf-8 - JDH

888 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2005-07-30 backend_svg.py: embed png image files in svg rather than linking
to a separate png file, fixes bug #1245306 (thanks to Norbert Nemec for the patch) - SC

2005-07-29 Released 0.83.2

2005-07-27 Applied SF patch 1242648: minor rounding error in
IndexDateFormatter in dates.py

2005-07-27 Applied sf patch 1244732: Scale axis such that circle
looks like circle - JDH

2005-07-29 Improved message reporting in texmanager and backend_ps - DSD

2005-07-28 backend_gtk.py: update FigureCanvasGTK.draw() (needed due to the
recent expose_event() change) so that examples/anim.py works in the usual way - SC

2005-07-26 Added new widgets Cursor and HorizontalSpanSelector to
matplotlib.widgets. See examples/widgets/cursor.py and examples/widgets/span_selector.py - JDH

2005-07-26 added draw event to mpl event hierarchy -- triggered on
figure.draw

2005-07-26 backend_gtk.py: allow 'f' key to toggle window fullscreen mode

2005-07-26 backend_svg.py: write "<.../>" elements all on one line and remove
surplus spaces - SC

2005-07-25 backend_svg.py: simplify code by deleting GraphicsContextSVG and
RendererSVG.new_gc(), and moving the gc.get_capstyle() code into Render-
erSVG._get_gc_props_svg() - SC

2005-07-24 backend_gtk.py: call FigureCanvasBase.motion_notify_event() on
all motion-notify-events, not just ones where a modifier key or button has been pressed (fixes bug
report from Niklas Volbers) - SC

2005-07-24 backend_gtk.py: modify print_figure() use own pixmap, fixing
problems where print_figure() overwrites the display pixmap. return False from all button/key etc
events - to allow the event to propagate further - SC

2005-07-23 backend_gtk.py: change expose_event from using set_back_pixmap();
clear() to draw_drawable() - SC

2005-07-23 backend_gtk.py: removed pygtk.require()
matplotlib/__init__.py: delete 'FROZEN' and 'McPLError' which are no longer used - SC

2005-07-22 backend_gdk.py: removed pygtk.require() - SC

8.17. List of changes to Matplotlib prior to 2015 889

Matplotlib, Release 3.4.3

2005-07-21 backend_svg.py: Remove unused imports. Remove methods doc strings
which just duplicate the docs from backend_bases.py. Rename draw_mathtext to _draw_mathtext. -
SC

2005-07-17 examples/embedding_in_gtk3.py: new example demonstrating placing
a FigureCanvas in a gtk.ScrolledWindow - SC

2005-07-14 Fixed a Windows related bug (#1238412) in texmanager - DSD

2005-07-11 Fixed color kwarg bug, setting color=1 or 0 caused an
exception - DSD

2005-07-07 Added Eric's MA set_xdata Line2D fix - JDH

2005-07-06 Made HOME/.matplotlib the new config dir where the
matplotlibrc file, the ttf.cache, and the tex.cache live. The new default filenames in .matplotlib have
no leading dot and are not hidden. e.g., the new names are matplotlibrc tex.cache ttffont.cache. This is
how ipython does it so it must be right. If old files are found, a warning is issued and they are moved to
the new location. Also fixed texmanager to put all files, including temp files in ~/.matplotlib/tex.cache,
which allows you to usetex in non-writable dirs.

2005-07-05 Fixed bug #1231611 in subplots adjust layout. The problem
was that the text caching mechanism was not using the transformation affine in the key. - JDH

2005-07-05 Fixed default backend import problem when using API (SF bug
1209354 - see API_CHANGES for more info - JDH

2005-07-04 backend_gtk.py: require PyGTK version 2.0.0 or higher - SC

2005-06-30 setupext.py: added numarray_inc_dirs for building against
numarray when not installed in standard location - ADS

2005-06-27 backend_svg.py: write figure width, height as int, not float.
Update to fix some of the pychecker warnings - SC

2005-06-23 Updated examples/agg_test.py to demonstrate curved paths
and fills - JDH

2005-06-21 Moved some texmanager and backend_agg tex caching to class
level rather than instance level - JDH

2005-06-20 setupext.py: fix problem where _nc_backend_gdk is installed to the
wrong directory - SC

2005-06-19 Added 10.4 support for CocoaAgg. - CM

2005-06-18 Move Figure.get_width_height() to FigureCanvasBase and return
int instead of float. - SC

890 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2005-06-18 Applied Ted Drain's QtAgg patch: 1) Changed the toolbar to
be a horizontal bar of push buttons instead of a QToolbar and updated the layout algorithms in the
main window accordingly. This eliminates the ability to drag and drop the toolbar and detach it from
the window. 2) Updated the resize algorithm in the main window to show the correct size for the plot
widget as requested. This works almost correctly right now. It looks to me like the final size of the
widget is off by the border of the main window but I haven't figured out a way to get that information
yet. We could just add a small margin to the new size but that seems a little hacky. 3) Changed the x/y
location label to be in the toolbar like the Tk backend instead of as a status line at the bottom of the
widget. 4) Changed the toolbar pixmaps to use the ppm files instead of the png files. I noticed that the
Tk backend buttons looked much nicer and it uses the ppm files so I switched them.

2005-06-17 Modified the gtk backend to not queue mouse motion events.
This allows for live updates when dragging a slider. - CM

2005-06-17 Added starter CocoaAgg backend. Only works on OS 10.3 for
now and requires PyObjC. (10.4 is high priority) - CM

2005-06-17 Upgraded pyparsing and applied Paul McGuire's suggestions
for speeding things up. This more than doubles the speed of mathtext in my simple tests. JDH

2005-06-16 Applied David Cooke's subplot make_key patch

2005-06-15 0.82 released

2005-06-15 Added subplot config tool to GTK* backends -- note you must
now import the NavigationToolbar2 from your backend of choice rather than from backend_gtk be-
cause it needs to know about the backend specific canvas -- see examples/embedding_in_gtk2.py. Ditto
for wx backend -- see examples/embedding_in_wxagg.py

2005-06-15 backend_cairo.py: updated to use pycairo 0.5.0 - SC

2005-06-14 Wrote some GUI neutral widgets (Button, Slider,
RadioButtons, CheckButtons) in matplotlib.widgets. See examples/widgets/*.py - JDH

2005-06-14 Exposed subplot parameters as rc vars and as the fig
SubplotParams instance subplotpars. See figure.SubplotParams, figure.Figure.subplots_adjust and the
pylab method subplots_adjust and examples/subplots_adjust.py . Also added a GUI neutral widget for
adjusting subplots, see examples/subplot_toolbar.py - JDH

2005-06-13 Exposed cap and join style for lines with new rc params and
line properties

lines.dash_joinstyle : miter # miter|round|bevel lines.dash_capstyle : butt # butt|round|projecting
lines.solid_joinstyle : miter # miter|round|bevel lines.solid_capstyle : projecting #
butt|round|projecting

2005-06-13 Added kwargs to Axes init

2005-06-13 Applied Baptiste's tick patch - JDH

8.17. List of changes to Matplotlib prior to 2015 891

Matplotlib, Release 3.4.3

2005-06-13 Fixed rc alias 'l' bug reported by Fernando by removing
aliases for mainlevel rc options. - JDH

2005-06-10 Fixed bug #1217637 in ticker.py - DSD

2005-06-07 Fixed a bug in texmanager.py: .aux files not being removed - DSD

2005-06-08 Added Sean Richard's hist binning fix -- see API_CHANGES - JDH

2005-06-07 Fixed a bug in texmanager.py: .aux files not being removed
• DSD

2005-06-07 matplotlib-0.81 released

2005-06-06 Added autoscale_on prop to axes

2005-06-06 Added Nick's picker "among" patch - JDH

2005-06-05 Fixed a TeX/LaTeX font discrepency in backend_ps. - DSD

2005-06-05 Added a ps.distill option in rc settings. If True, postscript
output will be distilled using ghostscript, which should trim the file size and allow it to load more
quickly. Hopefully this will address the issue of large ps files due to font definitions. Tested with
gnu-ghostscript-8.16. - DSD

2005-06-03 Improved support for tex handling of text in backend_ps. - DSD

2005-06-03 Added rc options to render text with tex or latex, and to select
the latex font package. - DSD

2005-06-03 Fixed a bug in ticker.py causing a ZeroDivisionError

2005-06-02 backend_gtk.py remove DBL_BUFFER, add line to expose_event to
try to fix pygtk 2.6 redraw problem - SC

2005-06-01 The default behavior of ScalarFormatter now renders scientific
notation and large numerical offsets in a label at the end of the axis. - DSD

2005-06-01 Added Nicholas' frombyte image patch - JDH

2005-05-31 Added vertical TeX support for agg - JDH

2005-05-31 Applied Eric's cntr patch - JDH

2005-05-27 Finally found the pesky agg bug (which Maxim was kind
enough to fix within hours) that was causing a segfault in the win32 cached marker drawing. Now
windows users can get the enormouse performance benefits of caced markers w/o those occasional
pesy screenshots. - JDH

2005-05-27 Got win32 build system working again, using a more recent
version of gtk and pygtk in the win32 build, gtk 2.6 from https://web.archive.org/web/
20050527002647/https://www.gimp.org/~tml/gimp/win32/downloads.html (you will also need

892 Chapter 8. Previous What's New

https://web.archive.org/web/20050527002647/https://www.gimp.org/~tml/gimp/win32/downloads.html
https://web.archive.org/web/20050527002647/https://www.gimp.org/~tml/gimp/win32/downloads.html

Matplotlib, Release 3.4.3

libpng12.dll to use these). I haven't tested whether this binary build of mpl for win32 will work with
older gtk runtimes, so you may need to upgrade.

2005-05-27 Fixed bug where 2nd wxapp could be started if using wxagg
backend. - ADS

2005-05-26 Added Daishi text with dash patch -- see examples/dashtick.py

2005-05-26 Moved backend_latex functionality into backend_ps. If
text.usetex=True, the PostScript backend will use LaTeX to generate the .ps or .eps file. Ghostscript
is required for eps output. - DSD

2005-05-24 Fixed alignment and color issues in latex backend. - DSD

2005-05-21 Fixed raster problem for small rasters with dvipng -- looks
like it was a premultipled alpha problem - JDH

2005-05-20 Added linewidth and faceted kwarg to scatter to control
edgewidth and color. Also added autolegend patch to inspect line segments.

2005-05-18 Added Orsay and JPL qt fixes - JDH

2005-05-17 Added a psfrag latex backend -- some alignment issues need
to be worked out. Run with -dLaTeX and a .tex file and *.eps file are generated. latex and dvips the
generated latex file to get ps output. Note xdvi *does not work, you must generate ps.- JDH

2005-05-13 Added Florent Rougon's Axis set_label1
patch

2005-05-17 pcolor optimization, fixed bug in previous pcolor patch - JSWHIT

2005-05-16 Added support for masked arrays in pcolor - JSWHIT

2005-05-12 Started work on TeX text for antigrain using pngdvi -- see
examples/tex_demo.py and the new module matplotlib.texmanager. Rotated text not supported and
rendering small glyps is not working right yet. BUt large fontsizes and/or high dpi saved figs work
great.

2005-05-10 New image resize options interpolation options. New values
for the interp kwarg are

'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric',
'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos', 'blackman'

See help(imshow) for details, particularly the interpolation, filternorm and filterrad kwargs

2005-05-10 Applied Eric's contour mem leak fixes - JDH

2005-05-10 Extended python agg wrapper and started implementing
backend_agg2, an agg renderer based on the python wrapper. This will be more flexible and easier to
extend than the current backend_agg. See also examples/agg_test.py - JDH

8.17. List of changes to Matplotlib prior to 2015 893

Matplotlib, Release 3.4.3

2005-05-09 Added Marcin's no legend patch to exclude lines from the
autolegend builder

plot(x, y, label='nolegend')

2005-05-05 Upgraded to agg23

2005-05-05 Added newscalarformatter_demo.py to examples. -DSD

2005-05-04 Added NewScalarFormatter. Improved formatting of ticklabels,
scientific notation, and the ability to plot large large numbers with small ranges, by determining a
numerical offset. See ticker.NewScalarFormatter for more details. -DSD

2005-05-03 Added the option to specify a delimiter in pylab.load -DSD

2005-04-28 Added Darren's line collection example

2005-04-28 Fixed aa property in agg - JDH

2005-04-27 Set postscript page size in .matplotlibrc - DSD

2005-04-26 Added embedding in qt example. - JDH

2005-04-14 Applied Michael Brady's qt backend patch: 1) fix a bug
where keyboard input was grabbed by the figure and not released 2) turn on cursor changes 3) clean
up a typo and commented-out print statement. - JDH

2005-04-14 Applied Eric Firing's masked data lines patch and contour
patch. Support for masked arrays has been added to the plot command and to the Line2D object.
Only the valid points are plotted. A "valid_only" kwarg was added to the get_xdata() and get_ydata()
methods of Line2D; by default it is False, so that the original data arrays are returned. Setting it to
True returns the plottable points. - see examples/masked_demo.py - JDH

2005-04-13 Applied Tim Leslie's arrow key event handling patch - JDH

0.80 released

2005-04-11 Applied a variant of rick's xlim/ylim/axis patch. These
functions now take kwargs to let you selectively alter only the min or max if desired. e.g.,
xlim(xmin=2) or axis(ymax=3). They always return the new lim. - JDH

2005-04-11 Incorporated Werner's wx patch -- wx backend should be
compatible with wxpython2.4 and recent versions of 2.5. Some early versions of wxpython 2.5 will
not work because there was a temporary change in the dc API that was rolled back to make it 2.4
compliant

2005-04-11 modified tkagg show so that new figure window pops up on
call to figure

2005-04-11 fixed wxapp init bug

894 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2005-04-02 updated backend_ps.draw_lines, draw_markers for use with the
new API - DSD

2005-04-01 Added editable polygon example

2005-03-31 0.74 released

2005-03-30 Fixed and added checks for floating point inaccuracy in
ticker.Base - DSD

2005-03-30 updated /ellipse definition in backend_ps.py to address bug
#1122041 - DSD

2005-03-29 Added unicode support for Agg and PS - JDH

2005-03-28 Added Jarrod's svg patch for text - JDH

2005-03-28 Added Ludal's arrow and quiver patch - JDH

2005-03-28 Added label kwarg to Axes to facilitate forcing the
creation of new Axes with otherwise identical attributes

2005-03-28 Applied boxplot and OSX font search patches

2005-03-27 Added ft2font NULL check to fix Japanase font bug - JDH

2005-03-27 Added sprint legend patch plus John Gill's tests and fix --
see examples/legend_auto.py - JDH

2005-03-19 0.73.1 released

2005-03-19 Reverted wxapp handling because it crashed win32 - JDH

2005-03-18 Add .number attribute to figure objects returned by figure() - FP

2005-03-18 0.73 released

2005-03-16 Fixed labelsep bug

2005-03-16 Applied Darren's ticker fix for small ranges - JDH

2005-03-16 Fixed tick on horiz colorbar - JDH

2005-03-16 Added Japanese winreg patch - JDH

2005-03-15 backend_gtkagg.py: changed to use double buffering, this fixes
the problem reported Joachim Berdal Haga - "Parts of plot lagging from previous frame in animation".
Tested with anim.py and it makes no noticeable difference to performance (23.7 before, 23.6 after) -
SC

8.17. List of changes to Matplotlib prior to 2015 895

Matplotlib, Release 3.4.3

2005-03-14 add src/_backend_gdk.c extension to provide a substitute function
for pixbuf.get_pixels_array(). Currently pixbuf.get_pixels_array() only works with Numeric, and
then only works if pygtk has been compiled with Numeric support. The change provides a function
pixbuf_get_pixels_array() which works with Numeric and numarray and is always available. It means
that backend_gtk should be able to display images and mathtext in all circumstances. - SC

2005-03-11 Upgraded CXX to 5.3.1

2005-03-10 remove GraphicsContextPS.set_linestyle()
and GraphicsContextSVG.set_linestyle() since they do no more than the base class GraphicsCon-
text.set_linestyle() - SC

2005-03-09 Refactored contour functionality into dedicated module

2005-03-09 Added Eric's contourf updates and Nadia's clabel functionality

2005-03-09 Moved colorbar to figure.Figure to expose it for API developers
• JDH

2005-03-09 backend_cairo.py: implemented draw_markers() - SC

2005-03-09 cbook.py: only use enumerate() (the python version) if the builtin
version is not available.

Add new function 'izip' which is set to itertools.izip if available and the python equivalent if not
available. - SC

2005-03-07 backend_gdk.py: remove PIXELS_PER_INCH from points_to_pixels(), but
still use it to adjust font sizes. This allows the GTK version of

line_styles.py to more closely match GTKAgg, previously the markers were being drawn too
large. - SC

2005-03-01 Added Eric's contourf routines

2005-03-01 Added start of proper agg SWIG wrapper. I would like to
expose agg functionality directly a the user level and this module will serve that purpose eventually, and
will hopefully take over most of the functionality of the current _image and _backend_agg modules.
- JDH

2005-02-28 Fixed polyfit / polyval to convert input args to float
arrays - JDH

2005-02-25 Add experimental feature to backend_gtk.py to enable/disable
double buffering (DBL_BUFFER=True/False) - SC

2005-02-24 colors.py change ColorConverter.to_rgb() so it always returns rgb
(and not rgba), allow cnames keys to be cached, change the exception raised from RuntimeError to
ValueError (like hex2color()) hex2color() use a regular expression to check the color string is valid -
SC

896 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2005-02-23 Added rc param ps.useafm so backend ps can use native afm
fonts or truetype. afme breaks mathtext but causes much smaller font sizes and may result in images
that display better in some contexts (e.g., pdfs incorporated into latex docs viewed in acrobat reader).
I would like to extend this approach to allow the user to use truetype only for mathtext, which should
be easy.

2005-02-23 Used sequence protocol rather than tuple in agg collection
drawing routines for greater flexibility - JDH

2005-02-22 0.72.1 released

2005-02-21 fixed linestyles for collections -- contour now dashes for
levels <0

2005-02-21 fixed ps color bug - JDH

2005-02-15 fixed missing qt file

2005-02-15 banished error_msg and report_error. Internal backend
methods like error_msg_gtk are preserved. backend writers, check your backends, and diff against
0.72 to make sure I did the right thing! - JDH

2005-02-14 Added enthought traits to matplotlib tree - JDH

2005-02-14 0.72 released

2005-02-14 fix bug in cbook alltrue() and onetrue() - SC

2005-02-11 updated qtagg backend from Ted - JDH

2005-02-11 matshow fixes for figure numbering, return value and docs - FP

2005-02-09 new zorder example for fine control in zorder_demo.py - FP

2005-02-09 backend renderer draw_lines now has transform in backend,
as in draw_markers; use numerix in _backend_agg, aded small line optimization to agg

2005-02-09 subplot now deletes axes that it overlaps

2005-02-08 Added transparent support for gzipped files in load/save - Fernando
Perez (FP from now on).

2005-02-08 Small optimizations in PS backend. They may have a big impact for
large plots, otherwise they don't hurt - FP

2005-02-08 Added transparent support for gzipped files in load/save - Fernando
Perez (FP from now on).

2005-02-07 Added newstyle path drawing for markers - only implemented
in agg currently - JDH

8.17. List of changes to Matplotlib prior to 2015 897

Matplotlib, Release 3.4.3

2005-02-05 Some superscript text optimizations for ticking log plots

2005-02-05 Added some default key press events to pylab figures: 'g'
toggles grid - JDH

2005-02-05 Added some support for handling log switching for lines
that have nonpos data - JDH

2005-02-04 Added Nadia's contour patch - contour now has matlab
compatible syntax; this also fixed an unequal sized contour array bug- JDH

2005-02-04 Modified GTK backends to allow the FigureCanvas to be resized
smaller than its original size - SC

2005-02-02 Fixed a bug in dates mx2num - JDH

2005-02-02 Incorporated Fernando's matshow - JDH

2005-02-01 Added Fernando's figure num patch, including experimental
support for pylab backend switching, LineCOllection.color warns, savefig now a figure method, fixed
a close(fig) bug - JDH

2005-01-31 updated datalim in contour - JDH

2005-01-30 Added backend_qtagg.py provided by Sigve Tjora - SC

2005-01-28 Added tk.inspect rc param to .matplotlibrc. IDLE users
should set tk.pythoninspect:True and interactive:True and backend:TkAgg

2005-01-28 Replaced examples/interactive.py with an updated script from
Fernando Perez - SC

2005-01-27 Added support for shared x or y axes. See
examples/shared_axis_demo.py and examples/ganged_plots.py

2005-01-27 Added Lee's patch for missing symbols leq and LEFTbracket
to _mathtext_data - JDH

2005-01-26 Added Baptiste's two scales patch -- see help(twinx) in the
pylab interface for more info. See also examples/two_scales.py

2005-01-24 Fixed a mathtext parser bug that prevented font changes in
sub/superscripts - JDH

2005-01-24 Fixed contour to work w/ interactive changes in colormaps,
clim, etc - JDH

2005-01-21 matplotlib-0.71 released

898 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2005-01-21 Refactored numerix to solve vexing namespace issues - JDH

2005-01-21 Applied Nadia's contour bug fix - JDH

2005-01-20 Made some changes to the contour routine - particularly
region=1 seems t fix a lot of the zigzag strangeness. Added colormaps as default for contour - JDH

2005-01-19 Restored builtin names which were overridden (min, max,
abs, round, and sum) in pylab. This is a potentially significant change for those who were relying on
an array version of those functions that previously overrode builtin function names. - ADS

2005-01-18 Added accents to mathtext: hat, breve, grave, bar,
acute, tilde, vec, dot, ddot. All of them have the same syntax, e.g., to make an overbar you do bar{o}
or to make an o umlaut you do ddot{o}. The shortcuts are also provided, e.g., "o 'e `e ~n .x ^y - JDH

2005-01-18 Plugged image resize memory leaks - JDH

2005-01-18 Fixed some mathtext parser problems relating to superscripts

2005-01-17 Fixed a yticklabel problem for colorbars under change of
clim - JDH

2005-01-17 Cleaned up Destroy handling in wx reducing memleak/fig from
approx 800k to approx 6k- JDH

2005-01-17 Added kappa to latex_to_bakoma - JDH

2005-01-15 Support arbitrary colorbar axes and horizontal colorbars - JDH

2005-01-15 Fixed colormap number of colors bug so that the colorbar
has the same discretization as the image - JDH

2005-01-15 Added Nadia's x,y contour fix - JDH

2005-01-15 backend_cairo: added PDF support which requires pycairo 0.1.4.
Its not usable yet, but is ready for when the Cairo PDF backend matures - SC

2005-01-15 Added Nadia's x,y contour fix

2005-01-12 Fixed set clip_on bug in artist - JDH

2005-01-11 Reverted pythoninspect in tkagg - JDH

2005-01-09 Fixed a backend_bases event bug caused when an event is
triggered when location is None - JDH

2005-01-07 Add patch from Stephen Walton to fix bug in pylab.load()
when the % character is included in a comment. - ADS

2005-01-07 Added markerscale attribute to Legend class. This allows
the marker size in the legend to be adjusted relative to that in the plot. - ADS

8.17. List of changes to Matplotlib prior to 2015 899

Matplotlib, Release 3.4.3

2005-01-06 Add patch from Ben Vanhaeren to make the FigureManagerGTK vbox a
public attribute - SC

2004-12-30 Release 0.70

2004-12-28 Added coord location to key press and added a
examples/picker_demo.py

2004-12-28 Fixed coords notification in wx toolbar - JDH

2004-12-28 Moved connection and disconnection event handling to the
FigureCanvasBase. Backends now only need to connect one time for each of the button press, button
release and key press/release functions. The base class deals with callbacks and multiple connections.
This fixes flakiness on some backends (tk, wx) in the presence of multiple connections and/or discon-
nect - JDH

2004-12-27 Fixed PS mathtext bug where color was not set - Jochen
please verify correct - JDH

2004-12-27 Added Shadow class and added shadow kwarg to legend and pie
for shadow effect - JDH

2004-12-27 Added pie charts and new example/pie_demo.py

2004-12-23 Fixed an agg text rotation alignment bug, fixed some text
kwarg processing bugs, and added examples/text_rotation.py to explain and demonstrate how text
rotations and alignment work in matplotlib. - JDH

2004-12-22 0.65.1 released - JDH

2004-12-22 Fixed colorbar bug which caused colorbar not to respond to
changes in colormap in some instances - JDH

2004-12-22 Refactored NavigationToolbar in tkagg to support app
embedding , init now takes (canvas, window) rather than (canvas, figman) - JDH

2004-12-21 Refactored axes and subplot management - removed
add_subplot and add_axes from the FigureManager. classic toolbar updates are done via an observer
pattern on the figure using add_axobserver. Figure nowmaintains the axes stack (for gca) and supports
axes deletion. Ported changes to GTK, Tk, Wx, and FLTK. Please test! Added delaxes - JDH

2004-12-21 Lots of image optimizations - 4x performance boost over
0.65 JDH

2004-12-20 Fixed a figimage bug where the axes is shown and modified
tkagg to move the destroy binding into the show method.

900 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2004-12-18 Minor refactoring of NavigationToolbar2 to support
embedding in an application - JDH

2004-12-14 Added linestyle to collections (currently broken) - JDH

2004-12-14 Applied Nadia's setupext patch to fix libstdc++ link
problem with contour and solaris -JDH

2004-12-14 A number of pychecker inspired fixes, including removal of
True and False from cbook which I erroneously thought was needed for python2.2 - JDH

2004-12-14 Finished porting doc strings for set introspection.
Used silent_list for many get funcs that return lists. JDH

2004-12-13 dates.py: removed all timezone() calls, except for UTC - SC

2004-12-13 0.65 released - JDH

2004-12-13 colors.py: rgb2hex(), hex2color() made simpler (and faster), also
rgb2hex() - added round() instead of integer truncation hex2color() - changed 256.0 divisor to 255.0,
so now '#ffffff' becomes (1.0,1.0,1.0) not (0.996,0.996,0.996) - SC

2004-12-11 Added ion and ioff to pylab interface - JDH

2004-12-11 backend_template.py: delete FigureCanvasTemplate.realize() - most
backends don't use it and its no longer needed

backend_ps.py, backend_svg.py: delete show() and draw_if_interactive() - they are not needed for
image backends

backend_svg.py: write direct to file instead of StringIO - SC

2004-12-10 Added zorder to artists to control drawing order of lines,
patches and text in axes. See examples/zoder_demo.py - JDH

2004-12-10 Fixed colorbar bug with scatter - JDH

2004-12-10 Added Nadia Dencheva <dencheva@stsci.edu> contour code - JDH

2004-12-10 backend_cairo.py: got mathtext working - SC

2004-12-09 Added Norm Peterson's svg clipping patch

2004-12-09 Added Matthew Newville's wx printing patch

2004-12-09 Migrated matlab to pylab - JDH

2004-12-09 backend_gtk.py: split into two parts
• backend_gdk.py - an image backend

• backend_gtk.py - A GUI backend that uses GDK - SC

8.17. List of changes to Matplotlib prior to 2015 901

mailto:dencheva@stsci.edu

Matplotlib, Release 3.4.3

2004-12-08 backend_gtk.py: remove quit_after_print_xvfb(*args), show_xvfb(),
Dialog_MeasureTool(gtk.Dialog) one month after sending mail to matplotlib-users asking if anyone
still uses these functions - SC

2004-12-02 backend_bases.py, backend_template.py: updated some of the method
documentation to make them consistent with each other - SC

2004-12-04 Fixed multiple bindings per event for TkAgg mpl_connect and
mpl_disconnect. Added a "test_disconnect" command line parameter to coords_demo.py JTM

2004-12-04 Fixed some legend bugs JDH

2004-11-30 Added over command for oneoff over plots. e.g., over(plot, x,
y, lw=2). Works with any plot function.

2004-11-30 Added bbox property to text - JDH

2004-11-29 Zoom to rect now respect reversed axes limits (for both
linear and log axes). - GL

2004-11-29 Added the over command to the matlab interface. over
allows you to add an overlay plot regardless of hold state. - JDH

2004-11-25 Added Printf to mplutils for printf style format string
formatting in C++ (should help write better exceptions)

2004-11-24 IMAGE_FORMAT: remove from agg and gtkagg backends as its no longer
used - SC

2004-11-23 Added matplotlib compatible set and get introspection. See
set_and_get.py

2004-11-23 applied Norbert's patched and exposed legend configuration
to kwargs - JDH

2004-11-23 backend_gtk.py: added a default exception handler - SC

2004-11-18 backend_gtk.py: change so that the backend knows about all image
formats and does not need to use IMAGE_FORMAT in other backends - SC

2004-11-18 Fixed some report_error bugs in string interpolation as
reported on SF bug tracker- JDH

2004-11-17 backend_gtkcairo.py: change so all print_figure() calls render using
Cairo and get saved using backend_gtk.print_figure() - SC

2004-11-13 backend_cairo.py: Discovered the magic number (96) required for
Cairo PS plots to come out the right size. Restored Cairo PS output and added support for landscape
mode - SC

902 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2004-11-13 Added ishold - JDH

2004-11-12 Added many new matlab colormaps - autumn bone cool copper
flag gray hot hsv jet pink prism spring summer winter - PG

2004-11-11 greatly simplify the emitted postscript code - JV

2004-11-12 Added new plotting functions spy, spy2 for sparse matrix
visualization - JDH

2004-11-11 Added rgrids, thetragrids for customizing the grid
locations and labels for polar plots - JDH

2004-11-11 make the Gtk backends build without an X-server connection - JV

2004-11-10 matplotlib/__init__.py: Added FROZEN to signal we are running under
py2exe (or similar) - is used by backend_gtk.py - SC

2004-11-09 backend_gtk.py: Made fix suggested by maffew@cat.org.au
to prevent problems when py2exe calls pygtk.require(). - SC

2004-11-09 backend_cairo.py: Added support for printing to a fileobject.
Disabled cairo PS output which is not working correctly. - SC

2004-11-08 matplotlib-0.64 released

2004-11-04 Changed -dbackend processing to only use known backends, so
we don't clobber other non-matplotlib uses of -d, like -debug.

2004-11-04 backend_agg.py: added IMAGE_FORMAT to list the formats that the
backend can save to. backend_gtkagg.py: added support for saving JPGfiles by using theGTKbackend
- SC

2004-10-31 backend_cairo.py: now produces png and ps files (although the figure
sizing needs some work). pycairo did not wrap all the necessary functions, so I wrapped them myself,
they are included in the backend_cairo.py doc string. - SC

2004-10-31 backend_ps.py: clean up the generated PostScript code, use
the PostScript stack to hold itermediate values instead of storing them in the dictionary. - JV

2004-10-30 backend_ps.py, ft2font.cpp, ft2font.h: fix the position of
text in the PostScript output. The new FT2Font method get_descent gives the distance between the
lower edge of the bounding box and the baseline of a string. In backend_ps the text is shifted upwards
by this amount. - JV

2004-10-30 backend_ps.py: clean up the code a lot. Change the

8.17. List of changes to Matplotlib prior to 2015 903

mailto:maffew@cat.org.au

Matplotlib, Release 3.4.3

PostScript output to be more DSC compliant. All definitions for the generated PostScript are now in a
PostScript dictionary 'mpldict'. Moved the long comment about drawing ellipses from the PostScript
output into a Python comment. - JV

2004-10-30 backend_gtk.py: removed FigureCanvasGTK.realize() as its no longer
needed. Merged ColorManager into GraphicsContext backend_bases.py: For set_capstyle/joinstyle()
only set cap or joinstyle if there is no error. - SC

2004-10-30 backend_gtk.py: tidied up print_figure() and removed some of the
dependency on widget events - SC

2004-10-28 backend_cairo.py: The renderer is complete except for mathtext,
draw_image() and clipping. gtkcairo works reasonably well. cairo does not yet create any files since I
can't figure how to set the 'target surface', I don't think pycairo wraps the required functions - SC

2004-10-28 backend_gtk.py: Improved the save dialog (GTK 2.4 only) so it
presents the user with a menu of supported image formats - SC

2004-10-28 backend_svg.py: change print_figure() to restore original face/edge
color backend_ps.py : change print_figure() to ensure original face/edge colors are restored even if
there's an IOError - SC

2004-10-27 Applied Norbert's errorbar patch to support barsabove kwarg

2004-10-27 Applied Norbert's legend patch to support None handles

2004-10-27 Added two more backends: backend_cairo.py, backend_gtkcairo.py
They are not complete yet, currently backend_gtkcairo just renders polygons, rectangles and lines - SC

2004-10-21 Added polar axes and plots - JDH

2004-10-20 Fixed corrcoef bug exposed by corrcoef(X) where X is matrix
• JDH

2004-10-19 Added kwarg support to xticks and yticks to set ticklabel
text properties -- thanks to T. Edward Whalen for the suggestion

2004-10-19 Added support for PIL images in imshow(), image.py - ADS

2004-10-19 Re-worked exception handling in _image.py and _transforms.py
to avoid masking problems with shared libraries. - JTM

2004-10-16 Streamlined the matlab interface wrapper, removed the
noplot option to hist - just use mlab.hist instead.

2004-09-30 Added Andrew Dalke's strftime code to extend the range of
dates supported by the DateFormatter - JDH

2004-09-30 Added barh - JDH

904 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2004-09-30 Removed fallback to alternate array package from numerix
so that ImportErrors are easier to debug. JTM

2004-09-30 Add GTK+ 2.4 support for the message in the toolbar. SC

2004-09-30 Made some changes to support python22 - lots of doc
fixes. - JDH

2004-09-29 Added a Verbose class for reporting - JDH

2004-09-28 Released 0.63.0

2004-09-28 Added save to file object for agg - see
examples/print_stdout.py

2004-09-24 Reorganized all py code to lib subdir

2004-09-24 Fixed axes resize image edge effects on interpolation -
required upgrade to agg22 which fixed an agg bug related to this problem

2004-09-20 Added toolbar2 message display for backend_tkagg. JTM

2004-09-17 Added coords formatter attributes. These must be callable,
and return a string for the x or y data. These will be used to format the x and y data for the
coords box. Default is the axis major formatter. e.g.:

format the coords message box def price(x): return '$%1.2f'%x ax.format_xdata =
DateFormatter('%Y-%m-%d') ax.format_ydata = price

2004-09-17 Total rewrite of dates handling to use python datetime with
num2date, date2num and drange. pytz for timezone handling, dateutils for spohisticated ticking. date
ranges from 0001-9999 are supported. rrules allow arbitrary date ticking. examples/date_demo*.py
converted to show new usage. new example examples/date_demo_rrule.py shows how to use rrules in
date plots. The date locators are much more general and almost all of them have different constructors.
See matplotlib.dates for more info.

2004-09-15 Applied Fernando's backend __init__ patch to support easier
backend maintenance. Added his numutils to mlab. JDH

2004-09-16 Re-designated all files in matplotlib/images as binary and
w/o keyword substitution using "cvs admin -kb *.svg ...". See binary files in "info cvs" under Linux.
This was messing up builds from CVS on windows since CVS was doing lf -> cr/lf and keyword
substitution on the bitmaps. - JTM

2004-09-15 Modified setup to build array-package-specific extensions
for those extensions which are array-aware. Setup builds extensions automatically for either Numeric,
numarray, or both, depending on what you have installed. Python proxy modules for the array-aware
extensions import the version optimized for numarray or Numeric determined by numerix. - JTM

8.17. List of changes to Matplotlib prior to 2015 905

Matplotlib, Release 3.4.3

2004-09-15 Moved definitions of infinity from mlab to numerix to avoid
divide by zero warnings for numarray - JTM

2004-09-09 Added axhline, axvline, axhspan and axvspan

2004-08-30 matplotlib 0.62.4 released

2004-08-30 Fixed a multiple images with different extent bug,
Fixed markerfacecolor as RGB tuple

2004-08-27 Mathtext now more than 5x faster. Thanks to Paul Mcguire
for fixes both to pyparsing and to the matplotlib grammar! mathtext broken on python2.2

2004-08-25 Exposed Darren's and Greg's log ticking and formatting
options to semilogx and friends

2004-08-23 Fixed grid w/o args to toggle grid state - JDH

2004-08-11 Added Gregory's log patches for major and minor ticking

2004-08-18 Some pixel edge effects fixes for images

2004-08-18 Fixed TTF files reads in backend_ps on win32.

2004-08-18 Added base and subs properties for logscale plots, user
modifiable using set_[x,y]scale('log',base=b,subs=[mt1,mt2,...]) - GL

2004-08-18 fixed a bug exposed by trying to find the HOME dir on win32
thanks to Alan Issac for pointing to the light - JDH

2004-08-18 fixed errorbar bug in setting ecolor - JDH

2004-08-12 Added Darren Dale's exponential ticking patch

2004-08-11 Added Gregory's fltkagg backend

2004-08-09 matplotlib-0.61.0 released

2004-08-08 backend_gtk.py: get rid of the final PyGTK deprecation warning by
replacing gtkOptionMenu with gtkMenu in the 2.4 version of the classic toolbar.

2004-08-06 Added Tk zoom to rect rectangle, proper idle drawing, and
keybinding - JDH

2004-08-05 Updated installing.html and INSTALL - JDH

2004-08-01 backend_gtk.py: move all drawing code into the expose_event()

2004-07-28 Added Greg's toolbar2 and backend_*agg patches - JDH

906 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2004-07-28 Added image.imread with support for loading png into
numerix arrays

2004-07-28 Added key modifiers to events - implemented dynamic updates
and rubber banding for interactive pan/zoom - JDH

2004-07-27 did a readthrough of SVG, replacing all the string
additions with string interps for efficiency, fixed some layout problems, added font and image support
(through external pngs) - JDH

2004-07-25 backend_gtk.py: modify toolbar2 to make it easier to support GTK+
2.4. Add GTK+ 2.4 toolbar support. - SC

2004-07-24 backend_gtk.py: Simplified classic toolbar creation - SC

2004-07-24 Added images/matplotlib.svg to be used when GTK+ windows are
minimised - SC

2004-07-22 Added right mouse click zoom for NavigationToolbar2 panning
mode. - JTM

2004-07-22 Added NavigationToolbar2 support to backend_tkagg.
Minor tweak to backend_bases. - JTM

2004-07-22 Incorporated Gergory's renderer cache and buffer object
cache - JDH

2004-07-22 Backend_gtk.py: Added support for GtkFileChooser, changed
FileSelection/FileChooser so that only one instance pops up, and made them both modal. - SC

2004-07-21 Applied backend_agg memory leak patch from hayden -
jocallo@online.no. Found and fixed a leak in binary operations on transforms. Moral of the story:
never incref where you meant to decref! Fixed several leaks in ft2font: moral of story: almost always
return Py::asObject over Py::Object - JDH

2004-07-21 Fixed a to string memory allocation bug in agg and image
modules - JDH

2004-07-21 Added mpl_connect and mpl_disconnect to matlab interface -
JDH

2004-07-21 Added beginnings of users_guide to CVS - JDH

2004-07-20 ported toolbar2 to wx

2004-07-20 upgraded to agg21 - JDH

2004-07-20 Added new icons for toolbar2 - JDH

8.17. List of changes to Matplotlib prior to 2015 907

mailto:jocallo@online.no

Matplotlib, Release 3.4.3

2004-07-19 Added vertical mathtext for *Agg and GTK - thanks Jim
Benson! - JDH

2004-07-16 Added ps/eps/svg savefig options to wx and gtk JDH

2004-07-15 Fixed python framework tk finder in setupext.py - JDH

2004-07-14 Fixed layer images demo which was broken by the 07/12 image
extent fixes - JDH

2004-07-13 Modified line collections to handle arbitrary length
segments for each line segment. - JDH

2004-07-13 Fixed problems with image extent and origin -
set_image_extent deprecated. Use imshow(blah, blah, extent=(xmin, xmax, ymin, ymax) instead -
JDH

2004-07-12 Added prototype for new nav bar with codifed event
handling. Usempl_connect rather than connect for matplotlib event handling. toolbar style determined
by rc toolbar param. backend status: gtk: prototype, wx: in progress, tk: not started - JDH

2004-07-11 backend_gtk.py: use builtin round() instead of redefining it.
• SC

2004-07-10 Added embedding_in_wx3 example - ADS

2004-07-09 Added dynamic_image_wxagg to examples - ADS

2004-07-09 added support for embedding TrueType fonts in PS files - PEB

2004-07-09 fixed a sfnt bug exposed if font cache is not built

2004-07-09 added default arg None to matplotlib.matlab grid command to
toggle current grid state

2004-07-08 0.60.2 released

2004-07-08 fixed a mathtext bug for '6'

2004-07-08 added some numarray bug workarounds

2004-07-07 0.60 released

2004-07-07 Fixed a bug in dynamic_demo_wx

2004-07-07 backend_gtk.py: raise SystemExit immediately if
'import pygtk' fails - SC

2004-07-05 Added new mathtext commands over{sym1}{sym2} and
under{sym1}{sym2}

908 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2004-07-05 Unified image and patch collections colormapping and
scaling args. Updated docstrings for all - JDH

2004-07-05 Fixed a figure legend bug and added
examples/figlegend_demo.py - JDH

2004-07-01 Fixed a memory leak in image and agg to string methods

2004-06-25 Fixed fonts_demo spacing problems and added a kwargs
version of the fonts_demo fonts_demo_kw.py - JDH

2004-06-25 finance.py: handle case when urlopen() fails - SC

2004-06-24 Support for multiple images on axes and figure, with
blending. Support for upper and lower image origins. clim, jet and gray functions in matlab interface
operate on current image - JDH

2004-06-23 ported code to Perry's new colormap and norm scheme. Added
new rc attributes image.aspect, image.interpolation, image.cmap, image.lut, image.origin

2004-06-20 backend_gtk.py: replace gtk.TRUE/FALSE with True/False.
simplified _make_axis_menu(). - SC

2004-06-19 anim_tk.py: Updated to use TkAgg by default (not GTK)
backend_gtk_py: Added '_' in front of private widget creation functions - SC

2004-06-17 backend_gtk.py: Create a GC once in realise(), not every
time draw() is called. - SC

2004-06-16 Added new py2exe FAQ entry and added frozen support in
get_data_path for py2exe - JDH

2004-06-16 Removed GTKGD, which was always just a proof-of-concept
backend - JDH

2004-06-16 backend_gtk.py updates to replace deprecated functions
gtk.mainquit(), gtk.mainloop().

Update NavigationToolbar to use the new GtkToolbar API - SC

2004-06-15 removed set_default_font from font_manager to unify font
customization using the new function rc. See API_CHANGES for more info. The examples
fonts_demo.py and fonts_demo_kw.py are ported to the new API - JDH

2004-06-15 Improved (yet again!) axis scaling to properly handle
singleton plots - JDH

2004-06-15 Restored the old FigureCanvasGTK.draw() - SC

2004-06-11 More memory leak fixes in transforms and ft2font - JDH

8.17. List of changes to Matplotlib prior to 2015 909

Matplotlib, Release 3.4.3

2004-06-11 Eliminated numerix .numerix file and environment variable
NUMERIX. Fixed bug which prevented command line overrides: --numarray or --numeric. - JTM

2004-06-10 Added rc configuration function rc; deferred all rc param
setting until object creation time; added new rc attrs: lines.markerfacecolor, lines.markeredgecolor,
lines.markeredgewidth, patch.linewidth, patch.facecolor, patch.edgecolor, patch.antialiased; see ex-
amples/customize_rc.py for usage - JDH

2004-06-09 0.54.2 released

2004-06-08 Rewrote ft2font using CXX as part of general memory leak
fixes; also fixed transform memory leaks - JDH

2004-06-07 Fixed several problems with log ticks and scaling - JDH

2004-06-07 Fixed width/height issues for images - JDH

2004-06-03 Fixed draw_if_interactive bug for semilogx;

2004-06-02 Fixed text clipping to clip to axes - JDH

2004-06-02 Fixed leading newline text and multiple newline text - JDH

2004-06-02 Fixed plot_date to return lines - JDH

2004-06-01 Fixed plot to work with x or y having shape N,1 or 1,N - JDH

2004-05-31 Added renderer markeredgewidth attribute of Line2D. - ADS

2004-05-29 Fixed tick label clipping to work with navigation.

2004-05-28 Added renderer grouping commands to support groups in
SVG/PS. - JDH

2004-05-28 Fixed, this time I really mean it, the singleton plot
plot([0]) scaling bug; Fixed Flavio's shape = N,1 bug - JDH

2004-05-28 added colorbar - JDH

2004-05-28 Made some changes to the matplotlib.colors.Colormap to
properly support clim - JDH

2004-05-27 0.54.1 released

2004-05-27 Lots of small bug fixes: rotated text at negative angles,
errorbar capsize and autoscaling, right tick label position, gtkagg onwin98, alpha of figure background,
singleton plots - JDH

2004-05-26 Added Gary's errorbar stuff and made some fixes for length
one plots and constant data plots - JDH

910 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2004-05-25 Tweaked TkAgg backend so that canvas.draw() works
more like the other backends. Fixed a bug resulting in 2 draws per figure manager show(). - JTM

2004-05-19 0.54 released

2004-05-18 Added newline separated text with rotations to text.Text
layout - JDH

2004-05-16 Added fast pcolor using PolyCollections. - JDH

2004-05-14 Added fast polygon collections - changed scatter to use
them. Added multiple symbols to scatter. 10x speedup on large scatters using *Agg and 5X speedup
for ps. - JDH

2004-05-14 On second thought... created an "nx" namespace in
in numerix which maps type names onto typecodes the same way for both numarray and Numeric.
This undoes my previous change immediately below. To get a typename for Int16 usable in a Numeric
extension: say nx.Int16. - JTM

2004-05-15 Rewrote transformation class in extension code, simplified
all the artist constructors - JDH

2004-05-14 Modified the type definitions in the numarray side of
numerix so that they are Numeric typecodes and can be used with Numeric compilex extensions. The
original numarray types were renamed to type<old_name>. - JTM

2004-05-06 Gary Ruben sent me a bevy of new plot symbols and markers.
See matplotlib.matlab.plot - JDH

2004-05-06 Total rewrite of mathtext - factored ft2font stuff out of
layout engine and defined abstract class for font handling to lay groundwork for ps mathtext. Rewrote
parser and made layout engine much more precise. Fixed all the layout hacks. Added spacing com-
mands / and hspace. Added composite chars and defined angstrom. - JDH

2004-05-05 Refactored text instances out of backend; aligned
text with arbitrary rotations is now supported - JDH

2004-05-05 Added a Matrix capability for numarray to numerix. JTM

2004-05-04 Updated whats_new.html.template to use dictionary and
template loop, added anchors for all versions and items; updated goals.txt to use those for links. PG

2004-05-04 Added fonts_demo.py to backend_driver, and AFM and TTF font
caches to font_manager.py - PEB

2004-05-03 Redid goals.html.template to use a goals.txt file that
has a pseudo restructured text organization. PG

8.17. List of changes to Matplotlib prior to 2015 911

Matplotlib, Release 3.4.3

2004-05-03 Removed the close buttons on all GUIs and added the python
#! bang line to the examples following Steve Chaplin's advice on matplotlib dev

2004-04-29 Added CXX and rewrote backend_agg using it; tracked down
and fixed agg memory leak - JDH

2004-04-29 Added stem plot command - JDH

2004-04-28 Fixed PS scaling and centering bug - JDH

2004-04-26 Fixed errorbar autoscale problem - JDH

2004-04-22 Fixed copy tick attribute bug, fixed singular datalim
ticker bug; fixed mathtext fontsize interactive bug. - JDH

2004-04-21 Added calls to draw_if_interactive to axes(), legend(),
and pcolor(). Deleted duplicate pcolor(). - JTM

2004-04-21 matplotlib 0.53 release

2004-04-19 Fixed vertical alignment bug in PS backend - JDH

2004-04-17 Added support for two scales on the "same axes" with tick
different ticking and labeling left right or top bottom. See examples/two_scales.py - JDH

2004-04-17 Added default dirs as list rather than single dir in
setupext.py - JDH

2004-04-16 Fixed wx exception swallowing bug (and there was much
rejoicing!) - JDH

2004-04-16 Added new ticker locator a formatter, fixed default font
return - JDH

2004-04-16 Added get_name method to FontProperties class. Fixed font lookup
in GTK and WX backends. - PEB

2004-04-16 Added get- and set_fontstyle msethods. - PEB

2004-04-10 Mathtext fixes: scaling with dpi, - JDH

2004-04-09 Improved font detection algorithm. - PEB

2004-04-09 Move deprecation warnings from text.py to __init__.py - PEB

2004-04-09 Added default font customization - JDH

2004-04-08 Fixed viewlim set problem on axes and axis. - JDH

912 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2004-04-07 Added validate_comma_sep_str and font properties parameters to
__init__. Removed font families and added rcParams to FontProperties __init__ arguments in
font_manager. Added default font property parameters to .matplotlibrc file with descriptions. Added
deprecation warnings to the get_ - and set_fontXXX methods of the Text object. - PEB

2004-04-06 Added load and save commands for ASCII data - JDH

2004-04-05 Improved font caching by not reading AFM fonts until needed.
Added better documentation. Changed the behaviour of the get_family, set_family, and set_name
methods of FontProperties. - PEB

2004-04-05 Added WXAgg backend - JDH

2004-04-04 Improved font caching in backend_agg with changes to
font_manager - JDH

2004-03-29 Fixed fontdicts and kwargs to work with new font manager -
JDH

This is the Old, stale, never used changelog

2002-12-10 - Added a TODO file and CHANGELOG. Lots to do -- get
crackin'!

• Fixed y zoom tool bug

• Adopted a compromise fix for the y data clipping problem. The problem was that for solid lines,
the y data clipping (as opposed to the gc clipping) caused artifactual horizontal solid lines near
the ylim boundaries. I did a 5% offset hack in Axes set_ylim functions which helped, but didn't
cure the problem for very high gain y zooms. So I disabled y data clipping for connected lines
. If you need extensive y clipping, either plot(y,x) because x data clipping is always enabled, or
change the _set_clip code to 'if 1' as indicated in the lines.py src. See _set_clip in lines.py and
set_ylim in figure.py for more information.

2002-12-11 - Added a measurement dialog to the figure window to
measure axes position and the delta x delta y with a left mouse drag. These de-
faults can be overridden by deriving from Figure and overriding button_press_event, but-
ton_release_event, and motion_notify_event, and _dialog_measure_tool.

• fixed the navigation dialog so you can check the axes the navigation buttons apply to.

2003-04-23 Released matplotlib v0.1

2003-04-24 Added a new line style PixelLine2D which is the plots the
markers as pixels (as small as possible) with format symbol ','

Added a new class Patch with derived classes Rectangle, RegularPolygon and Circle

2003-04-25 Implemented new functions errorbar, scatter and hist

8.17. List of changes to Matplotlib prior to 2015 913

Matplotlib, Release 3.4.3

Added a new line type '|' which is a vline. syntax is plot(x, Y, '|') where y.shape = len(x),2 and
each row gives the ymin,ymax for the respective values of x. Previously I had implemented
vlines as a list of lines, but I needed the efficientcy of the numeric clipping for large numbers of
vlines outside the viewport, so I wrote a dedicated class Vline2D which derives from Line2D

2003-05-01

Fixed ytick bug where grid and tick show outside axis viewport with gc clip

2003-05-14

Added new ways to specify colors 1) matlab format string 2) html-style hex string, 3) rgb tuple.
See examples/color_demo.py

2003-05-28

Changed figure rendering to draw form a pixmap to reduce flicker. See exam-
ples/system_monitor.py for an example where the plot is continusouly updated w/o flicker. This
example is meant to simulate a system monitor that shows free CPU, RAM, etc...

2003-08-04

Added Jon Anderson's GTK shell, which doesn't require pygtk to have threading built-in and
looks nice!

2003-08-25

Fixed deprecation warnings for python2.3 and pygtk-1.99.18

2003-08-26

Added figure text with new example examples/figtext.py

2003-08-27

Fixed bugs i figure text with font override dictionairies and fig text that was placed outside the
window bounding box

2003-09-1 through 2003-09-15

Added a postscript and a GD module backend

2003-09-16

Fixed font scaling and point scaling so circles, squares, etc on lines will scale with DPI as will
fonts. Font scaling is not fully implemented on the gtk backend because I have not figured out
how to scale fonts to arbitrary sizes with GTK

2003-09-17

Fixed figure text bug which crashed X windows on long figure text extending beyond display
area. This was, I believe, due to the vestigial erase functionality that was no longer needed since
I began rendering to a pixmap

2003-09-30 Added legend

2003-10-01 Fixed bug when colors are specified with rgb tuple or hex
string.

914 Chapter 8. Previous What's New

Matplotlib, Release 3.4.3

2003-10-21 Andrew Straw provided some legend code which I modified
and incorporated. Thanks Andrew!

2003-10-27 Fixed a bug in axis.get_view_distance that affected zoom in
versus out with interactive scrolling, and a bug in the axis text reset system that prevented the text from
being redrawn on a interactive gtk view lim set with the widget

Fixed a bug in that prevented the manual setting of ticklabel strings from working properly

2003-11-02 - Do a nearest neighbor color pick on GD when
allocate fails

2003-11-02
• Added pcolor plot

• Added MRI example

• Fixed bug that screwed up label position if xticks or yticks were empty

• added nearest neighbor color picker when GD max colors exceeded

• fixed figure background color bug in GD backend

2003-11-10 - 2003-11-11
• major refactoring.

– Ticks (with labels, lines and grid) handled by dedicated class

– Artist now know bounding box and dpi

– Bounding boxes and transforms handled by dedicated classes

– legend in dedicated class. Does a better job of alignment and bordering. Can be initialized
with specific line instances. See examples/legend_demo2.py

2003-11-14 Fixed legend positioning bug and added new position args

2003-11-16 Finished porting GD to new axes API

2003-11-20 - add TM for matlab on website and in docs

2003-11-20 - make a nice errorbar and scatter screenshot

2003-11-20 - auto line style cycling for multiple line types
broken

2003-11-18 (using inkrect) :logical rect too big on gtk backend

2003-11-18 ticks don't reach edge of axes in gtk mode --
rounding error?

2003-11-20 - port Gary's errorbar code to new API before 0.40

2003-11-20 - problem with stale _set_font. legend axes box
doesn't resize on save in GTK backend -- see htdocs legend_demo.py

8.17. List of changes to Matplotlib prior to 2015 915

Matplotlib, Release 3.4.3

2003-11-21 - make a dash-dot dict for the GC

2003-12-15 - fix install path bug

916 Chapter 8. Previous What's New

CHAPTER

NINE

LICENSE

Matplotlib only uses BSD compatible code, and its license is based on the PSF license. See the Open Source
Initiative licenses page for details on individual licenses. Non-BSD compatible licenses (e.g., LGPL) are ac-
ceptable in matplotlib toolkits. For a discussion of the motivations behind the licencing choice, see Licenses.

9.1 Copyright Policy

John Hunter began matplotlib around 2003. Since shortly before his passing in 2012, Michael Droettboom
has been the lead maintainer of matplotlib, but, as has always been the case, matplotlib is the work of many.

Prior to July of 2013, and the 1.3.0 release, the copyright of the source code was held by John Hunter. As of
July 2013, and the 1.3.0 release, matplotlib has moved to a shared copyright model.

matplotlib uses a shared copyright model. Each contributor maintains copyright over their contributions to
matplotlib. But, it is important to note that these contributions are typically only changes to the repositories.
Thus, the matplotlib source code, in its entirety, is not the copyright of any single person or institution.
Instead, it is the collective copyright of the entire matplotlib Development Team. If individual contributors
want to maintain a record of what changes/contributions they have specific copyright on, they should indicate
their copyright in the commit message of the change, when they commit the change to one of the matplotlib
repositories.

The Matplotlib Development Team is the set of all contributors to the matplotlib project. A full list can be
obtained from the git version control logs.

9.2 License agreement for matplotlib 3.4.3

1. This LICENSEAGREEMENT is between theMatplotlib Development Team ("MDT"), and the Individual
or Organization ("Licensee") accessing and otherwise using matplotlib software in source or binary form and
its associated documentation.

2. Subject to the terms and conditions of this License Agreement, MDT hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use matplotlib 3.4.3 alone or in any derivative version, provided,
however, that MDT's License Agreement and MDT's notice of copyright, i.e., "Copyright (c) 2012-2013
Matplotlib Development Team; All Rights Reserved" are retained in matplotlib 3.4.3 alone or in any deriva-
tive version prepared by Licensee.

917

https://python.org/psf/license
https://www.opensource.org/licenses

Matplotlib, Release 3.4.3

3. In the event Licensee prepares a derivative work that is based on or incorporates matplotlib 3.4.3 or any
part thereof, and wants to make the derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes made to matplotlib 3.4.3.

4. MDT is making matplotlib 3.4.3 available to Licensee on an "AS IS" basis. MDT MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, MDT MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
MATPLOTLIB 3.4.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. MDT SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF MATPLOTLIB 3.4.3
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING,DISTRIBUTING,OROTHERWISEUSINGMATPLOTLIB 3.4.3, ORANYDERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between MDT and Licensee. This License Agreement does not grant permission to use MDT
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using matplotlib 3.4.3, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

9.3 License agreement for matplotlib versions prior to 1.3.0

1. This LICENSE AGREEMENT is between John D. Hunter ("JDH"), and the Individual or Organization
("Licensee") accessing and otherwise using matplotlib software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, JDH hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use matplotlib 3.4.3 alone or in any derivative version, provided,
however, that JDH's License Agreement and JDH's notice of copyright, i.e., "Copyright (c) 2002-2009 John
D. Hunter; All Rights Reserved" are retained in matplotlib 3.4.3 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates matplotlib 3.4.3 or any
part thereof, and wants to make the derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes made to matplotlib 3.4.3.

4. JDH is making matplotlib 3.4.3 available to Licensee on an "AS IS" basis. JDH MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, JDH MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
MATPLOTLIB 3.4.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. JDH SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF MATPLOTLIB 3.4.3
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF

918 Chapter 9. License

Matplotlib, Release 3.4.3

MODIFYING,DISTRIBUTING,OROTHERWISEUSINGMATPLOTLIB 3.4.3, ORANYDERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between JDH and Licensee. This License Agreement does not grant permission to use JDH
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using matplotlib 3.4.3, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

9.3. License agreement for matplotlib versions prior to 1.3.0 919

Matplotlib, Release 3.4.3

920 Chapter 9. License

CHAPTER

TEN

CITING MATPLOTLIB

If Matplotlib contributes to a project that leads to a scientific publication, please acknowledge this fact by
citing J. D. Hunter, "Matplotlib: A 2D Graphics Environment", Computing in Science & Engineering, vol.
9, no. 3, pp. 90-95, 2007.

@Article{Hunter:2007,
Author = {Hunter, J. D.},
Title = {Matplotlib: A 2D graphics environment},
Journal = {Computing in Science \& Engineering},
Volume = {9},
Number = {3},
Pages = {90--95},
abstract = {Matplotlib is a 2D graphics package used for Python for
application development, interactive scripting, and publication-quality
image generation across user interfaces and operating systems.},
publisher = {IEEE COMPUTER SOC},
doi = {10.1109/MCSE.2007.55},
year = 2007

}

Download BibTeX bibliography file: MCSE.2007.55.bib

10.1 DOIs

The following DOI represents allMatplotlib versions. Please select a more specific DOI from the list below,
referring to the version used for your publication.

DOIDOI 10.5281/zenodo.59253610.5281/zenodo.592536

921

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.592536

Matplotlib, Release 3.4.3

10.1.1 By version

v3.4.3
DOIDOI 10.5281/zenodo.519448110.5281/zenodo.5194481

v3.4.2
DOIDOI 10.5281/zenodo.474332310.5281/zenodo.4743323

v3.4.1
DOIDOI 10.5281/zenodo.464995910.5281/zenodo.4649959

v3.4.0
DOIDOI 10.5281/zenodo.463839810.5281/zenodo.4638398

v3.3.4
DOIDOI 10.5281/zenodo.447537610.5281/zenodo.4475376

v3.3.3
DOIDOI 10.5281/zenodo.426892810.5281/zenodo.4268928

v3.3.2
DOIDOI 10.5281/zenodo.403014010.5281/zenodo.4030140

v3.3.1
DOIDOI 10.5281/zenodo.398419010.5281/zenodo.3984190

v3.3.0
DOIDOI 10.5281/zenodo.394879310.5281/zenodo.3948793

v3.2.2
DOIDOI 10.5281/zenodo.389801710.5281/zenodo.3898017

v3.2.1
DOIDOI 10.5281/zenodo.371446010.5281/zenodo.3714460

v3.2.0
DOIDOI 10.5281/zenodo.369554710.5281/zenodo.3695547

v3.1.3
DOIDOI 10.5281/zenodo.363384410.5281/zenodo.3633844

v3.1.2
DOIDOI 10.5281/zenodo.356322610.5281/zenodo.3563226

922 Chapter 10. Citing Matplotlib

https://doi.org/10.5281/zenodo.5194481
https://doi.org/10.5281/zenodo.4743323
https://doi.org/10.5281/zenodo.4649959
https://doi.org/10.5281/zenodo.4638398
https://doi.org/10.5281/zenodo.4475376
https://doi.org/10.5281/zenodo.4268928
https://doi.org/10.5281/zenodo.4030140
https://doi.org/10.5281/zenodo.3984190
https://doi.org/10.5281/zenodo.3948793
https://doi.org/10.5281/zenodo.3898017
https://doi.org/10.5281/zenodo.3714460
https://doi.org/10.5281/zenodo.3695547
https://doi.org/10.5281/zenodo.3633844
https://doi.org/10.5281/zenodo.3563226

Matplotlib, Release 3.4.3

v3.1.1
DOIDOI 10.5281/zenodo.326478110.5281/zenodo.3264781

v3.1.0
DOIDOI 10.5281/zenodo.289325210.5281/zenodo.2893252

v3.0.3
DOIDOI 10.5281/zenodo.257764410.5281/zenodo.2577644

v3.0.2
DOIDOI 10.5281/zenodo.148209910.5281/zenodo.1482099

v3.0.1
DOIDOI 10.5281/zenodo.148209810.5281/zenodo.1482098

v2.2.5
DOIDOI 10.5281/zenodo.363383310.5281/zenodo.3633833

v3.0.0
DOIDOI 10.5281/zenodo.142060510.5281/zenodo.1420605

v2.2.4
DOIDOI 10.5281/zenodo.266910310.5281/zenodo.2669103

v2.2.3
DOIDOI 10.5281/zenodo.134313310.5281/zenodo.1343133

v2.2.2
DOIDOI 10.5281/zenodo.120207710.5281/zenodo.1202077

v2.2.1
DOIDOI 10.5281/zenodo.120205010.5281/zenodo.1202050

v2.2.0
DOIDOI 10.5281/zenodo.118935810.5281/zenodo.1189358

v2.1.2
DOIDOI 10.5281/zenodo.115428710.5281/zenodo.1154287

v2.1.1
DOIDOI 10.5281/zenodo.109848010.5281/zenodo.1098480

v2.1.0
DOIDOI 10.5281/zenodo.100465010.5281/zenodo.1004650

10.1. DOIs 923

https://doi.org/10.5281/zenodo.3264781
https://doi.org/10.5281/zenodo.2893252
https://doi.org/10.5281/zenodo.2577644
https://doi.org/10.5281/zenodo.1482099
https://doi.org/10.5281/zenodo.1482098
https://doi.org/10.5281/zenodo.3633833
https://doi.org/10.5281/zenodo.1420605
https://doi.org/10.5281/zenodo.2669103
https://doi.org/10.5281/zenodo.1343133
https://doi.org/10.5281/zenodo.1202077
https://doi.org/10.5281/zenodo.1202050
https://doi.org/10.5281/zenodo.1189358
https://doi.org/10.5281/zenodo.1154287
https://doi.org/10.5281/zenodo.1098480
https://doi.org/10.5281/zenodo.1004650

Matplotlib, Release 3.4.3

v2.0.2
DOIDOI 10.5281/zenodo.57357710.5281/zenodo.573577

v2.0.1
DOIDOI 10.5281/zenodo.57031110.5281/zenodo.570311

v2.0.0
DOIDOI 10.5281/zenodo.24835110.5281/zenodo.248351

v1.5.3
DOIDOI 10.5281/zenodo.6194810.5281/zenodo.61948

v1.5.2
DOIDOI 10.5281/zenodo.5692610.5281/zenodo.56926

v1.5.1
DOIDOI 10.5281/zenodo.4457910.5281/zenodo.44579

v1.5.0
DOIDOI 10.5281/zenodo.3291410.5281/zenodo.32914

v1.4.3
DOIDOI 10.5281/zenodo.1542310.5281/zenodo.15423

v1.4.2
DOIDOI 10.5281/zenodo.1240010.5281/zenodo.12400

v1.4.1
DOIDOI 10.5281/zenodo.1228710.5281/zenodo.12287

v1.4.0
DOIDOI 10.5281/zenodo.1145110.5281/zenodo.11451

924 Chapter 10. Citing Matplotlib

https://doi.org/10.5281/zenodo.573577
https://doi.org/10.5281/zenodo.570311
https://doi.org/10.5281/zenodo.248351
https://doi.org/10.5281/zenodo.61948
https://doi.org/10.5281/zenodo.56926
https://doi.org/10.5281/zenodo.44579
https://doi.org/10.5281/zenodo.32914
https://doi.org/10.5281/zenodo.15423
https://doi.org/10.5281/zenodo.12400
https://doi.org/10.5281/zenodo.12287
https://doi.org/10.5281/zenodo.11451

CHAPTER

ELEVEN

CREDITS

Matplotlib was written by John D. Hunter, with contributions from an ever-increasing number of users and
developers. The current lead developer is Thomas A. Caswell, who is assisted by many active developers.
Please also see our instructions on Citing Matplotlib.

The following is a list of contributors extracted from the git revision control history of the project:

4over7, 816-8055, Aaron Boushley, Aashil Patel, AbdealiJK, Abhinav Sagar, Abhinuv Nitin Pitale, Acan-
thostega, Adam, Adam Ginsburg, Adam Gomaa, Adam Heck, Adam J. Stewart, Adam Ortiz, Adam Paszke,
Adam Ruszkowski, Adam Williamson, Adrian Price-Whelan, Adrien Chardon, Adrien F. Vincent, Ahmet
Bakan, Akshay Nair, Alan Bernstein, Alan Du, Alberto, Alejandro Dubrovsky, Aleksey Bilogur, Alex C.
Szatmary, Alex Loew, Alex Rothberg, Alex Rudy, AlexCav, Alexander Buchkovsky, Alexander Harnisch,
Alexander Rudy, Alexander Taylor, Alexei Colin, Alexis Bienvenüe, Ali Mehdi, Ali Uneri, Alistair Muldal,
Allan Haldane, Allen Downey, Alon Hershenhorn, Alvaro Sanchez, Amit Aronovitch, Amy, Amy Roberts,
AmyTeegarden, AndersonDaniel, Andras Deak, Andrea Bedini, Andreas Gustafsson, Andreas Hilboll, An-
dreas Mayer, Andreas Mueller, Andreas Wallner, Andrew Dawson, Andrew Merrill, Andrew Nelson, An-
drew Straw, Andy Mastbaum, Andy Zhu, Ankur Dedania, Anthony Scopatz, Anton Akhmerov, Antony Lee,
Anubhav Shrimal, Ao Liu (frankliuao), Ardie Orden, Arie, Ariel Hernán Curiale, Arnaud Gardelein, Arpad
Horvath, Arthur Paulino, Arvind, Aseem Bansal, Ashley Whetter, Atharva Khare, Avinash Sharma, Ayap-
pan P, BHT, BTWS, Bas van Schaik, Bastian Bechtold, Behram Mistree, Ben, Ben Cohen, Ben Gamari,
Ben Keller, Ben Root, Benedikt Daurer, Benjamin Bengfort, Benjamin Berg, Benjamin Congdon, Ben-
jamin Reedlunn, Bernhard M. Wiedemann, Bharat123rox, Bianca Gibson, Binglin Chang, Bingyao Liu,
Björn Dahlgren, Blaise Thompson, Boaz Mohar, Bradley M. Froehle, Brandon Liu, Brendan Zhang, Bren-
nan Magee, Brett Cannon, Brett Graham, Brian Mattern, Brian McLaughlin, Brigitta Sipocz, Bruno Bel-
tran, Bruno Pagani, Bruno Zohreh, CJ Carey, Cameron Bates, Cameron Davidson-Pilon, Cameron Fack-
ler, Carissa Brittain, Carl Michal, Carsten Schelp, Carwyn Pelley, Casey Webster, Casper van der Wel,
Charles Moad, Charles Ruan, Chen Karako, Cho Yin Yong, Chris, Chris Barnes, Chris Beaumont, Chris
G, Chris Holdgraf, Chris Zimmerman, Christer Jensen, Christian Brodbeck, Christian Brueffer, Chris-
tian Stade-Schuldt, Christoph Dann, Christoph Deil, Christoph Gohlke, Christoph Hoffmann, Christoph
Pohl, Christoph Reiter, Christopher Bradshaw, Cimarron Mittelsteadt, Clemens Brunner, Cody Scot, Colin,
Colin Carroll, Cong Ma, Conner R. Phillips, Corey Farwell, Craig Citro, Craig M, Craig Tenney, DaCoEx,
Dakota Blair, Damian, Damon McDougall, Dan Hickstein, Dana, Daniel C. Marcu, Daniel Hyams, Daniel
Laidig, Daniel O'Connor, DanielMatu, Daniele Nicolodi, Danny Hermes, Dara Adib, Darren Dale, DaveL17,
David A, David Anderson, David Chudzicki, David Haberthür, David Huard, David Kaplan, David Kent,
David Kua, David Stansby, David Trémouilles, Dean Malmgren, Deng Tian, Derek Kim, Derek Tropf,
Devashish Deshpande, Diego Mora Cespedes, Dietmar Schwertberger, Dietrich Brunn, Divyam Madaan,
Dmitry Lupyan, Dmitry Mottl, Dmitry Shachnev, Dominik Schmidt, DonaldSeo, Dora Fraeman Caswell,
DoriekeMG, Dorota Jarecka, Doug Blank, Drew J. Sonne, Duncan Macleod, Dylan Evans, E. G. Patrick

925

https://www.openhub.net/p/matplotlib/contributors

Matplotlib, Release 3.4.3

Bos, Edin Salkovic, Edoardo Pizzigoni, Egor Panfilov, Elan Ernest, Elena Glassman, Elias Pipping, Eli-
jah Schutz, Elizabeth Seiver, Elliott Sales de Andrade, Elvis Stansvik, Emil Mikulic, Emlyn Price, Eric
Dill, Eric Firing, Eric Larson, Eric Ma, Eric O. LEBIGOT (EOL), Eric Relson, Eric Wieser, Erik Bray,
Erik M. Bray, Erin Pintozzi, Eugen Beck, Eugene Yurtsev, Evan Davey, Ezra Peisach, Fabian Kloosterman,
Fabian-Robert Stöter, Fabien Maussion, Fabio Zanini, FedeMiorelli, Federico Ariza, Felipe, Felix, Felix
Kohlgrüber, Felix Yan, Fernando Perez, Filip Dimitrovski, Filipe Fernandes, Florencia Noriega, Florian
Le Bourdais, Florian Rhiem, Francesco Montesano, Francis Colas, Franco Vaccari, Francoise Provencher,
Frank Sauerburger, Frank Yu, François Magimel, Gabe, Gabriel Munteanu, Gal Avineri, Galen Lynch, Gau-
ravjeet, Gaute Hope, Gazing, Gellule Xg, Geoffrey Spear, Geoffroy Billotey, Georg Raiser, Gerald Storer,
Gina, Giovanni, Graeme Smecher, Graham Poulter, Greg Lucas, Gregory Ashton, Gregory R. Lee, Gril-
lard, Grégory Lielens, Guillaume Gay, Guillermo Breto, Gustavo Braganca, Gustavo Goretkin, HHest, Ha-
joon Choi, Hakan Kucukdereli, Hanno Rein, Hans Dembinski, Hans Meine, Hans Moritz Günther, Har-
nesser, Harshal Prakash Patankar, Harshit Patni, Hassan Kibirige, Hastings Greer, Heath Henley, Heiko
Oberdiek, Helder, Henning Pohl, Herbert Kruitbosch, Holger Peters, Hubert Holin, Hugo van Kemenade,
Ian Hincks, Ian Thomas, Ida Hjorth, Ignas Anikevicius (gns_ank), Ildar Akhmetgaleev, Ilia Kurenkov, Ilya
Flyamer, ImSoErgodic, ImportanceOfBeingErnest, Inception95, Ingo Fründ, Ioannis Filippidis, Isa Has-
sen, Isaac Schwabacher, Isaac Slavitt, Ismo Toijala, J Alammar, J. Goutin, Jaap Versteegh, Jack Kelly,
Jacob McDonald, Jacobson Okoro, Jae-Joon Lee, Jaime Fernandez, Jake Lee, Jake Vanderplas, James A.
Bednar, James Adams, James Pallister, James R. Evans, JamesMakela, Jamie Nunez, Jan S. (Milania1),
Jan Schlüter, Jan Schulz, Jan-Philip Gehrcke, Jan-willem De Bleser, Jarrod Millman, Jascha Ulrich, Jason
Grout, Jason King, Jason Liw Yan Chong, Jason Miller, Jason Neal, Jason Zheng, Javad, JayP16, Jean-
Benoist Leger, Jeff Lutgen, Jeff Whitaker, Jeffrey Bingham, Jeffrey Hokanson @ Loki, JelsB, Jens Hede-
gaard Nielsen, Jeremy Fix, Jeremy O'Donoghue, Jeremy Thurgood, Jeroonk, Jessica B. Hamrick, Jiahao
Chen, Jim Radford, Jochen Voss, Jody Klymak, Joe Kington, Joel B. Mohler, Joel Frederico, Joel Wanner,
Johannes H. Jensen, Johannes Wienke, John Hoffman, John Hunter, John Vandenberg, Johnny Gill, Jo-
joBoulix, Jon Haitz Legarreta Gorroño, Jonas Camillus Jeppesen, Jonathan Waltman, Jorge Moraleda, Jorrit
Wronski, Joscha Reimer, Josef Heinen, Joseph Albert, Joseph Fox-Rabinovitz, Joseph Jon Booker, Joseph
Martinot-Lagarde, Joshua Taillon, José Ricardo, Jouni K. Seppänen, Joy Bhalla, Juan Nunez-Iglesias, Juanjo
Bazán, Julia Sprenger, Julian Mehne, Julian Taylor, Julian V. Modesto, JulianCienfuegos, Julien Lhermitte,
Julien Schueller, Julien Woillez, Julien-Charles Lévesque, Jun Tan, Justin Cai, Jörg Dietrich, Kacper Kowa-
lik (Xarthisius), Kai Muehlbauer, Kanchana Ranasinghe, Kanwar245, Katrin Leinweber, Katy Huff, Kayla
Ngan, Keerysanth Sribaskaran, Ken McIvor, Kenneth Ma, Kevin Chan, Kevin Davies, Kevin Ji, Kevin Keat-
ing, Kevin Mader, Kevin Rose, Kexuan Sun, Kieran Ramos, Kimmo Palin, Kjartan Myrdal, Kjell Le, Klara
Gerlei, Konrad Förstner, Konstantin Tretyakov, Kristen M. Thyng, Kyle Bridgemohansingh, Kyle Sunden,
Kyler Brown, Lance Hepler, Laptop11_ASPP2016, Larry Bradley, Laurent Thomas, Lawrence D'Anna,
Leeonadoh, Lennart Fricke, Leo Singer, Leon Loopik, Leon Yin, LevN0, Levi Kilcher, Liam Brannigan,
Lion Krischer, Lionel Miller, Lodato Luciano, Lori J, Loïc Estève, Loïc Séguin-C, Luca Verginer, Luis
Pedro Coelho, Luke Davis, Maarten Baert, Maciej Dems, Magnus Nord, Maik Riechert, Majid alDosari,
Maksym P, Manan, Manan Kevadiya, Manish Devgan, Manuel GOACOLOU, Manuel Jung, Manuel Metz,
Manuel Nuno Melo, Maoz Gelbart, Marat K, Marc Abramowitz, Marcel Martin, Marco Gorelli, Marco-
Gorelli, Marcos Duarte, Marek Rudnicki, Marianne Corvellec, Marin Gilles, Mark Harfouche, Mark Wolf,
Marko Baštovanović, Markus Roth, Markus Rothe, Martin Dengler, Martin Fitzpatrick, Martin Spacek, Mar-
tin Teichmann, Martin Thoma, Martin Ueding, Massimo Santini, Masud Rahman, Mathieu Duponchelle,
Matt Giuca, Matt Hancock, Matt Klein, Matt Li, Matt Newville, Matt Shen, Matt Terry, Matthew Bell,
Matthew Brett, Matthew Emmett, Matthias Bussonnier, Matthias Geier, Matthias Lüthi, Matthieu Caneill,
MatthieuDartiailh, Matti Picus, Matěj Týč, Max Chen, Max Humber, Max Shinn, Maximilian Albert, Maxi-
milian Maahn, Maximilian Nöthe, Maximilian Trescher, MeeseeksMachine, Mellissa Cross, Mher Kazand-
jian, Michael, Michael Droettboom, Michael Jancsy, Michael Sarahan, Michael Scott Cuthbert, Michael

926 Chapter 11. Credits

Matplotlib, Release 3.4.3

Seifert, Michael Welter, Michaël Defferrard, Michele Mastropietro, Michiel de Hoon, Michka Popoff, Mike
Henninger, Mike Jarvis, Mike Kaufman, Mikhail Korobov, MinRK, Mingkai Dong, Minty Zhang, Miran-
daXM, Miriam Sierig, Mitar, Molly Rossow, Moritz Boehle, Mudit Surana, Muhammad Mehdi, Muham-
madFarooq1234, Mykola Dvornik, Naoya Kanai, Nathan Goldbaum, Nathan Musoke, Nathaniel M. Beaver,
Neil, Neil Crighton, Nelle Varoquaux, Niall Robinson, Nic Eggert, Nicholas Devenish, Nick Forrington,
Nick Garvey, Nick Papior, Nick Pope, Nick Semenkovich, Nico Schlömer, Nicolas Courtemanche, Nico-
las P. Rougier, Nicolas Pinto, Nicolas Tessore, Nik Quibin, Nikita Kniazev, Niklas Koep, Nikolay Vyahhi,
Nils Werner, Ninad Bhat, Norbert Nemec, Norman Fomferra, O. Castany, OceanWolf, Oleg Selivanov, Olga
Botvinnik, Oliver Natt, OliverWillekens, Olivier, Om Sitapara, Omar Chehab, Oriol Abril, OrsoMeneghini,
Osarumwense, Pankaj Pandey, Paramonov Andrey, Parfenov Sergey, Pascal Bugnion, Pastafarianist, Patrick
Chen, Patrick Feiring, Patrick Marsh, Patrick Shriwise, PatrickFeiring, Paul, Paul Barret, Paul Ganssle,
Paul Gierz, Paul Hobson, Paul Hoffman, Paul Ivanov, Paul J. Koprowski, Paul Kirow, Paul Romano, Paul
Seyfert, Pauli Virtanen, Pavel Fedin, Pavol Juhas, Per Parker, Perry Greenfield, Pete Bachant, Pete Huang,
Pete Peterson, Peter Iannucci, Peter Mackenzie-Helnwein, Peter Mortensen, Peter Schutt, Peter St. John,
Peter Würtz, Petr Danecek, Phil Elson, Phil Ruffwind, Philippe Pinard, Pierre Haessig, Pierre Thibault,
Pierre de Buyl, Pim Schellart, Piti Ongmongkolkul, Po, Pranav Garg, Przemysław Dąbek, Puneeth Chaganti,
QiCuiHub, Qingpeng "Q.P." Zhang, RAKOTOARISON Herilalaina, Ram Rachum, Ramiro Gómez, Randy
Olson, Raphael, Rasmus Diederichsen, Ratin_Kumar, Rebecca W Perry, Reinier Heeres, Remi Rampin, Ri-
cardo Mendes, Riccardo Di Maio, Richard Gowers, Richard Hattersley, Richard Ji-Cathriner, Richard Trieu,
Ricky, Rishikesh, Rob Harrigan, Robert Johansson, Robin Dunn, Robin Neatherway, Robin Wilson, Ro-
han Walker, Roland Wirth, Roman Yurchak, Ronald Hartley-Davies, RoryIAngus, Roy Smith, Rui Lopes,
Russell Owen, RutgerK, Ryan, Ryan Blomberg, Ryan D'Souza, Ryan Dale, Ryan May, Ryan Morshead,
Ryan Nelson, RyanPan, SBCV, Sairam Pillai, Saket Choudhary, Salganos, Salil Vanvari, Salinder Sidhu,
Sam Vaughan, SamSchott, Sameer D'Costa, Samesh Lakhotia, Samson, Samuel St-Jean, Sander, Sandro
Tosi, Scott Howard, Scott Lasley, Scott Lawrence, Scott Stevenson, Sean Farley, Sebastian Bullinger, Se-
bastian Pinnau, Sebastian Raschka, Sebastián Vanrell, Seraphim Alvanides, Sergey B Kirpichev, Sergey
Kholodilov, Sergey Koposov, Seunghoon Park, Siddhesh Poyarekar, Sidharth Bansal, Silviu Tantos, Simon
Cross, Simon Gibbons, Simon Legner, Skelpdar, Skipper Seabold, Slav Basharov, Snowhite, SojiroFukuda,
Sourav Singh, Spencer McIntyre, Stanley, Simon, Stefan Lehmann, Stefan Mitic, Stefan Pfenninger, Stefan
van der Walt, Stefano Rivera, Stephan Erb, Stephane Raynaud, Stephen Horst, Stephen-Chilcote, Sterling
Smith, Steve Chaplin, Steve Dower, Steven G. Johnson, Steven Munn, Steven Silvester, Steven Tilley, Stu-
art Mumford, Tadeo Corradi, Taehoon Lee, Takafumi Arakaki, Takeshi Kanmae, Tamas Gal, Tanuj, Taras
Kuzyo, Ted Drain, Ted Petrou, Terence Honles, Terrence J. Katzenbaer, Terrence Katzenbaer, The Gitter
Badger, Thein Oo, Thomas A Caswell, Thomas Hisch, Thomas Kluyver, Thomas Lake, Thomas Levine,
Thomas Mansencal, Thomas Robitaille, Thomas Spura, Thomas VINCENT, Thorsten Liebig, Tian Xia,
Till Hoffmann, Till Stensitzki, Tim Hoffmann, Timo Vanwynsberghe, Tobia De Koninck, Tobias Froehlich,
Tobias Hoppe, Tobias Megies, Todd Jennings, Todd Miller, Tom, Tom Augspurger, Tom Dupré la Tour,
Tom Flannaghan, Tomas Kazmar, Tony S Yu, Tor Colvin, Travis Oliphant, Trevor Bekolay, Trish Gillett-
Kawamoto, Truong Pham, Tuan Dung Tran, Tyler Makaro, Tyrone Xiong, Ulrich Dobramysl, Umair Idris,
V. Armando Solé, V. R, Vadim Markovtsev, Valentin Haenel, Valentin Schmidt, Vedant Nanda, Venkada,
Vidur Satija, Viktor Kerkez, Vincent L.M.Mazoyer, VirajMohile, Vitaly Buka, Vlad Seghete, Víctor Terrón,
Víctor Zabalza, WANG Aiyong, Warren Weckesser, Wen Li, Wendell Smith, Werner F Bruhin, Wes Cam-
paigne, Wieland Hoffmann, Will Handley, Will Silva, William Granados, WilliamMallard, WilliamManley,
Wouter Overmeire, Xiaowen Tang, Xufeng Wang, Yann Tambouret, Yao-Yuan Mao, Yaron de Leeuw, Yu
Feng, Yue Zhihan, Yunfei Yang, Yuri D'Elia, Yuval Langer, Yuxin Wu, Yuya, Zac Hatfield-Dodds, Zach
Pincus, Zair Mubashar, Zbigniew Jędrzejewski-Szmek, Zhili (Jerry) Pan, Zulko, ahed87, akrherz, alcinos,
alex, alvarosg, andrzejnovak, aneda, anykraus, aparamon, apodemus, arokem, as691454, aseagram, ash13,
aszilagyi, azure-pipelines[bot], bblay, bduick, bev-a-tron, blackw1ng, blah blah, brut, btang02, buefox, bur-

927

Matplotlib, Release 3.4.3

rbull, butterw, cammil, captainwhippet, cclauss, ch3rn0v, chadawagner, chaoyi1, chebee7i, chelseatroy,
chuanzhu xu, cknd, cldssty, clintval, dabana, dahlbaek, danielballan, daronjp, davidovitch, daydreamt,
deeenes, deepyaman, djdt, dlmccaffrey, domspad, donald, donchanee, drevicko, e-q, elpres, endolith, esvhd,
et2010, fardal, ffteja, fgb, fibersnet, fourpoints, fredrik-1, frenchwr, fuzzythecat, fvgoto, gcallah, gitj, gluap,
gnaggnoyil, goir, goldstarwebs, greg-roper, gregorybchris, gwin-zegal, hannah, helmiriawan, henryhu123,
hugadams, ilivni, insertroar, itziakos, jacob-on-github, jb-leger, jbbrokaw, jbhopkins, jdollichon, jerrylui803,
jess, jfbu, jhelie, jli, joaonsg, joelostblom, jonchar, juan.gonzalez, kcrisman, keithbriggs, kelsiegr, khyox,
kikocorreoso, klaus, klonuo, kolibril13, kramer65, krishna katyal, ksafran, kshramt, lboogaard, legitz7, lep-
uchi, lichri12, limtaesu, lspvic, luftek, luz.paz, lzkelley, mamrehn, marky, masamson, mbyt, mcelrath, mc-
quin, mdipierro, mikhailov, miquelastein, mitch, mlub, mobando, mromanie, muahah, myyc, nathan78906,
navdeep rana, nbrunett, nemanja, neok-m4700, nepix32, nickystringer, njwhite, nmartensen, nwin, ob, pdub-
cali, pibion, pkienzle, productivememberofsociety666, profholzer, pupssman, rahiel, ranjanm, rebot, rhoef,
rsnape, ruin, rvhbooth, s0vereign, s9w, saksmito, scls19fr, scott-vsi, sdementen, serv-inc, settheory, sfroid,
shaunwbell, simon-kraeusel, simonpf, sindunuragarp, smheidrich, sohero, spiessbuerger, stahlous, stone,
stonebig, switham, sxntxn, syngron, teresy, thoo, thuvejan, tmdavison, tomoemon, tonyyli, torfbolt, u55,
ugurthemaster, ultra-andy, vab9, vbr, vishalBindal, vraelvrangr, watkinrt, woclass, xbtsw, xuanyuansen,
y1thof, yeo, zhangeugenia, zhoubecky, Élie Gouzien, Андрей Парамонов

Some earlier contributors not included above are (with apologies to any we have missed):

Charles Twardy, Gary Ruben, John Gill, David Moore, Paul Barrett, Jared Wahlstrand, Jim Benson, Paul
Mcguire, Andrew Dalke, Nadia Dencheva, Baptiste Carvello, Sigve Tjoraand, Ted Drain, James Amundson,
Daishi Harada, Nicolas Young, Paul Kienzle, John Porter, and Jonathon Taylor.

Thanks to Tony Yu for the original logo design.

We also thank all who have reported bugs, commented on proposed changes, or otherwise contributed to
Matplotlib's development and usefulness.

928 Chapter 11. Credits

Part II

The Matplotlib FAQ

929

CHAPTER

TWELVE

INSTALLATION

Contents

• Installation

– Report a compilation problem

– Matplotlib compiled fine, but nothing shows up when I use it

– How to completely remove Matplotlib

– OSX Notes

∗ Which python for OSX?

∗ Installing OSX binary wheels

∗ Checking your installation

12.1 Report a compilation problem

See Getting help.

12.2 Matplotlib compiled fine, but nothing shows up when I use it

The first thing to try is a clean install and see if that helps. If not, the best way to test your install is by running
a script, rather than working interactively from a python shell or an integrated development environment such
as IDLE which add additional complexities. Open up a UNIX shell or a DOS command prompt and run, for
example:

python -c "from pylab import *; set_loglevel('debug'); plot(); show()"

This will give you additional information about which backends Matplotlib is loading, version information,
and more. At this point you might want to make sure you understand Matplotlib's configuration process,
governed by the matplotlibrc configuration file which contains instructions within and the concept of
the Matplotlib backend.

931

Matplotlib, Release 3.4.3

If you are still having trouble, see Getting help.

12.3 How to completely remove Matplotlib

Occasionally, problems with Matplotlib can be solved with a clean installation of the package. In order to
fully remove an installed Matplotlib:

1. Delete the caches from your Matplotlib configuration directory.

2. Delete any Matplotlib directories or eggs from your installation directory.

12.4 OSX Notes

12.4.1 Which python for OSX?

Apple ships OSX with its own Python, in /usr/bin/python, and its own copy of Matplotlib. Unfor-
tunately, the way Apple currently installs its own copies of NumPy, Scipy and Matplotlib means that these
packages are difficult to upgrade (see system python packages). For that reason we strongly suggest that you
install a fresh version of Python and use that as the basis for installing libraries such as NumPy and Mat-
plotlib. One convenient way to install Matplotlib with other useful Python software is to use the Anaconda
Python scientific software collection, which includes Python itself and a wide range of libraries; if you need
a library that is not available from the collection, you can install it yourself using standard methods such as
pip. See the Ananconda web page for installation support.

Other options for a fresh Python install are the standard installer from python.org, or installing Python using
a general OSX package management system such as homebrew or macports. Power users on OSX will likely
want one of homebrew ormacports on their system to install open source software packages, but it is perfectly
possible to use these systems with another source for your Python binary, such as Anaconda or Python.org
Python.

12.4.2 Installing OSX binary wheels

If you are using Python from https://www.python.org, Homebrew, orMacports, then you can use the standard
pip installer to install Matplotlib binaries in the form of wheels.

pip is installed by default with python.org and Homebrew Python, but needs to be manually installed on
Macports with

sudo port install py38-pip

Once pip is installed, you can install Matplotlib and all its dependencies with from the Terminal.app com-
mand line:

python3 -mpip install matplotlib

932 Chapter 12. Installation

https://github.com/MacPython/wiki/wiki/Which-Python#system-python-and-extra-python-packages
https://www.anaconda.com/
https://www.python.org/downloads/mac-osx/
http://brew.sh
https://www.macports.org
https://www.python.org

Matplotlib, Release 3.4.3

(sudo python3.6 ... on Macports).

You might also want to install IPython or the Jupyter notebook (python3 -mpip install ipython
notebook).

12.4.3 Checking your installation

The new version of Matplotlib should now be on your Python "path". Check this at the Terminal.app com-
mand line:

python3 -c 'import matplotlib; print(matplotlib.__version__, matplotlib.__
↪file__)'

You should see something like

3.0.0 /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-
↪packages/matplotlib/__init__.py

where 3.0.0 is the Matplotlib version you just installed, and the path following depends on whether you
are using Python.org Python, Homebrew or Macports. If you see another version, or you get an error like

Traceback (most recent call last):
File "<string>", line 1, in <module>

ImportError: No module named matplotlib

then check that the Python binary is the one you expected by running

which python3

If you get a result like /usr/bin/python..., then you are getting the Python installed with OSX, which
is probably not what you want. Try closing and restarting Terminal.app before running the check again. If
that doesn't fix the problem, depending on which Python you wanted to use, consider reinstalling Python.org
Python, or check your homebrew or macports setup. Remember that the disk image installer only works for
Python.org Python, and will not get picked up by other Pythons. If all these fail, please let us know.

12.4. OSX Notes 933

Matplotlib, Release 3.4.3

934 Chapter 12. Installation

CHAPTER

THIRTEEN

HOW-TO

Contents

• How-to

– Check whether a figure is empty

– Find all objects in a figure of a certain type

– Prevent ticklabels from having an offset

– Save transparent figures

– Save multiple plots to one pdf file

– Move the edge of an axes to make room for tick labels

– Automatically make room for tick labels

– Align my ylabels across multiple subplots

– Control the draw order of plot elements

– Make the aspect ratio for plots equal

– Draw multiple y-axis scales

– Generate images without having a window appear

– Work with threads

13.1 Check whether a figure is empty

Empty can actually mean different things. Does the figure contain any artists? Does a figure with an empty
Axes still count as empty? Is the figure empty if it was rendered pure white (there may be artists present,
but they could be outside the drawing area or transparent)?

For the purpose here, we define empty as: "The figure does not contain any artists except it's background
patch." The exception for the background is necessary, because by default every figure contains a Rectan-
gle as it's background patch. This definition could be checked via:

935

Matplotlib, Release 3.4.3

def is_empty(figure):
"""
Return whether the figure contains no Artists (other than the default
background patch).
"""
contained_artists = figure.get_children()
return len(contained_artists) <= 1

We've decided not to include this as a figure method because this is only one way of defining empty, and
checking the above is only rarely necessary. Usually the user or program handling the figure know if they
have added something to the figure.

Checking whether a figure would render empty cannot be reliably checked except by actually rendering the
figure and investigating the rendered result.

13.2 Find all objects in a figure of a certain type

Every Matplotlib artist (see Artist tutorial) has a method called findobj() that can be used to recursively
search the artist for any artists it may contain that meet some criteria (e.g., match all Line2D instances or
match some arbitrary filter function). For example, the following snippet finds every object in the figure
which has a set_color property and makes the object blue:

def myfunc(x):
return hasattr(x, 'set_color')

for o in fig.findobj(myfunc):
o.set_color('blue')

You can also filter on class instances:

import matplotlib.text as text
for o in fig.findobj(text.Text):

o.set_fontstyle('italic')

13.3 Prevent ticklabels from having an offset

The default formatter will use an offset to reduce the length of the ticklabels. To turn this feature off on a
per-axis basis:

ax.get_xaxis().get_major_formatter().set_useOffset(False)

set rcParams["axes.formatter.useoffset"] (default: True), or use a different formatter. See
ticker for details.

936 Chapter 13. How-to

../tutorials/introductory/customizing.html?highlight=axes.formatter.useoffset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

13.4 Save transparent figures

The savefig() command has a keyword argument transparent which, if 'True', will make the figure and
axes backgrounds transparent when saving, but will not affect the displayed image on the screen.

If you need finer grained control, e.g., you do not want full transparency or you want to affect the screen
displayed version as well, you can set the alpha properties directly. The figure has a Rectangle instance
called patch and the axes has a Rectangle instance called patch. You can set any property on them directly
(facecolor, edgecolor, linewidth, linestyle, alpha). e.g.:

fig = plt.figure()
fig.patch.set_alpha(0.5)
ax = fig.add_subplot(111)
ax.patch.set_alpha(0.5)

If you need all the figure elements to be transparent, there is currently no global alpha setting, but you can
set the alpha channel on individual elements, e.g.:

ax.plot(x, y, alpha=0.5)
ax.set_xlabel('volts', alpha=0.5)

13.5 Save multiple plots to one pdf file

Many image file formats can only have one image per file, but some formats support multi-page files. Cur-
rently only the pdf backend has support for this. To make a multi-page pdf file, first initialize the file:

from matplotlib.backends.backend_pdf import PdfPages
pp = PdfPages('multipage.pdf')

You can give the PdfPages object to savefig(), but you have to specify the format:

plt.savefig(pp, format='pdf')

An easier way is to call PdfPages.savefig:

pp.savefig()

Finally, the multipage pdf object has to be closed:

pp.close()

The same can be done using the pgf backend:

from matplotlib.backends.backend_pgf import PdfPages

13.4. Save transparent figures 937

Matplotlib, Release 3.4.3

13.6 Move the edge of an axes to make room for tick labels

For subplots, you can control the default spacing on the left, right, bottom, and top as well as the horizontal
and vertical spacing between multiple rows and columns using the matplotlib.figure.Figure.
subplots_adjust() method (in pyplot it is subplots_adjust()). For example, to move the bot-
tom of the subplots up to make room for some rotated x tick labels:

fig = plt.figure()
fig.subplots_adjust(bottom=0.2)
ax = fig.add_subplot(111)

You can control the defaults for these parameters in your matplotlibrc file; see Customizing Matplotlib
with style sheets and rcParams. For example, to make the above setting permanent, you would set:

figure.subplot.bottom : 0.2 # the bottom of the subplots of the figure

The other parameters you can configure are, with their defaults

left = 0.125
the left side of the subplots of the figure

right = 0.9
the right side of the subplots of the figure

bottom = 0.1
the bottom of the subplots of the figure

top = 0.9
the top of the subplots of the figure

wspace = 0.2
the amount of width reserved for space between subplots, expressed as a fraction of the average axis
width

hspace = 0.2
the amount of height reserved for space between subplots, expressed as a fraction of the average axis
height

If you want additional control, you can create an Axes using the axes() command (or equivalently the
figure add_axes() method), which allows you to specify the location explicitly:

ax = fig.add_axes([left, bottom, width, height])

where all values are in fractional (0 to 1) coordinates. See /gallery/subplots_axes_and_figures/axes_demo
for an example of placing axes manually.

938 Chapter 13. How-to

Matplotlib, Release 3.4.3

13.7 Automatically make room for tick labels

Note: This is now easier to handle than ever before. Calling tight_layout() or alternatively using
constrained_layout=True argument in subplots() can fix many common layout issues. See the
Tight Layout guide and Constrained Layout Guide for more details.

The information below is kept here in case it is useful for other purposes.

In most use cases, it is enough to simply change the subplots adjust parameters as described in Move the
edge of an axes to make room for tick labels. But in some cases, you don't know ahead of time what your
tick labels will be, or how large they will be (data and labels outside your control may be being fed into your
graphing application), and you may need to automatically adjust your subplot parameters based on the size
of the tick labels. Any Text instance can report its extent in window coordinates (a negative x coordinate
is outside the window), but there is a rub.

The RendererBase instance, which is used to calculate the text size, is not known until the figure
is drawn (draw()). After the window is drawn and the text instance knows its renderer, you can call
get_window_extent(). One way to solve this chicken and egg problem is to wait until the figure is
draw by connecting (mpl_connect()) to the "on_draw" signal (DrawEvent) and get the window extent
there, and then do something with it, e.g., move the left of the canvas over; see Event handling and picking.

Here is an example that gets a bounding box in relative figure coordinates (0..1) of each of the labels and
uses it to move the left of the subplots over so that the tick labels fit in the figure:

Fig. 1: Auto Subplots Adjust

13.7. Automatically make room for tick labels 939

../gallery/pyplots/auto_subplots_adjust.html

Matplotlib, Release 3.4.3

13.8 Align my ylabels across multiple subplots

If you have multiple subplots over one another, and the y data have different scales, you can often get ylabels
that do not align vertically across the multiple subplots, which can be unattractive. By default, Matplotlib
positions the x location of the ylabel so that it does not overlap any of the y ticks. You can override this
default behavior by specifying the coordinates of the label. The example below shows the default behavior
in the left subplots, and the manual setting in the right subplots.

Fig. 2: Align Ylabels

13.9 Control the draw order of plot elements

The draw order of plot elements, and thus which elements will be on top, is determined by the set_zorder
property. See /gallery/misc/zorder_demo for a detailed description.

13.10 Make the aspect ratio for plots equal

The Axes property set_aspect() controls the aspect ratio of the axes. You can set it to be 'auto', 'equal',
or some ratio which controls the ratio:

ax = fig.add_subplot(111, aspect='equal')

940 Chapter 13. How-to

../gallery/pyplots/align_ylabels.html

Matplotlib, Release 3.4.3

13.11 Draw multiple y-axis scales

A frequent request is to have two scales for the left and right y-axis, which is possible using twinx() (more
than two scales are not currently supported, though it is on the wish list). This works pretty well, though
there are some quirks when you are trying to interactively pan and zoom, because both scales do not get the
signals.

The approach uses twinx() (and its sister twiny()) to use 2 different axes, turning the axes rectangular
frame off on the 2nd axes to keep it from obscuring the first, and manually setting the tick locs and labels as
desired. You can use separate matplotlib.ticker formatters and locators as desired because the two
axes are independent.

0 2 4 6 8 10
time (s)

0

5000

10000

15000

20000

ex
p

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin

13.12 Generate images without having a window appear

Simply do not call show, and directly save the figure to the desired format:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3])
plt.savefig('myfig.png')

13.11. Draw multiple y-axis scales 941

Matplotlib, Release 3.4.3

See also:
/gallery/user_interfaces/web_application_server_sgskip for information about running matplotlib inside of
a web application.

13.13 Work with threads

Matplotlib is not thread-safe: in fact, there are known race conditions that affect certain artists. Hence, if you
work with threads, it is your responsibility to set up the proper locks to serialize access to Matplotlib artists.

You may be able to work on separate figures from separate threads. However, you must in that case use a
non-interactive backend (typically Agg), because most GUI backends require being run from the main thread
as well.

942 Chapter 13. How-to

CHAPTER

FOURTEEN

TROUBLESHOOTING

Contents

• Troubleshooting

– Obtaining Matplotlib version

– matplotlib install location

– matplotlib configuration and cache directory locations

– Getting help

– Problems with recent git versions

14.1 Obtaining Matplotlib version

To find out your Matplotlib version number, import it and print the __version__ attribute:

>>> import matplotlib
>>> matplotlib.__version__
'0.98.0'

14.2 matplotlib install location

You can find what directory Matplotlib is installed in by importing it and printing the __file__ attribute:

>>> import matplotlib
>>> matplotlib.__file__
'/home/jdhunter/dev/lib64/python2.5/site-packages/matplotlib/__init__.pyc'

943

Matplotlib, Release 3.4.3

14.3 matplotlib configuration and cache directory locations

Each user has a Matplotlib configuration directory which may contain a matplotlibrc file. To locate your
matplotlib/ configuration directory, use matplotlib.get_configdir():

>>> import matplotlib as mpl
>>> mpl.get_configdir()
'/home/darren/.config/matplotlib'

On unix-like systems, this directory is generally located in your HOME directory under the .config/ di-
rectory.

In addition, users have a cache directory. On unix-like systems, this is separate from the configuration di-
rectory by default. To locate your .cache/ directory, use matplotlib.get_cachedir():

>>> import matplotlib as mpl
>>> mpl.get_cachedir()
'/home/darren/.cache/matplotlib'

On windows, both the config directory and the cache directory are the same and are in your Documents
and Settings or Users directory by default:

>>> import matplotlib as mpl
>>> mpl.get_configdir()
'C:\\Documents and Settings\\jdhunter\\.matplotlib'
>>> mpl.get_cachedir()
'C:\\Documents and Settings\\jdhunter\\.matplotlib'

If you would like to use a different configuration directory, you can do so by specifying the location in your
MPLCONFIGDIR environment variable -- see Setting environment variables in Linux and macOS. Note that
MPLCONFIGDIR sets the location of both the configuration directory and the cache directory.

14.4 Getting help

There are a number of good resources for getting help with Matplotlib. There is a good chance your question
has already been asked:

• The mailing list archive.

• GitHub issues.

• Stackoverflow questions tagged matplotlib.

If you are unable to find an answer to your question through search, please provide the following information
in your e-mail to the mailing list:

• Your operating system (Linux/UNIX users: post the output of uname -a).

• Matplotlib version:

944 Chapter 14. Troubleshooting

http://matplotlib.1069221.n5.nabble.com/
https://github.com/matplotlib/matplotlib/issues
http://stackoverflow.com/questions/tagged/matplotlib
https://mail.python.org/mailman/listinfo/matplotlib-users

Matplotlib, Release 3.4.3

python -c "import matplotlib; print(matplotlib.__version__)"

• Where you obtainedMatplotlib (e.g., your Linux distribution's packages, GitHub, PyPI, or Anaconda).

• Any customizations to your matplotlibrc file (see Customizing Matplotlib with style sheets and
rcParams).

• If the problem is reproducible, please try to provide a minimal, standalone Python script that demon-
strates the problem. This is the critical step. If you can't post a piece of code that we can run and
reproduce your error, the chances of getting help are significantly diminished. Very often, the mere
act of trying to minimize your code to the smallest bit that produces the error will help you find a bug
in your code that is causing the problem.

• Matplotlib provides debugging information through the logging library, and a helper function to set
the logging level: one can call

plt.set_loglevel("info") # or "debug" for more info

to obtain this debugging information.

Standard functions from the logging module are also applicable; e.g. one could call logging.
basicConfig(level="DEBUG") even before importing Matplotlib (this is in particular neces-
sary to get the logging info emitted during Matplotlib's import), or attach a custom handler to the
"matplotlib" logger. This may be useful if you use a custom logging configuration.

If you compiled Matplotlib yourself, please also provide:

• any changes you have made to setup.py or setupext.py.

• the output of:

rm -rf build
python setup.py build

The beginning of the build output contains lots of details about your platform that are useful for the
Matplotlib developers to diagnose your problem.

• your compiler version -- e.g., gcc --version.

Including this information in your first e-mail to the mailing list will save a lot of time.

You will likely get a faster response writing to the mailing list than filing a bug in the bug tracker. Most
developers check the bug tracker only periodically. If your problem has been determined to be a bug and can
not be quickly solved, you may be asked to file a bug in the tracker so the issue doesn't get lost.

14.4. Getting help 945

https://www.anaconda.com/
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#module-logging

Matplotlib, Release 3.4.3

14.5 Problems with recent git versions

First make sure you have a clean build and install (see How to completely remove Matplotlib), get the latest
git update, install it and run a simple test script in debug mode:

rm -rf /path/to/site-packages/matplotlib*
git clean -xdf
git pull
python -m pip install -v . > build.out
python -c "from pylab import *; set_loglevel('debug'); plot(); show()" > run.

↪out

and post build.out and run.out to the matplotlib-devel mailing list (please do not post git problems to
the users list).

Of course, you will want to clearly describe your problem, what you are expecting and what you are getting,
but often a clean build and install will help. See also Getting help.

946 Chapter 14. Troubleshooting

https://mail.python.org/mailman/listinfo/matplotlib-devel
https://mail.python.org/mailman/listinfo/matplotlib-users

CHAPTER

FIFTEEN

ENVIRONMENT VARIABLES

Contents

• Environment Variables

– Setting environment variables in Linux and macOS

– Setting environment variables in Windows

DISPLAY
The server and screen on which to place windows. This is interpreted by GUI toolkits in a backend-
specific manner, but generally refers to an X.org display name.

HOME
The user's home directory. On Linux, ~ is shorthand for HOME.

MPLBACKEND
This optional variable can be set to choose the Matplotlib backend. See What is a backend?.

MPLCONFIGDIR
This is the directory used to store user customizations to Matplotlib, as well as some caches to improve
performance. If MPLCONFIGDIR is not defined, HOME/.config/matplotlib and HOME/.
cache/matplotlib are used on Linux, and HOME/.matplotlib on other platforms, if they
are writable. Otherwise, the Python standard library's tempfile.gettempdir is used to find a
base directory in which the matplotlib subdirectory is created.

PATH
The list of directories searched to find executable programs.

PYTHONPATH
The list of directories that are added to Python's standard search list when importing packages and
modules.

QT_API
The Python Qt wrapper to prefer when using Qt-based backends. See the entry in the usage guide for
more information.

947

https://www.x.org/releases/X11R7.7/doc/man/man7/X.7.xhtml#heading5
https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir

Matplotlib, Release 3.4.3

15.1 Setting environment variables in Linux and macOS

To list the current value of PYTHONPATH, which may be empty, try:

echo $PYTHONPATH

The procedure for setting environment variables in depends on what your default shell is. Common shells
include bash and csh. You should be able to determine which by running at the command prompt:

echo $SHELL

To create a new environment variable:

export PYTHONPATH=~/Python # bash/ksh
setenv PYTHONPATH ~/Python # csh/tcsh

To prepend to an existing environment variable:

export PATH=~/bin:${PATH} # bash/ksh
setenv PATH ~/bin:${PATH} # csh/tcsh

The search order may be important to you, do you want ~/bin to be searched first or last? To append to an
existing environment variable:

export PATH=${PATH}:~/bin # bash/ksh
setenv PATH ${PATH}:~/bin # csh/tcsh

To make your changes available in the future, add the commands to your ~/.bashrc/.cshrc file.

15.2 Setting environment variables in Windows

Open the Control Panel (Start � Control Panel), start the System program. Click the Advanced tab
and select the Environment Variables button. You can edit or add to the User Variables.

948 Chapter 15. Environment Variables

Part III

API Overview

949

CHAPTER

SIXTEEN

API CHANGES

If updating Matplotlib breaks your scripts, this list may help you figure out what caused the breakage and
how to fix it by updating your code.

For API changes in older versions see

16.1 Old API Changes

16.1.1 API Changes for 3.4.2

Behaviour changes

Rename first argument to subplot_mosaic

Both FigureBase.subplot_mosaic, and pyplot.subplot_mosaic have had the first posi-
tion argument renamed from layout to mosaic. This is because we are considering to consolidate con-
strained_layout and tight_layout keyword arguments in the Figure creation functions of pyplot into a
single layout keyword argument which would collide.

As this API is provisional, we are changing this with no deprecation period.

16.1.2 API Changes for 3.4.0

• Behaviour changes

• Deprecations

• Removals

• Development changes

951

Matplotlib, Release 3.4.3

Behaviour changes

Constrained layout rewrite

The layout manager constrained_layoutwas re-written with different outer constraints that should be
more robust to complicated subplot layouts. User-facing changes are:

• some poorly constrained layouts will have different width/height plots than before.

• colorbars now respect the anchor keyword argument of matplotlib.colorbar.make_axes

• colorbars are wider.

• colorbars in different rows or columns line up more robustly.

• hspace and wspace options to Figure.set_constrained_layout_pads were twice as wide
as the docs said they should be. So these now follow the docs.

This feature will remain "experimental" until the new changes have been used enough by users, so we an-
ticipate version 3.5 or 3.6. On the other hand, constrained_layout is extensively tested and used in
examples in the library, so using it should be safe, but layouts may not be exactly the same as more develop-
ment takes place.

Details of using constrained_layout, and its algorithm are available at Constrained Layout Guide

plt.subplot re-selection without keyword arguments

The purpose of pyplot.subplot is to facilitate creating and re-selecting Axes in a Figure when working
strictly in the implicit pyplot API. When creating new Axes it is possible to select the projection (e.g. polar,
3D, or various cartographic projections) as well as to pass additional keyword arguments through to the
Axes-subclass that is created.

The first time pyplot.subplot is called for a given position in the Axes grid it always creates and returns
a new Axes with the passed arguments and projection (defaulting to rectilinear). On subsequent calls to
pyplot.subplot we have to determine if an existing Axes has a) equivalent parameters, in which case
it should be selected as the current Axes and returned, or b) different parameters, in which case a new Axes
is created and the existing Axes is removed. This leaves the question of what is "equivalent parameters".

Previously it was the case that an existing Axes subclass, except for Axes3D, would be considered equivalent
to a 2D rectilinear Axes, despite having different projections, if the keyword arguments (other than projection)
matched. Thus:

ax1 = plt.subplot(1, 1, 1, projection='polar')
ax2 = plt.subplots(1, 1, 1)
ax1 is ax2

We are embracing this long standing behavior to ensure that in the case when no keyword arguments (of any
sort) are passed to pyplot.subplot any existing Axes is returned, without consideration for keywords
or projection used to initially create it. This will cause a change in behavior when additional keywords were
passed to the original Axes:

952 Chapter 16. API Changes

Matplotlib, Release 3.4.3

ax1 = plt.subplot(111, projection='polar', theta_offset=.75)
ax2 = plt.subplots(1, 1, 1)
ax1 is ax2 # new behavior
ax1 is not ax2 # old behavior, made a new axes

ax1 = plt.subplot(111, label='test')
ax2 = plt.subplots(1, 1, 1)
ax1 is ax2 # new behavior
ax1 is not ax2 # old behavior, made a new axes

For the same reason, if there was an existing Axes that was not rectilinear, passing projec-
tion='rectilinear' would reuse the existing Axes

ax1 = plt.subplot(projection='polar')
ax2 = plt.subplot(projection='rectilinear')
ax1 is not ax2 # new behavior, makes new Axes
ax1 is ax2 # old behavior

contrary to the user's request.

Previously Axes3D could not be re-selected with pyplot.subplot due to an unrelated bug (also fixed in
Matplotlib 3.4). While Axes3D are now consistent with all other projections there is a change in behavior
for

plt.subplot(projection='3d') # create a 3D Axes

plt.subplot() # now returns existing 3D Axes, but
previously created new 2D Axes

plt.subplot(projection='rectilinear') # to get a new 2D Axes

ioff and ion can be used as context managers

pyplot.ion andpyplot.ioffmay now be used as contextmanagers to create a context with interactive
mode on or off, respectively. The old behavior of calling these functions is maintained. To use the new
functionality call as:

with plt.ioff():
non-interactive code

16.1. Old API Changes 953

Matplotlib, Release 3.4.3

Locators and formatters must be in the class hierarchy

Axis locators and formatters must now be subclasses of Locator and Formatter respectively.

Date locator for DAILY interval now returns middle of month

The matplotlib.dates.AutoDateLocator has a default of interval_multiples=True that
attempts to align ticks with the start of meaningful intervals like the start of the month, or start of the day,
etc. That lead to approximately 140-day intervals being mapped to the first and 22nd of the month. This has
now been changed so that it chooses the first and 15th of the month, which is probably what most people
want.

ScalarFormatter useLocale option obeys grouping

When the ScalarFormatter option useLocale is enabled (or rcParams["axes.formatter.
use_locale"] (default: False) is True) and the configured locale uses grouping, a separator will be
added as described in locale.format_string.

Axes.errorbar cycles non-color properties correctly

Formerly, Axes.errorbar incorrectly skipped the Axes property cycle if a color was explicitly specified,
even if the property cycler was for other properties (such as line style). Now, Axes.errorbarwill advance
the Axes property cycle as done for Axes.plot, i.e., as long as all properties in the cycler are not explicitly
passed.

pyplot.specgram always uses origin='upper'

Previously if rcParams["image.origin"] (default: 'upper') was set to something other than
'upper' or if the origin keyword argument was passed with a value other than 'upper', the spectro-
gram itself would flip, but the Axes would remain oriented for an origin value of 'upper', so that the
resulting plot was incorrectly labelled.

Now, the origin keyword argument is not supported and the image.origin rcParam is ignored. The
function matplotlib.pyplot.specgram is forced to use origin='upper', so that the Axes are
correct for the plotted spectrogram.

954 Chapter 16. API Changes

../../tutorials/introductory/customizing.html?highlight=axes.formatter.use_locale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.use_locale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/locale.html#locale.format_string
../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

xunits=None and yunits=None passed as keyword arguments are treated as "no action"

Many (but not all) of the methods on Axes take the (undocumented) keyword arguments xunits and yunits
that will update the units on the given Axis by calling Axis.set_units and Axis.update_units.

Previously ifNonewas passed it would clear the value stored in.Axis.unitswhichwill in turn break con-
verters which rely on the value in .Axis.units to work properly (notably StrCategoryConverter).

This changes the semantics of ax.meth(..., xunits=None, yunits=None) from "please clear
the units" to "do the default thing as if they had not been passed" which is consistent with the standard
behavior of Matplotlib keyword arguments.

If you were relying on passing xunits=None to plotting methods to clear the .Axes.units attribute,
directly call Axis.set_units (and Axis.update_units if you also require the converter to be up-
dated).

Annotations with annotation_clip no longer affect tight_layout

Previously, text.Annotation.get_tightbbox always returned the full text.Annotation.
get_window_extent of the object, independent of the value of annotation_clip. text.
Annotation.get_tightbbox now correctly takes this extra clipping box into account, meaning that
Annotations that are not drawn because of annotation_clipwill not count towards the Axes bound-
ing box calculations, such as those done by tight_layout.

This is now consistent with the API described in Artist, which specifies that get_window_extent
should return the full extents and get_tightbbox should "account for any clipping".

Parasite Axes pcolor and pcolormesh now defaults to placing grid edges at integers, not
half-integers

This is consistent with pcolor and pcolormesh.

Colorbar outline is now a Spine

The outline of Colorbar is now a Spine and drawn as one, instead of a Polygon drawn as an artist.
This ensures it will always be drawn after (i.e., on top of) all artists, consistent with Spines on normal Axes.

Colorbar.dividers changes

This attribute is now always a LineCollection -- an empty one if drawedges is False. Its default
colors and linewidth (rcParams["axes.edgecolor"] (default: 'black'), rcParams["axes.
linewidth"] (default: 0.8)) are now resolved at instantiation time, not at draw time.

16.1. Old API Changes 955

../../tutorials/introductory/customizing.html?highlight=axes.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Raise or warn on registering a colormap twice

When using matplotlib.cm.register_cmap to register a user provided or third-party colormap it
will now raise a ValueError if trying to over-write one of the built in colormaps and warn if trying to
over write a user registered colormap. This may raise for user-registered colormaps in the future.

Consecutive rasterized draws now merged

Tracking of depth of raster draws has moved from backend_mixed.MixedModeRenderer.
start_rasterizing and backend_mixed.MixedModeRenderer.stop_rasterizing into
artist.allow_rasterization. This means the start and stop functions are only called when the
rasterization actually needs to be started and stopped.

The output of vector backends will change in the case that rasterized elements are merged. This should not
change the appearance of outputs.

The renders in 3rd party backends are now expected to have self._raster_depth and self.
_rasterizing initialized to 0 and False respectively.

Consistent behavior of draw_if_interactive() across backends

pyplot.draw_if_interactive no longer shows the window (if it was previously unshown) on the
Tk and nbAgg backends, consistently with all other backends.

The Artist property rasterized cannot be None anymore

It is now a boolean only. Before the default was None and Artist.set_rasterized was documented
to accept None. However, None did not have a special meaning and was treated as False.

Canvas's callback registry now stored on Figure

The canonical location of the CallbackRegistry used to handle Figure/Canvas events has been moved
from the Canvas to the Figure. This change should be transparent to almost all users, however if you are
swapping switching the Figure out from on top of a Canvas or visa versa you may see a change in behavior.

Harmonized key event data across backends

The different backends with key translation support, now handle "Shift" as a sometimes modifier, where the
'shift+' prefix won't be added if a key translation was made.

In the Qt5 backend, the matplotlib.backends.backend_qt5.SPECIAL_KEYS dictionary con-
tains keys that do not return their unicode name instead they have manually specified names. The name for
QtCore.Qt.Key_Meta has changed to 'meta' to be consistent with the other GUI backends.

956 Chapter 16. API Changes

https://docs.python.org/3/library/exceptions.html#ValueError

Matplotlib, Release 3.4.3

The WebAgg backend now handles key translations correctly on non-US keyboard layouts.

In the GTK and Tk backends, the handling of non-ASCII keypresses (as reported in the KeyEvent passed
to key_press_event-handlers) now correctly reports Unicode characters (e.g., €), and better respects
NumLock on the numpad.

In the GTK and Tk backends, the following key names have changed; the new names are consistent with
those reported by the Qt backends:

• The "Break/Pause" key (keysym 0xff13) is now reported as "pause" instead of "break" (this is
also consistent with the X key name).

• The numpad "delete" key is now reported as "delete" instead of "dec".

WebAgg backend no longer reports a middle click as a right click

Previously when using the WebAgg backend the event passed to a callback by fig.canvas.
mpl_connect('mouse_button_event', callback) on a middle click would report
MouseButton.RIGHT instead of MouseButton.MIDDLE.

ID attribute of XML tags in SVG files now based on SHA256 rather than MD5

Matplotlib generates unique ID attributes for various tags in SVG files. Matplotlib previously generated
these unique IDs using the first 10 characters of an MD5 hash. The MD5 hashing algorithm is not available
in Python on systems with Federal Information Processing Standards (FIPS) enabled. Matplotlib now uses
the first 10 characters of an SHA256 hash instead. SVG files that would otherwise match those saved with
earlier versions of matplotlib, will have different ID attributes.

RendererPS.set_font is no longer a no-op in AFM mode

RendererPS.set_font now sets the current PostScript font in all cases.

Autoscaling in Axes3D

In Matplotlib 3.2.0, autoscaling was made lazier for 2D Axes, i.e., limits would only be recomputed when
actually rendering the canvas, or when the user queries the Axes limits. This performance improvement
is now extended to Axes3D. This also fixes some issues with autoscaling being triggered unexpectedly in
Axes3D.

Please see the API change for 2D Axes for further details.

16.1. Old API Changes 957

Matplotlib, Release 3.4.3

Axes3D automatically adding itself to Figure is deprecated

New Axes3D objects previously added themselves to figures when they were created, unlike all other Axes
classes, which lead to them being added twice if fig.add_subplot(111, projection='3d')was
called.

This behavior is now deprecated and will warn. The new keyword argument auto_add_to_figure controls the
behavior and can be used to suppress the warning. The default value will change to False in Matplotlib 3.5,
and any non-False value will be an error in Matplotlib 3.6.

In the future, Axes3D will need to be explicitly added to the figure

fig = Figure()
create Axes3D
ax = Axes3d(fig)
add to Figure
fig.add_axes(ax)

as needs to be done for other axes.Axes sub-classes. Or, a 3D projection can be made via:

fig.add_subplot(projection='3d')

mplot3d.art3d.get_dir_vector always returns NumPy arrays

For consistency, get_dir_vector now always returns NumPy arrays, even if the input is a 3-element
iterable.

Changed cursive and fantasy font definitions

The Comic Sans and Comic Neue fonts were moved from the default rcParams["font.fantasy"]
(default: ['Chicago', 'Charcoal', 'Impact', 'Western', 'Humor Sans', 'xkcd',
'fantasy']) list to the default rcParams["font.cursive"] (default: ['Apple Chancery',
'Textile', 'Zapf Chancery', 'Sand', 'Script MT', 'Felipa', 'Comic Neue',
'Comic Sans MS', 'cursive']) setting, in accordance with the CSS font families example and in
order to provide a cursive font present in Microsoft's Core Fonts set.

docstring.Substitution now always dedents docstrings before string interpolation

Deprecations

Extra parameters to Axes constructor

Parameters of the Axes constructor other than fig and rect will become keyword-only in a future version.

958 Chapter 16. API Changes

../../tutorials/introductory/customizing.html?highlight=font.fantasy#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=font.cursive#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://www.w3.org/Style/Examples/007/fonts.en.html

Matplotlib, Release 3.4.3

pyplot.gca and Figure.gca keyword arguments

Passing keyword arguments to pyplot.gca or figure.Figure.gca will not be supported in a future
release.

Axis.cla, RadialAxis.cla, ThetaAxis.cla and Spine.cla

These methods are deprecated in favor of the respective clear() methods.

Invalid hatch pattern characters are no longer ignored

When specifying hatching patterns, characters that are not recognized will raise a deprecation warning. In
the future, this will become a hard error.

imread reading from URLs

Passing a URL to imread() is deprecated. Please open the URL for reading and directly use the Pil-
low API (PIL.Image.open(urllib.request.urlopen(url)), or PIL.Image.open(io.
BytesIO(requests.get(url).content))) instead.

Subplot-related attributes and methods

Some SubplotBase methods and attributes have been deprecated and/or moved to SubplotSpec:

• get_geometry (use SubplotBase.get_subplotspec instead),

• change_geometry (use SubplotBase.set_subplotspec instead),

• is_first_row, is_last_row, is_first_col, is_last_col (use the corresponding
methods on the SubplotSpec instance instead),

• update_params (now a no-op),

• figbox (use ax.get_subplotspec().get_geometry(ax.figure) instead to recompute
the geometry, or ax.get_position() to read its current value),

• numRows, numCols (use the nrows and ncols attribute on the GridSpec instead).

Likewise, the get_geometry, change_geometry, update_params, and figbox meth-
ods/attributes of SubplotDivider have been deprecated, with similar replacements.

16.1. Old API Changes 959

Matplotlib, Release 3.4.3

is_url and URL_REGEX

... are deprecated. (They were previously defined in the toplevel matplotlib module.)

matplotlib.style.core deprecations

STYLE_FILE_PATTERN, load_base_library, and iter_user_libraries are deprecated.

dpi_cor property of FancyArrowPatch

This parameter is considered internal and deprecated.

Passing boxstyle="custom", bbox_transmuter=... to FancyBboxPatch

In order to use a custom boxstyle, directly pass it as the boxstyle argument to FancyBboxPatch. This was
previously already possible, and is consistent with custom arrow styles and connection styles.

BoxStyles are now called without passing the mutation_aspect parameter

Mutation aspect is now handled by the artist itself. Hence the mutation_aspect parameter of BoxStyle.
_Base.__call__ is deprecated, and custom boxstyles should be implemented to not require this param-
eter (it can be left as a parameter defaulting to 1 for back-compatibility).

ContourLabeler.get_label_coords is deprecated

It is considered an internal helper.

Line2D and Patch no longer duplicate validJoin and validCap

Validation of joinstyle and capstyles is now centralized in rcsetup.

Setting a Line2D's pickradius via set_picker is undeprecated

This cancels the deprecation introduced in Matplotlib 3.3.0.

960 Chapter 16. API Changes

Matplotlib, Release 3.4.3

MarkerStyle is considered immutable

MarkerStyle.set_fillstyle() and MarkerStyle.set_marker() are deprecated. Create a
new MarkerStyle with the respective parameters instead.

MovieWriter.cleanup is deprecated

Cleanup logic is now fully implemented in MovieWriter.finish. Third-party movie writers should
likewise move the relevant cleanup logic there, as overridden cleanups will no longer be called in the
future.

minimumdescent parameter/property of TextArea

offsetbox.TextArea has behaved as if minimumdescent was always True (regardless of the value to
which it was set) since Matplotlib 1.3, so the parameter/property is deprecated.

colorbar now warns when the mappable's Axes is different from the current Axes

Currently, Figure.colorbar and pyplot.colorbar steal space by default from the current Axes to
place the colorbar. In a future version, they will steal space from the mappable's Axes instead. In preparation
for this change, Figure.colorbar and pyplot.colorbar now emits a warning when the current
Axes is not the same as the mappable's Axes.

Colorbar docstrings

The following globals in matplotlib.colorbar are deprecated: colorbar_doc, col-
ormap_kw_doc, make_axes_kw_doc.

ColorbarPatch and colorbar_factory are deprecated

All the relevant functionality has been moved to the Colorbar class.

Backend deprecations

• FigureCanvasBase.get_window_title and FigureCanvasBase.
set_window_title are deprecated. Use the corresponding methods on the FigureManager
if using pyplot, or GUI-specific methods if embedding.

• The resize_callback parameter to FigureCanvasTk was never used internally and is deprecated.
Tk-level custom event handlers for resize events can be added to a FigureCanvasTk using e.g.
get_tk_widget().bind('<Configure>', ..., True).

16.1. Old API Changes 961

Matplotlib, Release 3.4.3

• The key_press and button_pressmethods of FigureManagerBase, which incorrectly did
nothingwhen usingtoolmanager, are deprecated in favor of directly passing the event to theCall-
backRegistry via self.canvas.callbacks.process(event.name, event).

• RendererAgg.get_content_extents and RendererAgg.
tostring_rgba_minimized are deprecated.

• backend_pgf.TmpDirCleaner is deprecated, with no replacement.

• GraphicsContextPS is deprecated. The PostScript backend now uses GraphicsCon-
textBase.

wx backend cleanups

The origin parameter to _FigureCanvasWxBase.gui_repaint is deprecated with no replacement;
gui_repaint now automatically detects the case where it is used with the wx renderer.

The NavigationToolbar2Wx.get_canvas method is deprecated; directly instantiate a canvas
(FigureCanvasWxAgg(frame, -1, figure)) if needed.

Unused positional parameters to print_<fmt> methods are deprecated

None of the print_<fmt> methods implemented by canvas subclasses used positional arguments other
that the first (the output filename or file-like), so these extra parameters are deprecated.

The dpi parameter of FigureCanvas.print_foo printers is deprecated

The savefig machinery already took care of setting the figure DPI to the desired value, so print_foo
can directly read it from there. Not passing dpi to print_foo allows clearer detection of unused parameters
passed to savefig.

Passing bytes to FT2Font.set_text

... is deprecated, pass str instead.

ps.useafm deprecated for mathtext

Outputtingmathtext using only standard PostScript fonts has likely been broken for a while (issue #18722). In
Matplotlib 3.5, the setting rcParams["ps.useafm"] (default: False) will have no effect on mathtext.

962 Chapter 16. API Changes

https://docs.python.org/3/library/stdtypes.html#str
https://github.com/matplotlib/matplotlib/issues/18722
../../tutorials/introductory/customizing.html?highlight=ps.useafm#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

MathTextParser("bitmap") is deprecated

The associated APIs MathtextBackendBitmap, MathTextParser.to_mask,
MathTextParser.to_rgba, MathTextParser.to_png, and MathTextParser.get_depth
are likewise deprecated.

To convert a text string to an image, either directly draw the text to an emptyFigure and save the figure using
a tight bbox, as demonstrated in /gallery/text_labels_and_annotations/mathtext_asarray, or use mathtext.
math_to_image.

When using math_to_image, text color can be set with e.g.:

with plt.rc_context({"text.color": "tab:blue"}):
mathtext.math_to_image(text, filename)

and an RGBA array can be obtained with e.g.:

from io import BytesIO
buf = BytesIO()
mathtext.math_to_image(text, buf, format="png")
buf.seek(0)
rgba = plt.imread(buf)

Deprecation of mathtext internals

The following API elements previously exposed by the mathtext module are considered to be implemen-
tation details and public access to them is deprecated:

• Fonts and all its subclasses,

• FontConstantsBase and all its subclasses,

• Node and all its subclasses,

• Ship, ship,

• Error,

• Parser,

• SHRINK_FACTOR, GROW_FACTOR,

• NUM_SIZE_LEVELS,

• latex_to_bakoma, latex_to_cmex, latex_to_standard,

• stix_virtual_fonts,

• tex2uni.

16.1. Old API Changes 963

Matplotlib, Release 3.4.3

Deprecation of various mathtext helpers

The MathtextBackendPdf, MathtextBackendPs, MathtextBackendSvg, and Math-
textBackendCairo classes from the mathtext module, as well as the corresponding .
mathtext_parser attributes on RendererPdf, RendererPS, RendererSVG, and Render-
erCairo, are deprecated. The MathtextBackendPath class can be used to obtain a list of glyphs
and rectangles in a mathtext expression, and renderer-specific logic should be directly implemented in the
renderer.

StandardPsFonts.pswriter is unused and deprecated.

Widget class internals

Several widgets.Widget class internals have been privatized and deprecated:

• AxesWidget.cids

• Button.cnt and Button.observers

• CheckButtons.cnt and CheckButtons.observers

• RadioButtons.cnt and RadioButtons.observers

• Slider.cnt and Slider.observers

• TextBox.cnt, TextBox.change_observers and TextBox.submit_observers

3D properties on renderers

The properties of the 3D Axes that were placed on the Renderer during draw are now deprecated:

• renderer.M

• renderer.eye

• renderer.vvec

• renderer.get_axis_position

These attributes are all available via Axes3D, which can be accessed via self.axes on all Artists.

renderer argument of do_3d_projection method for Collection3D/Patch3D

The renderer argument for the do_3d_projection method on Collection3D and Patch3D is no
longer necessary, and passing it during draw is deprecated.

964 Chapter 16. API Changes

Matplotlib, Release 3.4.3

project argument of draw method for Line3DCollection

The project argument for the draw method on Line3DCollection is deprecated. Call
Line3DCollection.do_3d_projection explicitly instead.

Extra positional parameters to plot_surface and plot_wireframe

Positional parameters to plot_surface and plot_wireframe other than X, Y, and Z are deprecated.
Pass additional artist properties as keyword arguments instead.

ParasiteAxesAuxTransBase class

The functionality of that mixin class has been moved to the base ParasiteAxesBase
class. Thus, ParasiteAxesAuxTransBase, ParasiteAxesAuxTrans, and para-
site_axes_auxtrans_class_factory are deprecated.

In general, it is suggested to use HostAxes.get_aux_axes to create parasite Axes, as this saves the need
of manually appending the parasite to host.parasites and makes sure that their remove() method
works properly.

AxisArtist.ZORDER attribute

Use AxisArtist.zorder instead.

GridHelperBase invalidation

The GridHelperBase.invalidate, GridHelperBase.valid, and axislines.Axes.
invalidate_grid_helper methods are considered internal and deprecated.

sphinext.plot_directive.align

... is deprecated. Use docutils.parsers.rst.directives.images.Image.align instead.

Deprecation-related functionality is considered internal

The module matplotlib.cbook.deprecation is considered internal and will be removed
from the public API. This also holds for deprecation-related re-imports in matplotlib.cbook,
i.e. matplotlib.cbook.deprecated(), matplotlib.cbook.warn_deprecated(),
matplotlib.cbook.MatplotlibDeprecationWarning and matplotlib.cbook.
mplDeprecation.

16.1. Old API Changes 965

Matplotlib, Release 3.4.3

If needed, external users may import MatplotlibDeprecationWarning directly from the mat-
plotlib namespace. mplDeprecation is only an alias of MatplotlibDeprecationWarning
and should not be used anymore.

Removals

The following deprecated APIs have been removed:

Removed behaviour

• The "smart bounds" functionality on Axis and Spine has been deleted, and the related methods have
been removed.

• Converting a string with single color characters (e.g. 'cymk') in to_rgba_array is no longer
supported. Instead, the colors can be passed individually in a list (e.g. ['c', 'y', 'm', 'k']).

• Returning a factor equal to None from mpl_toolkits.axisartist Locators (which are not the
same as "standard" tick Locators), or passing a factor equal to None to axisartist Formatters (which
are not the same as "standard" tick Formatters) is no longer supported. Pass a factor equal to 1 instead.

Modules

• The entire matplotlib.testing.disable_internet module has been removed. The
pytest-remotedata package can be used instead.

• The mpl_toolkits.axes_grid1.colorbar module and its colorbar implementation have
been removed in favor of matplotlib.colorbar.

Classes, methods and attributes

• The animation.MovieWriterRegistry methods .set_dirty(), .
ensure_not_dirty(), and .reset_available_writers() do nothing and have
been removed. The .avail() method has been removed; use .list() instead to get a list of
available writers.

• The matplotlib.artist.Artist.eventson and matplotlib.container.
Container.eventson attributes have no effect and have been removed.

• matplotlib.axes.Axes.get_data_ratio_log has been removed.

• matplotlib.axes.SubplotBase.rowNum; use ax.get_subplotspec().rowspan.
start instead.

• matplotlib.axes.SubplotBase.colNum; use ax.get_subplotspec().colspan.
start instead.

• matplotlib.axis.Axis.set_smart_bounds and matplotlib.axis.Axis.
get_smart_bounds have been removed.

966 Chapter 16. API Changes

https://github.com/astropy/pytest-remotedata

Matplotlib, Release 3.4.3

• matplotlib.colors.DivergingNorm has been renamed to TwoSlopeNorm.

• matplotlib.figure.AxesStack has been removed.

• matplotlib.font_manager.JSONEncoder has been removed; use font_manager.
json_dump to dump a FontManager instance.

• The matplotlib.ft2font.FT2Image methods .as_array(), .as_rgba_str(), .
as_str(), .get_height() and .get_width() have been removed. Convert the FT2Image
to a NumPy array with np.asarray before processing it.

• matplotlib.quiver.QuiverKey.quiverkey_doc has been removed; usematplotlib.
quiver.QuiverKey.__init__.__doc__ instead.

• matplotlib.spines.Spine.set_smart_bounds and matplotlib.spines.Spine.
get_smart_bounds have been removed.

• matplotlib.testing.jpl_units.UnitDbl.checkUnits has been removed; useunits
not in self.allowed instead.

• The unused matplotlib.ticker.Locator.autoscale method has been removed (pass the
axis limits to Locator.view_limits instead). The derived methods Locator.autoscale,
AutoDateLocator.autoscale, RRuleLocator.autoscale, RadialLocator.
autoscale, ThetaLocator.autoscale, and YearLocator.autoscale have also been
removed.

• matplotlib.transforms.BboxBase.is_unit has been removed; check the Bbox extents
if needed.

• matplotlib.transforms.Affine2DBase.matrix_from_values(...) has been re-
moved; use (for example) Affine2D.from_values(...).get_matrix() instead.

• matplotlib.backend_bases.FigureCanvasBase.draw_cursor has been removed.

• matplotlib.backends.backend_gtk.ConfigureSubplotsGTK3.destroy and
matplotlib.backends.backend_gtk.ConfigureSubplotsGTK3.init_window
methods have been removed.

• matplotlib.backends.backend_gtk.ConfigureSubplotsGTK3.window property
has been removed.

• matplotlib.backends.backend_macosx.FigureCanvasMac.invalidate has been
removed.

• matplotlib.backends.backend_pgf.RendererPgf.latexManager has been re-
moved.

• matplotlib.backends.backend_wx.FigureFrameWx.statusbar, matplotlib.
backends.backend_wx.NavigationToolbar2Wx.set_status_bar, and
matplotlib.backends.backend_wx.NavigationToolbar2Wx.statbar have
been removed. The status bar can be retrieved by calling standard wx methods (frame.
GetStatusBar() and toolbar.GetTopLevelParent().GetStatusBar()).

• matplotlib.backends.backend_wx.ConfigureSubplotsWx.
configure_subplots and matplotlib.backends.backend_wx.
ConfigureSubplotsWx.get_canvas have been removed.

16.1. Old API Changes 967

Matplotlib, Release 3.4.3

• mpl_toolkits.axisartist.grid_finder.GridFinderBase has been removed; use
GridFinder instead.

• mpl_toolkits.axisartist.axis_artist.BezierPath has been removed; use
patches.PathPatch instead.

Functions

• matplotlib.backends.backend_pgf.repl_escapetext and matplotlib.
backends.backend_pgf.repl_mathdefault have been removed.

• matplotlib.checkdep_ps_distiller has been removed.

• matplotlib.cm.revcmap has been removed; use Colormap.reversed instead.

• matplotlib.colors.makeMappingArray has been removed.

• matplotlib.compare_versions has been removed; use comparison of distutils.
version.LooseVersions instead.

• matplotlib.dates.mx2num has been removed.

• matplotlib.font_manager.createFontList has been removed; font_manager.
FontManager.addfont is now available to register a font at a given path.

• matplotlib.get_home has been removed; use standard library instead.

• matplotlib.mlab.apply_window and matplotlib.mlab.stride_repeat have been
removed.

• matplotlib.rcsetup.update_savefig_format has been removed; this just replaced
'auto' with 'png', so do the same.

• matplotlib.rcsetup.validate_animation_writer_path has been removed.

• matplotlib.rcsetup.validate_path_exists has been removed; use os.path.
exists or pathlib.Path.exists instead.

• matplotlib.style.core.is_style_file and matplotlib.style.core.
iter_style_files have been removed.

• matplotlib.testing.is_called_from_pytest has been removed.

• mpl_toolkits.mplot3d.axes3d.unit_bbox has been removed; use Bbox.unit instead.

968 Chapter 16. API Changes

https://docs.python.org/3/library/os.path.html#os.path.exists
https://docs.python.org/3/library/os.path.html#os.path.exists
https://docs.python.org/3/library/pathlib.html#pathlib.Path.exists

Matplotlib, Release 3.4.3

Arguments

• Passing more than one positional argument to axes.Axes.axis will now raise an error.

• Passing "range" to the whis parameter of Axes.boxplot and cbook.boxplot_stats to
mean "the whole data range" is no longer supported.

• Passing scalars to the where parameter in axes.Axes.fill_between and axes.Axes.
fill_betweenx is no longer accepted and non-matching sizes now raise a ValueError.

• The verts parameter to Axes.scatter has been removed; use marker instead.

• Theminor parameter in Axis.set_ticks and SecondaryAxis.set_ticks is now keyword-
only.

• scale.ScaleBase, scale.LinearScale and scale.SymmetricalLogScale now er-
ror if any unexpected keyword arguments are passed to their constructors.

• The renderer parameter to Figure.tight_layout has been removed; this method now always
uses the renderer instance cached on the Figure.

• The locator parameter to mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase.
colorbar has been removed in favor of its synonym ticks (which already existed previously, and
is consistent with matplotlib.colorbar).

• The switch_backend_warn parameter to matplotlib.test has no effect and has been removed.

• The dryrun parameter to the various FigureCanvas*.print_* methods has been removed.

rcParams

• The datapath rcParam has been removed. Use matplotlib.get_data_path instead.

• The mpl_toolkits.legacy_colorbar rcParam has no effect and has been removed.

• Setting rcParams["boxplot.whiskers"] (default: 1.5) to "range" is no longer valid; set
it to 0, 100 instead.

• Setting rcParams["savefig.format"] (default: 'png') to "auto" is no longer valid; use
"png" instead.

• Setting rcParams["text.hinting"] (default: 'force_autohint') to False or True is
no longer valid; set it to "auto" or "none" respectively.

16.1. Old API Changes 969

https://docs.python.org/3/library/exceptions.html#ValueError
../../tutorials/introductory/customizing.html?highlight=boxplot.whiskers#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=text.hinting#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

sample_data removals

The sample datasets listed below have been removed. Suggested replacements for demonstration purposes
are listed in parentheses.

• None_vs_nearest-pdf.png,

• aapl.npz (use goog.npz),

• ada.png, grace_hopper.png (use grace_hopper.jpg),

• ct.raw.gz (use s1045.ima.gz),

• damodata.csv (use msft.csv).

Development changes

Increase to minimum supported versions of Python and dependencies

For Maptlotlib 3.4, the minimum supported versions are being bumped:

Dependency min in mpl3.3 min in mpl3.4
Python 3.6 3.7
dateutil 2.1 2.7
numpy 1.15 1.16
pyparsing 2.0.3 2.2.1

This is consistent with our Minimum Version of Dependencies Policy and NEP29

Qhull downloaded at build-or-sdist time

Much like FreeType, Qhull is now downloaded at build time, or upon creation of the sdist. To link against
system Qhull, set the system_qhull option to True in the setup.cfg file. Note that Matplotlib now
requires the re-entrant version of Qhull (qhull_r).

FigureBase class added, and Figure class made a child

The new subfigure feature motivated some re-organization of the figure.Figure class, so that the new
figure.SubFigure class could have all the capabilities of a figure.

The figure.Figure class is now a subclass of figure.FigureBase, where figure.
FigureBase contains figure-level artist addition routines, and the figure.Figure subclass just con-
tains features that are unique to the outer figure.

Note that there is a new transSubfigure transform associated with the subfigure. This transform also exists
for a Figure instance, and is equal to transFigure in that case, so code that uses the transform stack that
wants to place objects on either the parent figure or one of the subfigures should use transSubfigure.

970 Chapter 16. API Changes

https://numpy.org/neps/nep-0029-deprecation_policy.html
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

16.1.3 API Changes for 3.3.1

Deprecations

Reverted deprecation of num2epoch and epoch2num

These two functions were deprecated in 3.3.0, and did not return an accurate Matplotlib datenum relative to
the new Matplotlib epoch handling (get_epoch and rcParams["date.epoch"] (default: '1970-
01-01T00:00:00')). This version reverts the deprecation.

Functions epoch2num and dates.julian2num use date.epoch rcParam

Now epoch2num and (undocumented) julian2num return floating point days since get_epoch as set
by rcParams["date.epoch"] (default: '1970-01-01T00:00:00'), instead of floating point days
since the old epoch of "0000-12-31T00:00:00". If needed, you can translate from the new to old values as
old = new + mdates.date2num(np.datetime64('0000-12-31'))

16.1.4 API Changes for 3.3.0

• Behaviour changes

• Deprecations

• Removals

• Development changes

Behaviour changes

Formatter.fix_minus

Formatter.fix_minus now performs hyphen-to-unicode-minus replacement whenever
rcParams["axes.unicode_minus"] (default: True) is True; i.e. its behavior matches the
one of ScalarFormatter.fix_minus (ScalarFormatter now just inherits that implementation).

This replacement is now used by the format_data_short method of the various builtin formatter
classes, which affects the cursor value in the GUI toolbars.

16.1. Old API Changes 971

../../tutorials/introductory/customizing.html?highlight=date.epoch#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=date.epoch#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.unicode_minus#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

FigureCanvasBase now always has a manager attribute, which may be None

Previously, it did not necessarily have such an attribute. A check for hasattr(figure.canvas,
"manager") should now be replaced by figure.canvas.manager is not None (or
getattr(figure.canvas, "manager", None) is not None for back-compatibility).

cbook.CallbackRegistry nowpropagates exceptionswhen noGUI event loop is running

cbook.CallbackRegistry now defaults to propagating exceptions thrown by callbacks when no in-
teractive GUI event loop is running. If a GUI event loop is running, cbook.CallbackRegistry still
defaults to just printing a traceback, as unhandled exceptions can make the program completely abort()
in that case.

Axes.locator_params() validates axis parameter

axes.Axes.locator_params used to accept any value for axis and silently did nothing, when passed
an unsupported value. It now raises a ValueError.

Axis.set_tick_params() validates which parameter

Axis.set_tick_params (and the higher level axes.Axes.tick_params and pyplot.
tick_params) used to accept any value for which and silently did nothing, when passed an unsupported
value. It now raises a ValueError.

Axis.set_ticklabels() must match FixedLocator.locs

If an axis is using a ticker.FixedLocator, typically set by a call to Axis.set_ticks, then the
number of ticklabels supplied must match the number of locations available (FixedFormattor.locs).
If not, a ValueError is raised.

backend_pgf.LatexManager.latex

backend_pgf.LatexManager.latex is now created with encoding="utf-8", so its stdin,
stdout, and stderr attributes are utf8-encoded.

972 Chapter 16. API Changes

Matplotlib, Release 3.4.3

pyplot.xticks() and pyplot.yticks()

Previously, passing labels without passing the ticks to either pyplot.xticks and pyplot.yticks
would result in

TypeError: object of type 'NoneType' has no len()

It now raises a TypeError with a proper description of the error.

Setting the same property under multiple aliases now raises a TypeError

Previously, calling e.g. plot(..., color=somecolor, c=othercolor) would emit a warning
because color and c actually map to the same Artist property. This now raises a TypeError.

FileMovieWriter temporary frames directory

FileMovieWriter now defaults to writing temporary frames in a temporary directory, which is always
cleared at exit. In order to keep the individual frames saved on the filesystem, pass an explicit frame_prefix.

Axes.plot no longer accepts x and y being both 2D andwith different numbers of columns

Previously, calling Axes.plot e.g. with x of shape (n, 3) and y of shape (n, 2) would plot the first
column of x against the first column of y, the second column of x against the second column of y, and the
first column of x against the third column of y. This now raises an error instead.

Text.update_from now copies usetex state from the source Text

stem now defaults to use_line_collection=True

This creates the stem plot as a LineCollection rather than individual Line2D objects, greatly improv-
ing performance.

rcParams color validator is now stricter

Previously, rcParams entries whose values were color-like accepted "spurious" extra letters or characters in
the "middle" of the string, e.g. "(0, 1a, '0.5')"would be interpreted as (0, 1, 0.5). These extra
characters (including the internal quotes) now cause a ValueError to be raised.

16.1. Old API Changes 973

Matplotlib, Release 3.4.3

SymLogNorm now has a base parameter

Previously, SymLogNorm had no base keyword argument, and defaulted to base=np.e whereas the doc-
umentation said it was base=10. In preparation to make the default 10, calling SymLogNorm without the
new base keyword argument emits a deprecation warning.

errorbar now color cycles when only errorbar color is set

Previously setting the ecolor would turn off automatic color cycling for the plot, leading to the the lines and
markers defaulting to whatever the first color in the color cycle was in the case of multiple plot calls.

rcsetup.validate_color_for_prop_cycle now always raises TypeError for bytes in-
put

It previously raised TypeError, except when the input was of the form b"C[number]" in which case it
raised a ValueError.

FigureCanvasPS.print_ps and FigureCanvasPS.print_eps no longer apply edgecolor
and facecolor

These methods now assume that the figure edge and facecolor have been correctly applied by
FigureCanvasBase.print_figure, as they are normally called through it.

This behavior is consistent with other figure saving methods (FigureCanvasAgg.print_png,
FigureCanvasPdf.print_pdf, FigureCanvasSVG.print_svg).

pyplot.subplot() now raises TypeError when given an incorrect number of arguments

This is consistent with other signature mismatch errors. Previously a ValueError was raised.

Shortcut for closing all figures

Shortcuts for closing all figures now also work for the classic toolbar. There is no default shortcut any more
because unintentionally closing all figures by a key press might happen too easily. You can configure the
shortcut yourself using rcParams["keymap.quit_all"] (default: []).

974 Chapter 16. API Changes

https://docs.python.org/3/library/exceptions.html#TypeError
../../tutorials/introductory/customizing.html?highlight=keymap.quit_all#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Autoscale for arrow

Calling ax.arrow() will now autoscale the axes.

set_tick_params(label1On=False) now also makes the offset text (if any) invisible

... because the offset text can rarely be interpreted without tick labels anyways.

Axes.annotate and pyplot.annotate parameter name changed

The parameter s to Axes.annotate and pyplot.annotate is renamed to text, matching Anno-
tation.

The old parameter name remains supported, but support for it will be dropped in a future Matplotlib release.

font_manager.json_dump now locks the font manager dump file

... to prevent multiple processes from writing to it at the same time.

pyplot.rgrids and pyplot.thetagrids now act as setters also when called with only
kwargs

Previously, keyword arguments were silently ignored when no positional arguments were given.

Axis.get_minorticklabels and Axis.get_majorticklabels now returns plain list

Previously, Axis.get_minorticklabels and Axis.get_majorticklabels returns
silent_list. Their return type is now changed to normal list. get_xminorticklabels,
get_yminorticklabels, get_zminorticklabels, Axis.get_ticklabels,
get_xmajorticklabels, get_ymajorticklabels and get_zmajorticklabels meth-
ods will be affected by this change.

Default slider formatter

The default method used to format Slider values has been changed to use a ScalarFormatter adapted
the slider values limits. This should ensure that values are displayedwith an appropriate number of significant
digits even if they are much smaller or much bigger than 1. To restore the old behavior, explicitly pass a
"%1.2f" as the valfmt parameter to Slider.

16.1. Old API Changes 975

Matplotlib, Release 3.4.3

Add normalize keyword argument to Axes.pie

pie() used to draw a partial pie if the sum of the values was < 1. This behavior is deprecated and will
change to always normalizing the values to a full pie by default. If you want to draw a partial pie, please pass
normalize=False explicitly.

table.CustomCell is now an alias for table.Cell

All the functionality of CustomCell has been moved to its base class Cell.

wx Timer interval

Setting the timer interval on a not-yet-started TimerWx won't start it anymore.

"step"-type histograms default to the zorder of Line2D

This ensures that they go above gridlines by default. The old zorder can be kept by passing it as a keyword
argument to Axes.hist.

Legend and OffsetBox visibility

Legend and OffsetBox subclasses (PaddedBox, AnchoredOffsetbox, and AnnotationBbox)
no longer directly keep track of the visibility of their underlying Patch artist, but instead pass that flag down
to the Patch.

Legend and Table no longer allow invalid locations

This affects legends produced on an Axes (Axes.legend and pyplot.legend) and on a Figure
(Figure.legend and pyplot.figlegend). Figure legends also no longer accept the unsupported
'best' location. Previously, invalid Axes locations would use 'best' and invalid Figure locations would
used 'upper right'.

Passing Line2D's drawstyle together with linestyle is removed

Instead of plt.plot(..., linestyle="steps--"), use plt.plot(..., linestyle="--
", drawstyle="steps"). ds is also an alias for drawstyle.

976 Chapter 16. API Changes

Matplotlib, Release 3.4.3

Upper case color strings

Support for passing single-letter colors (one of "rgbcmykw") as UPPERCASE characters is removed; these
colors are now case-sensitive (lowercase).

tight/constrained_layout no longer worry about titles that are too wide

tight_layout and constrained_layout shrink axes to accommodate "decorations" on the axes. However, if an
xlabel or title is too long in the x direction, making the axes smaller in the x-direction doesn't help. The
behavior of both has been changed to ignore the width of the title and xlabel and the height of the ylabel in
the layout logic.

This also means there is a new keyword argument for axes.Axes.get_tightbbox and axis.Axis.
get_tightbbox: for_layout_only, which defaults toFalse, but if True returns a bounding box using
the rules above.

rcParams["savefig.facecolor"] (default: 'auto') and rcParams["savefig.
edgecolor"] (default: 'auto') now default to "auto"

This newly allowed value for rcParams["savefig.facecolor"] (default: 'auto') and
rcParams["savefig.edgecolor"] (default: 'auto'), as well as the facecolor and edgecolor pa-
rameters to Figure.savefig, means "use whatever facecolor and edgecolor the figure current has".

When using a single dataset, Axes.hist no longer wraps the added artist in a
silent_list

When Axes.hist is called with a single dataset, it adds to the axes either a BarContainer object
(when histtype="bar" or "barstacked"), or a Polygon object (when histype="step" or
"stepfilled") -- the latter being wrapped in a list-of-one-element. Previously, either artist would be
wrapped in a silent_list. This is no longer the case: the BarContainer is now returned as is (this is
an API breaking change if you were directly relying on the concrete list API; however, BarContainer
inherits fromtuple somost common operations remain available), and the list-of-onePolygon is returned
as is. This makes the repr of the returned artist more accurate: it is now

<BarContainer object of of 10 artists> # "bar", "barstacked"
[<matplotlib.patches.Polygon object at 0xdeadbeef>] # "step", "stepfilled"

instead of

<a list of 10 Patch objects> # "bar", "barstacked"
<a list of 1 Patch objects> # "step", "stepfilled"

When Axes.hist is called with multiple artists, it still wraps its return value in a silent_list, but
uses more accurate type information

16.1. Old API Changes 977

../../tutorials/introductory/customizing.html?highlight=savefig.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=savefig.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#repr

Matplotlib, Release 3.4.3

<a list of 3 BarContainer objects> # "bar", "barstacked"
<a list of 3 List[Polygon] objects> # "step", "stepfilled"

instead of

<a list of 3 Lists of Patches objects> # "bar", "barstacked"
<a list of 3 Lists of Patches objects> # "step", "stepfilled"

Qt and wx backends no longer create a status bar by default

The coordinates information is now displayed in the toolbar, consistently with the other backends. This is
intended to simplify embedding of Matplotlib in larger GUIs, where Matplotlib may control the toolbar but
not the status bar.

rcParams["text.hinting"] (default: 'force_autohint') now supports names map-
ping to FreeType flags

rcParams["text.hinting"] (default: 'force_autohint') now supports the values "de-
fault", "no_autohint", "force_autohint", and "no_hinting", which directly map to the FreeType flags
FT_LOAD_DEFAULT, etc. The old synonyms (respectively "either", "native", "auto", and "none")
are still supported, but their use is discouraged. To get normalized values, use backend_agg.
get_hinting_flag, which returns integer flag values.

cbook.get_sample_data auto-loads numpy arrays

When cbook.get_sample_data is used to load a npy or npz file and the keyword-only parameter
np_load is True, the file is automatically loaded using numpy.load. np_load defaults to False for
backwards compatibility, but will become True in a later release.

get_text_width_height_descent now checks ismath rather than rcParams["text.
usetex"] (default: False)

... to determine whether a string should be passed to the usetex machinery or not. This allows single strings
to be marked as not-usetex even when the rcParam is True.

978 Chapter 16. API Changes

../../tutorials/introductory/customizing.html?highlight=text.hinting#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load

Matplotlib, Release 3.4.3

Axes.vlines, Axes.hlines, pyplot.vlines and pyplot.hlines colors parameter de-
fault change

The colors parameter will now default to rcParams["lines.color"] (default: 'C0'), while previ-
ously it defaulted to 'k'.

Aggressively autoscale clim in ScalerMappable classes

Previously some plotting methods would defer autoscaling until the first draw if only one of the vmin
or vmax keyword arguments were passed (Axes.scatter, Axes.hexbin, Axes.imshow, Axes.
pcolorfast) but would scale based on the passed data if neither was passed (independent of the norm
keyword arguments). Other methods (Axes.pcolor, Axes.pcolormesh) always autoscaled base on
the initial data.

All of the plotting methods now resolve the unset vmin or vmax at the initial call time using the data passed
in.

If you were relying on exactly one of the vmin or vmax remaining unset between the time when the method is
called and the first time the figure is rendered you get back the old behavior by manually setting the relevant
limit back to None

cm_obj.norm.vmin = None
or
cm_obj.norm.vmax = None

which will be resolved during the draw process.

Deprecations

figure.add_axes() without arguments

Calling fig.add_axes() with no arguments currently does nothing. This call will raise an error in the
future. Adding a free-floating axes needs a position rectangle. If you want a figure-filling single axes, use
add_subplot() instead.

backend_wx.DEBUG_MSG

backend_wx.DEBUG_MSG is deprecated. The wx backends now use regular logging.

16.1. Old API Changes 979

../../tutorials/introductory/customizing.html?highlight=lines.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

Colorbar.config_axis()

Colorbar.config_axis() is considered internal. Its use is deprecated.

NonUniformImage.is_grayscale and PcolorImage.is_grayscale

These attributes are deprecated, for consistency with AxesImage.is_grayscale, which was removed
back in Matplotlib 2.0.0. (Note that previously, these attributes were only available after rendering the
image).

den parameter and attribute to mpl_toolkits.axisartist.angle_helper

For all locator classes defined in mpl_toolkits.axisartist.angle_helper, the den parameter
has been renamed to nbins, and the den attribute deprecated in favor of its (preexisting) synonym nbins,
for consistency with locator classes defined in matplotlib.ticker.

backend_pgf.LatexManager.latex_stdin_utf8

backend_pgf.LatexManager.latex is now created with encoding="utf-8", so its stdin at-
tribute is already utf8-encoded; the latex_stdin_utf8 attribute is thus deprecated.

Flags containing "U" passed to cbook.to_filehandle and cbook.open_file_cm

Please remove "U" from flags passed to cbook.to_filehandle and cbook.open_file_cm. This
is consistent with their removal from open in Python 3.9.

PDF and PS character tracking internals

The used_characters attribute and track_characters and merge_used_charactersmeth-
ods of RendererPdf, PdfFile, and RendererPS are deprecated.

Case-insensitive capstyles and joinstyles

Please pass capstyles ("miter", "round", "bevel") and joinstyles ("butt", "round", "projecting") as lowercase.

980 Chapter 16. API Changes

https://docs.python.org/3/library/functions.html#open

Matplotlib, Release 3.4.3

Passing raw data to register_cmap()

Passing raw data via parameters data and lut to register_cmap() is deprecated. In-
stead, explicitly create a LinearSegmentedColormap and pass it via the cmap parameter:
register_cmap(cmap=LinearSegmentedColormap(name, data, lut)).

DateFormatter.illegal_s

This attribute is unused and deprecated.

widgets.TextBox.params_to_disable

This attribute is deprecated.

Revert deprecation *min, *max keyword arguments to set_x/y/zlim_3d()

These keyword arguments were deprecated in 3.0, alongside with the respective parameters in set_xlim()
/ set_ylim(). The deprecations of the 2D versions were already reverted in in 3.1.

cbook.local_over_kwdict

This function is deprecated. Use cbook.normalize_kwargs instead.

Passing both singular and plural colors, linewidths, linestyles to Axes.eventplot

Passing e.g. both linewidth and linewidths will raise a TypeError in the future.

Setting rcParams["text.latex.preamble"] (default: '') or rcParams["pdf.
preamble"] to non-strings

These rcParams should be set to string values. Support for None (meaning the empty string) and lists of
strings (implicitly joined with newlines) is deprecated.

16.1. Old API Changes 981

Matplotlib, Release 3.4.3

Parameters norm and vmin/vmax should not be used simultaneously

Passing parameters norm and vmin/vmax simultaneously to functions using colormapping such as
scatter() and imshow() is deprecated. Inestead of norm=LogNorm(), vmin=min_val,
vmax=max_val pass norm=LogNorm(min_val, max_val). vmin and vmax should only be used
without setting norm.

Effectless parameters of Figure.colorbar and matplotlib.colorbar.Colorbar

The cmap and norm parameters of Figure.colorbar and matplotlib.colorbar.Colorbar
have no effect because they are always overridden by the mappable's colormap and norm; they are thus dep-
recated. Likewise, passing the alpha, boundaries, values, extend, or filled parameters with a ContourSet
mappable, or the alpha parameter with an Artistmappable, is deprecated, as the mappable would likewise
override them.

args_key and exec_key attributes of builtin MovieWriters

These attributes are deprecated.

Unused parameters

The following parameters do not have any effect and are deprecated:

• arbitrary keyword arguments to StreamplotSet

• parameter quantize of Path.cleaned()

• parameter s of AnnotationBbox.get_fontsize()

• parameter label of Tick

Passing props to Shadow

The parameter props of Shadow is deprecated. Use keyword arguments instead.

Axes.update_datalim_bounds

This method is deprecated. Use ax.dataLim.set(Bbox.union([ax.dataLim, bounds])) in-
stead.

982 Chapter 16. API Changes

Matplotlib, Release 3.4.3

{,Symmetrical}LogScale.{,Inverted}LogTransform

LogScale.LogTransform, LogScale.InvertedLogTransform, SymmetricalScale.
SymmetricalTransform and SymmetricalScale.InvertedSymmetricalTransform are
deprecated. Directly access the transform classes from the scale module.

TexManager.cachedir, TexManager.rgba_arrayd

Use matplotlib.get_cachedir() instead for the former; there is no replacement for the latter.

Setting Line2D's pickradius via Line2D.set_picker

Setting a Line2D's pickradius (i.e. the tolerance for pick events and containment checks) via Line2D.
set_picker is deprecated. Use Line2D.set_pickradius instead.

Line2D.set_picker no longer sets the artist's custom-contain() check.

Artist.set_contains, Artist.get_contains

Setting a custom method overriding Artist.contains is deprecated. There is no replacement, but you
may still customize pick events using Artist.set_picker.

Colorbar methods

The on_mappable_changed and update_bruteforcemethods of Colorbar are deprecated; both
can be replaced by calls to update_normal.

OldScalarFormatter, IndexFormatter and DateIndexFormatter

These formatters are deprecated. Their functionality can be implemented using e.g. FuncFormatter.

OldAutoLocator

This ticker is deprecated.

16.1. Old API Changes 983

Matplotlib, Release 3.4.3

required, forbidden and allowed parameters of cbook.normalize_kwargs

These parameters are deprecated.

The TTFPATH and AFMPATH environment variables

Support for the (undocumented) TTFPATH and AFMPATH environment variables is deprecated. Additional
fonts may be registered using matplotlib.font_manager.fontManager.addfont().

matplotlib.compat

This module is deprecated.

matplotlib.backends.qt_editor.formsubplottool

This module is deprecated. Use matplotlib.backends.backend_qt5.SubplotToolQt instead.

AVConv animation writer deprecated

The AVConvBase, AVConvWriter and AVConvFileWriter classes, and the associated
animation.avconv_path and animation.avconv_args rcParams are deprecated.

Debian 8 (2015, EOL 06/2020) and Ubuntu 14.04 (EOL 04/2019) were the last versions of Debian and
Ubuntu to ship avconv. It remains possible to force the use of avconv by using the ffmpeg-based writers with
rcParams["animation.ffmpeg_path"] (default: 'ffmpeg') set to "avconv".

log/symlog scale base, ticks, and nonpos specification

semilogx, semilogy, loglog, LogScale, and SymmetricalLogScale used to take keyword
arguments that depends on the axis orientation ("basex" vs "basey", "subsx" vs "subsy", "nonposx" vs "non-
posy"); these parameter names are now deprecated in favor of "base", "subs", "nonpositive". This dep-
recation also affects e.g. ax.set_yscale("log", basey=...) which must now be spelled ax.
set_yscale("log", base=...).

The change from "nonpos" to "nonpositive" also affects LogTransform, InvertedLogTransform,
SymmetricalLogTransform, etc.

To use different bases for the x-axis and y-axis of a loglog plot, use e.g. ax.set_xscale("log",
base=10); ax.set_yscale("log", base=2).

984 Chapter 16. API Changes

../../tutorials/introductory/customizing.html?highlight=animation.ffmpeg_path#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

DraggableBase.artist_picker

This method is deprecated. If you previously reimplemented it in a subclass, set the artist's picker instead
with Artist.set_picker.

clear_temp parameter and attribute of FileMovieWriter

The clear_temp parameter and attribute of FileMovieWriter is deprecated. In the future, files placed in
a temporary directory (using frame_prefix=None, the default) will be cleared; files placed elsewhere
will not.

Deprecated rcParams validators

The following validators, defined in rcsetup, are deprecated: validate_fontset, vali-
date_mathtext_default, validate_alignment, validate_svg_fontset, vali-
date_pgf_texsystem, validate_movie_frame_fmt, validate_axis_locator, val-
idate_movie_html_fmt, validate_grid_axis, validate_axes_titlelocation,
validate_toolbar, validate_ps_papersize, validate_legend_loc, vali-
date_bool_maybe_none, validate_hinting, validate_movie_writers, vali-
date_webagg_address, validate_nseq_float, validate_nseq_int. To test whether
an rcParam value would be acceptable, one can test e.g. rc = RcParams(); rc[k] = v raises an
exception.

Stricter rcParam validation

rcParams["axes.axisbelow"] (default: 'line') currently normalizes all strings starting with
"line" (case-insensitive) to the option "line". This is deprecated; in a future version only the exact string
"line" (case-sensitive) will be supported.

add_subplot() validates its inputs

In particular, for add_subplot(rows, cols, index), all parameters must be integral. Previously
strings and floats were accepted and converted to int. This will now emit a deprecation warning.

Toggling axes navigation from the keyboard using "a" and digit keys

Axes navigation can still be toggled programmatically using Axes.set_navigate.

The following related APIs are also deprecated: backend_tools.ToolEnableAllNavigation,
backend_tools.ToolEnableNavigation, and rcParams["keymap.all_axes"].

16.1. Old API Changes 985

../../tutorials/introductory/customizing.html?highlight=axes.axisbelow#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

matplotlib.test(recursionlimit=...)

The recursionlimit parameter of matplotlib.test is deprecated.

mathtext glues

The copy parameter of mathtext.Glue is deprecated (the underlying glue spec is now immutable).
mathtext.GlueSpec is deprecated.

Signatures of Artist.draw and Axes.draw

The inframe parameter to Axes.draw is deprecated. Use Axes.redraw_in_frame instead.

Not passing the renderer parameter to Axes.draw is deprecated. Use axes.draw_artist(axes)
instead.

These changes make the signature of the draw (artist.draw(renderer)) method consistent across
all artists; thus, additional parameters to Artist.draw are deprecated.

DraggableBase.on_motion_blit

This method is deprecated. DraggableBase.on_motion now handles both the blitting and the non-
blitting cases.

Passing the dash offset as None

Fine control of dash patterns can be achieved by passing an (offset, (on-length, off-length,
on-length, off-length, ...)) pair as the linestyle property ofLine2D andLineCollection.
Previously, certain APIs would accept offset = None as a synonym for offset = 0, but this was
never universally implemented, e.g. for vector output. Support for offset = None is deprecated, set the
offset to 0 instead.

RendererCairo.fontweights, RendererCairo.fontangles

... are deprecated.

986 Chapter 16. API Changes

Matplotlib, Release 3.4.3

autofmt_xdate(which=None)

This is deprecated, use its more explicit synonym, which="major", instead.

JPEG options

The quality, optimize, and progressive keyword arguments to savefig, which were only used when saving
to JPEG, are deprecated. rcParams["savefig.jpeg_quality"] (default: 95) is likewise depre-
cated.

Such options should now be directly passed to Pillow using savefig(...,
pil_kwargs={"quality": ..., "optimize": ..., "progressive": ...
}).

dviread.Encoding

This class was (mostly) broken and is deprecated.

Axis and Locator pan and zoom

The unused pan and zoommethods of Axis and Locator are deprecated. Panning and zooming are now
implemented using the start_pan, drag_pan, and end_pan methods of Axes.

Passing None to various Axes subclass factories

Support for passing None as base class to axes.subplot_class_factory,
axes_grid1.parasite_axes.host_axes_class_factory, axes_grid1.
parasite_axes.host_subplot_class_factory, axes_grid1.parasite_axes.
parasite_axes_class_factory, and axes_grid1.parasite_axes.
parasite_axes_auxtrans_class_factory is deprecated. Explicitly pass the correct base
Axes class instead.

axes_rgb

In mpl_toolkits.axes_grid1.axes_rgb, imshow_rgb is deprecated (use ax.imshow(np.
dstack([r, g, b])) instead); RGBAxesBase is deprecated (use RGBAxes instead); RGBAxes.
add_RGB_to_figure is deprecated (it was an internal helper).

16.1. Old API Changes 987

../../tutorials/introductory/customizing.html?highlight=savefig.jpeg_quality#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Substitution.from_params

This method is deprecated. If needed, directly assign to the params attribute of the Substitution object.

PGF backend cleanups

The dummy parameter of RendererPgf is deprecated.

GraphicsContextPgf is deprecated (use GraphicsContextBase instead).

set_factor method of mpl_toolkits.axisartist locators

The set_factor method of mpl_toolkits.axisartist locators (which are different from "stan-
dard" Matplotlib tick locators) is deprecated.

widgets.SubplotTool callbacks and axes

The funcleft, funcright, funcbottom, functop, funcwspace, and funchspacemethods of
widgets.SubplotTool are deprecated.

The axleft, axright, axbottom, axtop, axwspace, and axhspace attributes of widgets.
SubplotTool are deprecated. Access the ax attribute of the corresponding slider, if needed.

mathtext Glue helper classes

The Fil, Fill, Filll, NegFil, NegFill, NegFilll, and SsGlue classes in the matplotlib.
mathtext module are deprecated. As an alternative, directly construct glue instances with
Glue("fil"), etc.

NavigationToolbar2._init_toolbar

Overriding this method to initialize third-party toolbars is deprecated. Instead, the toolbar should be initial-
ized in the __init__ method of the subclass (which should call the base-class' __init__ as appropri-
ate). To keep back-compatibility with earlier versions of Matplotlib (which required _init_toolbar to
be overridden), a fully empty implementation (def _init_toolbar(self): pass) may be kept and
will not trigger the deprecation warning.

988 Chapter 16. API Changes

Matplotlib, Release 3.4.3

NavigationToolbar2QT.parent and .basedir

These attributes are deprecated. In order to access the parent window, use toolbar.canvas.
parent(). Once the deprecation period is elapsed, it will also be accessible as toolbar.parent().
The base directory to the icons is os.path.join(mpl.get_data_path(), "images").

NavigationToolbar2QT.ctx

This attribute is deprecated.

NavigationToolbar2Wx attributes

The prevZoomRect, retinaFix, savedRetinaImage, wxoverlay, zoomAxes, zoomStartX,
and zoomStartY attributes are deprecated.

NavigationToolbar2.press and .release

These methods were called when pressing or releasing a mouse button, but only when an in-
teractive pan or zoom was occurring (contrary to what the docs stated). They are depre-
cated; if you write a backend which needs to customize such events, please directly override
press_pan/press_zoom/release_pan/release_zoom instead.

FigureCanvasGTK3._renderer_init

Overriding this method to initialize renderers for GTK3 canvases is deprecated. Instead, the renderer should
be initialized in the __init__ method of the subclass (which should call the base-class' __init__
as appropriate). To keep back-compatibility with earlier versions of Matplotlib (which required _ren-
derer_init to be overridden), a fully empty implementation (def _renderer_init(self):
pass) may be kept and will not trigger the deprecation warning.

Path helpers in bezier

bezier.make_path_regular is deprecated. Use Path.cleaned() (or Path.
cleaned(curves=True), etc.) instead (but note that these methods add a STOP code at the end
of the path).

bezier.concatenate_paths is deprecated. Use Path.make_compound_path() instead.

16.1. Old API Changes 989

Matplotlib, Release 3.4.3

animation.html_args rcParam

The unused animation.html_args rcParam and animation.HTMLWriter.args_key attribute
are deprecated.

text.latex.preview rcParam

This rcParam, which controlled the use of the preview.sty LaTeX package to align TeX string baselines, is
deprecated, as Matplotlib's own dvi parser now computes baselines just as well as preview.sty.

SubplotSpec.get_rows_columns

This method is deprecated. Use the GridSpec.nrows, GridSpec.ncols, SubplotSpec.
rowspan, and SubplotSpec.colspan properties instead.

Qt4-based backends

The qt4agg and qt4cairo backends are deprecated. Qt4 has reached its end-of-life in 2015 and there are no
releases for recent versions of Python. Please consider switching to Qt5.

fontdict and minor parameters of Axes.set_xticklabels and Axes.set_yticklabels
will become keyword-only

All parameters of Figure.subplots except nrows and ncols will become keyword-only

This avoids typing e.g. subplots(1, 1, 1)when meaning subplot(1, 1, 1), but actually getting
subplots(1, 1, sharex=1).

RendererWx.get_gc

This method is deprecated. Access the gc attribute directly instead.

add_all parameter in axes_grid

The add_all parameter of axes_grid1.axes_grid.Grid, axes_grid1.axes_grid.
ImageGrid, axes_grid1.axes_rgb.make_rgb_axes and axes_grid1.axes_rgb.
RGBAxes is deprecated. Axes are now always added to the parent figure, though they can be later removed
with ax.remove().

990 Chapter 16. API Changes

Matplotlib, Release 3.4.3

BboxBase.inverse_transformed

.BboxBase.inverse_transformed is deprecated (call BboxBase.transformed on the in-
verted() transform instead).

orientation of eventplot() and EventCollection

Setting the orientation of an eventplot() or EventCollection to "none" or None is deprecated; set
it to "horizontal" instead. Moreover, the two orientations ("horizontal" and "vertical") will become case-
sensitive in the future.

minor kwarg to Axis.get_ticklocs will become keyword-only

Passing this argument positionally is deprecated.

Case-insensitive properties

Normalization of upper or mixed-case property names to lowercase in Artist.set and Artist.
update is deprecated. In the future, property names will be passed as is, allowing one to pass names
such as patchA or UVC.

ContourSet.ax, Quiver.ax

These attributes are deprecated in favor of ContourSet.axes and Quiver.axes, for consistency with
other artists.

Locator.refresh() and associated methods

Locator.refresh() is deprecated. This method was called at certain places to let locators update their
internal state, typically based on the axis limits. Locators should now always consult the axis limits when
called, if needed.

The associated helper methods NavigationToolbar2.draw() and ToolViewsPositions.
refresh_locators() are deprecated, and should be replaced by calls to draw_idle() on the corre-
sponding canvas.

16.1. Old API Changes 991

Matplotlib, Release 3.4.3

ScalarMappable checkers

The add_checker and check_updatemethods and update_dict attribute of ScalarMappable
are deprecated.

pyplot.tight_layout and ColorbarBase parameters will become keyword-only

All parameters of pyplot.tight_layout and all parameters of ColorbarBase except for the first
(ax) will become keyword-only, consistently with Figure.tight_layout and Colorbar, respec-
tively.

Axes.pie radius and startangle

Passing None as either the radius or startangle of an Axes.pie is deprecated; use the explicit
defaults of 1 and 0, respectively, instead.

AxisArtist.dpi_transform

... is deprecated. Scale Figure.dpi_scale_trans by 1/72 to achieve the same effect.

offset_position property of Collection

The offset_position property of Collection is deprecated. In the future, Collections will
always behave as if offset_position is set to "screen" (the default).

Support for passing offset_position="data" to the draw_path_collection of all renderer
classes is deprecated.

transforms.AffineDeltaTransform can be used as a replacement. This API is experimental and
may change in the future.

testing.compare.make_external_conversion_command

... is deprecated.

992 Chapter 16. API Changes

Matplotlib, Release 3.4.3

epoch2num and num2epoch are deprecated

These are unused and can be easily reproduced by other date tools. get_epoch will return Matplotlib's
epoch.

axes_grid1.CbarAxes attributes

The cbid and locator attribute are deprecated. Use mappable.colorbar_cid and colorbar.
locator, as for standard colorbars.

qt_compat.is_pyqt5

This function is deprecated in prevision of the future release of PyQt6. The Qt version can be checked using
QtCore.qVersion().

Reordering of parameters by Artist.set

In a future version, Artist.set will apply artist properties in the order in which they are given. This only
affects the interaction between the color, edgecolor, facecolor, and, for Collections, alpha properties:
the color property now needs to be passed first in order not to override the other properties. This is consistent
with e.g. Artist.update, which did not reorder the properties passed to it.

Passing multiple keys as a single comma-separated string or multiple arguments to
ToolManager.update_keymap

This is deprecated; pass keys as a list of strings instead.

Statusbar classes and attributes

The statusbar attribute of FigureManagerBase, StatusbarBase and all its subclasses, and
StatusBarWx, are deprecated, as messages are now displayed in the toolbar instead.

ismath parameter of draw_tex

The ismath parameter of the draw_tex method of all renderer classes is deprecated (as a call to
draw_tex -- not to be confused with draw_text! -- means that the entire string should be passed to
the usetex machinery anyways). Likewise, the text machinery will no longer pass the ismath parameter
when calling draw_tex (this should only matter for backend implementers).

Passing ismath="TeX!" to RendererAgg.get_text_width_height_descent is deprecated.
Pass ismath="TeX" instead, consistently with other low-level APIs which support the values True, False,
and "TeX" for ismath.

16.1. Old API Changes 993

Matplotlib, Release 3.4.3

matplotlib.ttconv

This module is deprecated.

Stricter PDF metadata keys in PGF

Saving metadata in PDF with the PGF backend currently normalizes all keys to lowercase, unlike the PDF
backend, which only accepts the canonical case. This is deprecated; in a future version, only the canonically
cased keys listed in the PDF specification (and the PdfPages documentation) will be accepted.

Qt modifier keys

The MODIFIER_KEYS, SUPER, ALT, CTRL, and SHIFT global variables of the matplotlib.
backends.backend_qt4agg, matplotlib.backends.backend_qt4cairo,
matplotlib.backends.backend_qt5agg and matplotlib.backends.
backend_qt5cairo modules are deprecated.

TexManager

The TexManager.serif, TexManager.sans_serif, TexManager.cursive and
TexManager.monospace attributes are deprecated.

Removals

The following deprecated APIs have been removed:

Modules

• backends.qt_editor.formlayout (use the formlayout module available on PyPI instead).

Classes, methods and attributes

• artist.Artist.aname property (no replacement)

• axis.Axis.iter_ticks (no replacement)

• Support for custom backends that do not provide a backend_bases.GraphicsContextBase.
set_hatch_color method

• backend_bases.RendererBase.strip_math() (use cbook.strip_math() instead)

• backend_wx.debug_on_error() (no replacement)

• backend_wx.raise_msg_to_str() (no replacement)

994 Chapter 16. API Changes

Matplotlib, Release 3.4.3

• backend_wx.fake_stderr (no replacement)

• backend_wx.MenuButtonWx (no replacement)

• backend_wx.PrintoutWx (no replacement)

• _backend_tk.NavigationToolbar2Tk.set_active() (no replacement)

• backend_ps.PsBackendHelper.gs_exe property (no replacement)

• backend_ps.PsBackendHelper.gs_version property (no replacement)

• backend_ps.PsBackendHelper.supports_ps2write property (no replacement)

• backend_ps.RendererPS.afmfontd property (no replacement)

• backend_ps.GraphicsContextPS.shouldstroke property (no replacement)

• backend_gtk3.FileChooserDialog (no replacement)

• backend_gtk3.SaveFigureGTK3.get_filechooser() (no replacement)

• backend_gtk3.NavigationToolbar2GTK3.get_filechooser() (no replacement)

• backend_gtk3cairo.FigureManagerGTK3Cairo (use backend_gtk3.
FigureManagerGTK3 instead)

• backend_pdf.RendererPdf.afm_font_cache property (no replacement)

• backend_pgf.LatexManagerFactory (no replacement)

• backend_qt5.NavigationToolbar2QT.buttons property (no replacement)

• backend_qt5.NavigationToolbar2QT.adj_window property (no replacement)

• bezier.find_r_to_boundary_of_closedpath() (no replacement)

• cbook.dedent() (use inspect.cleandoc instead)

• cbook.get_label() (no replacement)

• cbook.is_hashable() (use isinstance(..., collections.abc.Hashable) in-
stead)

• cbook.iterable() (use numpy.iterable() instead)

• cbook.safezip() (no replacement)

• colorbar.ColorbarBase.get_cmap (use ScalarMappable.get_cmap instead)

• colorbar.ColorbarBase.set_cmap (use ScalarMappable.set_cmap instead)

• colorbar.ColorbarBase.get_clim (use ScalarMappable.get_clim instead)

• colorbar.ColorbarBase.set_clim (use ScalarMappable.set_clim instead)

• colorbar.ColorbarBase.set_norm (use ScalarMappable.set_norm instead)

• dates.seconds() (no replacement)

• dates.minutes() (no replacement)

• dates.hours() (no replacement)

16.1. Old API Changes 995

https://docs.python.org/3/library/inspect.html#inspect.cleandoc

Matplotlib, Release 3.4.3

• dates.weeks() (no replacement)

• dates.strpdate2num and dates.bytespdate2num (use time.strptime or
dateutil.parser.parse or dates.datestr2num instead)

• docstring.Appender (no replacement)

• docstring.dedent() (use inspect.getdoc instead)

• docstring.copy_dedent() (use docstring.copy() and inspect.getdoc instead)

• font_manager.OSXInstalledFonts() (no replacement)

• image.BboxImage.interp_at_native property (no replacement)

• lines.Line2D.verticalOffset property (no replacement)

• matplotlib.checkdep_dvipng (no replacement)

• matplotlib.checkdep_ghostscript (no replacement)

• matplotlib.checkdep_pdftops (no replacement)

• matplotlib.checkdep_inkscape (no replacement)

• matplotlib.get_py2exe_datafiles (no replacement)

• matplotlib.tk_window_focus (use rcParams['tk.window_focus'] instead)

• mlab.demean() (use mlab.detrend_mean() instead)

• path.get_paths_extents() (use path.get_path_collection_extents() instead)

• path.Path.has_nonfinite() (use not np.isfinite(self.vertices).all() in-
stead)

• projections.process_projection_requirements() (no replacement)

• pyplot.plotfile() (Instead, load the data using pandas.read_csv or numpy.loadtxt
or similar and use regular pyplot functions to plot the loaded data.)

• quiver.Quiver.color() (use Quiver.get_facecolor() instead)

• quiver.Quiver.keyvec property (no replacement)

• quiver.Quiver.keytext property (no replacement)

• rcsetup.validate_qt4() (no replacement)

• rcsetup.validate_qt5() (no replacement)

• rcsetup.validate_verbose() (no replacement)

• rcsetup.ValidateInterval (no replacement)

• scale.LogTransformBase (use scale.LogTransform instead)

• scale.InvertedLogTransformBase (use scale.InvertedLogTransform instead)

• scale.Log10Transform (use scale.LogTransform instead)

• scale.InvertedLog10Transform (use scale.InvertedLogTransform instead)

996 Chapter 16. API Changes

https://docs.python.org/3/library/time.html#time.strptime
https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse
https://docs.python.org/3/library/inspect.html#inspect.getdoc
https://docs.python.org/3/library/inspect.html#inspect.getdoc
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt

Matplotlib, Release 3.4.3

• scale.Log2Transform (use scale.LogTransform instead)

• scale.InvertedLog2Transform (use scale.InvertedLogTransform instead)

• scale.NaturalLogTransform (use scale.LogTransform instead)

• scale.InvertedNaturalLogTransform (use scale.InvertedLogTransform in-
stead)

• scale.get_scale_docs() (no replacement)

• sphinxext.plot_directive.plot_directive() (use the class PlotDirective in-
stead)

• sphinxext.mathmpl.math_directive() (use the class MathDirective instead)

• spines.Spine.is_frame_like() (no replacement)

• testing.decorators.switch_backend() (use @pytest.mark.backend decorator in-
stead)

• text.Text.is_math_text() (use cbook.is_math_text() instead)

• text.TextWithDash() (use text.Annotation instead)

• textpath.TextPath.is_math_text() (use cbook.is_math_text() instead)

• textpath.TextPath.text_get_vertices_codes() (use textpath.
text_to_path.get_text_path() instead)

• textpath.TextToPath.glyph_to_path() (use font.get_path() and manual transla-
tion of the vertices instead)

• ticker.OldScalarFormatter.pprint_val() (no replacement)

• ticker.ScalarFormatter.pprint_val() (no replacement)

• ticker.LogFormatter.pprint_val() (no replacement)

• ticker.decade_down() (no replacement)

• ticker.decade_up() (no replacement)

• Tick properties gridOn, tick1On, tick2On, label1On, label2On (use set_visible()
/ get_visible() on Tick.gridline, Tick.tick1line, Tick.tick2line, Tick.
label1, Tick.label2 instead)

• widgets.SpanSelector.buttonDown property (no replacement)

• mplot3d.proj3d.line2d() (no replacement)

• mplot3d.proj3d.line2d_dist() (no replacement)

• mplot3d.proj3d.line2d_seg_dist() (no replacement)

• mplot3d.proj3d.mod() (use numpy.linalg.norm instead)

• mplot3d.proj3d.proj_transform_vec() (no replacement)

• mplot3d.proj3d.proj_transform_vec_clip() (no replacement)

16.1. Old API Changes 997

https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html#numpy.linalg.norm

Matplotlib, Release 3.4.3

• mplot3d.proj3d.vec_pad_ones() (no replacement)

• mplot3d.proj3d.proj_trans_clip_points() (no replacement)

• mplot3d.art3d.norm_angle() (no replacement)

• mplot3d.art3d.norm_text_angle() (no replacement)

• mplot3d.art3d.path_to_3d_segment() (no replacement)

• mplot3d.art3d.paths_to_3d_segments() (no replacement)

• mplot3d.art3d.path_to_3d_segment_with_codes() (no replacement)

• mplot3d.art3d.paths_to_3d_segments_with_codes() (no replacement)

• mplot3d.art3d.get_patch_verts() (no replacement)

• mplot3d.art3d.get_colors() (no replacement)

• mplot3d.art3d.zalpha() (no replacement)

• mplot3d.axis3d.get_flip_min_max() (no replacement)

• mplot3d.axis3d.Axis.get_tick_positions() (no replacement)

• axisartist.axis_artist.UnimplementedException (no replacement)

• axisartist.axislines.SimpleChainedObjects (use axis_grid1.mpl_axes.
SimpleChainedObjects instead)

• axisartist.axislines.Axes.AxisDict (use axis_grid1.mpl_axes.Axes.
AxisDict instead)

Arguments

• Axes.text() / pyplot.text() do not support the parameter withdash anymore. Use Axes.
annotate() and pyplot.annotate() instead.

• The first parameter of matplotlib.use has been renamed from arg to backend (only relevant
if you pass by keyword).

• The parameter warn of matplotlib.use has been removed. A failure to switch the backend will
now always raise an ImportError if force is set; catch that error if necessary.

• All parameters of matplotlib.use except the first one are now keyword-only.

• The unused parameters shape and imlim of imshow() are now removed. All parameters beyond
extent are now keyword-only.

• The unused parameter interp_at_native of BboxImage has been removed.

• The parameter usetex of TextToPath.get_text_path has been removed. Use is-
math='TeX' instead.

• The parameter block of show() is now keyword-only, and arbitrary arguments or keyword argu-
ments are no longer accepted.

998 Chapter 16. API Changes

Matplotlib, Release 3.4.3

• The parameter frameon of Figure.savefig has been removed. Use facecolor="none" to
get a transparent background.

• Passing a wx.EvtHandler as the first argument to backend_wx.TimerWx is not supported any-
more; the signature of TimerWx is now consistent with TimerBase.

• The manage_xticks parameter of boxplot and bxp has been renamed to manage_ticks.

• The normed parameter of hist2d has been renamed to density.

• The s parameter of Annotation has been renamed to text.

• For all functions in bezier that supported a tolerence parameter, this parameter has been re-
named to tolerance.

• axis("normal") is not supported anymore. Use the equivalent axis("auto") instead.

• axis() does not accept arbitrary keyword arguments anymore.

• Axis.set_ticklabels() does not accept arbitrary positional arguments other than tickla-
bels.

• mpl_toolkits.mplot3d.art3d.Poly3DCollection.set_zsort does not accept the
value True anymore. Pass the equivalent value 'average' instead.

• AnchoredText no longer accepts horizontalalignment or verticalalignment key-
word arguments.

• ConnectionPatch no longer accepts the arrow_transmuter and connector keyword ar-
guments, which did nothing since 3.0.

• FancyArrowPatch no longer accepts the arrow_transmuter and connector keyword ar-
guments, which did nothing since 3.0.

• TextPath no longer accepts arbitrary positional or keyword arguments.

• MaxNLocator.set_params() no longer accepts arbitrary keyword arguments.

• pie no longer accepts and squeezes non-1D inputs; pass 1D input to the x argument.

• Passing (n, 1)-shaped error arrays to Axes.errorbar() is no longer supported; pass a 1D array
instead.

rcParams

• The text.latex.unicode rcParam has been removed, with no replacement. Matplotlib now
always supports unicode in usetex.

• The savefig.frameon rcParam has been removed. Set rcParams["savefig.
facecolor"] (default: 'auto') to "none" to get a transparent background.

• The pgf.debug, verbose.fileo and verbose.verbose.level rcParams, which had no
effect, have been removed.

• Support for setting rcParams["mathtext.default"] (default: 'it') to "circled" has been
removed.

16.1. Old API Changes 999

../../tutorials/introductory/customizing.html?highlight=savefig.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=savefig.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=mathtext.default#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Environment variables

• MATPLOTLIBDATA (no replacement).

mathtext

• The \stackrel command (which behaved differently from its LaTeX version) has been removed.
Use \genfrac instead.

• The \mathcircled command has been removed. Directly use Unicode characters, such as '\
N{CIRCLED LATIN CAPITAL LETTER A}', instead.

Development changes

Matplotlib now requires numpy>=1.15

Matplotlib now uses Pillow to save and read pngs

The builtin png encoder and decoder has been removed, and Pillow is now a dependency. Note that when
reading 16-bit RGB(A) images, Pillow truncates them to 8-bit precision, whereas the old builtin decoder
kept the full precision.

The deprecated wx backend (not wxagg!) now always uses wx's builtin jpeg and tiff support rather than
relying on Pillow for writing these formats; this behavior is consistent with wx's png output.

16.1.5 API Changes for 3.2.0

• Behavior changes

• Deprecations

• Removals

• Development changes

Behavior changes

Reduced default value of rcParams["axes.formatter.limits"] (default: [-5, 6])

Changed the default value of rcParams["axes.formatter.limits"] (default: [-5, 6]) from
-7, 7 to -5, 6 for better readability.

1000 Chapter 16. API Changes

../../tutorials/introductory/customizing.html?highlight=axes.formatter.limits#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

0 2500005000007500001000000
0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

0.000007

0.000008

0.000009

0.000010
old values (-7, 7)

0.00 0.25 0.50 0.75 1.00
1e6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 1e 5new values (-5, 6)

matplotlib.colorbar.Colorbar uses un-normalized axes for all mappables

Before 3.0, matplotlib.colorbar.Colorbar (colorbar) normalized all axes limits between 0
and 1 and had custom tickers to handle the labelling of the colorbar ticks. After 3.0, colorbars constructed
from mappables that were not contours were constructed with axes that had limits between vmin and vmax
of the mappable's norm, and the tickers were made children of the normal axes tickers.

This version of Matplotlib extends that to mappables made by contours, and allows the axes to run between
the lowest boundary in the contour and the highest.

Code that worked around the normalization between 0 and 1 will need to be modified.

MovieWriterRegistry

MovieWriterRegistry now always checks the availability of the writer classes before returning them.
If one wishes, for example, to get the first available writer, without performing the availability check on
subsequent writers, it is now possible to iterate over the registry, which will yield the names of the available
classes.

16.1. Old API Changes 1001

Matplotlib, Release 3.4.3

Autoscaling

Matplotlib used to recompute autoscaled limits after every plotting (plot(), bar(), etc.) call. It now
only does so when actually rendering the canvas, or when the user queries the Axes limits. This is a major
performance improvement for plots with a large number of artists.

In particular, this means that artists added manually with Axes.add_line, Axes.add_patch, etc. will
be taken into account by the autoscale, even without an explicit call to Axes.autoscale_view.

In some cases, this can result in different limits being reported. If this is an issue, consider triggering a draw
with fig.canvas.draw().

Autoscaling has also changed for artists that are based on the Collection class. Previously, the method
that calculates the automatic limits Collection.get_datalim tried to take into account the size of
objects in the collection and make the limits large enough to not clip any of the object, i.e., for Axes.
scatter it would make the limits large enough to not clip any markers in the scatter. This is problematic
when the object size is specified in physical space, or figure-relative space, because the transform from
physical units to data limits requires knowing the data limits, and becomes invalid when the new limits are
applied. This is an inverse problem that is theoretically solvable (if the object is physically smaller than the
axes), but the extra complexity was not deemed worth it, particularly as the most common use case is for
markers in scatter that are usually small enough to be accommodated by the default data limit margins.

While the new behavior is algorithmically simpler, it is conditional on properties of theCollection object:

1. offsets = None, transform is a child of Axes.transData: use the paths for
the automatic limits (i.e. for LineCollection in Axes.streamplot).

2. offsets != None, and offset_transform is child of Axes.transData:

a) transform is child of Axes.transData: use the path + offset for
limits (i.e., for Axes.bar).

b) transform is not a child of Axes.transData: just use the offsets
for the limits (i.e. for scatter)

3. otherwise return a null Bbox.

While this seems complicated, the logic is simply to use the information from the object that are in data space
for the limits, but not information that is in physical units.

log-scale bar() / hist() autolimits

The autolimits computation in bar and hist when the axes already uses log-scale has changed to match
the computation when the axes is switched to log-scale after the call to bar and hist, and when calling
bar(..., log=True) / hist(..., log=True): if there are at least two different bar heights, add
the normal axes margins to them (in log-scale); if there is only a single bar height, expand the axes limits by
one order of magnitude around it and then apply axes margins.

1002 Chapter 16. API Changes

Matplotlib, Release 3.4.3

Axes labels spanning multiple rows/columns

Axes.label_outer now correctly keep the x labels and tick labels visible for Axes spanning multiple
rows, as long as they cover the last row of the Axes grid. (This is consistent with keeping the y labels and tick
labels visible for Axes spanning multiple columns as long as they cover the first column of the Axes grid.)

The Axes.is_last_row and Axes.is_last_colmethods now correctly return True for Axes span-
ning multiple rows, as long as they cover the last row or column respectively. Again this is consistent with
the behavior for axes covering the first row or column.

The Axes.rowNum and Axes.colNum attributes are deprecated, as they only refer to the first grid
cell covered by the Axes. Instead, use the new ax.get_subplotspec().rowspan and ax.
get_subplotspec().colspan properties, which arerange objects indicating thewhole span of rows
and columns covered by the subplot.

(Note that all methods and attributes mentioned here actually only exist on the Subplot subclass of Axes,
which is used for grid-positioned Axes but not for Axes positioned directly in absolute coordinates.)

TheGridSpec class gained thenrows andncols properties asmore explicit synonyms for the parameters
returned by GridSpec.get_geometry.

Locators

When more than Locator.MAXTICKS ticks are generated, the behavior of Locator.
raise_if_exceeds changed from raising a RuntimeError to emitting a log at WARNING level.

nonsingular Locators

Locator.nonsingular (introduced in mpl 3.1), DateLocator.nonsingular, and
AutoDateLocator.nonsingular now returns a range v0, v1 with v0 <= v1. This behavior
is consistent with the implementation of nonsingular by the LogLocator and LogitLocator
subclasses.

get_data_ratio

Axes.get_data_ratio now takes the axes scale into account (linear, log, logit, etc.) before computing
the y-to-x ratio. This change allows fixed aspects to be applied to any combination of x and y scales.

16.1. Old API Changes 1003

https://docs.python.org/3/library/stdtypes.html#range

Matplotlib, Release 3.4.3

Artist sticky edges

Previously, the sticky_edges attribute of artists was a list of values such that if an axis limit coincides
with a sticky edge, it would not be expanded by the axes margins (this is the mechanism that e.g. prevents
margins from being added around images).

sticky_edges now have an additional effect on margins application: even if an axis limit did not coincide
with a sticky edge, it cannot cross a sticky edge through margin application -- instead, the margins will only
expand the axis limit until it bumps against the sticky edge.

This change improves the margins of axes displaying a streamplot:

• if the streamplot goes all the way to the edges of the vector field, then the axis limits are set to match
exactly the vector field limits (whereas they would sometimes be off by a small floating point error
previously).

• if the streamplot does not reach the edges of the vector field (e.g., due to the use of start_points
and maxlength), then margins expansion will not cross the vector field limits anymore.

This change is also used internally to ensure that polar plots don't display negative r values unless the user
really passes in a negative value.

gid in svg output

Previously, if a figure, axis, legend or some other artists had a custom gid set (e.g. via .set_gid()), this
would not be reflected in the svg output. Instead a default gid, like figure_1would be shown. This is now
fixed, such that e.g. fig.set_gid("myfigure") correctly shows up as <g id="myfigure"> in
the svg file. If you relied on the gid having the default format, you now need to make sure not to set the gid
parameter of the artists.

Fonts

Font weight guessing now first checks for the presence of the FT_STYLE_BOLD_FLAG before trying to
match substrings in the font name. In particular, this means that Times New Roman Bold is now correctly
detected as bold, not normal weight.

Color-like checking

matplotlib.colors.is_color_like used to return True for all string representations of floats.
However, only those with values in 0-1 are valid colors (representing grayscale values). is_color_like
now returns False for string representations of floats outside 0-1.

1004 Chapter 16. API Changes

Matplotlib, Release 3.4.3

Default image interpolation

Images displayed in Matplotlib previously used nearest-neighbor interpolation, leading to aliasing effects for
downscaling and non-integer upscaling.

New default for rcParams["image.interpolation"] (default: 'antialiased') is the new op-
tion "antialiased". imshow(A, interpolation='antialiased')will apply a Hanning filter when
resampling the data in A for display (or saving to file) if the upsample rate is less than a factor of three, and
not an integer; downsampled data is always smoothed at resampling.

To get the old behavior, set rcParams["image.interpolation"] (default: 'antialiased') to
the old default "nearest" (or specify the interpolation kwarg of Axes.imshow)

To always get the anti-aliasing behavior, nomatter what the up/down sample rate, set rcParams["image.
interpolation"] (default: 'antialiased') to "hanning" (or one of the other filters available).

Note that the "hanning" filter was chosen because it has only a modest performance penalty. Anti-aliasing
can be improved with other filters.

rcParams

When using RendererSVG with rcParams["svg.image_inline"] == True, externally written
images now use a single counter even if the renderer.basename attribute is overwritten, rather than a
counter per basename.

This change will only affect you if you used rcParams["svg.image_inline"] = True (the default
is False) and manually modified renderer.basename.

Changed the default value of rcParams["axes.formatter.limits"] (default: [-5, 6]) from
-7, 7 to -5, 6 for better readability.

add_subplot()

Figure.add_subplot() and pyplot.subplot() do not accept a figure keyword argument any-
more. It only used to work anyway if the passed figure was self or the current figure, respectively.

indicate_inset()

In <= 3.1.0, indicate_inset and indicate_inset_zoom were documented as returning a 4-tuple
of ConnectionPatch, where in fact they returned a 4-length list.

They now correctly return a 4-tuple. indicate_inset would previously raise an error if the optional
inset_axwas not supplied; it now completes successfully, and returns None instead of the tuple of Connec-
tionPatch.

16.1. Old API Changes 1005

../../tutorials/introductory/customizing.html?highlight=image.interpolation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.interpolation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.interpolation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.interpolation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.limits#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

PGF backend

The pgf backend's get_canvas_width_height now returns the canvas size in display units rather than
in inches, which it previously did. The new behavior is the correct one given the uses of
get_canvas_width_height in the rest of the codebase.

The pgf backend now includes images using \includegraphics instead of \pgfimage if the version
of graphicx is recent enough to support the interpolate option (this is detected automatically).

cbook

The default value of the "obj_type" parameter to cbook.warn_deprecated has been changed from
"attribute" (a default that was never used internally) to the empty string.

Testing

The test suite no longer turns on the Python fault handler by default. Set the standard PYTHONFAULT-
HANDLER environment variable to do so.

Backend supports_blit

Backends do not need to explicitly define the flag supports_blit anymore. This is only relevant for
backend developers. Backends had to define the flag supports_blit. This is not needed anymore be-
cause the blitting capability is now automatically detected.

Exception changes

Various APIs that raised a ValueError for incorrectly typed inputs now raise TypeError in-
stead: backend_bases.GraphicsContextBase.set_clip_path, blocking_input.
BlockingInput.__call__, cm.register_cmap, dviread.DviFont, rcsetup.
validate_hatch, .rcsetup.validate_animation_writer_path, spines.Spine,
many classes in the matplotlib.transforms module and matplotlib.tri package, and Axes
methods that take a norm parameter.

If extra kwargs are passed to LogScale, TypeError will now be raised instead of ValueError.

1006 Chapter 16. API Changes

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

Matplotlib, Release 3.4.3

mplot3d auto-registration

mpl_toolkits.mplot3d is always registered by default now. It is no longer necessary to import
mplot3d to create 3d axes with

ax = fig.add_subplot(111, projection="3d")

SymLogNorm now has a base parameter

Previously, SymLogNorm had no base keyword argument and the base was hard-coded to base=np.e.
This was inconsistent with the default behavior ofSymmetricalLogScale (which defaults tobase=10)
and the use of the word "decade" in the documentation.

In preparation for changing the default base to 10, calling SymLogNorm without the new base keyword
argument emits a deprecation warning.

Deprecations

matplotlib.use

Thewarn parameter tomatplotlib.use() is deprecated (catch theImportError emitted on backend
switch failure and reemit a warning yourself if so desired).

plotfile

.pyplot.plotfile is deprecated in favor of separately loading and plotting the data. Use pandas or
NumPy to load data, and pandas or matplotlib to plot the resulting data.

axes and axis

Setting Axis.major.locator, Axis.minor.locator, Axis.major.formatter or Axis.
minor.formatter to an object that is not a subclass of Locator or Formatter (respectively) is
deprecated. Note that these attributes should usually be set using Axis.set_major_locator, Axis.
set_minor_locator, etc. which already raise an exception when an object of the wrong class is passed.

Passing more than one positional argument or unsupported keyword arguments to axis() is deprecated
(such arguments used to be silently ignored).

16.1. Old API Changes 1007

https://docs.python.org/3/library/exceptions.html#ImportError

Matplotlib, Release 3.4.3

minor argument will become keyword-only

Using the parameter minor to get_*ticks() / set_*ticks() as a positional parameter is deprecated.
It will become keyword-only in future versions.

axes_grid1

The mpl_toolkits.axes_grid1.colorbarmodule and its colorbar implementation are deprecated
in favor of matplotlib.colorbar, as the former is essentially abandoned and the latter is a more fea-
tureful replacement with a nearly compatible API (for example, the following additional keywords are sup-
ported: panchor, extendfrac, extendrect).

The main differences are:

• Setting the ticks on the colorbar is done by callingcolorbar.set_ticks rather thancolorbar.
cbar_axis.set_xticks or colorbar.cbar_axis.set_yticks; the locator parame-
ter to colorbar() is deprecated in favor of its synonym ticks (which already existed previously,
and is consistent with matplotlib.colorbar).

• The colorbar's long axis is accessed with colorbar.xaxis or colorbar.yaxis depending on
the orientation, rather than colorbar.cbar_axis.

• The default ticker is no longer MaxNLocator(5), but a _ColorbarAutoLocator.

• Overdrawing multiple colorbars on top of one another in a single Axes (e.g. when using the cax
attribute of ImageGrid elements) is not supported; if you previously relied on the second colorbar
being drawn over the first, you can call cax.cla() to clear the axes before drawing the second
colorbar.

During the deprecation period, the mpl_toolkits.legacy_colorbar rcParam can be set to True to
use mpl_toolkits.axes_grid1.colorbar in mpl_toolkits.axes_grid1 code with a dep-
recation warning (the default), or to False to use matplotlib.colorbar.

Passing a pad size of None (the default) as a synonym for zero to the append_axes, new_horizontal
and new_vertical methods of axes_grid1.axes_divider.AxesDivider is deprecated. In a
future release, the default value of None will mean "use rcParams["figure.subplot.wspace"]
(default: 0.2) or rcParams["figure.subplot.hspace"] (default: 0.2)" (depending on the ori-
entation). Explicitly pass pad=0 to keep the old behavior.

Axes3D

mplot3d.axis3d.get_flip_min_max is deprecated.

axes3d.unit_bbox is deprecated (use Bbox.unit instead).

axes3d.Axes3D.w_xaxis, .w_yaxis, and .w_zaxis are deprecated (use .xaxis, .yaxis, and
.zaxis instead).

1008 Chapter 16. API Changes

../../tutorials/introductory/customizing.html?highlight=figure.subplot.wspace#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=figure.subplot.hspace#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

matplotlib.cm

cm.revcmap is deprecated. Use Colormap.reversed to reverse a colormap.

cm.datad no longer contains entries for reversed colormaps in their "unconverted" form.

axisartist

mpl_toolkits.axisartist.grid_finder.GridFinderBase is deprecated (its only use is to
be inherited by the GridFinder class which just provides more defaults in the constructor and directly
sets the transforms, so GridFinderBase's methods were just moved to GridFinder).

axisartist.axis_artist.BezierPath is deprecated (use patches.PathPatch to draw arbi-
trary Paths).

AxisArtist.line is now a patches.PathPatch instance instead of a BezierPath instance.

Returning a factor equal to None from axisartist Locators (which are not the same as "standard" tick Loca-
tors), or passing a factor equal to None to axisartist Formatters (which are not the same as "standard" tick
Formatters) is deprecated. Pass a factor equal to 1 instead.

For the mpl_toolkits.axisartist.axis_artist.AttributeCopier class,
the constructor and the set_ref_artist method, and the default_value parameter of
get_attribute_from_ref_artist, are deprecated.

Deprecation of the constructor means that classes inheriting from AttributeCopier should no longer
call its constructor.

Locators

The unused Locator.autoscale method is deprecated (pass the axis limits to Locator.
view_limits instead).

Animation

The followingmethods and attributes of theMovieWriterRegistry class are deprecated: set_dirty,
ensure_not_dirty, reset_available_writers, avail.

smart_bounds()

The "smart_bounds" functionality is deprecated. This includes Axis.set_smart_bounds(), Axis.
get_smart_bounds(), Spine.set_smart_bounds(), and Spine.get_smart_bounds().

16.1. Old API Changes 1009

Matplotlib, Release 3.4.3

boxplot()

Setting the whis parameter of Axes.boxplot and cbook.boxplot_stats to "range" to mean "the
whole data range" is deprecated; set it to (0, 100) (which gets interpreted as percentiles) to achieve the same
effect.

fill_between()

Passing scalars to parameter where in fill_between() and fill_betweenx() is deprecated. While
the documentation already states that where must be of the same size as x (or y), scalars were accepted and
broadcasted to the size of x. Non-matching sizes will raise a ValueError in the future.

scatter()

Passing the verts parameter to axes.Axes.scatter is deprecated; use the marker parameter instead.

tight_layout()

The renderer parameter to Figure.tight_layout is deprecated; this method now always uses the
renderer instance cached on the Figure.

rcParams

The rcsetup.validate_animation_writer_path function is deprecated.

Setting rcParams["savefig.format"] (default: 'png') to "auto" is deprecated; use its synonym
"png" instead.

Setting rcParams["text.hinting"] (default: 'force_autohint') to True or False is depre-
cated; use their synonyms "auto" or "none" instead.

rcsetup.update_savefig_format is deprecated.

rcsetup.validate_path_exists is deprecated (use os.path.exists to check whether a path
exists).

rcsetup.ValidateInterval is deprecated.

1010 Chapter 16. API Changes

../../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=text.hinting#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Dates

dates.mx2num is deprecated.

TK

NavigationToolbar2Tk.set_active is deprecated, as it has no (observable) effect.

WX

FigureFrameWx.statusbar and NavigationToolbar2Wx.statbar are deprecated. The sta-
tus bar can be retrieved by calling standard wx methods (frame.GetStatusBar() and toolbar.
GetTopLevelParent().GetStatusBar()).

backend_wx.ConfigureSubplotsWx.configure_subplots and backend_wx.
ConfigureSubplotsWx.get_canvas are deprecated.

PGF

backend_pgf.repl_escapetext and backend_pgf.repl_mathdefault are deprecated.

RendererPgf.latexManager is deprecated.

FigureCanvas

FigureCanvasBase.draw_cursor (which has never done anything and has never been overridden in
any backend) is deprecated.

FigureCanvasMac.invalidate is deprecated in favor of its synonym, FigureCanvasMac.
draw_idle.

The dryrun parameter to the various FigureCanvasFoo.print_foo methods is deprecated.

QuiverKey doc

quiver.QuiverKey.quiverkey_doc is deprecated; use quiver.QuiverKey.__init__.
__doc__ instead.

16.1. Old API Changes 1011

Matplotlib, Release 3.4.3

matplotlib.mlab

mlab.apply_window and mlab.stride_repeat are deprecated.

Fonts

font_manager.JSONEncoder is deprecated. Use font_manager.json_dump to dump a Font-
Manager instance.

font_manager.createFontList is deprecated. font_manager.FontManager.addfont is
now available to register a font at a given path.

The as_str, as_rgba_str, as_array, get_width and get_heightmethods of matplotlib.
ft2font.FT2Image are deprecated. Convert the FT2Image to a NumPy array with np.asarray
before processing it.

Colors

The function matplotlib.colors.makeMappingArray is not considered part of the public API any
longer. Thus, it's deprecated.

Using a string of single-character colors as a color sequence (e.g. "rgb") is deprecated. Use an explicit list
instead.

Scales

Passing unsupported keyword arguments to ScaleBase, and its subclasses LinearScale and Symmet-
ricalLogScale, is deprecated and will raise a TypeError in 3.3.

If extra keyword arguments are passed to LogScale, TypeError will now be raised instead of Val-
ueError.

Testing

The matplotlib.testing.disable_internet module is deprecated. Use (for example) pytest-
remotedata instead.

Support in matplotlib.testing for nose-based tests is deprecated (a deprecation is emitted if using
e.g. the decorators from that module while both 1) matplotlib's conftests have not been called and 2) nose is
in sys.modules).

testing.is_called_from_pytest is deprecated.

During the deprecation period, to force the generation of nose base tests, import nose first.

The switch_backend_warn parameter to matplotlib.test has no effect and is deprecated.

testing.jpl_units.UnitDbl.UnitDbl.checkUnits is deprecated.

1012 Chapter 16. API Changes

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://pypi.org/project/pytest-remotedata/
https://pypi.org/project/pytest-remotedata/

Matplotlib, Release 3.4.3

DivergingNorm renamed to TwoSlopeNorm

DivergingNorm was a misleading name; although the norm was developed with the idea that it would
likely be used with diverging colormaps, the word 'diverging' does not describe or evoke the norm's mapping
function. Since that function is monotonic, continuous, and piece-wise linear with two segments, the norm
has been renamed to TwoSlopeNorm

Misc

matplotlib.get_home is deprecated (use e.g. os.path.expanduser("~")) instead.

matplotlib.compare_versions is deprecated (use comparison of distutils.version.
LooseVersions instead).

matplotlib.checkdep_ps_distiller is deprecated.

matplotlib.figure.AxesStack is considered private API and will be removed from the public API
in future versions.

BboxBase.is_unit is deprecated (check the Bbox extents if needed).

Affine2DBase.matrix_from_values(...) is deprecated. Use (for example) Affine2D.
from_values(...).get_matrix() instead.

style.core.is_style_file and style.core.iter_style_files are deprecated.

The datapath rcParam

Use get_data_path instead. (The rcParam is deprecated because it cannot be meaningfully set by an end
user.) The rcParam had no effect from 3.2.0, but was deprecated only in 3.2.1. In 3.2.1+ if 'datapath'
is set in a matplotlibrc file it will be respected, but this behavior will be removed in 3.3.

Removals

The matplotlib.testing.determinism module, which exposes no public API, has been deleted.

The following API elements have been removed:

• backend_gtk3.PIXELS_PER_INCH

• backend_pgf.re_escapetext, backend_pgf.re_mathdefault.

• the matplotlib.backends.tkagg, matplotlib.backends.windowing,
matplotlib.backends.wx_compat, and matplotlib.compat.subprocess modules

• RcParams.msg_depr, RcParams.msg_depr_ignore, RcParams.msg_depr_set,
RcParams.msg_obsolete, RcParams.msg_backend_obsolete

• afm.parse_afm (use afm.AFM instead)

• axes.Axes.mouseover_set

16.1. Old API Changes 1013

Matplotlib, Release 3.4.3

• backend_cairo.ArrayWrapper, backend_cairo.RendererCairo.convert_path

• backend_gtk3.FileChooserDialog.sorted_filetypes (use sorted(self.
filetypes.items()) instead)

• backend_pgf.get_texcommand

• backend_pdf.PdfFile.texFontMap

• backend_ps.get_bbox

• backend_qt.FigureCanvasQt.keyAutoRepeat (use event.guiEvent.
isAutoRepeat instead), backend_qt.error_msg_qt, backend_qt.
exception_handler

• backend_wx.FigureCanvasWx.macros

• backends.pylab_setup

• cbook.Bunch (use types.SimpleNamespace instead), cbook.Locked, cbook.
unicode_safe, cbook.is_numlike (use isinstance(..., numbers.Number)
instead), cbook.mkdirs (use os.makedirs(..., exist_ok=True) instead), cbook.
GetRealpathAndStat (use cbook.get_realpath_and_stat instead), cbook.
listFiles

• container.Container.set_remove_method

• contour.ContourLabeler.cl, contour.ContourLabeler.cl_xy, contour.
ContourLabeler.cl_cvalues (use labelTexts, labelXYs, labelCValues instead)

• dates.DateFormatter.strftime, dates.DateFormatter.strftime_pre_1900

• font_manager.TempCache, font_manager.FontManager.ttffiles,
font_manager.FontManager.afmfiles

• mathtext.unichr_safe (use chr instead)

• patches.YAArrow (use patches.FancyArrowPatch instead)

• sphinxext.plot_directive.remove_coding

• table.Table.get_child_artists

• testing.compare.compare_float, testing.decorators.CleanupTest,
testing.decorators.ImageComparisonTest, testing.decorators.
skip_if_command_unavailable, support for nose-based tests

• text.Annotation.arrow (use text.Annotation.arrow_patch instead)

• textpath.TextToPath.tex_font_map

• ticker.Base, ticker.closeto, ticker.nearest_long

• axes_grid1.axes_divider.LocatableAxesBase, axes_grid1.axes_divider.
locatable_axes_factory, axes_grid1.axes_divider.Axes (use axes_grid1.
mpl_axes.Axes instead), axes_grid1.axes_divider.LocatableAxes (use
axes_grid1.mpl_axes.Axes instead)

1014 Chapter 16. API Changes

Matplotlib, Release 3.4.3

• axisartist.axes_divider.Axes, axisartist.axes_divider.LocatableAxes
(use axisartist.axislines.Axes instead)

• the normed keyword argument to hist (use density instead)

• passing (verts, 0) or (..., 3) when specifying a marker to specify a path or a circle, respec-
tively (instead, use verts or "o", respectively)

• rcParams["examples.directory"]

The following members of matplotlib.backends.backend_pdf.PdfFile were removed:

• nextObject

• nextFont

• nextAlphaState

• nextHatch

• nextImage

• alphaStateObject

The required_interactive_framework attribute of backend modules introduced in Matplotlib 3.0
has been moved to the FigureCanvas class, in order to let it be inherited by third-party canvas subclasses
and to make it easier to know what interactive framework is required by a canvas class.

backend_qt4.FigureCanvasQT5, which is an alias for backend_qt5.FigureCanvasQT (but
only exists under that name in backend_qt4), has been removed.

Development changes

Windows build

Previously, when building the matplotlib._png extension, the build script would add "png" and "z" to
the extensions .libraries attribute (if pkg-config information is not available, which is in particular the
case on Windows).

In particular, this implies that the Windows build would look up files named png.lib and z.lib; but
neither libpng upstream nor zlib upstream provides these files by default. (On Linux, this would look up
libpng.so and libz.so, which are indeed standard names.)

Instead, on Windows, we now look up libpng16.lib and zlib.lib, which are the upstream names
for the shared libraries (as of libpng 1.6.x).

For a statically-linked build, the upstream names are libpng16_static.lib and zlibstatic.lib;
one still needs to manually rename them if such a build is desired.

16.1. Old API Changes 1015

../../tutorials/introductory/customizing.html?highlight=examples.directory#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Packaging DLLs

Previously, it was possible to package Windows DLLs into the Maptlotlib wheel (or sdist) by copying them
into the source tree and setting the package_data.dlls entry in setup.cfg.

DLLs copied in the source tree are now always packaged; the package_data.dlls entry has no effect
anymore. If you do not want to include the DLLs, don't copy them into the source tree.

16.1.6 API Changes for 3.1.1

• Behavior changes

Behavior changes

Locator.nonsingular return order

Locator.nonsingular (introduced in mpl 3.1) now returns a range v0, v1 with v0 <= v1. This
behavior is consistent with the implementation of nonsingular by the LogLocator and LogitLo-
cator subclasses.

16.1.7 API Changes for 3.1.0

• Behavior changes

• pgi support dropped

• rcParam changes

• Exception changes

• Removals

• matplotlib.mlab removals

• pylab removals

• mplot3d changes

• Testing

• Dependency changes

• Mathtext changes

• Signature deprecations

• Changes in parameter names

1016 Chapter 16. API Changes

Matplotlib, Release 3.4.3

• Class/method/attribute deprecations

• Undeprecations

• New features

• Invalid inputs

Behavior changes

Matplotlib.use

Switching backends via matplotlib.use is now allowed by default, regardless of whether
matplotlib.pyplot has been imported. If the user tries to switch from an already-started interactive
backend to a different interactive backend, an ImportError will be raised.

Invalid points in PathCollections

PathCollections created with scatter now keep track of invalid points. Previously, points with nonfi-
nite (infinite or nan) coordinates would not be included in the offsets (as returned by PathCollection.
get_offsets) of a PathCollection created by scatter, and points with nonfinite values (as spec-
ified by the c kwarg) would not be included in the array (as returned by PathCollection.get_array)

Such points are now included, but masked out by returning a masked array.

If the plotnonfinite kwarg to scatter is set, then points with nonfinite values are plotted using the bad color
of the collections.PathCollection's colormap (as set by colors.Colormap.set_bad()).

Alpha blending in imshow of RBGA input

The alpha-channel of RBGA images is now re-sampled independently of RGB channels. While this is a bug
fix, it does change the output and may result in some down-stream image comparison tests to fail.

Autoscaling

On log-axes where a single value is plotted at a "full" decade (1, 10, 100, etc.), the autoscaling now expands
the axis symmetrically around that point, instead of adding a decade only to the right.

16.1. Old API Changes 1017

https://docs.python.org/3/library/exceptions.html#ImportError

Matplotlib, Release 3.4.3

Log-scaled axes

When the default LogLocator would generate no ticks for an axis (e.g., an axis with limits from 0.31 to
0.39) or only a single tick, it now instead falls back on the linear AutoLocator to pick reasonable tick
positions.

Figure.add_subplot with no arguments

Calling Figure.add_subplot() with no positional arguments used to do nothing; this now is equiva-
lent to calling add_subplot(111) instead.

bxp and rcparams

bxp now respects rcParams["boxplot.boxprops.linewidth"] (default: 1.0) even when
patch_artist is set. Previously, when the patch_artist parameter was set, bxp would ignore
rcParams["boxplot.boxprops.linewidth"] (default: 1.0). This was an oversight -- in par-
ticular, boxplot did not ignore it.

Major/minor tick collisions

Minor ticks that collide with major ticks are now hidden by default. Previously, certain locator classes
(LogLocator, AutoMinorLocator) contained custom logic to avoid emitting tick locations that
collided with major ticks when they were used as minor locators. This logic has now moved to the
Axis class, and is used regardless of the locator class. You can control this behavior via the re-
move_overlapping_locs attribute on Axis.

If you were relying on both the major and minor tick labels to appear on the same tick, you may need to
update your code. For example, the following snippet

import numpy as np
import matplotlib.dates as mdates
import matplotlib.pyplot as plt

t = np.arange("2018-11-03", "2018-11-06", dtype="datetime64")
x = np.random.rand(len(t))

fig, ax = plt.subplots()
ax.plot(t, x)
ax.xaxis.set(

major_locator=mdates.DayLocator(),
major_formatter=mdates.DateFormatter("\n%a"),
minor_locator=mdates.HourLocator((0, 6, 12, 18)),
minor_formatter=mdates.DateFormatter("%H:%M"),

)
disable removing overlapping locations
ax.xaxis.remove_overlapping_locs = False
plt.show()

1018 Chapter 16. API Changes

../../tutorials/introductory/customizing.html?highlight=boxplot.boxprops.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=boxplot.boxprops.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

labeled days usingmajor ticks, and hours andminutes usingminor ticks and added a newline to themajor ticks
labels to avoid them crashing into the minor tick labels. Setting the remove_overlapping_locs prop-
erty (also accessible via set_remove_overlapping_locs / get_remove_overlapping_locs
and setp) disables removing overlapping tick locations.

The major tick labels could also be adjusted include hours and minutes, as the minor ticks are gone, so the
major_formatter would be:

mdates.DateFormatter("%H:%M\n%a")

usetex support

Previously, if rcParams["text.usetex"] (default: False) was True, then constructing a
TextPath on a non-mathtext string with usetex=False would rely on the mathtext parser (but not
on usetex support!) to parse the string. The mathtext parser is not invoked anymore, which may cause slight
changes in glyph positioning.

get_window_extents

matplotlib.axes.Axes.get_window_extent used to return a bounding box that was slightly
larger than the axes, presumably to take into account the ticks that may be on a spine. However, it was
not scaling the tick sizes according to the dpi of the canvas, and it did not check if the ticks were visible, or
on the spine.

Now matplotlib.axes.Axes.get_window_extent just returns the axes extent with no padding
for ticks.

This affects matplotlib.axes.Axes.get_tightbbox in cases where there are outward ticks with
no tick labels, and it also removes the (small) pad around axes in that case.

spines.Spine.get_window_extent now takes into account ticks that are on the spine.

Sankey

Previously, Sankey.add would only accept a single string as the labels argument if its length is equal to
the number of flows, in which case it would use one character of the string for each flow.

The behavior has been changed to match the documented one: when a single string is passed, it is used to
label all the flows.

16.1. Old API Changes 1019

../../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

FontManager scores

font_manager.FontManager.score_weight is now more strict with its inputs. Previously, when
a weight string was passed to font_manager.FontManager.score_weight,

• if the weight was the string representation of an integer, it would be converted to that integer,

• otherwise, if the weight was not a standard weight name, it would be silently replaced by a value of
500 ("normal" weight).

font_manager.FontManager.score_weight now raises an exception on such inputs.

Text alignment

Text alignment was previously incorrect, in particular for multiline text objects with large descenders (i.e.
subscripts) and rotated text. These have been fixed and made more consistent, but could make old code that
has compensated for this no longer have the correct alignment.

Upper case color strings

Support for passing single-letter colors (one of "rgbcmykw") as UPPERCASE characters is deprecated; these
colors will become case-sensitive (lowercase) after the deprecation period has passed.

The goal is to decrease the number of ambiguous cases when using the data keyword to plotting methods;
e.g. plot("X", "Y", data={"X": ..., "Y": ...}) will not warn about "Y" possibly being
a color anymore after the deprecation period has passed.

Degenerate limits

When bounds passed to set_xlim are degenerate (i.e. the lower and upper value are equal), the method
used to "expand" the bounds now matches the expansion behavior of autoscaling when the plot contains a
single x-value, and should in particular produce nicer limits for non-linear scales.

plot format string parsing

In certain cases, plot would previously accept format strings specifying more than one linestyle (e.g. "-
--." which specifies both "--" and "-."); only use one of them would be used. This now raises a
ValueError instead.

1020 Chapter 16. API Changes

https://docs.python.org/3/library/exceptions.html#ValueError

Matplotlib, Release 3.4.3

HTMLWriter

The HTMLWriter constructor is more strict: it no longer normalizes unknown values of default_mode to
'loop', but errors out instead.

AFM parsing

In accordance with the AFM spec, the AFM parser no longer truncates the UnderlinePosition and
UnderlineThickness fields to integers.

The Notice field (which can only be publicly accessed by the deprecated afm.parse_afm API) is no
longer decoded to a str, but instead kept as bytes, to support non-conformant AFM files that use non-
ASCII characters in that field.

Artist.set keyword normalisation

Artist.set now normalizes keywords before sorting them. Previously it sorted its keyword arguments
in reverse alphabetical order (with a special-case to put color at the end) before applying them.

It now normalizes aliases (and, as above, emits a warning on duplicate properties) before doing the sorting
(so c goes to the end too).

Axes.tick_params argument checking

Previously Axes.tick_params silently did nothing when an invalid axis parameter was supplied. This
behavior has been changed to raise a ValueError instead.

Axes.hist output

Input that consists of multiple empty lists will now return a list of histogram values for each one of the lists.
For example, an input of [[],[]] will return 2 lists of histogram values. Previously, a single list was
returned.

backend_bases.TimerBase.remove_callback future signature change

Currently, backend_bases.TimerBase.remove_callback(func, *args, **kwargs)
removes a callback previously added by backend_bases.Timer.add_callback(func,
*args, **kwargs), but if *args, **kwargs is not passed in (i.e., TimerBase.
remove_callback(func)), then the first callback with a matching func is removed, regardless
of whether it was added with or without *args, **kwargs.

In a future version, TimerBase.remove_callback will always use the latter behavior (not consider
*args, **kwargs); to specifically consider them, add the callback as a functools.partial object

16.1. Old API Changes 1021

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functools.html#functools.partial

Matplotlib, Release 3.4.3

cb = timer.add_callback(functools.partial(func, *args, **kwargs))
...
later
timer.remove_callback(cb)

TimerBase.add_callback was modified to return func to simplify the above usage (previously it re-
turned None); this also allows using it as a decorator.

The new API is modelled after atexit.register / atexit.unregister.

StemContainer performance increase

StemContainer objects can now store a LineCollection object instead of a list of Line2D objects
for stem lines plotted using stem. This gives a very large performance boost to displaying andmoving stem
plots.

This will become the default behaviour in Matplotlib 3.3. To use it now, the use_line_collection keyword
argument to stem can be set to True

ax.stem(..., use_line_collection=True)

Individual line segments can be extracted from the LineCollection using get_segments(). See the
LineCollection documentation for other methods to retrieve the collection properties.

ColorbarBase inheritance

matplotlib.colorbar.ColorbarBase is no longer a subclass of cm.ScalarMappable. This
inheritance lead to a confusing situation where the cm.ScalarMappable passed to matplotlib.
colorbar.Colorbar (colorbar) had a set_normmethod, as did the colorbar. The colorbar is now
purely a follower to the ScalarMappable norm and colormap, and the old inherited methods set_norm,
set_cmap, set_clim are deprecated, as are the getter versions of those calls. To set the norm associated
with a colorbar do colorbar.mappable.set_norm() etc.

FreeType and libpng search paths

The MPLBASEDIRLIST environment variables and basedirlist entry in setup.cfg have no effect
anymore. Instead, if building in situations where FreeType or libpng are not in the compiler or linker's
default path, set the standard environment variables CFLAGS/LDFLAGS on Linux or OSX, or CL/LINK on
Windows, to indicate the relevant paths.

See details in Installation.

1022 Chapter 16. API Changes

https://docs.python.org/3/library/atexit.html#atexit.register
https://docs.python.org/3/library/atexit.html#atexit.unregister
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

Setting artist properties twice or more in the same call

Setting the same artist property multiple time via aliases is deprecated. Previously, code such as

plt.plot([0, 1], c="red", color="blue")

would emit a warning indicating that c and color are aliases of one another, and only keep the color
kwarg. This behavior has been deprecated; in a future version, this will raise a TypeError, similar to Python's
behavior when a keyword argument is passed twice

plt.plot([0, 1], c="red", c="blue")

This warning is raised by normalize_kwargs.

Path code types

Path code types like Path.MOVETO are now np.uint8 instead of int Path.STOP, Path.MOVETO,
Path.LINETO, Path.CURVE3, Path.CURVE4 and Path.CLOSEPOLY are now of the type Path.
code_type (np.uint8 by default) instead of plain int. This makes their type match the array value
type of the Path.codes array.

LaTeX code in matplotlibrc file

Previously, the rc file keys pgf.preamble and text.latex.preamble were parsed using commmas
as separators. This would break valid LaTeX code, such as:

\usepackage[protrusion=true, expansion=false]{microtype}

The parsing has been modified to pass the complete line to the LaTeX system, keeping all commas. Passing
a list of strings from within a Python script still works as it used to. Passing a list containing non-strings now
fails, instead of coercing the results to strings.

Axes.spy

The method Axes.spy now raises a TypeError for the keyword arguments interpolation and linestyle
instead of silently ignoring them.

Furthermore, Axes.spy spy does now allow for an extent argument (was silently ignored so far).

A bug with Axes.spy(..., origin='lower') is fixed. Previously this flipped the data but not the
y-axis resulting in a mismatch between axes labels and actual data indices. Now, origin='lower' flips both
the data and the y-axis labels.

16.1. Old API Changes 1023

https://docs.python.org/3/library/exceptions.html#TypeError

Matplotlib, Release 3.4.3

Boxplot tick methods

The manage_xticks parameter of boxplot and bxp has been renamed (with a deprecation period) to man-
age_ticks, to take into account the fact that it manages either x or y ticks depending on the vert parameter.

When manage_ticks=True (the default), these methods now attempt to take previously drawn boxplots
into account when setting the axis limits, ticks, and tick labels.

MouseEvents

MouseEvents now include the event name in their str(). Previously they contained the prefix "MPL
MouseEvent".

RGBA buffer return type

FigureCanvasAgg.buffer_rgba and RendererAgg.buffer_rgba now return a memoryview
The buffer_rgbamethod now allows direct access to the renderer's underlying buffer (as a (m, n, 4)-
shape memoryview) rather than copying the data to a new bytestring. This is consistent with the behavior
on Py2, where a buffer object was returned.

matplotlib.font_manager.win32InstalledFonts return type

matplotlib.font_manager.win32InstalledFonts returns an empty list instead of None if no
fonts are found.

Axes.fmt_xdata and Axes.fmt_ydata error handling

Previously, if the user provided a Axes.fmt_xdata or Axes.fmt_ydata function that raised a Type-
Error (or set them to a non-callable), the exception would be silently ignored and the default formatter be
used instead. This is no longer the case; the exception is now propagated out.

Deprecation of redundant Tick attributes

The gridOn, tick1On, tick2On, label1On, and label2On Tick attributes have been deprecated.
Directly get and set the visibility on the underlying artists, available as the gridline, tick1line,
tick2line, label1, and label2 attributes.

The label attribute, which was an alias for label1, has been deprecated.

Subclasses that relied on setting the above visibility attributes needs to be updated; see e.g. examples/
api/skewt.py.

1024 Chapter 16. API Changes

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError

Matplotlib, Release 3.4.3

Passing a Line2D's drawstyle together with the linestyle is deprecated

Instead of plt.plot(..., linestyle="steps--"), use plt.plot(..., linestyle="--
", drawstyle="steps"). ds is now an alias for drawstyle.

pgi support dropped

Support for pgi in the GTK3 backends has been dropped. pgi is an alternative implementation to PyGOb-
ject. PyGObject should be used instead.

rcParam changes

Removed

The following deprecated rcParams have been removed:

• text.dvipnghack

• nbagg.transparent (use rcParams["figure.facecolor"] (default: 'white') in-
stead)

• plugins.directory

• axes.hold

• backend.qt4 and backend.qt5 (set the QT_API environment variable instead)

Deprecated

The associated validator functions rcsetup.validate_qt4 and validate_qt5 are deprecated.

The verbose.fileo and verbose.level rcParams have been deprecated. These have had no effect
since the switch from Matplotlib's old custom Verbose logging to the stdlib's loggingmodule. In addition
the rcsetup.validate_verbose function is deprecated.

The text.latex.unicode rcParam now defaults to True and is deprecated (i.e., in future
versions of Matplotlib, unicode input will always be supported). Moreover, the underlying im-
plementation now uses \usepackage[utf8]{inputenc} instead of \usepackage{ucs}\
usepackage[utf8x]{inputenc}.

16.1. Old API Changes 1025

../../tutorials/introductory/customizing.html?highlight=figure.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/logging.html#module-logging

Matplotlib, Release 3.4.3

Exception changes

• mpl_toolkits.axes_grid1.axes_size.GetExtentHelper now raises ValueError
for invalid directions instead of KeyError.

• Previously, subprocess failures in the animation framework would raise either in a RuntimeEr-
ror or a ValueError depending on when the error occurred. They now raise a subprocess.
CalledProcessError with attributes set as documented by the exception class.

• In certain cases, Axes methods (and pyplot functions) used to raise a RuntimeError if they were
called with a data kwarg and otherwise mismatched arguments. They now raise a TypeError
instead.

• Axes.streamplot does not support irregularly gridded x and y values. So far, it used to silently
plot an incorrect result. This has been changed to raise a ValueError instead.

• The streamplot.Grid class, which is internally used by streamplot code, also throws a Val-
ueError when irregularly gridded values are passed in.

Removals

The following deprecated APIs have been removed:

Classes and methods

• Verbose (replaced by python logging library)

• artist.Artist.hitlist (no replacement)

• artist.Artist.is_figure_set (use artist.figure is not None instead)

• axis.Axis.unit_data (use axis.Axis.units instead)

• backend_bases.FigureCanvasBase.onRemove (no replacement) backend_bases.
FigureManagerBase.show_popup (this never did anything)

• backend_wx.SubplotToolWx (no replacement)

• backend_wx.Toolbar (use backend_wx.NavigationToolbar2Wx instead)

• cbook.align_iterators (no replacement)

• contour.ContourLabeler.get_real_label_width (no replacement)

• legend.Legend.draggable (use legend.Legend.set_draggable() instead)

• texmanager.TexManager.postscriptd, texmanager.TexManager.pscnt,
texmanager.TexManager.make_ps, texmanager.TexManager.get_ps_bbox
(no replacements)

1026 Chapter 16. API Changes

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError
https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Matplotlib, Release 3.4.3

Arguments

• The fig kwarg to GridSpec.get_subplot_params and GridSpecFromSubplotSpec.
get_subplot_params (use the argument figure instead)

• Passing 'box-forced' to Axes.set_adjustable (use 'box' instead)

• Support for the strings 'on'/'true'/'off'/'false' to mean True / False (directly use True / False in-
stead). The following functions are affected:

– axes.Axes.grid

– Axes3D.grid

– Axis.set_tick_params

– pyplot.box

• Using pyplot.axes with an axes.Axes type argument (use pyplot.sca instead)

Other

The following miscellaneous API elements have been removed

• svgfont support (in rcParams["svg.fonttype"] (default: 'path'))

• Logging is now done with the standard python logging library. matplotlib.verbose and the
command line switches --verbose-LEVEL have been removed.

To control the logging output use:

import logging
logger = logging.getLogger('matplotlib')
logger.setLevel(logging.INFO)
configure log handling: Either include it into your ``logging``␣

↪hierarchy,
e.g. by configuring a root looger using ``logging.basicConfig()``,
or add a standalone handler to the matplotlib logger:
logger.addHandler(logging.StreamHandler())

• __version__numpy__

• collections.CIRCLE_AREA_FACTOR

• font_manager.USE_FONTCONFIG

• font_manager.cachedir

16.1. Old API Changes 1027

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
../../tutorials/introductory/customizing.html?highlight=svg.fonttype#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

matplotlib.mlab removals

Lots of code inside the matplotlib.mlab module which was deprecated in Matplotlib 2.2 has been
removed. See below for a list:

• mlab.exp_safe (use numpy.exp instead)

• mlab.amap

• mlab.logspace (use numpy.logspace instead)

• mlab.rms_flat

• mlab.l1norm (use numpy.linalg.norm(a, ord=1) instead)

• mlab.l2norm (use numpy.linalg.norm(a, ord=2) instead)

• mlab.norm_flat (use numpy.linalg.norm(a.flat, ord=2) instead)

• mlab.frange (use numpy.arange instead)

• mlab.identity (use numpy.identity instead)

• mlab.base_repr

• mlab.binary_repr

• mlab.ispower2

• mlab.log2 (use numpy.log2 instead)

• mlab.isvector

• mlab.movavg

• mlab.safe_isinf (use numpy.isinf instead)

• mlab.safe_isnan (use numpy.isnan instead)

• mlab.cohere_pairs (use scipy.signal.coherence instead)

• mlab.entropy (use scipy.stats.entropy instead)

• mlab.normpdf (use scipy.stats.norm.pdf instead)

• mlab.find (use np.nonzero(np.ravel(condition)) instead)

• mlab.longest_contiguous_ones

• mlab.longest_ones

• mlab.PCA

• mlab.prctile (use numpy.percentile instead)

• mlab.prctile_rank

• mlab.center_matrix

• mlab.rk4 (use scipy.integrate.ode instead)

• mlab.bivariate_normal

1028 Chapter 16. API Changes

https://numpy.org/doc/stable/reference/generated/numpy.exp.html#numpy.exp
https://numpy.org/doc/stable/reference/generated/numpy.logspace.html#numpy.logspace
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
https://numpy.org/doc/stable/reference/generated/numpy.identity.html#numpy.identity
https://numpy.org/doc/stable/reference/generated/numpy.log2.html#numpy.log2
https://numpy.org/doc/stable/reference/generated/numpy.isinf.html#numpy.isinf
https://numpy.org/doc/stable/reference/generated/numpy.isnan.html#numpy.isnan
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.coherence.html#scipy.signal.coherence
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.stats.entropy.html#scipy.stats.entropy
https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy.percentile
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode

Matplotlib, Release 3.4.3

• mlab.get_xyz_where

• mlab.get_sparse_matrix

• mlab.dist (use numpy.hypot instead)

• mlab.dist_point_to_segment

• mlab.griddata (use scipy.interpolate.griddata)

• mlab.less_simple_linear_interpolation (use numpy.interp)

• mlab.slopes

• mlab.stineman_interp

• mlab.segments_intersect

• mlab.fftsurr

• mlab.offset_line

• mlab.quad2cubic

• mlab.vector_lengths

• mlab.distances_along_curve

• mlab.path_length

• mlab.cross_from_above

• mlab.cross_from_below

• mlab.contiguous_regions (use cbook.contiguous_regions instead)

• mlab.is_closed_polygon

• mlab.poly_between

• mlab.poly_below

• mlab.inside_poly

• mlab.csv2rec

• mlab.rec2csv (use numpy.recarray.tofile instead)

• mlab.rec2text (use numpy.recarray.tofile instead)

• mlab.rec_summarize

• mlab.rec_join

• mlab.recs_join

• mlab.rec_groupby

• mlab.rec_keep_fields

• mlab.rec_drop_fields

• mlab.rec_append_fields

16.1. Old API Changes 1029

https://numpy.org/doc/stable/reference/generated/numpy.hypot.html#numpy.hypot
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata
https://numpy.org/doc/stable/reference/generated/numpy.interp.html#numpy.interp
https://numpy.org/doc/stable/reference/generated/numpy.recarray.tofile.html#numpy.recarray.tofile
https://numpy.org/doc/stable/reference/generated/numpy.recarray.tofile.html#numpy.recarray.tofile

Matplotlib, Release 3.4.3

• mlab.csvformat_factory

• mlab.get_formatd

• mlab.FormatDatetime (use datetime.datetime.strftime instead)

• mlab.FormatDate (use datetime.date.strftime instead)

• mlab.FormatMillions, mlab.FormatThousands, mlab.FormatPercent, mlab.
FormatBool, mlab.FormatInt, mlab.FormatFloat, mlab.FormatFormatStr,
mlab.FormatString, mlab.FormatObj

• mlab.donothing_callback

pylab removals

Lots of code inside the matplotlib.mlab module which was deprecated in Matplotlib 2.2 has been
removed. This means the following functions are no longer available in the pylab module:

• amap

• base_repr

• binary_repr

• bivariate_normal

• center_matrix

• csv2rec (use numpy.recarray.tofile instead)

• dist (use numpy.hypot instead)

• dist_point_to_segment

• distances_along_curve

• entropy (use scipy.stats.entropy instead)

• exp_safe (use numpy.exp instead)

• fftsurr

• find (use np.nonzero(np.ravel(condition)) instead)

• frange (use numpy.arange instead)

• get_sparse_matrix

• get_xyz_where

• griddata (use scipy.interpolate.griddata instead)

• identity (use numpy.identity instead)

• inside_poly

• is_closed_polygon

• ispower2

1030 Chapter 16. API Changes

https://docs.python.org/3/library/datetime.html#datetime.datetime.strftime
https://docs.python.org/3/library/datetime.html#datetime.date.strftime
https://numpy.org/doc/stable/reference/generated/numpy.recarray.tofile.html#numpy.recarray.tofile
https://numpy.org/doc/stable/reference/generated/numpy.hypot.html#numpy.hypot
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.stats.entropy.html#scipy.stats.entropy
https://numpy.org/doc/stable/reference/generated/numpy.exp.html#numpy.exp
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata
https://numpy.org/doc/stable/reference/generated/numpy.identity.html#numpy.identity

Matplotlib, Release 3.4.3

• isvector

• l1norm (use numpy.linalg.norm(a, ord=1) instead)

• l2norm (use numpy.linalg.norm(a, ord=2) instead)

• log2 (use numpy.log2 instead)

• longest_contiguous_ones

• longest_ones

• movavg

• norm_flat (use numpy.linalg.norm(a.flat, ord=2) instead)

• normpdf (use scipy.stats.norm.pdf instead)

• path_length

• poly_below

• poly_between

• prctile (use numpy.percentile instead)

• prctile_rank

• rec2csv (use numpy.recarray.tofile instead)

• rec_append_fields

• rec_drop_fields

• rec_join

• rk4 (use scipy.integrate.ode instead)

• rms_flat

• segments_intersect

• slopes

• stineman_interp

• vector_lengths

mplot3d changes

Voxel shading

Axes3D.voxels now shades the resulting voxels; for more details see What's new. The previous behavior
can be achieved by passing

ax.voxels(.., shade=False)

16.1. Old API Changes 1031

https://numpy.org/doc/stable/reference/generated/numpy.log2.html#numpy.log2
https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy.percentile
https://numpy.org/doc/stable/reference/generated/numpy.recarray.tofile.html#numpy.recarray.tofile
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode

Matplotlib, Release 3.4.3

Equal aspect axes disabled

Setting the aspect on 3D axes previously returned non-sensical results (e.g. see #1077). Calling ax.
set_aspect('equal') or ax.set_aspect(num) on a 3D axes now raises a NotImplement-
edError.

Poly3DCollection.set_zsort

Poly3DCollection.set_zsort no longer silently ignores invalid inputs, or False (which was al-
ways broken). Passing True to mean "average" is deprecated.

Testing

The --no-network flag to tests.py has been removed (no test requires internet access anymore). If it
is desired to disable internet access both for old and new versions of Matplotlib, use tests.py -m 'not
network' (which is now a no-op).

The image comparison test decorators now skip (rather than xfail) the test for uncomparable formats. The
affected decorators are image_comparison and check_figures_equal. The deprecated Image-
ComparisonTest class is likewise changed.

Dependency changes

NumPy

Matplotlib 3.1 now requires NumPy>=1.11.

ghostscript

Support for ghostscript 8.60 (released in 2007) has been removed. The oldest supported version of ghostscript
is now 9.0 (released in 2010).

Mathtext changes

• In constructs such as "$1~2$", mathtext now interprets the tilde as a space, consistently with TeX
(this was previously a parse error).

1032 Chapter 16. API Changes

https://github.com/matplotlib/matplotlib/issues/1077/
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

Deprecations

• The \stackrel mathtext command has been deprecated (it behaved differently from LaTeX's
\stackrel. To stack two mathtext expressions, use \genfrac{left-delim}{right-
delim}{fraction-bar-thickness}{}{top}{bottom}.

• The \mathcircledmathtext command (which is not a real TeX command) is deprecated. Directly
use unicode characters (e.g. "\N{CIRCLED LATIN CAPITAL LETTER A}" or "\u24b6")
instead.

• Support for setting rcParams["mathtext.default"] (default: 'it') to circled is deprecated.

Signature deprecations

The following signature related behaviours are deprecated:

• The withdash keyword argument to Axes.text(). Consider using Axes.annotate() instead.

• Passing (n, 1)-shaped error arrays to Axes.errorbar(), which was not documented and did not
work for n = 2. Pass a 1D array instead.

• The frameon kwarg to savefig and the rcParams["savefig.frameon"] rcParam. To emu-
late frameon = False, set facecolor to fully transparent ("none", or (0, 0, 0, 0)).

• Passing a non-1D (typically, (n, 1)-shaped) input to Axes.pie. Pass a 1D array instead.

• The TextPath constructor used to silently drop ignored arguments; this behavior is deprecated.

• The usetex parameter of TextToPath.get_text_path is deprecated and folded into the ismath
parameter, which can now take the values False, True, and "TeX", consistently with other low-
level text processing functions.

• Passing 'normal' to axes.Axes.axis() is deprecated, use ax.axis('auto') instead.

• Passing the block argument of pyplot.show positionally is deprecated; it should be passed by
keyword.

• When using the nbagg backend, pyplot.show used to silently accept and ignore all combinations
of positional and keyword arguments. This behavior is deprecated.

• The unused shape and imlim parameters to Axes.imshow are deprecated. To avoid triggering the
deprecation warning, the filternorm, filterrad, resample, and url arguments should be passed by key-
word.

• The interp_at_native parameter to BboxImage, which has had no effect since Matplotlib 2.0, is dep-
recated.

• All arguments to the matplotlib.cbook.deprecation.deprecated decorator and
matplotlib.cbook.deprecation.warn_deprecated function, except the first one (the
version where the deprecation occurred), are now keyword-only. The goal is to avoid accidentally
setting the "message" argument when the "name" (or "alternative") argument was intended, as this has
repeatedly occurred in the past.

16.1. Old API Changes 1033

../../tutorials/introductory/customizing.html?highlight=mathtext.default#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=savefig.frameon#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

• The arguments of matplotlib.testing.compare.calculate_rms have been renamed
from expectedImage, actualImage, to expected_image, actual_image.

• Passing positional arguments to Axis.set_ticklabels beyond ticklabels itself has no effect, and
support for them is deprecated.

• Passing shade=None to plot_surface is deprecated. This was an unintended implementation
detail with the same semantics as shade=False. Please use the latter code instead.

• matplotlib.ticker.MaxNLocator and its set_params method will issue a warning on un-
known keyword arguments instead of silently ignoring them. Future versions will raise an error.

Changes in parameter names

• The arg parameter to matplotlib.use has been renamed to backend.

This will only affect cases where that parameter has been set as a keyword argument. The common
usage pattern as a positional argument matplotlib.use('Qt5Agg') is not affected.

• The normed parameter to Axes.hist2d has been renamed to density.

• The s parameter to Annotation (and indirectly Axes.annotate) has been renamed to text.

• The tolerence parameter to bezier.find_bezier_t_intersecting_with_closedpath,
bezier.split_bezier_intersecting_with_closedpath, bezier.
find_r_to_boundary_of_closedpath, bezier.split_path_inout and bezier.
check_if_parallel has been renamed to tolerance.

In each case, the old parameter name remains supported (it cannot be used simultaneously with the new
name), but support for it will be dropped in Matplotlib 3.3.

Class/method/attribute deprecations

Support for custom backends that do not provide a GraphicsContextBase.set_hatch_color
method is deprecated. We suggest that custom backends let their GraphicsContext class inherit from
GraphicsContextBase, to at least provide stubs for all required methods.

• spine.Spine.is_frame_like

This has not been used in the codebase since its addition in 2009.

• axis3d.Axis.get_tick_positions

This has never been used internally, there is no equivalent method exists on the 2D Axis classes, and
despite the similar name, it has a completely different behavior from the 2D Axis' axis.Axis.
get_ticks_position method.

• .backend_pgf.LatexManagerFactory

• mpl_toolkits.axisartist.axislines.SimpleChainedObjects

• mpl_toolkits.Axes.AxisDict

1034 Chapter 16. API Changes

Matplotlib, Release 3.4.3

Internal Helper Functions

• checkdep_dvipng

• checkdep_ghostscript

• checkdep_pdftops

• checkdep_inkscape

• ticker.decade_up

• ticker.decade_down

• cbook.dedent

• docstring.Appender

• docstring.dedent

• docstring.copy_dedent

Use the standard library's docstring manipulation tools instead, such as inspect.cleandoc and
inspect.getdoc.

• matplotlib.scale.get_scale_docs()

• matplotlib.pyplot.get_scale_docs()

These are considered internal and will be removed from the public API in a future version.

• projections.process_projection_requirements

• backend_ps.PsBackendHelper

• backend_ps.ps_backend_helper,

• cbook.iterable

• cbook.get_label

• cbook.safezipManually check the lengths of the inputs instead, or rely on NumPy to do it.

• cbook.is_hashable Use isinstance(..., collections.abc.Hashable) instead.

• The .backend_bases.RendererBase.strip_math. Use cbook.strip_math instead.

Multiple internal functions that were exposed as part of the public API of mpl_toolkits.mplot3d are
deprecated,

mpl_toolkits.mplot3d.art3d
• mpl_toolkits.mplot3d.art3d.norm_angle

• mpl_toolkits.mplot3d.art3d.norm_text_angle

• mpl_toolkits.mplot3d.art3d.path_to_3d_segment

• mpl_toolkits.mplot3d.art3d.paths_to_3d_segments

• mpl_toolkits.mplot3d.art3d.path_to_3d_segment_with_codes

16.1. Old API Changes 1035

https://docs.python.org/3/library/inspect.html#inspect.cleandoc
https://docs.python.org/3/library/inspect.html#inspect.getdoc

Matplotlib, Release 3.4.3

• mpl_toolkits.mplot3d.art3d.paths_to_3d_segments_with_codes

• mpl_toolkits.mplot3d.art3d.get_patch_verts

• mpl_toolkits.mplot3d.art3d.get_colors

• mpl_toolkits.mplot3d.art3d.zalpha

mpl_toolkits.mplot3d.proj3d
• mpl_toolkits.mplot3d.proj3d.line2d

• mpl_toolkits.mplot3d.proj3d.line2d_dist

• mpl_toolkits.mplot3d.proj3d.line2d_seg_dist

• mpl_toolkits.mplot3d.proj3d.mod

• mpl_toolkits.mplot3d.proj3d.proj_transform_vec

• mpl_toolkits.mplot3d.proj3d.proj_transform_vec_clip

• mpl_toolkits.mplot3d.proj3d.vec_pad_ones

• mpl_toolkits.mplot3d.proj3d.proj_trans_clip_points

If your project relies on these functions, consider vendoring them.

Font Handling

• backend_pdf.RendererPdf.afm_font_cache

• backend_ps.RendererPS.afmfontd

• font_manager.OSXInstalledFonts

• .TextToPath.glyph_to_path (Instead call font.get_path() and manually transform the
path.)

Date related functions

• dates.seconds()

• dates.minutes()

• dates.hours()

• dates.weeks()

• dates.strpdate2num

• dates.bytespdate2num

These are brittle in the presence of locale changes. Use standard datetime parsers such as time.strptime
or dateutil.parser.parse, and additionally call matplotlib.dates.date2num if you need to
convert to Matplotlib's internal datetime representation; or use dates.datestr2num.

1036 Chapter 16. API Changes

https://docs.python.org/3/library/time.html#time.strptime
https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse

Matplotlib, Release 3.4.3

Axes3D

• axes3d.Axes3D.w_xaxis

• axes3d.Axes3D.w_yaxis

• axes3d.Axes3D.w_zaxis

Use axes3d.Axes3D.xaxis, axes3d.Axes3D.yaxis and axes3d.Axes3D.zaxis instead.

Testing

• matplotlib.testing.decorators.switch_backend decorator

Test functions should use pytest.mark.backend, and the mark will be picked up by the
matplotlib.testing.conftest.mpl_test_settings fixture.

Quiver

• .color attribute of Quiver objects

Instead, use (as for any Collection) the get_facecolor method. Note that setting to the .color
attribute did not update the quiver artist, whereas calling set_facecolor does.

GUI / backend details

• .get_py2exe_datafiles

• .tk_window_focus

• .backend_gtk3.FileChooserDialog

• .backend_gtk3.NavigationToolbar2GTK3.get_filechooser

• .backend_gtk3.SaveFigureGTK3.get_filechooser

• .NavigationToolbar2QT.adj_window attribute. This is unused and always None.

• .backend_wx.IDLE_DELAY global variable This is unused and only relevant to the now removed
wx "idling" code (note that as it is a module-level global, no deprecation warning is emitted when
accessing it).

• mlab.demean

• backend_gtk3cairo.FigureCanvasGTK3Cairo,

• backend_wx.debug_on_error, backend_wx.fake_stderr, backend_wx.
raise_msg_to_str, backend_wx.MenuButtonWx, backend_wx.PrintoutWx,

• matplotlib.backends.qt_editor.formlayout module

16.1. Old API Changes 1037

Matplotlib, Release 3.4.3

This module is a vendored, modified version of the official formlayout module available on PyPI. Install that
module separately if you need it.

• GraphicsContextPS.shouldstroke

Transforms / scales

• LogTransformBase

• Log10Transform

• Log2Transform,

• NaturalLogTransformLog

• InvertedLogTransformBase

• InvertedLog10Transform

• InvertedLog2Transform

• InvertedNaturalLogTransform

These classes defined in matplotlib.scale are deprecated. As a replacement, use the general Log-
Transform and InvertedLogTransform classes, whose constructors take a base argument.

Locators / Formatters

• OldScalarFormatter.pprint_val

• ScalarFormatter.pprint_val

• LogFormatter.pprint_val

These are helper methods that do not have a consistent signature across formatter classes.

Path tools

• path.get_paths_extents

Use get_path_collection_extents instead.

• .Path.has_nonfinite attribute

Use not np.isfinite(path.vertices).all() instead.

• .bezier.find_r_to_boundary_of_closedpath function is deprecated

This has always returned None instead of the requested radius.

1038 Chapter 16. API Changes

https://pypi.org/project/formlayout/

Matplotlib, Release 3.4.3

Text

• text.TextWithDash

• Text.is_math_text

• TextPath.is_math_text

• TextPath.text_get_vertices_codes (As an alternative, construct a new TextPath ob-
ject.)

Unused attributes

• NavigationToolbar2QT.buttons

• Line2D.verticalOffset

• Quiver.keytext

• Quiver.keyvec

• SpanSelector.buttonDown

These are unused and never updated.

Sphinx extensions

• matplotlib.sphinxext.mathmpl.math_directive

• matplotlib.sphinxext.plot_directive.plot_directive

This is because the matplotlib.sphinxext.mathmpl and matplotlib.sphinxext.
plot_directive interfaces have changed from the (Sphinx-)deprecated function-based interface to a
class-based interface; this should not affect end users.

• mpl_toolkits.axisartist.axis_artist.UnimplementedException

Environmental Variables

• The MATPLOTLIBDATA environment variable

16.1. Old API Changes 1039

Matplotlib, Release 3.4.3

Axis

• Axis.iter_ticks

This only served as a helper to the private Axis._update_ticks

Undeprecations

The following API elements have been un-deprecated:

• The obj_type keyword argument to the matplotlib.cbook.deprecation.deprecated
decorator.

• xmin, xmax keyword arguments to Axes.set_xlim and ymin, ymax keyword arguments to Axes.
set_ylim

New features

Text now has a c alias for the color property

For consistency with Line2D, the Text class has gained the c alias for the color property. For example,
one can now write

ax.text(.5, .5, "foo", c="red")

Cn colors now support n>=10

It is now possible to go beyond the tenth color in the property cycle using Cn syntax, e.g.

plt.plot([1, 2], color="C11")

now uses the 12th color in the cycle.

Note that previously, a construct such as:

plt.plot([1, 2], "C11")

would be interpreted as a request to use color C1 and marker 1 (an "inverted Y"). To obtain such a plot, one
should now use

plt.plot([1, 2], "1C1")

(so that the first "1" gets correctly interpreted as a marker specification), or, more explicitly:

plt.plot([1, 2], marker="1", color="C1")

1040 Chapter 16. API Changes

Matplotlib, Release 3.4.3

New Formatter.format_ticks method

The Formatter class gained a new format_ticks method, which takes the list of all tick locations as
a single argument and returns the list of all formatted values. It is called by the axis tick handling code and,
by default, first calls set_locs with all locations, then repeatedly calls __call__ for each location.

Tick-handling code in the codebase that previously performed this sequence (set_locs followed by re-
peated __call__) have been updated to use format_ticks.

format_ticks is intended to be overridden by Formatter subclasses for which the formatting of a tick
value depends on other tick values, such as ConciseDateFormatter.

Added support for RGB(A) images in pcolorfast

pcolorfast now accepts 3D images (RGB or RGBA) arrays if the X and Y specifications allow image or
pcolorimage rendering; they remain unsupported by the more general quadmesh rendering

Invalid inputs

Passing invalid locations to legend and table used to fallback on a default location. This behavior is
deprecated and will throw an exception in a future version.

offsetbox.AnchoredText is unable to handle the horizontalalignment or verticalalignment kwargs,
and used to ignore them with a warning. This behavior is deprecated and will throw an exception in a future
version.

Passing steps less than 1 or greater than 10 to MaxNLocator used to result in undefined behavior. It now
throws a ValueError.

The signature of the (private) Axis._update_ticks has been changed to not take the renderer as argu-
ment anymore (that argument is unused).

16.1.8 API Changes for 3.0.1

tight_layout.auto_adjust_subplotpars can return None now if the new subplotparams will
collapse axes to zero width or height. This prevents tight_layout from being executed. Similarly
tight_layout.get_tight_layout_figure will return None.

To improve import (startup) time, private modules are now imported lazily. These modules are no longer
available at these locations:

• matplotlib.backends.backend_agg._png

• matplotlib.contour._contour

• matplotlib.image._png

• matplotlib.mathtext._png

• matplotlib.testing.compare._png

16.1. Old API Changes 1041

https://docs.python.org/3/library/exceptions.html#ValueError

Matplotlib, Release 3.4.3

• matplotlib.texmanager._png

• matplotlib.tri.triangulation._tri

• matplotlib.tri.triangulation._qhull

• matplotlib.tri.tricontour._tri

• matplotlib.tri.trifinder._tri

16.1.9 API Changes for 3.0.0

Drop support for python 2

Matplotlib 3 only supports python 3.5 and higher.

Changes to backend loading

Failure to load backend modules (macosx on non-framework builds and gtk3when running headless) now
raises ImportError (instead of RuntimeError and TypeError, respectively).

Third-party backends that integrate with an interactive framework are now encouraged to define the re-
quired_interactive_framework global value to one of the following values: "qt5", "qt4", "gtk3",
"wx", "tk", or "macosx". This information will be used to determine whether it is possible to switch from a
backend to another (specifically, whether they use the same interactive framework).

Axes.hist2d now uses pcolormesh instead of pcolorfast

Axes.hist2d now uses pcolormesh instead of pcolorfast, which will improve the handling of
log-axes. Note that the returned image now is of type QuadMesh instead of AxesImage.

matplotlib.axes.Axes.get_tightbbox now includes all artists

For Matplotlib 3.0, all artists are now included in the bounding box returned by matplotlib.axes.
Axes.get_tightbbox.

matplotlib.axes.Axes.get_tightbbox adds a new kwarg bbox_extra_artists to manu-
ally specify the list of artists on the axes to include in the tight bounding box calculation.

Layout tools like Figure.tight_layout, constrained_layout, and fig.savefig('fname.
png', bbox_inches="tight") use matplotlib.axes.Axes.get_tightbbox to determine
the bounds of each axes on a figure and adjust spacing between axes.

In Matplotlib 2.2 get_tightbbox started to include legends made on the axes, but still excluded some
other artists, like text that may overspill an axes. This has been expanded to include all artists.

This new default may be overridden in either of three ways:

1042 Chapter 16. API Changes

https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#TypeError

Matplotlib, Release 3.4.3

1. Make the artist to be excluded a child of the figure, not the axes. E.g., call fig.legend() instead
of ax.legend() (perhaps using get_legend_handles_labels to gather handles and labels
from the parent axes).

2. If the artist is a child of the axes, set the artist property artist.set_in_layout(False).

3. Manually specify a list of artists in the new kwarg bbox_extra_artists.

Text.set_text with string argument None sets string to empty

Text.set_textwhen passed a string value of Nonewould set the string to "None", so subsequent calls
to Text.get_text would return the ambiguous "None" string.

This change sets text objects passed None to have empty strings, so that Text.get_text returns an empty
string.

Axes3D.get_xlim, get_ylim and get_zlim now return a tuple

They previously returned an array. Returning a tuple is consistent with the behavior for 2D axes.

font_manager.list_fonts now follows the platform's casefolding semantics

i.e., it behaves case-insensitively on Windows only.

bar / barh no longer accepts left / bottom as first named argument

These arguments were renamed in 2.0 to x / y following the change of the default alignment from edge to
center.

Different exception types for undocumented options

• Passing style='comma' to ticklabel_format() was never supported. It now raises Val-
ueError like all other unsupported styles, rather than NotImplementedError.

• Passing the undocumented xmin or xmax arguments to set_xlim() would silently override the
left and right arguments. set_ylim() and the 3D equivalents (e.g. set_zlim3d) had a cor-
responding problem. A TypeError will be raised if they would override the earlier limit arguments.
In 3.0 these were kwargs were deprecated, but in 3.1 the deprecation was undone.

16.1. Old API Changes 1043

Matplotlib, Release 3.4.3

Improved call signature for Axes.margins

Axes.margins and Axes3D.margins no longer accept arbitrary keywords. TypeError will there-
fore be raised if unknown kwargs are passed; previously they would be silently ignored.

If too many positional arguments are passed, TypeError will be raised instead of ValueError, for
consistency with other call-signature violations.

Axes3D.margins now raises TypeError instead of emitting a deprecation warning if only two posi-
tional arguments are passed. To supply only x and y margins, use keyword arguments.

Explicit arguments instead of *args, **kwargs

PEP 3102 describes keyword-only arguments, which allow Matplotlib to provide explicit call signatures -
where we previously used *args, **kwargs and kwargs.pop, we can now expose named arguments.
In some places, unknown kwargs were previously ignored but now raise TypeError because **kwargs
has been removed.

• matplotlib.axes.Axes.stem() no longer accepts unknown keywords, and raises TypeEr-
ror instead of emitting a deprecation.

• matplotlib.axes.Axes.stem() now raises TypeError when passed unhandled positional ar-
guments. If two or more arguments are passed (ie X, Y, [linefmt], ...) and Y cannot be cast to an array,
an error will be raised instead of treating X as Y and Y as linefmt.

• mpl_toolkits.axes_grid1.axes_divider.SubplotDivider raises TypeError in-
stead of Exception when passed unknown kwargs.

Cleanup decorators and test classes no longer destroy warnings filter on exit

The decorators and classes in matplotlib.testing.decorators no longer destroy the warnings filter on
exit. Instead, they restore the warnings filter that existed before the test started using warnings.
catch_warnings.

Non-interactive FigureManager classes are now aliases of FigureManagerBase

The FigureManagerPdf, FigureManagerPS, and FigureManagerSVG classes, which were pre-
viously empty subclasses ofFigureManagerBase (i.e., not adding or overriding any attribute or method),
are now direct aliases for FigureManagerBase.

1044 Chapter 16. API Changes

https://www.python.org/dev/peps/pep-3102

Matplotlib, Release 3.4.3

Change to the output of image.thumbnail

When called with preview=False, image.thumbnail previously returned an figure whose canvas
class was set according to the output file extension. It now returns a figure whose canvas class is the
base FigureCanvasBase (and relies on FigureCanvasBase.print_figure) to handle the can-
vas switching properly).

As a side effect of this change, image.thumbnail now also supports .ps, .eps, and .svgz output.

FuncAnimation now draws artists according to their zorder when blitting

FuncAnimation now draws artists returned by the user- function according to their zorder when using
blitting, instead of using the order in which they are being passed. However, note that only zorder of passed
artists will be respected, as they are drawn on top of any existing artists (see #11369).

Contour color autoscaling improvements

Selection of contour levels is now the same for contour and contourf; previously, for contour, levels outside
the data range were deleted. (Exception: if no contour levels are found within the data range, the levels
attribute is replaced with a list holding only the minimum of the data range.)

When contour is called with levels specified as a target number rather than a list, and the 'extend' kwarg is
used, the levels are now chosen such that some data typically will fall in the extended range.

When contour is called with a LogNorm or a LogLocator, it will now select colors using the geometric
mean rather than the arithmetic mean of the contour levels.

Streamplot last row and column fixed

A bug was fixed where the last row and column of data in streamplot were being dropped.

Changed default AutoDateLocator kwarg interval_multiples to True

The default value of the tick locator for dates, dates.AutoDateLocator kwarg interval_multiples was
set to False which leads to not-nice looking automatic ticks in many instances. The much nicer inter-
val_multiples=True is the new default. See below to get the old behavior back:

16.1. Old API Changes 1045

https://github.com/matplotlib/matplotlib/issues/11369

Matplotlib, Release 3.4.3

0.00 0.25 0.50 0.75 1.00

01:10

01:15

01:20

01:25

01:30

01:35

01:40

01:45 20 Aug 2009NEW DEFAULT

0.00 0.25 0.50 0.75 1.00

20 01:09

20 01:14

20 01:19

20 01:24

20 01:29

20 01:34

20 01:39

20 01:44
OLD

Axes.get_position now returns actual position if aspect changed

Axes.get_position used to return the original position unless a draw had been triggered or Axes.
apply_aspect had been called, even if the kwarg original was set to False. Now Axes.
apply_aspect is called so ax.get_position() will return the new modified position. To get the
old behavior use ax.get_position(original=True).

The ticks for colorbar now adjust for the size of the colorbar

Colorbar ticks now adjust for the size of the colorbar if the colorbar is made from a mappable that is not a
contour or doesn't have a BoundaryNorm, or boundaries are not specified. If boundaries, etc are specified,
the colorbar maintains the original behavior.

1046 Chapter 16. API Changes

Matplotlib, Release 3.4.3

Colorbar for log-scaled hexbin

When using hexbin and plotting with a logarithmic color scale, the colorbar ticks are now correctly log
scaled. Previously the tick values were linear scaled log(number of counts).

PGF backend now explicitly makes black text black

Previous behavior with the pgf backend was for text specified as black to actually be the default color of
whatever was rendering the pgf file (which was of course usually black). The new behavior is that black text
is black, regardless of the default color. However, this means that there is no way to fall back on the default
color of the renderer.

Blacklisted rcparams no longer updated by rcdefaults, rc_file_defaults, rc_file

The rc modifier functions rcdefaults, rc_file_defaults and rc_file now ignore rcParams in
the matplotlib.style.core.STYLE_BLACKLIST set. In particular, this prevents the backend
and interactive rcParams from being incorrectly modified by these functions.

CallbackRegistry now stores callbacks using stdlib's weakref.WeakMethods

In particular, this implies that CallbackRegistry.callbacks[signal] is now a mapping of call-
back ids to weakref.WeakMethods (i.e., they need to be first called with no arguments to retrieve the
method itself).

Changes regarding the text.latex.unicode rcParam

The rcParam now defaults to True and is deprecated (i.e., in future versions of Matplotlib, unicode input will
always be supported).

Moreover, the underlying implementation now uses \usepackage[utf8]{inputenc} instead of \
usepackage{ucs}\usepackage[utf8x]{inputenc}.

Return type of ArtistInspector.get_aliases changed

ArtistInspector.get_aliases previously returned the set of aliases as {fullname:
{alias1: None, alias2: None, ...}}. The dict-to-None mapping was used to simu-
late a set in earlier versions of Python. It has now been replaced by a set, i.e. {fullname: {alias1,
alias2, ...}}.

This value is also stored in ArtistInspector.aliasd, which has likewise changed.

16.1. Old API Changes 1047

https://docs.python.org/3/library/weakref.html#weakref.WeakMethod

Matplotlib, Release 3.4.3

Removed pytz as a dependency

Since dateutil and pytz both provide time zones, and matplotlib already depends on dateutil, mat-
plotlib will now use dateutil time zones internally and drop the redundant dependency on pytz. While
dateutil time zones are preferred (and currently recommended in the Python documentation), the explicit
use of pytz zones is still supported.

Deprecations

Modules

The following modules are deprecated:

• matplotlib.compat.subprocess. This was a python 2 workaround, but all the functionality
can now be found in the python 3 standard library subprocess.

• matplotlib.backends.wx_compat. Python 3 is only compatible with wxPython 4, so support
for wxPython 3 or earlier can be dropped.

Classes, methods, functions, and attributes

The following classes, methods, functions, and attributes are deprecated:

• RcParams.msg_depr, RcParams.msg_depr_ignore, RcParams.msg_depr_set,
RcParams.msg_obsolete, RcParams.msg_backend_obsolete

• afm.parse_afm

• backend_pdf.PdfFile.texFontMap

• backend_pgf.get_texcommand

• backend_ps.get_bbox

• backend_qt5.FigureCanvasQT.keyAutoRepeat (directly check event.guiEvent.
isAutoRepeat() in the event handler to decide whether to handle autorepeated key presses).

• backend_qt5.error_msg_qt, backend_qt5.exception_handler

• backend_wx.FigureCanvasWx.macros

• backends.pylab_setup

• cbook.GetRealpathAndStat, cbook.Locked

• cbook.is_numlike (use isinstance(..., numbers.Number) instead), cbook.
listFiles, cbook.unicode_safe

• container.Container.set_remove_method,

• contour.ContourLabeler.cl, .cl_xy, and .cl_cvalues

• dates.DateFormatter.strftime_pre_1900, dates.DateFormatter.strftime

1048 Chapter 16. API Changes

https://docs.python.org/3/library/subprocess.html#module-subprocess

Matplotlib, Release 3.4.3

• font_manager.TempCache

• image._ImageBase.iterpnames, use the interpolation_names property instead. (this
affects classes that inherit from _ImageBase including FigureImage, BboxImage, and Axes-
Image)

• mathtext.unichr_safe (use chr instead)

• patches.Polygon.xy

• table.Table.get_child_artists (use get_children instead)

• testing.compare.ImageComparisonTest, testing.compare.compare_float

• testing.decorators.CleanupTest, testing.decorators.
skip_if_command_unavailable

• FigureCanvasQT.keyAutoRepeat (directly check event.guiEvent.isAutoRepeat()
in the event handler to decide whether to handle autorepeated key presses)

• FigureCanvasWx.macros

• _ImageBase.iterpnames, use the interpolation_names property instead. (this affects
classes that inherit from _ImageBase including FigureImage, BboxImage, and AxesImage)

• patches.Polygon.xy

• texmanager.dvipng_hack_alpha

• text.Annotation.arrow

• Legend.draggable(), in favor of Legend.set_draggable()
(Legend.draggable may be reintroduced as a property in future releases)

• textpath.TextToPath.tex_font_map

• matplotlib.cbook.deprecation.mplDeprecation will be removed in fu-
ture versions. It is just an alias for matplotlib.cbook.deprecation.
MatplotlibDeprecationWarning. Please use matplotlib.cbook.
MatplotlibDeprecationWarning directly if necessary.

• The matplotlib.cbook.Bunch class has been deprecated. Instead, use types.
SimpleNamespace from the standard library which provides the same functionality.

• Axes.mouseover_set is now a frozenset, and deprecated. Directly manipulate the artist's .
mouseover attribute to change their mouseover status.

The following keyword arguments are deprecated:

• passing verts to Axes.scatter (use marker instead)

• passing obj_type to cbook.deprecated

The following call signatures are deprecated:

• passing a wx.EvtHandler as first argument to backend_wx.TimerWx

16.1. Old API Changes 1049

https://docs.python.org/3/library/types.html#types.SimpleNamespace
https://docs.python.org/3/library/types.html#types.SimpleNamespace

Matplotlib, Release 3.4.3

rcParams

The following rcParams are deprecated:

• examples.directory (use datapath instead)

• pgf.debug (the pgf backend relies on logging)

• text.latex.unicode (always True now)

marker styles

• Using (n, 3) as marker style to specify a circle marker is deprecated. Use "o" instead.

• Using ([(x0, y0), (x1, y1), ...], 0) as marker style to specify a custom marker path is
deprecated. Use [(x0, y0), (x1, y1), ...] instead.

Deprecation of LocatableAxes in toolkits

The LocatableAxes classes in toolkits have been deprecated. The base Axes classes provide the same
functionality to all subclasses, thus these mixins are no longer necessary. Related functions have also been
deprecated. Specifically:

• mpl_toolkits.axes_grid1.axes_divider.LocatableAxesBase: no specific re-
placement; use any other Axes-derived class directly instead.

• mpl_toolkits.axes_grid1.axes_divider.locatable_axes_factory: no specific
replacement; use any other Axes-derived class directly instead.

• mpl_toolkits.axes_grid1.axes_divider.Axes: use mpl_toolkits.
axes_grid1.mpl_axes.Axes directly.

• mpl_toolkits.axes_grid1.axes_divider.LocatableAxes: use mpl_toolkits.
axes_grid1.mpl_axes.Axes directly.

• mpl_toolkits.axisartist.axes_divider.Axes: use mpl_toolkits.
axisartist.axislines.Axes directly.

• mpl_toolkits.axisartist.axes_divider.LocatableAxes: use mpl_toolkits.
axisartist.axislines.Axes directly.

Removals

Hold machinery

Setting or unsetting hold (deprecated in version 2.0) has now been completely removed. Matplotlib now
always behaves as if hold=True. To clear an axes you can manually use cla(), or to clear an entire figure
use clf().

1050 Chapter 16. API Changes

Matplotlib, Release 3.4.3

Removal of deprecated backends

Deprecated backends have been removed:

• GTKAgg

• GTKCairo

• GTK

• GDK

Deprecated APIs

The following deprecated API elements have been removed:

• The deprecated methods knownfailureif and remove_text have been removed from
matplotlib.testing.decorators.

• The entire contents of testing.noseclasses have also been removed.

• matplotlib.checkdep_tex, matplotlib.checkdep_xmllint

• backend_bases.IdleEvent

• cbook.converter, cbook.tostr, cbook.todatetime, cbook.todate,
cbook.tofloat, cbook.toint, cbook.unique, cbook.is_string_like,
cbook.is_sequence_of_strings, cbook.is_scalar, cbook.soundex,
cbook.dict_delall, cbook.get_split_ind, cbook.wrap, cbook.
get_recursive_filelist, cbook.pieces, cbook.exception_to_str, cbook.
allequal, cbook.alltrue, cbook.onetrue, cbook.allpairs, cbook.finddir,
cbook.reverse_dict, cbook.restrict_dict, cbook.issubclass_safe, cbook.
recursive_remove, cbook.unmasked_index_ranges, cbook.Null, cbook.
RingBuffer, cbook.Sorter, cbook.Xlator,

• font_manager.weight_as_number, font_manager.ttfdict_to_fnames

• pyplot.colors, pyplot.spectral

• rcsetup.validate_negative_linestyle, rcsetup.validate_negative_linestyle_legacy,

• testing.compare.verifiers, testing.compare.verify

• testing.decorators.knownfailureif, testing.decorators.
ImageComparisonTest.remove_text

• tests.assert_str_equal, tests.test_tinypages.file_same

• texmanager.dvipng_hack_alpha,

• _AxesBase.axesPatch, _AxesBase.set_color_cycle, _AxesBase.
get_cursor_props, _AxesBase.set_cursor_props

• _ImageBase.iterpnames

• FigureCanvasBase.start_event_loop_default;

16.1. Old API Changes 1051

Matplotlib, Release 3.4.3

• FigureCanvasBase.stop_event_loop_default;

• Figure.figurePatch,

• FigureCanvasBase.dynamic_update, FigureCanvasBase.idle_event,
FigureCanvasBase.get_linestyle, FigureCanvasBase.set_linestyle

• FigureCanvasQTAggBase

• FigureCanvasQTAgg.blitbox

• FigureCanvasTk.show (alternative: FigureCanvasTk.draw)

• FigureManagerTkAgg (alternative: FigureManagerTk)

• NavigationToolbar2TkAgg (alternative: NavigationToolbar2Tk)

• backend_wxagg.Toolbar (alternative: backend_wxagg.NavigationToolbar2WxAgg)

• RendererAgg.debug()

• passing non-numbers to EngFormatter.format_eng

• passing frac to PolarAxes.set_theta_grids

• any mention of idle events

The following API elements have been removed:

• backend_cairo.HAS_CAIRO_CFFI

• sphinxext.sphinx_version

Proprietary sphinx directives

The matplotlib documentation used the proprietary sphinx directives .. htmlonly::, and .. la-
texonly::. These have been replaced with the standard sphinx directives .. only:: html and ..
only:: latex. This change will not affect any users. Only downstream package maintainers, who have
used the proprietary directives in their docs, will have to switch to the sphinx directives.

lib/mpl_examples symlink

The symlink from lib/mpl_examples to ../examples has been removed. This is not installed as an importable
package and should not affect end users, however this may require down-stream packagers to adjust. The
content is still available top-level examples directory.

1052 Chapter 16. API Changes

Matplotlib, Release 3.4.3

16.1.10 API Changes in 2.2.0

New dependency

kiwisolver is now a required dependency to support the new constrained_layout, see Constrained Layout
Guide for more details.

Deprecations

Classes, functions, and methods

The unused and untested Artist.onRemove and Artist.hitlist methods have been deprecated.

The now unused mlab.less_simple_linear_interpolation function is deprecated.

The unused ContourLabeler.get_real_label_width method is deprecated.

The unused FigureManagerBase.show_popup method is deprecated. This introduced in
e945059b327d42a99938b939a1be867fa023e7ba in 2005 but never built out into any of the backends.

backend_tkagg.AxisMenu is deprecated, as it has become unused since the removal of "classic" tool-
bars.

Changed function signatures

kwarg fig to GridSpec.get_subplot_params is deprecated, use figure instead.

Using pyplot.axes with an Axes as argument is deprecated. This sets the current axes, i.e. it has the
same effect as pyplot.sca. For clarity plt.sca(ax) should be preferred over plt.axes(ax).

Using strings instead of booleans to control grid and tick visibility is deprecated. Using "on", "off",
"true", or "false" to control grid and tick visibility has been deprecated. Instead, use normal booleans
(True/False) or boolean-likes. In the future, all non-empty strings may be interpreted as True.

When given 2D inputs with non-matching numbers of columns, plot currently cycles through the columns
of the narrower input, until all the columns of the wider input have been plotted. This behavior is deprecated;
in the future, only broadcasting (1 column to n columns) will be performed.

rcparams

The rcParams["backend.qt4"] and rcParams["backend.qt5"] rcParams were deprecated in
version 2.2. In order to force the use of a specific Qt binding, either import that binding first, or set the
QT_API environment variable.

Deprecation of the nbagg.transparent rcParam. To control transparency of figure patches in the
nbagg (or any other) backend, directly set figure.patch.facecolor, or the figure.facecolor
rcParam.

16.1. Old API Changes 1053

https://github.com/nucleic/kiwi
../../tutorials/introductory/customizing.html?highlight=backend.qt4#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=backend.qt5#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Deprecated Axis.unit_data

Use Axis.units (which has long existed) instead.

Removals

Function Signatures

Contouring no longer supports legacy corner masking. The deprecated ContourSet.vmin and
ContourSet.vmax properties have been removed.

Passing None instead of "none" as format to errorbar is no longer supported.

The bgcolor keyword argument to Axes has been removed.

Modules, methods, and functions

The matplotlib.finance, mpl_toolkits.exceltools and mpl_toolkits.gtktools
modules have been removed. matplotlib.finance remains available at https://github.com/matplotlib/
mpl_finance.

The mpl_toolkits.mplot3d.art3d.iscolor function has been removed.

The Axes.get_axis_bgcolor, Axes.set_axis_bgcolor, Bbox.update_from_data,
Bbox.update_datalim_numerix, MaxNLocator.bin_boundaries methods have been
removed.

mencoder can no longer be used to encode animations.

The unused FONT_SCALE and fontd attributes of the RendererSVG class have been removed.

colormaps

The spectral colormap has been removed. The Vega* colormaps, which were aliases for the tab*
colormaps, have been removed.

rcparams

The following deprecated rcParams have been removed:

• axes.color_cycle (see axes.prop_cycle),

• legend.isaxes,

• svg.embed_char_paths (see svg.fonttype),

• text.fontstyle, text.fontangle, text.fontvariant, text.fontweight, text.
fontsize (renamed to text.style, etc.),

1054 Chapter 16. API Changes

https://github.com/matplotlib/mpl_finance
https://github.com/matplotlib/mpl_finance

Matplotlib, Release 3.4.3

• tick.size (renamed to tick.major.size).

Only accept string-like for Categorical input

Do not accept mixed string / float / int input, only strings are valid categoricals.

Removal of unused imports

Many unused imports were removed from the codebase. As a result, trying to import certain classes or func-
tions from the "wrong" module (e.g. Figure from matplotlib.backends.backend_agg instead
of matplotlib.figure) will now raise an ImportError.

Axes3D.get_xlim, get_ylim and get_zlim now return a tuple

They previously returned an array. Returning a tuple is consistent with the behavior for 2D axes.

Exception type changes

If MovieWriterRegistry can't find the requested MovieWriter, a more helpful RuntimeError
message is now raised instead of the previously raised KeyError.

auto_adjust_subplotpars now raises ValueError instead of RuntimeError when sizes of
input lists don't match

Figure.set_figwidth and Figure.set_figheight default forward to True

matplotlib.figure.Figure.set_figwidth and matplotlib.figure.Figure.
set_figheight had the keyword argument forward=False by default, but figure.Figure.
set_size_inches now defaults to forward=True. This makes these functions conistent.

Do not truncate svg sizes to nearest point

There is no reason to size the SVG out put in integer points, change to out putting floats for the height, width,
and viewBox attributes of the svg element.

16.1. Old API Changes 1055

https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#RuntimeError

Matplotlib, Release 3.4.3

Fontsizes less than 1 pt are clipped to be 1 pt.

FreeType doesn't allow fonts to get smaller than 1 pt, so all Agg backends were silently rounding up to 1 pt.
PDF (other vector backends?) were letting us write fonts that were less than 1 pt, but they could not be placed
properly because position information comes from FreeType. This change makes it so no backends can use
fonts smaller than 1 pt, consistent with FreeType and ensuring more consistent results across backends.

Changes to Qt backend class MRO

To support both Agg and cairo rendering for Qt backends all of the non-Agg specific
code previously in backend_qt5agg.FigureCanvasQTAggBase has been moved to
backend_qt5.FigureCanvasQT so it can be shared with the cairo implementation. The
FigureCanvasQTAggBase.paintEvent, FigureCanvasQTAggBase.blit, and
FigureCanvasQTAggBase.print_figure methods have moved to FigureCanvasQTAgg.
paintEvent(), FigureCanvasQTAgg.blit(), and FigureCanvasQTAgg.
print_figure(). The first two methods assume that the instance is also a QWidget so to use
FigureCanvasQTAggBase it was required to multiple inherit from a QWidget sub-class.

Having moved all of its methods either up or down the class hierarchy FigureCanvasQTAg-
gBase has been deprecated. To do this without warning and to preserve as much API as
possible, .backend_qt5agg.FigureCanvasQTAggBase now inherits from backend_qt5.
FigureCanvasQTAgg.

The MRO for FigureCanvasQTAgg and FigureCanvasQTAggBase used to be

[matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg,
matplotlib.backends.backend_qt5agg.FigureCanvasQTAggBase,
matplotlib.backends.backend_agg.FigureCanvasAgg,
matplotlib.backends.backend_qt5.FigureCanvasQT,
PyQt5.QtWidgets.QWidget,
PyQt5.QtCore.QObject,
sip.wrapper,
PyQt5.QtGui.QPaintDevice,
sip.simplewrapper,
matplotlib.backend_bases.FigureCanvasBase,
object]

and

[matplotlib.backends.backend_qt5agg.FigureCanvasQTAggBase,
matplotlib.backends.backend_agg.FigureCanvasAgg,
matplotlib.backend_bases.FigureCanvasBase,
object]

respectively. They are now

[matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg,
matplotlib.backends.backend_agg.FigureCanvasAgg,
matplotlib.backends.backend_qt5.FigureCanvasQT,
PyQt5.QtWidgets.QWidget,

(continues on next page)

1056 Chapter 16. API Changes

Matplotlib, Release 3.4.3

(continued from previous page)
PyQt5.QtCore.QObject,
sip.wrapper,
PyQt5.QtGui.QPaintDevice,
sip.simplewrapper,
matplotlib.backend_bases.FigureCanvasBase,
object]

and

[matplotlib.backends.backend_qt5agg.FigureCanvasQTAggBase,
matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg,
matplotlib.backends.backend_agg.FigureCanvasAgg,
matplotlib.backends.backend_qt5.FigureCanvasQT,
PyQt5.QtWidgets.QWidget,
PyQt5.QtCore.QObject,
sip.wrapper,
PyQt5.QtGui.QPaintDevice,
sip.simplewrapper,
matplotlib.backend_bases.FigureCanvasBase,
object]

axes.Axes.imshow clips RGB values to the valid range

When axes.Axes.imshow is passed an RGB or RGBA value with out-of-range values, it now logs a
warning and clips them to the valid range. The old behaviour, wrapping back in to the range, often hid
outliers and made interpreting RGB images unreliable.

GTKAgg and GTKCairo backends deprecated

The GTKAgg and GTKCairo backends have been deprecated. These obsolete backends allow figures to be
rendered via the GTK+ 2 toolkit. They are untested, known to be broken, will not work with Python 3, and
their use has been discouraged for some time. Instead, use the GTK3Agg and GTK3Cairo backends for
rendering to GTK+ 3 windows.

16.1.11 API Changes in 2.1.2

Figure.legend no longer checks for repeated lines to ignore

matplotlib.figure.Figure.legend used to check if a line had the same label as an existing legend
entry. If it also had the same line color or marker color legend didn't add a new entry for that line. However,
the list of conditions was incomplete, didn't handle RGB tuples, didn't handle linewidths or linestyles etc.

This logic did not exist in axes.Axes.legend. It was included (erroneously) in Matplotlib 2.1.1 when
the legend argument parsing was unified [#9324](https://github.com/matplotlib/matplotlib/pull/9324). This
change removes that check in axes.Axes.legend again to restore the old behavior.

16.1. Old API Changes 1057

https://github.com/matplotlib/matplotlib/pull/9324

Matplotlib, Release 3.4.3

This logic has also been dropped fromFigure.legend, where it was previously undocumented. Repeated
lines with the same label will now each have an entry in the legend. If you do not want the duplicate entries,
don't add a label to the line, or prepend the label with an underscore.

16.1.12 API Changes in 2.1.1

Default behavior of log scales reverted to clip <= 0 values

The change it 2.1.0 to mask in logscale by default had more disruptive changes than anticipated and has been
reverted, however the clipping is now done in a way that fixes the issues that motivated changing the default
behavior to 'mask'.

As a side effect of this change, error bars which go negative now work as expected on log scales.

16.1.13 API Changes in 2.1.0

Default behavior of log scales changed to mask <= 0 values

Calling matplotlib.axes.Axes.set_xscale or matplotlib.axes.Axes.set_yscale
now uses 'mask' as the default method to handle invalid values (as opposed to 'clip'). This means that any
values <= 0 on a log scale will not be shown.

Previously they were clipped to a very small number and shown.

matplotlib.cbook.CallbackRegistry.process() suppresses exceptions by default

Matplotlib uses instances of CallbackRegistry as a bridge between user input event from the GUI and
user callbacks. Previously, any exceptions raised in a user call back would bubble out of of the process
method, which is typically in the GUI event loop. Most GUI frameworks simple print the traceback to the
screen and continue as there is not always a clear method of getting the exception back to the user. However
PyQt5 now exits the process when it receives an un-handled python exception in the event loop. Thus,
process() now suppresses and prints tracebacks to stderr by default.

What process() does with exceptions is now user configurable via the exception_handler attribute
and kwarg. To restore the previous behavior pass None

cb = CallbackRegistry(exception_handler=None)

A function which take and Exception as its only argument may also be passed

def maybe_reraise(exc):
if isinstance(exc, RuntimeError):

pass
else:

raise exc

cb = CallbackRegistry(exception_handler=maybe_reraise)

1058 Chapter 16. API Changes

Matplotlib, Release 3.4.3

Improved toggling of the axes grids

The g key binding now switches the states of the x and y grids independently (by cycling through all four
on/off combinations).

The new G key binding switches the states of the minor grids.

Both bindings are disabled if only a subset of the grid lines (in either direction) is visible, to avoid making
irreversible changes to the figure.

Ticklabels are turned off instead of being invisible

Internally, the Tick's ~matplotlib.axis.Tick.label1On attribute is now used to hide tick labels
instead of setting the visibility on the tick label objects. This improves overall performance and fixes some
issues. As a consequence, in case those labels ought to be shown, tick_params() needs to be used, e.g.

ax.tick_params(labelbottom=True)

Removal of warning on empty legends

pyplot.legend used to issue a warning when no labeled artist could be found. This warning has been
removed.

More accurate legend autopositioning

Automatic positioning of legends now prefers using the area surrounded by a Line2D rather than placing
the legend over the line itself.

Cleanup of stock sample data

The sample data of stocks has been cleaned up to remove redundancies and increase portability. The AAPL.
dat.gz, INTC.dat.gz and aapl.csv files have been removed entirely and will also no longer be
available from matplotlib.cbook.get_sample_data. If a CSV file is required, we suggest using
the msft.csv that continues to be shipped in the sample data. If a NumPy binary file is acceptable, we
suggest using one of the following two new files. The aapl.npy.gz and goog.npy files have been
replaced by aapl.npz and goog.npz, wherein the first column's type has changed from datetime.
date to numpy.datetime64 for better portability across Python versions. Note that Matplotlib does not
fully support numpy.datetime64 as yet.

16.1. Old API Changes 1059

https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64

Matplotlib, Release 3.4.3

Updated qhull to 2015.2

The version of qhull shipped with Matplotlib, which is used for Delaunay triangulation, has been updated
from version 2012.1 to 2015.2.

Improved Delaunay triangulations with large offsets

Delaunay triangulations now deal with large x,y offsets in a better way. This can cause mi-
nor changes to any triangulations calculated using Matplotlib, i.e. any use of matplotlib.
tri.Triangulation that requests that a Delaunay triangulation is calculated, which includes
matplotlib.pyplot.tricontour, matplotlib.pyplot.tricontourf, matplotlib.
pyplot.tripcolor, matplotlib.pyplot.triplot, matplotlib.mlab.griddata and
mpl_toolkits.mplot3d.axes3d.Axes3D.plot_trisurf.

Use backports.functools_lru_cache instead of functools32

It's better maintained and more widely used (by pylint, jaraco, etc).

cbook.is_numlike only performs an instance check

matplotlib.cbook.is_numlike now only checks that its argument is an instance of (numbers.
Number, np.Number). In particular, this means that arrays are now not num-like.

Elliptical arcs now drawn between correct angles

The matplotlib.patches.Arc patch is now correctly drawn between the given angles.

Previously a circular arc was drawn and then stretched into an ellipse, so the resulting arc did not lie between
theta1 and theta2.

-d$backend no longer sets the backend

It is no longer possible to set the backend by passing-d$backend at the command line. Use theMPLBACK-
END environment variable instead.

Path.intersects_bbox always treats the bounding box as filled

Previously, when Path.intersects_bbox was called with filled set to False, it would treat both
the path and the bounding box as unfilled. This behavior was not well documented and it is usually not
the desired behavior, since bounding boxes are used to represent more complex shapes located inside the
bounding box. This behavior has now been changed: when filled is False, the path will be treated as
unfilled, but the bounding box is still treated as filled. The old behavior was arguably an implementation
bug.

1060 Chapter 16. API Changes

Matplotlib, Release 3.4.3

When Path.intersects_bbox is called with filled set to True (the default value), there is no
change in behavior. For those rare cases where Path.intersects_bbox was called with filled
set to False and where the old behavior is actually desired, the suggested workaround is to call Path.
intersects_path with a rectangle as the path:

from matplotlib.path import Path
from matplotlib.transforms import Bbox, BboxTransformTo
rect = Path.unit_rectangle().transformed(BboxTransformTo(bbox))
result = path.intersects_path(rect, filled=False)

WX no longer calls generates IdleEvent events or calls idle_event

Removed unused private method _onIdle from FigureCanvasWx.

The IdleEvent class and FigureCanvasBase.idle_event method will be removed in 2.2

Correct scaling of magnitude_spectrum()

The functions matplotlib.mlab.magnitude_spectrum() and matplotlib.pyplot.
magnitude_spectrum() implicitly assumed the sum of windowing function values to be one. In
Matplotlib and Numpy the standard windowing functions are scaled to have maximum value of one, which
usually results in a sum of the order of n/2 for a n-point signal. Thus the amplitude scaling magni-
tude_spectrum() was off by that amount when using standard windowing functions (Bug 8417). Now
the behavior is consistent with matplotlib.pyplot.psd() and scipy.signal.welch(). The
following example demonstrates the new and old scaling:

import matplotlib.pyplot as plt
import numpy as np

tau, n = 10, 1024 # 10 second signal with 1024 points
T = tau/n # sampling interval
t = np.arange(n)*T

a = 4 # amplitude
x = a*np.sin(40*np.pi*t) # 20 Hz sine with amplitude a

New correct behavior: Amplitude at 20 Hz is a/2
plt.magnitude_spectrum(x, Fs=1/T, sides='onesided', scale='linear')

Original behavior: Amplitude at 20 Hz is (a/2)*(n/2) for a Hanning window
w = np.hanning(n) # default window is a Hanning window
plt.magnitude_spectrum(x*np.sum(w), Fs=1/T, sides='onesided', scale='linear')

16.1. Old API Changes 1061

https://github.com/matplotlib/matplotlib/issues/8417
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.welch.html#scipy.signal.welch

Matplotlib, Release 3.4.3

Change to signatures of bar() & barh()

For 2.0 the default value of *align* changed to 'center'. However this caused the signature of bar()
and barh() to be misleading as the first parameters were still left and bottom respectively:

bar(left, height, *, align='center', **kwargs)
barh(bottom, width, *, align='center', **kwargs)

despite behaving as the center in both cases. The methods now take *args, **kwargs as input and are
documented to have the primary signatures of:

bar(x, height, *, align='center', **kwargs)
barh(y, width, *, align='center', **kwargs)

Passing left and bottom as keyword arguments to bar() and barh() respectively will warn. Support will
be removed in Matplotlib 3.0.

Font cache as json

The font cache is now saved as json, rather than a pickle.

Invalid (Non-finite) Axis Limit Error

When using set_xlim() and set_ylim(), passing non-finite values now results in a ValueError.
The previous behavior resulted in the limits being erroneously reset to (-0.001, 0.001).

scatter and Collection offsets are no longer implicitly flattened

Collection (and thus both 2D scatter and 3D scatter) no longer implicitly flattens its offsets. As
a consequence, scatter's x and y arguments can no longer be 2+-dimensional arrays.

Deprecations

GraphicsContextBase's linestyle property.

The GraphicsContextBase.get_linestyle and GraphicsContextBase.
set_linestyle methods, which had no effect, have been deprecated. All of the backends Matplotlib
ships use GraphicsContextBase.get_dashes and GraphicsContextBase.set_dashes
which are more general. Third-party backends should also migrate to the *_dashes methods.

1062 Chapter 16. API Changes

Matplotlib, Release 3.4.3

NavigationToolbar2.dynamic_update

Use draw_idle() method on the Canvas instance instead.

Testing

matplotlib.testing.noseclasses is deprecated and will be removed in 2.3

EngFormatter num arg as string

Passing a string as num argument when calling an instance of matplotlib.ticker.EngFormatter
is deprecated and will be removed in 2.3.

mpl_toolkits.axes_grid module

All functionally from mpl_toolkits.axes_grid can be found in either mpl_toolkits.
axes_grid1 or mpl_toolkits.axisartist. Axes classes from mpl_toolkits.axes_grid
based on Axis from mpl_toolkits.axisartist can be found in mpl_toolkits.axisartist.

Axes collision in Figure.add_axes

Adding an axes instance to a figure by using the same arguments as for a previous axes instance currently
reuses the earlier instance. This behavior has been deprecated in Matplotlib 2.1. In a future version, a new
instance will always be created and returned. Meanwhile, in such a situation, a deprecation warning is raised
by matplotlib.figure.AxesStack.

This warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes
instance. See the docstring of add_axes() for more information.

Additional details on the rationale behind this deprecation can be found in #7377 and #9024.

Former validators for contour.negative_linestyle

The former public validation functions validate_negative_linestyle and vali-
date_negative_linestyle_legacy will be deprecated in 2.1 and may be removed in 2.3.
There are no public functions to replace them.

16.1. Old API Changes 1063

https://github.com/matplotlib/matplotlib/issues/7377/
https://github.com/matplotlib/matplotlib/issues/9024/

Matplotlib, Release 3.4.3

cbook

Many unused or near-unused matplotlib.cbook functions and classes have been deprecated:
converter, tostr, todatetime, todate, tofloat, toint, unique, is_string_like,
is_sequence_of_strings, is_scalar, Sorter, Xlator, soundex, Null, dict_delall,
RingBuffer, get_split_ind, wrap, get_recursive_filelist, pieces, excep-
tion_to_str, allequal, alltrue, onetrue, allpairs, finddir, reverse_dict,
restrict_dict, issubclass_safe, recursive_remove, unmasked_index_ranges.

Code Removal

qt4_compat.py

Moved to qt_compat.py. Renamed because it now handles Qt5 as well.

Previously Deprecated methods

The GraphicsContextBase.set_graylevel, FigureCanvasBase.onHilite and
mpl_toolkits.axes_grid1.mpl_axes.Axes.toggle_axisline methods have been re-
moved.

The ArtistInspector.findobj method, which was never working due to the lack of a
get_children method, has been removed.

The deprecated point_in_path, get_path_extents, point_in_path_collection,
path_intersects_path, convert_path_to_polygons, cleanup_path and
clip_path_to_rect functions in the matplotlib.path module have been removed. Their
functionality remains exposed as methods on the Path class.

The deprecated Artist.get_axes and Artist.set_axes methods have been removed

The matplotlib.backends.backend_ps.seq_allequal function has been removed. Use np.
array_equal instead.

The deprecated matplotlib.rcsetup.validate_maskedarray, matplotlib.
rcsetup.deprecate_savefig_extension and matplotlib.rcsetup.
validate_tkpythoninspect functions, and associated savefig.extension and tk.
pythoninspect rcparams entries have been removed.

The keyword argument resolution of matplotlib.projections.polar.PolarAxes has been re-
moved. It has deprecation with no effect from version 0.98.x.

1064 Chapter 16. API Changes

Matplotlib, Release 3.4.3

Axes.set_aspect("normal")

Support for setting an Axes's aspect to "normal" has been removed, in favor of the synonym "auto".

shading kwarg to pcolor

The shading kwarg to pcolor has been removed. Set edgecolors appropriately instead.

Functions removed from the lines module

The matplotlib.lines module no longer imports the pts_to_prestep, pts_to_midstep and
pts_to_poststep functions from matplotlib.cbook.

PDF backend functions

The methods embedTeXFont and tex_font_mapping of matplotlib.backends.
backend_pdf.PdfFile have been removed. It is unlikely that external users would have called
these methods, which are related to the font system internal to the PDF backend.

matplotlib.delaunay

Remove the delaunay triangulation code which is now handled by Qhull via matplotlib.tri.

16.1.14 API Changes in 2.0.1

Extensions to matplotlib.backend_bases.GraphicsContextBase

To better support controlling the color of hatches, the method matplotlib.backend_bases.
GraphicsContextBase.set_hatch_color was added to the expected API of GraphicsCon-
text classes. Calls to this method are currently wrappedwith atry:...except Attribute: block to
preserve back-compatibility with any third-party backends which do not extend GraphicsContextBase.

This value can be accessed in the backends via matplotlib.backend_bases.
GraphicsContextBase.get_hatch_color (which was added in 2.0 see Extension to mat-
plotlib.backend_bases.GraphicsContextBase) and should be used to color the hatches.

In the future there may also be hatch_linewidth and hatch_density related methods added. It is
encouraged, but not required that third-party backends extend GraphicsContextBase to make adapting
to these changes easier.

16.1. Old API Changes 1065

Matplotlib, Release 3.4.3

afm.get_fontconfig_fonts returns a list of paths and does not check for existence

afm.get_fontconfig_fonts used to return a set of paths encoded as a {key: 1, ...} dict, and
checked for the existence of the paths. It now returns a list and dropped the existence check, as the same
check is performed by the caller (afm.findSystemFonts) as well.

bar now returns rectangles of negative height or width if the corresponding input is neg-
ative

pyplot.bar used to normalize the coordinates of the rectangles that it created, to keep their height and
width positives, even if the corresponding input was negative. This normalization has been removed to permit
a simpler computation of the correct Artist.sticky_edges to use.

Do not clip line width when scaling dashes

The algorithm to scale dashes was changed to no longer clip the scaling factor: the dash patterns now continue
to shrink at thin line widths. If the line width is smaller than the effective pixel size, this may result in dashed
lines turning into solid gray-ish lines. This also required slightly tweaking the default patterns for '--', ':', and
'.-' so that with the default line width the final patterns would not change.

There is no way to restore the old behavior.

Deprecate 'Vega' colormaps

The "Vega" colormaps are deprecated in Matplotlib 2.0.1 and will be removed in Matplotlib 2.2. Use the
"tab" colormaps instead: "tab10", "tab20", "tab20b", "tab20c".

16.1.15 API Changes in 2.0.0

Deprecation and removal

Color of Axes

The axisbg and axis_bgcolor properties on Axes have been deprecated in favor of facecolor.

GTK and GDK backends deprecated

The GDK and GTK backends have been deprecated. These obsolete backends allow figures to be rendered
via the GDK API to files and GTK2 figures. They are untested and known to be broken, and their use has
been discouraged for some time. Instead, use the GTKAgg and GTKCairo backends for rendering to GTK2
windows.

1066 Chapter 16. API Changes

Matplotlib, Release 3.4.3

WX backend deprecated

TheWXbackend has been deprecated. It is untested, and its use has been discouraged for some time. Instead,
use the WXAgg backend for rendering figures to WX windows.

CocoaAgg backend removed

The deprecated and not fully functional CocoaAgg backend has been removed.

round removed from TkAgg Backend

The TkAgg backend had its own implementation of the round function. This was unused internally and
has been removed. Instead, use either the round builtin function or numpy.around.

'hold' functionality deprecated

The 'hold' keyword argument and all functions and methods related to it are deprecated, along with the
axes.hold rcParams entry. The behavior will remain consistent with the default hold=True state that
has long been in place. Instead of using a function or keyword argument (hold=False) to change that
behavior, explicitly clear the axes or figure as needed prior to subsequent plotting commands.

Artist.update has return value

The methods matplotlib.artist.Artist.set, matplotlib.artist.Artist.update,
and the function matplotlib.artist.setp now use a common codepath to look up how to update
the given artist properties (either using the setter methods or an attribute/property).

The behavior of matplotlib.artist.Artist.update is slightly changed to return a list of the val-
ues returned from the setter methods to avoid changing the API of matplotlib.artist.Artist.set
and matplotlib.artist.setp.

The keys passed into matplotlib.artist.Artist.update are now converted to lower case before
being processed, to match the behavior of matplotlib.artist.Artist.set and matplotlib.
artist.setp. This should not break any user code because there are no set methods with capitals in their
names, but this puts a constraint on naming properties in the future.

16.1. Old API Changes 1067

https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/functions.html#round
https://numpy.org/doc/stable/reference/generated/numpy.around.html#numpy.around

Matplotlib, Release 3.4.3

Legend initializers gain edgecolor and facecolor keyword arguments

The Legend background patch (or 'frame') can have its edgecolor and facecolor determined by the
corresponding keyword arguments to the matplotlib.legend.Legend initializer, or to any of the
methods or functions that call that initializer. If left to their default values of None, their values will be
taken from matplotlib.rcParams. The previously-existing framealpha kwarg still controls the
alpha transparency of the patch.

Qualitative colormaps

Colorbrewer's qualitative/discrete colormaps ("Accent", "Dark2", "Paired", "Pastel1", "Pastel2", "Set1",
"Set2", "Set3") are now implemented as ListedColormap instead of LinearSegmentedColormap.

To use these for images where categories are specified as integers, for instance, use:

plt.imshow(x, cmap='Dark2', norm=colors.NoNorm())

Change in the draw_image backend API

The draw_image method implemented by backends has changed its interface.

This change is only relevant if the backend declares that it is able to transform images by returning True
from option_scale_image. See the draw_image docstring for more information.

matplotlib.ticker.LinearLocator algorithm update

The matplotlib.ticker.LinearLocator is used to define the range and location of axis ticks when
the user wants an exact number of ticks. LinearLocator thus differs from the default locator MaxNLo-
cator, for which the user specifies a maximum number of intervals rather than a precise number of ticks.

The view range algorithm in matplotlib.ticker.LinearLocator has been changed so that more
convenient tick locations are chosen. The new algorithm returns a plot view range that is a multiple of the
user-requested number of ticks. This ensures tick marks will be located at whole integers more consistently.
For example, when both y-axes of a``twinx`` plot use matplotlib.ticker.LinearLocator with
the same number of ticks, their y-tick locations and grid lines will coincide.

matplotlib.ticker.LogLocator gains numticks kwarg

The maximum number of ticks generated by the LogLocator can now be controlled explicitly via setting
the new 'numticks' kwarg to an integer. By default the kwarg is None which internally sets it to the 'auto'
string, triggering a new algorithm for adjusting the maximum according to the axis length relative to the
ticklabel font size.

1068 Chapter 16. API Changes

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

matplotlib.ticker.LogFormatter: two new kwargs

Previously, minor ticks on log-scaled axes were not labeled by default. An algorithm has been added to the
LogFormatter to control the labeling of ticks between integer powers of the base. The algorithm uses two
parameters supplied in a kwarg tuple named 'minor_thresholds'. See the docstring for further explanation.

To improve support for axes using SymmetricalLogLocator, a linthresh keyword argument was added.

New defaults for 3D quiver function in mpl_toolkits.mplot3d.axes3d.py

Matplotlib has both a 2D and a 3D quiver function. These changes affect only the 3D function and make
the default behavior of the 3D function match the 2D version. There are two changes:

1) The 3D quiver function previously normalized the arrows to be the same length, which makes it unus-
able for situations where the arrows should be different lengths and does not match the behavior of the
2D function. This normalization behavior is now controlled with the normalize keyword, which
defaults to False.

2) The pivot keyword now defaults to tail instead of tip. This was done in order to match the
default behavior of the 2D quiver function.

To obtain the previous behavior with the 3D quiver function, one can call the function with

ax.quiver(x, y, z, u, v, w, normalize=True, pivot='tip')

where "ax" is an Axes3d object created with something like

import mpl_toolkits.mplot3d.axes3d
ax = plt.subplot(111, projection='3d')

Stale figure behavior

Attempting to draw the figure will now mark it as not stale (independent if the draw succeeds). This change
is to prevent repeatedly trying to re-draw a figure which is raising an error on draw. The previous behavior
would only mark a figure as not stale after a full re-draw succeeded.

The spectral colormap is now nipy_spectral

The colormaps formerly known asspectral andspectral_r have been replaced bynipy_spectral
and nipy_spectral_r since Matplotlib 1.3.0. Even though the colormap was deprecated in Matplotlib
1.3.0, it never raised a warning. As of Matplotlib 2.0.0, using the old names raises a deprecation warning.
In the future, using the old names will raise an error.

16.1. Old API Changes 1069

Matplotlib, Release 3.4.3

Default install no longer includes test images

To reduce the size of wheels and source installs, the tests and baseline images are no longer included by
default.

To restore installing the tests and images, use a setup.cfg with

[packages]
tests = True
toolkits_tests = True

in the source directory at build/install time.

16.1.16 Changes in 1.5.3

ax.plot(..., marker=None) gives default marker

Prior to 1.5.3 keyword arguments passed to plot were handled in two parts -- default keyword arguments
generated internal to plot (such as the cycled styles) and user supplied keyword arguments. The internally
generated keyword arguments were passed to the matplotlib.lines.Line2D and the user keyword
arguments were passed to ln.set(**kwargs) to update the artist after it was created. Now both sets of
keyword arguments are merged and passed to Line2D. This change was made to allow None to be passed
in via the user keyword arguments to mean 'do the default thing' as is the convention through out Matplotlib
rather than raising an exception.

Unlike most Line2D setter methods set_marker did accept None as a valid input which was mapped to
'no marker'. Thus, by routing this marker=None through __init__ rather than set(...) the meaning
of ax.plot(..., marker=None) changed from 'no markers' to 'default markers from rcparams'.

This is change is only evident if mpl.rcParams['lines.marker'] has a value other than 'None'
(which is string 'None' which means 'no marker').

16.1.17 Changes in 1.5.2

Default Behavior Changes

Changed default autorange behavior in boxplots

Prior to v1.5.2, the whiskers of boxplots would extend to the minimum and maximum values if the quartiles
were all equal (i.e., Q1 = median = Q3). This behavior has been disabled by default to restore consistency
with other plotting packages.

To restore the old behavior, simply set autorange=True when calling plt.boxplot.

1070 Chapter 16. API Changes

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

16.1.18 Changes in 1.5.0

Code Changes

Reversed matplotlib.cbook.ls_mapper, added ls_mapper_r

Formerly, matplotlib.cbook.ls_mapper was a dictionary with the long-form line-style names
("solid") as keys and the short forms ("-") as values. This long-to-short mapping is now done by
ls_mapper_r, and the short-to-long mapping is done by the ls_mapper.

Prevent moving artists between Axes, Property-ify Artist.axes, deprecate
Artist.{get,set}_axes

This was done to prevent an Artist that is already associated with an Axes from being moved/added to a
different Axes. This was never supported as it causes havoc with the transform stack. The apparent support
for this (as it did not raise an exception) was the source of multiple bug reports and questions on SO.

For almost all use-cases, the assignment of the axes to an artist should be taken care of by the axes as part of
the Axes.add_* method, hence the deprecation of {get,set}_axes.

Removing the set_axesmethod will also remove the 'axes' line from the ACCEPTS kwarg tables (assum-
ing that the removal date gets here before that gets overhauled).

Tightened input validation on 'pivot' kwarg to quiver

Tightened validation so that only {'tip', 'tail', 'mid', and 'middle'} (but any capitalization) are valid values
for the pivot keyword argument in the Quiver class (and hence axes.Axes.quiver and pyplot.
quiver which both fully delegate to Quiver). Previously any input matching 'mid.*' would be interpreted
as 'middle', 'tip.*' as 'tip' and any string not matching one of those patterns as 'tail'.

The value of Quiver.pivot is normalized to be in the set {'tip', 'tail', 'middle'} in Quiver.

Reordered Axes.get_children

The artist order returned by axes.Axes.get_children did not match the one used by axes.Axes.
draw. They now use the same order, as axes.Axes.draw now calls axes.Axes.get_children.

16.1. Old API Changes 1071

Matplotlib, Release 3.4.3

Changed behaviour of contour plots

The default behaviour of contour() and contourf()when using a masked array is now determined by
the new keyword argument corner_mask, or if this is not specified then the new rcParams["contour.
corner_mask"] (default: True) instead. The new default behaviour is equivalent to using cor-
ner_mask=True; the previous behaviour can be obtained using corner_mask=False or by chang-
ing the rcParam. The example http://matplotlib.org/examples/pylab_examples/contour_corner_mask.html
demonstrates the difference. Use of the old contouring algorithm, which is obtained with cor-
ner_mask='legacy', is now deprecated.

Contour labels may now appear in different places than in earlier versions of Matplotlib.

In addition, the keyword argument nchunk now applies to contour() as well as contourf(), and it
subdivides the domain into subdomains of exactly nchunk by nchunk quads, whereas previously it was only
roughly nchunk by nchunk quads.

The C/C++ object that performs contour calculations used to be stored in the public attribute
QuadContourSet.Cntr, but is now stored in a private attribute and should not be accessed by end
users.

Added set_params function to all Locator types

This was a bug fix targeted at making the api for Locators more consistent.

In the old behavior, only locators of type MaxNLocator have set_params() defined, causing its use on any
other Locator to raise an AttributeError (aside: set_params(args) is a function that sets the parameters of a
Locator instance to be as specified within args). The fix involves moving set_params() to the Locator class
such that all subtypes will have this function defined.

Since each of the Locator subtypes have their ownmodifiable parameters, a universal set_params() in Locator
isn't ideal. Instead, a default no-operation function that raises a warning is implemented in Locator. Subtypes
extending Locator will then override with their own implementations. Subtypes that do not have a need for
set_params() will fall back onto their parent's implementation, which raises a warning as intended.

In the new behavior, Locator instances will not raise an AttributeError when set_params() is called. For
Locators that do not implement set_params(), the default implementation in Locator is used.

Disallow None as x or y value in ax.plot

Do not allow None as a valid input for the x or y args in axes.Axes.plot. This may break some user
code, but this was never officially supported (ex documented) and allowing None objects through can lead
to confusing exceptions downstream.

To create an empty line use

ln1, = ax.plot([], [], ...)
ln2, = ax.plot([], ...)

In either case to update the data in the Line2D object you must update both the x and y data.

1072 Chapter 16. API Changes

../../tutorials/introductory/customizing.html?highlight=contour.corner_mask#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.corner_mask#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
http://matplotlib.org/examples/pylab_examples/contour_corner_mask.html

Matplotlib, Release 3.4.3

Removed args and kwargs from MicrosecondLocator.__call__

The call signature of __call__() has changed from __call__(self, *args, **kwargs) to
__call__(self). This is consistent with the superclassLocator and also all the other Locators derived
from this superclass.

No ValueError for the MicrosecondLocator and YearLocator

The MicrosecondLocator and YearLocator objects when called will return an empty list if the axes
have no data or the view has no interval. Previously, they raised a ValueError. This is consistent with all
the Date Locators.

'OffsetBox.DrawingArea' respects the 'clip' keyword argument

The call signature was OffsetBox.DrawingArea(..., clip=True) but nothing was done with
the clip argument. The object did not do any clipping regardless of that parameter. Now the object can and
does clip the child Artists if they are set to be clipped.

You can turn off the clipping on a per-child basis using child.set_clip_on(False).

Add salt to clipPath id

Add salt to the hash used to determine the id of the clipPath nodes. This is to avoid conflicts when two
svg documents with the same clip path are included in the same document (see https://github.com/ipython/
ipython/issues/8133 and https://github.com/matplotlib/matplotlib/issues/4349), however this means that the
svg output is no longer deterministic if the same figure is saved twice. It is not expected that this will affect
any users as the current ids are generated from an md5 hash of properties of the clip path and any user would
have a very difficult time anticipating the value of the id.

Changed snap threshold for circle markers to inf

When drawing circle markers above some marker size (previously 6.0) the path used to generate the marker
was snapped to pixel centers. However, this ends up distorting the marker away from a circle. By setting the
snap threshold to inf snapping is never done on circles.

This change broke several tests, but is an improvement.

16.1. Old API Changes 1073

https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/ipython/ipython/issues/8133
https://github.com/ipython/ipython/issues/8133
https://github.com/matplotlib/matplotlib/issues/4349

Matplotlib, Release 3.4.3

Preserve units with Text position

Previously the 'get_position' method on Text would strip away unit information even though the units were
still present. There was no inherent need to do this, so it has been changed so that unit data (if present) will
be preserved. Essentially a call to 'get_position' will return the exact value from a call to 'set_position'.

If you wish to get the old behaviour, then you can use the new method called 'get_unitless_position'.

New API for custom Axes view changes

Interactive pan and zoom were previously implemented using a Cartesian-specific algorithm that was
not necessarily applicable to custom Axes. Three new private methods, matplotlib.axes.
_base._AxesBase._get_view, matplotlib.axes._base._AxesBase._set_view, and
matplotlib.axes._base._AxesBase._set_view_from_bbox, allow for custom Axes classes
to override the pan and zoom algorithms. Implementors of custom Axes who override these methods may
provide suitable behaviour for both pan and zoom as well as the view navigation buttons on the interactive
toolbars.

MathTex visual changes

The spacing commands in mathtext have been changed to more closely match vanilla TeX.

Improved spacing in mathtext

The extra space that appeared after subscripts and superscripts has been removed.

No annotation coordinates wrap

In #2351 for 1.4.0 the behavior of ['axes points', 'axes pixel', 'figure points', 'figure pixel'] as coordinates was
change to no longer wrap for negative values. In 1.4.3 this change was reverted for 'axes points' and 'axes
pixel' and in addition caused 'axes fraction' to wrap. For 1.5 the behavior has been reverted to as it was in
1.4.0-1.4.2, no wrapping for any type of coordinate.

Deprecation

Deprecated GraphicsContextBase.set_graylevel

The GraphicsContextBase.set_graylevel function has been deprecated in 1.5 and will be re-
moved in 1.6. It has been unused. The GraphicsContextBase.set_foreground could be used
instead.

1074 Chapter 16. API Changes

Matplotlib, Release 3.4.3

deprecated idle_event

The idle_event was broken or missing in most backends and causes spurious warnings in some cases,
and its use in creating animations is now obsolete due to the animations module. Therefore code involving
it has been removed from all but the wx backend (where it partially works), and its use is deprecated. The
animation module may be used instead to create animations.

color_cycle deprecated

In light of the new property cycling feature, the Axes method set_color_cycle is now deprecated.
Calling this method will replace the current property cycle with one that cycles just the given colors.

Similarly, the rc parameter axes.color_cycle is also deprecated in lieu of the new rcParams["axes.
prop_cycle"] (default: cycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c',
'#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22',
'#17becf'])) parameter. Having both parameters in the same rc file is not recommended as the result can-
not be predicted. For compatibility, setting axes.color_cyclewill replace the cycler in rcParams["axes.
prop_cycle"] (default: cycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c',
'#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22',
'#17becf'])) with a color cycle. Accessing axes.color_cycle will return just the color portion of the
property cycle, if it exists.

Timeline for removal has not been set.

Bundled jquery

The version of jquery bundled with the webagg backend has been upgraded from 1.7.1 to 1.11.3. If you are
using the version of jquery bundled with webagg you will need to update your html files as such

- <script src="_static/jquery/js/jquery-1.7.1.min.js"></script>
+ <script src="_static/jquery/js/jquery-1.11.3.min.js"></script>

Code Removed

Removed Image from main namespace

Image was imported from PIL/pillow to test if PIL is available, but there is no reason to keep Image in the
namespace once the availability has been determined.

16.1. Old API Changes 1075

../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Removed lod from Artist

Removed the method set_lod and all references to the attribute _lod as they are not used anywhere else
in the code base. It appears to be a feature stub that was never built out.

Removed threading related classes from cbook

The classes Scheduler, Timeout, and Idle were in cbook, but are not used internally. They appear to
be a prototype for the idle event system which was not working and has recently been pulled out.

Removed Lena images from sample_data

The lena.png and lena.jpg images have been removed from Matplotlib's sample_data directory. The
images are also no longer available from matplotlib.cbook.get_sample_data. We suggest using
matplotlib.cbook.get_sample_data('grace_hopper.png') or matplotlib.cbook.
get_sample_data('grace_hopper.jpg') instead.

Legend

Removed handling of loc as a positional argument to Legend

Legend handlers

Remove code to allow legend handlers to be callable. They must now implement a method leg-
end_artist.

Axis

Removed method set_scale. This is now handled via a private method which should not be used directly
by users. It is called via Axes.set_{x,y}scale which takes care of ensuring the related changes are
also made to the Axes object.

finance.py

Removed functions with ambiguous argument order from finance.py

1076 Chapter 16. API Changes

Matplotlib, Release 3.4.3

Annotation

Removed textcoords and xytext proprieties from Annotation objects.

sphinxext.ipython_*.py

Both ipython_console_highlighting and ipython_directive have been moved to IPython.

Change your import from matplotlib.sphinxext.ipython_directive to IPython.
sphinxext.ipython_directive and frommatplotlib.sphinxext.ipython_directive
to IPython.sphinxext.ipython_directive

LineCollection.color

Deprecated in 2005, use set_color

remove 'faceted' as a valid value for shading in tri.tripcolor

Use edgecolor instead. Added validation on shading to only be valid values.

Remove faceted kwarg from scatter

Remove support for the faceted kwarg. This was deprecated in
d48b34288e9651ff95c3b8a071ef5ac5cf50bae7 (2008-04-18!) and replaced by edgecolor.

Remove set_colorbar method from ScalarMappable

Remove set_colorbar method, use colorbar attribute directly.

patheffects.svg

• remove get_proxy_renderer method from AbstarctPathEffect class

• remove patch_alpha and offset_xy from SimplePatchShadow

16.1. Old API Changes 1077

Matplotlib, Release 3.4.3

Remove testing.image_util.py

Contained only a no-longer used port of functionality from PIL

Remove mlab.FIFOBuffer

Not used internally and not part of core mission of mpl.

Remove mlab.prepca

Deprecated in 2009.

Remove NavigationToolbar2QTAgg

Added no functionality over the base NavigationToolbar2Qt

mpl.py

Remove the module matplotlib.mpl. Deprecated in 1.3 by PR #1670 and commit
78ce67d161625833cacff23cfe5d74920248c5b2

16.1.19 Changes in 1.4.x

Code changes

• A major refactoring of the axes module was made. The axes module has been split into smaller mod-
ules:

– the _base module, which contains a new private _AxesBase class. This class contains all
methods except plotting and labelling methods.

– the axesmodule, which contains the axes.Axes class. This class inherits from _AxesBase,
and contains all plotting and labelling methods.

– the _subplot module, with all the classes concerning subplotting.

There are a couple of things that do not exists in the axes module's namespace anymore. If you use them,
you need to import them from their original location:

• math -> import math

• ma -> from numpy import ma

• cbook -> from matplotlib import cbook

• docstring -> from matplotlib import docstring

1078 Chapter 16. API Changes

Matplotlib, Release 3.4.3

• is_sequence_of_strings -> from matplotlib.cbook import
is_sequence_of_strings

• is_string_like -> from matplotlib.cbook import is_string_like

• iterable -> from matplotlib.cbook import iterable

• itertools -> import itertools

• martist -> from matplotlib import artist as martist

• matplotlib -> import matplotlib

• mcoll -> from matplotlib import collections as mcoll

• mcolors -> from matplotlib import colors as mcolors

• mcontour -> from matplotlib import contour as mcontour

• mpatches -> from matplotlib import patches as mpatches

• mpath -> from matplotlib import path as mpath

• mquiver -> from matplotlib import quiver as mquiver

• mstack -> from matplotlib import stack as mstack

• mstream -> from matplotlib import stream as mstream

• mtable -> from matplotlib import table as mtable

• As part of the refactoring to enable Qt5 support, the module matplotlib.backends.
qt4_compat was renamed to matplotlib.backends.qt_compat. qt4_compat is dep-
recated in 1.4 and will be removed in 1.5.

• The errorbar() method has been changed such that the upper and lower limits (lolims, uplims,
xlolims, xuplims) now point in the correct direction.

• The fmt kwarg for errorbar() now supports the string 'none' to suppress drawing of a line and
markers; use of the None object for this is deprecated. The default fmt value is changed to the empty
string (''), so the line and markers are governed by the plot() defaults.

• A bug has been fixed in the path effects rendering of fonts, which now means that the font size is con-
sistent with non-path effect fonts. See https://github.com/matplotlib/matplotlib/issues/2889 for more
detail.

• The Sphinx extensions ipython_directive and ipython_console_highlighting have
been moved to the IPython project itself. While they remain in Matplotlib for this release, they
have been deprecated. Update your extensions in conf.py to point to IPython.sphinxext.
ipython_directive instead of matplotlib.sphinxext.ipython_directive.

• In matplotlib.finance, almost all functions have been deprecated and replaced with a pair of
functions name *_ochl and *_ohlc. The former is the 'open-close-high-low' order of quotes used
previously in this module, and the latter is the 'open-high-low-close' order that is standard in finance.

• For consistency the face_alpha keyword to matplotlib.patheffects.
SimplePatchShadow has been deprecated in favour of the alpha keyword. Similarly,
the keyword offset_xy is now named offset across all AbstractPathEffects.

16.1. Old API Changes 1079

https://github.com/matplotlib/matplotlib/issues/2889

Matplotlib, Release 3.4.3

matplotlib.patheffects._Base has been renamed to matplotlib.patheffects.
AbstractPathEffect. matplotlib.patheffect.ProxyRenderer has been renamed
to matplotlib.patheffects.PathEffectRenderer and is now a full RendererBase
subclass.

• The artist used to draw the outline of a Figure.colorbar has been changed from a
matplotlib.lines.Line2D to matplotlib.patches.Polygon, thus colorbar.
ColorbarBase.outline is now a matplotlib.patches.Polygon object.

• The legend handler interface has changed from a callable, to any object which implements the leg-
end_artists method (a deprecation phase will see this interface be maintained for v1.4). See
Legend guide for further details. Further legend changes include:

– matplotlib.axes.Axes._get_legend_handles now returns a generator of handles,
rather than a list.

– The legend() function's loc positional argument has been deprecated. Use the loc keyword
argument instead.

• The rcParams["savefig.transparent"] (default: False) has been added to control de-
fault transparency when saving figures.

• Slightly refactored the Annotation family. The text location in Annotation is now entirely han-
dled by the underlying Text object so .set_position works as expected. The attributes xytext
and textcoords have been deprecated in favor of xyann and anncoords so that Annotation and An-
notationBbox can share a common sensibly named api for getting/setting the location of the text
or box.

– xyann -> set the location of the annotation

– xy -> set where the arrow points to

– anncoords -> set the units of the annotation location

– xycoords -> set the units of the point location

– set_position() -> Annotation only set location of annotation

• matplotlib.mlab.specgram, matplotlib.mlab.psd, matplotlib.mlab.csd,
matplotlib.mlab.cohere, matplotlib.mlab.cohere_pairs, matplotlib.
pyplot.specgram, matplotlib.pyplot.psd, matplotlib.pyplot.csd, and
matplotlib.pyplot.cohere now raise ValueError where they previously raised Assertion-
Error.

• For matplotlib.mlab.psd, matplotlib.mlab.csd, matplotlib.mlab.cohere,
matplotlib.mlab.cohere_pairs, matplotlib.pyplot.specgram, matplotlib.
pyplot.psd, matplotlib.pyplot.csd, and matplotlib.pyplot.cohere, in cases
where a shape (n, 1) array is returned, this is now converted to a (n,) array. Previously, (n, m) arrays
were averaged to an (n,) array, but (n, 1) arrays were returned unchanged. This change makes the
dimensions consistent in both cases.

• Added the rcParams["axes.formatter.useoffset"] (default: True) to control the de-
fault value of useOffset in ticker.ScalarFormatter

1080 Chapter 16. API Changes

../../tutorials/introductory/customizing.html?highlight=savefig.transparent#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.useoffset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

• Added Formatter sub-class StrMethodFormatter which does the exact same thing as For-
matStrFormatter, but for new-style formatting strings.

• Deprecatedmatplotlib.testing.image_util and the only function within, matplotlib.
testing.image_util.autocontrast. These will be removed completely in v1.5.0.

• Thefmt argument ofplot_date() has been changed frombo to justo, so color cycling can happen
by default.

• Removed the class FigureManagerQTAgg and deprecated NavigationToolbar2QTAgg
which will be removed in 1.5.

• Removed formerly public (non-prefixed) attributes rect and drawRect from FigureCanvasQ-
TAgg; they were always an implementation detail of the (preserved) drawRectangle() function.

• The function signatures of tight_bbox.adjust_bbox and tight_bbox.
process_figure_for_rasterizing have been changed. A new fixed_dpi parameter
allows for overriding the figure.dpi setting instead of trying to deduce the intended behaviour
from the file format.

• Added support for horizontal/vertical axes padding to mpl_toolkits.axes_grid1.
axes_grid.ImageGrid --- argument axes_pad can now be tuple-like if separate axis padding is
required. The original behavior is preserved.

• Added support for skewed transforms to matplotlib.transforms.Affine2D, which can be
created using the skew and skew_deg methods.

• Added clockwise parameter to control sectors direction in axes.Axes.pie

• Inmatplotlib.lines.Line2D themarkevery functionality has been extended. Previously an in-
teger start-index and stride-length could be specified using either a two-element-list or a two-element-
tuple. Now this can only be done using a two-element-tuple. If a two-element-list is used then it will
be treated as NumPy fancy indexing and only the two markers corresponding to the given indexes will
be shown.

• Removed prop keyword argument from mpl_toolkits.axes_grid1.anchored_artists.
AnchoredSizeBar call. It was passed through to the base-class __init__ and is only used
for setting padding. Now fontproperties (which is what is really used to set the font properties of
AnchoredSizeBar) is passed through in place of prop. If fontproperties is not passed in, but prop
is, then prop is used in place of fontproperties. If both are passed in, prop is silently ignored.

• The use of the index 0 in pyplot.subplot and related commands is deprecated. Due to a lack of
validation, calling plt.subplots(2, 2, 0) does not raise an exception, but puts an axes in the
last position. This is due to the indexing in subplot being 1-based (to mirror MATLAB) so before
indexing into the GridSpec object used to determine where the axes should go, 1 is subtracted off.
Passing in 0 results in passing -1 to GridSpec which results in getting the last position back. Even
though this behavior is clearly wrong and not intended, we are going through a deprecation cycle in
an abundance of caution that any users are exploiting this 'feature'. The use of 0 as an index will raise
a warning in 1.4 and an exception in 1.5.

• Clipping is now off by default on offset boxes.

• Matplotlib now uses a less-aggressive call to gc.collect(1) when closing figures to avoid major
delays with large numbers of user objects in memory.

16.1. Old API Changes 1081

Matplotlib, Release 3.4.3

• The default clip value of all pie artists now defaults to False.

Code removal

• Removed mlab.levypdf. The code raised a NumPy error (and has for a long time) and was not the
standard form of the Levy distribution. scipy.stats.levy should be used instead

16.1.20 Changes in 1.3.x

Changes in 1.3.1

It is rare that we make an API change in a bugfix release, however, for 1.3.1 since 1.3.0 the following change
was made:

• text.Text.cached (used to cache font objects) has been made into a private variable. Among the
obvious encapsulation benefit, this removes this confusing-looking member from the documentation.

• The method hist() now always returns bin occupancies as an array of type float. Previously, it
was sometimes an array of type int, depending on the call.

Code removal

• The following items that were deprecated in version 1.2 or earlier have now been removed completely.

– The Qt 3.x backends (qt and qtagg) have been removed in favor of the Qt 4.x backends (qt4
and qt4agg).

– The FltkAgg and Emf backends have been removed.

– The matplotlib.nxutils module has been removed. Use the functionality on
matplotlib.path.Path.contains_point and friends instead.

– Instead of axes.Axes.get_frame, use axes.Axes.patch.

– The following keyword arguments to the legend function have been renamed:

∗ pad -> borderpad

∗ labelsep -> labelspacing

∗ handlelen -> handlelength

∗ handletextsep -> handletextpad

∗ axespad -> borderaxespad

Related to this, the following rcParams have been removed:

∗ legend.pad,

∗ legend.labelsep,

∗ legend.handlelen,

1082 Chapter 16. API Changes

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Matplotlib, Release 3.4.3

∗ legend.handletextsep and

∗ legend.axespad

– For the hist function, instead of width, use rwidth (relative width).

– On patches.Circle, the resolution keyword argument has been removed. For a circle made
up of line segments, use patches.CirclePolygon.

– The printing functions in the Wx backend have been removed due to the burden of keeping them
up-to-date.

– mlab.liaupunov has been removed.

– mlab.save, mlab.load, pylab.save and pylab.load have been removed. We rec-
ommend using numpy.savetxt and numpy.loadtxt instead.

– widgets.HorizontalSpanSelector has been removed. Use widgets.
SpanSelector instead.

Code deprecation

• The CocoaAgg backend has been deprecated, with the possibility for deletion or resurrection in a future
release.

• The top-level functions in matplotlib.path that are implemented in C++ were never meant
to be public. Instead, users should use the Pythonic wrappers for them in the path.Path and
collections.Collection classes. Use the following mapping to update your code:

– point_in_path -> path.Path.contains_point

– get_path_extents -> path.Path.get_extents

– point_in_path_collection -> collections.Collection.contains

– path_in_path -> path.Path.contains_path

– path_intersects_path -> path.Path.intersects_path

– convert_path_to_polygons -> path.Path.to_polygons

– cleanup_path -> path.Path.cleaned

– points_in_path -> path.Path.contains_points

– clip_path_to_rect -> path.Path.clip_to_bbox

• matplotlib.colors.normalize and matplotlib.colors.no_norm have been depre-
cated in favour of matplotlib.colors.Normalize and matplotlib.colors.NoNorm
respectively.

• The ScalarMappable class' set_colorbar method is now deprecated. Instead, the
matplotlib.cm.ScalarMappable.colorbar attribute should be used. In previous Mat-
plotlib versions this attribute was an undocumented tuple of (colorbar_instance, color-
bar_axes) but is now just colorbar_instance. To get the colorbar axes it is possible to just
use the ax attribute on a colorbar instance.

16.1. Old API Changes 1083

https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt

Matplotlib, Release 3.4.3

• The matplotlib.mpl module is now deprecated. Those who relied on this module should transi-
tion to simply using import matplotlib as mpl.

Code changes

• Patch now fully supports using RGBAvalues for itsfacecolor andedgecolor attributes, which
enables faces and edges to have different alpha values. If the Patch object's alpha attribute is set
to anything other than None, that value will override any alpha-channel value in both the face and
edge colors. Previously, if Patch had alpha=None, the alpha component of edgecolor would
be applied to both the edge and face.

• The optional isRGB argument to set_foreground() (and the other GraphicsContext classes that
descend from it) has been renamed to isRGBA, and should now only be set to True if the fg color
argument is known to be an RGBA tuple.

• For Patch, the capstyle used is now butt, to be consistent with the default for most other objects,
and to avoid problems with non-solid linestyle appearing solid when using a large linewidth.
Previously, Patch used capstyle='projecting'.

• Path objects can now be marked as readonly by passing readonly=True to its constructor. The
built-in path singletons, obtained through Path.unit* class methods return readonly paths. If you
have code that modified these, you will need to make a deepcopy first, using either:

import copy
path = copy.deepcopy(Path.unit_circle())

or

path = Path.unit_circle().deepcopy()

Deep copying a Path always creates an editable (i.e. non-readonly) Path.

• The list at Path.NUM_VERTICES was replaced by a dictionary mapping Path codes to the number
of expected vertices at NUM_VERTICES_FOR_CODE.

• To support XKCD style plots, the matplotlib.path.cleanup_path method's signature was
updated to require a sketch argument. Users of matplotlib.path.cleanup_path are encour-
aged to use the new cleaned() Path method.

• Data limits on a plot now start from a state of having "null" limits, rather than limits in the range (0, 1).
This has an effect on artists that only control limits in one direction, such as axes.Axes.axvline
and axes.Axes.axhline, since their limits will no longer also include the range (0, 1). This fixes
some problems where the computed limits would be dependent on the order in which artists were
added to the axes.

• Fixed a bug in setting the position for the right/top spine with data position type. Previously, it would
draw the right or top spine at +1 data offset.

• In FancyArrow, the default arrow head width, head_width, has been made larger to produce a
visible arrow head. The new value of this kwarg is head_width = 20 * width.

1084 Chapter 16. API Changes

Matplotlib, Release 3.4.3

• It is now possible to provide number of levels + 1 colors in the case of extend='both' for
contourf (or just number of levels colors for an extend value min or max) such that the resulting
colormap's set_under and set_over are defined appropriately. Any other number of colors will
continue to behave as before (if more colors are provided than levels, the colors will be unused). A
similar change has been applied to contour, where extend='both' would expect number of
levels + 2 colors.

• A new keyword extendrect in colorbar() and ColorbarBase allows one to control the shape of
colorbar extensions.

• The extension of MultiCursor to both vertical (default) and/or horizontal cursor implied that
self.line is replaced by self.vline for vertical cursors lines and self.hline is added for
the horizontal cursors lines.

• On POSIX platforms, the report_memory() function raises NotImplementedError instead
of OSError if the ps command cannot be run.

• The matplotlib.cbook.check_output function has been moved to matplotlib.
compat.subprocess.

Configuration and rcParams

• On Linux, the user-specific matplotlibrc configuration file is now located in ~/.config/
matplotlib/matplotlibrc to conform to the XDG Base Directory Specification.

• The font.* rcParams now affect only text objects created after the rcParam has been set, and will
not retroactively affect already existing text objects. This brings their behavior in line with most other
rcParams.

• Removed call of grid() in matplotlib.pyplot.plotfile. To draw the axes grid, set the
axes.grid rcParam to True, or explicitly call grid().

16.1.21 Changes in 1.2.x

• The classic option of the rc parameter toolbar is deprecated and will be removed in the next
release.

• The matplotlib.cbook.isvector method has been removed since it is no longer functional.

• The rasterization_zorder property on Axes sets a zorder below which artists are rasterized.
This has defaulted to -30000.0, but it now defaults to None, meaning no artists will be rasterized.
In order to rasterize artists below a given zorder value, set_rasterization_zorder must be
explicitly called.

• In scatter(), and scatter, when specifying a marker using a tuple, the angle is now specified
in degrees, not radians.

• Using twinx() or twiny() no longer overrides the current locaters and formatters on the axes.

• In contourf(), the handling of the extend kwarg has changed. Formerly, the extended ranges were
mapped after to 0, 1 after being normed, so that they always corresponded to the extreme values of the
colormap. Now they are mapped outside this range so that they correspond to the special colormap

16.1. Old API Changes 1085

https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/exceptions.html#OSError
https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

Matplotlib, Release 3.4.3

values determined by the set_under() and set_over()methods, which default to the colormap
end points.

• The new rc parameter savefig.format replaces cairo.format and savefig.extension,
and sets the default file format used by matplotlib.figure.Figure.savefig().

• In pyplot.pie() and axes.Axes.pie(), one can now set the radius of the pie; setting the
radius to 'None' (the default value), will result in a pie with a radius of 1 as before.

• Use of matplotlib.projections.projection_factory is now depre-
cated in favour of axes class identification using matplotlib.projections.
process_projection_requirements followed by direct axes class invocation (at the
time of writing, functions which do this are: add_axes(), add_subplot() and gca()).
Therefore:

key = figure._make_key(*args, **kwargs)
ispolar = kwargs.pop('polar', False)
projection = kwargs.pop('projection', None)
if ispolar:

if projection is not None and projection != 'polar':
raise ValueError('polar and projection args are inconsistent')

projection = 'polar'
ax = projection_factory(projection, self, rect, **kwargs)
key = self._make_key(*args, **kwargs)

is now

projection_class, kwargs, key = \
process_projection_requirements(self, *args, **kwargs)

ax = projection_class(self, rect, **kwargs)

This change means that third party objects can expose themselves as Matplotlib axes by providing a
_as_mpl_axes method. See Developer's guide for creating scales and transformations for more
detail.

• A new keyword extendfrac in colorbar() and ColorbarBase allows one to control the size of
the triangular minimum and maximum extensions on colorbars.

• A new keyword capthick in errorbar() has been added as an intuitive alias to themarkeredgewidth
and mew keyword arguments, which indirectly controlled the thickness of the caps on the errorbars.
For backwards compatibility, specifying either of the original keyword arguments will override any
value provided by capthick.

• Transform subclassing behaviour is now subtly changed. If your transform implements a non-affine
transformation, then it should override the transform_non_affine method, rather than the
generic transform method. Previously transforms would define transform and then copy the
method into transform_non_affine:

class MyTransform(mtrans.Transform):
def transform(self, xy):

...
transform_non_affine = transform

1086 Chapter 16. API Changes

Matplotlib, Release 3.4.3

This approach will no longer function correctly and should be changed to:

class MyTransform(mtrans.Transform):
def transform_non_affine(self, xy):

...

• Artists no longer have x_isdata or y_isdata attributes; instead any artist's transform
can be interrogated with artist_instance.get_transform().contains_branch(ax.
transData)

• Lines added to an axes now take into account their transform when updating the data and view limits.
This means transforms can now be used as a pre-transform. For instance:

>>> import matplotlib.pyplot as plt
>>> import matplotlib.transforms as mtrans
>>> ax = plt.axes()
>>> ax.plot(range(10), transform=mtrans.Affine2D().scale(10) + ax.

↪transData)
>>> print(ax.viewLim)
Bbox('array([[0., 0.],\n [90., 90.]])')

• One can now easily get a transform which goes from one transform's coordinate system to another,
in an optimized way, using the new subtract method on a transform. For instance, to go from data
coordinates to axes coordinates:

>>> import matplotlib.pyplot as plt
>>> ax = plt.axes()
>>> data2ax = ax.transData - ax.transAxes
>>> print(ax.transData.depth, ax.transAxes.depth)
3, 1
>>> print(data2ax.depth)
2

for versions before 1.2 this could only be achieved in a sub-optimal way, using ax.transData +
ax.transAxes.inverted() (depth is a new concept, but had it existed it would return 4 for this
example).

• twinx and twiny now returns an instance of SubplotBase if parent axes is an instance of Subplot-
Base.

• All Qt3-based backends are now deprecated due to the lack of py3k bindings. Qt and QtAgg backends
will continue to work in v1.2.x for py2.6 and py2.7. It is anticipated that the Qt3 support will be
completely removed for the next release.

• matplotlib.colors.ColorConverter, Colormap and Normalize now subclasses ob-
ject

• ContourSet instances no longer have a transform attribute. Instead, access the transform with the
get_transform method.

16.1. Old API Changes 1087

Matplotlib, Release 3.4.3

16.1.22 Changes in 1.1.x

• Added new matplotlib.sankey.Sankey for generating Sankey diagrams.

• In imshow(), setting interpolation to 'nearest' will now always mean that the nearest-neighbor inter-
polation is performed. If you want the no-op interpolation to be performed, choose 'none'.

• There were errors in how the tri-functions were handling input parameters that had to be fixed. If your
tri-plots are not working correctly anymore, or you were working around apparent mistakes, please see
issue #203 in the github tracker. When in doubt, use kwargs.

• The 'symlog' scale had some bad behavior in previous versions. This has now been fixed and users
should now be able to use it without frustrations. The fixes did result in some minor changes in
appearance for some users who may have been depending on the bad behavior.

• There is now a common set of markers for all plotting functions. Previously, some markers existed
only for scatter() or just for plot(). This is now no longer the case. This merge did result in a
conflict. The string 'd' now means "thin diamond" while 'D' will mean "regular diamond".

16.1.23 Changes beyond 0.99.x

• The default behavior of matplotlib.axes.Axes.set_xlim(), matplotlib.axes.
Axes.set_ylim(), and matplotlib.axes.Axes.axis(), and their corresponding pyplot
functions, has been changed: when view limits are set explicitly with one of these methods, autoscal-
ing is turned off for the matching axis. A new auto kwarg is available to control this behavior. The
limit kwargs have been renamed to left and right instead of xmin and xmax, and bottom and top instead
of ymin and ymax. The old names may still be used, however.

• There are five new Axes methods with corresponding pyplot functions to facilitate autoscaling, tick
location, and tick label formatting, and the general appearance of ticks and tick labels:

– matplotlib.axes.Axes.autoscale() turns autoscaling on or off, and applies it.

– matplotlib.axes.Axes.margins() sets margins used to autoscale the matplotlib.
axes.Axes.viewLim based on the matplotlib.axes.Axes.dataLim.

– matplotlib.axes.Axes.locator_params() allows one to adjust axes locator param-
eters such as nbins.

– matplotlib.axes.Axes.ticklabel_format() is a convenience method for control-
ling thematplotlib.ticker.ScalarFormatter that is used by default with linear axes.

– matplotlib.axes.Axes.tick_params() controls direction, size, visibility, and color
of ticks and their labels.

• The matplotlib.axes.Axes.bar() method accepts a error_kw kwarg; it is a dictionary of
kwargs to be passed to the errorbar function.

• The matplotlib.axes.Axes.hist() color kwarg now accepts a sequence of color specs to
match a sequence of datasets.

• The EllipseCollection has been changed in two ways:

1088 Chapter 16. API Changes

Matplotlib, Release 3.4.3

– There is a new units option, 'xy', that scales the ellipse with the data units. This matches the
:class:'~matplotlib.patches.Ellipse` scaling.

– The height andwidth kwargs have been changed to specify the height and width, again for consis-
tency with Ellipse, and to better match their names; previously they specified the half-height
and half-width.

• There is a new rc parameter axes.color_cycle, and the color cycle is now independent of the rc
parameter lines.color. matplotlib.Axes.set_default_color_cycle is deprecated.

• You can now print several figures to one pdf file and modify the document information dictionary of
a pdf file. See the docstrings of the class matplotlib.backends.backend_pdf.PdfPages
for more information.

• Removed configobj and enthought.traits packages, which are only required by the experimental traited
config and are somewhat out of date. If needed, install them independently.

• The new rc parameter savefig.extension sets the filename extension that is used by
matplotlib.figure.Figure.savefig() if its fname argument lacks an extension.

• In an effort to simplify the backend API, all clipping rectangles and paths are now passed in using
GraphicsContext objects, even on collections and images. Therefore:

draw_path_collection(self, master_transform, cliprect, clippath,
clippath_trans, paths, all_transforms, offsets,
offsetTrans, facecolors, edgecolors, linewidths,
linestyles, antialiaseds, urls)

is now

draw_path_collection(self, gc, master_transform, paths, all_transforms,
offsets, offsetTrans, facecolors, edgecolors,
linewidths, linestyles, antialiaseds, urls)

draw_quad_mesh(self, master_transform, cliprect, clippath,
clippath_trans, meshWidth, meshHeight, coordinates,
offsets, offsetTrans, facecolors, antialiased,
showedges)

is now

draw_quad_mesh(self, gc, master_transform, meshWidth, meshHeight,
coordinates, offsets, offsetTrans, facecolors,
antialiased, showedges)

draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None)

is now

draw_image(self, gc, x, y, im)

• There are four new Axes methods with corresponding pyplot functions that deal with unstructured

16.1. Old API Changes 1089

http://www.voidspace.org.uk/python/configobj.html
http://code.enthought.com/pages/traits.html

Matplotlib, Release 3.4.3

triangular grids:

– matplotlib.axes.Axes.tricontour() draws contour lines on a triangular grid.

– matplotlib.axes.Axes.tricontourf() draws filled contours on a triangular grid.

– matplotlib.axes.Axes.tripcolor() draws a pseudocolor plot on a triangular grid.

– matplotlib.axes.Axes.triplot() draws a triangular grid as lines and/or markers.

16.1.24 Changes in 0.99

• pylab no longer provides a load and save function. These are available in matplotlib.mlab, or you can
use numpy.loadtxt and numpy.savetxt for text files, or np.save and np.load for binary NumPy arrays.

• User-generated colormaps can now be added to the set recognized by matplotlib.cm.
get_cmap(). Colormaps can be made the default and applied to the current image using
matplotlib.pyplot.set_cmap().

• changed use_mrecords default to False in mlab.csv2rec since this is partially broken

• Axes instances no longer have a "frame" attribute. Instead, use the new "spines" attribute. Spines is a
dictionary where the keys are the names of the spines (e.g., 'left','right' and so on) and the values are
the artists that draw the spines. For normal (rectilinear) axes, these artists are Line2D instances. For
other axes (such as polar axes), these artists may be Patch instances.

• Polar plots no longer accept a resolution kwarg. Instead, each Path must specify its own number of
interpolation steps. This is unlikely to be a user-visible change -- if interpolation of data is required,
that should be done before passing it to Matplotlib.

16.1.25 Changes for 0.98.x

• psd(), csd(), and cohere() will now automatically wrap negative frequency components to the
beginning of the returned arrays. This is much more sensible behavior and makes them consistent with
specgram(). The previous behavior was more of an oversight than a design decision.

• Added new keyword parameters nonposx, nonposy to matplotlib.axes.Axes methods that set
log scale parameters. The default is still to mask out non-positive values, but the kwargs accept 'clip',
which causes non-positive values to be replaced with a very small positive value.

• Added new matplotlib.pyplot.fignum_exists() and matplotlib.pyplot.
get_fignums(); they merely expose information that had been hidden in matplotlib.
_pylab_helpers.

• Deprecated numerix package.

• Added new matplotlib.image.imsave() and exposed it to the matplotlib.pyplot in-
terface.

• Remove support for pyExcelerator in exceltools -- use xlwt instead

• Changed the defaults of acorr and xcorr to use usevlines=True, maxlags=10 and normed=True since
these are the best defaults

1090 Chapter 16. API Changes

Matplotlib, Release 3.4.3

• Following keyword parameters for matplotlib.legend.Legend are now deprecated and new
set of parameters are introduced. The new parameters are given as a fraction of the font-size. Also,
scatteryoffsets, fancybox and columnspacing are added as keyword parameters.

Deprecated New
pad borderpad
labelsep labelspacing
handlelen handlelength
handlestextsep handletextpad
axespad borderaxespad

• Removed the configobj and experimental traits rc support

• Modified matplotlib.mlab.psd(), matplotlib.mlab.csd(), matplotlib.mlab.
cohere(), and matplotlib.mlab.specgram() to scale one-sided densities by a factor of
2. Also, optionally scale the densities by the sampling frequency, which gives true values of densi-
ties that can be integrated by the returned frequency values. This also gives better MATLAB com-
patibility. The corresponding matplotlib.axes.Axes methods and matplotlib.pyplot
functions were updated as well.

• Font lookup now uses a nearest-neighbor approach rather than an exact match. Some fonts may be
different in plots, but should be closer to what was requested.

• matplotlib.axes.Axes.set_xlim(), matplotlib.axes.Axes.set_ylim() now
return a copy of the viewlim array to avoid modify-in-place surprises.

• matplotlib.afm.AFM.get_fullname() and matplotlib.afm.AFM.
get_familyname() no longer raise an exception if the AFM file does not specify these
optional attributes, but returns a guess based on the required FontName attribute.

• Changed precision kwarg in matplotlib.pyplot.spy(); default is 0, and the string value
'present' is used for sparse arrays only to show filled locations.

• matplotlib.collections.EllipseCollection added.

• Added angles kwarg to matplotlib.pyplot.quiver() for more flexible specification of the
arrow angles.

• Deprecated (raise NotImplementedError) all the mlab2 functions from matplotlib.mlab out of
concern that some of them were not clean room implementations.

• Methods matplotlib.collections.Collection.get_offsets() and matplotlib.
collections.Collection.set_offsets() added to Collection base class.

• matplotlib.figure.Figure.figurePatch renamedmatplotlib.figure.Figure.
patch; matplotlib.axes.Axes.axesPatch renamed matplotlib.axes.Axes.
patch; matplotlib.axes.Axes.axesFrame renamed matplotlib.axes.Axes.
frame. matplotlib.axes.Axes.get_frame, which returns matplotlib.axes.Axes.
patch, is deprecated.

• Changes in the matplotlib.contour.ContourLabeler attributes (matplotlib.
pyplot.clabel() function) so that they all have a form like .labelAttribute. The three

16.1. Old API Changes 1091

Matplotlib, Release 3.4.3

attributes that are most likely to be used by end users, .cl, .cl_xy and .cl_cvalues have been
maintained for the moment (in addition to their renamed versions), but they are deprecated and will
eventually be removed.

• Moved several functions in matplotlib.mlab and matplotlib.cbook into a separate module
matplotlib.numerical_methods because they were unrelated to the initial purpose of mlab
or cbook and appeared more coherent elsewhere.

16.1.26 Changes for 0.98.1

• Removed broken matplotlib.axes3d support and replaced it with a non-implemented error
pointing to 0.91.x

16.1.27 Changes for 0.98.0

• matplotlib.image.imread() now no longer always returns RGBA data---if the image is lu-
minance or RGB, it will return a MxN or MxNx3 array if possible. Also uint8 is no longer always
forced to float.

• Rewrote the matplotlib.cm.ScalarMappable callback infrastructure to use matplotlib.
cbook.CallbackRegistry rather than custom callback handling. Any users of matplotlib.
cm.ScalarMappable.add_observer of the ScalarMappable should use the
matplotlib.cm.ScalarMappable.callbacksSM CallbackRegistry instead.

• New axes function and Axes method provide control over the plot color cycle: matplotlib.axes.
set_default_color_cycle and matplotlib.axes.Axes.set_color_cycle.

• Matplotlib now requires Python 2.4, so matplotlib.cbook will no longer provide set, enu-
merate(), reversed() or izip compatibility functions.

• In Numpy 1.0, bins are specified by the left edges only. The axes method matplotlib.axes.
Axes.hist() now uses future Numpy 1.3 semantics for histograms. Providing binedges, the
last value gives the upper-right edge now, which was implicitly set to +infinity in Numpy 1.0. This
also means that the last bin doesn't contain upper outliers any more by default.

• New axes method and pyplot function, hexbin(), is an alternative to scatter() for large datasets.
It makes something like a pcolor() of a 2-D histogram, but uses hexagonal bins.

• New kwarg, symmetric, in matplotlib.ticker.MaxNLocator allows one require an axis
to be centered around zero.

• Toolkits must now be imported from mpl_toolkits (not matplotlib.toolkits)

1092 Chapter 16. API Changes

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/library/functions.html#reversed

Matplotlib, Release 3.4.3

Notes about the transforms refactoring

Amajor new feature of the 0.98 series is a more flexible and extensible transformation infrastructure, written
in Python/Numpy rather than a custom C extension.

The primary goal of this refactoring was to make it easier to extend matplotlib to support new kinds of
projections. This is mostly an internal improvement, and the possible user-visible changes it allows are yet
to come.

See matplotlib.transforms for a description of the design of the new transformation framework.

For efficiency, many of these functions return views into Numpy arrays. This means that if you hold on to a
reference to them, their contents may change. If you want to store a snapshot of their current values, use the
Numpy array method copy().

The view intervals are now stored only in one place -- in the matplotlib.axes.Axes instance, not in
the locator instances as well. This means locators must get their limits from their matplotlib.axis.
Axis, which in turn looks up its limits from the Axes. If a locator is used temporarily and not assigned
to an Axis or Axes, (e.g., in matplotlib.contour), a dummy axis must be created to store its bounds.
Call matplotlib.ticker.TickHelper.create_dummy_axis() to do so.

The functionality of Pbox has been merged with Bbox. Its methods now all return copies rather than
modifying in place.

The following lists many of the simple changes necessary to update code from the old transformation frame-
work to the new one. In particular, methods that return a copy are named with a verb in the past tense,
whereas methods that alter an object in place are named with a verb in the present tense.

16.1. Old API Changes 1093

Matplotlib, Release 3.4.3

matplotlib.transforms

Old method New method
Bbox.get_bounds transforms.Bbox.bounds

Bbox.width transforms.Bbox.width

Bbox.height transforms.Bbox.height

Bbox.intervalx().
get_bounds() Bbox.
intervalx().set_bounds()

transforms.Bbox.intervalx [It is now a prop-
erty.]

Bbox.intervaly().
get_bounds() Bbox.
intervaly().set_bounds()

transforms.Bbox.intervaly [It is now a prop-
erty.]

Bbox.xmin transforms.Bbox.x0 or transforms.Bbox.
xmin1

Bbox.ymin transforms.Bbox.y0 or transforms.Bbox.
ymin1

Bbox.xmax transforms.Bbox.x1 or transforms.Bbox.
xmax1

Bbox.ymax transforms.Bbox.y1 or transforms.Bbox.
ymax1

Bbox.overlaps(bboxes) Bbox.count_overlaps(bboxes)

bbox_all(bboxes) Bbox.union(bboxes) [It is a staticmethod.]
lbwh_to_bbox(l, b, w, h) Bbox.from_bounds(x0, y0, w, h) [It is a stat-

icmethod.]
inverse_transform_bbox(trans,
bbox)

Bbox.inverse_transformed(trans)

Interval.contains_open(v) interval_contains_open(tuple, v)

Interval.contains(v) interval_contains(tuple, v)

identity_transform() transforms.IdentityTransform

blend_xy_sep_transform(xtrans,
ytrans)

blended_transform_factory(xtrans,
ytrans)

scale_transform(xs, ys) Affine2D().scale(xs[, ys])

get_bbox_transform(boxin,
boxout)

BboxTransform(boxin, boxout) or Bbox-
TransformFrom(boxin) or BboxTrans-
formTo(boxout)

Transform.seq_xy_tup(points) Transform.transform(points)

Transform.
inverse_xy_tup(points)

Transform.inverted().transform(points)

1 The Bbox is bound by the points (x0, y0) to (x1, y1) and there is no defined order to these points, that is, x0 is not necessarily
the left edge of the box. To get the left edge of the Bbox, use the read-only property xmin.

1094 Chapter 16. API Changes

Matplotlib, Release 3.4.3

matplotlib.axes

Old method New method
Axes.get_position() matplotlib.axes.Axes.get_position()2

Axes.set_position() matplotlib.axes.Axes.set_position()3

Axes.toggle_log_lineary() matplotlib.axes.Axes.set_yscale()4

Subplot class removed

The Polar class has moved to matplotlib.projections.polar.

matplotlib.artist

Old method New method
Artist.set_clip_path(path) Artist.set_clip_path(path, transform)5

matplotlib.collections

Old method New method
linestyle linestyles6

matplotlib.colors

Old method New method
ColorConvertor.
to_rgba_list(c)

colors.to_rgba_array(c) [matplotlib.colors.
to_rgba_array() returns an Nx4 NumPy array of RGBA color
quadruples.]

2 matplotlib.axes.Axes.get_position() used to return a list of points, now it returns a matplotlib.
transforms.Bbox instance.

3 matplotlib.axes.Axes.set_position() now accepts either four scalars or a matplotlib.transforms.
Bbox instance.

4 Since the recfactoring allows for more than two scale types ('log' or 'linear'), it no longer makes sense to have a toggle. Axes.
toggle_log_lineary() has been removed.

5 matplotlib.artist.Artist.set_clip_path() now accepts a matplotlib.path.Path instance and a
matplotlib.transforms.Transform that will be applied to the path immediately before clipping.

6 Linestyles are now treated like all other collection attributes, i.e. a single value or multiple values may be provided.

16.1. Old API Changes 1095

Matplotlib, Release 3.4.3

matplotlib.contour

Old method New method
Contour.
_segments

matplotlib.contour.Contour.get_paths [Returns a list of
matplotlib.path.Path instances.]

matplotlib.figure

Old method New method
Figure.dpi.get() Figure.dpi.
set()

matplotlib.figure.Figure.dpi (a prop-
erty)

matplotlib.patches

Old method New method
Patch.
get_verts()

matplotlib.patches.Patch.get_path() [Returns a matplotlib.
path.Path instance]

matplotlib.backend_bases

Old method New method
GraphicsContext.
set_clip_rectangle(tuple)

GraphicsContext.
set_clip_rectangle(bbox)

GraphicsContext.get_clip_path() GraphicsContext.get_clip_path()7

GraphicsContext.set_clip_path() GraphicsContext.set_clip_path()8

RendererBase

New methods:

• draw_path(self, gc, path, transform, rgbFace)

• draw_markers(self, gc, marker_path, marker_trans, path, trans, rgb-
Face)

7 matplotlib.backend_bases.GraphicsContextBase.get_clip_path() returns a tuple of the form (path,
affine_transform), where path is a matplotlib.path.Path instance and affine_transform is a matplotlib.transforms.
Affine2D instance.

8 matplotlib.backend_bases.GraphicsContextBase.set_clip_path() now only accepts a
matplotlib.transforms.TransformedPath instance.

1096 Chapter 16. API Changes

Matplotlib, Release 3.4.3

• draw_path_collection(self, master_transform, cliprect, clippath,
clippath_trans, paths, all_transforms, offsets, offsetTrans,
facecolors, edgecolors, linewidths, linestyles, antialiaseds) [optional]

Changed methods:

• draw_image(self, x, y, im, bbox) is now draw_image(self, x, y, im, bbox,
clippath, clippath_trans)

Removed methods:

• draw_arc

• draw_line_collection

• draw_line

• draw_lines

• draw_point

• draw_quad_mesh

• draw_poly_collection

• draw_polygon

• draw_rectangle

• draw_regpoly_collection

16.1.28 Changes for 0.91.2

• For csv2rec, checkrows=0 is the new default indicating all rows will be checked for type inference

• A warning is issued when an image is drawn on log-scaled axes, since it will not log-scale the image
data.

• Moved rec2gtk to matplotlib.toolkits.gtktools

• Moved rec2excel to matplotlib.toolkits.exceltools

• Removed, dead/experimental ExampleInfo, Namespace and Importer code from matplotlib

16.1.29 Changes for 0.91.0

• Changed cbook.is_file_like to cbook.is_writable_file_like and corrected behav-
ior.

• Added ax keyword argument to pyplot.colorbar() and Figure.colorbar() so that one
can specify the axes object from which space for the colorbar is to be taken, if one does not want to
make the colorbar axes manually.

• Changed cbook.reversed so it yields a tuple rather than a (index, tuple). This agrees with the
Python reversed builtin, and cbook only defines reversed if Python doesn't provide the builtin.

16.1. Old API Changes 1097

Matplotlib, Release 3.4.3

• Made skiprows=1 the default on csv2rec

• The gd and paint backends have been deleted.

• The errorbar method and function now accept additional kwargs so that upper and lower limits can be
indicated by capping the bar with a caret instead of a straight line segment.

• The matplotlib.dviread file now has a parser for files like psfonts.map and pdftex.map, to map
TeX font names to external files.

• The file matplotlib.type1font contains a new class for Type 1 fonts. Currently it simply reads
pfa and pfb format files and stores the data in a way that is suitable for embedding in pdf files. In the
future the class might actually parse the font to allow e.g., subsetting.

• matplotlib.ft2font now supports FT_Attach_File. In practice this can be used to read an
afm file in addition to a pfa/pfb file, to get metrics and kerning information for a Type 1 font.

• The AFM class now supports querying CapHeight and stem widths. The get_name_char method now
has an isord kwarg like get_width_char.

• Changed pcolor() default to shading='flat'; but as noted now in the docstring, it is preferable
to simply use the edgecolor keyword argument.

• The mathtext font commands (\cal, \rm, \it, \tt) now behave as TeX does: they are in ef-
fect until the next font change command or the end of the grouping. Therefore uses of \cal{R}
should be changed to ${\cal R}$. Alternatively, you may use the new LaTeX-style font com-
mands (\mathcal, \mathrm, \mathit, \mathtt) which do affect the following group, e.g.,
\mathcal{R}.

• Text creation commands have a new default linespacing and a new linespacing kwarg, which is
a multiple of the maximum vertical extent of a line of ordinary text. The default is 1.2; linespac-
ing=2 would be like ordinary double spacing, for example.

• Changed default kwarg inmatplotlib.colors.Normalize toclip=False; clipping silently
defeats the purpose of the special over, under, and bad values in the colormap, thereby leading to
unexpected behavior. The new default should reduce such surprises.

• Made the emit property of set_xlim() and set_ylim() True by default; removed the Axes
custom callback handling into a 'callbacks' attribute which is a CallbackRegistry instance. This
now supports the 'xlim_changed' and 'ylim_changed' Axes events.

16.1.30 Changes for 0.90.1

The file dviread.py has a (very limited and fragile) dvi reader
for usetex support. The API might change in the future so don't
depend on it yet.

Removed deprecated support for a float value as a gray-scale;
now it must be a string, like '0.5'. Added alpha kwarg to
ColorConverter.to_rgba_list.

New method set_bounds(vmin, vmax) for formatters, locators sets

(continues on next page)

1098 Chapter 16. API Changes

Matplotlib, Release 3.4.3

(continued from previous page)
the viewInterval and dataInterval from floats.

Removed deprecated colorbar_classic.

Line2D.get_xdata and get_ydata valid_only=False kwarg is replaced
by orig=True. When True, it returns the original data, otherwise
the processed data (masked, converted)

Some modifications to the units interface.
units.ConversionInterface.tickers renamed to
units.ConversionInterface.axisinfo and it now returns a
units.AxisInfo object rather than a tuple. This will make it
easier to add axis info functionality (e.g., I added a default label
on this iteration) w/o having to change the tuple length and hence
the API of the client code every time new functionality is added.
Also, units.ConversionInterface.convert_to_value is now simply
named units.ConversionInterface.convert.

Axes.errorbar uses Axes.vlines and Axes.hlines to draw its error
limits int he vertical and horizontal direction. As you'll see
in the changes below, these functions now return a LineCollection
rather than a list of lines. The new return signature for
errorbar is ylins, caplines, errorcollections where
errorcollections is a xerrcollection, yerrcollection

Axes.vlines and Axes.hlines now create and returns a LineCollection, not a␣
↪list

of lines. This is much faster. The kwarg signature has changed,
so consult the docs

MaxNLocator accepts a new Boolean kwarg ('integer') to force
ticks to integer locations.

Commands that pass an argument to the Text constructor or to
Text.set_text() now accept any object that can be converted
with '%s'. This affects xlabel(), title(), etc.

Barh now takes a **kwargs dict instead of most of the old
arguments. This helps ensure that bar and barh are kept in sync,
but as a side effect you can no longer pass e.g., color as a
positional argument.

ft2font.get_charmap() now returns a dict that maps character codes
to glyph indices (until now it was reversed)

Moved data files into lib/matplotlib so that setuptools' develop
mode works. Re-organized the mpl-data layout so that this source
structure is maintained in the installation. (i.e., the 'fonts' and
'images' sub-directories are maintained in site-packages.).
Suggest removing site-packages/matplotlib/mpl-data and
~/.matplotlib/ttffont.cache before installing

16.1. Old API Changes 1099

Matplotlib, Release 3.4.3

16.1.31 Changes for 0.90.0

All artists now implement a "pick" method which users should not
call. Rather, set the "picker" property of any artist you want to
pick on (the epsilon distance in points for a hit test) and
register with the "pick_event" callback. See
examples/pick_event_demo.py for details

Bar, barh, and hist have "log" binary kwarg: log=True
sets the ordinate to a log scale.

Boxplot can handle a list of vectors instead of just
an array, so vectors can have different lengths.

Plot can handle 2-D x and/or y; it plots the columns.

Added linewidth kwarg to bar and barh.

Made the default Artist._transform None (rather than invoking
identity_transform for each artist only to have it overridden
later). Use artist.get_transform() rather than artist._transform,
even in derived classes, so that the default transform will be
created lazily as needed

New LogNorm subclass of Normalize added to colors.py.
All Normalize subclasses have new inverse() method, and
the __call__() method has a new clip kwarg.

Changed class names in colors.py to match convention:
normalize -> Normalize, no_norm -> NoNorm. Old names
are still available for now.

Removed obsolete pcolor_classic command and method.

Removed lineprops and markerprops from the Annotation code and
replaced them with an arrow configurable with kwarg arrowprops.
See examples/annotation_demo.py - JDH

16.1.32 Changes for 0.87.7

Completely reworked the annotations API because I found the old
API cumbersome. The new design is much more legible and easy to
read. See matplotlib.text.Annotation and
examples/annotation_demo.py

markeredgecolor and markerfacecolor cannot be configured in
matplotlibrc any more. Instead, markers are generally colored
automatically based on the color of the line, unless marker colors
are explicitly set as kwargs - NN

(continues on next page)

1100 Chapter 16. API Changes

Matplotlib, Release 3.4.3

(continued from previous page)
Changed default comment character for load to '#' - JDH

math_parse_s_ft2font_svg from mathtext.py & mathtext2.py now returns
width, height, svg_elements. svg_elements is an instance of Bunch (
cmbook.py) and has the attributes svg_glyphs and svg_lines, which are both
lists.

Renderer.draw_arc now takes an additional parameter, rotation.
It specifies to draw the artist rotated in degrees anti-
clockwise. It was added for rotated ellipses.

Renamed Figure.set_figsize_inches to Figure.set_size_inches to
better match the get method, Figure.get_size_inches.

Removed the copy_bbox_transform from transforms.py; added
shallowcopy methods to all transforms. All transforms already
had deepcopy methods.

FigureManager.resize(width, height): resize the window
specified in pixels

barh: x and y args have been renamed to width and bottom
respectively, and their order has been swapped to maintain
a (position, value) order.

bar and barh: now accept kwarg 'edgecolor'.

bar and barh: The left, height, width and bottom args can
now all be scalars or sequences; see docstring.

barh: now defaults to edge aligned instead of center
aligned bars

bar, barh and hist: Added a keyword arg 'align' that
controls between edge or center bar alignment.

Collections: PolyCollection and LineCollection now accept
vertices or segments either in the original form [(x,y),
(x,y), ...] or as a 2D numerix array, with X as the first column
and Y as the second. Contour and quiver output the numerix
form. The transforms methods Bbox.update() and
Transformation.seq_xy_tups() now accept either form.

Collections: LineCollection is now a ScalarMappable like
PolyCollection, etc.

Specifying a grayscale color as a float is deprecated; use
a string instead, e.g., 0.75 -> '0.75'.

Collections: initializers now accept any mpl color arg, or
sequence of such args; previously only a sequence of rgba
tuples was accepted.

(continues on next page)

16.1. Old API Changes 1101

Matplotlib, Release 3.4.3

(continued from previous page)

Colorbar: completely new version and api; see docstring. The
original version is still accessible as colorbar_classic, but
is deprecated.

Contourf: "extend" kwarg replaces "clip_ends"; see docstring.
Masked array support added to pcolormesh.

Modified aspect-ratio handling:
Removed aspect kwarg from imshow
Axes methods:

set_aspect(self, aspect, adjustable=None, anchor=None)
set_adjustable(self, adjustable)
set_anchor(self, anchor)

Pylab interface:
axis('image')

Backend developers: ft2font's load_char now takes a flags
argument, which you can OR together from the LOAD_XXX
constants.

16.1.33 Changes for 0.86

Matplotlib data is installed into the matplotlib module.
This is similar to package_data. This should get rid of
having to check for many possibilities in _get_data_path().
The MATPLOTLIBDATA env key is still checked first to allow
for flexibility.

1) Separated the color table data from cm.py out into
a new file, _cm.py, to make it easier to find the actual
code in cm.py and to add new colormaps. Everything
from _cm.py is imported by cm.py, so the split should be
transparent.
2) Enabled automatic generation of a colormap from
a list of colors in contour; see modified
examples/contour_demo.py.
3) Support for imshow of a masked array, with the
ability to specify colors (or no color at all) for
masked regions, and for regions that are above or
below the normally mapped region. See
examples/image_masked.py.
4) In support of the above, added two new classes,
ListedColormap, and no_norm, to colors.py, and modified
the Colormap class to include common functionality. Added
a clip kwarg to the normalize class.

1102 Chapter 16. API Changes

Matplotlib, Release 3.4.3

16.1.34 Changes for 0.85

Made xtick and ytick separate props in rc

made pos=None the default for tick formatters rather than 0 to
indicate "not supplied"

Removed "feature" of minor ticks which prevents them from
overlapping major ticks. Often you want major and minor ticks at
the same place, and can offset the major ticks with the pad. This
could be made configurable

Changed the internal structure of contour.py to a more OO style.
Calls to contour or contourf in axes.py or pylab.py now return
a ContourSet object which contains references to the
LineCollections or PolyCollections created by the call,
as well as the configuration variables that were used.
The ContourSet object is a "mappable" if a colormap was used.

Added a clip_ends kwarg to contourf. From the docstring:
* clip_ends = True
If False, the limits for color scaling are set to the
minimum and maximum contour levels.
True (default) clips the scaling limits. Example:
if the contour boundaries are V = [-100, 2, 1, 0, 1, 2, 100],
then the scaling limits will be [-100, 100] if clip_ends
is False, and [-3, 3] if clip_ends is True.

Added kwargs linewidths, antialiased, and nchunk to contourf. These
are experimental; see the docstring.

Changed Figure.colorbar():
kw argument order changed;
if mappable arg is a non-filled ContourSet, colorbar() shows

lines instead hof polygons.
if mappable arg is a filled ContourSet with clip_ends=True,

the endpoints are not labelled, so as to give the
correct impression of open-endedness.

Changed LineCollection.get_linewidths to get_linewidth, for
consistency.

16.1.35 Changes for 0.84

Unified argument handling between hlines and vlines. Both now
take optionally a fmt argument (as in plot) and a keyword args
that can be passed onto Line2D.

Removed all references to "data clipping" in rc and lines.py since
these were not used and not optimized. I'm sure they'll be
resurrected later with a better implementation when needed.

(continues on next page)

16.1. Old API Changes 1103

Matplotlib, Release 3.4.3

(continued from previous page)

'set' removed - no more deprecation warnings. Use 'setp' instead.

Backend developers: Added flipud method to image and removed it
from to_str. Removed origin kwarg from backend.draw_image.
origin is handled entirely by the frontend now.

16.1.36 Changes for 0.83

- Made HOME/.matplotlib the new config dir where the matplotlibrc
file, the ttf.cache, and the tex.cache live. The new default
filenames in .matplotlib have no leading dot and are not hidden.
e.g., the new names are matplotlibrc, tex.cache, and ttffont.cache.
This is how ipython does it so it must be right.

If old files are found, a warning is issued and they are moved to
the new location.

- backends/__init__.py no longer imports new_figure_manager,
draw_if_interactive and show from the default backend, but puts
these imports into a call to pylab_setup. Also, the Toolbar is no
longer imported from WX/WXAgg. New usage:

from backends import pylab_setup
new_figure_manager, draw_if_interactive, show = pylab_setup()

- Moved Figure.get_width_height() to FigureCanvasBase. It now
returns int instead of float.

16.1.37 Changes for 0.82

- toolbar import change in GTKAgg, GTKCairo and WXAgg

- Added subplot config tool to GTK* backends -- note you must now
import the NavigationToolbar2 from your backend of choice rather
than from backend_gtk because it needs to know about the backend
specific canvas -- see examples/embedding_in_gtk2.py. Ditto for
wx backend -- see examples/embedding_in_wxagg.py

- hist bin change

Sean Richards notes there was a problem in the way we created
the binning for histogram, which made the last bin
underrepresented. From his post:

I see that hist uses the linspace function to create the bins

(continues on next page)

1104 Chapter 16. API Changes

Matplotlib, Release 3.4.3

(continued from previous page)
and then uses searchsorted to put the values in their correct
bin. That's all good but I am confused over the use of linspace
for the bin creation. I wouldn't have thought that it does
what is needed, to quote the docstring it creates a "Linear
spaced array from min to max". For it to work correctly
shouldn't the values in the bins array be the same bound for
each bin? (i.e. each value should be the lower bound of a
bin). To provide the correct bins for hist would it not be
something like

def bins(xmin, xmax, N):
if N==1: return xmax
dx = (xmax-xmin)/N # instead of N-1
return xmin + dx*arange(N)

This suggestion is implemented in 0.81. My test script with these
changes does not reveal any bias in the binning

from matplotlib.numerix.mlab import randn, rand, zeros, Float
from matplotlib.mlab import hist, mean

Nbins = 50
Ntests = 200
results = zeros((Ntests,Nbins), typecode=Float)
for i in range(Ntests):

print 'computing', i
x = rand(10000)
n, bins = hist(x, Nbins)
results[i] = n

print mean(results)

16.1.38 Changes for 0.81

- pylab and artist "set" functions renamed to setp to avoid clash
with python2.4 built-in set. Current version will issue a
deprecation warning which will be removed in future versions

- imshow interpolation arguments changes for advanced interpolation
schemes. See help imshow, particularly the interpolation,
filternorm and filterrad kwargs

- Support for masked arrays has been added to the plot command and
to the Line2D object. Only the valid points are plotted. A
"valid_only" kwarg was added to the get_xdata() and get_ydata()
methods of Line2D; by default it is False, so that the original
data arrays are returned. Setting it to True returns the plottable
points.

- contour changes:
(continues on next page)

16.1. Old API Changes 1105

Matplotlib, Release 3.4.3

(continued from previous page)

Masked arrays: contour and contourf now accept masked arrays as
the variable to be contoured. Masking works correctly for
contour, but a bug remains to be fixed before it will work for
contourf. The "badmask" kwarg has been removed from both
functions.

Level argument changes:

Old version: a list of levels as one of the positional
arguments specified the lower bound of each filled region; the
upper bound of the last region was taken as a very large
number. Hence, it was not possible to specify that z values
between 0 and 1, for example, be filled, and that values
outside that range remain unfilled.

New version: a list of N levels is taken as specifying the
boundaries of N-1 z ranges. Now the user has more control over
what is colored and what is not. Repeated calls to contourf
(with different colormaps or color specifications, for example)
can be used to color different ranges of z. Values of z
outside an expected range are left uncolored.

Example:
Old: contourf(z, [0, 1, 2]) would yield 3 regions: 0-1, 1-2, and >2.
New: it would yield 2 regions: 0-1, 1-2. If the same 3 regions were
desired, the equivalent list of levels would be [0, 1, 2,
1e38].

16.1.39 Changes for 0.80

- xlim/ylim/axis always return the new limits regardless of
arguments. They now take kwargs which allow you to selectively
change the upper or lower limits while leaving unnamed limits
unchanged. See help(xlim) for example

16.1.40 Changes for 0.73

- Removed deprecated ColormapJet and friends

- Removed all error handling from the verbose object

- figure num of zero is now allowed

1106 Chapter 16. API Changes

Matplotlib, Release 3.4.3

16.1.41 Changes for 0.72

- Line2D, Text, and Patch copy_properties renamed update_from and
moved into artist base class

- LineCollecitons.color renamed to LineCollections.set_color for
consistency with set/get introspection mechanism,

- pylab figure now defaults to num=None, which creates a new figure
with a guaranteed unique number

- contour method syntax changed - now it is MATLAB compatible

unchanged: contour(Z)
old: contour(Z, x=Y, y=Y)
new: contour(X, Y, Z)

see http://matplotlib.sf.net/matplotlib.pylab.html#-contour

- Increased the default resolution for save command.

- Renamed the base attribute of the ticker classes to _base to avoid conflict
with the base method. Sitt for subs

- subs=none now does autosubbing in the tick locator.

- New subplots that overlap old will delete the old axes. If you
do not want this behavior, use fig.add_subplot or the axes
command

16.1.42 Changes for 0.71

Significant numerix namespace changes, introduced to resolve
namespace clashes between python built-ins and mlab names.
Refactored numerix to maintain separate modules, rather than
folding all these names into a single namespace. See the following
mailing list threads for more information and background

http://sourceforge.net/mailarchive/forum.php?thread_id=6398890&forum_
↪id=36187
http://sourceforge.net/mailarchive/forum.php?thread_id=6323208&forum_

↪id=36187

OLD usage

from matplotlib.numerix import array, mean, fft

NEW usage

(continues on next page)

16.1. Old API Changes 1107

Matplotlib, Release 3.4.3

(continued from previous page)

from matplotlib.numerix import array
from matplotlib.numerix.mlab import mean
from matplotlib.numerix.fft import fft

numerix dir structure mirrors numarray (though it is an incomplete
implementation)

numerix
numerix/mlab
numerix/linear_algebra
numerix/fft
numerix/random_array

but of course you can use 'numerix : Numeric' and still get the
symbols.

pylab still imports most of the symbols from Numerix, MLab, fft,
etc, but is more cautious. For names that clash with python names
(min, max, sum), pylab keeps the builtins and provides the numeric
versions with an a* prefix, e.g., (amin, amax, asum)

16.1.43 Changes for 0.70

MplEvent factored into a base class Event and derived classes
MouseEvent and KeyEvent

Removed definct set_measurement in wx toolbar

16.1.44 Changes for 0.65.1

removed add_axes and add_subplot from backend_bases. Use
figure.add_axes and add_subplot instead. The figure now manages the
current axes with gca and sca for get and set current axes. If you
have code you are porting which called, e.g., figmanager.add_axes, you
can now simply do figmanager.canvas.figure.add_axes.

16.1.45 Changes for 0.65

mpl_connect and mpl_disconnect in the MATLAB interface renamed to
connect and disconnect

Did away with the text methods for angle since they were ambiguous.
fontangle could mean fontstyle (obligue, etc) or the rotation of the
text. Use style and rotation instead.

1108 Chapter 16. API Changes

Matplotlib, Release 3.4.3

16.1.46 Changes for 0.63

Dates are now represented internally as float days since 0001-01-01,
UTC.

All date tickers and formatters are now in matplotlib.dates, rather
than matplotlib.tickers

converters have been abolished from all functions and classes.
num2date and date2num are now the converter functions for all date
plots

Most of the date tick locators have a different meaning in their
constructors. In the prior implementation, the first argument was a
base and multiples of the base were ticked. e.g.,

HourLocator(5) # old: tick every 5 minutes

In the new implementation, the explicit points you want to tick are
provided as a number or sequence

HourLocator(range(0,5,61)) # new: tick every 5 minutes

This gives much greater flexibility. I have tried to make the
default constructors (no args) behave similarly, where possible.

Note that YearLocator still works under the base/multiple scheme.
The difference between the YearLocator and the other locators is
that years are not recurrent.

Financial functions:

matplotlib.finance.quotes_historical_yahoo(ticker, date1, date2)

date1, date2 are now datetime instances. Return value is a list
of quotes where the quote time is a float - days since gregorian
start, as returned by date2num

See examples/finance_demo.py for example usage of new API

16.1. Old API Changes 1109

Matplotlib, Release 3.4.3

16.1.47 Changes for 0.61

canvas.connect is now deprecated for event handling. use
mpl_connect and mpl_disconnect instead. The callback signature is
func(event) rather than func(widget, event)

16.1.48 Changes for 0.60

ColormapJet and Grayscale are deprecated. For backwards
compatibility, they can be obtained either by doing

from matplotlib.cm import ColormapJet

or

from matplotlib.matlab import *

They are replaced by cm.jet and cm.grey

16.1.49 Changes for 0.54.3

removed the set_default_font / get_default_font scheme from the
font_manager to unify customization of font defaults with the rest of
the rc scheme. See examples/font_properties_demo.py and help(rc) in
matplotlib.matlab.

16.1.50 Changes for 0.54

MATLAB interface

dpi

Several of the backends used a PIXELS_PER_INCH hack that I added to try and make images render consis-
tently across backends. This just complicated matters. So you may find that some font sizes and line widths
appear different than before. Apologies for the inconvenience. You should set the dpi to an accurate value
for your screen to get true sizes.

1110 Chapter 16. API Changes

Matplotlib, Release 3.4.3

pcolor and scatter

There are two changes to the MATLAB interface API, both involving the patch drawing commands. For
efficiency, pcolor and scatter have been rewritten to use polygon collections, which are a new set of objects
from matplotlib.collections designed to enable efficient handling of large collections of objects. These new
collections make it possible to build large scatter plots or pcolor plots with no loops at the python level,
and are significantly faster than their predecessors. The original pcolor and scatter functions are retained as
pcolor_classic and scatter_classic.

The return value from pcolor is a PolyCollection. Most of the properties that are available on rectangles or
other patches are also available on PolyCollections, e.g., you can say:

c = scatter(blah, blah)
c.set_linewidth(1.0)
c.set_facecolor('r')
c.set_alpha(0.5)

or:

c = scatter(blah, blah)
set(c, 'linewidth', 1.0, 'facecolor', 'r', 'alpha', 0.5)

Because the collection is a single object, you no longer need to loop over the return value of scatter or pcolor
to set properties for the entire list.

If you want the different elements of a collection to vary on a property, e.g., to have different line widths, see
matplotlib.collections for a discussion on how to set the properties as a sequence.

For scatter, the size argument is now in points^2 (the area of the symbol in points) as in MATLAB and is
not in data coords as before. Using sizes in data coords caused several problems. So you will need to adjust
your size arguments accordingly or use scatter_classic.

mathtext spacing

For reasons not clear to me (and which I'll eventually fix) spacing no longer works in font groups. However,
I added three new spacing commands which compensate for this '' (regular space), '/' (small space) and
'hspace{frac}' where frac is a fraction of fontsize in points. You will need to quote spaces in font strings, is:

title(r'$\rm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$')

16.1. Old API Changes 1111

Matplotlib, Release 3.4.3

Object interface - Application programmers

Autoscaling

The x and y axis instances no longer have autoscale view. These are handled by
axes.autoscale_view

Axes creation

You should not instantiate your own Axes any more using the OO API. Rather, create a Figure
as before and in place of:

f = Figure(figsize=(5,4), dpi=100)
a = Subplot(f, 111)
f.add_axis(a)

use:

f = Figure(figsize=(5,4), dpi=100)
a = f.add_subplot(111)

That is, add_axis no longer exists and is replaced by:

add_axes(rect, axisbg=defaultcolor, frameon=True)
add_subplot(num, axisbg=defaultcolor, frameon=True)

Artist methods

If you define your own Artists, you need to rename the _draw method to draw

Bounding boxes

matplotlib.transforms.Bound2D is replaced by matplotlib.transforms.Bbox. If you want to
construct a bbox from left, bottom, width, height (the signature for Bound2D), use mat-
plotlib.transforms.lbwh_to_bbox, as in

bbox = clickBBox = lbwh_to_bbox(left, bottom, width, height)

The Bbox has a different API than the Bound2D. e.g., if you want to get the width and height of
the bbox

OLD::
width = fig.bbox.x.interval() height = fig.bbox.y.interval()

New::
width = fig.bbox.width() height = fig.bbox.height()

1112 Chapter 16. API Changes

Matplotlib, Release 3.4.3

Object constructors

You no longer pass the bbox, dpi, or transforms to the various Artist constructors. The old way or
creating lines and rectangles was cumbersome because you had to pass so many attributes to the
Line2D and Rectangle classes not related directly to the geometry and properties of the object.
Now default values are added to the object when you call axes.add_line or axes.add_patch, so
they are hidden from the user.

If you want to define a custom transformation on these objects, call o.set_transform(trans) where
trans is a Transformation instance.

In prior versions of you wanted to add a custom line in data coords, you would have to do

l = Line2D(dpi, bbox, x, y,
color = color, transx = transx, transy = transy,)

now all you need is

l = Line2D(x, y, color=color)

and the axes will set the transformation for you (unless you have set your own already, in which
case it will eave it unchanged)

Transformations

The entire transformation architecture has been rewritten. Previously the x and y transforma-
tions where stored in the xaxis and yaxis instances. The problem with this approach is it only
allows for separable transforms (where the x and y transformations don't depend on one an-
other). But for cases like polar, they do. Now transformations operate on x,y together. There is
a new base class matplotlib.transforms.Transformation and two concrete implementations, mat-
plotlib.transforms.SeparableTransformation and matplotlib.transforms.Affine. The Separable-
Transformation is constructed with the bounding box of the input (this determines the rectangu-
lar coordinate system of the input, i.e., the x and y view limits), the bounding box of the display,
and possibly nonlinear transformations of x and y. The 2 most frequently used transformations,
data coordinates -> display and axes coordinates -> display are available as ax.transData and
ax.transAxes. See alignment_demo.py which uses axes coords.

Also, the transformations should be much faster now, for two reasons

• they are written entirely in extension code

• because they operate on x and y together, they can do the entire transformation in one loop.
Earlier I did something along the lines of:

xt = sx*func(x) + tx
yt = sy*func(y) + ty

Although this was done in numerix, it still involves 6 length(x) for-loops (the multiply,
add, and function evaluation each for x and y). Now all of that is done in a single pass.

16.1. Old API Changes 1113

Matplotlib, Release 3.4.3

If you are using transformations and bounding boxes to get the cursor position in data coordi-
nates, the method calls are a little different now. See the updated examples/coords_demo.py
which shows you how to do this.

Likewise, if you are using the artist bounding boxes to pick items on the canvas with the
GUI, the bbox methods are somewhat different. You will need to see the updated exam-
ples/object_picker.py.

See unit/transforms_unit.py for many examples using the new transformations.

16.1.51 Changes for 0.50

* refactored Figure class so it is no longer backend dependent.
FigureCanvasBackend takes over the backend specific duties of the
Figure. matplotlib.backend_bases.FigureBase moved to
matplotlib.figure.Figure.

* backends must implement FigureCanvasBackend (the thing that
controls the figure and handles the events if any) and
FigureManagerBackend (wraps the canvas and the window for MATLAB
interface). FigureCanvasBase implements a backend switching
mechanism

* Figure is now an Artist (like everything else in the figure) and
is totally backend independent

* GDFONTPATH renamed to TTFPATH

* backend faceColor argument changed to rgbFace

* colormap stuff moved to colors.py

* arg_to_rgb in backend_bases moved to class ColorConverter in
colors.py

* GD users must upgrade to gd-2.0.22 and gdmodule-0.52 since new gd
features (clipping, antialiased lines) are now used.

* Renderer must implement points_to_pixels

Migrating code:

MATLAB interface:

The only API change for those using the MATLAB interface is in how
you call figure redraws for dynamically updating figures. In the
old API, you did

fig.draw()

In the new API, you do

(continues on next page)

1114 Chapter 16. API Changes

Matplotlib, Release 3.4.3

(continued from previous page)

manager = get_current_fig_manager()
manager.canvas.draw()

See the examples system_monitor.py, dynamic_demo.py, and anim.py

API

There is one important API change for application developers.
Figure instances used subclass GUI widgets that enabled them to be
placed directly into figures. e.g., FigureGTK subclassed
gtk.DrawingArea. Now the Figure class is independent of the
backend, and FigureCanvas takes over the functionality formerly
handled by Figure. In order to include figures into your apps,
you now need to do, for example

gtk example
fig = Figure(figsize=(5,4), dpi=100)
canvas = FigureCanvasGTK(fig) # a gtk.DrawingArea
canvas.show()
vbox.pack_start(canvas)

If you use the NavigationToolbar, this in now initialized with a
FigureCanvas, not a Figure. The examples embedding_in_gtk.py,
embedding_in_gtk2.py, and mpl_with_glade.py all reflect the new
API so use these as a guide.

All prior calls to

figure.draw() and
figure.print_figure(args)

should now be

canvas.draw() and
canvas.print_figure(args)

Apologies for the inconvenience. This refactorization brings
significant more freedom in developing matplotlib and should bring
better plotting capabilities, so I hope the inconvenience is worth
it.

16.1. Old API Changes 1115

Matplotlib, Release 3.4.3

16.1.52 Changes for 0.42

* Refactoring AxisText to be backend independent. Text drawing and
get_window_extent functionality will be moved to the Renderer.

* backend_bases.AxisTextBase is now text.Text module

* All the erase and reset functionality removed from AxisText - not
needed with double buffered drawing. Ditto with state change.
Text instances have a get_prop_tup method that returns a hashable
tuple of text properties which you can use to see if text props
have changed, e.g., by caching a font or layout instance in a dict
with the prop tup as a key -- see RendererGTK.get_pango_layout in
backend_gtk for an example.

* Text._get_xy_display renamed Text.get_xy_display

* Artist set_renderer and wash_brushes methods removed

* Moved Legend class from matplotlib.axes into matplotlib.legend

* Moved Tick, XTick, YTick, Axis, XAxis, YAxis from matplotlib.axes
to matplotlib.axis

* moved process_text_args to matplotlib.text

* After getting Text handled in a backend independent fashion, the
import process is much cleaner since there are no longer cyclic
dependencies

* matplotlib.matlab._get_current_fig_manager renamed to
matplotlib.matlab.get_current_fig_manager to allow user access to
the GUI window attribute, e.g., figManager.window for GTK and
figManager.frame for wx

16.1.53 Changes for 0.40

- Artist
* __init__ takes a DPI instance and a Bound2D instance which is

the bounding box of the artist in display coords
* get_window_extent returns a Bound2D instance
* set_size is removed; replaced by bbox and dpi
* the clip_gc method is removed. Artists now clip themselves with

their box
* added _clipOn boolean attribute. If True, gc clip to bbox.

- AxisTextBase
* Initialized with a transx, transy which are Transform instances
* set_drawing_area removed
* get_left_right and get_top_bottom are replaced by get_window_extent

(continues on next page)

1116 Chapter 16. API Changes

Matplotlib, Release 3.4.3

(continued from previous page)

- Line2D Patches now take transx, transy
* Initialized with a transx, transy which are Transform instances

- Patches
* Initialized with a transx, transy which are Transform instances

- FigureBase attributes dpi is a DPI instance rather than scalar and
new attribute bbox is a Bound2D in display coords, and I got rid
of the left, width, height, etc... attributes. These are now
accessible as, for example, bbox.x.min is left, bbox.x.interval()
is width, bbox.y.max is top, etc...

- GcfBase attribute pagesize renamed to figsize

- Axes
* removed figbg attribute
* added fig instance to __init__
* resizing is handled by figure call to resize.

- Subplot
* added fig instance to __init__

- Renderer methods for patches now take gcEdge and gcFace instances.
gcFace=None takes the place of filled=False

- True and False symbols provided by cbook in a python2.3 compatible
way

- new module transforms supplies Bound1D, Bound2D and Transform
instances and more

- Changes to the MATLAB helpers API

* _matlab_helpers.GcfBase is renamed by Gcf. Backends no longer
need to derive from this class. Instead, they provide a factory
function new_figure_manager(num, figsize, dpi). The destroy
method of the GcfDerived from the backends is moved to the derived
FigureManager.

* FigureManagerBase moved to backend_bases

* Gcf.get_all_figwins renamed to Gcf.get_all_fig_managers

Jeremy:

Make sure to self._reset = False in AxisTextWX._set_font. This was
something missing in my backend code.

Changes for the latest version are listed below. For new features that were added to Matplotlib, see What's
new?

16.1. Old API Changes 1117

Matplotlib, Release 3.4.3

16.2 API Changes for 3.4.2

16.2.1 Behaviour changes

Rename first argument to subplot_mosaic

Both FigureBase.subplot_mosaic, and pyplot.subplot_mosaic have had the first posi-
tion argument renamed from layout to mosaic. This is because we are considering to consolidate con-
strained_layout and tight_layout keyword arguments in the Figure creation functions of pyplot into a
single layout keyword argument which would collide.

As this API is provisional, we are changing this with no deprecation period.

16.3 API Changes for 3.4.0

• Behaviour changes

• Deprecations

• Removals

• Development changes

16.3.1 Behaviour changes

Constrained layout rewrite

The layout manager constrained_layoutwas re-written with different outer constraints that should be
more robust to complicated subplot layouts. User-facing changes are:

• some poorly constrained layouts will have different width/height plots than before.

• colorbars now respect the anchor keyword argument of matplotlib.colorbar.make_axes

• colorbars are wider.

• colorbars in different rows or columns line up more robustly.

• hspace and wspace options to Figure.set_constrained_layout_pads were twice as wide
as the docs said they should be. So these now follow the docs.

This feature will remain "experimental" until the new changes have been used enough by users, so we an-
ticipate version 3.5 or 3.6. On the other hand, constrained_layout is extensively tested and used in
examples in the library, so using it should be safe, but layouts may not be exactly the same as more develop-
ment takes place.

Details of using constrained_layout, and its algorithm are available at Constrained Layout Guide

1118 Chapter 16. API Changes

Matplotlib, Release 3.4.3

plt.subplot re-selection without keyword arguments

The purpose of pyplot.subplot is to facilitate creating and re-selecting Axes in a Figure when working
strictly in the implicit pyplot API. When creating new Axes it is possible to select the projection (e.g. polar,
3D, or various cartographic projections) as well as to pass additional keyword arguments through to the
Axes-subclass that is created.

The first time pyplot.subplot is called for a given position in the Axes grid it always creates and returns
a new Axes with the passed arguments and projection (defaulting to rectilinear). On subsequent calls to
pyplot.subplot we have to determine if an existing Axes has a) equivalent parameters, in which case
it should be selected as the current Axes and returned, or b) different parameters, in which case a new Axes
is created and the existing Axes is removed. This leaves the question of what is "equivalent parameters".

Previously it was the case that an existing Axes subclass, except for Axes3D, would be considered equivalent
to a 2D rectilinear Axes, despite having different projections, if the keyword arguments (other than projection)
matched. Thus:

ax1 = plt.subplot(1, 1, 1, projection='polar')
ax2 = plt.subplots(1, 1, 1)
ax1 is ax2

We are embracing this long standing behavior to ensure that in the case when no keyword arguments (of any
sort) are passed to pyplot.subplot any existing Axes is returned, without consideration for keywords
or projection used to initially create it. This will cause a change in behavior when additional keywords were
passed to the original Axes:

ax1 = plt.subplot(111, projection='polar', theta_offset=.75)
ax2 = plt.subplots(1, 1, 1)
ax1 is ax2 # new behavior
ax1 is not ax2 # old behavior, made a new axes

ax1 = plt.subplot(111, label='test')
ax2 = plt.subplots(1, 1, 1)
ax1 is ax2 # new behavior
ax1 is not ax2 # old behavior, made a new axes

For the same reason, if there was an existing Axes that was not rectilinear, passing projec-
tion='rectilinear' would reuse the existing Axes

ax1 = plt.subplot(projection='polar')
ax2 = plt.subplot(projection='rectilinear')
ax1 is not ax2 # new behavior, makes new Axes
ax1 is ax2 # old behavior

contrary to the user's request.

Previously Axes3D could not be re-selected with pyplot.subplot due to an unrelated bug (also fixed in
Matplotlib 3.4). While Axes3D are now consistent with all other projections there is a change in behavior
for

16.3. API Changes for 3.4.0 1119

Matplotlib, Release 3.4.3

plt.subplot(projection='3d') # create a 3D Axes

plt.subplot() # now returns existing 3D Axes, but
previously created new 2D Axes

plt.subplot(projection='rectilinear') # to get a new 2D Axes

ioff and ion can be used as context managers

pyplot.ion andpyplot.ioffmay now be used as contextmanagers to create a context with interactive
mode on or off, respectively. The old behavior of calling these functions is maintained. To use the new
functionality call as:

with plt.ioff():
non-interactive code

Locators and formatters must be in the class hierarchy

Axis locators and formatters must now be subclasses of Locator and Formatter respectively.

Date locator for DAILY interval now returns middle of month

The matplotlib.dates.AutoDateLocator has a default of interval_multiples=True that
attempts to align ticks with the start of meaningful intervals like the start of the month, or start of the day,
etc. That lead to approximately 140-day intervals being mapped to the first and 22nd of the month. This has
now been changed so that it chooses the first and 15th of the month, which is probably what most people
want.

ScalarFormatter useLocale option obeys grouping

When the ScalarFormatter option useLocale is enabled (or rcParams["axes.formatter.
use_locale"] (default: False) is True) and the configured locale uses grouping, a separator will be
added as described in locale.format_string.

Axes.errorbar cycles non-color properties correctly

Formerly, Axes.errorbar incorrectly skipped the Axes property cycle if a color was explicitly specified,
even if the property cycler was for other properties (such as line style). Now, Axes.errorbarwill advance
the Axes property cycle as done for Axes.plot, i.e., as long as all properties in the cycler are not explicitly
passed.

1120 Chapter 16. API Changes

../tutorials/introductory/customizing.html?highlight=axes.formatter.use_locale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.formatter.use_locale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/locale.html#locale.format_string

Matplotlib, Release 3.4.3

pyplot.specgram always uses origin='upper'

Previously if rcParams["image.origin"] (default: 'upper') was set to something other than
'upper' or if the origin keyword argument was passed with a value other than 'upper', the spectro-
gram itself would flip, but the Axes would remain oriented for an origin value of 'upper', so that the
resulting plot was incorrectly labelled.

Now, the origin keyword argument is not supported and the image.origin rcParam is ignored. The
function matplotlib.pyplot.specgram is forced to use origin='upper', so that the Axes are
correct for the plotted spectrogram.

xunits=None and yunits=None passed as keyword arguments are treated as "no action"

Many (but not all) of the methods on Axes take the (undocumented) keyword arguments xunits and yunits
that will update the units on the given Axis by calling Axis.set_units and Axis.update_units.

Previously ifNonewas passed it would clear the value stored in.Axis.unitswhichwill in turn break con-
verters which rely on the value in .Axis.units to work properly (notably StrCategoryConverter).

This changes the semantics of ax.meth(..., xunits=None, yunits=None) from "please clear
the units" to "do the default thing as if they had not been passed" which is consistent with the standard
behavior of Matplotlib keyword arguments.

If you were relying on passing xunits=None to plotting methods to clear the .Axes.units attribute,
directly call Axis.set_units (and Axis.update_units if you also require the converter to be up-
dated).

Annotations with annotation_clip no longer affect tight_layout

Previously, text.Annotation.get_tightbbox always returned the full text.Annotation.
get_window_extent of the object, independent of the value of annotation_clip. text.
Annotation.get_tightbbox now correctly takes this extra clipping box into account, meaning that
Annotations that are not drawn because of annotation_clipwill not count towards the Axes bound-
ing box calculations, such as those done by tight_layout.

This is now consistent with the API described in Artist, which specifies that get_window_extent
should return the full extents and get_tightbbox should "account for any clipping".

Parasite Axes pcolor and pcolormesh now defaults to placing grid edges at integers, not
half-integers

This is consistent with pcolor and pcolormesh.

16.3. API Changes for 3.4.0 1121

../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Colorbar outline is now a Spine

The outline of Colorbar is now a Spine and drawn as one, instead of a Polygon drawn as an artist.
This ensures it will always be drawn after (i.e., on top of) all artists, consistent with Spines on normal Axes.

Colorbar.dividers changes

This attribute is now always a LineCollection -- an empty one if drawedges is False. Its default
colors and linewidth (rcParams["axes.edgecolor"] (default: 'black'), rcParams["axes.
linewidth"] (default: 0.8)) are now resolved at instantiation time, not at draw time.

Raise or warn on registering a colormap twice

When using matplotlib.cm.register_cmap to register a user provided or third-party colormap it
will now raise a ValueError if trying to over-write one of the built in colormaps and warn if trying to
over write a user registered colormap. This may raise for user-registered colormaps in the future.

Consecutive rasterized draws now merged

Tracking of depth of raster draws has moved from backend_mixed.MixedModeRenderer.
start_rasterizing and backend_mixed.MixedModeRenderer.stop_rasterizing into
artist.allow_rasterization. This means the start and stop functions are only called when the
rasterization actually needs to be started and stopped.

The output of vector backends will change in the case that rasterized elements are merged. This should not
change the appearance of outputs.

The renders in 3rd party backends are now expected to have self._raster_depth and self.
_rasterizing initialized to 0 and False respectively.

Consistent behavior of draw_if_interactive() across backends

pyplot.draw_if_interactive no longer shows the window (if it was previously unshown) on the
Tk and nbAgg backends, consistently with all other backends.

The Artist property rasterized cannot be None anymore

It is now a boolean only. Before the default was None and Artist.set_rasterized was documented
to accept None. However, None did not have a special meaning and was treated as False.

1122 Chapter 16. API Changes

../tutorials/introductory/customizing.html?highlight=axes.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/exceptions.html#ValueError

Matplotlib, Release 3.4.3

Canvas's callback registry now stored on Figure

The canonical location of the CallbackRegistry used to handle Figure/Canvas events has been moved
from the Canvas to the Figure. This change should be transparent to almost all users, however if you are
swapping switching the Figure out from on top of a Canvas or visa versa you may see a change in behavior.

Harmonized key event data across backends

The different backends with key translation support, now handle "Shift" as a sometimes modifier, where the
'shift+' prefix won't be added if a key translation was made.

In the Qt5 backend, the matplotlib.backends.backend_qt5.SPECIAL_KEYS dictionary con-
tains keys that do not return their unicode name instead they have manually specified names. The name for
QtCore.Qt.Key_Meta has changed to 'meta' to be consistent with the other GUI backends.

The WebAgg backend now handles key translations correctly on non-US keyboard layouts.

In the GTK and Tk backends, the handling of non-ASCII keypresses (as reported in the KeyEvent passed
to key_press_event-handlers) now correctly reports Unicode characters (e.g., €), and better respects
NumLock on the numpad.

In the GTK and Tk backends, the following key names have changed; the new names are consistent with
those reported by the Qt backends:

• The "Break/Pause" key (keysym 0xff13) is now reported as "pause" instead of "break" (this is
also consistent with the X key name).

• The numpad "delete" key is now reported as "delete" instead of "dec".

WebAgg backend no longer reports a middle click as a right click

Previously when using the WebAgg backend the event passed to a callback by fig.canvas.
mpl_connect('mouse_button_event', callback) on a middle click would report
MouseButton.RIGHT instead of MouseButton.MIDDLE.

ID attribute of XML tags in SVG files now based on SHA256 rather than MD5

Matplotlib generates unique ID attributes for various tags in SVG files. Matplotlib previously generated
these unique IDs using the first 10 characters of an MD5 hash. The MD5 hashing algorithm is not available
in Python on systems with Federal Information Processing Standards (FIPS) enabled. Matplotlib now uses
the first 10 characters of an SHA256 hash instead. SVG files that would otherwise match those saved with
earlier versions of matplotlib, will have different ID attributes.

16.3. API Changes for 3.4.0 1123

Matplotlib, Release 3.4.3

RendererPS.set_font is no longer a no-op in AFM mode

RendererPS.set_font now sets the current PostScript font in all cases.

Autoscaling in Axes3D

In Matplotlib 3.2.0, autoscaling was made lazier for 2D Axes, i.e., limits would only be recomputed when
actually rendering the canvas, or when the user queries the Axes limits. This performance improvement
is now extended to Axes3D. This also fixes some issues with autoscaling being triggered unexpectedly in
Axes3D.

Please see the API change for 2D Axes for further details.

Axes3D automatically adding itself to Figure is deprecated

New Axes3D objects previously added themselves to figures when they were created, unlike all other Axes
classes, which lead to them being added twice if fig.add_subplot(111, projection='3d')was
called.

This behavior is now deprecated and will warn. The new keyword argument auto_add_to_figure controls the
behavior and can be used to suppress the warning. The default value will change to False in Matplotlib 3.5,
and any non-False value will be an error in Matplotlib 3.6.

In the future, Axes3D will need to be explicitly added to the figure

fig = Figure()
create Axes3D
ax = Axes3d(fig)
add to Figure
fig.add_axes(ax)

as needs to be done for other axes.Axes sub-classes. Or, a 3D projection can be made via:

fig.add_subplot(projection='3d')

mplot3d.art3d.get_dir_vector always returns NumPy arrays

For consistency, get_dir_vector now always returns NumPy arrays, even if the input is a 3-element
iterable.

1124 Chapter 16. API Changes

Matplotlib, Release 3.4.3

Changed cursive and fantasy font definitions

The Comic Sans and Comic Neue fonts were moved from the default rcParams["font.fantasy"]
(default: ['Chicago', 'Charcoal', 'Impact', 'Western', 'Humor Sans', 'xkcd',
'fantasy']) list to the default rcParams["font.cursive"] (default: ['Apple Chancery',
'Textile', 'Zapf Chancery', 'Sand', 'Script MT', 'Felipa', 'Comic Neue',
'Comic Sans MS', 'cursive']) setting, in accordance with the CSS font families example and in
order to provide a cursive font present in Microsoft's Core Fonts set.

docstring.Substitution now always dedents docstrings before string interpolation

16.3.2 Deprecations

Extra parameters to Axes constructor

Parameters of the Axes constructor other than fig and rect will become keyword-only in a future version.

pyplot.gca and Figure.gca keyword arguments

Passing keyword arguments to pyplot.gca or figure.Figure.gca will not be supported in a future
release.

Axis.cla, RadialAxis.cla, ThetaAxis.cla and Spine.cla

These methods are deprecated in favor of the respective clear() methods.

Invalid hatch pattern characters are no longer ignored

When specifying hatching patterns, characters that are not recognized will raise a deprecation warning. In
the future, this will become a hard error.

imread reading from URLs

Passing a URL to imread() is deprecated. Please open the URL for reading and directly use the Pil-
low API (PIL.Image.open(urllib.request.urlopen(url)), or PIL.Image.open(io.
BytesIO(requests.get(url).content))) instead.

16.3. API Changes for 3.4.0 1125

../tutorials/introductory/customizing.html?highlight=font.fantasy#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=font.cursive#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://www.w3.org/Style/Examples/007/fonts.en.html

Matplotlib, Release 3.4.3

Subplot-related attributes and methods

Some SubplotBase methods and attributes have been deprecated and/or moved to SubplotSpec:

• get_geometry (use SubplotBase.get_subplotspec instead),

• change_geometry (use SubplotBase.set_subplotspec instead),

• is_first_row, is_last_row, is_first_col, is_last_col (use the corresponding
methods on the SubplotSpec instance instead),

• update_params (now a no-op),

• figbox (use ax.get_subplotspec().get_geometry(ax.figure) instead to recompute
the geometry, or ax.get_position() to read its current value),

• numRows, numCols (use the nrows and ncols attribute on the GridSpec instead).

Likewise, the get_geometry, change_geometry, update_params, and figbox meth-
ods/attributes of SubplotDivider have been deprecated, with similar replacements.

is_url and URL_REGEX

... are deprecated. (They were previously defined in the toplevel matplotlib module.)

matplotlib.style.core deprecations

STYLE_FILE_PATTERN, load_base_library, and iter_user_libraries are deprecated.

dpi_cor property of FancyArrowPatch

This parameter is considered internal and deprecated.

Passing boxstyle="custom", bbox_transmuter=... to FancyBboxPatch

In order to use a custom boxstyle, directly pass it as the boxstyle argument to FancyBboxPatch. This was
previously already possible, and is consistent with custom arrow styles and connection styles.

BoxStyles are now called without passing the mutation_aspect parameter

Mutation aspect is now handled by the artist itself. Hence the mutation_aspect parameter of BoxStyle.
_Base.__call__ is deprecated, and custom boxstyles should be implemented to not require this param-
eter (it can be left as a parameter defaulting to 1 for back-compatibility).

1126 Chapter 16. API Changes

Matplotlib, Release 3.4.3

ContourLabeler.get_label_coords is deprecated

It is considered an internal helper.

Line2D and Patch no longer duplicate validJoin and validCap

Validation of joinstyle and capstyles is now centralized in rcsetup.

Setting a Line2D's pickradius via set_picker is undeprecated

This cancels the deprecation introduced in Matplotlib 3.3.0.

MarkerStyle is considered immutable

MarkerStyle.set_fillstyle() and MarkerStyle.set_marker() are deprecated. Create a
new MarkerStyle with the respective parameters instead.

MovieWriter.cleanup is deprecated

Cleanup logic is now fully implemented in MovieWriter.finish. Third-party movie writers should
likewise move the relevant cleanup logic there, as overridden cleanups will no longer be called in the
future.

minimumdescent parameter/property of TextArea

offsetbox.TextArea has behaved as if minimumdescent was always True (regardless of the value to
which it was set) since Matplotlib 1.3, so the parameter/property is deprecated.

colorbar now warns when the mappable's Axes is different from the current Axes

Currently, Figure.colorbar and pyplot.colorbar steal space by default from the current Axes to
place the colorbar. In a future version, they will steal space from the mappable's Axes instead. In preparation
for this change, Figure.colorbar and pyplot.colorbar now emits a warning when the current
Axes is not the same as the mappable's Axes.

16.3. API Changes for 3.4.0 1127

Matplotlib, Release 3.4.3

Colorbar docstrings

The following globals in matplotlib.colorbar are deprecated: colorbar_doc, col-
ormap_kw_doc, make_axes_kw_doc.

ColorbarPatch and colorbar_factory are deprecated

All the relevant functionality has been moved to the Colorbar class.

Backend deprecations

• FigureCanvasBase.get_window_title and FigureCanvasBase.
set_window_title are deprecated. Use the corresponding methods on the FigureManager
if using pyplot, or GUI-specific methods if embedding.

• The resize_callback parameter to FigureCanvasTk was never used internally and is deprecated.
Tk-level custom event handlers for resize events can be added to a FigureCanvasTk using e.g.
get_tk_widget().bind('<Configure>', ..., True).

• The key_press and button_pressmethods of FigureManagerBase, which incorrectly did
nothingwhen usingtoolmanager, are deprecated in favor of directly passing the event to theCall-
backRegistry via self.canvas.callbacks.process(event.name, event).

• RendererAgg.get_content_extents and RendererAgg.
tostring_rgba_minimized are deprecated.

• backend_pgf.TmpDirCleaner is deprecated, with no replacement.

• GraphicsContextPS is deprecated. The PostScript backend now uses GraphicsCon-
textBase.

wx backend cleanups

The origin parameter to _FigureCanvasWxBase.gui_repaint is deprecated with no replacement;
gui_repaint now automatically detects the case where it is used with the wx renderer.

The NavigationToolbar2Wx.get_canvas method is deprecated; directly instantiate a canvas
(FigureCanvasWxAgg(frame, -1, figure)) if needed.

Unused positional parameters to print_<fmt> methods are deprecated

None of the print_<fmt> methods implemented by canvas subclasses used positional arguments other
that the first (the output filename or file-like), so these extra parameters are deprecated.

1128 Chapter 16. API Changes

Matplotlib, Release 3.4.3

The dpi parameter of FigureCanvas.print_foo printers is deprecated

The savefig machinery already took care of setting the figure DPI to the desired value, so print_foo
can directly read it from there. Not passing dpi to print_foo allows clearer detection of unused parameters
passed to savefig.

Passing bytes to FT2Font.set_text

... is deprecated, pass str instead.

ps.useafm deprecated for mathtext

Outputtingmathtext using only standard PostScript fonts has likely been broken for a while (issue #18722). In
Matplotlib 3.5, the setting rcParams["ps.useafm"] (default: False) will have no effect on mathtext.

MathTextParser("bitmap") is deprecated

The associated APIs MathtextBackendBitmap, MathTextParser.to_mask,
MathTextParser.to_rgba, MathTextParser.to_png, and MathTextParser.get_depth
are likewise deprecated.

To convert a text string to an image, either directly draw the text to an emptyFigure and save the figure using
a tight bbox, as demonstrated in /gallery/text_labels_and_annotations/mathtext_asarray, or use mathtext.
math_to_image.

When using math_to_image, text color can be set with e.g.:

with plt.rc_context({"text.color": "tab:blue"}):
mathtext.math_to_image(text, filename)

and an RGBA array can be obtained with e.g.:

from io import BytesIO
buf = BytesIO()
mathtext.math_to_image(text, buf, format="png")
buf.seek(0)
rgba = plt.imread(buf)

Deprecation of mathtext internals

The following API elements previously exposed by the mathtext module are considered to be implemen-
tation details and public access to them is deprecated:

• Fonts and all its subclasses,

• FontConstantsBase and all its subclasses,

• Node and all its subclasses,

16.3. API Changes for 3.4.0 1129

https://docs.python.org/3/library/stdtypes.html#str
https://github.com/matplotlib/matplotlib/issues/18722
../tutorials/introductory/customizing.html?highlight=ps.useafm#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

• Ship, ship,

• Error,

• Parser,

• SHRINK_FACTOR, GROW_FACTOR,

• NUM_SIZE_LEVELS,

• latex_to_bakoma, latex_to_cmex, latex_to_standard,

• stix_virtual_fonts,

• tex2uni.

Deprecation of various mathtext helpers

The MathtextBackendPdf, MathtextBackendPs, MathtextBackendSvg, and Math-
textBackendCairo classes from the mathtext module, as well as the corresponding .
mathtext_parser attributes on RendererPdf, RendererPS, RendererSVG, and Render-
erCairo, are deprecated. The MathtextBackendPath class can be used to obtain a list of glyphs
and rectangles in a mathtext expression, and renderer-specific logic should be directly implemented in the
renderer.

StandardPsFonts.pswriter is unused and deprecated.

Widget class internals

Several widgets.Widget class internals have been privatized and deprecated:

• AxesWidget.cids

• Button.cnt and Button.observers

• CheckButtons.cnt and CheckButtons.observers

• RadioButtons.cnt and RadioButtons.observers

• Slider.cnt and Slider.observers

• TextBox.cnt, TextBox.change_observers and TextBox.submit_observers

3D properties on renderers

The properties of the 3D Axes that were placed on the Renderer during draw are now deprecated:

• renderer.M

• renderer.eye

• renderer.vvec

• renderer.get_axis_position

1130 Chapter 16. API Changes

Matplotlib, Release 3.4.3

These attributes are all available via Axes3D, which can be accessed via self.axes on all Artists.

renderer argument of do_3d_projection method for Collection3D/Patch3D

The renderer argument for the do_3d_projection method on Collection3D and Patch3D is no
longer necessary, and passing it during draw is deprecated.

project argument of draw method for Line3DCollection

The project argument for the draw method on Line3DCollection is deprecated. Call
Line3DCollection.do_3d_projection explicitly instead.

Extra positional parameters to plot_surface and plot_wireframe

Positional parameters to plot_surface and plot_wireframe other than X, Y, and Z are deprecated.
Pass additional artist properties as keyword arguments instead.

ParasiteAxesAuxTransBase class

The functionality of that mixin class has been moved to the base ParasiteAxesBase
class. Thus, ParasiteAxesAuxTransBase, ParasiteAxesAuxTrans, and para-
site_axes_auxtrans_class_factory are deprecated.

In general, it is suggested to use HostAxes.get_aux_axes to create parasite Axes, as this saves the need
of manually appending the parasite to host.parasites and makes sure that their remove() method
works properly.

AxisArtist.ZORDER attribute

Use AxisArtist.zorder instead.

GridHelperBase invalidation

The GridHelperBase.invalidate, GridHelperBase.valid, and axislines.Axes.
invalidate_grid_helper methods are considered internal and deprecated.

16.3. API Changes for 3.4.0 1131

Matplotlib, Release 3.4.3

sphinext.plot_directive.align

... is deprecated. Use docutils.parsers.rst.directives.images.Image.align instead.

Deprecation-related functionality is considered internal

The module matplotlib.cbook.deprecation is considered internal and will be removed
from the public API. This also holds for deprecation-related re-imports in matplotlib.cbook,
i.e. matplotlib.cbook.deprecated(), matplotlib.cbook.warn_deprecated(),
matplotlib.cbook.MatplotlibDeprecationWarning and matplotlib.cbook.
mplDeprecation.

If needed, external users may import MatplotlibDeprecationWarning directly from the mat-
plotlib namespace. mplDeprecation is only an alias of MatplotlibDeprecationWarning
and should not be used anymore.

16.3.3 Removals

The following deprecated APIs have been removed:

Removed behaviour

• The "smart bounds" functionality on Axis and Spine has been deleted, and the related methods have
been removed.

• Converting a string with single color characters (e.g. 'cymk') in to_rgba_array is no longer
supported. Instead, the colors can be passed individually in a list (e.g. ['c', 'y', 'm', 'k']).

• Returning a factor equal to None from mpl_toolkits.axisartist Locators (which are not the
same as "standard" tick Locators), or passing a factor equal to None to axisartist Formatters (which
are not the same as "standard" tick Formatters) is no longer supported. Pass a factor equal to 1 instead.

Modules

• The entire matplotlib.testing.disable_internet module has been removed. The
pytest-remotedata package can be used instead.

• The mpl_toolkits.axes_grid1.colorbar module and its colorbar implementation have
been removed in favor of matplotlib.colorbar.

1132 Chapter 16. API Changes

https://github.com/astropy/pytest-remotedata

Matplotlib, Release 3.4.3

Classes, methods and attributes

• The animation.MovieWriterRegistry methods .set_dirty(), .
ensure_not_dirty(), and .reset_available_writers() do nothing and have
been removed. The .avail() method has been removed; use .list() instead to get a list of
available writers.

• The matplotlib.artist.Artist.eventson and matplotlib.container.
Container.eventson attributes have no effect and have been removed.

• matplotlib.axes.Axes.get_data_ratio_log has been removed.

• matplotlib.axes.SubplotBase.rowNum; use ax.get_subplotspec().rowspan.
start instead.

• matplotlib.axes.SubplotBase.colNum; use ax.get_subplotspec().colspan.
start instead.

• matplotlib.axis.Axis.set_smart_bounds and matplotlib.axis.Axis.
get_smart_bounds have been removed.

• matplotlib.colors.DivergingNorm has been renamed to TwoSlopeNorm.

• matplotlib.figure.AxesStack has been removed.

• matplotlib.font_manager.JSONEncoder has been removed; use font_manager.
json_dump to dump a FontManager instance.

• The matplotlib.ft2font.FT2Image methods .as_array(), .as_rgba_str(), .
as_str(), .get_height() and .get_width() have been removed. Convert the FT2Image
to a NumPy array with np.asarray before processing it.

• matplotlib.quiver.QuiverKey.quiverkey_doc has been removed; usematplotlib.
quiver.QuiverKey.__init__.__doc__ instead.

• matplotlib.spines.Spine.set_smart_bounds and matplotlib.spines.Spine.
get_smart_bounds have been removed.

• matplotlib.testing.jpl_units.UnitDbl.checkUnits has been removed; useunits
not in self.allowed instead.

• The unused matplotlib.ticker.Locator.autoscale method has been removed (pass the
axis limits to Locator.view_limits instead). The derived methods Locator.autoscale,
AutoDateLocator.autoscale, RRuleLocator.autoscale, RadialLocator.
autoscale, ThetaLocator.autoscale, and YearLocator.autoscale have also been
removed.

• matplotlib.transforms.BboxBase.is_unit has been removed; check the Bbox extents
if needed.

• matplotlib.transforms.Affine2DBase.matrix_from_values(...) has been re-
moved; use (for example) Affine2D.from_values(...).get_matrix() instead.

• matplotlib.backend_bases.FigureCanvasBase.draw_cursor has been removed.

16.3. API Changes for 3.4.0 1133

Matplotlib, Release 3.4.3

• matplotlib.backends.backend_gtk.ConfigureSubplotsGTK3.destroy and
matplotlib.backends.backend_gtk.ConfigureSubplotsGTK3.init_window
methods have been removed.

• matplotlib.backends.backend_gtk.ConfigureSubplotsGTK3.window property
has been removed.

• matplotlib.backends.backend_macosx.FigureCanvasMac.invalidate has been
removed.

• matplotlib.backends.backend_pgf.RendererPgf.latexManager has been re-
moved.

• matplotlib.backends.backend_wx.FigureFrameWx.statusbar, matplotlib.
backends.backend_wx.NavigationToolbar2Wx.set_status_bar, and
matplotlib.backends.backend_wx.NavigationToolbar2Wx.statbar have
been removed. The status bar can be retrieved by calling standard wx methods (frame.
GetStatusBar() and toolbar.GetTopLevelParent().GetStatusBar()).

• matplotlib.backends.backend_wx.ConfigureSubplotsWx.
configure_subplots and matplotlib.backends.backend_wx.
ConfigureSubplotsWx.get_canvas have been removed.

• mpl_toolkits.axisartist.grid_finder.GridFinderBase has been removed; use
GridFinder instead.

• mpl_toolkits.axisartist.axis_artist.BezierPath has been removed; use
patches.PathPatch instead.

Functions

• matplotlib.backends.backend_pgf.repl_escapetext and matplotlib.
backends.backend_pgf.repl_mathdefault have been removed.

• matplotlib.checkdep_ps_distiller has been removed.

• matplotlib.cm.revcmap has been removed; use Colormap.reversed instead.

• matplotlib.colors.makeMappingArray has been removed.

• matplotlib.compare_versions has been removed; use comparison of distutils.
version.LooseVersions instead.

• matplotlib.dates.mx2num has been removed.

• matplotlib.font_manager.createFontList has been removed; font_manager.
FontManager.addfont is now available to register a font at a given path.

• matplotlib.get_home has been removed; use standard library instead.

• matplotlib.mlab.apply_window and matplotlib.mlab.stride_repeat have been
removed.

• matplotlib.rcsetup.update_savefig_format has been removed; this just replaced
'auto' with 'png', so do the same.

1134 Chapter 16. API Changes

Matplotlib, Release 3.4.3

• matplotlib.rcsetup.validate_animation_writer_path has been removed.

• matplotlib.rcsetup.validate_path_exists has been removed; use os.path.
exists or pathlib.Path.exists instead.

• matplotlib.style.core.is_style_file and matplotlib.style.core.
iter_style_files have been removed.

• matplotlib.testing.is_called_from_pytest has been removed.

• mpl_toolkits.mplot3d.axes3d.unit_bbox has been removed; use Bbox.unit instead.

Arguments

• Passing more than one positional argument to axes.Axes.axis will now raise an error.

• Passing "range" to the whis parameter of Axes.boxplot and cbook.boxplot_stats to
mean "the whole data range" is no longer supported.

• Passing scalars to the where parameter in axes.Axes.fill_between and axes.Axes.
fill_betweenx is no longer accepted and non-matching sizes now raise a ValueError.

• The verts parameter to Axes.scatter has been removed; use marker instead.

• Theminor parameter in Axis.set_ticks and SecondaryAxis.set_ticks is now keyword-
only.

• scale.ScaleBase, scale.LinearScale and scale.SymmetricalLogScale now er-
ror if any unexpected keyword arguments are passed to their constructors.

• The renderer parameter to Figure.tight_layout has been removed; this method now always
uses the renderer instance cached on the Figure.

• The locator parameter to mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase.
colorbar has been removed in favor of its synonym ticks (which already existed previously, and
is consistent with matplotlib.colorbar).

• The switch_backend_warn parameter to matplotlib.test has no effect and has been removed.

• The dryrun parameter to the various FigureCanvas*.print_* methods has been removed.

rcParams

• The datapath rcParam has been removed. Use matplotlib.get_data_path instead.

• The mpl_toolkits.legacy_colorbar rcParam has no effect and has been removed.

• Setting rcParams["boxplot.whiskers"] (default: 1.5) to "range" is no longer valid; set
it to 0, 100 instead.

• Setting rcParams["savefig.format"] (default: 'png') to "auto" is no longer valid; use
"png" instead.

• Setting rcParams["text.hinting"] (default: 'force_autohint') to False or True is
no longer valid; set it to "auto" or "none" respectively.

16.3. API Changes for 3.4.0 1135

https://docs.python.org/3/library/os.path.html#os.path.exists
https://docs.python.org/3/library/os.path.html#os.path.exists
https://docs.python.org/3/library/pathlib.html#pathlib.Path.exists
https://docs.python.org/3/library/exceptions.html#ValueError
../tutorials/introductory/customizing.html?highlight=boxplot.whiskers#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=text.hinting#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

sample_data removals

The sample datasets listed below have been removed. Suggested replacements for demonstration purposes
are listed in parentheses.

• None_vs_nearest-pdf.png,

• aapl.npz (use goog.npz),

• ada.png, grace_hopper.png (use grace_hopper.jpg),

• ct.raw.gz (use s1045.ima.gz),

• damodata.csv (use msft.csv).

16.3.4 Development changes

Increase to minimum supported versions of Python and dependencies

For Maptlotlib 3.4, the minimum supported versions are being bumped:

Dependency min in mpl3.3 min in mpl3.4
Python 3.6 3.7
dateutil 2.1 2.7
numpy 1.15 1.16
pyparsing 2.0.3 2.2.1

This is consistent with our Minimum Version of Dependencies Policy and NEP29

Qhull downloaded at build-or-sdist time

Much like FreeType, Qhull is now downloaded at build time, or upon creation of the sdist. To link against
system Qhull, set the system_qhull option to True in the setup.cfg file. Note that Matplotlib now
requires the re-entrant version of Qhull (qhull_r).

FigureBase class added, and Figure class made a child

The new subfigure feature motivated some re-organization of the figure.Figure class, so that the new
figure.SubFigure class could have all the capabilities of a figure.

The figure.Figure class is now a subclass of figure.FigureBase, where figure.
FigureBase contains figure-level artist addition routines, and the figure.Figure subclass just con-
tains features that are unique to the outer figure.

Note that there is a new transSubfigure transform associated with the subfigure. This transform also exists
for a Figure instance, and is equal to transFigure in that case, so code that uses the transform stack that
wants to place objects on either the parent figure or one of the subfigures should use transSubfigure.

1136 Chapter 16. API Changes

https://numpy.org/neps/nep-0029-deprecation_policy.html
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

• Usage patterns

– The pyplot API

– The object-oriented API

– The pylab API (disapproved)

• Modules

• Toolkits

See also the API Changes.

16.3. API Changes for 3.4.0 1137

Matplotlib, Release 3.4.3

1138 Chapter 16. API Changes

CHAPTER

SEVENTEEN

USAGE PATTERNS

Below we describe several common approaches to plotting with Matplotlib.

17.1 The pyplot API

matplotlib.pyplot is a collection of command style functions that make Matplotlib work like MAT-
LAB. Each pyplot function makes some change to a figure: e.g., creates a figure, creates a plotting area in a
figure, plots some lines in a plotting area, decorates the plot with labels, etc.

pyplot is mainly intended for interactive plots and simple cases of programmatic plot generation.

Further reading:

• The matplotlib.pyplot function reference

• Pyplot tutorial

• Pyplot examples

17.2 The object-oriented API

At its core, Matplotlib is object-oriented. We recommend directly working with the objects, if you need more
control and customization of your plots.

In many cases you will create a Figure and one or more Axes using pyplot.subplots and from then
on only work on these objects. However, it's also possible to create Figures explicitly (e.g. when including
them in GUI applications).

Further reading:

• matplotlib.axes.Axes and matplotlib.figure.Figure for an overview of plotting
functions.

• Most of the examples use the object-oriented approach (except for the pyplot section)

1139

Matplotlib, Release 3.4.3

17.3 The pylab API (disapproved)

Warning: Since heavily importing into the global namespace may result in unexpected behavior, the
use of pylab is strongly discouraged. Use matplotlib.pyplot instead.

pylab is a module that includes matplotlib.pyplot, numpy, numpy.fft, numpy.linalg,
numpy.random, and some additional functions, all within a single namespace. Its original purpose was
to mimic a MATLAB-like way of working by importing all functions into the global namespace. This is
considered bad style nowadays.

1140 Chapter 17. Usage patterns

https://numpy.org/doc/stable/reference/index.html#module-numpy
https://numpy.org/doc/stable/reference/routines.fft.html#module-numpy.fft
https://numpy.org/doc/stable/reference/routines.linalg.html#module-numpy.linalg
https://numpy.org/doc/stable/reference/random/index.html#module-numpy.random

CHAPTER

EIGHTEEN

MODULES

Matplotlib consists of the following submodules:

18.1 matplotlib

18.1.1 Backend management

matplotlib.use(backend, *, force=True)
Select the backend used for rendering and GUI integration.

Parameters

backend
[str] The backend to switch to. This can either be one of the standard backend
names, which are case-insensitive:

• interactive backends: GTK3Agg, GTK3Cairo, MacOSX, nbAgg, Qt4Agg,
Qt4Cairo, Qt5Agg, Qt5Cairo, TkAgg, TkCairo, WebAgg, WX, WXAgg, WX-
Cairo

• non-interactive backends: agg, cairo, pdf, pgf, ps, svg, template

or a string of the form: module://my.module.name.

force
[bool, default: True] If True (the default), raise an ImportError if the backend
cannot be set up (either because it fails to import, or because an incompatible GUI
interactive framework is already running); if False, ignore the failure.

See also:

Backends

matplotlib.get_backend

1141

https://docs.python.org/3/library/exceptions.html#ImportError

Matplotlib, Release 3.4.3

matplotlib.get_backend()
Return the name of the current backend.

See also:

matplotlib.use

matplotlib.interactive(b)
Set whether to redraw after every plotting command (e.g. pyplot.xlabel).

matplotlib.is_interactive()
Return whether to redraw after every plotting command.

Note: This function is only intended for use in backends. End users should use pyplot.
isinteractive instead.

18.1.2 Default values and styling

matplotlib.rcParams
An instance of RcParams for handling default Matplotlib values.

class matplotlib.RcParams(*args, **kwargs)
A dictionary object including validation.

Validating functions are defined and associated with rc parameters in matplotlib.rcsetup.

The list of rcParams is:

• backend

• backend_fallback

• toolbar

• interactive

• timezone

• webagg.port

• webagg.address

• webagg.open_in_browser

• webagg.port_retries

• lines.linewidth

• lines.linestyle

• lines.color

• lines.marker

• lines.markerfacecolor

1142 Chapter 18. Modules

Matplotlib, Release 3.4.3

• lines.markeredgecolor

• lines.markeredgewidth

• lines.markersize

• lines.antialiased

• lines.dash_joinstyle

• lines.solid_joinstyle

• lines.dash_capstyle

• lines.solid_capstyle

• lines.dashed_pattern

• lines.dashdot_pattern

• lines.dotted_pattern

• lines.scale_dashes

• markers.fillstyle

• pcolor.shading

• pcolormesh.snap

• patch.linewidth

• patch.edgecolor

• patch.force_edgecolor

• patch.facecolor

• patch.antialiased

• hatch.color

• hatch.linewidth

• hist.bins

• boxplot.notch

• boxplot.vertical

• boxplot.whiskers

• boxplot.bootstrap

• boxplot.patchartist

• boxplot.showmeans

• boxplot.showcaps

• boxplot.showbox

• boxplot.showfliers

18.1. matplotlib 1143

Matplotlib, Release 3.4.3

• boxplot.meanline

• boxplot.flierprops.color

• boxplot.flierprops.marker

• boxplot.flierprops.markerfacecolor

• boxplot.flierprops.markeredgecolor

• boxplot.flierprops.markeredgewidth

• boxplot.flierprops.markersize

• boxplot.flierprops.linestyle

• boxplot.flierprops.linewidth

• boxplot.boxprops.color

• boxplot.boxprops.linewidth

• boxplot.boxprops.linestyle

• boxplot.whiskerprops.color

• boxplot.whiskerprops.linewidth

• boxplot.whiskerprops.linestyle

• boxplot.capprops.color

• boxplot.capprops.linewidth

• boxplot.capprops.linestyle

• boxplot.medianprops.color

• boxplot.medianprops.linewidth

• boxplot.medianprops.linestyle

• boxplot.meanprops.color

• boxplot.meanprops.marker

• boxplot.meanprops.markerfacecolor

• boxplot.meanprops.markeredgecolor

• boxplot.meanprops.markersize

• boxplot.meanprops.linestyle

• boxplot.meanprops.linewidth

• font.family

• font.style

• font.variant

• font.stretch

1144 Chapter 18. Modules

Matplotlib, Release 3.4.3

• font.weight

• font.size

• font.serif

• font.sans-serif

• font.cursive

• font.fantasy

• font.monospace

• text.color

• text.usetex

• text.latex.preamble

• text.latex.preview

• text.hinting

• text.hinting_factor

• text.kerning_factor

• text.antialiased

• mathtext.cal

• mathtext.rm

• mathtext.tt

• mathtext.it

• mathtext.bf

• mathtext.sf

• mathtext.fontset

• mathtext.default

• mathtext.fallback_to_cm

• mathtext.fallback

• image.aspect

• image.interpolation

• image.cmap

• image.lut

• image.origin

• image.resample

• image.composite_image

18.1. matplotlib 1145

Matplotlib, Release 3.4.3

• contour.negative_linestyle

• contour.corner_mask

• contour.linewidth

• errorbar.capsize

• xaxis.labellocation

• yaxis.labellocation

• axes.axisbelow

• axes.facecolor

• axes.edgecolor

• axes.linewidth

• axes.spines.left

• axes.spines.right

• axes.spines.bottom

• axes.spines.top

• axes.titlesize

• axes.titlelocation

• axes.titleweight

• axes.titlecolor

• axes.titley

• axes.titlepad

• axes.grid

• axes.grid.which

• axes.grid.axis

• axes.labelsize

• axes.labelpad

• axes.labelweight

• axes.labelcolor

• axes.formatter.limits

• axes.formatter.use_locale

• axes.formatter.use_mathtext

• axes.formatter.min_exponent

• axes.formatter.useoffset

1146 Chapter 18. Modules

Matplotlib, Release 3.4.3

• axes.formatter.offset_threshold

• axes.unicode_minus

• axes.prop_cycle

• axes.autolimit_mode

• axes.xmargin

• axes.ymargin

• axes.zmargin

• polaraxes.grid

• axes3d.grid

• scatter.marker

• scatter.edgecolors

• date.epoch

• date.autoformatter.year

• date.autoformatter.month

• date.autoformatter.day

• date.autoformatter.hour

• date.autoformatter.minute

• date.autoformatter.second

• date.autoformatter.microsecond

• date.converter

• date.interval_multiples

• legend.fancybox

• legend.loc

• legend.numpoints

• legend.scatterpoints

• legend.fontsize

• legend.title_fontsize

• legend.markerscale

• legend.shadow

• legend.frameon

• legend.framealpha

• legend.borderpad

18.1. matplotlib 1147

Matplotlib, Release 3.4.3

• legend.labelspacing

• legend.handlelength

• legend.handleheight

• legend.handletextpad

• legend.borderaxespad

• legend.columnspacing

• legend.facecolor

• legend.edgecolor

• xtick.top

• xtick.bottom

• xtick.labeltop

• xtick.labelbottom

• xtick.major.size

• xtick.minor.size

• xtick.major.width

• xtick.minor.width

• xtick.major.pad

• xtick.minor.pad

• xtick.color

• xtick.labelcolor

• xtick.minor.visible

• xtick.minor.top

• xtick.minor.bottom

• xtick.major.top

• xtick.major.bottom

• xtick.labelsize

• xtick.direction

• xtick.alignment

• ytick.left

• ytick.right

• ytick.labelleft

• ytick.labelright

1148 Chapter 18. Modules

Matplotlib, Release 3.4.3

• ytick.major.size

• ytick.minor.size

• ytick.major.width

• ytick.minor.width

• ytick.major.pad

• ytick.minor.pad

• ytick.color

• ytick.labelcolor

• ytick.minor.visible

• ytick.minor.left

• ytick.minor.right

• ytick.major.left

• ytick.major.right

• ytick.labelsize

• ytick.direction

• ytick.alignment

• grid.color

• grid.linestyle

• grid.linewidth

• grid.alpha

• figure.titlesize

• figure.titleweight

• figure.figsize

• figure.dpi

• figure.facecolor

• figure.edgecolor

• figure.frameon

• figure.autolayout

• figure.max_open_warning

• figure.raise_window

• figure.subplot.left

• figure.subplot.right

18.1. matplotlib 1149

Matplotlib, Release 3.4.3

• figure.subplot.bottom

• figure.subplot.top

• figure.subplot.wspace

• figure.subplot.hspace

• figure.constrained_layout.use

• figure.constrained_layout.hspace

• figure.constrained_layout.wspace

• figure.constrained_layout.h_pad

• figure.constrained_layout.w_pad

• savefig.dpi

• savefig.facecolor

• savefig.edgecolor

• savefig.orientation

• savefig.jpeg_quality

• savefig.format

• savefig.bbox

• savefig.pad_inches

• savefig.directory

• savefig.transparent

• tk.window_focus

• ps.papersize

• ps.useafm

• ps.usedistiller

• ps.distiller.res

• ps.fonttype

• pdf.compression

• pdf.inheritcolor

• pdf.use14corefonts

• pdf.fonttype

• pgf.texsystem

• pgf.rcfonts

• pgf.preamble

1150 Chapter 18. Modules

Matplotlib, Release 3.4.3

• svg.image_inline

• svg.fonttype

• svg.hashsalt

• docstring.hardcopy

• path.simplify

• path.simplify_threshold

• path.snap

• path.sketch

• path.effects

• agg.path.chunksize

• keymap.fullscreen

• keymap.home

• keymap.back

• keymap.forward

• keymap.pan

• keymap.zoom

• keymap.save

• keymap.quit

• keymap.quit_all

• keymap.grid

• keymap.grid_minor

• keymap.yscale

• keymap.xscale

• keymap.all_axes

• keymap.help

• keymap.copy

• animation.html

• animation.embed_limit

• animation.writer

• animation.codec

• animation.bitrate

• animation.frame_format

18.1. matplotlib 1151

Matplotlib, Release 3.4.3

• animation.html_args

• animation.ffmpeg_path

• animation.ffmpeg_args

• animation.avconv_path

• animation.avconv_args

• animation.convert_path

• animation.convert_args

• _internal.classic_mode

See also:

The matplotlibrc file

find_all(pattern)
Return the subset of this RcParams dictionary whose keys match, using re.search(), the
given pattern.

Note: Changes to the returned dictionary are not propagated to the parent RcParams dictionary.

matplotlib.rc_context(rc=None, fname=None)
Return a context manager for temporarily changing rcParams.

Parameters

rc
[dict] The rcParams to temporarily set.

fname
[str or path-like] A file with Matplotlib rc settings. If both fname and rc are given,
settings from rc take precedence.

See also:

The matplotlibrc file

1152 Chapter 18. Modules

https://docs.python.org/3/library/re.html#re.search

Matplotlib, Release 3.4.3

Examples

Passing explicit values via a dict:

with mpl.rc_context({'interactive': False}):
fig, ax = plt.subplots()
ax.plot(range(3), range(3))
fig.savefig('example.png')
plt.close(fig)

Loading settings from a file:

with mpl.rc_context(fname='print.rc'):
plt.plot(x, y) # uses 'print.rc'

matplotlib.rc(group, **kwargs)
Set the current rcParams. group is the grouping for the rc, e.g., for lines.linewidth the group
is lines, for axes.facecolor, the group is axes, and so on. Group may also be a list or tuple
of group names, e.g., (xtick, ytick). kwargs is a dictionary attribute name/value pairs, e.g.,:

rc('lines', linewidth=2, color='r')

sets the current rcParams and is equivalent to:

rcParams['lines.linewidth'] = 2
rcParams['lines.color'] = 'r'

The following aliases are available to save typing for interactive users:

Alias Property
'lw' 'linewidth'
'ls' 'linestyle'
'c' 'color'
'fc' 'facecolor'
'ec' 'edgecolor'
'mew' 'markeredgewidth'
'aa' 'antialiased'

Thus you could abbreviate the above call as:

rc('lines', lw=2, c='r')

Note you can use python's kwargs dictionary facility to store dictionaries of default parameters. e.g.,
you can customize the font rc as follows:

font = {'family' : 'monospace',
'weight' : 'bold',
'size' : 'larger'}

rc('font', **font) # pass in the font dict as kwargs

18.1. matplotlib 1153

Matplotlib, Release 3.4.3

This enables you to easily switch between several configurations. Use matplotlib.style.
use('default') or rcdefaults() to restore the default rcParams after changes.

Notes

Similar functionality is available by using the normal dict interface, i.e. rcParams.
update({"lines.linewidth": 2, ...}) (but rcParams.update does not support
abbreviations or grouping).

matplotlib.rcdefaults()
Restore the rcParams from Matplotlib's internal default style.

Style-blacklisted rcParams (defined in matplotlib.style.core.STYLE_BLACKLIST) are
not updated.

See also:

matplotlib.rc_file_defaults

Restore the rcParams from the rc file originally loaded by Matplotlib.

matplotlib.style.use

Use a specific style file. Call style.use('default') to restore the default style.

matplotlib.rc_file_defaults()
Restore the rcParams from the original rc file loaded by Matplotlib.

Style-blacklisted rcParams (defined in matplotlib.style.core.STYLE_BLACKLIST) are
not updated.

matplotlib.rc_file(fname, *, use_default_template=True)
Update rcParams from file.

Style-blacklisted rcParams (defined in matplotlib.style.core.STYLE_BLACKLIST) are
not updated.

Parameters

fname
[str or path-like] A file with Matplotlib rc settings.

use_default_template
[bool] If True, initialize with default parameters before updating with those in
the given file. If False, the current configuration persists and only the parameters
specified in the file are updated.

matplotlib.rc_params(fail_on_error=False)
Construct a RcParams instance from the default Matplotlib rc file.

1154 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.rc_params_from_file(fname, fail_on_error=False,
use_default_template=True)

Construct a RcParams from file fname.

Parameters

fname
[str or path-like] A file with Matplotlib rc settings.

fail_on_error
[bool] If True, raise an error when the parser fails to convert a parameter.

use_default_template
[bool] If True, initialize with default parameters before updating with those in the
given file. If False, the configuration class only contains the parameters specified
in the file. (Useful for updating dicts.)

matplotlib.get_configdir()
Return the string path of the the configuration directory.

The directory is chosen as follows:

1. If the MPLCONFIGDIR environment variable is supplied, choose that.

2. On Linux, follow the XDG specification and look first in $XDG_CONFIG_HOME, if defined, or
$HOME/.config. On other platforms, choose $HOME/.matplotlib.

3. If the chosen directory exists and is writable, use that as the configuration directory.

4. Else, create a temporary directory, and use it as the configuration directory.

matplotlib.matplotlib_fname()
Get the location of the config file.

The file location is determined in the following order

• $PWD/matplotlibrc

• $MATPLOTLIBRC if it is not a directory

• $MATPLOTLIBRC/matplotlibrc

• $MPLCONFIGDIR/matplotlibrc

• On Linux,

– $XDG_CONFIG_HOME/matplotlib/matplotlibrc (if
$XDG_CONFIG_HOME is defined)

– or $HOME/.config/matplotlib/matplotlibrc (if $XDG_CONFIG_HOME
is not defined)

• On other platforms, - $HOME/.matplotlib/matplotlibrc if $HOME is defined

• Lastly, it looks in $MATPLOTLIBDATA/matplotlibrc, which should always exist.

18.1. matplotlib 1155

Matplotlib, Release 3.4.3

matplotlib.get_data_path()
Return the path to Matplotlib data.

18.1.3 Logging

matplotlib.set_loglevel(level)
Set Matplotlib's root logger and root logger handler level, creating the handler if it does not exist yet.

Typically, one should call set_loglevel("info") or set_loglevel("debug") to get ad-
ditional debugging information.

Parameters

level
[{"notset", "debug", "info", "warning", "error", "critical"}] The log level of the
handler.

Notes

The first time this function is called, an additional handler is attached to Matplotlib's root handler; this
handler is reused every time and this function simply manipulates the logger and handler's level.

18.1.4 Miscellaneous

matplotlib.get_cachedir()
Return the string path of the cache directory.

The procedure used to find the directory is the same as for _get_config_dir, except using
$XDG_CACHE_HOME/$HOME/.cache instead.

18.2 matplotlib.afm

A python interface to Adobe Font Metrics Files.

Although a number of other python implementations exist, and may be more complete than this, it was
decided not to go with them because they were either:

1) copyrighted or used a non-BSD compatible license

2) had too many dependencies and a free standing lib was needed

3) did more than needed and it was easier to write afresh rather than figure out how to get just what was
needed.

It is pretty easy to use, and has no external dependencies:

1156 Chapter 18. Modules

Matplotlib, Release 3.4.3

>>> import matplotlib as mpl
>>> from pathlib import Path
>>> afm_path = Path(mpl.get_data_path(), 'fonts', 'afm', 'ptmr8a.afm')
>>>
>>> from matplotlib.afm import AFM
>>> with afm_path.open('rb') as fh:
... afm = AFM(fh)
>>> afm.string_width_height('What the heck?')
(6220.0, 694)
>>> afm.get_fontname()
'Times-Roman'
>>> afm.get_kern_dist('A', 'f')
0
>>> afm.get_kern_dist('A', 'y')
-92.0
>>> afm.get_bbox_char('!')
[130, -9, 238, 676]

As in the Adobe Font Metrics File Format Specification, all dimensions are given in units of 1/1000 of the
scale factor (point size) of the font being used.

class matplotlib.afm.AFM(fh)
Bases: object

Parse the AFM file in file object fh.

property family_name
The font family name, e.g., 'Times'.

get_angle()
Return the fontangle as float.

get_bbox_char(c, isord=False)

get_capheight()
Return the cap height as float.

get_familyname()
Return the font family name, e.g., 'Times'.

get_fontname()
Return the font name, e.g., 'Times-Roman'.

get_fullname()
Return the font full name, e.g., 'Times-Roman'.

get_height_char(c, isord=False)
Get the bounding box (ink) height of character c (space is 0).

get_horizontal_stem_width()
Return the standard horizontal stem width as float, or None if not specified in AFM file.

get_kern_dist(c1, c2)
Return the kerning pair distance (possibly 0) for chars c1 and c2.

18.2. matplotlib.afm 1157

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

get_kern_dist_from_name(name1, name2)
Return the kerning pair distance (possibly 0) for chars name1 and name2.

get_name_char(c, isord=False)
Get the name of the character, i.e., ';' is 'semicolon'.

get_str_bbox(s)
Return the string bounding box.

get_str_bbox_and_descent(s)
Return the string bounding box and the maximal descent.

get_underline_thickness()
Return the underline thickness as float.

get_vertical_stem_width()
Return the standard vertical stem width as float, or None if not specified in AFM file.

get_weight()
Return the font weight, e.g., 'Bold' or 'Roman'.

get_width_char(c, isord=False)
Get the width of the character from the character metric WX field.

get_width_from_char_name(name)
Get the width of the character from a type1 character name.

get_xheight()
Return the xheight as float.

property postscript_name

string_width_height(s)
Return the string width (including kerning) and string height as a (w, h) tuple.

class matplotlib.afm.CharMetrics(width, name, bbox)
Bases: tuple

Represents the character metrics of a single character.

Notes

The fields do currently only describe a subset of character metrics information defined in the AFM
standard.

Create new instance of CharMetrics(width, name, bbox)

bbox
The bbox of the character (B) as a tuple (llx, lly, urx, ury).

name
The character name (N).

width
The character width (WX).

1158 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#tuple

Matplotlib, Release 3.4.3

class matplotlib.afm.CompositePart(name, dx, dy)
Bases: tuple

Represents the information on a composite element of a composite char.

Create new instance of CompositePart(name, dx, dy)

dx
x-displacement of the part from the origin.

dy
y-displacement of the part from the origin.

name
Name of the part, e.g. 'acute'.

18.3 matplotlib.animation

Table of Contents

• Animation

• Writer Classes

• Helper Classes

• Inheritance Diagrams

18.3.1 Animation

The easiest way to make a live animation in matplotlib is to use one of the Animation classes.

Animation A base class for Animations.
FuncAnimation Makes an animation by repeatedly calling a func-

tion func.
ArtistAnimation Animation using a fixed set of Artist objects.

matplotlib.animation.Animation

class matplotlib.animation.Animation(fig, event_source=None, blit=False)
A base class for Animations.

This class is not usable as is, and should be subclassed to provide needed behavior.

Note: You must store the created Animation in a variable that lives as long as the animation should

18.3. matplotlib.animation 1159

https://docs.python.org/3/library/stdtypes.html#tuple

Matplotlib, Release 3.4.3

run. Otherwise, the Animation object will be garbage-collected and the animation stops.

Parameters

fig
[Figure] The figure object used to get needed events, such as draw or resize.

event_source
[object, optional] A class that can run a callbackwhen desired events are generated,
as well as be stopped and started.

Examples include timers (see TimedAnimation) and file system notifications.

blit
[bool, default: False] Whether blitting is used to optimize drawing.

See also:

FuncAnimation, ArtistAnimation

__init__(fig, event_source=None, blit=False)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(fig[, event_source, blit]) Initialize self.
new_frame_seq() Return a new sequence of frame information.
new_saved_frame_seq() Return a new sequence of saved/cached frame

information.
pause() Pause the animation.
resume() Resume the animation.
save(filename[, writer, fps, dpi, codec, ...]) Save the animation as a movie file by drawing

every frame.
to_html5_video([embed_limit]) Convert the animation to an HTML5 <video>

tag.
to_jshtml([fps, embed_frames, de-
fault_mode])

Generate HTML representation of the animation

new_frame_seq()
Return a new sequence of frame information.

new_saved_frame_seq()
Return a new sequence of saved/cached frame information.

pause()
Pause the animation.

1160 Chapter 18. Modules

Matplotlib, Release 3.4.3

resume()
Resume the animation.

save(filename, writer=None, fps=None, dpi=None, codec=None, bitrate=None, ex-
tra_args=None, metadata=None, extra_anim=None, savefig_kwargs=None, *,
progress_callback=None)

Save the animation as a movie file by drawing every frame.

Parameters

filename
[str] The output filename, e.g., mymovie.mp4.

writer
[MovieWriter or str, default: rcParams["animation.writer"] (de-
fault: 'ffmpeg')] A MovieWriter instance to use or a key that identifies a
class to use, such as 'ffmpeg'.

fps
[int, optional] Movie frame rate (per second). If not set, the frame rate from the
animation's frame interval.

dpi
[float, default: rcParams["savefig.dpi"] (default: 'figure')] Con-
trols the dots per inch for the movie frames. Together with the figure's size in
inches, this controls the size of the movie.

codec
[str, default: rcParams["animation.codec"] (default: 'h264').] The
video codec to use. Not all codecs are supported by a given MovieWriter.

bitrate
[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlyingmovie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the
builtin writers.

metadata
[dict[str, str], default: {}] Dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre,
subject, copyright, srcform, comment.

18.3. matplotlib.animation 1161

../../tutorials/introductory/customizing.html?highlight=animation.writer#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=savefig.dpi#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

extra_anim
[list, default: []] Additional Animation objects that should be included in the
saved movie file. These need to be from the same matplotlib.figure.
Figure instance. Also, animation frames will just be simply combined, so
there should be a 1:1 correspondence between the frames from the different an-
imations.

savefig_kwargs
[dict, default: {}] Keyword arguments passed to each savefig call used to
save the individual frames.

progress_callback
[function, optional] A callback function that will be called for every frame to
notify the saving progress. It must have the signature

def func(current_frame: int, total_frames: int) -> Any

where current_frame is the current frame number and total_frames is the total
number of frames to be saved. total_frames is set to None, if the total number of
frames can not be determined. Return values may exist but are ignored.

Example code to write the progress to stdout:

progress_callback = lambda i, n:␣
↪print(f'Saving frame {i} of {n}')

Notes

fps, codec, bitrate, extra_args and metadata are used to construct a MovieWriter instance
and can only be passed if writer is a string. If they are passed as non-None and writer is a
MovieWriter, a RuntimeError will be raised.

to_html5_video(embed_limit=None)
Convert the animation to an HTML5 <video> tag.

This saves the animation as an h264 video, encoded in base64 directly into the HTML5
video tag. This respects rcParams["animation.writer"] (default: 'ffmpeg') and
rcParams["animation.bitrate"] (default: -1). This also makes use of the inter-
val to control the speed, and uses the repeat parameter to decide whether to loop.

Parameters

embed_limit
[float, optional] Limit, in MB, of the returned animation. No animation is
created if the limit is exceeded. Defaults to rcParams["animation.
embed_limit"] (default: 20.0) = 20.0.

Returns

1162 Chapter 18. Modules

https://docs.python.org/3/library/exceptions.html#RuntimeError
../../tutorials/introductory/customizing.html?highlight=animation.writer#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.embed_limit#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.embed_limit#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

str
An HTML5 video tag with the animation embedded as base64 encoded h264
video. If the embed_limit is exceeded, this returns the string "Video too large to
embed."

to_jshtml(fps=None, embed_frames=True, default_mode=None)
Generate HTML representation of the animation

matplotlib.animation.FuncAnimation

class matplotlib.animation.FuncAnimation(fig, func, frames=None,
init_func=None, fargs=None,
save_count=None, *,
cache_frame_data=True, **kwargs)

Makes an animation by repeatedly calling a function func.

Note: You must store the created Animation in a variable that lives as long as the animation should
run. Otherwise, the Animation object will be garbage-collected and the animation stops.

Parameters

fig
[Figure] The figure object used to get needed events, such as draw or resize.

func
[callable] The function to call at each frame. The first argument will be the next
value in frames. Any additional positional arguments can be supplied via the fargs
parameter.

The required signature is:

def func(frame, *fargs) -> iterable_of_artists

If blit == True, func must return an iterable of all artists that were modified
or created. This information is used by the blitting algorithm to determine which
parts of the figure have to be updated. The return value is unused if blit ==
False and may be omitted in that case.

frames
[iterable, int, generator function, or None, optional] Source of data to pass func
and each frame of the animation

• If an iterable, then simply use the values provided. If the iterable has a length,
it will override the save_count kwarg.

• If an integer, then equivalent to passing range(frames)

18.3. matplotlib.animation 1163

Matplotlib, Release 3.4.3

• If a generator function, then must have the signature:

def gen_function() -> obj

• If None, then equivalent to passing itertools.count.

In all of these cases, the values in frames is simply passed through to the user-
supplied func and thus can be of any type.

init_func
[callable, optional] A function used to draw a clear frame. If not given, the results
of drawing from the first item in the frames sequence will be used. This function
will be called once before the first frame.

The required signature is:

def init_func() -> iterable_of_artists

If blit == True, init_func must return an iterable of artists to be re-drawn.
This information is used by the blitting algorithm to determine which parts of the
figure have to be updated. The return value is unused if blit == False and
may be omitted in that case.

fargs
[tuple or None, optional] Additional arguments to pass to each call to func.

save_count
[int, default: 100] Fallback for the number of values from frames to cache. This
is only used if the number of frames cannot be inferred from frames, i.e. when it's
an iterator without length or a generator.

interval
[int, default: 200] Delay between frames in milliseconds.

repeat_delay
[int, default: 0] The delay in milliseconds between consecutive animation runs, if
repeat is True.

repeat
[bool, default: True] Whether the animation repeats when the sequence of frames
is completed.

blit
[bool, default: False] Whether blitting is used to optimize drawing. Note: when
using blitting, any animated artists will be drawn according to their zorder; how-
ever, they will be drawn on top of any previous artists, regardless of their zorder.

cache_frame_data

1164 Chapter 18. Modules

Matplotlib, Release 3.4.3

[bool, default: True] Whether frame data is cached. Disabling cache might be
helpful when frames contain large objects.

__init__(fig, func, frames=None, init_func=None, fargs=None, save_count=None, *,
cache_frame_data=True, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(fig, func[, frames, init_func, ...]) Initialize self.
new_frame_seq() Return a new sequence of frame information.
new_saved_frame_seq() Return a new sequence of saved/cached frame

information.
pause() Pause the animation.
resume() Resume the animation.
save(filename[, writer, fps, dpi, codec, ...]) Save the animation as a movie file by drawing

every frame.
to_html5_video([embed_limit]) Convert the animation to an HTML5 <video>

tag.
to_jshtml([fps, embed_frames, de-
fault_mode])

Generate HTML representation of the animation

new_frame_seq()
Return a new sequence of frame information.

new_saved_frame_seq()
Return a new sequence of saved/cached frame information.

matplotlib.animation.ArtistAnimation

class matplotlib.animation.ArtistAnimation(fig, artists, *args, **kwargs)
Animation using a fixed set of Artist objects.

Before creating an instance, all plotting should have taken place and the relevant artists saved.

Note: You must store the created Animation in a variable that lives as long as the animation should
run. Otherwise, the Animation object will be garbage-collected and the animation stops.

Parameters

fig
[Figure] The figure object used to get needed events, such as draw or resize.

artists

18.3. matplotlib.animation 1165

Matplotlib, Release 3.4.3

[list] Each list entry is a collection of Artist objects that are made visible on the
corresponding frame. Other artists are made invisible.

interval
[int, default: 200] Delay between frames in milliseconds.

repeat_delay
[int, default: 0] The delay in milliseconds between consecutive animation runs, if
repeat is True.

repeat
[bool, default: True] Whether the animation repeats when the sequence of frames
is completed.

blit
[bool, default: False] Whether blitting is used to optimize drawing.

__init__(fig, artists, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(fig, artists, *args, **kwargs) Initialize self.
new_frame_seq() Return a new sequence of frame information.
new_saved_frame_seq() Return a new sequence of saved/cached frame

information.
pause() Pause the animation.
resume() Resume the animation.
save(filename[, writer, fps, dpi, codec, ...]) Save the animation as a movie file by drawing

every frame.
to_html5_video([embed_limit]) Convert the animation to an HTML5 <video>

tag.
to_jshtml([fps, embed_frames, de-
fault_mode])

Generate HTML representation of the animation

In both cases it is critical to keep a reference to the instance object. The animation is advanced by a timer
(typically from the host GUI framework) which the Animation object holds the only reference to. If you
do not hold a reference to the Animation object, it (and hence the timers), will be garbage collected which
will stop the animation.

To save an animation to disk use Animation.save or Animation.to_html5_video

See Helper Classes below for details about what movie formats are supported.

1166 Chapter 18. Modules

Matplotlib, Release 3.4.3

FuncAnimation

The inner workings of FuncAnimation is more-or-less:

for d in frames:
artists = func(d, *fargs)
fig.canvas.draw_idle()
fig.canvas.start_event_loop(interval)

with details to handle 'blitting' (to dramatically improve the live performance), to be non-blocking, not re-
peatedly start/stop the GUI event loop, handle repeats, multiple animated axes, and easily save the animation
to a movie file.

'Blitting' is a standard technique in computer graphics. The general gist is to take an existing bit map (in
our case a mostly rasterized figure) and then 'blit' one more artist on top. Thus, by managing a saved 'clean'
bitmap, we can only re-draw the few artists that are changing at each frame and possibly save significant
amounts of time. When we use blitting (by passing blit=True), the core loop of FuncAnimation gets
a bit more complicated:

ax = fig.gca()

def update_blit(artists):
fig.canvas.restore_region(bg_cache)
for a in artists:

a.axes.draw_artist(a)

ax.figure.canvas.blit(ax.bbox)

artists = init_func()

for a in artists:
a.set_animated(True)

fig.canvas.draw()
bg_cache = fig.canvas.copy_from_bbox(ax.bbox)

for f in frames:
artists = func(f, *fargs)
update_blit(artists)
fig.canvas.start_event_loop(interval)

This is of course leaving out many details (such as updating the background when the figure is resized or
fully re-drawn). However, this hopefully minimalist example gives a sense of how init_func and func
are used inside of FuncAnimation and the theory of how 'blitting' works.

The expected signature on func and init_func is very simple to keep FuncAnimation out of your
book keeping and plotting logic, but this means that the callable objects you pass in must know what artists
they should be working on. There are several approaches to handling this, of varying complexity and en-
capsulation. The simplest approach, which works quite well in the case of a script, is to define the artist at a
global scope and let Python sort things out. For example

18.3. matplotlib.animation 1167

https://en.wikipedia.org/wiki/Bit_blit

Matplotlib, Release 3.4.3

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

fig, ax = plt.subplots()
xdata, ydata = [], []
ln, = plt.plot([], [], 'ro')

def init():
ax.set_xlim(0, 2*np.pi)
ax.set_ylim(-1, 1)
return ln,

def update(frame):
xdata.append(frame)
ydata.append(np.sin(frame))
ln.set_data(xdata, ydata)
return ln,

ani = FuncAnimation(fig, update, frames=np.linspace(0, 2*np.pi, 128),
init_func=init, blit=True)

plt.show()

The second method is to use functools.partial to 'bind' artists to function. A third method is to use
closures to build up the required artists and functions. A fourth method is to create a class.

Examples

Decay

This example showcases: - using a generator to drive an animation, - changing axes limits during an anima-
tion.

import itertools

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

def data_gen():
for cnt in itertools.count():

t = cnt / 10
yield t, np.sin(2*np.pi*t) * np.exp(-t/10.)

def init():
ax.set_ylim(-1.1, 1.1)
ax.set_xlim(0, 10)
del xdata[:]

(continues on next page)

1168 Chapter 18. Modules

https://docs.python.org/3/library/functools.html#functools.partial

Matplotlib, Release 3.4.3

(continued from previous page)
del ydata[:]
line.set_data(xdata, ydata)
return line,

fig, ax = plt.subplots()
line, = ax.plot([], [], lw=2)
ax.grid()
xdata, ydata = [], []

def run(data):
update the data
t, y = data
xdata.append(t)
ydata.append(y)
xmin, xmax = ax.get_xlim()

if t >= xmax:
ax.set_xlim(xmin, 2*xmax)
ax.figure.canvas.draw()

line.set_data(xdata, ydata)

return line,

ani = animation.FuncAnimation(fig, run, data_gen, interval=10, init_func=init)
plt.show()

Total running time of the script: (0 minutes 9.181 seconds)

The Bayes update

This animation displays the posterior estimate updates as it is refitted when new data arrives. The vertical
line represents the theoretical value to which the plotted distribution should converge.

import math

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

def beta_pdf(x, a, b):
return (x**(a-1) * (1-x)**(b-1) * math.gamma(a + b)

/ (math.gamma(a) * math.gamma(b)))

class UpdateDist:
def __init__(self, ax, prob=0.5):

self.success = 0
self.prob = prob

(continues on next page)

18.3. matplotlib.animation 1169

Matplotlib, Release 3.4.3

(continued from previous page)
self.line, = ax.plot([], [], 'k-')
self.x = np.linspace(0, 1, 200)
self.ax = ax

Set up plot parameters
self.ax.set_xlim(0, 1)
self.ax.set_ylim(0, 10)
self.ax.grid(True)

This vertical line represents the theoretical value, to
which the plotted distribution should converge.
self.ax.axvline(prob, linestyle='--', color='black')

def __call__(self, i):
This way the plot can continuously run and we just keep
watching new realizations of the process
if i == 0:

self.success = 0
self.line.set_data([], [])
return self.line,

Choose success based on exceed a threshold with a uniform pick
if np.random.rand(1,) < self.prob:

self.success += 1
y = beta_pdf(self.x, self.success + 1, (i - self.success) + 1)
self.line.set_data(self.x, y)
return self.line,

Fixing random state for reproducibility
np.random.seed(19680801)

fig, ax = plt.subplots()
ud = UpdateDist(ax, prob=0.7)
anim = FuncAnimation(fig, ud, frames=100, interval=100, blit=True)
plt.show()

Total running time of the script: (0 minutes 7.706 seconds)

The double pendulum problem

This animation illustrates the double pendulum problem.

Double pendulum formula translated from the C code at http://www.physics.usyd.edu.au/~wheat/dpend_
html/solve_dpend.c

from numpy import sin, cos
import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate as integrate

(continues on next page)

1170 Chapter 18. Modules

http://www.physics.usyd.edu.au/~wheat/dpend_html/solve_dpend.c
http://www.physics.usyd.edu.au/~wheat/dpend_html/solve_dpend.c

Matplotlib, Release 3.4.3

(continued from previous page)
import matplotlib.animation as animation
from collections import deque

G = 9.8 # acceleration due to gravity, in m/s^2
L1 = 1.0 # length of pendulum 1 in m
L2 = 1.0 # length of pendulum 2 in m
L = L1 + L2 # maximal length of the combined pendulum
M1 = 1.0 # mass of pendulum 1 in kg
M2 = 1.0 # mass of pendulum 2 in kg
t_stop = 5 # how many seconds to simulate
history_len = 500 # how many trajectory points to display

def derivs(state, t):

dydx = np.zeros_like(state)
dydx[0] = state[1]

delta = state[2] - state[0]
den1 = (M1+M2) * L1 - M2 * L1 * cos(delta) * cos(delta)
dydx[1] = ((M2 * L1 * state[1] * state[1] * sin(delta) * cos(delta)

+ M2 * G * sin(state[2]) * cos(delta)
+ M2 * L2 * state[3] * state[3] * sin(delta)
- (M1+M2) * G * sin(state[0]))
/ den1)

dydx[2] = state[3]

den2 = (L2/L1) * den1
dydx[3] = ((- M2 * L2 * state[3] * state[3] * sin(delta) * cos(delta)

+ (M1+M2) * G * sin(state[0]) * cos(delta)
- (M1+M2) * L1 * state[1] * state[1] * sin(delta)
- (M1+M2) * G * sin(state[2]))
/ den2)

return dydx

create a time array from 0..t_stop sampled at 0.02 second steps
dt = 0.02
t = np.arange(0, t_stop, dt)

th1 and th2 are the initial angles (degrees)
w10 and w20 are the initial angular velocities (degrees per second)
th1 = 120.0
w1 = 0.0
th2 = -10.0
w2 = 0.0

initial state
state = np.radians([th1, w1, th2, w2])

integrate your ODE using scipy.integrate.
(continues on next page)

18.3. matplotlib.animation 1171

Matplotlib, Release 3.4.3

(continued from previous page)
y = integrate.odeint(derivs, state, t)

x1 = L1*sin(y[:, 0])
y1 = -L1*cos(y[:, 0])

x2 = L2*sin(y[:, 2]) + x1
y2 = -L2*cos(y[:, 2]) + y1

fig = plt.figure(figsize=(5, 4))
ax = fig.add_subplot(autoscale_on=False, xlim=(-L, L), ylim=(-L, 1.))
ax.set_aspect('equal')
ax.grid()

line, = ax.plot([], [], 'o-', lw=2)
trace, = ax.plot([], [], ',-', lw=1)
time_template = 'time = %.1fs'
time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes)
history_x, history_y = deque(maxlen=history_len), deque(maxlen=history_len)

def animate(i):
thisx = [0, x1[i], x2[i]]
thisy = [0, y1[i], y2[i]]

if i == 0:
history_x.clear()
history_y.clear()

history_x.appendleft(thisx[2])
history_y.appendleft(thisy[2])

line.set_data(thisx, thisy)
trace.set_data(history_x, history_y)
time_text.set_text(time_template % (i*dt))
return line, trace, time_text

ani = animation.FuncAnimation(
fig, animate, len(y), interval=dt*1000, blit=True)

plt.show()

Total running time of the script: (0 minutes 22.039 seconds)

1172 Chapter 18. Modules

Matplotlib, Release 3.4.3

Animated histogram

Use histogram's BarContainer to draw a bunch of rectangles for an animated histogram.

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.animation as animation

Fixing random state for reproducibility
np.random.seed(19680801)
Fixing bin edges
HIST_BINS = np.linspace(-4, 4, 100)

histogram our data with numpy
data = np.random.randn(1000)
n, _ = np.histogram(data, HIST_BINS)

To animate the histogram, we need an animate function, which generates a random set of numbers and
updates the heights of rectangles. We utilize a python closure to track an instance of BarContainerwhose
Rectangle patches we shall update.

def prepare_animation(bar_container):

def animate(frame_number):
simulate new data coming in
data = np.random.randn(1000)
n, _ = np.histogram(data, HIST_BINS)
for count, rect in zip(n, bar_container.patches):

rect.set_height(count)
return bar_container.patches

return animate

Using hist() allows us to get an instance of BarContainer, which is a collection of Rectangle
instances. Calling prepare_animation will define animate function working with supplied Bar-
Container, all this is used to setup FuncAnimation.

fig, ax = plt.subplots()
_, _, bar_container = ax.hist(data, HIST_BINS, lw=1,

ec="yellow", fc="green", alpha=0.5)
ax.set_ylim(top=55) # set safe limit to ensure that all data is visible.

ani = animation.FuncAnimation(fig, prepare_animation(bar_container), 50,
repeat=False, blit=True)

plt.show()

Total running time of the script: (0 minutes 7.306 seconds)

18.3. matplotlib.animation 1173

Matplotlib, Release 3.4.3

Rain simulation

Simulates rain drops on a surface by animating the scale and opacity of 50 scatter points.

Author: Nicolas P. Rougier

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

Fixing random state for reproducibility
np.random.seed(19680801)

Create new Figure and an Axes which fills it.
fig = plt.figure(figsize=(7, 7))
ax = fig.add_axes([0, 0, 1, 1], frameon=False)
ax.set_xlim(0, 1), ax.set_xticks([])
ax.set_ylim(0, 1), ax.set_yticks([])

Create rain data
n_drops = 50
rain_drops = np.zeros(n_drops, dtype=[('position', float, (2,)),

('size', float),
('growth', float),
('color', float, (4,))])

Initialize the raindrops in random positions and with
random growth rates.
rain_drops['position'] = np.random.uniform(0, 1, (n_drops, 2))
rain_drops['growth'] = np.random.uniform(50, 200, n_drops)

Construct the scatter which we will update during animation
as the raindrops develop.
scat = ax.scatter(rain_drops['position'][:, 0], rain_drops['position'][:, 1],

s=rain_drops['size'], lw=0.5, edgecolors=rain_drops['color
↪'],

facecolors='none')

def update(frame_number):
Get an index which we can use to re-spawn the oldest raindrop.
current_index = frame_number % n_drops

Make all colors more transparent as time progresses.
rain_drops['color'][:, 3] -= 1.0/len(rain_drops)
rain_drops['color'][:, 3] = np.clip(rain_drops['color'][:, 3], 0, 1)

Make all circles bigger.
rain_drops['size'] += rain_drops['growth']

Pick a new position for oldest rain drop, resetting its size,
color and growth factor.

(continues on next page)

1174 Chapter 18. Modules

Matplotlib, Release 3.4.3

(continued from previous page)
rain_drops['position'][current_index] = np.random.uniform(0, 1, 2)
rain_drops['size'][current_index] = 5
rain_drops['color'][current_index] = (0, 0, 0, 1)
rain_drops['growth'][current_index] = np.random.uniform(50, 200)

Update the scatter collection, with the new colors, sizes and positions.
scat.set_edgecolors(rain_drops['color'])
scat.set_sizes(rain_drops['size'])
scat.set_offsets(rain_drops['position'])

Construct the animation, using the update function as the animation␣
↪director.

animation = FuncAnimation(fig, update, interval=10)
plt.show()

Total running time of the script: (0 minutes 5.526 seconds)

Animated 3D random walk

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

Fixing random state for reproducibility
np.random.seed(19680801)

def gen_rand_line(length, dims=2):
"""
Create a line using a random walk algorithm.

Parameters

length : int

The number of points of the line.
dims : int

The number of dimensions of the line.
"""
line_data = np.empty((dims, length))
line_data[:, 0] = np.random.rand(dims)
for index in range(1, length):

scaling the random numbers by 0.1 so
movement is small compared to position.
subtraction by 0.5 is to change the range to [-0.5, 0.5]
to allow a line to move backwards.
step = (np.random.rand(dims) - 0.5) * 0.1
line_data[:, index] = line_data[:, index - 1] + step

return line_data

(continues on next page)

18.3. matplotlib.animation 1175

Matplotlib, Release 3.4.3

(continued from previous page)

def update_lines(num, data_lines, lines):
for line, data in zip(lines, data_lines):

NOTE: there is no .set_data() for 3 dim data...
line.set_data(data[0:2, :num])
line.set_3d_properties(data[2, :num])

return lines

Attaching 3D axis to the figure
fig = plt.figure()
ax = fig.add_subplot(projection="3d")

Fifty lines of random 3-D lines
data = [gen_rand_line(25, 3) for index in range(50)]

Creating fifty line objects.
NOTE: Can't pass empty arrays into 3d version of plot()
lines = [ax.plot(dat[0, 0:1], dat[1, 0:1], dat[2, 0:1])[0] for dat in data]

Setting the axes properties
ax.set_xlim3d([0.0, 1.0])
ax.set_xlabel('X')

ax.set_ylim3d([0.0, 1.0])
ax.set_ylabel('Y')

ax.set_zlim3d([0.0, 1.0])
ax.set_zlabel('Z')

ax.set_title('3D Test')

Creating the Animation object
line_ani = animation.FuncAnimation(

fig, update_lines, 50, fargs=(data, lines), interval=50)

plt.show()

Total running time of the script: (0 minutes 7.546 seconds)

Animated line plot

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

fig, ax = plt.subplots()

x = np.arange(0, 2*np.pi, 0.01)
line, = ax.plot(x, np.sin(x))

(continues on next page)

1176 Chapter 18. Modules

Matplotlib, Release 3.4.3

(continued from previous page)

def animate(i):
line.set_ydata(np.sin(x + i / 50)) # update the data.
return line,

ani = animation.FuncAnimation(
fig, animate, interval=20, blit=True, save_count=50)

To save the animation, use e.g.
#
ani.save("movie.mp4")
#
or
#
writer = animation.FFMpegWriter(
fps=15, metadata=dict(artist='Me'), bitrate=1800)
ani.save("movie.mp4", writer=writer)

plt.show()

Total running time of the script: (0 minutes 4.304 seconds)

Oscilloscope

Emulates an oscilloscope.

import numpy as np
from matplotlib.lines import Line2D
import matplotlib.pyplot as plt
import matplotlib.animation as animation

class Scope:
def __init__(self, ax, maxt=2, dt=0.02):

self.ax = ax
self.dt = dt
self.maxt = maxt
self.tdata = [0]
self.ydata = [0]
self.line = Line2D(self.tdata, self.ydata)
self.ax.add_line(self.line)
self.ax.set_ylim(-.1, 1.1)
self.ax.set_xlim(0, self.maxt)

def update(self, y):
lastt = self.tdata[-1]
if lastt > self.tdata[0] + self.maxt: # reset the arrays

self.tdata = [self.tdata[-1]]

(continues on next page)

18.3. matplotlib.animation 1177

Matplotlib, Release 3.4.3

(continued from previous page)
self.ydata = [self.ydata[-1]]
self.ax.set_xlim(self.tdata[0], self.tdata[0] + self.maxt)
self.ax.figure.canvas.draw()

t = self.tdata[-1] + self.dt
self.tdata.append(t)
self.ydata.append(y)
self.line.set_data(self.tdata, self.ydata)
return self.line,

def emitter(p=0.1):
"""Return a random value in [0, 1) with probability p, else 0."""
while True:

v = np.random.rand(1)
if v > p:

yield 0.
else:

yield np.random.rand(1)

Fixing random state for reproducibility
np.random.seed(19680801 // 10)

fig, ax = plt.subplots()
scope = Scope(ax)

pass a generator in "emitter" to produce data for the update func
ani = animation.FuncAnimation(fig, scope.update, emitter, interval=50,

blit=True)

plt.show()

Total running time of the script: (0 minutes 7.958 seconds)

MATPLOTLIB UNCHAINED

Comparative path demonstration of frequency from a fake signal of a pulsar (mostly known because of the
cover for Joy Division's Unknown Pleasures).

Author: Nicolas P. Rougier

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

Fixing random state for reproducibility
np.random.seed(19680801)

(continues on next page)

1178 Chapter 18. Modules

Matplotlib, Release 3.4.3

(continued from previous page)

Create new Figure with black background
fig = plt.figure(figsize=(8, 8), facecolor='black')

Add a subplot with no frame
ax = plt.subplot(frameon=False)

Generate random data
data = np.random.uniform(0, 1, (64, 75))
X = np.linspace(-1, 1, data.shape[-1])
G = 1.5 * np.exp(-4 * X ** 2)

Generate line plots
lines = []
for i in range(len(data)):

Small reduction of the X extents to get a cheap perspective effect
xscale = 1 - i / 200.
Same for linewidth (thicker strokes on bottom)
lw = 1.5 - i / 100.0
line, = ax.plot(xscale * X, i + G * data[i], color="w", lw=lw)
lines.append(line)

Set y limit (or first line is cropped because of thickness)
ax.set_ylim(-1, 70)

No ticks
ax.set_xticks([])
ax.set_yticks([])

2 part titles to get different font weights
ax.text(0.5, 1.0, "MATPLOTLIB ", transform=ax.transAxes,

ha="right", va="bottom", color="w",
family="sans-serif", fontweight="light", fontsize=16)

ax.text(0.5, 1.0, "UNCHAINED", transform=ax.transAxes,
ha="left", va="bottom", color="w",
family="sans-serif", fontweight="bold", fontsize=16)

def update(*args):
Shift all data to the right
data[:, 1:] = data[:, :-1]

Fill-in new values
data[:, 0] = np.random.uniform(0, 1, len(data))

Update data
for i in range(len(data)):

lines[i].set_ydata(i + G * data[i])

Return modified artists
return lines

(continues on next page)

18.3. matplotlib.animation 1179

Matplotlib, Release 3.4.3

(continued from previous page)
Construct the animation, using the update function as the animation␣

↪director.
anim = animation.FuncAnimation(fig, update, interval=10)
plt.show()

Total running time of the script: (0 minutes 9.234 seconds)

ArtistAnimation

Examples

Animated image using a precomputed list of images

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

fig, ax = plt.subplots()

def f(x, y):
return np.sin(x) + np.cos(y)

x = np.linspace(0, 2 * np.pi, 120)
y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1)

ims is a list of lists, each row is a list of artists to draw in the
current frame; here we are just animating one artist, the image, in
each frame
ims = []
for i in range(60):

x += np.pi / 15.
y += np.pi / 20.
im = ax.imshow(f(x, y), animated=True)
if i == 0:

ax.imshow(f(x, y)) # show an initial one first
ims.append([im])

ani = animation.ArtistAnimation(fig, ims, interval=50, blit=True,
repeat_delay=1000)

To save the animation, use e.g.
#
ani.save("movie.mp4")
#
or
#
writer = animation.FFMpegWriter(
fps=15, metadata=dict(artist='Me'), bitrate=1800)

(continues on next page)

1180 Chapter 18. Modules

Matplotlib, Release 3.4.3

(continued from previous page)
ani.save("movie.mp4", writer=writer)

plt.show()

Total running time of the script: (0 minutes 7.473 seconds)

18.3.2 Writer Classes

The provided writers fall into a few broad categories.

The Pillow writer relies on the Pillow library to write the animation, keeping all data in memory.

PillowWriter

matplotlib.animation.PillowWriter

class matplotlib.animation.PillowWriter(fps=5,metadata=None, codec=None, bi-
trate=None)

__init__(fps=5, metadata=None, codec=None, bitrate=None)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([fps, metadata, codec, bitrate]) Initialize self.
finish() Finish any processing for writing the movie.
grab_frame(**savefig_kwargs) Grab the image information from the figure and

save as a movie frame.
isAvailable()
saving(fig, outfile, dpi, *args, **kwargs) Context manager to facilitate writing the movie

file.
setup(fig, outfile[, dpi]) Setup for writing the movie file.

Attributes

frame_size A tuple (width, height) in pixels of a
movie frame.

finish()
Finish any processing for writing the movie.

grab_frame(**savefig_kwargs)

18.3. matplotlib.animation 1181

Matplotlib, Release 3.4.3

Grab the image information from the figure and save as a movie frame.

All keyword arguments in savefig_kwargs are passed on to the savefig call that saves the
figure.

classmethod isAvailable()

setup(fig, outfile, dpi=None)
Setup for writing the movie file.

Parameters

fig
[Figure] The figure object that contains the information for frames.

outfile
[str] The filename of the resulting movie file.

dpi
[float, default: fig.dpi] The DPI (or resolution) for the file. This controls the
size in pixels of the resulting movie file.

The HTML writer generates JavaScript-based animations.

HTMLWriter Writer for JavaScript-based HTML movies.

matplotlib.animation.HTMLWriter

class matplotlib.animation.HTMLWriter(fps=30, codec=None, bitrate=None,
extra_args=None, metadata=None, em-
bed_frames=False, default_mode='loop',
embed_limit=None)

Writer for JavaScript-based HTML movies.

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec
[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

bitrate
[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlying movie encoder
select the bitrate.

1182 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the builtin
writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre, subject,
copyright, srcform, comment.

__init__(fps=30, codec=None, bitrate=None, extra_args=None, metadata=None, em-
bed_frames=False, default_mode='loop', embed_limit=None)

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec
[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

bitrate
[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlyingmovie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the
builtin writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre,
subject, copyright, srcform, comment.

18.3. matplotlib.animation 1183

../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Methods

__init__([fps, codec, bitrate, extra_args, ...])
Parameters

bin_path() Return the binary path to the commandline tool
used by a specific subclass.

cleanup() [Deprecated]
finish() Finish any processing for writing the movie.
grab_frame(**savefig_kwargs) Grab the image information from the figure and

save as a movie frame.
isAvailable() Return whether a MovieWriter subclass is actu-

ally available.
saving(fig, outfile, dpi, *args, **kwargs) Context manager to facilitate writing the movie

file.
setup(fig, outfile, dpi[, frame_dir]) Setup for writing the movie file.

Attributes

args_key

clear_temp

exec_key

frame_format Format (png, jpeg, etc.) to use for saving the
frames, which can be decided by the individual
subclasses.

frame_size A tuple (width, height) in pixels of a
movie frame.

supported_formats

property args_key

finish()
Finish any processing for writing the movie.

grab_frame(**savefig_kwargs)
Grab the image information from the figure and save as a movie frame.

All keyword arguments in savefig_kwargs are passed on to the savefig call that saves the
figure.

classmethod isAvailable()
Return whether a MovieWriter subclass is actually available.

setup(fig, outfile, dpi, frame_dir=None)
Setup for writing the movie file.

Parameters

1184 Chapter 18. Modules

Matplotlib, Release 3.4.3

fig
[Figure] The figure to grab the rendered frames from.

outfile
[str] The filename of the resulting movie file.

dpi
[float, default: fig.dpi] The dpi of the output file. This, with the figure size,
controls the size in pixels of the resulting movie file.

frame_prefix
[str, optional] The filename prefix to use for temporary files. If None (the de-
fault), files are written to a temporary directory which is deleted by cleanup
(regardless of the value of clear_temp).

clear_temp
[bool, optional] If the temporary files should be deleted after stitching the final
result. Setting this to False can be useful for debugging. Defaults to True.

supported_formats = ['png', 'jpeg', 'tiff', 'svg']

The pipe-based writers stream the captured frames over a pipe to an external process. The pipe-based variants
tend to be more performant, but may not work on all systems.

FFMpegWriter Pipe-based ffmpeg writer.
ImageMagickWriter Pipe-based animated gif.
AVConvWriter Pipe-based avconv writer.

matplotlib.animation.FFMpegWriter

class matplotlib.animation.FFMpegWriter(fps=5, codec=None, bitrate=None, ex-
tra_args=None, metadata=None)

Pipe-based ffmpeg writer.

Frames are streamed directly to ffmpeg via a pipe and written in a single pass.

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec
[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

bitrate

18.3. matplotlib.animation 1185

../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlying movie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the builtin
writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre, subject,
copyright, srcform, comment.

__init__(fps=5, codec=None, bitrate=None, extra_args=None, metadata=None)

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec
[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

bitrate
[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlyingmovie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the
builtin writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre,
subject, copyright, srcform, comment.

1186 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Methods

__init__([fps, codec, bitrate, extra_args, ...])
Parameters

bin_path() Return the binary path to the commandline tool
used by a specific subclass.

cleanup() [Deprecated]
finish() Finish any processing for writing the movie.
grab_frame(**savefig_kwargs) Grab the image information from the figure and

save as a movie frame.
isAvailable() Return whether a MovieWriter subclass is actu-

ally available.
saving(fig, outfile, dpi, *args, **kwargs) Context manager to facilitate writing the movie

file.
setup(fig, outfile[, dpi]) Setup for writing the movie file.

Attributes

args_key

exec_key

frame_size A tuple (width, height) in pixels of a
movie frame.

output_args

supported_formats

matplotlib.animation.ImageMagickWriter

class matplotlib.animation.ImageMagickWriter(fps=5, codec=None, bi-
trate=None, extra_args=None,
metadata=None)

Pipe-based animated gif.

Frames are streamed directly to ImageMagick via a pipe and written in a single pass.

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec
[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

bitrate

18.3. matplotlib.animation 1187

../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlying movie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the builtin
writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre, subject,
copyright, srcform, comment.

__init__(fps=5, codec=None, bitrate=None, extra_args=None, metadata=None)

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec
[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

bitrate
[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlyingmovie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the
builtin writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre,
subject, copyright, srcform, comment.

1188 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Methods

__init__([fps, codec, bitrate, extra_args, ...])
Parameters

bin_path() Return the binary path to the commandline tool
used by a specific subclass.

cleanup() [Deprecated]
finish() Finish any processing for writing the movie.
grab_frame(**savefig_kwargs) Grab the image information from the figure and

save as a movie frame.
isAvailable() Return whether a MovieWriter subclass is actu-

ally available.
saving(fig, outfile, dpi, *args, **kwargs) Context manager to facilitate writing the movie

file.
setup(fig, outfile[, dpi]) Setup for writing the movie file.

Attributes

args_key

delay

exec_key

frame_size A tuple (width, height) in pixels of a
movie frame.

output_args

supported_formats

matplotlib.animation.AVConvWriter

class matplotlib.animation.AVConvWriter(*args, **kwargs)
Pipe-based avconv writer.

Frames are streamed directly to avconv via a pipe and written in a single pass.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

18.3. matplotlib.animation 1189

Matplotlib, Release 3.4.3

Methods

__init__(*args, **kwargs) Initialize self.
bin_path() Return the binary path to the commandline tool

used by a specific subclass.
cleanup() [Deprecated]
finish() Finish any processing for writing the movie.
grab_frame(**savefig_kwargs) Grab the image information from the figure and

save as a movie frame.
isAvailable() Return whether a MovieWriter subclass is actu-

ally available.
saving(fig, outfile, dpi, *args, **kwargs) Context manager to facilitate writing the movie

file.
setup(fig, outfile[, dpi]) Setup for writing the movie file.

Attributes

args_key

exec_key

frame_size A tuple (width, height) in pixels of a
movie frame.

output_args

supported_formats

The file-based writers save temporary files for each frame which are stitched into a single file at the end.
Although slower, these writers can be easier to debug.

FFMpegFileWriter File-based ffmpeg writer.
ImageMagickFileWriter File-based animated gif writer.
AVConvFileWriter File-based avconv writer.

matplotlib.animation.FFMpegFileWriter

class matplotlib.animation.FFMpegFileWriter(*args, **kwargs)
File-based ffmpeg writer.

Frames are written to temporary files on disk and then stitched together at the end.

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec

1190 Chapter 18. Modules

Matplotlib, Release 3.4.3

[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

bitrate
[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlying movie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the builtin
writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre, subject,
copyright, srcform, comment.

__init__(*args, **kwargs)

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec
[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

bitrate
[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlyingmovie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the
builtin writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre,
subject, copyright, srcform, comment.

18.3. matplotlib.animation 1191

../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Methods

__init__(*args, **kwargs)
Parameters

bin_path() Return the binary path to the commandline tool
used by a specific subclass.

cleanup() [Deprecated]
finish() Finish any processing for writing the movie.
grab_frame(**savefig_kwargs) Grab the image information from the figure and

save as a movie frame.
isAvailable() Return whether a MovieWriter subclass is actu-

ally available.
saving(fig, outfile, dpi, *args, **kwargs) Context manager to facilitate writing the movie

file.
setup(fig, outfile[, dpi, frame_prefix, ...]) Setup for writing the movie file.

Attributes

args_key

clear_temp

exec_key

frame_format Format (png, jpeg, etc.) to use for saving the
frames, which can be decided by the individual
subclasses.

frame_size A tuple (width, height) in pixels of a
movie frame.

output_args

supported_formats

supported_formats = ['png', 'jpeg', 'tiff', 'raw', 'rgba']

matplotlib.animation.ImageMagickFileWriter

class matplotlib.animation.ImageMagickFileWriter(*args, **kwargs)
File-based animated gif writer.

Frames are written to temporary files on disk and then stitched together at the end.

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec

1192 Chapter 18. Modules

Matplotlib, Release 3.4.3

[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

bitrate
[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlying movie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the builtin
writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre, subject,
copyright, srcform, comment.

__init__(*args, **kwargs)

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec
[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

bitrate
[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlyingmovie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the
builtin writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre,
subject, copyright, srcform, comment.

18.3. matplotlib.animation 1193

../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Methods

__init__(*args, **kwargs)
Parameters

bin_path() Return the binary path to the commandline tool
used by a specific subclass.

cleanup() [Deprecated]
finish() Finish any processing for writing the movie.
grab_frame(**savefig_kwargs) Grab the image information from the figure and

save as a movie frame.
isAvailable() Return whether a MovieWriter subclass is actu-

ally available.
saving(fig, outfile, dpi, *args, **kwargs) Context manager to facilitate writing the movie

file.
setup(fig, outfile[, dpi, frame_prefix, ...]) Setup for writing the movie file.

Attributes

args_key

clear_temp

delay

exec_key

frame_format Format (png, jpeg, etc.) to use for saving the
frames, which can be decided by the individual
subclasses.

frame_size A tuple (width, height) in pixels of a
movie frame.

output_args

supported_formats

supported_formats = ['png', 'jpeg', 'tiff', 'raw', 'rgba']

matplotlib.animation.AVConvFileWriter

class matplotlib.animation.AVConvFileWriter(*args, **kwargs)
File-based avconv writer.

Frames are written to temporary files on disk and then stitched together at the end.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

1194 Chapter 18. Modules

Matplotlib, Release 3.4.3

Methods

__init__(*args, **kwargs) Initialize self.
bin_path() Return the binary path to the commandline tool

used by a specific subclass.
cleanup() [Deprecated]
finish() Finish any processing for writing the movie.
grab_frame(**savefig_kwargs) Grab the image information from the figure and

save as a movie frame.
isAvailable() Return whether a MovieWriter subclass is actu-

ally available.
saving(fig, outfile, dpi, *args, **kwargs) Context manager to facilitate writing the movie

file.
setup(fig, outfile[, dpi, frame_prefix, ...]) Setup for writing the movie file.

Attributes

args_key

clear_temp

exec_key

frame_format Format (png, jpeg, etc.) to use for saving the
frames, which can be decided by the individual
subclasses.

frame_size A tuple (width, height) in pixels of a
movie frame.

output_args

supported_formats

Fundamentally, a MovieWriter provides a way to grab sequential frames from the same underlying Fig-
ure object. The base class MovieWriter implements 3 methods and a context manager. The only differ-
ence between the pipe-based and file-based writers is in the arguments to their respective setup methods.

The setup() method is used to prepare the writer (possibly opening a pipe), successive calls to
grab_frame() capture a single frame at a time and finish() finalizes the movie and writes the output
file to disk. For example

moviewriter = MovieWriter(...)
moviewriter.setup(fig, 'my_movie.ext', dpi=100)
for j in range(n):

update_figure(j)
moviewriter.grab_frame()

moviewriter.finish()

If using the writer classes directly (not through Animation.save), it is strongly encouraged to use the
saving context manager

18.3. matplotlib.animation 1195

Matplotlib, Release 3.4.3

with moviewriter.saving(fig, 'myfile.mp4', dpi=100):
for j in range(n):

update_figure(j)
moviewriter.grab_frame()

to ensures that setup and cleanup are performed as necessary.

Examples

Frame grabbing

Use a MovieWriter directly to grab individual frames and write them to a file. This avoids any event loop
integration, and thus works even with the Agg backend. This is not recommended for use in an interactive
setting.

import numpy as np
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from matplotlib.animation import FFMpegWriter

Fixing random state for reproducibility
np.random.seed(19680801)

metadata = dict(title='Movie Test', artist='Matplotlib',
comment='Movie support!')

writer = FFMpegWriter(fps=15, metadata=metadata)

fig = plt.figure()
l, = plt.plot([], [], 'k-o')

plt.xlim(-5, 5)
plt.ylim(-5, 5)

x0, y0 = 0, 0

with writer.saving(fig, "writer_test.mp4", 100):
for i in range(100):

x0 += 0.1 * np.random.randn()
y0 += 0.1 * np.random.randn()
l.set_data(x0, y0)
writer.grab_frame()

1196 Chapter 18. Modules

Matplotlib, Release 3.4.3

18.3.3 Helper Classes

Animation Base Classes

Animation A base class for Animations.
TimedAnimation Animation subclass for time-based animation.

matplotlib.animation.TimedAnimation

class matplotlib.animation.TimedAnimation(fig, interval=200, repeat_delay=0,
repeat=True, event_source=None,
*args, **kwargs)

Animation subclass for time-based animation.

A new frame is drawn every interval milliseconds.

Note: You must store the created Animation in a variable that lives as long as the animation should
run. Otherwise, the Animation object will be garbage-collected and the animation stops.

Parameters

fig
[Figure] The figure object used to get needed events, such as draw or resize.

interval
[int, default: 200] Delay between frames in milliseconds.

repeat_delay
[int, default: 0] The delay in milliseconds between consecutive animation runs, if
repeat is True.

repeat
[bool, default: True] Whether the animation repeats when the sequence of frames
is completed.

blit
[bool, default: False] Whether blitting is used to optimize drawing.

__init__(fig, interval=200, repeat_delay=0, repeat=True, event_source=None, *args,
**kwargs)

Initialize self. See help(type(self)) for accurate signature.

18.3. matplotlib.animation 1197

Matplotlib, Release 3.4.3

Methods

__init__(fig[, interval, repeat_delay, ...]) Initialize self.
new_frame_seq() Return a new sequence of frame information.
new_saved_frame_seq() Return a new sequence of saved/cached frame

information.
pause() Pause the animation.
resume() Resume the animation.
save(filename[, writer, fps, dpi, codec, ...]) Save the animation as a movie file by drawing

every frame.
to_html5_video([embed_limit]) Convert the animation to an HTML5 <video>

tag.
to_jshtml([fps, embed_frames, de-
fault_mode])

Generate HTML representation of the animation

Writer Registry

A module-level registry is provided to map between the name of the writer and the class to allow a string to
be passed to Animation.save instead of a writer instance.

MovieWriterRegistry Registry of available writer classes by human read-
able name.

matplotlib.animation.MovieWriterRegistry

class matplotlib.animation.MovieWriterRegistry
Registry of available writer classes by human readable name.

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
is_available(name) Check if given writer is available by name.
list() Get a list of available MovieWriters.
register(name) Decorator for registering a class under a name.

is_available(name)
Check if given writer is available by name.

Parameters

1198 Chapter 18. Modules

Matplotlib, Release 3.4.3

name
[str]

Returns

bool

list()
Get a list of available MovieWriters.

register(name)
Decorator for registering a class under a name.

Example use:

@registry.register(name)
class Foo:

pass

Writer Base Classes

To reduce code duplication base classes

AbstractMovieWriter Abstract base class for writing movies.
MovieWriter Base class for writing movies.
FileMovieWriter MovieWriter for writing to individual files and

stitching at the end.

matplotlib.animation.AbstractMovieWriter

class matplotlib.animation.AbstractMovieWriter(fps=5, metadata=None,
codec=None, bitrate=None)

Abstract base class for writing movies. Fundamentally, what a MovieWriter does is provide is a way
to grab frames by calling grab_frame().

setup() is called to start the process and finish() is called afterwards.

This class is set up to provide for writing movie frame data to a pipe. saving() is provided as a context
manager to facilitate this process as:

with moviewriter.saving(fig, outfile='myfile.mp4', dpi=100):
Iterate over frames
moviewriter.grab_frame(**savefig_kwargs)

The use of the context manager ensures that setup() and finish() are performed as necessary.

An instance of a concrete subclass of this class can be given as thewriter argument ofAnimation.
save().

18.3. matplotlib.animation 1199

Matplotlib, Release 3.4.3

__init__(fps=5, metadata=None, codec=None, bitrate=None)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([fps, metadata, codec, bitrate]) Initialize self.
finish() Finish any processing for writing the movie.
grab_frame(**savefig_kwargs) Grab the image information from the figure and

save as a movie frame.
saving(fig, outfile, dpi, *args, **kwargs) Context manager to facilitate writing the movie

file.
setup(fig, outfile[, dpi]) Setup for writing the movie file.

Attributes

frame_size A tuple (width, height) in pixels of a
movie frame.

abstract finish()
Finish any processing for writing the movie.

property frame_size
A tuple (width, height) in pixels of a movie frame.

abstract grab_frame(**savefig_kwargs)
Grab the image information from the figure and save as a movie frame.

All keyword arguments in savefig_kwargs are passed on to the savefig call that saves the
figure.

saving(fig, outfile, dpi, *args, **kwargs)
Context manager to facilitate writing the movie file.

*args, **kw are any parameters that should be passed to setup.

abstract setup(fig, outfile, dpi=None)
Setup for writing the movie file.

Parameters

fig
[Figure] The figure object that contains the information for frames.

outfile
[str] The filename of the resulting movie file.

dpi

1200 Chapter 18. Modules

Matplotlib, Release 3.4.3

[float, default: fig.dpi] The DPI (or resolution) for the file. This controls the
size in pixels of the resulting movie file.

matplotlib.animation.MovieWriter

class matplotlib.animation.MovieWriter(fps=5, codec=None, bitrate=None, ex-
tra_args=None, metadata=None)

Base class for writing movies.

This is a base class for MovieWriter subclasses that write a movie frame data to a pipe. You cannot
instantiate this class directly. See examples for how to use its subclasses.

Attributes

frame_format
[str] The format used in writing frame data, defaults to 'rgba'.

fig
[Figure] The figure to capture data from. This must be provided by the sub-
classes.

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec
[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

bitrate
[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlying movie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the builtin
writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre, subject,
copyright, srcform, comment.

18.3. matplotlib.animation 1201

../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

__init__(fps=5, codec=None, bitrate=None, extra_args=None, metadata=None)

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec
[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

bitrate
[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlyingmovie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the
builtin writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre,
subject, copyright, srcform, comment.

Methods

__init__([fps, codec, bitrate, extra_args, ...])
Parameters

bin_path() Return the binary path to the commandline tool
used by a specific subclass.

cleanup() [Deprecated]
finish() Finish any processing for writing the movie.
grab_frame(**savefig_kwargs) Grab the image information from the figure and

save as a movie frame.
isAvailable() Return whether a MovieWriter subclass is actu-

ally available.
saving(fig, outfile, dpi, *args, **kwargs) Context manager to facilitate writing the movie

file.
setup(fig, outfile[, dpi]) Setup for writing the movie file.

1202 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Attributes

args_key

exec_key

frame_size A tuple (width, height) in pixels of a
movie frame.

supported_formats

property args_key

classmethod bin_path()
Return the binary path to the commandline tool used by a specific subclass. This is a class method
so that the tool can be looked for before making a particular MovieWriter subclass available.

cleanup()
[Deprecated]

Notes

Deprecated since version 3.4:

property exec_key

finish()
Finish any processing for writing the movie.

grab_frame(**savefig_kwargs)
Grab the image information from the figure and save as a movie frame.

All keyword arguments in savefig_kwargs are passed on to the savefig call that saves the
figure.

classmethod isAvailable()
Return whether a MovieWriter subclass is actually available.

setup(fig, outfile, dpi=None)
Setup for writing the movie file.

Parameters

fig
[Figure] The figure object that contains the information for frames.

outfile
[str] The filename of the resulting movie file.

dpi
[float, default: fig.dpi] The DPI (or resolution) for the file. This controls the
size in pixels of the resulting movie file.

18.3. matplotlib.animation 1203

Matplotlib, Release 3.4.3

supported_formats = ['rgba']

matplotlib.animation.FileMovieWriter

class matplotlib.animation.FileMovieWriter(*args, **kwargs)
MovieWriter for writing to individual files and stitching at the end.

This must be sub-classed to be useful.

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec
[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

bitrate
[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlying movie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the builtin
writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre, subject,
copyright, srcform, comment.

__init__(*args, **kwargs)

Parameters

fps
[int, default: 5] Movie frame rate (per second).

codec
[str or None, default: rcParams["animation.codec"] (default:
'h264')] The codec to use.

1204 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.codec#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

bitrate
[int, default: rcParams["animation.bitrate"] (default: -1)] The bi-
trate of the movie, in kilobits per second. Higher values means higher quality
movies, but increase the file size. A value of -1 lets the underlyingmovie encoder
select the bitrate.

extra_args
[list of str or None, optional] Extra command-line arguments passed
to the underlying movie encoder. The default, None, means to use
rcParams["animation.[name-of-encoder]_args"] for the
builtin writers.

metadata
[dict[str, str], default: {}] A dictionary of keys and values for metadata to include
in the output file. Some keys that may be of use include: title, artist, genre,
subject, copyright, srcform, comment.

Methods

__init__(*args, **kwargs)
Parameters

bin_path() Return the binary path to the commandline tool
used by a specific subclass.

cleanup() [Deprecated]
finish() Finish any processing for writing the movie.
grab_frame(**savefig_kwargs) Grab the image information from the figure and

save as a movie frame.
isAvailable() Return whether a MovieWriter subclass is actu-

ally available.
saving(fig, outfile, dpi, *args, **kwargs) Context manager to facilitate writing the movie

file.
setup(fig, outfile[, dpi, frame_prefix, ...]) Setup for writing the movie file.

Attributes

args_key

clear_temp

exec_key

frame_format Format (png, jpeg, etc.) to use for saving the
frames, which can be decided by the individual
subclasses.

continues on next page

18.3. matplotlib.animation 1205

../../tutorials/introductory/customizing.html?highlight=animation.bitrate#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=animation.{[}name\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} of\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} encoder{]}_args#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Table 35 – continued from previous page
frame_size A tuple (width, height) in pixels of a

movie frame.
supported_formats

property clear_temp

finish()
Finish any processing for writing the movie.

property frame_format
Format (png, jpeg, etc.) to use for saving the frames, which can be decided by the individual
subclasses.

grab_frame(**savefig_kwargs)
Grab the image information from the figure and save as a movie frame.

All keyword arguments in savefig_kwargs are passed on to the savefig call that saves the
figure.

setup(fig, outfile, dpi=None, frame_prefix=None, clear_temp=<deprecated parameter>)
Setup for writing the movie file.

Parameters

fig
[Figure] The figure to grab the rendered frames from.

outfile
[str] The filename of the resulting movie file.

dpi
[float, default: fig.dpi] The dpi of the output file. This, with the figure size,
controls the size in pixels of the resulting movie file.

frame_prefix
[str, optional] The filename prefix to use for temporary files. If None (the de-
fault), files are written to a temporary directory which is deleted by cleanup
(regardless of the value of clear_temp).

clear_temp
[bool, optional] If the temporary files should be deleted after stitching the final
result. Setting this to False can be useful for debugging. Defaults to True.

and mixins

AVConvBase [Deprecated] Mixin class for avconv output.
FFMpegBase Mixin class for FFMpeg output.
ImageMagickBase Mixin class for ImageMagick output.

1206 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.animation.AVConvBase

class matplotlib.animation.AVConvBase(*args, **kwargs)
[Deprecated] Mixin class for avconv output.

To be useful this must be multiply-inherited from with a MovieWriterBase sub-class.

Notes

Deprecated since version 3.3.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(*args, **kwargs) Initialize self.
isAvailable() Return whether a MovieWriter subclass is actu-

ally available.

Attributes

output_args

classmethod isAvailable()
Return whether a MovieWriter subclass is actually available.

matplotlib.animation.FFMpegBase

class matplotlib.animation.FFMpegBase
Mixin class for FFMpeg output.

To be useful this must be multiply-inherited from with a MovieWriterBase sub-class.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

18.3. matplotlib.animation 1207

Matplotlib, Release 3.4.3

Methods

__init__(*args, **kwargs) Initialize self.
isAvailable()

Attributes

output_args

classmethod isAvailable()

property output_args

matplotlib.animation.ImageMagickBase

class matplotlib.animation.ImageMagickBase
Mixin class for ImageMagick output.

To be useful this must be multiply-inherited from with a MovieWriterBase sub-class.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(*args, **kwargs) Initialize self.
bin_path()
isAvailable()

Attributes

delay

output_args

classmethod bin_path()

property delay

classmethod isAvailable()

property output_args

are provided.

1208 Chapter 18. Modules

Matplotlib, Release 3.4.3

See the source code for how to easily implement new MovieWriter classes.

18.3.4 Inheritance Diagrams

Animation TimedAnimation
ArtistAnimation

FuncAnimation

ABC AbstractMovieWriter

AVConvBase

AVConvFileWriter

AVConvWriter
FFMpegBase

FFMpegFileWriter

FFMpegWriter

MovieWriter FileMovieWriter

ImageMagickFileWriter
ImageMagickWriter

ImageMagickBase

18.3. matplotlib.animation 1209

Matplotlib, Release 3.4.3

18.4 matplotlib.artist

AitoffAxes
GeoAxes

HammerAxes

LambertAxes

MollweideAxes

AnchoredOffsetbox AnchoredText

OffsetBox
AuxTransformBox

DrawingArea

PackerBase

OffsetImage

PaddedBox

TextArea

Annotation

Text

ClabelText_AnnotationBase

AnnotationBbox

Artist
Patch

_AxesBase

_ImageBase

Axis

Collection

FigureBase

Legend

Line2D

QuiverKey

Table

Tick

Arc
Ellipse

Circle

Arrow

Rectangle

RegularPolygon

FancyArrowPatch

Polygon

FancyBboxPatch

PathPatch

Shadow

Spine

Wedge

AsteriskPolygonCollectionRegularPolyCollection

StarPolygonCollection

Axes
PolarAxes

AxesImage NonUniformImage

PcolorImageBboxImage

FigureImage

XAxis

YAxis

Barbs
PolyCollection

BrokenBarHCollection

Quiver

Cell

CircleCollection_CollectionWithSizes

PathCollection

CirclePolygon

EllipseCollection

LineCollection

PatchCollection

QuadMesh

TriMesh

ScalarMappable

ConnectionPatch

EventCollection

FancyArrow

Figure

HPacker

VPacker

StepPatch

XTick

YTick

1210 Chapter 18. Modules

Matplotlib, Release 3.4.3

18.4.1 Artist class

class matplotlib.artist.Artist
Abstract base class for objects that render into a FigureCanvas.

Typically, all visible elements in a figure are subclasses of Artist.

Interactive

Artist.add_callback Add a callback function that will be called when-
ever one of the Artist's properties changes.

Artist.remove_callback Remove a callback based on its observer id.
Artist.pchanged Call all of the registered callbacks.
Artist.get_cursor_data Return the cursor data for a given event.
Artist.format_cursor_data Return a string representation of data.
Artist.mouseover If this property is set to True, the artist will be

queried for custom context information when the
mouse cursor moves over it.

Artist.contains Test whether the artist contains the mouse event.
Artist.set_contains [Deprecated] Define a custom contains test for the

artist.
Artist.get_contains [Deprecated] Return the custom contains function

of the artist if set, or None.
Artist.pick Process a pick event.
Artist.pickable Return whether the artist is pickable.
Artist.set_picker Define the picking behavior of the artist.
Artist.get_picker Return the picking behavior of the artist.

matplotlib.artist.Artist.add_callback

Artist.add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int

18.4. matplotlib.artist 1211

Matplotlib, Release 3.4.3

The observer id associated with the callback. This id can be used for removing the
callback with remove_callback later.

See also:

remove_callback

matplotlib.artist.Artist.remove_callback

Artist.remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

matplotlib.artist.Artist.pchanged

Artist.pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

matplotlib.artist.Artist.get_cursor_data

Artist.get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Matplotlib
you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event. The
default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they must
ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of anAxesImage in the status bar of a plot window,
while moving the mouse.

Parameters

1212 Chapter 18. Modules

Matplotlib, Release 3.4.3

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

matplotlib.artist.Artist.format_cursor_data

Artist.format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Matplotlib
you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-separated
string enclosed in square brackets.

See also:

get_cursor_data

matplotlib.artist.Artist.mouseover

property Artist.mouseover
If this property is set to True, the artist will be queried for custom context information when the mouse
cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

matplotlib.artist.Artist.contains

Artist.contains(mouseevent)
Test whether the artist contains the mouse event.

Parameters

mouseevent
[matplotlib.backend_bases.MouseEvent]

Returns

contains
[bool] Whether any values are within the radius.

18.4. matplotlib.artist 1213

Matplotlib, Release 3.4.3

details
[dict] An artist-specific dictionary of details of the event context, such as which
points are contained in the pick radius. See the individual Artist subclasses for
details.

matplotlib.artist.Artist.set_contains

Artist.set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist. The
function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same in-
formation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

matplotlib.artist.Artist.get_contains

Artist.get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

1214 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

matplotlib.artist.Artist.pick

Artist.pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

matplotlib.artist.Artist.pickable

Artist.pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

matplotlib.artist.Artist.set_picker

Artist.set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied function which determines
whether the artist is hit by the mouse event:

18.4. matplotlib.artist 1215

Matplotlib, Release 3.4.3

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True and
props is a dictionary of properties you want added to the PickEvent attributes.

matplotlib.artist.Artist.get_picker

Artist.get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

Clipping

Artist.set_clip_on Set whether the artist uses clipping.
Artist.get_clip_on Return whether the artist uses clipping.
Artist.set_clip_box Set the artist's clip Bbox.
Artist.get_clip_box Return the clipbox.
Artist.set_clip_path Set the artist's clip path.
Artist.get_clip_path Return the clip path.

matplotlib.artist.Artist.set_clip_on

Artist.set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

1216 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.artist.Artist.get_clip_on

Artist.get_clip_on()
Return whether the artist uses clipping.

matplotlib.artist.Artist.set_clip_box

Artist.set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

matplotlib.artist.Artist.get_clip_box

Artist.get_clip_box()
Return the clipbox.

matplotlib.artist.Artist.set_clip_path

Artist.set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transform must be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

18.4. matplotlib.artist 1217

Matplotlib, Release 3.4.3

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single positional
parameter.

matplotlib.artist.Artist.get_clip_path

Artist.get_clip_path()
Return the clip path.

Bulk Properties

Artist.update Update this artist's properties from the dict props.
Artist.update_from Copy properties from other to self.
Artist.properties Return a dictionary of all the properties of the artist.
Artist.set A property batch setter.

matplotlib.artist.Artist.update

Artist.update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

1218 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.artist.Artist.update_from

Artist.update_from(other)
Copy properties from other to self.

matplotlib.artist.Artist.properties

Artist.properties()
Return a dictionary of all the properties of the artist.

matplotlib.artist.Artist.set

Artist.set(**kwargs)
A property batch setter. Pass kwargs to set properties.

Drawing

Artist.draw Draw the Artist (and its children) using the given
renderer.

Artist.set_animated Set whether the artist is intended to be used in an
animation.

Artist.get_animated Return whether the artist is animated.
Artist.set_alpha Set the alpha value used for blending - not sup-

ported on all backends.
Artist.get_alpha Return the alpha value used for blending - not sup-

ported on all backends.
Artist.set_snap Set the snapping behavior.
Artist.get_snap Return the snap setting.
Artist.set_visible Set the artist's visibility.
Artist.get_visible Return the visibility.
Artist.zorder

Artist.set_zorder Set the zorder for the artist.
Artist.get_zorder Return the artist's zorder.
Artist.set_agg_filter Set the agg filter.
Artist.set_sketch_params Set the sketch parameters.
Artist.get_sketch_params Return the sketch parameters for the artist.
Artist.set_rasterized Force rasterized (bitmap) drawing for vector graph-

ics output.
Artist.get_rasterized Return whether the artist is to be rasterized.
Artist.set_path_effects Set the path effects.
Artist.get_path_effects

Artist.get_agg_filter Return filter function to be used for agg filter.
continues on next page

18.4. matplotlib.artist 1219

Matplotlib, Release 3.4.3

Table 46 – continued from previous page
Artist.get_window_extent Get the axes bounding box in display space.
Artist.get_transformed_clip_path_and_affineReturn the clip path with the non-affine part of its

transformation applied, and the remaining affine
part of its transformation.

matplotlib.artist.Artist.draw

Artist.draw(renderer, *args, **kwargs)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

matplotlib.artist.Artist.set_animated

Artist.set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed up
animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

1220 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.artist.Artist.get_animated

Artist.get_animated()
Return whether the artist is animated.

matplotlib.artist.Artist.set_alpha

Artist.set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[scalar or None] alpha must be within the 0-1 range, inclusive.

matplotlib.artist.Artist.get_alpha

Artist.get_alpha()
Return the alpha value used for blending - not supported on all backends.

matplotlib.artist.Artist.set_snap

Artist.set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if a black
line of 1px width was defined at a position in between two pixels, the resulting image would contain
the interpolated value of that line in the pixel grid, which would be a grey value on both adjacent
pixel positions. In contrast, snapping will move the line to the nearest integer pixel value, so that the
resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

18.4. matplotlib.artist 1221

Matplotlib, Release 3.4.3

matplotlib.artist.Artist.get_snap

Artist.get_snap()
Return the snap setting.

See set_snap for details.

matplotlib.artist.Artist.set_visible

Artist.set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

matplotlib.artist.Artist.get_visible

Artist.get_visible()
Return the visibility.

matplotlib.artist.Artist.zorder

Artist.zorder = 0

matplotlib.artist.Artist.set_zorder

Artist.set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

1222 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.artist.Artist.get_zorder

Artist.get_zorder()
Return the artist's zorder.

matplotlib.artist.Artist.set_agg_filter

Artist.set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value, and
returns a (m, n, 3) array.

matplotlib.artist.Artist.set_sketch_params

Artist.set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

matplotlib.artist.Artist.get_sketch_params

Artist.get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

18.4. matplotlib.artist 1223

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

matplotlib.artist.Artist.set_rasterized

Artist.set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does not
support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

matplotlib.artist.Artist.get_rasterized

Artist.get_rasterized()
Return whether the artist is to be rasterized.

matplotlib.artist.Artist.set_path_effects

Artist.set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

1224 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.artist.Artist.get_path_effects

Artist.get_path_effects()

matplotlib.artist.Artist.get_agg_filter

Artist.get_agg_filter()
Return filter function to be used for agg filter.

matplotlib.artist.Artist.get_window_extent

Artist.get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to return
an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the artist
changes. The extent can change due to any changes in the transform stack, such as changing the axes
limits, the figure size, or the canvas used (as is done when saving a figure). This can lead to unexpected
behavior where interactive figures will look fine on the screen, but will save incorrectly.

matplotlib.artist.Artist.get_transformed_clip_path_and_affine

Artist.get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining affine
part of its transformation.

Figure and Axes

Artist.remove Remove the artist from the figure if possible.
Artist.axes The Axes instance the artist resides in, or None.
Artist.set_figure Set the Figure instance the artist belongs to.
Artist.get_figure Return the Figure instance the artist belongs to.

18.4. matplotlib.artist 1225

Matplotlib, Release 3.4.3

matplotlib.artist.Artist.remove

Artist.remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relimwill not see collections even if the collection was added to the axes with autolim= True.

Note: there is no support for removing the artist's legend entry.

matplotlib.artist.Artist.axes

property Artist.axes
The Axes instance the artist resides in, or None.

matplotlib.artist.Artist.set_figure

Artist.set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

matplotlib.artist.Artist.get_figure

Artist.get_figure()
Return the Figure instance the artist belongs to.

Children

Artist.get_children Return a list of the child Artists of this Artist.
Artist.findobj Find artist objects.

1226 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.artist.Artist.get_children

Artist.get_children()
Return a list of the child Artists of this Artist.

matplotlib.artist.Artist.findobj

Artist.findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this class
or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

Transform

Artist.set_transform Set the artist transform.
Artist.get_transform Return the Transform instance used by this

artist.
Artist.is_transform_set Return whether the Artist has an explicitly set trans-

form.

18.4. matplotlib.artist 1227

Matplotlib, Release 3.4.3

matplotlib.artist.Artist.set_transform

Artist.set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

matplotlib.artist.Artist.get_transform

Artist.get_transform()
Return the Transform instance used by this artist.

matplotlib.artist.Artist.is_transform_set

Artist.is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

Units

Artist.convert_xunits Convert x using the unit type of the xaxis.
Artist.convert_yunits Convert y using the unit type of the yaxis.
Artist.have_units Return whether units are set on any axis.

matplotlib.artist.Artist.convert_xunits

Artist.convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

1228 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.artist.Artist.convert_yunits

Artist.convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

matplotlib.artist.Artist.have_units

Artist.have_units()
Return whether units are set on any axis.

Metadata

Artist.set_gid Set the (group) id for the artist.
Artist.get_gid Return the group id.
Artist.set_label Set a label that will be displayed in the legend.
Artist.get_label Return the label used for this artist in the legend.
Artist.set_url Set the url for the artist.
Artist.get_url Return the url.

matplotlib.artist.Artist.set_gid

Artist.set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

matplotlib.artist.Artist.get_gid

Artist.get_gid()
Return the group id.

18.4. matplotlib.artist 1229

Matplotlib, Release 3.4.3

matplotlib.artist.Artist.set_label

Artist.set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

matplotlib.artist.Artist.get_label

Artist.get_label()
Return the label used for this artist in the legend.

matplotlib.artist.Artist.set_url

Artist.set_url(url)
Set the url for the artist.

Parameters

url
[str]

matplotlib.artist.Artist.get_url

Artist.get_url()
Return the url.

Miscellaneous

Artist.sticky_edges x and y sticky edge lists for autoscaling.
Artist.set_in_layout Set if artist is to be included in layout calculations,

E.g.
Artist.get_in_layout Return boolean flag, True if artist is included in

layout calculations.
Artist.stale Whether the artist is 'stale' and needs to be re-drawn

for the output tomatch the internal state of the artist.

1230 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

matplotlib.artist.Artist.sticky_edges

property Artist.sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding sticky_edges
list, then no margin will be added--the view limit "sticks" to the edge. A typical use case is histograms,
where one usually expects no margin on the bottom edge (0) of the histogram.

This attribute cannot be assigned to; however, the x and y lists can be modified in place as needed.

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

matplotlib.artist.Artist.set_in_layout

Artist.set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

matplotlib.artist.Artist.get_in_layout

Artist.get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.savefig(fname,
bbox_inches='tight').

matplotlib.artist.Artist.stale

property Artist.stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of the
artist.

18.4. matplotlib.artist 1231

Matplotlib, Release 3.4.3

18.4.2 Functions

allow_rasterization Decorator for Artist.draw method.
get Return the value of an Artist's property, or print

all of them.
getp Return the value of an Artist's property, or print

all of them.
setp Set one or more properties on an Artist, or list

allowed values.
kwdoc Inspect an Artist class (using ArtistIn-

spector) and return information about its set-
table properties and their current values.

ArtistInspector A helper class to inspect an Artist and return in-
formation about its settable properties and their cur-
rent values.

matplotlib.artist.allow_rasterization

matplotlib.artist.allow_rasterization(draw)
Decorator for Artist.drawmethod. Provides routines that run before and after the draw call. The before
and after functions are useful for changing artist-dependent renderer attributes or making other setup
function calls, such as starting and flushing a mixed-mode renderer.

matplotlib.artist.get

matplotlib.artist.get(obj, property=None)
Return the value of an Artist's property, or print all of them.

Parameters

obj
[Artist] The queried artist; e.g., a Line2D, a Text, or an Axes.

property
[str or None, default: None] If property is 'somename', this function returns obj.
get_somename().

If is is None (or unset), it prints all gettable properties from obj. Many properties
have aliases for shorter typing, e.g. 'lw' is an alias for 'linewidth'. In the output,
aliases and full property names will be listed as:

property or alias = value

e.g.:

linewidth or lw = 2

1232 Chapter 18. Modules

Matplotlib, Release 3.4.3

See also:

setp

matplotlib.artist.getp

matplotlib.artist.getp(obj, property=None)
Return the value of an Artist's property, or print all of them.

Parameters

obj
[Artist] The queried artist; e.g., a Line2D, a Text, or an Axes.

property
[str or None, default: None] If property is 'somename', this function returns obj.
get_somename().

If is is None (or unset), it prints all gettable properties from obj. Many properties
have aliases for shorter typing, e.g. 'lw' is an alias for 'linewidth'. In the output,
aliases and full property names will be listed as:

property or alias = value

e.g.:

linewidth or lw = 2

See also:

setp

matplotlib.artist.setp

matplotlib.artist.setp(obj, *args, file=None, **kwargs)
Set one or more properties on an Artist, or list allowed values.

Parameters

obj
[Artist or list of Artist] The artist(s) whose properties are being set or
queried. When setting properties, all artists are affected; when querying the al-
lowed values, only the first instance in the sequence is queried.

For example, two lines can be made thicker and red with a single call:

>>> x = arange(0, 1, 0.01)
>>> lines = plot(x, sin(2*pi*x), x, sin(4*pi*x))
>>> setp(lines, linewidth=2, color='r')

18.4. matplotlib.artist 1233

Matplotlib, Release 3.4.3

file
[file-like, default: sys.stdout] Where setp writes its output when asked to
list allowed values.

>>> with open('output.log') as file:
... setp(line, file=file)

The default, None, means sys.stdout.

*args, **kwargs
The properties to set. The following combinations are supported:

• Set the linestyle of a line to be dashed:

>>> line, = plot([1, 2, 3])
>>> setp(line, linestyle='--')

• Set multiple properties at once:

>>> setp(line, linewidth=2, color='r')

• List allowed values for a line's linestyle:

>>> setp(line, 'linestyle')
linestyle: {'-', '--', '-.', ':', '', (offset, on-off-

↪seq), ...}

• List all properties that can be set, and their allowed values:

>>> setp(line)
agg_filter: a filter function, ...
[long output listing omitted]

setp also supportsMATLAB style string/value pairs. For example, the following
are equivalent:

>>> setp(lines, 'linewidth', 2, 'color', 'r') # MATLAB␣
↪style

>>> setp(lines, linewidth=2, color='r') # Python␣
↪style

See also:

getp

1234 Chapter 18. Modules

https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stdout

Matplotlib, Release 3.4.3

matplotlib.artist.kwdoc

matplotlib.artist.kwdoc(artist)
Inspect an Artist class (using ArtistInspector) and return information about its settable prop-
erties and their current values.

Parameters

artist
[Artist or an iterable of Artists]

Returns

str
The settable properties of artist, as plain text if rcParams["docstring.
hardcopy"] (default: False) is False and as a rst table (intended for use in
Sphinx) if it is True.

matplotlib.artist.ArtistInspector

class matplotlib.artist.ArtistInspector(o)
A helper class to inspect an Artist and return information about its settable properties and their
current values.

Initialize the artist inspector with an Artist or an iterable of Artists. If an iterable is used, we
assume it is a homogeneous sequence (all Artists are of the same type) and it is your responsibility
to make sure this is so.

__init__(o)
Initialize the artist inspector with an Artist or an iterable of Artists. If an iterable is used,
we assume it is a homogeneous sequence (all Artists are of the same type) and it is your
responsibility to make sure this is so.

Methods

__init__(o) Initialize the artist inspector with an Artist or
an iterable of Artists.

aliased_name(s) Return 'PROPNAME or alias' if s has an alias,
else return 'PROPNAME'.

aliased_name_rest(s, target) Return 'PROPNAME or alias' if s has an alias,
else return 'PROPNAME', formatted for reST.

get_aliases() Get a dict mapping property fullnames to sets of
aliases for each alias in the ArtistInspec-
tor.

get_setters() Get the attribute strings with setters for object.
continues on next page

18.4. matplotlib.artist 1235

../../tutorials/introductory/customizing.html?highlight=docstring.hardcopy#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=docstring.hardcopy#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Table 54 – continued from previous page
get_valid_values(attr) Get the legal arguments for the setter associated

with attr.
is_alias(o) Return whether method object o is an alias for

another method.
pprint_getters() Return the getters and actual values as list of

strings.
pprint_setters([prop, leadingspace]) If prop is None, return a list of strings of all set-

table properties and their valid values.
pprint_setters_rest([prop, lead-
ingspace])

If prop is None, return a list of reST-formatted
strings of all settable properties and their valid
values.

properties() Return a dictionary mapping property name ->
value.

aliased_name(s)
Return 'PROPNAME or alias' if s has an alias, else return 'PROPNAME'.

e.g., for the line markerfacecolor property, which has an alias, return 'markerfacecolor or mfc'
and for the transform property, which does not, return 'transform'.

aliased_name_rest(s, target)
Return 'PROPNAME or alias' if s has an alias, else return 'PROPNAME', formatted for reST.

e.g., for the line markerfacecolor property, which has an alias, return 'markerfacecolor or mfc'
and for the transform property, which does not, return 'transform'.

get_aliases()
Get a dict mapping property fullnames to sets of aliases for each alias in the ArtistInspec-
tor.

e.g., for lines:

{'markerfacecolor': {'mfc'},
'linewidth' : {'lw'},
}

get_setters()
Get the attribute strings with setters for object.

For example, for a line, return ['markerfacecolor', 'linewidth',].

get_valid_values(attr)
Get the legal arguments for the setter associated with attr.

This is done by querying the docstring of the setter for a line that begins with "ACCEPTS:" or
".. ACCEPTS:", and then by looking for a numpydoc-style documentation for the setter's first
argument.

is_alias(o)
Return whether method object o is an alias for another method.

1236 Chapter 18. Modules

Matplotlib, Release 3.4.3

pprint_getters()
Return the getters and actual values as list of strings.

pprint_setters(prop=None, leadingspace=2)
If prop is None, return a list of strings of all settable properties and their valid values.

If prop is not None, it is a valid property name and that property will be returned as a string of
property : valid values.

pprint_setters_rest(prop=None, leadingspace=4)
If prop is None, return a list of reST-formatted strings of all settable properties and their valid
values.

If prop is not None, it is a valid property name and that property will be returned as a string of
"property : valid" values.

properties()
Return a dictionary mapping property name -> value.

18.5 matplotlib.axes

Table of Contents

• Inheritance

• The Axes class

• Subplots

• Plotting

– Basic

– Spans

– Spectral

– Statistics

– Binned

– Contours

– 2D arrays

– Unstructured triangles

– Text and annotations

– Vector fields

• Clearing

• Appearance

18.5. matplotlib.axes 1237

Matplotlib, Release 3.4.3

• Property cycle

• Axis / limits

– Axis limits and direction

– Axis labels, title, and legend

– Axis scales

– Autoscaling and margins

– Aspect ratio

– Ticks and tick labels

• Units

• Adding artists

• Twinning and sharing

• Axes position

• Async/event based

• Interactive

• Children

• Drawing

• Projection

• Other

18.5.1 Inheritance

matplotlib.artist.Artist matplotlib.axes._base._AxesBase matplotlib.axes._axes.Axes

1238 Chapter 18. Modules

Matplotlib, Release 3.4.3

18.5.2 The Axes class

class matplotlib.axes.Axes(fig, rect, *, facecolor=None, frameon=True, sharex=None,
sharey=None, label='', xscale=None, yscale=None,
box_aspect=None, **kwargs)

Bases: matplotlib.axes._base._AxesBase

The Axes contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and
sets the coordinate system.

The Axes instance supports callbacks through a callbacks attribute which is a CallbackRegistry
instance. The events you can connect to are 'xlim_changed' and 'ylim_changed' and the callback will
be called with func(ax) where ax is the Axes instance.

Attributes

dataLim
[Bbox] The bounding box enclosing all data displayed in the Axes.

viewLim
[Bbox] The view limits in data coordinates.

Build an axes in a figure.

Parameters

fig
[Figure] The axes is build in the Figure fig.

rect
[[left, bottom, width, height]] The axes is build in the rectangle rect. rect is in
Figure coordinates.

sharex, sharey
[Axes, optional] The x or y axis is shared with the x or y axis in the input Axes.

frameon
[bool, default: True] Whether the axes frame is visible.

box_aspect
[float, optional] Set a fixed aspect for the axes box, i.e. the ratio of height to width.
See set_box_aspect for details.

**kwargs
Other optional keyword arguments:

18.5. matplotlib.axes 1239

Matplotlib, Release 3.4.3

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown

continues on next page

1240 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 55 – continued from previous page
Property Description
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

Returns

Axes

The new Axes object.

18.5.3 Subplots

SubplotBase Base class for subplots, which are Axes instances
with additional methods to facilitate generating and
manipulating a set of Axes within a figure.

subplot_class_factory Make a new class that inherits from Subplot-
Base and the given axes_class (which is assumed
to be a subclass of axes.Axes).

matplotlib.axes.SubplotBase

class matplotlib.axes.SubplotBase(fig, *args, **kwargs)
Bases: object

Base class for subplots, which are Axes instances with additional methods to facilitate generating and
manipulating a set of Axes within a figure.

Parameters

fig
[matplotlib.figure.Figure]

*args
[tuple (nrows, ncols, index) or int] The array of subplots in the figure has dimen-
sions (nrows, ncols), and index is the index of the subplot being created.
index starts at 1 in the upper left corner and increases to the right.

If nrows, ncols, and index are all single digit numbers, then args can be passed as
a single 3-digit number (e.g. 234 for (2, 3, 4)).

18.5. matplotlib.axes 1241

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

**kwargs
Keyword arguments are passed to the Axes (sub)class constructor.

__dict__ = mappingproxy({'__module__': 'matplotlib.axes._subplots', '__doc__': '\n Base class for subplots, which are :class:`Axes` instances with\n additional methods to facilitate generating and manipulating a set\n of :class:`Axes` within a figure.\n ', '__init__': <function SubplotBase.__init__>, '__reduce__': <function SubplotBase.__reduce__>, 'get_geometry': <function SubplotBase.get_geometry>, 'change_geometry': <function SubplotBase.change_geometry>, 'get_subplotspec': <function SubplotBase.get_subplotspec>, 'set_subplotspec': <function SubplotBase.set_subplotspec>, 'get_gridspec': <function SubplotBase.get_gridspec>, 'figbox': <matplotlib._api.deprecation.deprecated.<locals>.deprecate.<locals>._deprecated_property object>, 'numRows': <matplotlib._api.deprecation.deprecated.<locals>.deprecate.<locals>._deprecated_property object>, 'numCols': <matplotlib._api.deprecation.deprecated.<locals>.deprecate.<locals>._deprecated_property object>, 'update_params': <function SubplotBase.update_params>, 'is_first_row': <function SubplotBase.is_first_row>, 'is_last_row': <function SubplotBase.is_last_row>, 'is_first_col': <function SubplotBase.is_first_col>, 'is_last_col': <function SubplotBase.is_last_col>, 'label_outer': <function SubplotBase.label_outer>, '_make_twin_axes': <function SubplotBase._make_twin_axes>, '__dict__': <attribute '__dict__' of 'SubplotBase' objects>, '__weakref__': <attribute '__weakref__' of 'SubplotBase' objects>, '__annotations__': {}})

__init__(fig, *args, **kwargs)

Parameters

fig
[matplotlib.figure.Figure]

*args
[tuple (nrows, ncols, index) or int] The array of subplots in the figure has dimen-
sions (nrows, ncols), and index is the index of the subplot being created.
index starts at 1 in the upper left corner and increases to the right.

If nrows, ncols, and index are all single digit numbers, then args can be passed
as a single 3-digit number (e.g. 234 for (2, 3, 4)).

**kwargs
Keyword arguments are passed to the Axes (sub)class constructor.

__module__ = 'matplotlib.axes._subplots'

__reduce__()
Helper for pickle.

__weakref__
list of weak references to the object (if defined)

change_geometry(numrows, numcols, num)
[Deprecated] Change subplot geometry, e.g., from (1, 1, 1) to (2, 2, 3).

Notes

Deprecated since version 3.4.

property figbox

get_geometry()
[Deprecated] Get the subplot geometry, e.g., (2, 2, 3).

1242 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.4.

get_gridspec()
Return the GridSpec instance associated with the subplot.

get_subplotspec()
Return the SubplotSpec instance associated with the subplot.

is_first_col()
[Deprecated]

Notes

Deprecated since version 3.4:

is_first_row()
[Deprecated]

Notes

Deprecated since version 3.4:

is_last_col()
[Deprecated]

Notes

Deprecated since version 3.4:

is_last_row()
[Deprecated]

Notes

Deprecated since version 3.4:

label_outer()
Only show "outer" labels and tick labels.

x-labels are only kept for subplots on the last row; y-labels only for subplots on the first column.

property numCols

property numRows

set_subplotspec(subplotspec)
Set the SubplotSpec. instance associated with the subplot.

18.5. matplotlib.axes 1243

Matplotlib, Release 3.4.3

update_params()
[Deprecated] Update the subplot position from self.figure.subplotpars.

Notes

Deprecated since version 3.4.

Examples using matplotlib.axes.SubplotBase

• sphx_glr_gallery_text_labels_and_annotations_usetex_baseline_test.py

matplotlib.axes.subplot_class_factory

matplotlib.axes.subplot_class_factory(axes_class=None)
Make a new class that inherits from SubplotBase and the given axes_class (which is assumed to
be a subclass of axes.Axes). This is perhaps a little bit roundabout to make a new class on the fly
like this, but it means that a new Subplot class does not have to be created for every type of Axes.

Examples using matplotlib.axes.subplot_class_factory

• sphx_glr_gallery_text_labels_and_annotations_usetex_baseline_test.py

18.5.4 Plotting

Basic

Axes.plot Plot y versus x as lines and/or markers.
Axes.errorbar Plot y versus x as lines and/or markers with attached

errorbars.
Axes.scatter A scatter plot of y vs.
Axes.plot_date Plot co-ercing the axis to treat floats as dates.
Axes.step Make a step plot.
Axes.loglog Make a plot with log scaling on both the x and y

axis.
Axes.semilogx Make a plot with log scaling on the x axis.
Axes.semilogy Make a plot with log scaling on the y axis.
Axes.fill_between Fill the area between two horizontal curves.
Axes.fill_betweenx Fill the area between two vertical curves.
Axes.bar Make a bar plot.
Axes.barh Make a horizontal bar plot.
Axes.bar_label Label a bar plot.

continues on next page

1244 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 57 – continued from previous page
Axes.stem Create a stem plot.
Axes.eventplot Plot identical parallel lines at the given positions.
Axes.pie Plot a pie chart.
Axes.stackplot Draw a stacked area plot.
Axes.broken_barh Plot a horizontal sequence of rectangles.
Axes.vlines Plot vertical lines at each x from ymin to ymax.
Axes.hlines Plot horizontal lines at each y from xmin to xmax.
Axes.fill Plot filled polygons.

matplotlib.axes.Axes.plot

Axes.plot(*args, scalex=True, scaley=True, data=None, **kwargs)
Plot y versus x as lines and/or markers.

Call signatures:

plot([x], y, [fmt], *, data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

The coordinates of the points or line nodes are given by x, y.

The optional parameter fmt is a convenient way for defining basic formatting like color, marker and
linestyle. It's a shortcut string notation described in the Notes section below.

>>> plot(x, y) # plot x and y using default line style and color
>>> plot(x, y, 'bo') # plot x and y using blue circle markers
>>> plot(y) # plot y using x as index array 0..N-1
>>> plot(y, 'r+') # ditto, but with red plusses

You can use Line2D properties as keyword arguments for more control on the appearance. Line
properties and fmt can be mixed. The following two calls yield identical results:

>>> plot(x, y, 'go--', linewidth=2, markersize=12)
>>> plot(x, y, color='green', marker='o', linestyle='dashed',
... linewidth=2, markersize=12)

When conflicting with fmt, keyword arguments take precedence.

Plotting labelled data
There's a convenient way for plotting objects with labelled data (i.e. data that can be accessed by index
obj['y']). Instead of giving the data in x and y, you can provide the object in the data parameter
and just give the labels for x and y:

>>> plot('xlabel', 'ylabel', data=obj)

All indexable objects are supported. This could e.g. be a dict, a pandas.DataFrame or a struc-
tured numpy array.

Plotting multiple sets of data

18.5. matplotlib.axes 1245

https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Matplotlib, Release 3.4.3

There are various ways to plot multiple sets of data.

• The most straight forward way is just to call plot multiple times. Example:

>>> plot(x1, y1, 'bo')
>>> plot(x2, y2, 'go')

• If x and/or y are 2D arrays a separate data set will be drawn for every column. If both x and y are
2D, they must have the same shape. If only one of them is 2D with shape (N, m) the other must
have length N and will be used for every data set m.

Example:

>>> x = [1, 2, 3]
>>> y = np.array([[1, 2], [3, 4], [5, 6]])
>>> plot(x, y)

is equivalent to:

>>> for col in range(y.shape[1]):
... plot(x, y[:, col])

• The third way is to specify multiple sets of [x], y, [fmt] groups:

>>> plot(x1, y1, 'g^', x2, y2, 'g-')

In this case, any additional keyword argument applies to all datasets. Also this syntax cannot be
combined with the data parameter.

By default, each line is assigned a different style specified by a 'style cycle'. The fmt and line prop-
erty parameters are only necessary if you want explicit deviations from these defaults. Alternatively,
you can also change the style cycle using rcParams["axes.prop_cycle"] (default: cy-
cler('color', ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd',
'#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'])).

Parameters

x, y
[array-like or scalar] The horizontal / vertical coordinates of the data points. x
values are optional and default to range(len(y)).

Commonly, these parameters are 1D arrays.

They can also be scalars, or two-dimensional (in that case, the columns represent
separate data sets).

These arguments cannot be passed as keywords.

fmt
[str, optional] A format string, e.g. 'ro' for red circles. See the Notes section for a
full description of the format strings.

1246 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Format strings are just an abbreviation for quickly setting basic line properties. All
of these and more can also be controlled by keyword arguments.

This argument cannot be passed as keyword.

data
[indexable object, optional] An object with labelled data. If given, provide the
label names to plot in x and y.

Note: Technically there's a slight ambiguity in calls where the second label is a
valid fmt. plot('n', 'o', data=obj) could be plt(x, y) or plt(y,
fmt). In such cases, the former interpretation is chosen, but a warning is issued.
You may suppress the warning by adding an empty format string plot('n',
'o', '', data=obj).

Returns

list of Line2D
A list of lines representing the plotted data.

Other Parameters

scalex, scaley
[bool, default: True] These parameters determine if the view limits are adapted to
the data limits. The values are passed on to autoscale_view.

**kwargs
[Line2D properties, optional] kwargs are used to specify properties like a line
label (for auto legends), linewidth, antialiasing, marker face color. Example:

>>> plot([1, 2, 3], [1, 2, 3], 'go-', label='line 1',␣
↪linewidth=2)

>>> plot([1, 2, 3], [1, 4, 9], 'rs', label='line 2')

If you specify multiple lines with one plot call, the kwargs apply to all those lines.
In case the label object is iterable, each element is used as labels for each set of
data.

Here is a list of available Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool

continues on next page

18.5. matplotlib.axes 1247

Matplotlib, Release 3.4.3

Table 58 – continued from previous page
Property Description
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

scatter

XY scatter plot with markers of varying size and/or color (sometimes also called bubble chart).

1248 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Format Strings
A format string consists of a part for color, marker and line:

fmt = '[marker][line][color]'

Each of them is optional. If not provided, the value from the style cycle is used. Exception: If line
is given, but no marker, the data will be a line without markers.

Other combinations such as [color][marker][line] are also supported, but note that their
parsing may be ambiguous.

Markers

character description
'.' point marker
',' pixel marker
'o' circle marker
'v' triangle_down marker
'^' triangle_up marker
'<' triangle_left marker
'>' triangle_right marker
'1' tri_down marker
'2' tri_up marker
'3' tri_left marker
'4' tri_right marker
'8' octagon marker
's' square marker
'p' pentagon marker
'P' plus (filled) marker
'*' star marker
'h' hexagon1 marker
'H' hexagon2 marker
'+' plus marker
'x' x marker
'X' x (filled) marker
'D' diamond marker
'd' thin_diamond marker
'|' vline marker
'_' hline marker

Line Styles

18.5. matplotlib.axes 1249

Matplotlib, Release 3.4.3

character description
'-' solid line style
'--' dashed line style
'-.' dash-dot line style
':' dotted line style

Example format strings:

'b' # blue markers with default shape
'or' # red circles
'-g' # green solid line
'--' # dashed line with default color
'^k:' # black triangle_up markers connected by a dotted line

Colors
The supported color abbreviations are the single letter codes

character color
'b' blue
'g' green
'r' red
'c' cyan
'm' magenta
'y' yellow
'k' black
'w' white

and the 'CN' colors that index into the default property cycle.

If the color is the only part of the format string, you can additionally use any matplotlib.colors
spec, e.g. full names ('green') or hex strings ('#008000').

Examples using matplotlib.axes.Axes.plot

• sphx_glr_gallery_lines_bars_and_markers_categorical_variables.py

• sphx_glr_gallery_lines_bars_and_markers_csd_demo.py

• sphx_glr_gallery_lines_bars_and_markers_curve_error_band.py

• sphx_glr_gallery_lines_bars_and_markers_eventcollection_demo.py

• sphx_glr_gallery_lines_bars_and_markers_fill_between_alpha.py

• sphx_glr_gallery_lines_bars_and_markers_fill_between_demo.py

• sphx_glr_gallery_lines_bars_and_markers_fill_betweenx_demo.py

• sphx_glr_gallery_lines_bars_and_markers_line_demo_dash_control.py

1250 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_lines_bars_and_markers_lines_with_ticks_demo.py

• sphx_glr_gallery_lines_bars_and_markers_marker_reference.py

• sphx_glr_gallery_lines_bars_and_markers_markevery_demo.py

• sphx_glr_gallery_lines_bars_and_markers_markevery_prop_cycle.py

• sphx_glr_gallery_lines_bars_and_markers_psd_demo.py

• sphx_glr_gallery_lines_bars_and_markers_simple_plot.py

• sphx_glr_gallery_lines_bars_and_markers_span_regions.py

• sphx_glr_gallery_lines_bars_and_markers_timeline.py

• sphx_glr_gallery_lines_bars_and_markers_vline_hline_demo.py

• sphx_glr_gallery_images_contours_and_fields_contour_corner_mask.py

• sphx_glr_gallery_images_contours_and_fields_image_demo.py

• sphx_glr_gallery_images_contours_and_fields_irregulardatagrid.py

• sphx_glr_gallery_images_contours_and_fields_pcolormesh_grids.py

• sphx_glr_gallery_images_contours_and_fields_plot_streamplot.py

• sphx_glr_gallery_images_contours_and_fields_specgram_demo.py

• sphx_glr_gallery_images_contours_and_fields_watermark_image.py

• sphx_glr_gallery_subplots_axes_and_figures_align_labels_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_box_aspect.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_margins.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_props.py

• sphx_glr_gallery_subplots_axes_and_figures_axhspan_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_broken_axis.py

• sphx_glr_gallery_subplots_axes_and_figures_demo_constrained_layout.py

• sphx_glr_gallery_subplots_axes_and_figures_demo_tight_layout.py

• sphx_glr_gallery_subplots_axes_and_figures_figure_title.py

• sphx_glr_gallery_subplots_axes_and_figures_invert_axes.py

• sphx_glr_gallery_subplots_axes_and_figures_secondary_axis.py

• sphx_glr_gallery_subplots_axes_and_figures_share_axis_lims_views.py

• sphx_glr_gallery_subplots_axes_and_figures_subfigures.py

• sphx_glr_gallery_subplots_axes_and_figures_subplot.py

• sphx_glr_gallery_subplots_axes_and_figures_subplot_demo.py

18.5. matplotlib.axes 1251

Matplotlib, Release 3.4.3

• sphx_glr_gallery_subplots_axes_and_figures_subplots_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_two_scales.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_statistics_histogram_cumulative.py

• sphx_glr_gallery_statistics_histogram_features.py

• sphx_glr_gallery_pie_and_polar_charts_polar_demo.py

• sphx_glr_gallery_pie_and_polar_charts_polar_legend.py

• sphx_glr_gallery_text_labels_and_annotations_accented_text.py

• sphx_glr_gallery_text_labels_and_annotations_angle_annotation.py

• sphx_glr_gallery_text_labels_and_annotations_annotation_demo.py

• sphx_glr_gallery_text_labels_and_annotations_custom_legends.py

• sphx_glr_gallery_text_labels_and_annotations_date.py

• sphx_glr_gallery_text_labels_and_annotations_date_index_formatter.py

• sphx_glr_gallery_text_labels_and_annotations_demo_annotation_box.py

• sphx_glr_gallery_text_labels_and_annotations_engineering_formatter.py

• sphx_glr_gallery_text_labels_and_annotations_legend.py

• sphx_glr_gallery_text_labels_and_annotations_legend_demo.py

• sphx_glr_gallery_text_labels_and_annotations_mathtext_demo.py

• sphx_glr_gallery_text_labels_and_annotations_multiline.py

• sphx_glr_gallery_text_labels_and_annotations_tex_demo.py

• sphx_glr_gallery_text_labels_and_annotations_text_rotation_relative_to_line.py

• sphx_glr_gallery_text_labels_and_annotations_titles_demo.py

• sphx_glr_gallery_text_labels_and_annotations_watermark_text.py

• sphx_glr_gallery_pyplots_annotate_transform.py

• sphx_glr_gallery_pyplots_annotation_basic.py

• sphx_glr_gallery_pyplots_annotation_polar.py

• sphx_glr_gallery_pyplots_auto_subplots_adjust.py

• sphx_glr_gallery_pyplots_dollar_ticks.py

• sphx_glr_gallery_pyplots_fig_axes_labels_simple.py

• sphx_glr_gallery_pyplots_text_commands.py

• sphx_glr_gallery_pyplots_whats_new_98_4_fill_between.py

• sphx_glr_gallery_pyplots_whats_new_99_spines.py

1252 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_color_color_demo.py

• sphx_glr_gallery_color_color_by_yvalue.py

• sphx_glr_gallery_shapes_and_collections_path_patch.py

• sphx_glr_gallery_shapes_and_collections_quad_bezier.py

• sphx_glr_gallery_style_sheets_dark_background.py

• sphx_glr_gallery_style_sheets_fivethirtyeight.py

• sphx_glr_gallery_style_sheets_ggplot.py

• sphx_glr_gallery_axes_grid1_demo_fixed_size_axes.py

• sphx_glr_gallery_axes_grid1_parasite_simple.py

• sphx_glr_gallery_axes_grid1_simple_axisline4.py

• sphx_glr_gallery_axisartist_demo_axisline_style.py

• sphx_glr_gallery_axisartist_demo_parasite_axes.py

• sphx_glr_gallery_axisartist_demo_parasite_axes2.py

• sphx_glr_gallery_axisartist_simple_axisline.py

• sphx_glr_gallery_axisartist_simple_axisline2.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_showcase_bachelors_degrees_by_gender.py

• sphx_glr_gallery_showcase_integral.py

• sphx_glr_gallery_showcase_xkcd.py

• Decay

• The Bayes update

• The double pendulum problem

• Animated 3D random walk

• Animated line plot

• MATPLOTLIB UNCHAINED

• sphx_glr_gallery_event_handling_coords_demo.py

• sphx_glr_gallery_event_handling_data_browser.py

• sphx_glr_gallery_event_handling_keypress_demo.py

• sphx_glr_gallery_event_handling_legend_picking.py

• sphx_glr_gallery_event_handling_looking_glass.py

• sphx_glr_gallery_event_handling_path_editor.py

• sphx_glr_gallery_event_handling_pick_event_demo2.py

18.5. matplotlib.axes 1253

Matplotlib, Release 3.4.3

• sphx_glr_gallery_event_handling_resample.py

• sphx_glr_gallery_event_handling_timers.py

• sphx_glr_gallery_frontpage_histogram.py

• sphx_glr_gallery_frontpage_membrane.py

• sphx_glr_gallery_misc_agg_buffer_to_array.py

• sphx_glr_gallery_misc_bbox_intersect.py

• sphx_glr_gallery_misc_cursor_demo.py

• sphx_glr_gallery_misc_custom_projection.py

• sphx_glr_gallery_misc_load_converter.py

• sphx_glr_gallery_misc_patheffect_demo.py

• sphx_glr_gallery_misc_pythonic_matplotlib.py

• sphx_glr_gallery_misc_svg_filter_line.py

• sphx_glr_gallery_misc_tickedstroke_demo.py

• sphx_glr_gallery_misc_zorder_demo.py

• sphx_glr_gallery_mplot3d_2dcollections3d.py

• sphx_glr_gallery_mplot3d_lines3d.py

• sphx_glr_gallery_mplot3d_lorenz_attractor.py

• sphx_glr_gallery_mplot3d_mixed_subplots.py

• sphx_glr_gallery_scales_aspect_loglog.py

• sphx_glr_gallery_scales_scales.py

• sphx_glr_gallery_scales_symlog_demo.py

• sphx_glr_gallery_specialty_plots_anscombe.py

• sphx_glr_gallery_specialty_plots_radar_chart.py

• sphx_glr_gallery_ticks_and_spines_centered_spines_with_arrows.py

• sphx_glr_gallery_ticks_and_spines_centered_ticklabels.py

• sphx_glr_gallery_ticks_and_spines_date_concise_formatter.py

• sphx_glr_gallery_ticks_and_spines_date_index_formatter2.py

• sphx_glr_gallery_ticks_and_spines_date_precision_and_epochs.py

• sphx_glr_gallery_ticks_and_spines_major_minor_demo.py

• sphx_glr_gallery_ticks_and_spines_multiple_yaxis_with_spines.py

• sphx_glr_gallery_ticks_and_spines_scalarformatter.py

• sphx_glr_gallery_ticks_and_spines_spine_placement_demo.py

1254 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_ticks_and_spines_spines.py

• sphx_glr_gallery_ticks_and_spines_spines_bounds.py

• sphx_glr_gallery_ticks_and_spines_tick_label_right.py

• sphx_glr_gallery_ticks_and_spines_tick_labels_from_values.py

• sphx_glr_gallery_ticks_and_spines_tick_xlabel_top.py

• sphx_glr_gallery_units_evans_test.py

• sphx_glr_gallery_user_interfaces_canvasagg.py

• sphx_glr_gallery_userdemo_annotate_explain.py

• sphx_glr_gallery_userdemo_connect_simple01.py

• sphx_glr_gallery_userdemo_connectionstyle_demo.py

• sphx_glr_gallery_userdemo_demo_gridspec06.py

• sphx_glr_gallery_userdemo_pgf_fonts.py

• sphx_glr_gallery_userdemo_pgf_texsystem.py

• sphx_glr_gallery_userdemo_simple_annotate01.py

• sphx_glr_gallery_userdemo_simple_legend01.py

• sphx_glr_gallery_userdemo_simple_legend02.py

• sphx_glr_gallery_widgets_check_buttons.py

• sphx_glr_gallery_widgets_cursor.py

• sphx_glr_gallery_widgets_multicursor.py

• sphx_glr_gallery_widgets_radio_buttons.py

• sphx_glr_gallery_widgets_rectangle_selector.py

• sphx_glr_gallery_widgets_span_selector.py

• sphx_glr_gallery_widgets_textbox.py

• Usage Guide

• Artist tutorial

• Styling with cycler

• Customizing Figure Layouts Using GridSpec and Other Functions

• Constrained Layout Guide

• Tight Layout guide

• Autoscaling

• Faster rendering by using blitting

• Path Tutorial

18.5. matplotlib.axes 1255

Matplotlib, Release 3.4.3

• Transformations Tutorial

• Specifying Colors

• Text in Matplotlib Plots

matplotlib.axes.Axes.errorbar

Axes.errorbar(x, y, yerr=None, xerr=None, fmt='', ecolor=None, elinewidth=None, cap-
size=None, barsabove=False, lolims=False, uplims=False, xlolims=False, xu-
plims=False, errorevery=1, capthick=None, *, data=None, **kwargs)

Plot y versus x as lines and/or markers with attached errorbars.

x, y define the data locations, xerr, yerr define the errorbar sizes. By default, this draws the data
markers/lines as well the errorbars. Use fmt='none' to draw errorbars without any data markers.

Parameters

x, y
[float or array-like] The data positions.

xerr, yerr
[float or array-like, shape(N,) or shape(2, N), optional] The errorbar sizes:

• scalar: Symmetric +/- values for all data points.

• shape(N,): Symmetric +/-values for each data point.

• shape(2, N): Separate - and + values for each bar. First row contains the lower
errors, the second row contains the upper errors.

• None: No errorbar.

Note that all error arrays should have positive values.

See /gallery/statistics/errorbar_features for an example on the usage of xerr and
yerr.

fmt
[str, default: ''] The format for the data points / data lines. See plot for details.

Use 'none' (case insensitive) to plot errorbars without any data markers.

ecolor
[color, default: None] The color of the errorbar lines. If None, use the color of the
line connecting the markers.

elinewidth
[float, default: None] The linewidth of the errorbar lines. If None, the linewidth
of the current style is used.

1256 Chapter 18. Modules

Matplotlib, Release 3.4.3

capsize
[float, default: rcParams["errorbar.capsize"] (default: 0.0)] The
length of the error bar caps in points.

capthick
[float, default: None] An alias to the keyword argument markeredgewidth (a.k.a.
mew). This setting is a more sensible name for the property that controls the thick-
ness of the error bar cap in points. For backwards compatibility, if mew or mark-
eredgewidth are given, then theywill over-ride capthick. This may change in future
releases.

barsabove
[bool, default: False] If True, will plot the errorbars above the plot symbols. De-
fault is below.

lolims, uplims, xlolims, xuplims
[bool, default: False] These arguments can be used to indicate that a value gives
only upper/lower limits. In that case a caret symbol is used to indicate this. lims-
argumentsmay be scalars, or array-likes of the same length as xerr and yerr. To use
limits with inverted axes, set_xlim or set_ylim must be called before er-
rorbar(). Note the tricky parameter names: setting e.g. lolims to True means
that the y-value is a lower limit of the True value, so, only an upward-pointing
arrow will be drawn!

errorevery
[int or (int, int), default: 1] draws error bars on a subset of the data. errorevery =N
draws error bars on the points (x[::N], y[::N]). errorevery =(start, N) draws error
bars on the points (x[start::N], y[start::N]). e.g. errorevery=(6, 3) adds error bars
to the data at (x[6], x[9], x[12], x[15], ...). Used to avoid overlapping error bars
when two series share x-axis values.

Returns

ErrorbarContainer

The container contains:

• plotline: Line2D instance of x, y plot markers and/or line.

• caplines: A tuple of Line2D instances of the error bar caps.

• barlinecols: A tuple of LineCollection with the horizontal and vertical
error ranges.

Other Parameters

**kwargs
All other keyword arguments are passed on to the plot call drawing the markers.
For example, this code makes big red squares with thick green edges:

18.5. matplotlib.axes 1257

../../tutorials/introductory/customizing.html?highlight=errorbar.capsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

x, y, yerr = rand(3, 10)
errorbar(x, y, yerr, marker='s', mfc='red',

mec='green', ms=20, mew=4)

where mfc, mec, ms and mew are aliases for the longer property names, marker-
facecolor, markeredgecolor, markersize and markeredgewidth.

Valid kwargs for the marker properties are Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}

continues on next page

1258 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 59 – continued from previous page
Property Description
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y, xerr, yerr.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.errorbar

• sphx_glr_gallery_lines_bars_and_markers_errorbar_subsample.py

• sphx_glr_gallery_statistics_errorbar.py

• sphx_glr_gallery_statistics_errorbar_features.py

• sphx_glr_gallery_statistics_errorbar_limits.py

• sphx_glr_gallery_statistics_errorbars_and_boxes.py

• sphx_glr_gallery_text_labels_and_annotations_legend_demo.py

• sphx_glr_gallery_axes_grid1_parasite_simple2.py

• sphx_glr_gallery_mplot3d_errorbar3d.py

• sphx_glr_gallery_scales_log_demo.py

matplotlib.axes.Axes.scatter

Axes.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None,
vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfi-
nite=False, data=None, **kwargs)

A scatter plot of y vs. x with varying marker size and/or color.

Parameters

18.5. matplotlib.axes 1259

Matplotlib, Release 3.4.3

x, y
[float or array-like, shape (n,)] The data positions.

s
[float or array-like, shape (n,), optional] The marker size in points**2. Default is
rcParams['lines.markersize'] ** 2.

c
[array-like or list of colors or color, optional] The marker colors. Possible values:

• A scalar or sequence of n numbers to be mapped to colors using cmap and norm.

• A 2D array in which the rows are RGB or RGBA.

• A sequence of colors of length n.

• A single color format string.

Note that c should not be a single numeric RGB or RGBA sequence because that
is indistinguishable from an array of values to be colormapped. If you want to
specify the same RGB or RGBA value for all points, use a 2D array with a single
row. Otherwise, value- matching will have precedence in case of a size matching
with x and y.

If you wish to specify a single color for all points prefer the color keyword argu-
ment.

Defaults to None. In that case the marker color is determined by the value
of color, facecolor or facecolors. In case those are not specified or None, the
marker color is determined by the next color of the Axes' current "shape and fill"
color cycle. This cycle defaults to rcParams["axes.prop_cycle"] (de-
fault: cycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c',
'#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
'#bcbd22', '#17becf'])).

marker
[MarkerStyle, default: rcParams["scatter.marker"] (default:
'o')] The marker style. marker can be either an instance of the class or the
text shorthand for a particular marker. See matplotlib.markers for more
information about marker styles.

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. cmap
is only used if c is an array of floats.

norm
[Normalize, default: None] If c is an array of floats, norm is used to scale the
color data, c, in the range 0 to 1, in order to map into the colormap cmap. If None,
use the default colors.Normalize.

1260 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=scatter.marker#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

vmin, vmax
[float, default: None] vmin and vmax are used in conjunction with the default norm
to map the color array c to the colormap cmap. If None, the respective min and
max of the color array is used. It is deprecated to use vmin/vmax when norm is
given.

alpha
[float, default: None] The alpha blending value, between 0 (transparent) and 1
(opaque).

linewidths
[float or array-like, default: rcParams["lines.linewidth"] (default: 1.
5)] The linewidth of the marker edges. Note: The default edgecolors is 'face'. You
may want to change this as well.

edgecolors
[{'face', 'none', None} or color or sequence of color, default:
rcParams["scatter.edgecolors"] (default: 'face')] The edge
color of the marker. Possible values:

• 'face': The edge color will always be the same as the face color.

• 'none': No patch boundary will be drawn.

• A color or sequence of colors.

For non-filled markers, edgecolors is ignored. Instead, the color is determined like
with 'face', i.e. from c, colors, or facecolors.

plotnonfinite
[bool, default: False] Whether to plot points with nonfinite c (i.e. inf, -
inf or nan). If True the points are drawn with the bad colormap color (see
Colormap.set_bad).

Returns

PathCollection

Other Parameters

**kwargs
[Collection properties]

See also:

plot

To plot scatter plots when markers are identical in size and color.

18.5. matplotlib.axes 1261

../../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=scatter.edgecolors#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

• The plot function will be faster for scatterplots where markers don't vary in size or color.

• Any or all of x, y, s, and c may be masked arrays, in which case all masks will be combined and
only unmasked points will be plotted.

• Fundamentally, scatter works with 1D arrays; x, y, s, and cmay be input as N-D arrays, but within
scatter they will be flattened. The exception is c, which will be flattened only if its size matches
the size of x and y.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted
as data[s] (unless this raises an exception): x, y, s, linewidths, edgecolors, c, facecolor, facecolors,
color.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.scatter

• sphx_glr_gallery_lines_bars_and_markers_scatter_custom_symbol.py

• sphx_glr_gallery_lines_bars_and_markers_scatter_demo2.py

• sphx_glr_gallery_lines_bars_and_markers_scatter_hist.py

• sphx_glr_gallery_lines_bars_and_markers_scatter_piecharts.py

• sphx_glr_gallery_lines_bars_and_markers_scatter_with_legend.py

• sphx_glr_gallery_images_contours_and_fields_quiver_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_box_aspect.py

• sphx_glr_gallery_subplots_axes_and_figures_axis_labels_demo.py

• sphx_glr_gallery_statistics_confidence_ellipse.py

• sphx_glr_gallery_statistics_customized_violin.py

• sphx_glr_gallery_pie_and_polar_charts_polar_scatter.py

• sphx_glr_gallery_text_labels_and_annotations_legend_demo.py

• sphx_glr_gallery_axes_grid1_scatter_hist_locatable_axes.py

• sphx_glr_gallery_axisartist_demo_floating_axes.py

• Rain simulation

• sphx_glr_gallery_event_handling_zoom_window.py

• sphx_glr_gallery_misc_keyword_plotting.py

• sphx_glr_gallery_misc_zorder_demo.py

1262 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_mplot3d_2dcollections3d.py

• sphx_glr_gallery_mplot3d_scatter3d.py

• sphx_glr_gallery_ticks_and_spines_auto_ticks.py

• sphx_glr_gallery_units_units_scatter.py

• sphx_glr_gallery_userdemo_annotate_text_arrow.py

• sphx_glr_gallery_widgets_polygon_selector_demo.py

• Choosing Colormaps in Matplotlib

matplotlib.axes.Axes.plot_date

Axes.plot_date(x, y, fmt='o', tz=None, xdate=True, ydate=False, *, data=None, **kwargs)
Plot co-ercing the axis to treat floats as dates.

Similar to plot, this plots y vs. x as lines or markers. However, the axis labels are formatted
as dates depending on xdate and ydate. Note that plot will work with datetime and numpy.
datetime64 objects without resorting to this method.

Parameters

x, y
[array-like] The coordinates of the data points. If xdate or ydate is True, the re-
spective values x or y are interpreted as Matplotlib dates.

fmt
[str, optional] The plot format string. For details, see the corresponding parameter
in plot.

tz
[timezone string ordatetime.tzinfo, default: rcParams["timezone"]
(default: 'UTC')] The time zone to use in labeling dates.

xdate
[bool, default: True] If True, the x-axis will be interpreted as Matplotlib dates.

ydate
[bool, default: False] If True, the y-axis will be interpreted as Matplotlib dates.

Returns

list of Line2D
Objects representing the plotted data.

Other Parameters

18.5. matplotlib.axes 1263

https://docs.python.org/3/library/datetime.html#module-datetime
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
../../tutorials/introductory/customizing.html?highlight=timezone#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

**kwargs
Keyword arguments control the Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array

continues on next page

1264 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 60 – continued from previous page
Property Description
zorder float

See also:

matplotlib.dates

Helper functions on dates.

matplotlib.dates.date2num

Convert dates to num.

matplotlib.dates.num2date

Convert num to dates.

matplotlib.dates.drange

Create an equally spaced sequence of dates.

Notes

If you are using custom date tickers and formatters, it may be necessary to set the formatters/locators
after the call to plot_date. plot_date will set the default tick locator to AutoDateLocator
(if the tick locator is not already set to a DateLocator instance) and the default tick formatter to
AutoDateFormatter (if the tick formatter is not already set to a DateFormatter instance).

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.plot_date

• sphx_glr_gallery_ticks_and_spines_date_demo_convert.py

18.5. matplotlib.axes 1265

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.step

Axes.step(x, y, *args, where='pre', data=None, **kwargs)
Make a step plot.

Call signatures:

step(x, y, [fmt], *, data=None, where='pre', **kwargs)
step(x, y, [fmt], x2, y2, [fmt2], ..., *, where='pre', **kwargs)

This is just a thin wrapper around plotwhich changes some formatting options. Most of the concepts
and parameters of plot can be used here as well.

Note: This method uses a standard plot with a step drawstyle: The x values are the reference positions
and steps extend left/right/both directions depending on where.

For the common case where you know the values and edges of the steps, use stairs instead.

Parameters

x
[array-like] 1D sequence of x positions. It is assumed, but not checked, that it is
uniformly increasing.

y
[array-like] 1D sequence of y levels.

fmt
[str, optional] A format string, e.g. 'g' for a green line. See plot for a more
detailed description.

Note: While full format strings are accepted, it is recommended to only specify
the color. Line styles are currently ignored (use the keyword argument linestyle
instead). Markers are accepted and plotted on the given positions, however, this is
a rarely needed feature for step plots.

data
[indexable object, optional] An object with labelled data. If given, provide the
label names to plot in x and y.

where
[{'pre', 'post', 'mid'}, default: 'pre'] Define where the steps should be placed:

• 'pre': The y value is continued constantly to the left from every x position, i.e.
the interval (x[i-1], x[i]] has the value y[i].

• 'post': The y value is continued constantly to the right from every x position, i.e.
the interval [x[i], x[i+1]) has the value y[i].

1266 Chapter 18. Modules

Matplotlib, Release 3.4.3

• 'mid': Steps occur half-way between the x positions.

Returns

list of Line2D
Objects representing the plotted data.

Other Parameters

**kwargs
Additional parameters are the same as those for plot.

Notes

Examples using matplotlib.axes.Axes.step

matplotlib.axes.Axes.loglog

Axes.loglog(*args, **kwargs)
Make a plot with log scaling on both the x and y axis.

Call signatures:

loglog([x], y, [fmt], data=None, **kwargs)
loglog([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

This is just a thin wrapper around plot which additionally changes both the x-axis and the y-axis to
log scaling. All of the concepts and parameters of plot can be used here as well.

The additional parameters base, subs and nonpositive control the x/y-axis properties. They are just for-
warded to Axes.set_xscale and Axes.set_yscale. To use different properties on the x-axis
and the y-axis, use e.g. ax.set_xscale("log", base=10); ax.set_yscale("log",
base=2).

Parameters

base
[float, default: 10] Base of the logarithm.

subs
[sequence, optional] The location of the minor ticks. If None, reasonable locations
are automatically chosen depending on the number of decades in the plot. See
Axes.set_xscale/Axes.set_yscale for details.

nonpositive
[{'mask', 'clip'}, default: 'mask'] Non-positive values can be masked as invalid, or
clipped to a very small positive number.

18.5. matplotlib.axes 1267

Matplotlib, Release 3.4.3

Returns

list of Line2D
Objects representing the plotted data.

Other Parameters

**kwargs
All parameters supported by plot.

Examples using matplotlib.axes.Axes.loglog

• sphx_glr_gallery_subplots_axes_and_figures_secondary_axis.py

• sphx_glr_gallery_scales_log_demo.py

matplotlib.axes.Axes.semilogx

Axes.semilogx(*args, **kwargs)
Make a plot with log scaling on the x axis.

Call signatures:

semilogx([x], y, [fmt], data=None, **kwargs)
semilogx([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

This is just a thin wrapper around plot which additionally changes the x-axis to log scaling. All of
the concepts and parameters of plot can be used here as well.

The additional parameters base, subs, and nonpositive control the x-axis properties. They are just
forwarded to Axes.set_xscale.

Parameters

base
[float, default: 10] Base of the x logarithm.

subs
[array-like, optional] The location of the minor xticks. If None, reasonable loca-
tions are automatically chosen depending on the number of decades in the plot.
See Axes.set_xscale for details.

nonpositive
[{'mask', 'clip'}, default: 'mask'] Non-positive values in x can bemasked as invalid,
or clipped to a very small positive number.

Returns

1268 Chapter 18. Modules

Matplotlib, Release 3.4.3

list of Line2D
Objects representing the plotted data.

Other Parameters

**kwargs
All parameters supported by plot.

Examples using matplotlib.axes.Axes.semilogx

• sphx_glr_gallery_scales_log_demo.py

• sphx_glr_gallery_scales_log_test.py

• Transformations Tutorial

matplotlib.axes.Axes.semilogy

Axes.semilogy(*args, **kwargs)
Make a plot with log scaling on the y axis.

Call signatures:

semilogy([x], y, [fmt], data=None, **kwargs)
semilogy([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

This is just a thin wrapper around plot which additionally changes the y-axis to log scaling. All of
the concepts and parameters of plot can be used here as well.

The additional parameters base, subs, and nonpositive control the y-axis properties. They are just
forwarded to Axes.set_yscale.

Parameters

base
[float, default: 10] Base of the y logarithm.

subs
[array-like, optional] The location of the minor yticks. If None, reasonable loca-
tions are automatically chosen depending on the number of decades in the plot.
See Axes.set_yscale for details.

nonpositive
[{'mask', 'clip'}, default: 'mask'] Non-positive values in y can bemasked as invalid,
or clipped to a very small positive number.

Returns

18.5. matplotlib.axes 1269

Matplotlib, Release 3.4.3

list of Line2D
Objects representing the plotted data.

Other Parameters

**kwargs
All parameters supported by plot.

Examples using matplotlib.axes.Axes.semilogy

• sphx_glr_gallery_scales_log_demo.py

• sphx_glr_gallery_specialty_plots_skewt.py

matplotlib.axes.Axes.fill_between

Axes.fill_between(x, y1, y2=0, where=None, interpolate=False, step=None, *, data=None,
**kwargs)

Fill the area between two horizontal curves.

The curves are defined by the points (x, y1) and (x, y2). This creates one or multiple polygons describ-
ing the filled area.

You may exclude some horizontal sections from filling using where.

By default, the edges connect the given points directly. Use step if the filling should be a step function,
i.e. constant in between x.

Parameters

x
[array (length N)] The x coordinates of the nodes defining the curves.

y1
[array (length N) or scalar] The y coordinates of the nodes defining the first curve.

y2
[array (length N) or scalar, default: 0] The y coordinates of the nodes defining the
second curve.

where
[array of bool (length N), optional] Define where to exclude some horizontal
regions from being filled. The filled regions are defined by the coordinates
x[where]. More precisely, fill between x[i] and x[i+1] if where[i] and
where[i+1]. Note that this definition implies that an isolated True value be-
tween two False values in where will not result in filling. Both sides of the True
position remain unfilled due to the adjacent False values.

1270 Chapter 18. Modules

Matplotlib, Release 3.4.3

interpolate
[bool, default: False] This option is only relevant if where is used and the two
curves are crossing each other.

Semantically, where is often used for y1 > y2 or similar. By default, the nodes of
the polygon defining the filled region will only be placed at the positions in the x
array. Such a polygon cannot describe the above semantics close to the intersec-
tion. The x-sections containing the intersection are simply clipped.

Setting interpolate to True will calculate the actual intersection point and extend
the filled region up to this point.

step
[{'pre', 'post', 'mid'}, optional] Define step if the filling should be a step function,
i.e. constant in between x. The value determines where the step will occur:

• 'pre': The y value is continued constantly to the left from every x position, i.e.
the interval (x[i-1], x[i]] has the value y[i].

• 'post': The y value is continued constantly to the right from every x position, i.e.
the interval [x[i], x[i+1]) has the value y[i].

• 'mid': Steps occur half-way between the x positions.

Returns

PolyCollection

A PolyCollection containing the plotted polygons.

Other Parameters

**kwargs
All other keyword arguments are passed on to PolyCollection. They control
the Polygon properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None

continues on next page

18.5. matplotlib.axes 1271

Matplotlib, Release 3.4.3

Table 61 – continued from previous page
Property Description
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

See also:

fill_between

Fill between two sets of y-values.

fill_betweenx

Fill between two sets of x-values.

1272 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y1, y2, where.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.fill_between

• sphx_glr_gallery_lines_bars_and_markers_fill_between_alpha.py

• sphx_glr_gallery_lines_bars_and_markers_fill_between_demo.py

• sphx_glr_gallery_pyplots_whats_new_98_4_fill_between.py

matplotlib.axes.Axes.fill_betweenx

Axes.fill_betweenx(y, x1, x2=0, where=None, step=None, interpolate=False, *, data=None,
**kwargs)

Fill the area between two vertical curves.

The curves are defined by the points (y, x1) and (y, x2). This creates one or multiple polygons describ-
ing the filled area.

You may exclude some vertical sections from filling using where.

By default, the edges connect the given points directly. Use step if the filling should be a step function,
i.e. constant in between y.

Parameters

y
[array (length N)] The y coordinates of the nodes defining the curves.

x1
[array (length N) or scalar] The x coordinates of the nodes defining the first curve.

x2
[array (length N) or scalar, default: 0] The x coordinates of the nodes defining the
second curve.

where
[array of bool (length N), optional] Define where to exclude some vertical re-
gions from being filled. The filled regions are defined by the coordinates
y[where]. More precisely, fill between y[i] and y[i+1] if where[i] and

18.5. matplotlib.axes 1273

Matplotlib, Release 3.4.3

where[i+1]. Note that this definition implies that an isolated True value be-
tween two False values in where will not result in filling. Both sides of the True
position remain unfilled due to the adjacent False values.

interpolate
[bool, default: False] This option is only relevant if where is used and the two
curves are crossing each other.

Semantically, where is often used for x1 > x2 or similar. By default, the nodes of
the polygon defining the filled region will only be placed at the positions in the y
array. Such a polygon cannot describe the above semantics close to the intersec-
tion. The y-sections containing the intersection are simply clipped.

Setting interpolate to True will calculate the actual intersection point and extend
the filled region up to this point.

step
[{'pre', 'post', 'mid'}, optional] Define step if the filling should be a step function,
i.e. constant in between y. The value determines where the step will occur:

• 'pre': The y value is continued constantly to the left from every x position, i.e.
the interval (x[i-1], x[i]] has the value y[i].

• 'post': The y value is continued constantly to the right from every x position, i.e.
the interval [x[i], x[i+1]) has the value y[i].

• 'mid': Steps occur half-way between the x positions.

Returns

PolyCollection

A PolyCollection containing the plotted polygons.

Other Parameters

**kwargs
All other keyword arguments are passed on to PolyCollection. They control
the Polygon properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)

continues on next page

1274 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 62 – continued from previous page
Property Description
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

See also:

fill_between

Fill between two sets of y-values.

fill_betweenx

Fill between two sets of x-values.

18.5. matplotlib.axes 1275

Matplotlib, Release 3.4.3

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): y, x1, x2, where.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.fill_betweenx

• sphx_glr_gallery_lines_bars_and_markers_fill_betweenx_demo.py

matplotlib.axes.Axes.bar

Axes.bar(x, height, width=0.8, bottom=None, *, align='center', data=None, **kwargs)
Make a bar plot.

The bars are positioned at xwith the given alignment. Their dimensions are given by height and width.
The vertical baseline is bottom (default 0).

Many parameters can take either a single value applying to all bars or a sequence of values, one for
each bar.

Parameters

x
[float or array-like] The x coordinates of the bars. See also align for the alignment
of the bars to the coordinates.

height
[float or array-like] The height(s) of the bars.

width
[float or array-like, default: 0.8] The width(s) of the bars.

bottom
[float or array-like, default: 0] The y coordinate(s) of the bars bases.

align
[{'center', 'edge'}, default: 'center'] Alignment of the bars to the x coordinates:

• 'center': Center the base on the x positions.

• 'edge': Align the left edges of the bars with the x positions.

To align the bars on the right edge pass a negative width and align='edge'.

1276 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns

BarContainer

Container with all the bars and optionally errorbars.

Other Parameters

color
[color or list of color, optional] The colors of the bar faces.

edgecolor
[color or list of color, optional] The colors of the bar edges.

linewidth
[float or array-like, optional] Width of the bar edge(s). If 0, don't draw edges.

tick_label
[str or list of str, optional] The tick labels of the bars. Default: None (Use default
numeric labels.)

xerr, yerr
[float or array-like of shape(N,) or shape(2, N), optional] If not None, add hori-
zontal / vertical errorbars to the bar tips. The values are +/- sizes relative to the
data:

• scalar: symmetric +/- values for all bars

• shape(N,): symmetric +/- values for each bar

• shape(2, N): Separate - and + values for each bar. First row contains the lower
errors, the second row contains the upper errors.

• None: No errorbar. (Default)

See /gallery/statistics/errorbar_features for an example on the usage of xerr and
yerr.

ecolor
[color or list of color, default: 'black'] The line color of the errorbars.

capsize
[float, default: rcParams["errorbar.capsize"] (default: 0.0)] The
length of the error bar caps in points.

error_kw
[dict, optional] Dictionary of kwargs to be passed to the errorbarmethod. Val-
ues of ecolor or capsize defined here take precedence over the independent kwargs.

18.5. matplotlib.axes 1277

../../tutorials/introductory/customizing.html?highlight=errorbar.capsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

log
[bool, default: False] If True, set the y-axis to be log scale.

**kwargs
[Rectangle properties]

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

See also:

barh

Plot a horizontal bar plot.

1278 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Stacked bars can be achieved by passing individual bottom values per bar. See
/gallery/lines_bars_and_markers/bar_stacked.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.bar

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_bar_stacked.py

• sphx_glr_gallery_lines_bars_and_markers_barchart.py

• sphx_glr_gallery_lines_bars_and_markers_hat_graph.py

• sphx_glr_gallery_pie_and_polar_charts_bar_of_pie.py

• sphx_glr_gallery_pie_and_polar_charts_nested_pie.py

• sphx_glr_gallery_pie_and_polar_charts_polar_bar.py

• sphx_glr_gallery_text_labels_and_annotations_legend_demo.py

• sphx_glr_gallery_style_sheets_ggplot.py

• sphx_glr_gallery_axisartist_demo_floating_axes.py

• sphx_glr_gallery_showcase_xkcd.py

• sphx_glr_gallery_mplot3d_bars3d.py

• sphx_glr_gallery_scales_log_bar.py

• sphx_glr_gallery_ticks_and_spines_custom_ticker1.py

• sphx_glr_gallery_units_bar_unit_demo.py

• Artist tutorial

• Path Tutorial

18.5. matplotlib.axes 1279

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.barh

Axes.barh(y, width, height=0.8, left=None, *, align='center', **kwargs)
Make a horizontal bar plot.

The bars are positioned at ywith the given alignment. Their dimensions are given by width and height.
The horizontal baseline is left (default 0).

Many parameters can take either a single value applying to all bars or a sequence of values, one for
each bar.

Parameters

y
[float or array-like] The y coordinates of the bars. See also align for the alignment
of the bars to the coordinates.

width
[float or array-like] The width(s) of the bars.

height
[float or array-like, default: 0.8] The heights of the bars.

left
[float or array-like, default: 0] The x coordinates of the left sides of the bars.

align
[{'center', 'edge'}, default: 'center'] Alignment of the base to the y coordinates*:

• 'center': Center the bars on the y positions.

• 'edge': Align the bottom edges of the bars with the y positions.

To align the bars on the top edge pass a negative height and align='edge'.

Returns

BarContainer

Container with all the bars and optionally errorbars.

Other Parameters

color
[color or list of color, optional] The colors of the bar faces.

edgecolor
[color or list of color, optional] The colors of the bar edges.

1280 Chapter 18. Modules

Matplotlib, Release 3.4.3

linewidth
[float or array-like, optional] Width of the bar edge(s). If 0, don't draw edges.

tick_label
[str or list of str, optional] The tick labels of the bars. Default: None (Use default
numeric labels.)

xerr, yerr
[float or array-like of shape(N,) or shape(2, N), optional] If not None, add hori-
zontal / vertical errorbars to the bar tips. The values are +/- sizes relative to the
data:

• scalar: symmetric +/- values for all bars

• shape(N,): symmetric +/- values for each bar

• shape(2, N): Separate - and + values for each bar. First row contains the lower
errors, the second row contains the upper errors.

• None: No errorbar. (default)

See /gallery/statistics/errorbar_features for an example on the usage of xerr and
yerr.

ecolor
[color or list of color, default: 'black'] The line color of the errorbars.

capsize
[float, default: rcParams["errorbar.capsize"] (default: 0.0)] The
length of the error bar caps in points.

error_kw
[dict, optional] Dictionary of kwargs to be passed to the errorbarmethod. Val-
ues of ecolor or capsize defined here take precedence over the independent kwargs.

log
[bool, default: False] If True, set the x-axis to be log scale.

**kwargs
[Rectangle properties]

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

continues on next page

18.5. matplotlib.axes 1281

../../tutorials/introductory/customizing.html?highlight=errorbar.capsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Table 64 – continued from previous page
Property Description
clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

See also:

bar

Plot a vertical bar plot.

1282 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Stacked bars can be achieved by passing individual left values per bar. See
/gallery/lines_bars_and_markers/horizontal_barchart_distribution .

Examples using matplotlib.axes.Axes.barh

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_barh.py

• sphx_glr_gallery_statistics_multiple_histograms_side_by_side.py

• The Lifecycle of a Plot

matplotlib.axes.Axes.bar_label

Axes.bar_label(container, labels=None, *, fmt='%g', label_type='edge', padding=0,
**kwargs)

Label a bar plot.

Adds labels to bars in the given BarContainer. You may need to adjust the axis limits to fit the
labels.

Parameters

container
[BarContainer] Container with all the bars and optionally errorbars, likely
returned from bar or barh.

labels
[array-like, optional] A list of label texts, that should be displayed. If not given,
the label texts will be the data values formatted with fmt.

fmt
[str, default: '%g'] A format string for the label.

label_type
[{'edge', 'center'}, default: 'edge'] The label type. Possible values:

• 'edge': label placed at the end-point of the bar segment, and the value displayed
will be the position of that end-point.

• 'center': label placed in the center of the bar segment, and the value dis-
played will be the length of that segment. (useful for stacked bars, i.e.,
/gallery/lines_bars_and_markers/bar_label_demo)

padding
[float, default: 0] Distance of label from the end of the bar, in points.

18.5. matplotlib.axes 1283

Matplotlib, Release 3.4.3

**kwargs
Any remaining keyword arguments are passed through to Axes.annotate.

Returns

list of Text
A list of Text instances for the labels.

Examples using matplotlib.axes.Axes.bar_label

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_barchart.py

matplotlib.axes.Axes.stem

Axes.stem(*args, linefmt=None, markerfmt=None, basefmt=None, bottom=0, label=None,
use_line_collection=True, orientation='vertical', data=None)

Create a stem plot.

A stem plot draws lines perpendicular to a baseline at each location locs from the baseline to heads,
and places a marker there. For vertical stem plots (the default), the locs are x positions, and the heads
are y values. For horizontal stem plots, the locs are y positions, and the heads are x values.

Call signature:

stem([locs,] heads, linefmt=None, markerfmt=None, basefmt=None)

The locs-positions are optional. The formats may be provided either as positional or as keyword-
arguments.

Parameters

locs
[array-like, default: (0, 1, ..., len(heads) - 1)] For vertical stem plots, the x-
positions of the stems. For horizontal stem plots, the y-positions of the stems.

heads
[array-like] For vertical stem plots, the y-values of the stem heads. For horizontal
stem plots, the x-values of the stem heads.

linefmt
[str, optional] A string defining the color and/or linestyle of the vertical lines:

1284 Chapter 18. Modules

Matplotlib, Release 3.4.3

Character Line Style
'-' solid line
'--' dashed line
'-.' dash-dot line
':' dotted line

Default: 'C0-', i.e. solid line with the first color of the color cycle.

Note: Markers specified through this parameter (e.g. 'x') will be silently ignored
(unless using use_line_collection=False). Instead, markers should be
specified using markerfmt.

markerfmt
[str, optional] A string defining the color and/or shape of the markers at the stem
heads. Default: 'C0o', i.e. filled circles with the first color of the color cycle.

basefmt
[str, default: 'C3-' ('C2-' in classic mode)] A format string defining the properties
of the baseline.

orientation
[str, default: 'vertical'] If 'vertical', will produce a plot with stems oriented verti-
cally, otherwise the stems will be oriented horizontally.

bottom
[float, default: 0] The y/x-position of the baseline (depending on orientation).

label
[str, default: None] The label to use for the stems in legends.

use_line_collection
[bool, default: True] If True, store and plot the stem lines as a LineCollec-
tion instead of individual lines, which significantly increases performance. If
False, defaults to the old behavior of using a list of Line2D objects. This pa-
rameter may be deprecated in the future.

Returns

StemContainer

The container may be treated like a tuple (markerline, stemlines, baseline)

18.5. matplotlib.axes 1285

Matplotlib, Release 3.4.3

Notes

See also:
The MATLAB function stem which inspired this method.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.stem

• sphx_glr_gallery_text_labels_and_annotations_legend_demo.py

• sphx_glr_gallery_mplot3d_stem3d_demo.py

matplotlib.axes.Axes.eventplot

Axes.eventplot(positions, orientation='horizontal', lineoffsets=1, linelengths=1,
linewidths=None, colors=None, linestyles='solid', *, data=None, **kwargs)

Plot identical parallel lines at the given positions.

This type of plot is commonly used in neuroscience for representing neural events, where it is usually
called a spike raster, dot raster, or raster plot.

However, it is useful in any situation where you wish to show the timing or position of multiple sets of
discrete events, such as the arrival times of people to a business on each day of the month or the date
of hurricanes each year of the last century.

Parameters

positions
[array-like or list of array-like] A 1D array-like defines the positions of one se-
quence of events.

Multiple groups of events may be passed as a list of array-likes. Each group
can be styled independently by passing lists of values to lineoffsets, linelengths,
linewidths, colors and linestyles.

Note that positions can be a 2D array, but in practice different event groups usually
have different counts so that one will use a list of different-length arrays rather than
a 2D array.

orientation
[{'horizontal', 'vertical'}, default: 'horizontal'] The direction of the event sequence:

1286 Chapter 18. Modules

https://www.mathworks.com/help/matlab/ref/stem.html

Matplotlib, Release 3.4.3

• 'horizontal': the events are arranged horizontally. The indicator lines are verti-
cal.

• 'vertical': the events are arranged vertically. The indicator lines are horizontal.

lineoffsets
[float or array-like, default: 1] The offset of the center of the lines from the origin,
in the direction orthogonal to orientation.

If positions is 2D, this can be a sequence with length matching the length of posi-
tions.

linelengths
[float or array-like, default: 1] The total height of the lines (i.e. the lines stretches
from lineoffset - linelength/2 to lineoffset + linelength/
2).

If positions is 2D, this can be a sequence with length matching the length of posi-
tions.

linewidths
[float or array-like, default: rcParams["lines.linewidth"] (default: 1.
5)] The line width(s) of the event lines, in points.

If positions is 2D, this can be a sequence with length matching the length of posi-
tions.

colors
[color or list of colors, default: rcParams["lines.color"] (default:
'C0')] The color(s) of the event lines.

If positions is 2D, this can be a sequence with length matching the length of posi-
tions.

linestyles
[str or tuple or list of such values, default: 'solid'] Default is 'solid'. Valid strings
are ['solid', 'dashed', 'dashdot', 'dotted', '-', '--', '-.', ':']. Dash tuples should be of the
form:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

If positions is 2D, this can be a sequence with length matching the length of posi-
tions.

**kwargs
Other keyword arguments are line collection properties. See LineCollection
for a list of the valid properties.

Returns

18.5. matplotlib.axes 1287

../../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

list of EventCollection
The EventCollection that were added.

Notes

For linelengths, linewidths, colors, and linestyles, if only a single value is given, that value is applied
to all lines. If an array-like is given, it must have the same length as positions, and each value will be
applied to the corresponding row of the array.

Examples

0.00 0.25 0.50 0.75 1.00
20
15
10

5
0
5

10

0 5 10 15
0

10
20
30
40
50
60

20 10 0 10
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60
0

5

10

15

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted
as data[s] (unless this raises an exception): positions, lineoffsets, linelengths, linewidths, colors,
linestyles.

Objects passed as data must support item access (data[s]) and membership test (s in data).

1288 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.eventplot

matplotlib.axes.Axes.pie

Axes.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6,
shadow=False, labeldistance=1.1, startangle=0, radius=1, counterclock=True, wedge-
props=None, textprops=None, center=(0, 0), frame=False, rotatelabels=False, *, nor-
malize=None, data=None)

Plot a pie chart.

Make a pie chart of array x. The fractional area of each wedge is given by x/sum(x). If sum(x)
< 1, then the values of x give the fractional area directly and the array will not be normalized. The
resulting pie will have an empty wedge of size 1 - sum(x).

The wedges are plotted counterclockwise, by default starting from the x-axis.

Parameters

x
[1D array-like] The wedge sizes.

explode
[array-like, default: None] If not None, is a len(x) array which specifies the
fraction of the radius with which to offset each wedge.

labels
[list, default: None] A sequence of strings providing the labels for each wedge

colors
[array-like, default: None] A sequence of colors through which the pie chart will
cycle. If None, will use the colors in the currently active cycle.

autopct
[None or str or callable, default: None] If not None, is a string or function used
to label the wedges with their numeric value. The label will be placed inside the
wedge. If it is a format string, the label will be fmt % pct. If it is a function, it
will be called.

pctdistance
[float, default: 0.6] The ratio between the center of each pie slice and the start of
the text generated by autopct. Ignored if autopct is None.

shadow
[bool, default: False] Draw a shadow beneath the pie.

normalize

18.5. matplotlib.axes 1289

Matplotlib, Release 3.4.3

[None or bool, default: None] When True, always make a full pie by normalizing
x so that sum(x) == 1. False makes a partial pie if sum(x) <= 1 and raises
a ValueError for sum(x) > 1.

When None, defaults to True if sum(x) >= 1 and False if sum(x) < 1.

Please note that the previous default value of None is now deprecated, and the
default will change to True in the next release. Please pass normalize=False
explicitly if you want to draw a partial pie.

labeldistance
[float or None, default: 1.1] The radial distance at which the pie labels are drawn.
If set to None, label are not drawn, but are stored for use in legend()

startangle
[float, default: 0 degrees] The angle by which the start of the pie is rotated, coun-
terclockwise from the x-axis.

radius
[float, default: 1] The radius of the pie.

counterclock
[bool, default: True] Specify fractions direction, clockwise or counterclockwise.

wedgeprops
[dict, default: None] Dict of arguments passed to the wedge objects making the
pie. For example, you can pass in wedgeprops = {'linewidth': 3} to
set the width of the wedge border lines equal to 3. For more details, look at the
doc/arguments of the wedge object. By default clip_on=False.

textprops
[dict, default: None] Dict of arguments to pass to the text objects.

center
[(float, float), default: (0, 0)] The coordinates of the center of the chart.

frame
[bool, default: False] Plot Axes frame with the chart if true.

rotatelabels
[bool, default: False] Rotate each label to the angle of the corresponding slice if
true.

Returns

patches
[list] A sequence of matplotlib.patches.Wedge instances

1290 Chapter 18. Modules

https://docs.python.org/3/library/exceptions.html#ValueError

Matplotlib, Release 3.4.3

texts
[list] A list of the label Text instances.

autotexts
[list] A list of Text instances for the numeric labels. This will only be returned
if the parameter autopct is not None.

Notes

The pie chart will probably look best if the figure and Axes are square, or the Axes aspect is equal.
This method sets the aspect ratio of the axis to "equal". The Axes aspect ratio can be controlled with
Axes.set_aspect.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, explode, labels, colors.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.pie

• sphx_glr_gallery_pie_and_polar_charts_pie_features.py

• sphx_glr_gallery_pie_and_polar_charts_bar_of_pie.py

• sphx_glr_gallery_pie_and_polar_charts_nested_pie.py

• sphx_glr_gallery_pie_and_polar_charts_pie_and_donut_labels.py

• sphx_glr_gallery_misc_svg_filter_pie.py

matplotlib.axes.Axes.stackplot

Axes.stackplot(x, *args, labels=(), colors=None, baseline='zero', data=None, **kwargs)
Draw a stacked area plot.

Parameters

x
[(N,) array-like]

y
[(M, N) array-like] The data is assumed to be unstacked. Each of the following
calls is legal:

18.5. matplotlib.axes 1291

Matplotlib, Release 3.4.3

stackplot(x, y) # where y has shape (M, N)
stackplot(x, y1, y2, y3) # where y1, y2, y3, y4 have␣

↪length N

baseline
[{'zero', 'sym', 'wiggle', 'weighted_wiggle'}]Method used to calculate the baseline:

• 'zero': Constant zero baseline, i.e. a simple stacked plot.

• 'sym': Symmetric around zero and is sometimes called 'ThemeRiver'.

• 'wiggle': Minimizes the sum of the squared slopes.

• 'weighted_wiggle': Does the same but weights to account for size of
each layer. It is also called 'Streamgraph'-layout. More details can be found at
http://leebyron.com/streamgraph/.

labels
[list of str, optional] A sequence of labels to assign to each data series. If unspec-
ified, then no labels will be applied to artists.

colors
[list of color, optional] A sequence of colors to be cycled through and used to color
the stacked areas. The sequence need not be exactly the same length as the number
of provided y, in which case the colors will repeat from the beginning.

If not specified, the colors from the Axes property cycle will be used.

**kwargs
All other keyword arguments are passed to Axes.fill_between.

Returns

list of PolyCollection
A list of PolyCollection instances, one for each element in the stacked area
plot.

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

1292 Chapter 18. Modules

http://leebyron.com/streamgraph/

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.stackplot

• sphx_glr_gallery_lines_bars_and_markers_stackplot_demo.py

matplotlib.axes.Axes.broken_barh

Axes.broken_barh(xranges, yrange, *, data=None, **kwargs)
Plot a horizontal sequence of rectangles.

A rectangle is drawn for each element of xranges. All rectangles have the same vertical position and
size defined by yrange.

This is a convenience function for instantiating a BrokenBarHCollection, adding it to the Axes
and autoscaling the view.

Parameters

xranges
[sequence of tuples (xmin, xwidth)] The x-positions and extends of the rectangles.
For each tuple (xmin, xwidth) a rectangle is drawn from xmin to xmin + xwidth.

yrange
[(ymin, yheight)] The y-position and extend for all the rectangles.

Returns

BrokenBarHCollection

Other Parameters

**kwargs
[BrokenBarHCollection properties] Each kwarg can be either a single ar-
gument applying to all rectangles, e.g.:

facecolors='black'

or a sequence of arguments over which is cycled, e.g.:

facecolors=('black', 'blue')

would create interleaving black and blue rectangles.

Supported keywords:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None

continues on next page

18.5. matplotlib.axes 1293

Matplotlib, Release 3.4.3

Table 65 – continued from previous page
Property Description
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

1294 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.broken_barh

• sphx_glr_gallery_lines_bars_and_markers_broken_barh.py

matplotlib.axes.Axes.vlines

Axes.vlines(x, ymin, ymax, colors=None, linestyles='solid', label='', *, data=None, **kwargs)
Plot vertical lines at each x from ymin to ymax.

Parameters

x
[float or array-like] x-indexes where to plot the lines.

ymin, ymax
[float or array-like] Respective beginning and end of each line. If scalars are pro-
vided, all lines will have same length.

colors
[list of colors, default: rcParams["lines.color"] (default: 'C0')]

linestyles
[{'solid', 'dashed', 'dashdot', 'dotted'}, optional]

label
[str, default: '']

Returns

LineCollection

Other Parameters

**kwargs
[LineCollection properties.]

18.5. matplotlib.axes 1295

../../tutorials/introductory/customizing.html?highlight=lines.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

See also:

hlines

horizontal lines

axvline

vertical line across the Axes

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, ymin, ymax, colors.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.vlines

• sphx_glr_gallery_lines_bars_and_markers_timeline.py

• sphx_glr_gallery_lines_bars_and_markers_vline_hline_demo.py

• sphx_glr_gallery_statistics_customized_violin.py

matplotlib.axes.Axes.hlines

Axes.hlines(y, xmin, xmax, colors=None, linestyles='solid', label='', *, data=None, **kwargs)
Plot horizontal lines at each y from xmin to xmax.

Parameters

y
[float or array-like] y-indexes where to plot the lines.

xmin, xmax
[float or array-like] Respective beginning and end of each line. If scalars are pro-
vided, all lines will have same length.

colors
[list of colors, default: rcParams["lines.color"] (default: 'C0')]

linestyles
[{'solid', 'dashed', 'dashdot', 'dotted'}, optional]

1296 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=lines.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

label
[str, default: '']

Returns

LineCollection

Other Parameters

**kwargs
[LineCollection properties.]

See also:

vlines

vertical lines

axhline

horizontal line across the Axes

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): y, xmin, xmax, colors.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.hlines

• sphx_glr_gallery_lines_bars_and_markers_vline_hline_demo.py

• Specifying Colors

matplotlib.axes.Axes.fill

Axes.fill(*args, data=None, **kwargs)
Plot filled polygons.

Parameters

18.5. matplotlib.axes 1297

Matplotlib, Release 3.4.3

*args
[sequence of x, y, [color]] Each polygon is defined by the lists of x and y posi-
tions of its nodes, optionally followed by a color specifier. See matplotlib.
colors for supported color specifiers. The standard color cycle is used for poly-
gons without a color specifier.

You can plot multiple polygons by providing multiple x, y, [color] groups.

For example, each of the following is legal:

ax.fill(x, y) # a polygon with default␣
↪color

ax.fill(x, y, "b") # a blue polygon
ax.fill(x, y, x2, y2) # two polygons
ax.fill(x, y, "b", x2, y2, "r") # a blue and a red polygon

data
[indexable object, optional] An object with labelled data. If given, provide the
label names to plot in x and y, e.g.:

ax.fill("time", "signal",
data={"time": [0, 1, 2], "signal": [0, 1, 0]})

Returns

list of Polygon

Other Parameters

**kwargs
[Polygon properties]

Notes

Use fill_between() if you would like to fill the region between two curves.

Examples using matplotlib.axes.Axes.fill

• sphx_glr_gallery_lines_bars_and_markers_fill.py

• sphx_glr_gallery_specialty_plots_radar_chart.py

• sphx_glr_gallery_units_ellipse_with_units.py

1298 Chapter 18. Modules

Matplotlib, Release 3.4.3

Spans

Axes.axhline Add a horizontal line across the axis.
Axes.axhspan Add a horizontal span (rectangle) across the Axes.
Axes.axvline Add a vertical line across the Axes.
Axes.axvspan Add a vertical span (rectangle) across the Axes.
Axes.axline Add an infinitely long straight line.

matplotlib.axes.Axes.axhline

Axes.axhline(y=0, xmin=0, xmax=1, **kwargs)
Add a horizontal line across the axis.

Parameters

y
[float, default: 0] y position in data coordinates of the horizontal line.

xmin
[float, default: 0] Should be between 0 and 1, 0 being the far left of the plot, 1 the
far right of the plot.

xmax
[float, default: 1] Should be between 0 and 1, 0 being the far left of the plot, 1 the
far right of the plot.

Returns

Line2D

Other Parameters

**kwargs
Valid keyword arguments are Line2D properties, with the exception of 'trans-
form':

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
continues on next page

18.5. matplotlib.axes 1299

Matplotlib, Release 3.4.3

Table 67 – continued from previous page
Property Description
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

hlines

Add horizontal lines in data coordinates.

axhspan

Add a horizontal span (rectangle) across the axis.

1300 Chapter 18. Modules

Matplotlib, Release 3.4.3

axline

Add a line with an arbitrary slope.

Examples

• draw a thick red hline at 'y' = 0 that spans the xrange:

>>> axhline(linewidth=4, color='r')

• draw a default hline at 'y' = 1 that spans the xrange:

>>> axhline(y=1)

• draw a default hline at 'y' = .5 that spans the middle half of the xrange:

>>> axhline(y=.5, xmin=0.25, xmax=0.75)

Examples using matplotlib.axes.Axes.axhline

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_fill_between_demo.py

• sphx_glr_gallery_lines_bars_and_markers_span_regions.py

• sphx_glr_gallery_subplots_axes_and_figures_axhspan_demo.py

• sphx_glr_gallery_statistics_confidence_ellipse.py

• sphx_glr_gallery_text_labels_and_annotations_multiline.py

• sphx_glr_gallery_text_labels_and_annotations_usetex_baseline_test.py

• sphx_glr_gallery_misc_cursor_demo.py

• Transformations Tutorial

matplotlib.axes.Axes.axhspan

Axes.axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)
Add a horizontal span (rectangle) across the Axes.

The rectangle spans from ymin to ymax vertically, and, by default, the whole x-axis horizontally. The
x-span can be set using xmin (default: 0) and xmax (default: 1) which are in axis units; e.g. xmin =
0.5 always refers to the middle of the x-axis regardless of the limits set by set_xlim.

Parameters

ymin
[float] Lower y-coordinate of the span, in data units.

18.5. matplotlib.axes 1301

Matplotlib, Release 3.4.3

ymax
[float] Upper y-coordinate of the span, in data units.

xmin
[float, default: 0] Lower x-coordinate of the span, in x-axis (0-1) units.

xmax
[float, default: 1] Upper x-coordinate of the span, in x-axis (0-1) units.

Returns

Polygon

Horizontal span (rectangle) from (xmin, ymin) to (xmax, ymax).

Other Parameters

**kwargs
[Polygon properties]

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool

continues on next page

1302 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 68 – continued from previous page
Property Description
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

See also:

axvspan

Add a vertical span across the Axes.

Examples using matplotlib.axes.Axes.axhspan

• sphx_glr_gallery_subplots_axes_and_figures_axhspan_demo.py

• Transformations Tutorial

matplotlib.axes.Axes.axvline

Axes.axvline(x=0, ymin=0, ymax=1, **kwargs)
Add a vertical line across the Axes.

Parameters

x
[float, default: 0] x position in data coordinates of the vertical line.

ymin
[float, default: 0] Should be between 0 and 1, 0 being the bottom of the plot, 1 the
top of the plot.

ymax
[float, default: 1] Should be between 0 and 1, 0 being the bottom of the plot, 1 the
top of the plot.

Returns

Line2D

Other Parameters

18.5. matplotlib.axes 1303

Matplotlib, Release 3.4.3

**kwargs
Valid keyword arguments are Line2D properties, with the exception of 'trans-
form':

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array

continues on next page

1304 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 69 – continued from previous page
Property Description
ydata 1D array
zorder float

See also:

vlines

Add vertical lines in data coordinates.

axvspan

Add a vertical span (rectangle) across the axis.

axline

Add a line with an arbitrary slope.

Examples

• draw a thick red vline at x = 0 that spans the yrange:

>>> axvline(linewidth=4, color='r')

• draw a default vline at x = 1 that spans the yrange:

>>> axvline(x=1)

• draw a default vline at x = .5 that spans the middle half of the yrange:

>>> axvline(x=.5, ymin=0.25, ymax=0.75)

Examples using matplotlib.axes.Axes.axvline

• sphx_glr_gallery_subplots_axes_and_figures_axhspan_demo.py

• sphx_glr_gallery_statistics_confidence_ellipse.py

• sphx_glr_gallery_text_labels_and_annotations_usetex_baseline_test.py

• sphx_glr_gallery_misc_cursor_demo.py

• sphx_glr_gallery_specialty_plots_skewt.py

• The Lifecycle of a Plot

• Transformations Tutorial

18.5. matplotlib.axes 1305

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.axvspan

Axes.axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)
Add a vertical span (rectangle) across the Axes.

The rectangle spans from xmin to xmax horizontally, and, by default, the whole y-axis vertically. The
y-span can be set using ymin (default: 0) and ymax (default: 1) which are in axis units; e.g. ymin =
0.5 always refers to the middle of the y-axis regardless of the limits set by set_ylim.

Parameters

xmin
[float] Lower x-coordinate of the span, in data units.

xmax
[float] Upper x-coordinate of the span, in data units.

ymin
[float, default: 0] Lower y-coordinate of the span, in y-axis units (0-1).

ymax
[float, default: 1] Upper y-coordinate of the span, in y-axis units (0-1).

Returns

Polygon

Vertical span (rectangle) from (xmin, ymin) to (xmax, ymax).

Other Parameters

**kwargs
[Polygon properties]

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'

continues on next page

1306 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 70 – continued from previous page
Property Description
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

See also:

axhspan

Add a horizontal span across the Axes.

Examples

Draw a vertical, green, translucent rectangle from x = 1.25 to x = 1.55 that spans the yrange of the
Axes.

>>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)

Examples using matplotlib.axes.Axes.axvspan

• sphx_glr_gallery_subplots_axes_and_figures_axhspan_demo.py

• Transformations Tutorial

18.5. matplotlib.axes 1307

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.axline

Axes.axline(xy1, xy2=None, *, slope=None, **kwargs)
Add an infinitely long straight line.

The line can be defined either by two points xy1 and xy2, or by one point xy1 and a slope.

This draws a straight line "on the screen", regardless of the x and y scales, and is thus also suitable for
drawing exponential decays in semilog plots, power laws in loglog plots, etc. However, slope should
only be used with linear scales; It has no clear meaning for all other scales, and thus the behavior is
undefined. Please specify the line using the points xy1, xy2 for non-linear scales.

The transform keyword argument only applies to the points xy1, xy2. The slope (if given) is always
in data coordinates. This can be used e.g. with ax.transAxes for drawing grid lines with a fixed
slope.

Parameters

xy1, xy2
[(float, float)] Points for the line to pass through. Either xy2 or slope has to be
given.

slope
[float, optional] The slope of the line. Either xy2 or slope has to be given.

Returns

Line2D

Other Parameters

**kwargs
Valid kwargs are Line2D properties

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)

continues on next page

1308 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 71 – continued from previous page
Property Description
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

axhline

for horizontal lines

axvline

for vertical lines

18.5. matplotlib.axes 1309

Matplotlib, Release 3.4.3

Examples

Draw a thick red line passing through (0, 0) and (1, 1):

>>> axline((0, 0), (1, 1), linewidth=4, color='r')

Examples using matplotlib.axes.Axes.axline

• sphx_glr_gallery_subplots_axes_and_figures_axhspan_demo.py

• sphx_glr_gallery_specialty_plots_anscombe.py

Spectral

Axes.acorr Plot the autocorrelation of x.
Axes.angle_spectrum Plot the angle spectrum.
Axes.cohere Plot the coherence between x and y.
Axes.csd Plot the cross-spectral density.
Axes.magnitude_spectrum Plot the magnitude spectrum.
Axes.phase_spectrum Plot the phase spectrum.
Axes.psd Plot the power spectral density.
Axes.specgram Plot a spectrogram.
Axes.xcorr Plot the cross correlation between x and y.

matplotlib.axes.Axes.acorr

Axes.acorr(x, *, data=None, **kwargs)
Plot the autocorrelation of x.

Parameters

x
[array-like]

detrend
[callable, default: mlab.detrend_none (no detrending)] A detrending func-
tion applied to x. It must have the signature

detrend(x: np.ndarray) -> np.ndarray

normed
[bool, default: True] If True, input vectors are normalised to unit length.

usevlines

1310 Chapter 18. Modules

Matplotlib, Release 3.4.3

[bool, default: True] Determines the plot style.

If True, vertical lines are plotted from 0 to the acorr value using Axes.vlines.
Additionally, a horizontal line is plotted at y=0 using Axes.axhline.

If False, markers are plotted at the acorr values using Axes.plot.

maxlags
[int, default: 10] Number of lags to show. If None, will return all 2 * len(x)
- 1 lags.

Returns

lags
[array (length 2*maxlags+1)] The lag vector.

c
[array (length 2*maxlags+1)] The auto correlation vector.

line
[LineCollection or Line2D] Artist added to the Axes of the correlation:

• LineCollection if usevlines is True.

• Line2D if usevlines is False.

b
[Line2D or None] Horizontal line at 0 if usevlines is True None usevlines is False.

Other Parameters

linestyle
[Line2D property, optional] The linestyle for plotting the data points. Only used
if usevlines is False.

marker
[str, default: 'o'] The marker for plotting the data points. Only used if usevlines is
False.

**kwargs
Additional parameters are passed to Axes.vlines and Axes.axhline if
usevlines is True; otherwise they are passed to Axes.plot.

18.5. matplotlib.axes 1311

Matplotlib, Release 3.4.3

Notes

The cross correlation is performed with numpy.correlate with mode = "full".

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.acorr

• sphx_glr_gallery_lines_bars_and_markers_xcorr_acorr_demo.py

matplotlib.axes.Axes.angle_spectrum

Axes.angle_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, *,
data=None, **kwargs)

Plot the angle spectrum.

Compute the angle spectrum (wrapped phase spectrum) of x. Data is padded to a length of pad_to and
the windowing function window is applied to the signal.

Parameters

x
[1-D array or sequence] Array or sequence containing the data.

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

1312 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.correlate.html#numpy.correlate
https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. While not increasing the actual resolution of the spectrum
(the minimum distance between resolvable peaks), this can give more points in
the plot, allowing for more detail. This corresponds to the n parameter in the call
to fft(). The default is None, which sets pad_to equal to the length of the input
signal (i.e. no padding).

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

Returns

spectrum
[1-D array] The values for the angle spectrum in radians (real valued).

freqs
[1-D array] The frequencies corresponding to the elements in spectrum.

line
[Line2D] The line created by this function.

Other Parameters

**kwargs
Keyword arguments control the Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'

continues on next page

18.5. matplotlib.axes 1313

Matplotlib, Release 3.4.3

Table 73 – continued from previous page
Property Description
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

magnitude_spectrum

Plots the magnitudes of the corresponding frequencies.

phase_spectrum

Plots the unwrapped version of this function.

specgram

Can plot the angle spectrum of segments within the signal in a colormap.

1314 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.angle_spectrum

matplotlib.axes.Axes.cohere

Axes.cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function detrend_none>, win-
dow=<function window_hanning>, noverlap=0, pad_to=None, sides='default',
scale_by_freq=None, *, data=None, **kwargs)

Plot the coherence between x and y.

Plot the coherence between x and y. Coherence is the normalized cross spectral density:

𝐶𝑥𝑦 =
|𝑃𝑥𝑦|2

𝑃𝑥𝑥𝑃𝑦𝑦

Parameters

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. This can be different from NFFT, which specifies the number
of data points used. While not increasing the actual resolution of the spectrum (the

18.5. matplotlib.axes 1315

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

minimum distance between resolvable peaks), this can givemore points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

NFFT
[int, default: 256] The number of data points used in each block for the FFT. A
power 2 is most efficient. This should NOT be used to get zero padding, or the
scaling of the result will be incorrect; use pad_to for this instead.

detrend
[{'none', 'mean', 'linear'} or callable, default: 'none'] The function applied to each
segment before fft-ing, designed to remove the mean or linear trend. Unlike in
MATLAB, where the detrend parameter is a vector, in Matplotlib is it a func-
tion. The mlab module defines detrend_none, detrend_mean, and de-
trend_linear, but you can use a custom function as well. You can also use a
string to choose one of the functions: 'none' calls detrend_none. 'mean' calls
detrend_mean. 'linear' calls detrend_linear.

scale_by_freq
[bool, default: True] Whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for in-
tegration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap
[int, default: 0 (no overlap)] The number of points of overlap between blocks.

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

Returns

Cxy
[1-D array] The coherence vector.

freqs
[1-D array] The frequencies for the elements in Cxy.

Other Parameters

**kwargs
Keyword arguments control the Line2D properties:

1316 Chapter 18. Modules

Matplotlib, Release 3.4.3

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

18.5. matplotlib.axes 1317

Matplotlib, Release 3.4.3

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y.

Objects passed as data must support item access (data[s]) and membership test (s in data).

References

Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, JohnWiley & Sons (1986)

Examples using matplotlib.axes.Axes.cohere

matplotlib.axes.Axes.csd

Axes.csd(x, y,NFFT=None, Fs=None, Fc=None, detrend=None,window=None, noverlap=None,
pad_to=None, sides=None, scale_by_freq=None, return_line=None, *, data=None,
**kwargs)

Plot the cross-spectral density.

The cross spectral density 𝑃𝑥𝑦 by Welch's average periodogram method. The vectors x and y are
divided into NFFT length segments. Each segment is detrended by function detrend and windowed
by function window. noverlap gives the length of the overlap between segments. The product of the
direct FFTs of x and y are averaged over each segment to compute 𝑃𝑥𝑦, with a scaling to correct for
power loss due to windowing.

If len(x) < NFFT or len(y) < NFFT, they will be zero padded to NFFT.

Parameters

x, y
[1-D arrays or sequences] Arrays or sequences containing the data.

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

1318 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. This can be different from NFFT, which specifies the number
of data points used. While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can givemore points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

NFFT
[int, default: 256] The number of data points used in each block for the FFT. A
power 2 is most efficient. This should NOT be used to get zero padding, or the
scaling of the result will be incorrect; use pad_to for this instead.

detrend
[{'none', 'mean', 'linear'} or callable, default: 'none'] The function applied to each
segment before fft-ing, designed to remove the mean or linear trend. Unlike in
MATLAB, where the detrend parameter is a vector, in Matplotlib is it a func-
tion. The mlab module defines detrend_none, detrend_mean, and de-
trend_linear, but you can use a custom function as well. You can also use a
string to choose one of the functions: 'none' calls detrend_none. 'mean' calls
detrend_mean. 'linear' calls detrend_linear.

scale_by_freq
[bool, default: True] Whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for in-
tegration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap
[int, default: 0 (no overlap)] The number of points of overlap between segments.

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

return_line
[bool, default: False] Whether to include the line object plotted in the returned
values.

Returns

18.5. matplotlib.axes 1319

Matplotlib, Release 3.4.3

Pxy
[1-D array] The values for the cross spectrum 𝑃𝑥𝑦 before scaling (complex valued).

freqs
[1-D array] The frequencies corresponding to the elements in Pxy.

line
[Line2D] The line created by this function. Only returned if return_line is True.

Other Parameters

**kwargs
Keyword arguments control the Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

continues on next page

1320 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 75 – continued from previous page
Property Description
picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

psd

is equivalent to setting y = x.

Notes

For plotting, the power is plotted as 10 log10(𝑃𝑥𝑦) for decibels, though 𝑃𝑥𝑦 itself is returned.

References

Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, JohnWiley & Sons (1986)

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y.

Objects passed as data must support item access (data[s]) and membership test (s in data).

18.5. matplotlib.axes 1321

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.csd

• sphx_glr_gallery_lines_bars_and_markers_csd_demo.py

matplotlib.axes.Axes.magnitude_spectrum

Axes.magnitude_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None,
sides=None, scale=None, *, data=None, **kwargs)

Plot the magnitude spectrum.

Compute the magnitude spectrum of x. Data is padded to a length of pad_to and the windowing
function window is applied to the signal.

Parameters

x
[1-D array or sequence] Array or sequence containing the data.

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. While not increasing the actual resolution of the spectrum
(the minimum distance between resolvable peaks), this can give more points in
the plot, allowing for more detail. This corresponds to the n parameter in the call
to fft(). The default is None, which sets pad_to equal to the length of the input
signal (i.e. no padding).

scale
[{'default', 'linear', 'dB'}] The scaling of the values in the spec. 'linear' is no scaling.
'dB' returns the values in dB scale, i.e., the dB amplitude (20 * log10). 'default' is
'linear'.

1322 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

Returns

spectrum
[1-D array] The values for the magnitude spectrum before scaling (real valued).

freqs
[1-D array] The frequencies corresponding to the elements in spectrum.

line
[Line2D] The line created by this function.

Other Parameters

**kwargs
Keyword arguments control the Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle

continues on next page

18.5. matplotlib.axes 1323

Matplotlib, Release 3.4.3

Table 76 – continued from previous page
Property Description
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

psd

Plots the power spectral density.

angle_spectrum

Plots the angles of the corresponding frequencies.

phase_spectrum

Plots the phase (unwrapped angle) of the corresponding frequencies.

specgram

Can plot the magnitude spectrum of segments within the signal in a colormap.

1324 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.magnitude_spectrum

matplotlib.axes.Axes.phase_spectrum

Axes.phase_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, *,
data=None, **kwargs)

Plot the phase spectrum.

Compute the phase spectrum (unwrapped angle spectrum) of x. Data is padded to a length of pad_to
and the windowing function window is applied to the signal.

Parameters

x
[1-D array or sequence] Array or sequence containing the data

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. While not increasing the actual resolution of the spectrum
(the minimum distance between resolvable peaks), this can give more points in

18.5. matplotlib.axes 1325

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

the plot, allowing for more detail. This corresponds to the n parameter in the call
to fft(). The default is None, which sets pad_to equal to the length of the input
signal (i.e. no padding).

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

Returns

spectrum
[1-D array] The values for the phase spectrum in radians (real valued).

freqs
[1-D array] The frequencies corresponding to the elements in spectrum.

line
[Line2D] The line created by this function.

Other Parameters

**kwargs
Keyword arguments control the Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object

continues on next page

1326 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 77 – continued from previous page
Property Description
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

magnitude_spectrum

Plots the magnitudes of the corresponding frequencies.

angle_spectrum

Plots the wrapped version of this function.

specgram

Can plot the phase spectrum of segments within the signal in a colormap.

18.5. matplotlib.axes 1327

Matplotlib, Release 3.4.3

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.phase_spectrum

matplotlib.axes.Axes.psd

Axes.psd(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None,
pad_to=None, sides=None, scale_by_freq=None, return_line=None, *, data=None,
**kwargs)

Plot the power spectral density.

The power spectral density 𝑃𝑥𝑥 by Welch's average periodogram method. The vector x is divided into
NFFT length segments. Each segment is detrended by function detrend and windowed by function
window. noverlap gives the length of the overlap between segments. The |fft(𝑖)|2 of each segment 𝑖
are averaged to compute 𝑃𝑥𝑥, with a scaling to correct for power loss due to windowing.

If len(x) < NFFT, it will be zero padded to NFFT.

Parameters

x
[1-D array or sequence] Array or sequence containing the data

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

1328 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. This can be different from NFFT, which specifies the number
of data points used. While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can givemore points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

NFFT
[int, default: 256] The number of data points used in each block for the FFT. A
power 2 is most efficient. This should NOT be used to get zero padding, or the
scaling of the result will be incorrect; use pad_to for this instead.

detrend
[{'none', 'mean', 'linear'} or callable, default: 'none'] The function applied to each
segment before fft-ing, designed to remove the mean or linear trend. Unlike in
MATLAB, where the detrend parameter is a vector, in Matplotlib is it a func-
tion. The mlab module defines detrend_none, detrend_mean, and de-
trend_linear, but you can use a custom function as well. You can also use a
string to choose one of the functions: 'none' calls detrend_none. 'mean' calls
detrend_mean. 'linear' calls detrend_linear.

scale_by_freq
[bool, default: True] Whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for in-
tegration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap
[int, default: 0 (no overlap)] The number of points of overlap between segments.

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

return_line
[bool, default: False] Whether to include the line object plotted in the returned
values.

Returns

Pxx
[1-D array] The values for the power spectrum 𝑃𝑥𝑥 before scaling (real valued).

freqs
[1-D array] The frequencies corresponding to the elements in Pxx.

18.5. matplotlib.axes 1329

Matplotlib, Release 3.4.3

line
[Line2D] The line created by this function. Only returned if return_line is True.

Other Parameters

**kwargs
Keyword arguments control the Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}

continues on next page

1330 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 78 – continued from previous page
Property Description
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

specgram

Differs in the default overlap; in not returning themean of the segment periodograms; in returning
the times of the segments; and in plotting a colormap instead of a line.

magnitude_spectrum

Plots the magnitude spectrum.

csd

Plots the spectral density between two signals.

Notes

For plotting, the power is plotted as 10 log10(𝑃𝑥𝑥) for decibels, though Pxx itself is returned.

References

Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, JohnWiley & Sons (1986)

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x.

Objects passed as data must support item access (data[s]) and membership test (s in data).

18.5. matplotlib.axes 1331

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.psd

• sphx_glr_gallery_lines_bars_and_markers_psd_demo.py

matplotlib.axes.Axes.specgram

Axes.specgram(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None,
noverlap=None, cmap=None, xextent=None, pad_to=None, sides=None,
scale_by_freq=None, mode=None, scale=None, vmin=None, vmax=None, *,
data=None, **kwargs)

Plot a spectrogram.

Compute and plot a spectrogram of data in x. Data are split into NFFT length segments and the
spectrum of each section is computed. The windowing function window is applied to each segment,
and the amount of overlap of each segment is specified with noverlap. The spectrogram is plotted as
a colormap (using imshow).

Parameters

x
[1-D array or sequence] Array or sequence containing the data.

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. This can be different from NFFT, which specifies the number
of data points used. While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can givemore points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

1332 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

NFFT
[int, default: 256] The number of data points used in each block for the FFT. A
power 2 is most efficient. This should NOT be used to get zero padding, or the
scaling of the result will be incorrect; use pad_to for this instead.

detrend
[{'none', 'mean', 'linear'} or callable, default: 'none'] The function applied to each
segment before fft-ing, designed to remove the mean or linear trend. Unlike in
MATLAB, where the detrend parameter is a vector, in Matplotlib is it a func-
tion. The mlab module defines detrend_none, detrend_mean, and de-
trend_linear, but you can use a custom function as well. You can also use a
string to choose one of the functions: 'none' calls detrend_none. 'mean' calls
detrend_mean. 'linear' calls detrend_linear.

scale_by_freq
[bool, default: True] Whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for in-
tegration over the returned frequency values. The default is True for MATLAB
compatibility.

mode
[{'default', 'psd', 'magnitude', 'angle', 'phase'}] What sort of spectrum to use. De-
fault is 'psd', which takes the power spectral density. 'magnitude' returns the mag-
nitude spectrum. 'angle' returns the phase spectrum without unwrapping. 'phase'
returns the phase spectrum with unwrapping.

noverlap
[int, default: 128] The number of points of overlap between blocks.

scale
[{'default', 'linear', 'dB'}] The scaling of the values in the spec. 'linear' is no scaling.
'dB' returns the values in dB scale. When mode is 'psd', this is dB power (10 *
log10). Otherwise this is dB amplitude (20 * log10). 'default' is 'dB' if mode is
'psd' or 'magnitude' and 'linear' otherwise. This must be 'linear' if mode is 'angle'
or 'phase'.

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

cmap
[Colormap, default: rcParams["image.cmap"] (default: 'viridis')]

xextent
[None or (xmin, xmax)] The image extent along the x-axis. The default sets xmin
to the left border of the first bin (spectrum column) and xmax to the right border

18.5. matplotlib.axes 1333

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

of the last bin. Note that for noverlap>0 the width of the bins is smaller than those
of the segments.

**kwargs
Additional keyword arguments are passed on to imshow which makes the spec-
gram image. The origin keyword argument is not supported.

Returns

spectrum
[2D array] Columns are the periodograms of successive segments.

freqs
[1-D array] The frequencies corresponding to the rows in spectrum.

t
[1-D array] The times corresponding to midpoints of segments (i.e., the columns
in spectrum).

im
[AxesImage] The image created by imshow containing the spectrogram.

See also:

psd

Differs in the default overlap; in returning themean of the segment periodograms; in not returning
times; and in generating a line plot instead of colormap.

magnitude_spectrum

A single spectrum, similar to having a single segment when mode is 'magnitude'. Plots a line
instead of a colormap.

angle_spectrum

A single spectrum, similar to having a single segment when mode is 'angle'. Plots a line instead
of a colormap.

phase_spectrum

A single spectrum, similar to having a single segment when mode is 'phase'. Plots a line instead
of a colormap.

1334 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

The parameters detrend and scale_by_freq do only apply when mode is set to 'psd'.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.specgram

• sphx_glr_gallery_images_contours_and_fields_specgram_demo.py

matplotlib.axes.Axes.xcorr

Axes.xcorr(x, y, normed=True, detrend=<function detrend_none>, usevlines=True,
maxlags=10, *, data=None, **kwargs)

Plot the cross correlation between x and y.

The correlation with lag k is defined as ∑𝑛 𝑥[𝑛 + 𝑘] ⋅ 𝑦∗[𝑛], where 𝑦∗ is the complex conjugate of 𝑦.
Parameters

x, y
[array-like of length n]

detrend
[callable, default: mlab.detrend_none (no detrending)] A detrending func-
tion applied to x and y. It must have the signature

detrend(x: np.ndarray) -> np.ndarray

normed
[bool, default: True] If True, input vectors are normalised to unit length.

usevlines
[bool, default: True] Determines the plot style.

If True, vertical lines are plotted from 0 to the xcorr value using Axes.vlines.
Additionally, a horizontal line is plotted at y=0 using Axes.axhline.

If False, markers are plotted at the xcorr values using Axes.plot.

maxlags

18.5. matplotlib.axes 1335

Matplotlib, Release 3.4.3

[int, default: 10] Number of lags to show. If None, will return all 2 * len(x)
- 1 lags.

Returns

lags
[array (length 2*maxlags+1)] The lag vector.

c
[array (length 2*maxlags+1)] The auto correlation vector.

line
[LineCollection or Line2D] Artist added to the Axes of the correlation:

• LineCollection if usevlines is True.

• Line2D if usevlines is False.

b
[Line2D or None] Horizontal line at 0 if usevlines is True None usevlines is False.

Other Parameters

linestyle
[Line2D property, optional] The linestyle for plotting the data points. Only used
if usevlines is False.

marker
[str, default: 'o'] The marker for plotting the data points. Only used if usevlines is
False.

**kwargs
Additional parameters are passed to Axes.vlines and Axes.axhline if
usevlines is True; otherwise they are passed to Axes.plot.

Notes

The cross correlation is performed with numpy.correlate with mode = "full".

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y.

Objects passed as data must support item access (data[s]) and membership test (s in data).

1336 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.correlate.html#numpy.correlate

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.xcorr

• sphx_glr_gallery_lines_bars_and_markers_xcorr_acorr_demo.py

Statistics

Axes.boxplot Make a box and whisker plot.
Axes.violinplot Make a violin plot.
Axes.violin Drawing function for violin plots.
Axes.bxp Drawing function for box and whisker plots.

matplotlib.axes.Axes.boxplot

Axes.boxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None,
widths=None, patch_artist=None, bootstrap=None, usermedians=None,
conf_intervals=None, meanline=None, showmeans=None, showcaps=None,
showbox=None, showfliers=None, boxprops=None, labels=None, flier-
props=None, medianprops=None, meanprops=None, capprops=None,
whiskerprops=None, manage_ticks=True, autorange=False, zorder=None,
*, data=None)

Make a box and whisker plot.

Make a box and whisker plot for each column of x or each vector in sequence x. The box extends from
the lower to upper quartile values of the data, with a line at the median. The whiskers extend from the
box to show the range of the data. Flier points are those past the end of the whiskers.

Parameters

x
[Array or a sequence of vectors.] The input data.

notch
[bool, default: False] Whether to draw a notched box plot (True), or a rectangu-
lar box plot (False). The notches represent the confidence interval (CI) around
the median. The documentation for bootstrap describes how the locations of the
notches are computed by default, but their locations may also be overridden by
setting the conf_intervals parameter.

Note: In cases where the values of the CI are less than the lower quartile or
greater than the upper quartile, the notches will extend beyond the box, giving it
a distinctive "flipped" appearance. This is expected behavior and consistent with
other statistical visualization packages.

sym

18.5. matplotlib.axes 1337

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Matplotlib, Release 3.4.3

[str, optional] The default symbol for flier points. An empty string ('') hides the
fliers. If None, then the fliers default to 'b+'. More control is provided by the
flierprops parameter.

vert
[bool, default: True] If True, draws vertical boxes. If False, draw horizontal
boxes.

whis
[float or (float, float), default: 1.5] The position of the whiskers.

If a float, the lower whisker is at the lowest datum above Q1 - whis*(Q3-Q1),
and the upper whisker at the highest datum below Q3 + whis*(Q3-Q1), where
Q1 and Q3 are the first and third quartiles. The default value of whis = 1.5
corresponds to Tukey's original definition of boxplots.

If a pair of floats, they indicate the percentiles at which to draw the whiskers (e.g.,
(5, 95)). In particular, setting this to (0, 100) results in whiskers covering the whole
range of the data.

In the edge case where Q1 == Q3, whis is automatically set to (0, 100) (cover
the whole range of the data) if autorange is True.

Beyond the whiskers, data are considered outliers and are plotted as individual
points.

bootstrap
[int, optional] Specifies whether to bootstrap the confidence intervals around the
median for notched boxplots. If bootstrap is None, no bootstrapping is performed,
and notches are calculated using a Gaussian-based asymptotic approximation (see
McGill, R., Tukey, J.W., and Larsen, W.A., 1978, and Kendall and Stuart, 1967).
Otherwise, bootstrap specifies the number of times to bootstrap the median to de-
termine its 95% confidence intervals. Values between 1000 and 10000 are recom-
mended.

usermedians
[1D array-like, optional] A 1D array-like of length len(x). Each entry that is
not None forces the value of the median for the corresponding dataset. For entries
that are None, the medians are computed by Matplotlib as normal.

conf_intervals
[array-like, optional] A 2D array-like of shape (len(x), 2). Each entry that
is not None forces the location of the corresponding notch (which is only drawn
if notch is True). For entries that are None, the notches are computed by the
method specified by the other parameters (e.g., bootstrap).

positions
[array-like, optional] The positions of the boxes. The ticks and limits are automat-
ically set to match the positions. Defaults to range(1, N+1) where N is the
number of boxes to be drawn.

1338 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

widths
[float or array-like] The widths of the boxes. The default is 0.5, or 0.
15*(distance between extreme positions), if that is smaller.

patch_artist
[bool, default: False] If False produces boxes with the Line2D artist. Otherwise,
boxes and drawn with Patch artists.

labels
[sequence, optional] Labels for each dataset (one per dataset).

manage_ticks
[bool, default: True] If True, the tick locations and labels will be adjusted to match
the boxplot positions.

autorange
[bool, default: False] When True and the data are distributed such that the 25th
and 75th percentiles are equal, whis is set to (0, 100) such that the whisker ends
are at the minimum and maximum of the data.

meanline
[bool, default: False] If True (and showmeans is True), will try to render the
mean as a line spanning the full width of the box according to meanprops (see
below). Not recommended if shownotches is also True. Otherwise, means will be
shown as points.

zorder
[float, default: Line2D.zorder = 2] The zorder of the boxplot.

Returns

dict
A dictionary mapping each component of the boxplot to a list of the Line2D
instances created. That dictionary has the following keys (assuming vertical box-
plots):

• boxes: the main body of the boxplot showing the quartiles and the median's
confidence intervals if enabled.

• medians: horizontal lines at the median of each box.

• whiskers: the vertical lines extending to the most extreme, non-outlier data
points.

• caps: the horizontal lines at the ends of the whiskers.

• fliers: points representing data that extend beyond the whiskers (fliers).

• means: points or lines representing the means.

18.5. matplotlib.axes 1339

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

Other Parameters

showcaps
[bool, default: True] Show the caps on the ends of whiskers.

showbox
[bool, default: True] Show the central box.

showfliers
[bool, default: True] Show the outliers beyond the caps.

showmeans
[bool, default: False] Show the arithmetic means.

capprops
[dict, default: None] The style of the caps.

boxprops
[dict, default: None] The style of the box.

whiskerprops
[dict, default: None] The style of the whiskers.

flierprops
[dict, default: None] The style of the fliers.

medianprops
[dict, default: None] The style of the median.

meanprops
[dict, default: None] The style of the mean.

Notes

Box plots provide insight into distribution properties of the data. However, they can be challenging
to interpret for the unfamiliar reader. The figure below illustrates the different visual features of a box
plot.

1340 Chapter 18. Modules

Matplotlib, Release 3.4.3

The whiskers mark the range of the non-outlier data. The most common definition of non-outlier is
[Q1 - 1.5xIQR, Q3 + 1.5xIQR], which is also the default in this function. Other whisker
meanings can be applied via the whis parameter.

See Box plot on Wikipedia for further information.

Violin plots (violinplot) add even more detail about the statistical distribution by plotting the
kernel density estimation (KDE) as an estimation of the probability density function.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.boxplot

• sphx_glr_gallery_statistics_boxplot_color.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_pyplots_boxplot_demo_pyplot.py

matplotlib.axes.Axes.violinplot

Axes.violinplot(dataset, positions=None, vert=True, widths=0.5, showmeans=False,
showextrema=True, showmedians=False, quantiles=None, points=100,
bw_method=None, *, data=None)

Make a violin plot.

Make a violin plot for each column of dataset or each vector in sequence dataset. Each filled area
extends to represent the entire data range, with optional lines at the mean, the median, the minimum,
the maximum, and user-specified quantiles.

Parameters

dataset
[Array or a sequence of vectors.] The input data.

positions
[array-like, default: [1, 2, ..., n]] The positions of the violins. The ticks and limits
are automatically set to match the positions.

vert
[bool, default: True.] If true, creates a vertical violin plot. Otherwise, creates a
horizontal violin plot.

18.5. matplotlib.axes 1341

https://en.wikipedia.org/wiki/Box_plot

Matplotlib, Release 3.4.3

widths
[array-like, default: 0.5] Either a scalar or a vector that sets the maximal width of
each violin. The default is 0.5, which uses about half of the available horizontal
space.

showmeans
[bool, default: False] If True, will toggle rendering of the means.

showextrema
[bool, default: True] If True, will toggle rendering of the extrema.

showmedians
[bool, default: False] If True, will toggle rendering of the medians.

quantiles
[array-like, default: None] If not None, set a list of floats in interval [0, 1] for each
violin, which stands for the quantiles that will be rendered for that violin.

points
[int, default: 100] Defines the number of points to evaluate each of the gaussian
kernel density estimations at.

bw_method
[str, scalar or callable, optional] The method used to calculate the estimator band-
width. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar,
this will be used directly as kde.factor. If a callable, it should take a Gaus-
sianKDE instance as its only parameter and return a scalar. If None (default),
'scott' is used.

Returns

dict
A dictionary mapping each component of the violinplot to a list of the correspond-
ing collection instances created. The dictionary has the following keys:

• bodies: A list of the PolyCollection instances containing the filled area
of each violin.

• cmeans: A LineCollection instance that marks the mean values of each
of the violin's distribution.

• cmins: A LineCollection instance that marks the bottom of each violin's
distribution.

• cmaxes: A LineCollection instance that marks the top of each violin's
distribution.

• cbars: A LineCollection instance that marks the centers of each violin's
distribution.

1342 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

• cmedians: A LineCollection instance that marks the median values of
each of the violin's distribution.

• cquantiles: ALineCollection instance created to identify the quantile
values of each of the violin's distribution.

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): dataset.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.violinplot

• sphx_glr_gallery_statistics_customized_violin.py

matplotlib.axes.Axes.violin

Axes.violin(vpstats, positions=None, vert=True, widths=0.5, showmeans=False, showex-
trema=True, showmedians=False)

Drawing function for violin plots.

Draw a violin plot for each column of vpstats. Each filled area extends to represent the entire data
range, with optional lines at the mean, the median, the minimum, the maximum, and the quantiles
values.

Parameters

vpstats
[list of dicts] A list of dictionaries containing stats for each violin plot. Required
keys are:

• coords: A list of scalars containing the coordinates that the violin's kernel
density estimate were evaluated at.

• vals: A list of scalars containing the values of the kernel density estimate at
each of the coordinates given in coords.

• mean: The mean value for this violin's dataset.

• median: The median value for this violin's dataset.

• min: The minimum value for this violin's dataset.

• max: The maximum value for this violin's dataset.

18.5. matplotlib.axes 1343

Matplotlib, Release 3.4.3

Optional keys are:

• quantiles: A list of scalars containing the quantile values for this violin's
dataset.

positions
[array-like, default: [1, 2, ..., n]] The positions of the violins. The ticks and limits
are automatically set to match the positions.

vert
[bool, default: True.] If true, plots the violins vertically. Otherwise, plots the
violins horizontally.

widths
[array-like, default: 0.5] Either a scalar or a vector that sets the maximal width of
each violin. The default is 0.5, which uses about half of the available horizontal
space.

showmeans
[bool, default: False] If true, will toggle rendering of the means.

showextrema
[bool, default: True] If true, will toggle rendering of the extrema.

showmedians
[bool, default: False] If true, will toggle rendering of the medians.

Returns

dict
A dictionary mapping each component of the violinplot to a list of the correspond-
ing collection instances created. The dictionary has the following keys:

• bodies: A list of the PolyCollection instances containing the filled area
of each violin.

• cmeans: A LineCollection instance that marks the mean values of each
of the violin's distribution.

• cmins: A LineCollection instance that marks the bottom of each violin's
distribution.

• cmaxes: A LineCollection instance that marks the top of each violin's
distribution.

• cbars: A LineCollection instance that marks the centers of each violin's
distribution.

• cmedians: A LineCollection instance that marks the median values of
each of the violin's distribution.

1344 Chapter 18. Modules

Matplotlib, Release 3.4.3

• cquantiles: A LineCollection instance created to identify the quan-
tiles values of each of the violin's distribution.

Examples using matplotlib.axes.Axes.violin

matplotlib.axes.Axes.bxp

Axes.bxp(bxpstats, positions=None, widths=None, vert=True, patch_artist=False,
shownotches=False, showmeans=False, showcaps=True, showbox=True,
showfliers=True, boxprops=None, whiskerprops=None, flierprops=None, me-
dianprops=None, capprops=None, meanprops=None, meanline=False, man-
age_ticks=True, zorder=None)

Drawing function for box and whisker plots.

Make a box and whisker plot for each column of x or each vector in sequence x. The box extends from
the lower to upper quartile values of the data, with a line at the median. The whiskers extend from the
box to show the range of the data. Flier points are those past the end of the whiskers.

Parameters

bxpstats
[list of dicts] A list of dictionaries containing stats for each boxplot. Required keys
are:

• med: The median (scalar float).

• q1: The first quartile (25th percentile) (scalar float).

• q3: The third quartile (75th percentile) (scalar float).

• whislo: Lower bound of the lower whisker (scalar float).

• whishi: Upper bound of the upper whisker (scalar float).

Optional keys are:

• mean: The mean (scalar float). Needed if showmeans=True.

• fliers: Data beyond the whiskers (sequence of floats). Needed if
showfliers=True.

• cilo & cihi: Lower and upper confidence intervals about the median.
Needed if shownotches=True.

• label: Name of the dataset (string). If available, this will be used a tick label
for the boxplot

positions
[array-like, default: [1, 2, ..., n]] The positions of the boxes. The ticks and limits
are automatically set to match the positions.

18.5. matplotlib.axes 1345

Matplotlib, Release 3.4.3

widths
[array-like, default: None] Either a scalar or a vector and sets the width of each
box. The default is 0.15*(distance between extreme positions),
clipped to no less than 0.15 and no more than 0.5.

vert
[bool, default: True] IfTrue (default), makes the boxes vertical. IfFalse, makes
horizontal boxes.

patch_artist
[bool, default: False] If False produces boxes with the Line2D artist. If True
produces boxes with the Patch artist.

shownotches
[bool, default: False] If False (default), produces a rectangular box plot. If
True, will produce a notched box plot

showmeans
[bool, default: False] If True, will toggle on the rendering of the means

showcaps
[bool, default: True] If True, will toggle on the rendering of the caps

showbox
[bool, default: True] If True, will toggle on the rendering of the box

showfliers
[bool, default: True] If True, will toggle on the rendering of the fliers

boxprops
[dict or None (default)] If provided, will set the plotting style of the boxes

whiskerprops
[dict or None (default)] If provided, will set the plotting style of the whiskers

capprops
[dict or None (default)] If provided, will set the plotting style of the caps

flierprops
[dict or None (default)] If provided will set the plotting style of the fliers

medianprops
[dict or None (default)] If provided, will set the plotting style of the medians

meanprops
[dict or None (default)] If provided, will set the plotting style of the means

1346 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

meanline
[bool, default: False] If True (and showmeans is True), will try to render the
mean as a line spanning the full width of the box according to meanprops. Not
recommended if shownotches is also True. Otherwise, means will be shown as
points.

manage_ticks
[bool, default: True] If True, the tick locations and labels will be adjusted to match
the boxplot positions.

zorder
[float, default: Line2D.zorder = 2] The zorder of the resulting boxplot.

Returns

dict
A dictionary mapping each component of the boxplot to a list of the Line2D
instances created. That dictionary has the following keys (assuming vertical box-
plots):

• boxes: the main body of the boxplot showing the quartiles and the median's
confidence intervals if enabled.

• medians: horizontal lines at the median of each box.

• whiskers: the vertical lines extending to the most extreme, non-outlier data
points.

• caps: the horizontal lines at the ends of the whiskers.

• fliers: points representing data that extend beyond the whiskers (fliers).

• means: points or lines representing the means.

Examples

Examples using matplotlib.axes.Axes.bxp

Binned

Axes.hexbin Make a 2D hexagonal binning plot of points x, y.
Axes.hist Plot a histogram.
Axes.hist2d Make a 2D histogram plot.
Axes.stairs A stepwise constant function as a line with bound-

ing edges or a filled plot.

18.5. matplotlib.axes 1347

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

A B C D

Default

A B C D

showmeans=True

A B C D

showmeans=True,
meanline=True

A B C D

Tufte Style
(showbox=False,
showcaps=False)

A B C D

notch=True

A B C D

showfliers=False

1348 Chapter 18. Modules

Matplotlib, Release 3.4.3

A B C D

Custom boxprops

A B C D

Custom medianprops
and flierprops

A B C D

Custom mean
as point

A B C D

Custom mean
as line

I never said they'd be pretty

18.5. matplotlib.axes 1349

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.hexbin

Axes.hexbin(x, y, C=None, gridsize=100, bins=None, xscale='linear', yscale='linear', ex-
tent=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None,
linewidths=None, edgecolors='face', reduce_C_function=<function mean>,
mincnt=None, marginals=False, *, data=None, **kwargs)

Make a 2D hexagonal binning plot of points x, y.

IfC isNone, the value of the hexagon is determined by the number of points in the hexagon. Otherwise,
C specifies values at the coordinate (x[i], y[i]). For each hexagon, these values are reduced using
reduce_C_function.

Parameters

x, y
[array-like] The data positions. x and y must be of the same length.

C
[array-like, optional] If given, these values are accumulated in the bins. Otherwise,
every point has a value of 1. Must be of the same length as x and y.

gridsize
[int or (int, int), default: 100] If a single int, the number of hexagons in the x-
direction. The number of hexagons in the y-direction is chosen such that the
hexagons are approximately regular.

Alternatively, if a tuple (nx, ny), the number of hexagons in the x-direction and the
y-direction.

bins
['log' or int or sequence, default: None] Discretization of the hexagon values.

• If None, no binning is applied; the color of each hexagon directly corresponds
to its count value.

• If 'log', use a logarithmic scale for the colormap. Internally, 𝑙𝑜𝑔10(𝑖 + 1) is used
to determine the hexagon color. This is equivalent to norm=LogNorm().

• If an integer, divide the counts in the specified number of bins, and color the
hexagons accordingly.

• If a sequence of values, the values of the lower bound of the bins to be used.

xscale
[{'linear', 'log'}, default: 'linear'] Use a linear or log10 scale on the horizontal axis.

yscale
[{'linear', 'log'}, default: 'linear'] Use a linear or log10 scale on the vertical axis.

mincnt

1350 Chapter 18. Modules

Matplotlib, Release 3.4.3

[int > 0, default: None] If not None, only display cells with more than mincnt
number of points in the cell.

marginals
[bool, default: False] If marginals is True, plot the marginal density as col-
ormapped rectangles along the bottom of the x-axis and left of the y-axis.

extent
[float, default: None] The limits of the bins. The default assigns the limits based
on gridsize, x, y, xscale and yscale.

If xscale or yscale is set to 'log', the limits are expected to be the exponent for a
power of 10. E.g. for x-limits of 1 and 50 in 'linear' scale and y-limits of 10 and
1000 in 'log' scale, enter (1, 50, 1, 3).

Order of scalars is (left, right, bottom, top).

Returns

PolyCollection

A PolyCollection defining the hexagonal bins.

• PolyCollection.get_offsets contains a Mx2 array containing the x,
y positions of the M hexagon centers.

• PolyCollection.get_array contains the values of the M hexagons.

If marginals is True, horizontal bar and vertical bar (both PolyCollections) will be
attached to the return collection as attributes hbar and vbar.

Other Parameters

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] The Colormap instance or registered colormap name used
to map the bin values to colors.

norm
[Normalize, optional] The Normalize instance scales the bin values to the
canonical colormap range [0, 1] for mapping to colors. By default, the data range
is mapped to the colorbar range using linear scaling.

vmin, vmax
[float, default: None] The colorbar range. If None, suitable min/max values
are automatically chosen by the Normalize instance (defaults to the respective
min/max values of the bins in case of the default linear scaling). It is deprecated
to use vmin/vmax when norm is given.

18.5. matplotlib.axes 1351

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

alpha
[float between 0 and 1, optional] The alpha blending value, between 0 (transparent)
and 1 (opaque).

linewidths
[float, default: None] If None, defaults to 1.0.

edgecolors
[{'face', 'none', None} or color, default: 'face'] The color of the hexagon edges.
Possible values are:

• 'face': Draw the edges in the same color as the fill color.

• 'none': No edges are drawn. This can sometimes lead to unsightly unpainted
pixels between the hexagons.

• None: Draw outlines in the default color.

• An explicit color.

reduce_C_function
[callable, default: numpy.mean] The function to aggregate C within the bins. It
is ignored if C is not given. This must have the signature:

def reduce_C_function(C: array) -> float

Commonly used functions are:

• numpy.mean: average of the points

• numpy.sum: integral of the point values

• numpy.amax: value taken from the largest point

**kwargs
[PolyCollection properties] All other keyword arguments are passed on to
PolyCollection:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None

continues on next page

1352 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean
https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean
https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum
https://numpy.org/doc/stable/reference/generated/numpy.amax.html#numpy.amax

Matplotlib, Release 3.4.3

Table 81 – continued from previous page
Property Description
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y, C.

Objects passed as data must support item access (data[s]) and membership test (s in data).

18.5. matplotlib.axes 1353

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.hexbin

• sphx_glr_gallery_statistics_hexbin_demo.py

matplotlib.axes.Axes.hist

Axes.hist(x, bins=None, range=None, density=False, weights=None, cumulative=False,
bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None,
log=False, color=None, label=None, stacked=False, *, data=None, **kwargs)

Plot a histogram.

Compute and draw the histogram of x. The return value is a tuple (n, bins, patches) or ([n0, n1, ...],
bins, [patches0, patches1, ...]) if the input containsmultiple data. See the documentation of theweights
parameter to draw a histogram of already-binned data.

Multiple data can be provided via x as a list of datasets of potentially different length ([x0, x1, ...]), or
as a 2D ndarray in which each column is a dataset. Note that the ndarray form is transposed relative
to the list form.

Masked arrays are not supported.

The bins, range, weights, and density parameters behave as in numpy.histogram.

Parameters

x
[(n,) array or sequence of (n,) arrays] Input values, this takes either a single array
or a sequence of arrays which are not required to be of the same length.

bins
[int or sequence or str, default: rcParams["hist.bins"] (default: 10)] If
bins is an integer, it defines the number of equal-width bins in the range.

If bins is a sequence, it defines the bin edges, including the left edge of the first
bin and the right edge of the last bin; in this case, bins may be unequally spaced.
All but the last (righthand-most) bin is half-open. In other words, if bins is:

[1, 2, 3, 4]

then the first bin is [1, 2) (including 1, but excluding 2) and the second [2,
3). The last bin, however, is [3, 4], which includes 4.

If bins is a string, it is one of the binning strategies supported by numpy.
histogram_bin_edges: 'auto', 'fd', 'doane', 'scott', 'stone', 'rice', 'sturges', or
'sqrt'.

range
[tuple or None, default: None] The lower and upper range of the bins. Lower and
upper outliers are ignored. If not provided, range is (x.min(), x.max()).
Range has no effect if bins is a sequence.

1354 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram
../../tutorials/introductory/customizing.html?highlight=hist.bins#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges

Matplotlib, Release 3.4.3

If bins is a sequence or range is specified, autoscaling is based on the specified bin
range instead of the range of x.

density
[bool, default: False] If True, draw and return a probability density: each bin
will display the bin's raw count divided by the total number of counts and the bin
width (density = counts / (sum(counts) * np.diff(bins))),
so that the area under the histogram integrates to 1 (np.sum(density * np.
diff(bins)) == 1).

If stacked is also True, the sum of the histograms is normalized to 1.

weights
[(n,) array-like or None, default: None] An array of weights, of the same shape
as x. Each value in x only contributes its associated weight towards the bin count
(instead of 1). If density is True, the weights are normalized, so that the integral
of the density over the range remains 1.

This parameter can be used to draw a histogram of data that has already been
binned, e.g. using numpy.histogram (by treating each bin as a single point
with a weight equal to its count)

counts, bins = np.histogram(data)
plt.hist(bins[:-1], bins, weights=counts)

(or you may alternatively use bar()).

cumulative
[bool or -1, default: False] If True, then a histogram is computed where each bin
gives the counts in that bin plus all bins for smaller values. The last bin gives the
total number of datapoints.

If density is also True then the histogram is normalized such that the last bin
equals 1.

If cumulative is a number less than 0 (e.g., -1), the direction of accumulation is
reversed. In this case, if density is also True, then the histogram is normalized
such that the first bin equals 1.

bottom
[array-like, scalar, or None, default: None] Location of the bottom of each bin, ie.
bins are drawn from bottom to bottom + hist(x, bins) If a scalar, the
bottom of each bin is shifted by the same amount. If an array, each bin is shifted
independently and the length of bottom must match the number of bins. If None,
defaults to 0.

histtype
[{'bar', 'barstacked', 'step', 'stepfilled'}, default: 'bar'] The type of histogram to
draw.

18.5. matplotlib.axes 1355

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram

Matplotlib, Release 3.4.3

• 'bar' is a traditional bar-type histogram. If multiple data are given the bars are
arranged side by side.

• 'barstacked' is a bar-type histogram where multiple data are stacked on top of
each other.

• 'step' generates a lineplot that is by default unfilled.

• 'stepfilled' generates a lineplot that is by default filled.

align
[{'left', 'mid', 'right'}, default: 'mid'] The horizontal alignment of the histogram
bars.

• 'left': bars are centered on the left bin edges.

• 'mid': bars are centered between the bin edges.

• 'right': bars are centered on the right bin edges.

orientation
[{'vertical', 'horizontal'}, default: 'vertical'] If 'horizontal', barh will be used for
bar-type histograms and the bottom kwarg will be the left edges.

rwidth
[float or None, default: None] The relative width of the bars as a fraction of the
bin width. If None, automatically compute the width.

Ignored if histtype is 'step' or 'stepfilled'.

log
[bool, default: False] If True, the histogram axis will be set to a log scale.

color
[color or array-like of colors or None, default: None] Color or sequence of colors,
one per dataset. Default (None) uses the standard line color sequence.

label
[str or None, default: None] String, or sequence of strings to match multiple
datasets. Bar charts yield multiple patches per dataset, but only the first gets the
label, so that legend will work as expected.

stacked
[bool, default: False] If True, multiple data are stacked on top of each other If
Falsemultiple data are arranged side by side if histtype is 'bar' or on top of each
other if histtype is 'step'

Returns

n

1356 Chapter 18. Modules

Matplotlib, Release 3.4.3

[array or list of arrays] The values of the histogram bins. See density and weights
for a description of the possible semantics. If input x is an array, then this is an
array of length nbins. If input is a sequence of arrays [data1, data2, ...],
then this is a list of arrays with the values of the histograms for each of the arrays
in the same order. The dtype of the array n (or of its element arrays) will always
be float even if no weighting or normalization is used.

bins
[array] The edges of the bins. Length nbins + 1 (nbins left edges and right edge
of last bin). Always a single array even when multiple data sets are passed in.

patches
[BarContainer or list of a single Polygon or list of such objects] Container
of individual artists used to create the histogram or list of such containers if there
are multiple input datasets.

Other Parameters

**kwargs
Patch properties

See also:

hist2d

2D histograms

Notes

For large numbers of bins (>1000), 'step' and 'stepfilled' can be significantly faster than 'bar' and
'barstacked'.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, weights.

Objects passed as data must support item access (data[s]) and membership test (s in data).

18.5. matplotlib.axes 1357

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.hist

• sphx_glr_gallery_lines_bars_and_markers_scatter_hist.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_demo.py

• sphx_glr_gallery_statistics_histogram_cumulative.py

• sphx_glr_gallery_statistics_histogram_features.py

• sphx_glr_gallery_statistics_histogram_multihist.py

• sphx_glr_gallery_text_labels_and_annotations_placing_text_boxes.py

• sphx_glr_gallery_pyplots_fig_axes_labels_simple.py

• sphx_glr_gallery_style_sheets_bmh.py

• sphx_glr_gallery_axes_grid1_scatter_hist_locatable_axes.py

• Animated histogram

• sphx_glr_gallery_frontpage_histogram.py

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• Artist tutorial

• Path Tutorial

• Transformations Tutorial

matplotlib.axes.Axes.hist2d

Axes.hist2d(x, y, bins=10, range=None, density=False, weights=None, cmin=None,
cmax=None, *, data=None, **kwargs)

Make a 2D histogram plot.

Parameters

x, y
[array-like, shape (n,)] Input values

bins
[None or int or [int, int] or array-like or [array, array]] The bin specification:

• If int, the number of bins for the two dimensions (nx=ny=bins).

• If [int, int], the number of bins in each dimension (nx, ny = bins).

• If array-like, the bin edges for the two dimensions (x_edges=y_edges=bins).

• If [array, array], the bin edges in each dimension (x_edges, y_edges =
bins).

The default value is 10.

1358 Chapter 18. Modules

Matplotlib, Release 3.4.3

range
[array-like shape(2, 2), optional] The leftmost and rightmost edges of the
bins along each dimension (if not specified explicitly in the bins parameters):
[[xmin, xmax], [ymin, ymax]]. All values outside of this range will be
considered outliers and not tallied in the histogram.

density
[bool, default: False] Normalize histogram. See the documentation for the density
parameter of hist for more details.

weights
[array-like, shape (n,), optional] An array of values w_i weighing each sample
(x_i, y_i).

cmin, cmax
[float, default: None] All bins that has count less than cmin or more than cmaxwill
not be displayed (set to NaN before passing to imshow) and these count values in
the return value count histogram will also be set to nan upon return.

Returns

h
[2D array] The bi-dimensional histogram of samples x and y. Values in x are
histogrammed along the first dimension and values in y are histogrammed along
the second dimension.

xedges
[1D array] The bin edges along the x axis.

yedges
[1D array] The bin edges along the y axis.

image
[QuadMesh]

Other Parameters

cmap
[Colormap or str, optional] A colors.Colormap instance. If not set, use rc
settings.

norm
[Normalize, optional] A colors.Normalize instance is used to scale lumi-
nance data to [0, 1]. If not set, defaults to colors.Normalize().

18.5. matplotlib.axes 1359

Matplotlib, Release 3.4.3

vmin/vmax
[None or scalar, optional] Arguments passed to the Normalize instance.

alpha
[0 <= scalar <= 1 or None, optional] The alpha blending value.

**kwargs
Additional parameters are passed along to the pcolormesh method and
QuadMesh constructor.

See also:

hist

1D histogram plotting

Notes

• Currently hist2d calculates its own axis limits, and any limits previously set are ignored.

• Rendering the histogram with a logarithmic color scale is accomplished by passing a colors.
LogNorm instance to the norm keyword argument. Likewise, power-law normalization (similar
in effect to gamma correction) can be accomplished with colors.PowerNorm.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y, weights.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.hist2d

• sphx_glr_gallery_statistics_hist.py

• sphx_glr_gallery_scales_power_norm.py

matplotlib.axes.Axes.stairs

Axes.stairs(values, edges=None, *, orientation='vertical', baseline=0, fill=False, data=None,
**kwargs)

A stepwise constant function as a line with bounding edges or a filled plot.

Parameters

1360 Chapter 18. Modules

Matplotlib, Release 3.4.3

values
[array-like] The step heights.

edges
[array-like] The edge positions, with len(edges) == len(vals) + 1,
between which the curve takes on vals values.

orientation
[{'vertical', 'horizontal'}, default: 'vertical'] The direction of the steps. Vertical
means that values are along the y-axis, and edges are along the x-axis.

baseline
[float, array-like or None, default: 0] The bottom value of the bounding edges or
when fill=True, position of lower edge. If fill is True or an array is passed to
baseline, a closed path is drawn.

fill
[bool, default: False] Whether the area under the step curve should be filled.

Returns

StepPatch
[matplotlib.patches.StepPatch]

Other Parameters

**kwargs
StepPatch properties

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

18.5. matplotlib.axes 1361

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.stairs

Contours

Axes.clabel Label a contour plot.
Axes.contour Plot contour lines.
Axes.contourf Plot filled contours.

matplotlib.axes.Axes.clabel

Axes.clabel(CS, levels=None, **kwargs)
Label a contour plot.

Adds labels to line contours in given ContourSet.

Parameters

CS
[ContourSet instance] Line contours to label.

levels
[array-like, optional] A list of level values, that should be labeled. The list must
be a subset of CS.levels. If not given, all levels are labeled.

**kwargs
All other parameters are documented in clabel.

Examples using matplotlib.axes.Axes.clabel

• sphx_glr_gallery_images_contours_and_fields_contour_demo.py

• sphx_glr_gallery_images_contours_and_fields_contour_label_demo.py

• sphx_glr_gallery_images_contours_and_fields_contourf_demo.py

• sphx_glr_gallery_images_contours_and_fields_contours_in_optimization_demo.py

• sphx_glr_gallery_misc_patheffect_demo.py

• sphx_glr_gallery_misc_tickedstroke_demo.py

• sphx_glr_gallery_mplot3d_contour3d.py

• sphx_glr_gallery_mplot3d_contour3d_2.py

• sphx_glr_gallery_mplot3d_contourf3d.py

1362 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.contour

Axes.contour(*args, data=None, **kwargs)
Plot contour lines.

Call signature:

contour([X, Y,] Z, [levels], **kwargs)

contour and contourf draw contour lines and filled contours, respectively. Except as noted,
function signatures and return values are the same for both versions.

Parameters

X, Y
[array-like, optional] The coordinates of the values in Z.

X and Y must both be 2D with the same shape as Z (e.g. created via numpy.
meshgrid), or they must both be 1-D such that len(X) == M is the number
of columns in Z and len(Y) == N is the number of rows in Z.

If not given, they are assumed to be integer indices, i.e. X = range(M), Y =
range(N).

Z
[(M, N) array-like] The height values over which the contour is drawn.

levels
[int or array-like, optional] Determines the number and positions of the contour
lines / regions.

If an int n, use MaxNLocator, which tries to automatically choose no more than
n+1 "nice" contour levels between vmin and vmax.

If array-like, draw contour lines at the specified levels. The values must be in
increasing order.

Returns

QuadContourSet

Other Parameters

corner_mask
[bool, default: rcParams["contour.corner_mask"] (default: True)]
Enable/disable corner masking, which only has an effect if Z is a masked array. If
False, any quad touching a masked point is masked out. If True, only the trian-
gular corners of quads nearest those points are always masked out, other triangular
corners comprising three unmasked points are contoured as usual.

18.5. matplotlib.axes 1363

https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid
https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid
../../tutorials/introductory/customizing.html?highlight=contour.corner_mask#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

colors
[color string or sequence of colors, optional] The colors of the levels, i.e. the lines
for contour and the areas for contourf.

The sequence is cycled for the levels in ascending order. If the sequence is shorter
than the number of levels, it's repeated.

As a shortcut, single color strings may be used in place of one-element lists, i.e.
'red' instead of ['red'] to color all levels with the same color. This shortcut
does only work for color strings, not for other ways of specifying colors.

By default (value None), the colormap specified by cmap will be used.

alpha
[float, default: 1] The alpha blending value, between 0 (transparent) and 1
(opaque).

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps the level values to colors.

If both colors and cmap are given, an error is raised.

norm
[Normalize, optional] If a colormap is used, the Normalize instance scales
the level values to the canonical colormap range [0, 1] for mapping to colors. If
not given, the default linear scaling is used.

vmin, vmax
[float, optional] If not None, either or both of these values will be supplied to the
Normalize instance, overriding the default color scaling based on levels.

origin
[{None, 'upper', 'lower', 'image'}, default: None] Determines the orientation and
exact position of Z by specifying the position of Z[0, 0]. This is only relevant,
if X, Y are not given.

• None: Z[0, 0] is at X=0, Y=0 in the lower left corner.

• 'lower': Z[0, 0] is at X=0.5, Y=0.5 in the lower left corner.

• 'upper': Z[0, 0] is at X=N+0.5, Y=0.5 in the upper left corner.

• 'image': Use the value from rcParams["image.origin"] (default:
'upper').

extent
[(x0, x1, y0, y1), optional] If origin is not None, then extent is interpreted as in
imshow: it gives the outer pixel boundaries. In this case, the position of Z[0, 0] is

1364 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

the center of the pixel, not a corner. If origin is None, then (x0, y0) is the position
of Z[0, 0], and (x1, y1) is the position of Z[-1, -1].

This argument is ignored if X and Y are specified in the call to contour.

locator
[ticker.Locator subclass, optional] The locator is used to determine the contour
levels if they are not given explicitly via levels. Defaults to MaxNLocator.

extend
[{'neither', 'both', 'min', 'max'}, default: 'neither'] Determines the contourf-
coloring of values that are outside the levels range.

If 'neither', values outside the levels range are not colored. If 'min', 'max' or 'both',
color the values below, above or below and above the levels range.

Values below min(levels) and above max(levels) are mapped to the
under/over values of the Colormap. Note that most colormaps do not have
dedicated colors for these by default, so that the over and under values are the
edge values of the colormap. You may want to set these values explicitly using
Colormap.set_under and Colormap.set_over.

Note: An existing QuadContourSet does not get notified if properties of
its colormap are changed. Therefore, an explicit call QuadContourSet.
changed() is needed after modifying the colormap. The explicit call can be
left out, if a colorbar is assigned to the QuadContourSet because it internally
calls QuadContourSet.changed().

Example:

x = np.arange(1, 10)
y = x.reshape(-1, 1)
h = x * y

cs = plt.contourf(h, levels=[10, 30, 50],
colors=['#808080', '#A0A0A0', '#C0C0C0'], extend='both

↪')
cs.cmap.set_over('red')
cs.cmap.set_under('blue')
cs.changed()

xunits, yunits
[registered units, optional] Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface.

antialiased
[bool, optional] Enable antialiasing, overriding the defaults. For filled contours,
the default is True. For line contours, it is taken from rcParams["lines.
antialiased"] (default: True).

18.5. matplotlib.axes 1365

../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

nchunk
[int >= 0, optional] If 0, no subdivision of the domain. Specify a positive inte-
ger to divide the domain into subdomains of nchunk by nchunk quads. Chunking
reduces the maximum length of polygons generated by the contouring algorithm
which reduces the rendering workload passed on to the backend and also requires
slightly less RAM. It can however introduce rendering artifacts at chunk bound-
aries depending on the backend, the antialiased flag and value of alpha.

linewidths
[float or array-like, default: rcParams["contour.linewidth"] (default:
None)] Only applies to contour.

The line width of the contour lines.

If a number, all levels will be plotted with this linewidth.

If a sequence, the levels in ascending order will be plotted with the linewidths in
the order specified.

If None, this falls back to rcParams["lines.linewidth"] (default: 1.5).

linestyles
[{None, 'solid', 'dashed', 'dashdot', 'dotted'}, optional] Only applies to contour.

If linestyles is None, the default is 'solid' unless the lines are monochrome. In that
case, negative contours will take their linestyle from rcParams["contour.
negative_linestyle"] (default: 'dashed') setting.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

hatches
[list[str], optional] Only applies to contourf.

A list of cross hatch patterns to use on the filled areas. If None, no hatching will
be added to the contour. Hatching is supported in the PostScript, PDF, SVG and
Agg backends only.

Notes

1. contourf differs from the MATLAB version in that it does not draw the polygon edges. To
draw edges, add line contours with calls to contour.

2. contourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < Z <= z2

except for the lowest interval, which is closed on both sides (i.e. it includes the lowest value).

1366 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=contour.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.negative_linestyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.negative_linestyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.contour

• sphx_glr_gallery_images_contours_and_fields_contour_corner_mask.py

• sphx_glr_gallery_images_contours_and_fields_contour_demo.py

• sphx_glr_gallery_images_contours_and_fields_contour_label_demo.py

• sphx_glr_gallery_images_contours_and_fields_contourf_demo.py

• sphx_glr_gallery_images_contours_and_fields_contourf_hatching.py

• sphx_glr_gallery_images_contours_and_fields_contours_in_optimization_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_transparency_blend.py

• sphx_glr_gallery_images_contours_and_fields_irregulardatagrid.py

• sphx_glr_gallery_misc_patheffect_demo.py

• sphx_glr_gallery_misc_tickedstroke_demo.py

• sphx_glr_gallery_mplot3d_contour3d.py

• sphx_glr_gallery_mplot3d_contour3d_2.py

• sphx_glr_gallery_mplot3d_contour3d_3.py

matplotlib.axes.Axes.contourf

Axes.contourf(*args, data=None, **kwargs)
Plot filled contours.

Call signature:

contourf([X, Y,] Z, [levels], **kwargs)

contour and contourf draw contour lines and filled contours, respectively. Except as noted,
function signatures and return values are the same for both versions.

Parameters

X, Y
[array-like, optional] The coordinates of the values in Z.

X and Y must both be 2D with the same shape as Z (e.g. created via numpy.
meshgrid), or they must both be 1-D such that len(X) == M is the number
of columns in Z and len(Y) == N is the number of rows in Z.

If not given, they are assumed to be integer indices, i.e. X = range(M), Y =
range(N).

Z
[(M, N) array-like] The height values over which the contour is drawn.

18.5. matplotlib.axes 1367

https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid
https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid

Matplotlib, Release 3.4.3

levels
[int or array-like, optional] Determines the number and positions of the contour
lines / regions.

If an int n, use MaxNLocator, which tries to automatically choose no more than
n+1 "nice" contour levels between vmin and vmax.

If array-like, draw contour lines at the specified levels. The values must be in
increasing order.

Returns

QuadContourSet

Other Parameters

corner_mask
[bool, default: rcParams["contour.corner_mask"] (default: True)]
Enable/disable corner masking, which only has an effect if Z is a masked array. If
False, any quad touching a masked point is masked out. If True, only the trian-
gular corners of quads nearest those points are always masked out, other triangular
corners comprising three unmasked points are contoured as usual.

colors
[color string or sequence of colors, optional] The colors of the levels, i.e. the lines
for contour and the areas for contourf.

The sequence is cycled for the levels in ascending order. If the sequence is shorter
than the number of levels, it's repeated.

As a shortcut, single color strings may be used in place of one-element lists, i.e.
'red' instead of ['red'] to color all levels with the same color. This shortcut
does only work for color strings, not for other ways of specifying colors.

By default (value None), the colormap specified by cmap will be used.

alpha
[float, default: 1] The alpha blending value, between 0 (transparent) and 1
(opaque).

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps the level values to colors.

If both colors and cmap are given, an error is raised.

norm

1368 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=contour.corner_mask#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[Normalize, optional] If a colormap is used, the Normalize instance scales
the level values to the canonical colormap range [0, 1] for mapping to colors. If
not given, the default linear scaling is used.

vmin, vmax
[float, optional] If not None, either or both of these values will be supplied to the
Normalize instance, overriding the default color scaling based on levels.

origin
[{None, 'upper', 'lower', 'image'}, default: None] Determines the orientation and
exact position of Z by specifying the position of Z[0, 0]. This is only relevant,
if X, Y are not given.

• None: Z[0, 0] is at X=0, Y=0 in the lower left corner.

• 'lower': Z[0, 0] is at X=0.5, Y=0.5 in the lower left corner.

• 'upper': Z[0, 0] is at X=N+0.5, Y=0.5 in the upper left corner.

• 'image': Use the value from rcParams["image.origin"] (default:
'upper').

extent
[(x0, x1, y0, y1), optional] If origin is not None, then extent is interpreted as in
imshow: it gives the outer pixel boundaries. In this case, the position of Z[0, 0] is
the center of the pixel, not a corner. If origin is None, then (x0, y0) is the position
of Z[0, 0], and (x1, y1) is the position of Z[-1, -1].

This argument is ignored if X and Y are specified in the call to contour.

locator
[ticker.Locator subclass, optional] The locator is used to determine the contour
levels if they are not given explicitly via levels. Defaults to MaxNLocator.

extend
[{'neither', 'both', 'min', 'max'}, default: 'neither'] Determines the contourf-
coloring of values that are outside the levels range.

If 'neither', values outside the levels range are not colored. If 'min', 'max' or 'both',
color the values below, above or below and above the levels range.

Values below min(levels) and above max(levels) are mapped to the
under/over values of the Colormap. Note that most colormaps do not have
dedicated colors for these by default, so that the over and under values are the
edge values of the colormap. You may want to set these values explicitly using
Colormap.set_under and Colormap.set_over.

Note: An existing QuadContourSet does not get notified if properties of
its colormap are changed. Therefore, an explicit call QuadContourSet.
changed() is needed after modifying the colormap. The explicit call can be

18.5. matplotlib.axes 1369

../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

left out, if a colorbar is assigned to the QuadContourSet because it internally
calls QuadContourSet.changed().

Example:

x = np.arange(1, 10)
y = x.reshape(-1, 1)
h = x * y

cs = plt.contourf(h, levels=[10, 30, 50],
colors=['#808080', '#A0A0A0', '#C0C0C0'], extend='both

↪')
cs.cmap.set_over('red')
cs.cmap.set_under('blue')
cs.changed()

xunits, yunits
[registered units, optional] Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface.

antialiased
[bool, optional] Enable antialiasing, overriding the defaults. For filled contours,
the default is True. For line contours, it is taken from rcParams["lines.
antialiased"] (default: True).

nchunk
[int >= 0, optional] If 0, no subdivision of the domain. Specify a positive inte-
ger to divide the domain into subdomains of nchunk by nchunk quads. Chunking
reduces the maximum length of polygons generated by the contouring algorithm
which reduces the rendering workload passed on to the backend and also requires
slightly less RAM. It can however introduce rendering artifacts at chunk bound-
aries depending on the backend, the antialiased flag and value of alpha.

linewidths
[float or array-like, default: rcParams["contour.linewidth"] (default:
None)] Only applies to contour.

The line width of the contour lines.

If a number, all levels will be plotted with this linewidth.

If a sequence, the levels in ascending order will be plotted with the linewidths in
the order specified.

If None, this falls back to rcParams["lines.linewidth"] (default: 1.5).

linestyles
[{None, 'solid', 'dashed', 'dashdot', 'dotted'}, optional] Only applies to contour.

1370 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

If linestyles is None, the default is 'solid' unless the lines are monochrome. In that
case, negative contours will take their linestyle from rcParams["contour.
negative_linestyle"] (default: 'dashed') setting.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

hatches
[list[str], optional] Only applies to contourf.

A list of cross hatch patterns to use on the filled areas. If None, no hatching will
be added to the contour. Hatching is supported in the PostScript, PDF, SVG and
Agg backends only.

Notes

1. contourf differs from the MATLAB version in that it does not draw the polygon edges. To
draw edges, add line contours with calls to contour.

2. contourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < Z <= z2

except for the lowest interval, which is closed on both sides (i.e. it includes the lowest value).

Examples using matplotlib.axes.Axes.contourf

• sphx_glr_gallery_images_contours_and_fields_contour_corner_mask.py

• sphx_glr_gallery_images_contours_and_fields_contourf_demo.py

• sphx_glr_gallery_images_contours_and_fields_contourf_hatching.py

• sphx_glr_gallery_images_contours_and_fields_contourf_log.py

• sphx_glr_gallery_images_contours_and_fields_irregulardatagrid.py

• sphx_glr_gallery_images_contours_and_fields_pcolormesh_levels.py

• sphx_glr_gallery_frontpage_contour.py

• sphx_glr_gallery_mplot3d_contourf3d.py

• sphx_glr_gallery_mplot3d_contourf3d_2.py

18.5. matplotlib.axes 1371

../../tutorials/introductory/customizing.html?highlight=contour.negative_linestyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.negative_linestyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

2D arrays

Axes.imshow Display data as an image, i.e., on a 2D regular raster.
Axes.matshow Plot the values of a 2D matrix or array as color-

coded image.
Axes.pcolor Create a pseudocolor plot with a non-regular rect-

angular grid.
Axes.pcolorfast Create a pseudocolor plot with a non-regular rect-

angular grid.
Axes.pcolormesh Create a pseudocolor plot with a non-regular rect-

angular grid.
Axes.spy Plot the sparsity pattern of a 2D array.

matplotlib.axes.Axes.imshow

Axes.imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None,
vmin=None, vmax=None, origin=None, extent=None, *, filternorm=True, filter-
rad=4.0, resample=None, url=None, data=None, **kwargs)

Display data as an image, i.e., on a 2D regular raster.

The input may either be actual RGB(A) data, or 2D scalar data, which will be rendered as a pseu-
docolor image. For displaying a grayscale image set up the colormapping using the parameters
cmap='gray', vmin=0, vmax=255.

The number of pixels used to render an image is set by the Axes size and the dpi of the figure.
This can lead to aliasing artifacts when the image is resampled because the displayed image size
will usually not match the size of X (see /gallery/images_contours_and_fields/image_antialiasing).
The resampling can be controlled via the interpolation parameter and/or rcParams["image.
interpolation"] (default: 'antialiased').

Parameters

X
[array-like or PIL image] The image data. Supported array shapes are:

• (M, N): an image with scalar data. The values are mapped to colors using nor-
malization and a colormap. See parameters norm, cmap, vmin, vmax.

• (M, N, 3): an image with RGB values (0-1 float or 0-255 int).

• (M, N, 4): an image with RGBA values (0-1 float or 0-255 int), i.e. including
transparency.

The first two dimensions (M, N) define the rows and columns of the image.

Out-of-range RGB(A) values are clipped.

cmap

1372 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=image.interpolation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.interpolation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] The Colormap instance or registered colormap name used
to map scalar data to colors. This parameter is ignored for RGB(A) data.

norm
[Normalize, optional] The Normalize instance used to scale scalar data to
the [0, 1] range before mapping to colors using cmap. By default, a linear scaling
mapping the lowest value to 0 and the highest to 1 is used. This parameter is
ignored for RGB(A) data.

aspect
[{'equal', 'auto'} or float, default: rcParams["image.aspect"] (default:
'equal')] The aspect ratio of the Axes. This parameter is particularly relevant
for images since it determines whether data pixels are square.

This parameter is a shortcut for explicitly calling Axes.set_aspect. See there
for further details.

• 'equal': Ensures an aspect ratio of 1. Pixels will be square (unless pixel sizes
are explicitly made non-square in data coordinates using extent).

• 'auto': The Axes is kept fixed and the aspect is adjusted so that the data fit in the
Axes. In general, this will result in non-square pixels.

interpolation
[str, default: rcParams["image.interpolation"] (default: 'an-
tialiased')] The interpolation method used.

Supported values are 'none', 'antialiased', 'nearest', 'bilinear', 'bicubic', 'spline16',
'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian',
'bessel', 'mitchell', 'sinc', 'lanczos', 'blackman'.

If interpolation is 'none', then no interpolation is performed on the Agg, ps, pdf and
svg backends. Other backends will fall back to 'nearest'. Note that most SVG ren-
derers perform interpolation at rendering and that the default interpolation method
they implement may differ.

If interpolation is the default 'antialiased', then 'nearest' interpolation is used if the
image is upsampled bymore than a factor of three (i.e. the number of display pixels
is at least three times the size of the data array). If the upsampling rate is smaller
than 3, or the image is downsampled, then 'hanning' interpolation is used to act
as an anti-aliasing filter, unless the image happens to be upsampled by exactly a
factor of two or one.

See /gallery/images_contours_and_fields/interpolation_methods
for an overview of the supported interpolation methods, and
/gallery/images_contours_and_fields/image_antialiasing for a discussion of
image antialiasing.

Some interpolation methods require an additional radius parameter, which can be
set by filterrad. Additionally, the antigrain image resize filter is controlled by the
parameter filternorm.

18.5. matplotlib.axes 1373

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.aspect#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.interpolation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

alpha
[float or array-like, optional] The alpha blending value, between 0 (transparent)
and 1 (opaque). If alpha is an array, the alpha blending values are applied pixel
by pixel, and alpha must have the same shape as X.

vmin, vmax
[float, optional] When using scalar data and no explicit norm, vmin and vmax de-
fine the data range that the colormap covers. By default, the colormap covers the
complete value range of the supplied data. It is deprecated to use vmin/vmaxwhen
norm is given. When using RGB(A) data, parameters vmin/vmax are ignored.

origin
[{'upper', 'lower'}, default: rcParams["image.origin"] (default: 'up-
per')] Place the [0, 0] index of the array in the upper left or lower left corner of
the Axes. The convention (the default) 'upper' is typically used for matrices and
images.

Note that the vertical axis points upward for 'lower' but downward for 'upper'.

See the origin and extent in imshow tutorial for examples and a more detailed
description.

extent
[floats (left, right, bottom, top), optional] The bounding box in data coordinates
that the image will fill. The image is stretched individually along x and y to fill
the box.

The default extent is determined by the following conditions. Pixels have unit
size in data coordinates. Their centers are on integer coordinates, and their center
coordinates range from 0 to columns-1 horizontally and from 0 to rows-1 vertically.

Note that the direction of the vertical axis and thus the default values for top and
bottom depend on origin:

• For origin == 'upper' the default is (-0.5, numcols-0.5,
numrows-0.5, -0.5).

• Fororigin == 'lower' the default is(-0.5, numcols-0.5, -0.5,
numrows-0.5).

See the origin and extent in imshow tutorial for examples and a more detailed
description.

filternorm
[bool, default: True] A parameter for the antigrain image resize filter (see the
antigrain documentation). If filternorm is set, the filter normalizes integer values
and corrects the rounding errors. It doesn't do anything with the source floating
point values, it corrects only integers according to the rule of 1.0 which means that
any sum of pixel weights must be equal to 1.0. So, the filter function must produce
a graph of the proper shape.

1374 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

filterrad
[float > 0, default: 4.0] The filter radius for filters that have a radius parameter, i.e.
when interpolation is one of: 'sinc', 'lanczos' or 'blackman'.

resample
[bool, default: rcParams["image.resample"] (default: True)] When
True, use a full resampling method. When False, only resample when the out-
put image is larger than the input image.

url
[str, optional] Set the url of the created AxesImage. See Artist.set_url.

Returns

AxesImage

Other Parameters

**kwargs
[Artist properties] These parameters are passed on to the constructor of the
AxesImage artist.

See also:

matshow

Plot a matrix or an array as an image.

Notes

Unless extent is used, pixel centers will be located at integer coordinates. In other words: the origin
will coincide with the center of pixel (0, 0).

There are two common representations for RGB images with an alpha channel:

• Straight (unassociated) alpha: R, G, and B channels represent the color of the pixel, disregarding
its opacity.

• Premultiplied (associated) alpha: R, G, and B channels represent the color of the pixel, adjusted
for its opacity by multiplication.

imshow expects RGB images adopting the straight (unassociated) alpha representation.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

18.5. matplotlib.axes 1375

../../tutorials/introductory/customizing.html?highlight=image.resample#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.imshow

• sphx_glr_gallery_lines_bars_and_markers_gradient_bar.py

• sphx_glr_gallery_images_contours_and_fields_barcode_demo.py

• sphx_glr_gallery_images_contours_and_fields_contour_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_images_contours_and_fields_image_antialiasing.py

• sphx_glr_gallery_images_contours_and_fields_image_clip_path.py

• sphx_glr_gallery_images_contours_and_fields_image_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_masked.py

• sphx_glr_gallery_images_contours_and_fields_image_transparency_blend.py

• sphx_glr_gallery_images_contours_and_fields_image_zcoord.py

• sphx_glr_gallery_images_contours_and_fields_interpolation_methods.py

• sphx_glr_gallery_images_contours_and_fields_pcolor_demo.py

• sphx_glr_gallery_images_contours_and_fields_plot_streamplot.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_box_aspect.py

• sphx_glr_gallery_subplots_axes_and_figures_zoom_inset_axes.py

• sphx_glr_gallery_text_labels_and_annotations_demo_text_path.py

• sphx_glr_gallery_color_colorbar_basics.py

• sphx_glr_gallery_color_custom_cmap.py

• sphx_glr_gallery_axes_grid1_demo_anchored_direction_arrows.py

• sphx_glr_gallery_axes_grid1_demo_axes_grid2.py

• sphx_glr_gallery_axes_grid1_demo_axes_hbox_divider.py

• sphx_glr_gallery_axes_grid1_demo_colorbar_of_inset_axes.py

• sphx_glr_gallery_axes_grid1_demo_colorbar_with_axes_divider.py

• sphx_glr_gallery_axes_grid1_demo_colorbar_with_inset_locator.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo2.py

• sphx_glr_gallery_axes_grid1_simple_axesgrid.py

• sphx_glr_gallery_axes_grid1_simple_axesgrid2.py

• sphx_glr_gallery_axes_grid1_simple_colorbar.py

1376 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_showcase_mandelbrot.py

• sphx_glr_gallery_animation_animation_demo.py

• Animated image using a precomputed list of images

• sphx_glr_gallery_event_handling_image_slices_viewer.py

• sphx_glr_gallery_event_handling_viewlims.py

• sphx_glr_gallery_misc_agg_buffer_to_array.py

• sphx_glr_gallery_misc_patheffect_demo.py

• sphx_glr_gallery_specialty_plots_mri_demo.py

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• sphx_glr_gallery_specialty_plots_topographic_hillshading.py

• sphx_glr_gallery_ticks_and_spines_colorbar_tick_labelling_demo.py

• sphx_glr_gallery_ticks_and_spines_spines_dropped.py

• Artist tutorial

• Tight Layout guide

• Choosing Colormaps in Matplotlib

matplotlib.axes.Axes.matshow

Axes.matshow(Z, **kwargs)
Plot the values of a 2D matrix or array as color-coded image.

The matrix will be shown the way it would be printed, with the first row at the top. Row and column
numbering is zero-based.

Parameters

Z
[(M, N) array-like] The matrix to be displayed.

Returns

AxesImage

Other Parameters

**kwargs
[imshow arguments]

See also:

18.5. matplotlib.axes 1377

Matplotlib, Release 3.4.3

imshow

More general function to plot data on a 2D regular raster.

Notes

This is just a convenience function wrapping imshow to set useful defaults for displaying a matrix.
In particular:

• Set origin='upper'.

• Set interpolation='nearest'.

• Set aspect='equal'.

• Ticks are placed to the left and above.

• Ticks are formatted to show integer indices.

Examples using matplotlib.axes.Axes.matshow

matplotlib.axes.Axes.pcolor

Axes.pcolor(*args, shading=None, alpha=None, norm=None, cmap=None, vmin=None,
vmax=None, data=None, **kwargs)

Create a pseudocolor plot with a non-regular rectangular grid.

Call signature:

pcolor([X, Y,] C, **kwargs)

X and Y can be used to specify the corners of the quadrilaterals.

Hint: pcolor() can be very slow for large arrays. Inmost cases you should use the similar but much
faster pcolormesh instead. See Differences between pcolor() and pcolormesh() for a discussion of
the differences.

Parameters

C
[2D array-like] The color-mapped values.

X, Y
[array-like, optional] The coordinates of the corners of quadrilaterals of a pcol-
ormesh:

1378 Chapter 18. Modules

Matplotlib, Release 3.4.3

(X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1])
+-----+
| |
+-----+

(X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1])

Note that the column index corresponds to the x-coordinate, and the row index
corresponds to y. For details, see the Notes section below.

If shading='flat' the dimensions ofX and Y should be one greater than those
of C, and the quadrilateral is colored due to the value at C[i, j]. If X, Y and C
have equal dimensions, a warning will be raised and the last row and column of C
will be ignored.

If shading='nearest', the dimensions of X and Y should be the same as
those of C (if not, a ValueError will be raised). The color C[i, j] will be
centered on (X[i, j], Y[i, j]).

If X and/or Y are 1-D arrays or column vectors they will be expanded as needed
into the appropriate 2D arrays, making a rectangular grid.

shading
[{'flat', 'nearest', 'auto'}, optional] The fill style for the quadrilateral; defaults to 'flat'
or rcParams["pcolor.shading"] (default: 'flat'). Possible values:

• 'flat': A solid color is used for each quad. The color of the quad (i, j), (i+1, j),
(i, j+1), (i+1, j+1) is given by C[i, j]. The dimensions of X and Y should
be one greater than those of C; if they are the same as C, then a deprecation
warning is raised, and the last row and column of C are dropped.

• 'nearest': Each grid point will have a color centered on it, extending halfway
between the adjacent grid centers. The dimensions of X and Y must be the
same as C.

• 'auto': Choose 'flat' if dimensions of X and Y are one larger than C. Choose
'nearest' if dimensions are the same.

See /gallery/images_contours_and_fields/pcolormesh_grids for more description.

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps the C values to colors.

norm
[Normalize, optional] The Normalize instance scales the data values to the
canonical colormap range [0, 1] for mapping to colors. By default, the data range
is mapped to the colorbar range using linear scaling.

vmin, vmax

18.5. matplotlib.axes 1379

../../tutorials/introductory/customizing.html?highlight=pcolor.shading#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[float, default: None] The colorbar range. If None, suitable min/max values
are automatically chosen by the Normalize instance (defaults to the respective
min/max values of C in case of the default linear scaling). It is deprecated to use
vmin/vmax when norm is given.

edgecolors
[{'none', None, 'face', color, color sequence}, optional] The color of the edges.
Defaults to 'none'. Possible values:

• 'none' or '': No edge.

• None: rcParams["patch.edgecolor"] (default: 'black') will be
used. Note that currently rcParams["patch.force_edgecolor"]
(default: False) has to be True for this to work.

• 'face': Use the adjacent face color.

• A color or sequence of colors will set the edge color.

The singular form edgecolor works as an alias.

alpha
[float, default: None] The alpha blending value of the face color, between 0 (trans-
parent) and 1 (opaque). Note: The edgecolor is currently not affected by this.

snap
[bool, default: False] Whether to snap the mesh to pixel boundaries.

Returns

matplotlib.collections.Collection

Other Parameters

antialiaseds
[bool, default: False] The default antialiaseds is False if the default edgecol-
ors="none" is used. This eliminates artificial lines at patch boundaries, and works
regardless of the value of alpha. If edgecolors is not "none", then the default
antialiaseds is taken from rcParams["patch.antialiased"] (default:
True). Stroking the edges may be preferred if alpha is 1, but will cause artifacts
otherwise.

**kwargs
Additionally, the following arguments are allowed. They are passed along to the
PolyCollection constructor:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array

continues on next page

1380 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=patch.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=patch.force_edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=patch.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Table 84 – continued from previous page
Property Description
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

See also:

pcolormesh

for an explanation of the differences between pcolor and pcolormesh.

imshow

If X and Y are each equidistant, imshow can be a faster alternative.

18.5. matplotlib.axes 1381

Matplotlib, Release 3.4.3

Notes

Masked arrays
X, Y and C may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i, j]
(X or Y at [i, j], [i+1, j], [i, j+1], [i+1, j+1]) is masked, nothing is plotted.

Grid orientation
The grid orientation follows the standard matrix convention: An arrayCwith shape (nrows, ncolumns)
is plotted with the column number as X and the row number as Y.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.pcolor

• sphx_glr_gallery_images_contours_and_fields_pcolor_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_margins.py

matplotlib.axes.Axes.pcolorfast

Axes.pcolorfast(*args, alpha=None, norm=None, cmap=None, vmin=None, vmax=None,
data=None, **kwargs)

Create a pseudocolor plot with a non-regular rectangular grid.

Call signature:

ax.pcolorfast([X, Y], C, /, **kwargs)

This method is similar to pcolor and pcolormesh. It's designed to provide the fastest pcolor-type
plotting with the Agg backend. To achieve this, it uses different algorithms internally depending on the
complexity of the input grid (regular rectangular, non-regular rectangular or arbitrary quadrilateral).

Warning: This method is experimental. Compared to pcolor or pcolormesh it has some
limitations:

• It supports only flat shading (no outlines)

• It lacks support for log scaling of the axes.

• It does not have a have a pyplot wrapper.

Parameters

1382 Chapter 18. Modules

Matplotlib, Release 3.4.3

C
[array-like] The image data. Supported array shapes are:

• (M, N): an image with scalar data. The data is visualized using a colormap.

• (M, N, 3): an image with RGB values (0-1 float or 0-255 int).

• (M, N, 4): an image with RGBA values (0-1 float or 0-255 int), i.e. including
transparency.

The first two dimensions (M, N) define the rows and columns of the image.

This parameter can only be passed positionally.

X, Y
[tuple or array-like, default: (0, N), (0, M)] X and Y are used to specify the
coordinates of the quadrilaterals. There are different ways to do this:

• Use tuples X=(xmin, xmax) and Y=(ymin, ymax) to define a uniform
rectangular grid.

The tuples define the outer edges of the grid. All individual quadrilaterals will
be of the same size. This is the fastest version.

• Use 1D arrays X, Y to specify a non-uniform rectangular grid.

In this case X and Y have to be monotonic 1D arrays of length N+1 and M+1,
specifying the x and y boundaries of the cells.

The speed is intermediate. Note: The grid is checked, and if found to be uniform
the fast version is used.

• Use 2D arraysX, Y if you need an arbitrary quadrilateral grid (i.e. if the quadri-
laterals are not rectangular).

In this case X and Y are 2D arrays with shape (M + 1, N + 1), specifying the x
and y coordinates of the corners of the colored quadrilaterals.

This is the most general, but the slowest to render. It may produce faster and
more compact output using ps, pdf, and svg backends, however.

These arguments can only be passed positionally.

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps the C values to colors.

norm
[Normalize, optional] The Normalize instance scales the data values to the
canonical colormap range [0, 1] for mapping to colors. By default, the data range
is mapped to the colorbar range using linear scaling.

vmin, vmax

18.5. matplotlib.axes 1383

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[float, default: None] The colorbar range. If None, suitable min/max values
are automatically chosen by the Normalize instance (defaults to the respective
min/max values of C in case of the default linear scaling). It is deprecated to use
vmin/vmax when norm is given.

alpha
[float, default: None] The alpha blending value, between 0 (transparent) and 1
(opaque).

snap
[bool, default: False] Whether to snap the mesh to pixel boundaries.

Returns

AxesImage or PcolorImage or QuadMesh
The return type depends on the type of grid:

• AxesImage for a regular rectangular grid.

• PcolorImage for a non-regular rectangular grid.

• QuadMesh for a non-rectangular grid.

Other Parameters

**kwargs
Supported additional parameters depend on the type of grid. See return types of
image for further description.

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

1384 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.pcolorfast

• sphx_glr_gallery_images_contours_and_fields_pcolor_demo.py

matplotlib.axes.Axes.pcolormesh

Axes.pcolormesh(*args, alpha=None, norm=None, cmap=None, vmin=None, vmax=None,
shading=None, antialiased=False, data=None, **kwargs)

Create a pseudocolor plot with a non-regular rectangular grid.

Call signature:

pcolormesh([X, Y,] C, **kwargs)

X and Y can be used to specify the corners of the quadrilaterals.

Hint: pcolormesh is similar to pcolor. It is much faster and preferred in most cases. For a
detailed discussion on the differences see Differences between pcolor() and pcolormesh().

Parameters

C
[2D array-like] The color-mapped values.

X, Y
[array-like, optional] The coordinates of the corners of quadrilaterals of a pcol-
ormesh:

(X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1])
+-----+
| |
+-----+

(X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1])

Note that the column index corresponds to the x-coordinate, and the row index
corresponds to y. For details, see the Notes section below.

If shading='flat' the dimensions ofX and Y should be one greater than those
of C, and the quadrilateral is colored due to the value at C[i, j]. If X, Y and C
have equal dimensions, a warning will be raised and the last row and column of C
will be ignored.

If shading='nearest' or 'gouraud', the dimensions of X and Y should
be the same as those of C (if not, a ValueError will be raised). For 'nearest'
the color C[i, j] is centered on (X[i, j], Y[i, j]). For 'gouraud',
a smooth interpolation is caried out between the quadrilateral corners.

18.5. matplotlib.axes 1385

Matplotlib, Release 3.4.3

If X and/or Y are 1-D arrays or column vectors they will be expanded as needed
into the appropriate 2D arrays, making a rectangular grid.

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps the C values to colors.

norm
[Normalize, optional] The Normalize instance scales the data values to the
canonical colormap range [0, 1] for mapping to colors. By default, the data range
is mapped to the colorbar range using linear scaling.

vmin, vmax
[float, default: None] The colorbar range. If None, suitable min/max values
are automatically chosen by the Normalize instance (defaults to the respective
min/max values of C in case of the default linear scaling). It is deprecated to use
vmin/vmax when norm is given.

edgecolors
[{'none', None, 'face', color, color sequence}, optional] The color of the edges.
Defaults to 'none'. Possible values:

• 'none' or '': No edge.

• None: rcParams["patch.edgecolor"] (default: 'black') will be
used. Note that currently rcParams["patch.force_edgecolor"]
(default: False) has to be True for this to work.

• 'face': Use the adjacent face color.

• A color or sequence of colors will set the edge color.

The singular form edgecolor works as an alias.

alpha
[float, default: None] The alpha blending value, between 0 (transparent) and 1
(opaque).

shading
[{'flat', 'nearest', 'gouraud', 'auto'}, optional] The fill style for the quadrilateral; de-
faults to 'flat' or rcParams["pcolor.shading"] (default: 'flat'). Pos-
sible values:

• 'flat': A solid color is used for each quad. The color of the quad (i, j), (i+1, j),
(i, j+1), (i+1, j+1) is given by C[i, j]. The dimensions of X and Y should
be one greater than those of C; if they are the same as C, then a deprecation
warning is raised, and the last row and column of C are dropped.

1386 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=patch.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=patch.force_edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=pcolor.shading#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

• 'nearest': Each grid point will have a color centered on it, extending halfway
between the adjacent grid centers. The dimensions of X and Y must be the
same as C.

• 'gouraud': Each quad will be Gouraud shaded: The color of the corners (i', j') are
given by C[i', j']. The color values of the area in between is interpolated
from the corner values. The dimensions of X and Y must be the same as C.
When Gouraud shading is used, edgecolors is ignored.

• 'auto': Choose 'flat' if dimensions of X and Y are one larger than C. Choose
'nearest' if dimensions are the same.

See /gallery/images_contours_and_fields/pcolormesh_grids for more description.

snap
[bool, default: False] Whether to snap the mesh to pixel boundaries.

rasterized: bool, optional
Rasterize the pcolormesh when drawing vector graphics. This can speed
up rendering and produce smaller files for large data sets. See also
/gallery/misc/rasterization_demo.

Returns

matplotlib.collections.QuadMesh

Other Parameters

**kwargs
Additionally, the following arguments are allowed. They are passed along to the
QuadMesh constructor:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'

continues on next page

18.5. matplotlib.axes 1387

Matplotlib, Release 3.4.3

Table 85 – continued from previous page
Property Description
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

See also:

pcolor

An alternative implementation with slightly different features. For a detailed discussion on the
differences see Differences between pcolor() and pcolormesh().

imshow

If X and Y are each equidistant, imshow can be a faster alternative.

Notes

Masked arrays
C may be a masked array. If C[i, j] is masked, the corresponding quadrilateral will be transparent.
Masking of X and Y is not supported. Use pcolor if you need this functionality.

Grid orientation
The grid orientation follows the standard matrix convention: An arrayCwith shape (nrows, ncolumns)
is plotted with the column number as X and the row number as Y.

1388 Chapter 18. Modules

Matplotlib, Release 3.4.3

Differences between pcolor() and pcolormesh()
Both methods are used to create a pseudocolor plot of a 2D array using quadrilaterals.

The main difference lies in the created object and internal data handling: While pcolor returns a
PolyCollection, pcolormesh returns a QuadMesh. The latter is more specialized for the
given purpose and thus is faster. It should almost always be preferred.

There is also a slight difference in the handling of masked arrays. Both pcolor and pcolormesh
support masked arrays for C. However, only pcolor supports masked arrays for X and Y. The reason
lies in the internal handling of the masked values. pcolor leaves out the respective polygons from
the PolyCollection. pcolormesh sets the facecolor of the masked elements to transparent. You
can see the difference when using edgecolors. While all edges are drawn irrespective of masking in
a QuadMesh, the edge between two adjacent masked quadrilaterals in pcolor is not drawn as the
corresponding polygons do not exist in the PolyCollection.

Another difference is the support of Gouraud shading in pcolormesh, which is not available with
pcolor.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.pcolormesh

• sphx_glr_gallery_images_contours_and_fields_pcolor_demo.py

• sphx_glr_gallery_images_contours_and_fields_pcolormesh_grids.py

• sphx_glr_gallery_images_contours_and_fields_pcolormesh_levels.py

• sphx_glr_gallery_subplots_axes_and_figures_colorbar_placement.py

• sphx_glr_gallery_subplots_axes_and_figures_subfigures.py

• sphx_glr_gallery_misc_rasterization_demo.py

• Constrained Layout Guide

• Colormap Normalization

18.5. matplotlib.axes 1389

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.spy

Axes.spy(Z, precision=0, marker=None, markersize=None, aspect='equal', origin='upper',
**kwargs)

Plot the sparsity pattern of a 2D array.

This visualizes the non-zero values of the array.

Two plotting styles are available: image and marker. Both are available for full arrays, but only the
marker style works for scipy.sparse.spmatrix instances.

Image style
If marker and markersize are None, imshow is used. Any extra remaining keyword arguments are
passed to this method.

Marker style
If Z is a scipy.sparse.spmatrix or marker or markersize are None, a Line2D object will be
returned with the value of marker determining the marker type, and any remaining keyword arguments
passed to plot.

Parameters

Z
[(M, N) array-like] The array to be plotted.

precision
[float or 'present', default: 0] If precision is 0, any non-zero value will be plotted.
Otherwise, values of |𝑍| > 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 will be plotted.

For scipy.sparse.spmatrix instances, you can also pass 'present'. In this
case any value present in the array will be plotted, even if it is identically zero.

aspect
[{'equal', 'auto', None} or float, default: 'equal'] The aspect ratio of the Axes. This
parameter is particularly relevant for images since it determines whether data pix-
els are square.

This parameter is a shortcut for explicitly calling Axes.set_aspect. See there
for further details.

• 'equal': Ensures an aspect ratio of 1. Pixels will be square.

• 'auto': The Axes is kept fixed and the aspect is adjusted so that the data fit in the
Axes. In general, this will result in non-square pixels.

• None: Use rcParams["image.aspect"] (default: 'equal').

origin
[{'upper', 'lower'}, default: rcParams["image.origin"] (default: 'up-
per')] Place the [0, 0] index of the array in the upper left or lower left corner of
the Axes. The convention 'upper' is typically used for matrices and images.

1390 Chapter 18. Modules

https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix
../../tutorials/introductory/customizing.html?highlight=image.aspect#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Returns

AxesImage or Line2D
The return type depends on the plotting style (see above).

Other Parameters

**kwargs
The supported additional parameters depend on the plotting style.

For the image style, you can pass the following additional parameters of imshow:

• cmap

• alpha

• url

• any Artist properties (passed on to the AxesImage)

For the marker style, you can pass any Line2D property except for linestyle:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float

continues on next page

18.5. matplotlib.axes 1391

Matplotlib, Release 3.4.3

Table 86 – continued from previous page
Property Description
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

Examples using matplotlib.axes.Axes.spy

• sphx_glr_gallery_images_contours_and_fields_spy_demos.py

Unstructured triangles

Axes.tripcolor Create a pseudocolor plot of an unstructured trian-
gular grid.

Axes.triplot Draw a unstructured triangular grid as lines and/or
markers.

Axes.tricontour Draw contour lines on an unstructured triangular
grid.

Axes.tricontourf Draw contour regions on an unstructured triangular
grid.

1392 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.tripcolor

Axes.tripcolor(*args, alpha=1.0, norm=None, cmap=None, vmin=None, vmax=None, shad-
ing='flat', facecolors=None, **kwargs)

Create a pseudocolor plot of an unstructured triangular grid.

The triangulation can be specified in one of two ways; either:

tripcolor(triangulation, ...)

where triangulation is a Triangulation object, or

tripcolor(x, y, ...)
tripcolor(x, y, triangles, ...)
tripcolor(x, y, triangles=triangles, ...)
tripcolor(x, y, mask=mask, ...)
tripcolor(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

The next argument must be C, the array of color values, either one per point in the triangulation if
color values are defined at points, or one per triangle in the triangulation if color values are defined
at triangles. If there are the same number of points and triangles in the triangulation it is assumed
that color values are defined at points; to force the use of color values at triangles use the kwarg
facecolors=C instead of just C.

shading may be 'flat' (the default) or 'gouraud'. If shading is 'flat' and C values are defined at points,
the color values used for each triangle are from the mean C of the triangle's three points. If shading is
'gouraud' then color values must be defined at points.

The remaining kwargs are the same as for pcolor.

Examples using matplotlib.axes.Axes.tripcolor

• sphx_glr_gallery_images_contours_and_fields_tripcolor_demo.py

matplotlib.axes.Axes.triplot

Axes.triplot(*args, **kwargs)
Draw a unstructured triangular grid as lines and/or markers.

The triangulation to plot can be specified in one of two ways; either:

triplot(triangulation, ...)

where triangulation is a Triangulation object, or

18.5. matplotlib.axes 1393

Matplotlib, Release 3.4.3

triplot(x, y, ...)
triplot(x, y, triangles, ...)
triplot(x, y, triangles=triangles, ...)
triplot(x, y, mask=mask, ...)
triplot(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

The remaining args and kwargs are the same as for plot.

Returns

lines
[Line2D] The drawn triangles edges.

markers
[Line2D] The drawn marker nodes.

Examples using matplotlib.axes.Axes.triplot

• sphx_glr_gallery_images_contours_and_fields_tricontour_smooth_delaunay.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_smooth_user.py

• sphx_glr_gallery_images_contours_and_fields_trigradient_demo.py

• sphx_glr_gallery_images_contours_and_fields_triplot_demo.py

• sphx_glr_gallery_event_handling_trifinder_event_demo.py

matplotlib.axes.Axes.tricontour

Axes.tricontour(*args, **kwargs)
Draw contour lines on an unstructured triangular grid.

The triangulation can be specified in one of two ways; either

tricontour(triangulation, ...)

where triangulation is a Triangulation object, or

tricontour(x, y, ...)
tricontour(x, y, triangles, ...)
tricontour(x, y, triangles=triangles, ...)
tricontour(x, y, mask=mask, ...)
tricontour(x, y, triangles, mask=mask, ...)

1394 Chapter 18. Modules

Matplotlib, Release 3.4.3

in which case a Triangulation object will be created. See that class' docstring for an explanation
of these cases.

The remaining arguments may be:

tricontour(..., Z)

where Z is the array of values to contour, one per point in the triangulation. The level values are chosen
automatically.

tricontour(..., Z, levels)

contour up to levels+1 automatically chosen contour levels (levels intervals).

tricontour(..., Z, levels)

draw contour lines at the values specified in sequence levels, which must be in increasing order.

tricontour(Z, **kwargs)

Use keyword arguments to control colors, linewidth, origin, cmap ... see below for more details.

Parameters

triangulation
[Triangulation, optional] The unstructured triangular grid.

If specified, then x, y, triangles, and mask are not accepted.

x, y
[array-like, optional] The coordinates of the values in Z.

triangles
[(ntri, 3) array-like of int, optional] For each triangle, the indices of the three points
that make up the triangle, ordered in an anticlockwise manner. If not specified, the
Delaunay triangulation is calculated.

mask
[(ntri,) array-like of bool, optional] Which triangles are masked out.

Z
[2D array-like] The height values over which the contour is drawn.

levels
[int or array-like, optional] Determines the number and positions of the contour
lines / regions.

If an int n, use MaxNLocator, which tries to automatically choose no more than
n+1 "nice" contour levels between vmin and vmax.

18.5. matplotlib.axes 1395

Matplotlib, Release 3.4.3

If array-like, draw contour lines at the specified levels. The values must be in
increasing order.

Returns

TriContourSet

Other Parameters

colors
[color string or sequence of colors, optional] The colors of the levels, i.e., the
contour lines.

The sequence is cycled for the levels in ascending order. If the sequence is shorter
than the number of levels, it's repeated.

As a shortcut, single color strings may be used in place of one-element lists, i.e.
'red' instead of ['red'] to color all levels with the same color. This shortcut
does only work for color strings, not for other ways of specifying colors.

By default (value None), the colormap specified by cmap will be used.

alpha
[float, default: 1] The alpha blending value, between 0 (transparent) and 1
(opaque).

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps the level values to colors.

If both colors and cmap are given, an error is raised.

norm
[Normalize, optional] If a colormap is used, the Normalize instance scales
the level values to the canonical colormap range [0, 1] for mapping to colors. If
not given, the default linear scaling is used.

vmin, vmax
[float, optional] If not None, either or both of these values will be supplied to the
Normalize instance, overriding the default color scaling based on levels.

origin
[{None, 'upper', 'lower', 'image'}, default: None] Determines the orientation and
exact position of Z by specifying the position of Z[0, 0]. This is only relevant,
if X, Y are not given.

• None: Z[0, 0] is at X=0, Y=0 in the lower left corner.

• 'lower': Z[0, 0] is at X=0.5, Y=0.5 in the lower left corner.

1396 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

• 'upper': Z[0, 0] is at X=N+0.5, Y=0.5 in the upper left corner.

• 'image': Use the value from rcParams["image.origin"] (default:
'upper').

extent
[(x0, x1, y0, y1), optional] If origin is not None, then extent is interpreted as in
imshow: it gives the outer pixel boundaries. In this case, the position of Z[0, 0] is
the center of the pixel, not a corner. If origin is None, then (x0, y0) is the position
of Z[0, 0], and (x1, y1) is the position of Z[-1, -1].

This argument is ignored if X and Y are specified in the call to contour.

locator
[ticker.Locator subclass, optional] The locator is used to determine the contour
levels if they are not given explicitly via levels. Defaults to MaxNLocator.

extend
[{'neither', 'both', 'min', 'max'}, default: 'neither'] Determines the tricontour-
coloring of values that are outside the levels range.

If 'neither', values outside the levels range are not colored. If 'min', 'max' or 'both',
color the values below, above or below and above the levels range.

Values below min(levels) and above max(levels) are mapped to the
under/over values of the Colormap. Note that most colormaps do not have
dedicated colors for these by default, so that the over and under values are the
edge values of the colormap. You may want to set these values explicitly using
Colormap.set_under and Colormap.set_over.

Note: An existing TriContourSet does not get notified if properties of its col-
ormap are changed. Therefore, an explicit call to ContourSet.changed() is
needed after modifying the colormap. The explicit call can be left out, if a colorbar
is assigned to the TriContourSet because it internally calls ContourSet.
changed().

xunits, yunits
[registered units, optional] Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface.

antialiased
[bool, optional] Enable antialiasing, overriding the defaults. For filled contours,
the default is True. For line contours, it is taken from rcParams["lines.
antialiased"] (default: True).

linewidths
[float or array-like, default: rcParams["contour.linewidth"] (default:
None)] The line width of the contour lines.

18.5. matplotlib.axes 1397

../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

If a number, all levels will be plotted with this linewidth.

If a sequence, the levels in ascending order will be plotted with the linewidths in
the order specified.

If None, this falls back to rcParams["lines.linewidth"] (default: 1.5).

linestyles
[{None, 'solid', 'dashed', 'dashdot', 'dotted'}, optional] If linestyles is None, the de-
fault is 'solid' unless the lines are monochrome. In that case, negative contours will
take their linestyle from rcParams["contour.negative_linestyle"]
(default: 'dashed') setting.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

Examples using matplotlib.axes.Axes.tricontour

• sphx_glr_gallery_images_contours_and_fields_irregulardatagrid.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_demo.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_smooth_delaunay.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_smooth_user.py

• sphx_glr_gallery_images_contours_and_fields_trigradient_demo.py

• sphx_glr_gallery_mplot3d_tricontour3d.py

matplotlib.axes.Axes.tricontourf

Axes.tricontourf(*args, **kwargs)
Draw contour regions on an unstructured triangular grid.

The triangulation can be specified in one of two ways; either

tricontourf(triangulation, ...)

where triangulation is a Triangulation object, or

tricontourf(x, y, ...)
tricontourf(x, y, triangles, ...)
tricontourf(x, y, triangles=triangles, ...)
tricontourf(x, y, mask=mask, ...)
tricontourf(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See that class' docstring for an explanation
of these cases.

The remaining arguments may be:

1398 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.negative_linestyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

tricontourf(..., Z)

where Z is the array of values to contour, one per point in the triangulation. The level values are chosen
automatically.

tricontourf(..., Z, levels)

contour up to levels+1 automatically chosen contour levels (levels intervals).

tricontourf(..., Z, levels)

draw contour regions at the values specified in sequence levels, which must be in increasing order.

tricontourf(Z, **kwargs)

Use keyword arguments to control colors, linewidth, origin, cmap ... see below for more details.

Parameters

triangulation
[Triangulation, optional] The unstructured triangular grid.

If specified, then x, y, triangles, and mask are not accepted.

x, y
[array-like, optional] The coordinates of the values in Z.

triangles
[(ntri, 3) array-like of int, optional] For each triangle, the indices of the three points
that make up the triangle, ordered in an anticlockwise manner. If not specified, the
Delaunay triangulation is calculated.

mask
[(ntri,) array-like of bool, optional] Which triangles are masked out.

Z
[2D array-like] The height values over which the contour is drawn.

levels
[int or array-like, optional] Determines the number and positions of the contour
lines / regions.

If an int n, use MaxNLocator, which tries to automatically choose no more than
n+1 "nice" contour levels between vmin and vmax.

If array-like, draw contour lines at the specified levels. The values must be in
increasing order.

Returns

18.5. matplotlib.axes 1399

Matplotlib, Release 3.4.3

TriContourSet

Other Parameters

colors
[color string or sequence of colors, optional] The colors of the levels, i.e., the
contour regions.

The sequence is cycled for the levels in ascending order. If the sequence is shorter
than the number of levels, it's repeated.

As a shortcut, single color strings may be used in place of one-element lists, i.e.
'red' instead of ['red'] to color all levels with the same color. This shortcut
does only work for color strings, not for other ways of specifying colors.

By default (value None), the colormap specified by cmap will be used.

alpha
[float, default: 1] The alpha blending value, between 0 (transparent) and 1
(opaque).

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps the level values to colors.

If both colors and cmap are given, an error is raised.

norm
[Normalize, optional] If a colormap is used, the Normalize instance scales
the level values to the canonical colormap range [0, 1] for mapping to colors. If
not given, the default linear scaling is used.

vmin, vmax
[float, optional] If not None, either or both of these values will be supplied to the
Normalize instance, overriding the default color scaling based on levels.

origin
[{None, 'upper', 'lower', 'image'}, default: None] Determines the orientation and
exact position of Z by specifying the position of Z[0, 0]. This is only relevant,
if X, Y are not given.

• None: Z[0, 0] is at X=0, Y=0 in the lower left corner.

• 'lower': Z[0, 0] is at X=0.5, Y=0.5 in the lower left corner.

• 'upper': Z[0, 0] is at X=N+0.5, Y=0.5 in the upper left corner.

• 'image': Use the value from rcParams["image.origin"] (default:
'upper').

1400 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

extent
[(x0, x1, y0, y1), optional] If origin is not None, then extent is interpreted as in
imshow: it gives the outer pixel boundaries. In this case, the position of Z[0, 0] is
the center of the pixel, not a corner. If origin is None, then (x0, y0) is the position
of Z[0, 0], and (x1, y1) is the position of Z[-1, -1].

This argument is ignored if X and Y are specified in the call to contour.

locator
[ticker.Locator subclass, optional] The locator is used to determine the contour
levels if they are not given explicitly via levels. Defaults to MaxNLocator.

extend
[{'neither', 'both', 'min', 'max'}, default: 'neither'] Determines thetricontourf-
coloring of values that are outside the levels range.

If 'neither', values outside the levels range are not colored. If 'min', 'max' or 'both',
color the values below, above or below and above the levels range.

Values below min(levels) and above max(levels) are mapped to the
under/over values of the Colormap. Note that most colormaps do not have
dedicated colors for these by default, so that the over and under values are the
edge values of the colormap. You may want to set these values explicitly using
Colormap.set_under and Colormap.set_over.

Note: An existing TriContourSet does not get notified if properties of its col-
ormap are changed. Therefore, an explicit call to ContourSet.changed() is
needed after modifying the colormap. The explicit call can be left out, if a colorbar
is assigned to the TriContourSet because it internally calls ContourSet.
changed().

xunits, yunits
[registered units, optional] Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface.

antialiased
[bool, optional] Enable antialiasing, overriding the defaults. For filled contours,
the default is True. For line contours, it is taken from rcParams["lines.
antialiased"] (default: True).

hatches
[list[str], optional] A list of cross hatch patterns to use on the filled areas. If None,
no hatching will be added to the contour. Hatching is supported in the PostScript,
PDF, SVG and Agg backends only.

18.5. matplotlib.axes 1401

../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

tricontourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < Z <= z2

except for the lowest interval, which is closed on both sides (i.e. it includes the lowest value).

Examples using matplotlib.axes.Axes.tricontourf

• sphx_glr_gallery_images_contours_and_fields_irregulardatagrid.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_demo.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_smooth_user.py

• sphx_glr_gallery_mplot3d_tricontourf3d.py

Text and annotations

Axes.annotate Annotate the point xy with text text.
Axes.text Add text to the Axes.
Axes.table Add a table to an Axes.
Axes.arrow Add an arrow to the Axes.
Axes.inset_axes Add a child inset Axes to this existing Axes.
Axes.indicate_inset Add an inset indicator to the Axes.
Axes.indicate_inset_zoom Add an inset indicator rectangle to the Axes based

on the axis limits for an inset_ax and draw connec-
tors between inset_ax and the rectangle.

Axes.secondary_xaxis Add a second x-axis to this Axes.
Axes.secondary_yaxis Add a second y-axis to this Axes.

matplotlib.axes.Axes.annotate

Axes.annotate(text, xy, *args, **kwargs)
Annotate the point xy with text text.

In the simplest form, the text is placed at xy.

Optionally, the text can be displayed in another position xytext. An arrow pointing from the text to the
annotated point xy can then be added by defining arrowprops.

Parameters

text

1402 Chapter 18. Modules

Matplotlib, Release 3.4.3

[str] The text of the annotation.

xy
[(float, float)] The point (x, y) to annotate. The coordinate system is determined
by xycoords.

xytext
[(float, float), default: xy] The position (x, y) to place the text at. The coordinate
system is determined by textcoords.

xycoords
[str or Artist or Transform or callable or (float, float), default: 'data'] The
coordinate system that xy is given in. The following types of values are supported:

• One of the following strings:

Value Description
'figure points' Points from the lower left of the figure
'figure pixels' Pixels from the lower left of the figure
'figure fraction' Fraction of figure from lower left
'subfigure
points'

Points from the lower left of the subfigure

'subfigure
pixels'

Pixels from the lower left of the subfigure

'subfigure frac-
tion'

Fraction of subfigure from lower left

'axes points' Points from lower left corner of axes
'axes pixels' Pixels from lower left corner of axes
'axes fraction' Fraction of axes from lower left
'data' Use the coordinate system of the object being annotated

(default)
'polar' (theta, r) if not native 'data' coordinates

Note that 'subfigure pixels' and 'figure pixels' are the same for the parent figure,
so users who want code that is usable in a subfigure can use 'subfigure pixels'.

• An Artist: xy is interpreted as a fraction of the artist's Bbox. E.g. (0, 0)
would be the lower left corner of the bounding box and (0.5, 1) would be the
center top of the bounding box.

• A Transform to transform xy to screen coordinates.

• A function with one of the following signatures:

def transform(renderer) -> Bbox
def transform(renderer) -> Transform

where renderer is a RendererBase subclass.

18.5. matplotlib.axes 1403

Matplotlib, Release 3.4.3

The result of the function is interpreted like the Artist and Transform
cases above.

• A tuple (xcoords, ycoords) specifying separate coordinate systems for x and y.
xcoords and ycoords must each be of one of the above described types.

See Advanced Annotations for more details.

textcoords
[str or Artist or Transform or callable or (float, float), default: value of xy-
coords] The coordinate system that xytext is given in.

All xycoords values are valid as well as the following strings:

Value Description
'offset points' Offset (in points) from the xy value
'offset pixels' Offset (in pixels) from the xy value

arrowprops
[dict, optional] The properties used to draw a FancyArrowPatch arrow be-
tween the positions xy and xytext. Note that the edge of the arrow pointing to xy-
text will be centered on the text itself and may not point directly to the coordinates
given in xytext.

If arrowprops does not contain the key 'arrowstyle' the allowed keys are:

Key Description
width The width of the arrow in points
headwidth The width of the base of the arrow head in points
headlength The length of the arrow head in points
shrink Fraction of total length to shrink from both ends
? Any key to matplotlib.patches.FancyArrowPatch

If arrowprops contains the key 'arrowstyle' the above keys are forbidden. The
allowed values of 'arrowstyle' are:

1404 Chapter 18. Modules

Matplotlib, Release 3.4.3

Name Attrs
'-' None
'->' head_length=0.4,head_width=0.2
'-[' widthB=1.0,lengthB=0.2,angleB=None
'|-|' widthA=1.0,widthB=1.0
'-|>' head_length=0.4,head_width=0.2
'<-' head_length=0.4,head_width=0.2
'<->' head_length=0.4,head_width=0.2
'<|-' head_length=0.4,head_width=0.2
'<|-|>' head_length=0.4,head_width=0.2
'fancy' head_length=0.4,head_width=0.4,tail_width=0.4
'simple' head_length=0.5,head_width=0.5,tail_width=0.2
'wedge' tail_width=0.3,shrink_factor=0.5

Valid keys for FancyArrowPatch are:

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

Defaults to None, i.e. no arrow is drawn.

annotation_clip
[bool or None, default: None]Whether to draw the annotation when the annotation
point xy is outside the axes area.

• If True, the annotation will only be drawn when xy is within the axes.

• If False, the annotation will always be drawn.

• If None, the annotation will only be drawn when xy is within the axes and xy-
coords is 'data'.

**kwargs
Additional kwargs are passed to Text.

Returns

Annotation

18.5. matplotlib.axes 1405

Matplotlib, Release 3.4.3

See also:

Advanced Annotations

Examples using matplotlib.axes.Axes.annotate

• sphx_glr_gallery_lines_bars_and_markers_broken_barh.py

• sphx_glr_gallery_lines_bars_and_markers_hat_graph.py

• sphx_glr_gallery_lines_bars_and_markers_timeline.py

• sphx_glr_gallery_subplots_axes_and_figures_gridspec_and_subplots.py

• sphx_glr_gallery_pie_and_polar_charts_pie_and_donut_labels.py

• sphx_glr_gallery_text_labels_and_annotations_angle_annotation.py

• sphx_glr_gallery_text_labels_and_annotations_annotation_demo.py

• sphx_glr_gallery_text_labels_and_annotations_fancyarrow_demo.py

• sphx_glr_gallery_text_labels_and_annotations_tex_demo.py

• sphx_glr_gallery_pyplots_annotate_transform.py

• sphx_glr_gallery_pyplots_annotation_basic.py

• sphx_glr_gallery_pyplots_annotation_polar.py

• sphx_glr_gallery_pyplots_text_commands.py

• sphx_glr_gallery_shapes_and_collections_donut.py

• sphx_glr_gallery_axisartist_demo_axis_direction.py

• sphx_glr_gallery_axisartist_simple_axis_pad.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_showcase_xkcd.py

• sphx_glr_gallery_misc_patheffect_demo.py

• sphx_glr_gallery_units_annotate_with_units.py

• sphx_glr_gallery_userdemo_annotate_explain.py

• sphx_glr_gallery_userdemo_annotate_simple01.py

• sphx_glr_gallery_userdemo_annotate_simple02.py

• sphx_glr_gallery_userdemo_annotate_simple03.py

• sphx_glr_gallery_userdemo_annotate_simple04.py

• sphx_glr_gallery_userdemo_annotate_simple_coord01.py

• sphx_glr_gallery_userdemo_annotate_simple_coord02.py

1406 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_userdemo_annotate_simple_coord03.py

• sphx_glr_gallery_userdemo_connectionstyle_demo.py

• sphx_glr_gallery_userdemo_simple_annotate01.py

• Customizing Figure Layouts Using GridSpec and Other Functions

• Faster rendering by using blitting

• Transformations Tutorial

• Text in Matplotlib Plots

• Annotations

matplotlib.axes.Axes.text

Axes.text(x, y, s, fontdict=None, **kwargs)
Add text to the Axes.

Add the text s to the Axes at location x, y in data coordinates.

Parameters

x, y
[float] The position to place the text. By default, this is in data coordinates. The
coordinate system can be changed using the transform parameter.

s
[str] The text.

fontdict
[dict, default: None] A dictionary to override the default text properties. If fontdict
is None, the defaults are determined by rcParams.

Returns

Text

The created Text instance.

Other Parameters

**kwargs
[Text properties.] Other miscellaneous text parameters.

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array

continues on next page

18.5. matplotlib.axes 1407

Matplotlib, Release 3.4.3

Table 89 – continued from previous page
Property Description
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
visible bool
wrap bool
x float
y float
zorder float

1408 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Examples

Individual keyword arguments can be used to override any given parameter:

>>> text(x, y, s, fontsize=12)

The default transform specifies that text is in data coords, alternatively, you can specify text in axis
coords ((0, 0) is lower-left and (1, 1) is upper-right). The example below places text in the center of
the Axes:

>>> text(0.5, 0.5, 'matplotlib', horizontalalignment='center',
... verticalalignment='center', transform=ax.transAxes)

You can put a rectangular box around the text instance (e.g., to set a background color) by using the
keyword bbox. bbox is a dictionary of Rectangle properties. For example:

>>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))

Examples using matplotlib.axes.Axes.text

• sphx_glr_gallery_lines_bars_and_markers_marker_reference.py

• sphx_glr_gallery_images_contours_and_fields_demo_bboximage.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_pie_and_polar_charts_bar_of_pie.py

• sphx_glr_gallery_text_labels_and_annotations_accented_text.py

• sphx_glr_gallery_text_labels_and_annotations_label_subplots.py

• sphx_glr_gallery_text_labels_and_annotations_mathtext_demo.py

• sphx_glr_gallery_text_labels_and_annotations_multiline.py

• sphx_glr_gallery_text_labels_and_annotations_placing_text_boxes.py

• sphx_glr_gallery_text_labels_and_annotations_tex_demo.py

• sphx_glr_gallery_text_labels_and_annotations_text_alignment.py

• sphx_glr_gallery_text_labels_and_annotations_text_rotation_relative_to_line.py

• sphx_glr_gallery_text_labels_and_annotations_usetex_baseline_test.py

• sphx_glr_gallery_text_labels_and_annotations_watermark_text.py

• sphx_glr_gallery_pyplots_text_commands.py

• sphx_glr_gallery_shapes_and_collections_hatch_style_reference.py

• sphx_glr_gallery_showcase_anatomy.py

18.5. matplotlib.axes 1409

Matplotlib, Release 3.4.3

• sphx_glr_gallery_showcase_bachelors_degrees_by_gender.py

• sphx_glr_gallery_showcase_integral.py

• sphx_glr_gallery_showcase_mandelbrot.py

• The double pendulum problem

• MATPLOTLIB UNCHAINED

• sphx_glr_gallery_event_handling_data_browser.py

• sphx_glr_gallery_event_handling_pick_event_demo2.py

• sphx_glr_gallery_misc_cursor_demo.py

• sphx_glr_gallery_misc_packed_bubbles.py

• sphx_glr_gallery_misc_rasterization_demo.py

• sphx_glr_gallery_mplot3d_text3d.py

• sphx_glr_gallery_specialty_plots_anscombe.py

• sphx_glr_gallery_userdemo_annotate_explain.py

• sphx_glr_gallery_userdemo_annotate_text_arrow.py

• sphx_glr_gallery_userdemo_connectionstyle_demo.py

• sphx_glr_gallery_userdemo_custom_boxstyle01.py

• sphx_glr_gallery_userdemo_pgf_fonts.py

• sphx_glr_gallery_userdemo_pgf_texsystem.py

• sphx_glr_gallery_userdemo_simple_annotate01.py

• The Lifecycle of a Plot

• Artist tutorial

• Path Tutorial

• Transformations Tutorial

• Specifying Colors

• Choosing Colormaps in Matplotlib

• Text in Matplotlib Plots

• Text properties and layout

1410 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.table

Axes.table(cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLa-
bels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None,
colLoc='center', loc='bottom', bbox=None, edges='closed', **kwargs)

Add a table to an Axes.

At least one of cellText or cellColours must be specified. These parameters must be 2D lists, in which
the outer lists define the rows and the inner list define the column values per row. Each row must have
the same number of elements.

The table can optionally have row and column headers, which are configured using rowLabels, row-
Colours, rowLoc and colLabels, colColours, colLoc respectively.

For finer grained control over tables, use the Table class and add it to the axes with Axes.
add_table.

Parameters

cellText
[2D list of str, optional] The texts to place into the table cells.

Note: Line breaks in the strings are currently not accounted for and will result in
the text exceeding the cell boundaries.

cellColours
[2D list of colors, optional] The background colors of the cells.

cellLoc
[{'left', 'center', 'right'}, default: 'right'] The alignment of the text within the cells.

colWidths
[list of float, optional] The column widths in units of the axes. If not given, all
columns will have a width of 1 / ncols.

rowLabels
[list of str, optional] The text of the row header cells.

rowColours
[list of colors, optional] The colors of the row header cells.

rowLoc
[{'left', 'center', 'right'}, default: 'left'] The text alignment of the row header cells.

colLabels
[list of str, optional] The text of the column header cells.

colColours
[list of colors, optional] The colors of the column header cells.

18.5. matplotlib.axes 1411

Matplotlib, Release 3.4.3

colLoc
[{'left', 'center', 'right'}, default: 'left'] The text alignment of the column header
cells.

loc
[str, optional] The position of the cell with respect to ax. This must be one of the
codes.

bbox
[Bbox, optional] A bounding box to draw the table into. If this is not None, this
overrides loc.

edges
[substring of 'BRTL' or {'open', 'closed', 'horizontal', 'vertical'}] The cell edges to
be drawn with a line. See also visible_edges.

Returns

Table

The created table.

Other Parameters

**kwargs
Table properties.

1412 Chapter 18. Modules

Matplotlib, Release 3.4.3

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi

value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
figure Figure

fontsize float
gid str
in_layout bool
label object
path_effectsAbstractPathEffect

picker None or bool or float or callable
raster-
ized

bool

sketch_params(scale: float, length: float, randomness: float)
snap bool or None
trans-
form

Transform

url str
visible bool
zorder float

Examples using matplotlib.axes.Axes.table

matplotlib.axes.Axes.arrow

Axes.arrow(x, y, dx, dy, **kwargs)
Add an arrow to the Axes.

This draws an arrow from (x, y) to (x+dx, y+dy).

Parameters

x, y
[float] The x and y coordinates of the arrow base.

dx, dy
[float] The length of the arrow along x and y direction.

width
[float, default: 0.001] Width of full arrow tail.

18.5. matplotlib.axes 1413

Matplotlib, Release 3.4.3

length_includes_head
[bool, default: False] True if head is to be counted in calculating the length.

head_width
[float or None, default: 3*width] Total width of the full arrow head.

head_length
[float or None, default: 1.5*head_width] Length of arrow head.

shape
[{'full', 'left', 'right'}, default: 'full'] Draw the left-half, right-half, or full arrow.

overhang
[float, default: 0] Fraction that the arrow is swept back (0 overhang means trian-
gular shape). Can be negative or greater than one.

head_starts_at_zero
[bool, default: False] If True, the head starts being drawn at coordinate 0 instead
of ending at coordinate 0.

**kwargs
Patch properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None

continues on next page

1414 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 90 – continued from previous page
Property Description
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

Returns

FancyArrow

The created FancyArrow object.

Notes

The resulting arrow is affected by the Axes aspect ratio and limits. This may produce an arrow whose
head is not square with its stem. To create an arrow whose head is square with its stem, use anno-
tate() for example:

>>> ax.annotate("", xy=(0.5, 0.5), xytext=(0, 0),
... arrowprops=dict(arrowstyle="->"))

Examples using matplotlib.axes.Axes.arrow

• sphx_glr_gallery_text_labels_and_annotations_arrow_simple_demo.py

matplotlib.axes.Axes.inset_axes

Axes.inset_axes(bounds, *, transform=None, zorder=5, **kwargs)
Add a child inset Axes to this existing Axes.

Parameters

bounds
[[x0, y0, width, height]] Lower-left corner of inset Axes, and its width and height.

transform
[Transform] Defaults to ax.transAxes, i.e. the units of rect are in Axes-
relative coordinates.

18.5. matplotlib.axes 1415

Matplotlib, Release 3.4.3

zorder
[number] Defaults to 5 (same as Axes.legend). Adjust higher or lower to
change whether it is above or below data plotted on the parent Axes.

**kwargs
Other keyword arguments are passed on to the child Axes.

Returns

ax
The created Axes instance.

Warning: This method is experimental as of 3.0, and the API may change.

Examples

This example makes two inset Axes, the first is in Axes-relative coordinates, and the second in data-
coordinates:

fig, ax = plt.subplots()
ax.plot(range(10))
axin1 = ax.inset_axes([0.8, 0.1, 0.15, 0.15])
axin2 = ax.inset_axes(

[5, 7, 2.3, 2.3], transform=ax.transData)

Examples using matplotlib.axes.Axes.inset_axes

• sphx_glr_gallery_subplots_axes_and_figures_colorbar_placement.py

• sphx_glr_gallery_subplots_axes_and_figures_zoom_inset_axes.py

matplotlib.axes.Axes.indicate_inset

Axes.indicate_inset(bounds, inset_ax=None, *, transform=None, facecolor='none', edge-
color='0.5', alpha=0.5, zorder=4.99, **kwargs)

Add an inset indicator to the Axes. This is a rectangle on the plot at the position indicated by bounds
that optionally has lines that connect the rectangle to an inset Axes (Axes.inset_axes).

Parameters

bounds
[[x0, y0, width, height]] Lower-left corner of rectangle to be marked, and its width
and height.

1416 Chapter 18. Modules

Matplotlib, Release 3.4.3

inset_ax
[Axes] An optional inset Axes to draw connecting lines to. Two lines are drawn
connecting the indicator box to the inset Axes on corners chosen so as to not over-
lap with the indicator box.

transform
[Transform] Transform for the rectangle coordinates. Defaults to ax.
transAxes, i.e. the units of rect are in Axes-relative coordinates.

facecolor
[color, default: 'none'] Facecolor of the rectangle.

edgecolor
[color, default: '0.5'] Color of the rectangle and color of the connecting lines.

alpha
[float, default: 0.5] Transparency of the rectangle and connector lines.

zorder
[float, default: 4.99] Drawing order of the rectangle and connector lines. The
default, 4.99, is just below the default level of inset Axes.

**kwargs
Other keyword arguments are passed on to the Rectangle patch:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object

continues on next page

18.5. matplotlib.axes 1417

Matplotlib, Release 3.4.3

Table 91 – continued from previous page
Property Description
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

Returns

rectangle_patch
[patches.Rectangle] The indicator frame.

connector_lines
[4-tuple of patches.ConnectionPatch] The four connector lines connect-
ing to (lower_left, upper_left, lower_right upper_right) corners of inset_ax. Two
lines are set with visibility to False, but the user can set the visibility to True if the
automatic choice is not deemed correct.

Warning: This method is experimental as of 3.0, and the API may change.

Examples using matplotlib.axes.Axes.indicate_inset

matplotlib.axes.Axes.indicate_inset_zoom

Axes.indicate_inset_zoom(inset_ax, **kwargs)
Add an inset indicator rectangle to theAxes based on the axis limits for an inset_ax and draw connectors
between inset_ax and the rectangle.

Parameters

inset_ax
[Axes] Inset Axes to draw connecting lines to. Two lines are drawn connecting
the indicator box to the inset Axes on corners chosen so as to not overlap with the
indicator box.

**kwargs

1418 Chapter 18. Modules

Matplotlib, Release 3.4.3

Other keyword arguments are passed on to Axes.indicate_inset

Returns

rectangle_patch
[patches.Rectangle] Rectangle artist.

connector_lines
[4-tuple of patches.ConnectionPatch] Each of four connector lines com-
ing from the rectangle drawn on this axis, in the order lower left, upper left, lower
right, upper right. Two are set with visibility to False, but the user can set the
visibility to True if the automatic choice is not deemed correct.

Warning: This method is experimental as of 3.0, and the API may change.

Examples using matplotlib.axes.Axes.indicate_inset_zoom

• sphx_glr_gallery_subplots_axes_and_figures_zoom_inset_axes.py

matplotlib.axes.Axes.secondary_xaxis

Axes.secondary_xaxis(location, *, functions=None, **kwargs)
Add a second x-axis to this Axes.

For example if we want to have a second scale for the data plotted on the xaxis.

Parameters

location
[{'top', 'bottom', 'left', 'right'} or float] The position to put the secondary axis.
Strings can be 'top' or 'bottom' for orientation='x' and 'right' or 'left' for orien-
tation='y'. A float indicates the relative position on the parent axes to put the new
axes, 0.0 being the bottom (or left) and 1.0 being the top (or right).

functions
[2-tuple of func, or Transform with an inverse] If a 2-tuple of functions, the user
specifies the transform function and its inverse. i.e. functions=(lambda x:
2 / x, lambda x: 2 / x) would be an reciprocal transform with a factor
of 2.

The user can also directly supply a subclass of transforms.Transform so
long as it has an inverse.

See /gallery/subplots_axes_and_figures/secondary_axis for examples of making
these conversions.

18.5. matplotlib.axes 1419

Matplotlib, Release 3.4.3

Returns

ax
[axes._secondary_axes.SecondaryAxis]

Other Parameters

**kwargs
[Axes properties.] Other miscellaneous axes parameters.

Warning: This method is experimental as of 3.1, and the API may change.

Examples

The main axis shows frequency, and the secondary axis shows period.

10 210 1100
Period [s]

100 101 102

frequency [Hz]

100

101

102

1420 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.secondary_xaxis

• sphx_glr_gallery_subplots_axes_and_figures_secondary_axis.py

matplotlib.axes.Axes.secondary_yaxis

Axes.secondary_yaxis(location, *, functions=None, **kwargs)
Add a second y-axis to this Axes.

For example if we want to have a second scale for the data plotted on the yaxis.

Parameters

location
[{'top', 'bottom', 'left', 'right'} or float] The position to put the secondary axis.
Strings can be 'top' or 'bottom' for orientation='x' and 'right' or 'left' for orien-
tation='y'. A float indicates the relative position on the parent axes to put the new
axes, 0.0 being the bottom (or left) and 1.0 being the top (or right).

functions
[2-tuple of func, or Transform with an inverse] If a 2-tuple of functions, the user
specifies the transform function and its inverse. i.e. functions=(lambda x:
2 / x, lambda x: 2 / x) would be an reciprocal transform with a factor
of 2.

The user can also directly supply a subclass of transforms.Transform so
long as it has an inverse.

See /gallery/subplots_axes_and_figures/secondary_axis for examples of making
these conversions.

Returns

ax
[axes._secondary_axes.SecondaryAxis]

Other Parameters

**kwargs
[Axes properties.] Other miscellaneous axes parameters.

Warning: This method is experimental as of 3.1, and the API may change.

18.5. matplotlib.axes 1421

Matplotlib, Release 3.4.3

Examples

Add a secondary Axes that converts from radians to degrees

0

1

2

3

4

5

6

ra
di

an
s

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

de
gr

ee
s

Examples using matplotlib.axes.Axes.secondary_yaxis

• sphx_glr_gallery_subplots_axes_and_figures_secondary_axis.py

Vector fields

Axes.barbs Plot a 2D field of barbs.
Axes.quiver Plot a 2D field of arrows.
Axes.quiverkey Add a key to a quiver plot.
Axes.streamplot Draw streamlines of a vector flow.

1422 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.barbs

Axes.barbs(*args, data=None, **kw)
Plot a 2D field of barbs.

Call signature:

barbs([X, Y], U, V, [C], **kw)

Where X, Y define the barb locations, U, V define the barb directions, and C optionally sets the color.

All arguments may be 1D or 2D. U, V, C may be masked arrays, but masked X, Y are not supported at
present.

Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind observa-
tions, but can technically be used to plot any two dimensional vector quantity. As opposed to arrows,
which give vector magnitude by the length of the arrow, the barbs give more quantitative information
about the vector magnitude by putting slanted lines or a triangle for various increments in magnitude,
as show schematically below:

: /\ \
: / \ \
: / \ \ \
: / \ \ \
: ------------------------------

The largest increment is given by a triangle (or "flag"). After those come full lines (barbs). The
smallest increment is a half line. There is only, of course, ever at most 1 half line. If the magnitude
is small and only needs a single half-line and no full lines or triangles, the half-line is offset from the
end of the barb so that it can be easily distinguished from barbs with a single full line. The magnitude
for the barb shown above would nominally be 65, using the standard increments of 50, 10, and 5.

See also https://en.wikipedia.org/wiki/Wind_barb.

Parameters

X, Y
[1D or 2D array-like, optional] The x and y coordinates of the barb locations. See
pivot for how the barbs are drawn to the x, y positions.

If not given, they will be generated as a uniform integer meshgrid based on the
dimensions of U and V.

If X and Y are 1D but U, V are 2D, X, Y are expanded to 2D using X, Y = np.
meshgrid(X, Y). In this case len(X) and len(Y) must match the column
and row dimensions of U and V.

U, V
[1D or 2D array-like] The x and y components of the barb shaft.

C

18.5. matplotlib.axes 1423

https://en.wikipedia.org/wiki/Wind_barb

Matplotlib, Release 3.4.3

[1D or 2D array-like, optional] Numeric data that defines the barb colors by col-
ormapping via norm and cmap.

This does not support explicit colors. If you want to set colors directly, use barb-
color instead.

length
[float, default: 7] Length of the barb in points; the other parts of the barb are scaled
against this.

pivot
[{'tip', 'middle'} or float, default: 'tip'] The part of the arrow that is anchored to
the X, Y grid. The barb rotates about this point. This can also be a number, which
shifts the start of the barb that many points away from grid point.

barbcolor
[color or color sequence] The color of all parts of the barb except for the flags.
This parameter is analogous to the edgecolor parameter for polygons, which can
be used instead. However this parameter will override facecolor.

flagcolor
[color or color sequence] The color of any flags on the barb. This parameter is
analogous to the facecolor parameter for polygons, which can be used instead.
However, this parameter will override facecolor. If this is not set (and C has not
either) then flagcolor will be set to match barbcolor so that the barb has a uniform
color. If C has been set, flagcolor has no effect.

sizes
[dict, optional] A dictionary of coefficients specifying the ratio of a given feature
to the length of the barb. Only those values one wishes to override need to be
included. These features include:

• 'spacing' - space between features (flags, full/half barbs)

• 'height' - height (distance from shaft to top) of a flag or full barb

• 'width' - width of a flag, twice the width of a full barb

• 'emptybarb' - radius of the circle used for low magnitudes

fill_empty
[bool, default: False] Whether the empty barbs (circles) that are drawn should be
filled with the flag color. If they are not filled, the center is transparent.

rounding
[bool, default: True] Whether the vector magnitude should be rounded when allo-
cating barb components. If True, the magnitude is rounded to the nearest multiple
of the half-barb increment. If False, the magnitude is simply truncated to the next
lowest multiple.

1424 Chapter 18. Modules

Matplotlib, Release 3.4.3

barb_increments
[dict, optional] A dictionary of increments specifying values to associate with dif-
ferent parts of the barb. Only those values one wishes to override need to be in-
cluded.

• 'half' - half barbs (Default is 5)

• 'full' - full barbs (Default is 10)

• 'flag' - flags (default is 50)

flip_barb
[bool or array-like of bool, default: False]Whether the lines and flags should point
opposite to normal. Normal behavior is for the barbs and lines to point right (comes
from wind barbs having these features point towards low pressure in the Northern
Hemisphere).

A single value is applied to all barbs. Individual barbs can be flipped by passing a
bool array of the same size as U and V.

Returns

barbs
[Barbs]

Other Parameters

**kwargs
The barbs can further be customized using PolyCollection keyword argu-
ments:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'

continues on next page

18.5. matplotlib.axes 1425

Matplotlib, Release 3.4.3

Table 93 – continued from previous page
Property Description
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

1426 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.barbs

• sphx_glr_gallery_images_contours_and_fields_barb_demo.py

matplotlib.axes.Axes.quiver

Axes.quiver(*args, data=None, **kw)
Plot a 2D field of arrows.

Call signature:

quiver([X, Y], U, V, [C], **kw)

X, Y define the arrow locations, U, V define the arrow directions, and C optionally sets the color.

Arrow size
The default settings auto-scales the length of the arrows to a reasonable size. To change this behavior
see the scale and scale_units parameters.

Arrow shape
The defaults give a slightly swept-back arrow; to make the head a triangle, make headaxislength the
same as headlength. To make the arrow more pointed, reduce headwidth or increase headlength and
headaxislength. To make the head smaller relative to the shaft, scale down all the head parameters.
You will probably do best to leave minshaft alone.

Arrow outline
linewidths and edgecolors can be used to customize the arrow outlines.

Parameters

X, Y
[1D or 2D array-like, optional] The x and y coordinates of the arrow locations.

If not given, they will be generated as a uniform integer meshgrid based on the
dimensions of U and V.

If X and Y are 1D but U, V are 2D, X, Y are expanded to 2D using X, Y = np.
meshgrid(X, Y). In this case len(X) and len(Y) must match the column
and row dimensions of U and V.

U, V
[1D or 2D array-like] The x and y direction components of the arrow vectors.

They must have the same number of elements, matching the number of arrow
locations. U and V may be masked. Only locations unmasked in U, V, and C will
be drawn.

C

18.5. matplotlib.axes 1427

Matplotlib, Release 3.4.3

[1D or 2D array-like, optional] Numeric data that defines the arrow colors by col-
ormapping via norm and cmap.

This does not support explicit colors. If you want to set colors directly, use color
instead. The size of C must match the number of arrow locations.

units
[{'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, default: 'width'] The arrow dimen-
sions (except for length) are measured in multiples of this unit.

The following values are supported:

• 'width', 'height': The width or height of the axis.

• 'dots', 'inches': Pixels or inches based on the figure dpi.

• 'x', 'y', 'xy': X, Y or √𝑋2 + 𝑌 2 in data units.

The arrows scale differently depending on the units. For 'x' or 'y', the arrows get
larger as one zooms in; for other units, the arrow size is independent of the zoom
state. For 'width or 'height', the arrow size increases with the width and height of
the axes, respectively, when the window is resized; for 'dots' or 'inches', resizing
does not change the arrows.

angles
[{'uv', 'xy'} or array-like, default: 'uv'] Method for determining the angle of the
arrows.

• 'uv': The arrow axis aspect ratio is 1 so that if U == V the orientation of the
arrow on the plot is 45 degrees counter-clockwise from the horizontal axis (pos-
itive to the right).

Use this if the arrows symbolize a quantity that is not based on X, Y data coor-
dinates.

• 'xy': Arrows point from (x, y) to (x+u, y+v). Use this for plotting a gradient
field, for example.

• Alternatively, arbitrary angles may be specified explicitly as an array of values
in degrees, counter-clockwise from the horizontal axis.

In this case U, V is only used to determine the length of the arrows.

Note: inverting a data axis will correspondingly invert the arrows only with an-
gles='xy'.

scale
[float, optional] Number of data units per arrow length unit, e.g., m/s per plot
width; a smaller scale parameter makes the arrow longer. Default is None.

IfNone, a simple autoscaling algorithm is used, based on the average vector length
and the number of vectors. The arrow length unit is given by the scale_units pa-
rameter.

1428 Chapter 18. Modules

Matplotlib, Release 3.4.3

scale_units
[{'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, optional] If the scale kwarg is None,
the arrow length unit. Default is None.

e.g. scale_units is 'inches', scale is 2.0, and (u, v) = (1, 0), then the vector
will be 0.5 inches long.

If scale_units is 'width' or 'height', then the vector will be half the width/height of
the axes.

If scale_units is 'x' then the vector will be 0.5 x-axis units. To plot vectors in the
x-y plane, with u and v having the same units as x and y, use angles='xy',
scale_units='xy', scale=1.

width
[float, optional] Shaft width in arrow units; default depends on choice of units,
above, and number of vectors; a typical starting value is about 0.005 times the
width of the plot.

headwidth
[float, default: 3] Head width as multiple of shaft width.

headlength
[float, default: 5] Head length as multiple of shaft width.

headaxislength
[float, default: 4.5] Head length at shaft intersection.

minshaft
[float, default: 1] Length below which arrow scales, in units of head length. Do
not set this to less than 1, or small arrows will look terrible!

minlength
[float, default: 1] Minimum length as a multiple of shaft width; if an arrow length
is less than this, plot a dot (hexagon) of this diameter instead.

pivot
[{'tail', 'mid', 'middle', 'tip'}, default: 'tail'] The part of the arrow that is anchored
to the X, Y grid. The arrow rotates about this point.

'mid' is a synonym for 'middle'.

color
[color or color sequence, optional] Explicit color(s) for the arrows. If C has been
set, color has no effect.

This is a synonym for the PolyCollection facecolor parameter.

Other Parameters

18.5. matplotlib.axes 1429

Matplotlib, Release 3.4.3

**kwargs
[PolyCollection properties, optional] All other keyword arguments are
passed on to PolyCollection:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

See also:

1430 Chapter 18. Modules

Matplotlib, Release 3.4.3

Axes.quiverkey

Add a key to a quiver plot.

Examples using matplotlib.axes.Axes.quiver

• sphx_glr_gallery_images_contours_and_fields_quiver_demo.py

• sphx_glr_gallery_images_contours_and_fields_quiver_simple_demo.py

• sphx_glr_gallery_images_contours_and_fields_trigradient_demo.py

• sphx_glr_gallery_mplot3d_quiver3d.py

matplotlib.axes.Axes.quiverkey

Axes.quiverkey(Q, X, Y, U, label, **kw)
Add a key to a quiver plot.

The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is 'N' or 'S', X,
Y give the position of the middle of the key arrow. If labelpos is 'E', X, Y positions the head, and if
labelpos is 'W', X, Y positions the tail; in either of these two cases, X, Y is somewhere in the middle
of the arrow+label key object.

Parameters

Q
[matplotlib.quiver.Quiver] A Quiver object as returned by a call to
quiver().

X, Y
[float] The location of the key.

U
[float] The length of the key.

label
[str] The key label (e.g., length and units of the key).

angle
[float, default: 0] The angle of the key arrow, in degrees anti-clockwise from the
x-axis.

coordinates
[{'axes', 'figure', 'data', 'inches'}, default: 'axes'] Coordinate system and units for
X, Y: 'axes' and 'figure' are normalized coordinate systems with (0, 0) in the lower
left and (1, 1) in the upper right; 'data' are the axes data coordinates (used for the

18.5. matplotlib.axes 1431

Matplotlib, Release 3.4.3

locations of the vectors in the quiver plot itself); 'inches' is position in the figure
in inches, with (0, 0) at the lower left corner.

color
[color] Overrides face and edge colors from Q.

labelpos
[{'N', 'S', 'E', 'W'}] Position the label above, below, to the right, to the left of the
arrow, respectively.

labelsep
[float, default: 0.1] Distance in inches between the arrow and the label.

labelcolor
[color, default: rcParams["text.color"] (default: 'black')] Label
color.

fontproperties
[dict, optional] A dictionary with keyword arguments accepted by the Font-
Properties initializer: family, style, variant, size, weight.

**kwargs
Any additional keyword arguments are used to override vector properties taken
from Q.

Examples using matplotlib.axes.Axes.quiverkey

• sphx_glr_gallery_images_contours_and_fields_quiver_demo.py

• sphx_glr_gallery_images_contours_and_fields_quiver_simple_demo.py

matplotlib.axes.Axes.streamplot

Axes.streamplot(x, y, u, v, density=1, linewidth=None, color=None, cmap=None,
norm=None, arrowsize=1, arrowstyle='-|>', minlength=0.1, trans-
form=None, zorder=None, start_points=None, maxlength=4.0, integra-
tion_direction='both', *, data=None)

Draw streamlines of a vector flow.

Parameters

x, y
[1D/2D arrays] Evenly spaced strictly increasing arrays to make a grid.

u, v

1432 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=text.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[2D arrays] x and y-velocities. The number of rows and columns must match the
length of y and x, respectively.

density
[float or (float, float)] Controls the closeness of streamlines. When density =
1, the domain is divided into a 30x30 grid. density linearly scales this grid. Each
cell in the grid can have, at most, one traversing streamline. For different densities
in each direction, use a tuple (density_x, density_y).

linewidth
[float or 2D array] The width of the stream lines. With a 2D array the line width
can be varied across the grid. The array must have the same shape as u and v.

color
[color or 2D array] The streamline color. If given an array, its values are converted
to colors using cmap and norm. The array must have the same shape as u and v.

cmap
[Colormap] Colormap used to plot streamlines and arrows. This is only used if
color is an array.

norm
[Normalize] Normalize object used to scale luminance data to 0, 1. If None,
stretch (min, max) to (0, 1). This is only used if color is an array.

arrowsize
[float] Scaling factor for the arrow size.

arrowstyle
[str] Arrow style specification. See FancyArrowPatch.

minlength
[float] Minimum length of streamline in axes coordinates.

start_points
[Nx2 array] Coordinates of starting points for the streamlines in data coordinates
(the same coordinates as the x and y arrays).

zorder
[int] The zorder of the stream lines and arrows. Artists with lower zorder values
are drawn first.

maxlength
[float] Maximum length of streamline in axes coordinates.

integration_direction
[{'forward', 'backward', 'both'}, default: 'both'] Integrate the streamline in forward,
backward or both directions.

18.5. matplotlib.axes 1433

Matplotlib, Release 3.4.3

Returns

StreamplotSet
Container object with attributes

• lines: LineCollection of streamlines

• arrows: PatchCollection containing FancyArrowPatch objects
representing the arrows half-way along stream lines.

This container will probably change in the future to allow changes to the colormap,
alpha, etc. for both lines and arrows, but these changes should be backward com-
patible.

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y, u, v, start_points.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.axes.Axes.streamplot

• sphx_glr_gallery_images_contours_and_fields_plot_streamplot.py

18.5.5 Clearing

Axes.cla Clear the axes.
Axes.clear Clear the axes.

matplotlib.axes.Axes.cla

Axes.cla()
Clear the axes.

1434 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.cla

• sphx_glr_gallery_animation_animation_demo.py

• sphx_glr_gallery_event_handling_data_browser.py

matplotlib.axes.Axes.clear

Axes.clear()
Clear the axes.

Examples using matplotlib.axes.Axes.clear

18.5.6 Appearance

Axes.axis Convenience method to get or set some axis prop-
erties.

Axes.set_axis_off Turn the x- and y-axis off.
Axes.set_axis_on Turn the x- and y-axis on.
Axes.set_frame_on Set whether the axes rectangle patch is drawn.
Axes.get_frame_on Get whether the axes rectangle patch is drawn.
Axes.set_axisbelow Set whether axis ticks and gridlines are above or

below most artists.
Axes.get_axisbelow Get whether axis ticks and gridlines are above or

below most artists.
Axes.grid Configure the grid lines.
Axes.get_facecolor Get the facecolor of the Axes.
Axes.set_facecolor Set the facecolor of the Axes.

matplotlib.axes.Axes.axis

Axes.axis(*args, emit=True, **kwargs)
Convenience method to get or set some axis properties.

Call signatures:

xmin, xmax, ymin, ymax = axis()
xmin, xmax, ymin, ymax = axis([xmin, xmax, ymin, ymax])
xmin, xmax, ymin, ymax = axis(option)
xmin, xmax, ymin, ymax = axis(**kwargs)

Parameters

xmin, xmax, ymin, ymax

18.5. matplotlib.axes 1435

Matplotlib, Release 3.4.3

[float, optional] The axis limits to be set. This can also be achieved using

ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax))

option
[bool or str] If a bool, turns axis lines and labels on or off. If a string, possible
values are:

ValueDescription
'on' Turn on axis lines and labels. Same as True.
'off' Turn off axis lines and labels. Same as False.
'equal'Set equal scaling (i.e., make circles circular) by changing axis lim-

its. This is the same as ax.set_aspect('equal', ad-
justable='datalim'). Explicit data limits may not be respected
in this case.

'scaled'Set equal scaling (i.e., make circles circular) by changing dimensions of
the plot box. This is the same as ax.set_aspect('equal', ad-
justable='box', anchor='C'). Additionally, further autoscal-
ing will be disabled.

'tight' Set limits just large enough to show all data, then disable further au-
toscaling.

'auto' Automatic scaling (fill plot box with data).
'im-
age'

'scaled' with axis limits equal to data limits.

'square'Square plot; similar to 'scaled', but initially forcing xmax-xmin ==
ymax-ymin.

emit
[bool, default: True] Whether observers are notified of the axis limit change. This
option is passed on to set_xlim and set_ylim.

Returns

xmin, xmax, ymin, ymax
[float] The axis limits.

See also:

matplotlib.axes.Axes.set_xlim

matplotlib.axes.Axes.set_ylim

1436 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.axis

• sphx_glr_gallery_images_contours_and_fields_image_clip_path.py

• sphx_glr_gallery_images_contours_and_fields_image_demo.py

• sphx_glr_gallery_pie_and_polar_charts_pie_features.py

• sphx_glr_gallery_pie_and_polar_charts_bar_of_pie.py

• sphx_glr_gallery_shapes_and_collections_hatch_style_reference.py

• sphx_glr_gallery_shapes_and_collections_path_patch.py

• sphx_glr_gallery_style_sheets_ggplot.py

• sphx_glr_gallery_axes_grid1_parasite_simple2.py

• sphx_glr_gallery_axes_grid1_simple_axisline4.py

• sphx_glr_gallery_axisartist_axis_direction.py

• sphx_glr_gallery_axisartist_demo_axis_direction.py

• sphx_glr_gallery_axisartist_demo_axisline_style.py

• sphx_glr_gallery_axisartist_demo_floating_axes.py

• sphx_glr_gallery_axisartist_demo_parasite_axes.py

• sphx_glr_gallery_axisartist_demo_parasite_axes2.py

• sphx_glr_gallery_axisartist_demo_ticklabel_alignment.py

• sphx_glr_gallery_axisartist_demo_ticklabel_direction.py

• sphx_glr_gallery_axisartist_simple_axis_direction01.py

• sphx_glr_gallery_axisartist_simple_axis_direction03.py

• sphx_glr_gallery_axisartist_simple_axis_pad.py

• sphx_glr_gallery_axisartist_simple_axisartist1.py

• sphx_glr_gallery_axisartist_simple_axisline.py

• sphx_glr_gallery_axisartist_simple_axisline2.py

• sphx_glr_gallery_axisartist_simple_axisline3.py

• sphx_glr_gallery_misc_packed_bubbles.py

• sphx_glr_gallery_misc_tickedstroke_demo.py

• sphx_glr_gallery_specialty_plots_mri_demo.py

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• Specifying Colors

• Text in Matplotlib Plots

18.5. matplotlib.axes 1437

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.set_axis_off

Axes.set_axis_off()
Turn the x- and y-axis off.

This affects the axis lines, ticks, ticklabels, grid and axis labels.

Examples using matplotlib.axes.Axes.set_axis_off

• sphx_glr_gallery_lines_bars_and_markers_marker_reference.py

• sphx_glr_gallery_images_contours_and_fields_barcode_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_transparency_blend.py

• sphx_glr_gallery_pie_and_polar_charts_nested_pie.py

• Choosing Colormaps in Matplotlib

• Text properties and layout

matplotlib.axes.Axes.set_axis_on

Axes.set_axis_on()
Turn the x- and y-axis on.

This affects the axis lines, ticks, ticklabels, grid and axis labels.

Examples using matplotlib.axes.Axes.set_axis_on

matplotlib.axes.Axes.set_frame_on

Axes.set_frame_on(b)
Set whether the axes rectangle patch is drawn.

Parameters

b
[bool]

1438 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.set_frame_on

matplotlib.axes.Axes.get_frame_on

Axes.get_frame_on()
Get whether the axes rectangle patch is drawn.

Examples using matplotlib.axes.Axes.get_frame_on

matplotlib.axes.Axes.set_axisbelow

Axes.set_axisbelow(b)
Set whether axis ticks and gridlines are above or below most artists.

This controls the zorder of the ticks and gridlines. For more information on the zorder see
/gallery/misc/zorder_demo.

Parameters

b
[bool or 'line'] Possible values:

• True (zorder = 0.5): Ticks and gridlines are below all Artists.

• 'line' (zorder = 1.5): Ticks and gridlines are above patches (e.g. rectangles, with
default zorder = 1) but still below lines and markers (with their default zorder
= 2).

• False (zorder = 2.5): Ticks and gridlines are above patches and lines / markers.

See also:

get_axisbelow

Examples using matplotlib.axes.Axes.set_axisbelow

matplotlib.axes.Axes.get_axisbelow

Axes.get_axisbelow()
Get whether axis ticks and gridlines are above or below most artists.

Returns

bool or 'line'

See also:

set_axisbelow

18.5. matplotlib.axes 1439

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.get_axisbelow

matplotlib.axes.Axes.grid

Axes.grid(b=None, which='major', axis='both', **kwargs)
Configure the grid lines.

Parameters

b
[bool or None, optional] Whether to show the grid lines. If any kwargs are sup-
plied, it is assumed you want the grid on and b will be set to True.

If b is None and there are no kwargs, this toggles the visibility of the lines.

which
[{'major', 'minor', 'both'}, optional] The grid lines to apply the changes on.

axis
[{'both', 'x', 'y'}, optional] The axis to apply the changes on.

**kwargs
[Line2D properties] Define the line properties of the grid, e.g.:

grid(color='r', linestyle='-', linewidth=2)

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str

continues on next page

1440 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 97 – continued from previous page
Property Description
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

Notes

The axis is drawn as a unit, so the effective zorder for drawing the grid is determined by the zorder of
each axis, not by the zorder of the Line2D objects comprising the grid. Therefore, to set grid zorder,
use set_axisbelow or, for more control, call the set_zorder method of each axis.

Examples using matplotlib.axes.Axes.grid

• sphx_glr_gallery_lines_bars_and_markers_broken_barh.py

• sphx_glr_gallery_lines_bars_and_markers_csd_demo.py

• sphx_glr_gallery_lines_bars_and_markers_fill_between_alpha.py

• sphx_glr_gallery_lines_bars_and_markers_psd_demo.py

• sphx_glr_gallery_lines_bars_and_markers_scatter_demo2.py

• sphx_glr_gallery_lines_bars_and_markers_scatter_with_legend.py

18.5. matplotlib.axes 1441

Matplotlib, Release 3.4.3

• sphx_glr_gallery_lines_bars_and_markers_simple_plot.py

• sphx_glr_gallery_lines_bars_and_markers_xcorr_acorr_demo.py

• sphx_glr_gallery_images_contours_and_fields_contour_corner_mask.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_images_contours_and_fields_image_demo.py

• sphx_glr_gallery_images_contours_and_fields_watermark_image.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_props.py

• sphx_glr_gallery_subplots_axes_and_figures_figure_title.py

• sphx_glr_gallery_subplots_axes_and_figures_invert_axes.py

• sphx_glr_gallery_statistics_histogram_cumulative.py

• sphx_glr_gallery_pie_and_polar_charts_polar_demo.py

• sphx_glr_gallery_text_labels_and_annotations_date.py

• sphx_glr_gallery_text_labels_and_annotations_multiline.py

• sphx_glr_gallery_text_labels_and_annotations_watermark_text.py

• sphx_glr_gallery_shapes_and_collections_path_patch.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_showcase_bachelors_degrees_by_gender.py

• Decay

• The double pendulum problem

• sphx_glr_gallery_misc_custom_projection.py

• sphx_glr_gallery_misc_patheffect_demo.py

• sphx_glr_gallery_misc_pythonic_matplotlib.py

• sphx_glr_gallery_mplot3d_mixed_subplots.py

• sphx_glr_gallery_scales_log_demo.py

• sphx_glr_gallery_scales_log_test.py

• sphx_glr_gallery_scales_scales.py

• sphx_glr_gallery_scales_symlog_demo.py

• sphx_glr_gallery_units_artist_tests.py

1442 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.get_facecolor

Axes.get_facecolor()
Get the facecolor of the Axes.

Examples using matplotlib.axes.Axes.get_facecolor

matplotlib.axes.Axes.set_facecolor

Axes.set_facecolor(color)
Set the facecolor of the Axes.

Parameters

color
[color]

Examples using matplotlib.axes.Axes.set_facecolor

• sphx_glr_gallery_color_color_demo.py

18.5.7 Property cycle

Axes.set_prop_cycle Set the property cycle of the Axes.

matplotlib.axes.Axes.set_prop_cycle

Axes.set_prop_cycle(*args, **kwargs)
Set the property cycle of the Axes.

The property cycle controls the style properties such as color, marker and linestyle of future plot com-
mands. The style properties of data already added to the Axes are not modified.

Call signatures:

set_prop_cycle(cycler)
set_prop_cycle(label=values[, label2=values2[, ...]])
set_prop_cycle(label, values)

Form 1 sets given Cycler object.

Form 2 creates a Cycler which cycles over one or more properties simultaneously and set it as the
property cycle of the axes. If multiple properties are given, their value lists must have the same length.
This is just a shortcut for explicitly creating a cycler and passing it to the function, i.e. it's short for
set_prop_cycle(cycler(label=values label2=values2, ...)).

18.5. matplotlib.axes 1443

https://matplotlib.org/cycler/generated/cycler.Cycler.html#cycler.Cycler
https://matplotlib.org/cycler/generated/cycler.Cycler.html#cycler.Cycler

Matplotlib, Release 3.4.3

Form 3 creates a Cycler for a single property and set it as the property cycle of the axes. This form
exists for compatibility with the original cycler.cycler interface. Its use is discouraged in favor
of the kwarg form, i.e. set_prop_cycle(label=values).

Parameters

cycler
[Cycler] Set the given Cycler. None resets to the cycle defined by the current style.

label
[str] The property key. Must be a valid Artist property. For example, 'color' or
'linestyle'. Aliases are allowed, such as 'c' for 'color' and 'lw' for 'linewidth'.

values
[iterable] Finite-length iterable of the property values. These values are validated
and will raise a ValueError if invalid.

See also:

matplotlib.rcsetup.cycler

Convenience function for creating validated cyclers for properties.

cycler.cycler

The original function for creating unvalidated cyclers.

Examples

Setting the property cycle for a single property:

>>> ax.set_prop_cycle(color=['red', 'green', 'blue'])

Setting the property cycle for simultaneously cycling over multiple properties (e.g. red circle, green
plus, blue cross):

>>> ax.set_prop_cycle(color=['red', 'green', 'blue'],
... marker=['o', '+', 'x'])

Examples using matplotlib.axes.Axes.set_prop_cycle

• sphx_glr_gallery_showcase_bachelors_degrees_by_gender.py

• Styling with cycler

1444 Chapter 18. Modules

https://matplotlib.org/cycler/generated/cycler.Cycler.html#cycler.Cycler
https://matplotlib.org/cycler/generated/cycler.cycler.html#cycler.cycler
https://matplotlib.org/cycler/generated/cycler.cycler.html#cycler.cycler

Matplotlib, Release 3.4.3

18.5.8 Axis / limits

Axes.get_xaxis Return the XAxis instance.
Axes.get_yaxis Return the YAxis instance.

matplotlib.axes.Axes.get_xaxis

Axes.get_xaxis()
Return the XAxis instance.

The use of this function is discouraged. You should instead directly access the attribute ax.xaxis.

Examples using matplotlib.axes.Axes.get_xaxis

matplotlib.axes.Axes.get_yaxis

Axes.get_yaxis()
Return the YAxis instance.

The use of this function is discouraged. You should instead directly access the attribute ax.yaxis.

Examples using matplotlib.axes.Axes.get_yaxis

Axis limits and direction

Axes.invert_xaxis Invert the x-axis.
Axes.xaxis_inverted Return whether the xaxis is oriented in the "inverse"

direction.
Axes.invert_yaxis Invert the y-axis.
Axes.yaxis_inverted Return whether the yaxis is oriented in the "inverse"

direction.
Axes.set_xlim Set the x-axis view limits.
Axes.get_xlim Return the x-axis view limits.
Axes.set_ylim Set the y-axis view limits.
Axes.get_ylim Return the y-axis view limits.
Axes.update_datalim Extend the dataLim Bbox to include the given

points.
Axes.update_datalim_bounds [Deprecated] Extend the datalim Bbox to in-

clude the given Bbox.
Axes.set_xbound Set the lower and upper numerical bounds of the

x-axis.
Axes.get_xbound Return the lower and upper x-axis bounds, in in-

creasing order.
continues on next page

18.5. matplotlib.axes 1445

Matplotlib, Release 3.4.3

Table 100 – continued from previous page
Axes.set_ybound Set the lower and upper numerical bounds of the

y-axis.
Axes.get_ybound Return the lower and upper y-axis bounds, in in-

creasing order.

matplotlib.axes.Axes.invert_xaxis

Axes.invert_xaxis()
Invert the x-axis.

See also:

xaxis_inverted

get_xlim, set_xlim
get_xbound, set_xbound

Examples using matplotlib.axes.Axes.invert_xaxis

matplotlib.axes.Axes.xaxis_inverted

Axes.xaxis_inverted()
Return whether the xaxis is oriented in the "inverse" direction.

The "normal" direction is increasing to the right for the x-axis and to the top for the y-axis; the "inverse"
direction is increasing to the left for the x-axis and to the bottom for the y-axis.

Examples using matplotlib.axes.Axes.xaxis_inverted

matplotlib.axes.Axes.invert_yaxis

Axes.invert_yaxis()
Invert the y-axis.

See also:

yaxis_inverted

get_ylim, set_ylim
get_ybound, set_ybound

1446 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.invert_yaxis

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_barh.py

• sphx_glr_gallery_lines_bars_and_markers_marker_reference.py

matplotlib.axes.Axes.yaxis_inverted

Axes.yaxis_inverted()
Return whether the yaxis is oriented in the "inverse" direction.

The "normal" direction is increasing to the right for the x-axis and to the top for the y-axis; the "inverse"
direction is increasing to the left for the x-axis and to the bottom for the y-axis.

Examples using matplotlib.axes.Axes.yaxis_inverted

matplotlib.axes.Axes.set_xlim

Axes.set_xlim(left=None, right=None, emit=True, auto=False, *, xmin=None, xmax=None)
Set the x-axis view limits.

Parameters

left
[float, optional] The left xlim in data coordinates. Passing None leaves the limit
unchanged.

The left and right xlims may also be passed as the tuple (left, right) as the first
positional argument (or as the left keyword argument).

right
[float, optional] The right xlim in data coordinates. Passing None leaves the limit
unchanged.

emit
[bool, default: True] Whether to notify observers of limit change.

auto
[bool or None, default: False] Whether to turn on autoscaling of the x-axis. True
turns on, False turns off, None leaves unchanged.

xmin, xmax
[float, optional] They are equivalent to left and right respectively, and it is an error
to pass both xmin and left or xmax and right.

18.5. matplotlib.axes 1447

Matplotlib, Release 3.4.3

Returns

left, right
[(float, float)] The new x-axis limits in data coordinates.

See also:

get_xlim

set_xbound, get_xbound
invert_xaxis, xaxis_inverted

Notes

The left value may be greater than the right value, in which case the x-axis values will decrease from
left to right.

Examples

>>> set_xlim(left, right)
>>> set_xlim((left, right))
>>> left, right = set_xlim(left, right)

One limit may be left unchanged.

>>> set_xlim(right=right_lim)

Limits may be passed in reverse order to flip the direction of the x-axis. For example, suppose x
represents the number of years before present. The x-axis limits might be set like the following so
5000 years ago is on the left of the plot and the present is on the right.

>>> set_xlim(5000, 0)

Examples using matplotlib.axes.Axes.set_xlim

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_broken_barh.py

• sphx_glr_gallery_lines_bars_and_markers_csd_demo.py

• sphx_glr_gallery_lines_bars_and_markers_eventcollection_demo.py

• sphx_glr_gallery_lines_bars_and_markers_markevery_demo.py

• sphx_glr_gallery_images_contours_and_fields_contours_in_optimization_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_nonuniform.py

1448 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_images_contours_and_fields_pcolormesh_grids.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_box_aspect.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_zoom_effect.py

• sphx_glr_gallery_subplots_axes_and_figures_figure_title.py

• sphx_glr_gallery_subplots_axes_and_figures_invert_axes.py

• sphx_glr_gallery_subplots_axes_and_figures_zoom_inset_axes.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_statistics_customized_violin.py

• sphx_glr_gallery_statistics_errorbar_limits.py

• sphx_glr_gallery_pie_and_polar_charts_bar_of_pie.py

• sphx_glr_gallery_text_labels_and_annotations_date.py

• sphx_glr_gallery_text_labels_and_annotations_demo_annotation_box.py

• sphx_glr_gallery_text_labels_and_annotations_demo_text_path.py

• sphx_glr_gallery_text_labels_and_annotations_fancyarrow_demo.py

• sphx_glr_gallery_text_labels_and_annotations_text_rotation_relative_to_line.py

• sphx_glr_gallery_text_labels_and_annotations_usetex_baseline_test.py

• sphx_glr_gallery_pyplots_annotate_transform.py

• sphx_glr_gallery_pyplots_whats_new_99_axes_grid.py

• sphx_glr_gallery_shapes_and_collections_donut.py

• sphx_glr_gallery_shapes_and_collections_ellipse_demo.py

• sphx_glr_gallery_shapes_and_collections_line_collection.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo2.py

• sphx_glr_gallery_axes_grid1_parasite_simple2.py

• sphx_glr_gallery_axisartist_demo_axis_direction.py

• sphx_glr_gallery_axisartist_demo_parasite_axes.py

• sphx_glr_gallery_axisartist_demo_parasite_axes2.py

• sphx_glr_gallery_axisartist_simple_axis_pad.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_showcase_bachelors_degrees_by_gender.py

• sphx_glr_gallery_showcase_xkcd.py

• Decay

18.5. matplotlib.axes 1449

Matplotlib, Release 3.4.3

• Rain simulation

• sphx_glr_gallery_event_handling_path_editor.py

• sphx_glr_gallery_event_handling_poly_editor.py

• sphx_glr_gallery_event_handling_resample.py

• sphx_glr_gallery_event_handling_zoom_window.py

• sphx_glr_gallery_frontpage_contour.py

• sphx_glr_gallery_frontpage_membrane.py

• sphx_glr_gallery_misc_custom_projection.py

• sphx_glr_gallery_misc_histogram_path.py

• sphx_glr_gallery_misc_svg_filter_line.py

• sphx_glr_gallery_misc_tickedstroke_demo.py

• sphx_glr_gallery_mplot3d_2dcollections3d.py

• sphx_glr_gallery_mplot3d_contour3d_3.py

• sphx_glr_gallery_mplot3d_contourf3d_2.py

• sphx_glr_gallery_mplot3d_pathpatch3d.py

• sphx_glr_gallery_mplot3d_polys3d.py

• sphx_glr_gallery_mplot3d_text3d.py

• sphx_glr_gallery_scales_aspect_loglog.py

• sphx_glr_gallery_scales_scales.py

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• sphx_glr_gallery_specialty_plots_skewt.py

• sphx_glr_gallery_ticks_and_spines_date_concise_formatter.py

• sphx_glr_gallery_ticks_and_spines_date_demo_convert.py

• sphx_glr_gallery_ticks_and_spines_multiple_yaxis_with_spines.py

• sphx_glr_gallery_ticks_and_spines_spines_bounds.py

• sphx_glr_gallery_units_annotate_with_units.py

• sphx_glr_gallery_units_artist_tests.py

• sphx_glr_gallery_userdemo_annotate_text_arrow.py

• sphx_glr_gallery_userdemo_connect_simple01.py

• sphx_glr_gallery_widgets_cursor.py

• sphx_glr_gallery_widgets_span_selector.py

• Path Tutorial

1450 Chapter 18. Modules

Matplotlib, Release 3.4.3

• Transformations Tutorial

• Specifying Colors

• Choosing Colormaps in Matplotlib

matplotlib.axes.Axes.get_xlim

Axes.get_xlim()
Return the x-axis view limits.

Returns

left, right
[(float, float)] The current x-axis limits in data coordinates.

See also:

set_xlim

set_xbound, get_xbound
invert_xaxis, xaxis_inverted

Notes

The x-axis may be inverted, in which case the left value will be greater than the right value.

Examples using matplotlib.axes.Axes.get_xlim

• Decay

matplotlib.axes.Axes.set_ylim

Axes.set_ylim(bottom=None, top=None, emit=True, auto=False, *, ymin=None, ymax=None)
Set the y-axis view limits.

Parameters

bottom
[float, optional] The bottom ylim in data coordinates. Passing None leaves the
limit unchanged.

The bottom and top ylims may also be passed as the tuple (bottom, top) as the first
positional argument (or as the bottom keyword argument).

18.5. matplotlib.axes 1451

Matplotlib, Release 3.4.3

top
[float, optional] The top ylim in data coordinates. Passing None leaves the limit
unchanged.

emit
[bool, default: True] Whether to notify observers of limit change.

auto
[bool or None, default: False] Whether to turn on autoscaling of the y-axis. True
turns on, False turns off, None leaves unchanged.

ymin, ymax
[float, optional] They are equivalent to bottom and top respectively, and it is an
error to pass both ymin and bottom or ymax and top.

Returns

bottom, top
[(float, float)] The new y-axis limits in data coordinates.

See also:

get_ylim

set_ybound, get_ybound
invert_yaxis, yaxis_inverted

Notes

The bottom value may be greater than the top value, in which case the y-axis values will decrease from
bottom to top.

Examples

>>> set_ylim(bottom, top)
>>> set_ylim((bottom, top))
>>> bottom, top = set_ylim(bottom, top)

One limit may be left unchanged.

>>> set_ylim(top=top_lim)

Limits may be passed in reverse order to flip the direction of the y-axis. For example, suppose y
represents depth of the ocean in m. The y-axis limits might be set like the following so 5000 m depth
is at the bottom of the plot and the surface, 0 m, is at the top.

1452 Chapter 18. Modules

Matplotlib, Release 3.4.3

>>> set_ylim(5000, 0)

Examples using matplotlib.axes.Axes.set_ylim

• sphx_glr_gallery_lines_bars_and_markers_broken_barh.py

• sphx_glr_gallery_lines_bars_and_markers_eventcollection_demo.py

• sphx_glr_gallery_lines_bars_and_markers_hat_graph.py

• sphx_glr_gallery_lines_bars_and_markers_markevery_demo.py

• sphx_glr_gallery_lines_bars_and_markers_psd_demo.py

• sphx_glr_gallery_images_contours_and_fields_contours_in_optimization_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_nonuniform.py

• sphx_glr_gallery_images_contours_and_fields_pcolormesh_grids.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_broken_axis.py

• sphx_glr_gallery_subplots_axes_and_figures_figure_title.py

• sphx_glr_gallery_subplots_axes_and_figures_zoom_inset_axes.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_text_labels_and_annotations_demo_annotation_box.py

• sphx_glr_gallery_text_labels_and_annotations_demo_text_path.py

• sphx_glr_gallery_text_labels_and_annotations_fancyarrow_demo.py

• sphx_glr_gallery_text_labels_and_annotations_usetex_baseline_test.py

• sphx_glr_gallery_pyplots_annotate_transform.py

• sphx_glr_gallery_pyplots_annotation_basic.py

• sphx_glr_gallery_pyplots_whats_new_99_axes_grid.py

• sphx_glr_gallery_shapes_and_collections_collections.py

• sphx_glr_gallery_shapes_and_collections_donut.py

• sphx_glr_gallery_shapes_and_collections_ellipse_demo.py

• sphx_glr_gallery_shapes_and_collections_line_collection.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo2.py

• sphx_glr_gallery_axes_grid1_parasite_simple2.py

• sphx_glr_gallery_axisartist_demo_axis_direction.py

• sphx_glr_gallery_axisartist_demo_parasite_axes.py

18.5. matplotlib.axes 1453

Matplotlib, Release 3.4.3

• sphx_glr_gallery_axisartist_demo_parasite_axes2.py

• sphx_glr_gallery_axisartist_simple_axis_pad.py

• sphx_glr_gallery_axisartist_simple_axisartist1.py

• sphx_glr_gallery_axisartist_simple_axisline.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_showcase_bachelors_degrees_by_gender.py

• sphx_glr_gallery_showcase_integral.py

• sphx_glr_gallery_showcase_xkcd.py

• Decay

• Animated histogram

• Rain simulation

• MATPLOTLIB UNCHAINED

• sphx_glr_gallery_event_handling_data_browser.py

• sphx_glr_gallery_event_handling_path_editor.py

• sphx_glr_gallery_event_handling_pick_event_demo2.py

• sphx_glr_gallery_event_handling_poly_editor.py

• sphx_glr_gallery_event_handling_zoom_window.py

• sphx_glr_gallery_frontpage_contour.py

• sphx_glr_gallery_frontpage_membrane.py

• sphx_glr_gallery_misc_custom_projection.py

• sphx_glr_gallery_misc_histogram_path.py

• sphx_glr_gallery_misc_pythonic_matplotlib.py

• sphx_glr_gallery_misc_svg_filter_line.py

• sphx_glr_gallery_misc_tickedstroke_demo.py

• sphx_glr_gallery_mplot3d_2dcollections3d.py

• sphx_glr_gallery_mplot3d_contour3d_3.py

• sphx_glr_gallery_mplot3d_contourf3d_2.py

• sphx_glr_gallery_mplot3d_pathpatch3d.py

• sphx_glr_gallery_mplot3d_polys3d.py

• sphx_glr_gallery_mplot3d_text3d.py

• sphx_glr_gallery_scales_aspect_loglog.py

• sphx_glr_gallery_scales_log_demo.py

1454 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• sphx_glr_gallery_specialty_plots_skewt.py

• sphx_glr_gallery_ticks_and_spines_multiple_yaxis_with_spines.py

• sphx_glr_gallery_ticks_and_spines_spines_bounds.py

• sphx_glr_gallery_units_annotate_with_units.py

• sphx_glr_gallery_units_artist_tests.py

• sphx_glr_gallery_userdemo_annotate_text_arrow.py

• sphx_glr_gallery_userdemo_connect_simple01.py

• sphx_glr_gallery_widgets_cursor.py

• sphx_glr_gallery_widgets_span_selector.py

• Path Tutorial

• Transformations Tutorial

• Specifying Colors

• Choosing Colormaps in Matplotlib

matplotlib.axes.Axes.get_ylim

Axes.get_ylim()
Return the y-axis view limits.

Returns

bottom, top
[(float, float)] The current y-axis limits in data coordinates.

See also:

set_ylim

set_ybound, get_ybound
invert_yaxis, yaxis_inverted

18.5. matplotlib.axes 1455

Matplotlib, Release 3.4.3

Notes

The y-axis may be inverted, in which case the bottom value will be greater than the top value.

Examples using matplotlib.axes.Axes.get_ylim

• sphx_glr_gallery_shapes_and_collections_collections.py

matplotlib.axes.Axes.update_datalim

Axes.update_datalim(xys, updatex=True, updatey=True)
Extend the dataLim Bbox to include the given points.

If no data is set currently, the Bbox will ignore its limits and set the bound to be the bounds of the
xydata (xys). Otherwise, it will compute the bounds of the union of its current data and the data in xys.

Parameters

xys
[2D array-like] The points to include in the data limits Bbox. This can be either a
list of (x, y) tuples or a Nx2 array.

updatex, updatey
[bool, default: True] Whether to update the x/y limits.

Examples using matplotlib.axes.Axes.update_datalim

matplotlib.axes.Axes.update_datalim_bounds

Axes.update_datalim_bounds(bounds)
[Deprecated] Extend the datalim Bbox to include the given Bbox.

Parameters

bounds
[Bbox]

1456 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

Examples using matplotlib.axes.Axes.update_datalim_bounds

matplotlib.axes.Axes.set_xbound

Axes.set_xbound(lower=None, upper=None)
Set the lower and upper numerical bounds of the x-axis.

This method will honor axes inversion regardless of parameter order. It will not change the autoscaling
setting (get_autoscalex_on()).

Parameters

lower, upper
[float or None] The lower and upper bounds. If None, the respective axis bound is
not modified.

See also:

get_xbound

get_xlim, set_xlim
invert_xaxis, xaxis_inverted

Examples using matplotlib.axes.Axes.set_xbound

matplotlib.axes.Axes.get_xbound

Axes.get_xbound()
Return the lower and upper x-axis bounds, in increasing order.

See also:

set_xbound

get_xlim, set_xlim
invert_xaxis, xaxis_inverted

18.5. matplotlib.axes 1457

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.get_xbound

matplotlib.axes.Axes.set_ybound

Axes.set_ybound(lower=None, upper=None)
Set the lower and upper numerical bounds of the y-axis.

This method will honor axes inversion regardless of parameter order. It will not change the autoscaling
setting (get_autoscaley_on()).

Parameters

lower, upper
[float or None] The lower and upper bounds. If None, the respective axis bound is
not modified.

See also:

get_ybound

get_ylim, set_ylim
invert_yaxis, yaxis_inverted

Examples using matplotlib.axes.Axes.set_ybound

matplotlib.axes.Axes.get_ybound

Axes.get_ybound()
Return the lower and upper y-axis bounds, in increasing order.

See also:

set_ybound

get_ylim, set_ylim
invert_yaxis, yaxis_inverted

Examples using matplotlib.axes.Axes.get_ybound

Axis labels, title, and legend

Axes.set_xlabel Set the label for the x-axis.
Axes.get_xlabel Get the xlabel text string.
Axes.set_ylabel Set the label for the y-axis.

continues on next page

1458 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 101 – continued from previous page
Axes.get_ylabel Get the ylabel text string.
Axes.set_title Set a title for the Axes.
Axes.get_title Get an Axes title.
Axes.legend Place a legend on the Axes.
Axes.get_legend Return the Legend instance, or None if no legend

is defined.
Axes.get_legend_handles_labels Return handles and labels for legend

matplotlib.axes.Axes.set_xlabel

Axes.set_xlabel(xlabel, fontdict=None, labelpad=None, *, loc=None, **kwargs)
Set the label for the x-axis.

Parameters

xlabel
[str] The label text.

labelpad
[float, default: rcParams["axes.labelpad"] (default: 4.0)] Spacing in
points from the axes bounding box including ticks and tick labels. If None, the
previous value is left as is.

loc
[{'left', 'center', 'right'}, default: rcParams["xaxis.labellocation"]
(default: 'center')] The label position. This is a high-level alternative for pass-
ing parameters x and horizontalalignment.

Other Parameters

**kwargs
[Text properties] Text properties control the appearance of the label.

See also:

text

Documents the properties supported by Text.

18.5. matplotlib.axes 1459

../../tutorials/introductory/customizing.html?highlight=axes.labelpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xaxis.labellocation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.set_xlabel

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_barh.py

• sphx_glr_gallery_lines_bars_and_markers_broken_barh.py

• sphx_glr_gallery_lines_bars_and_markers_csd_demo.py

• sphx_glr_gallery_lines_bars_and_markers_fill_between_alpha.py

• sphx_glr_gallery_lines_bars_and_markers_fill_between_demo.py

• sphx_glr_gallery_lines_bars_and_markers_fill_betweenx_demo.py

• sphx_glr_gallery_lines_bars_and_markers_filled_step.py

• sphx_glr_gallery_lines_bars_and_markers_hat_graph.py

• sphx_glr_gallery_lines_bars_and_markers_psd_demo.py

• sphx_glr_gallery_lines_bars_and_markers_scatter_demo2.py

• sphx_glr_gallery_lines_bars_and_markers_stackplot_demo.py

• sphx_glr_gallery_lines_bars_and_markers_vline_hline_demo.py

• sphx_glr_gallery_images_contours_and_fields_contourf_demo.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_demo.py

• sphx_glr_gallery_images_contours_and_fields_tripcolor_demo.py

• sphx_glr_gallery_images_contours_and_fields_triplot_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_align_labels_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axis_labels_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_demo_constrained_layout.py

• sphx_glr_gallery_subplots_axes_and_figures_demo_tight_layout.py

• sphx_glr_gallery_subplots_axes_and_figures_figure_title.py

• sphx_glr_gallery_subplots_axes_and_figures_invert_axes.py

• sphx_glr_gallery_subplots_axes_and_figures_secondary_axis.py

• sphx_glr_gallery_subplots_axes_and_figures_subfigures.py

• sphx_glr_gallery_subplots_axes_and_figures_subplot.py

• sphx_glr_gallery_subplots_axes_and_figures_two_scales.py

• sphx_glr_gallery_statistics_boxplot_color.py

• sphx_glr_gallery_statistics_boxplot_demo.py

1460 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_statistics_boxplot_vs_violin.py

• sphx_glr_gallery_statistics_customized_violin.py

• sphx_glr_gallery_statistics_histogram_cumulative.py

• sphx_glr_gallery_statistics_histogram_features.py

• sphx_glr_gallery_statistics_multiple_histograms_side_by_side.py

• sphx_glr_gallery_text_labels_and_annotations_accented_text.py

• sphx_glr_gallery_text_labels_and_annotations_engineering_formatter.py

• sphx_glr_gallery_text_labels_and_annotations_font_file.py

• sphx_glr_gallery_text_labels_and_annotations_legend_demo.py

• sphx_glr_gallery_text_labels_and_annotations_mathtext_demo.py

• sphx_glr_gallery_text_labels_and_annotations_multiline.py

• sphx_glr_gallery_text_labels_and_annotations_tex_demo.py

• sphx_glr_gallery_text_labels_and_annotations_titles_demo.py

• sphx_glr_gallery_pyplots_fig_axes_labels_simple.py

• sphx_glr_gallery_pyplots_text_commands.py

• sphx_glr_gallery_color_color_demo.py

• sphx_glr_gallery_shapes_and_collections_collections.py

• sphx_glr_gallery_shapes_and_collections_ellipse_collection.py

• sphx_glr_gallery_style_sheets_dark_background.py

• sphx_glr_gallery_axes_grid1_make_room_for_ylabel_using_axesgrid.py

• sphx_glr_gallery_axes_grid1_parasite_simple.py

• sphx_glr_gallery_axisartist_demo_parasite_axes.py

• sphx_glr_gallery_axisartist_demo_parasite_axes2.py

• sphx_glr_gallery_axisartist_demo_ticklabel_alignment.py

• sphx_glr_gallery_axisartist_simple_axis_direction03.py

• sphx_glr_gallery_axisartist_simple_axisline.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_showcase_xkcd.py

• Animated 3D random walk

• sphx_glr_gallery_event_handling_keypress_demo.py

• sphx_glr_gallery_misc_pythonic_matplotlib.py

• sphx_glr_gallery_mplot3d_2dcollections3d.py

18.5. matplotlib.axes 1461

Matplotlib, Release 3.4.3

• sphx_glr_gallery_mplot3d_bars3d.py

• sphx_glr_gallery_mplot3d_contour3d_3.py

• sphx_glr_gallery_mplot3d_contourf3d_2.py

• sphx_glr_gallery_mplot3d_errorbar3d.py

• sphx_glr_gallery_mplot3d_lorenz_attractor.py

• sphx_glr_gallery_mplot3d_offset.py

• sphx_glr_gallery_mplot3d_polys3d.py

• sphx_glr_gallery_mplot3d_scatter3d.py

• sphx_glr_gallery_mplot3d_surface3d_radial.py

• sphx_glr_gallery_mplot3d_text3d.py

• sphx_glr_gallery_scales_log_bar.py

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• sphx_glr_gallery_ticks_and_spines_centered_ticklabels.py

• sphx_glr_gallery_ticks_and_spines_multiple_yaxis_with_spines.py

• sphx_glr_gallery_userdemo_pgf_fonts.py

• sphx_glr_gallery_userdemo_pgf_texsystem.py

• sphx_glr_gallery_widgets_slider_demo.py

• Usage Guide

• Artist tutorial

• Constrained Layout Guide

• Tight Layout guide

• Choosing Colormaps in Matplotlib

• Text in Matplotlib Plots

matplotlib.axes.Axes.get_xlabel

Axes.get_xlabel()
Get the xlabel text string.

1462 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.get_xlabel

matplotlib.axes.Axes.set_ylabel

Axes.set_ylabel(ylabel, fontdict=None, labelpad=None, *, loc=None, **kwargs)
Set the label for the y-axis.

Parameters

ylabel
[str] The label text.

labelpad
[float, default: rcParams["axes.labelpad"] (default: 4.0)] Spacing in
points from the axes bounding box including ticks and tick labels. If None, the
previous value is left as is.

loc
[{'bottom', 'center', 'top'}, default: rcParams["yaxis.labellocation"]
(default: 'center')] The label position. This is a high-level alternative for pass-
ing parameters y and horizontalalignment.

Other Parameters

**kwargs
[Text properties] Text properties control the appearance of the label.

See also:

text

Documents the properties supported by Text.

Examples using matplotlib.axes.Axes.set_ylabel

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_bar_stacked.py

• sphx_glr_gallery_lines_bars_and_markers_barchart.py

• sphx_glr_gallery_lines_bars_and_markers_csd_demo.py

• sphx_glr_gallery_lines_bars_and_markers_fill_between_alpha.py

• sphx_glr_gallery_lines_bars_and_markers_filled_step.py

• sphx_glr_gallery_lines_bars_and_markers_hat_graph.py

18.5. matplotlib.axes 1463

../../tutorials/introductory/customizing.html?highlight=axes.labelpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=yaxis.labellocation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

• sphx_glr_gallery_lines_bars_and_markers_psd_demo.py

• sphx_glr_gallery_lines_bars_and_markers_scatter_demo2.py

• sphx_glr_gallery_lines_bars_and_markers_stackplot_demo.py

• sphx_glr_gallery_images_contours_and_fields_contourf_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_demo.py

• sphx_glr_gallery_images_contours_and_fields_tripcolor_demo.py

• sphx_glr_gallery_images_contours_and_fields_triplot_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_align_labels_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axis_labels_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_demo_constrained_layout.py

• sphx_glr_gallery_subplots_axes_and_figures_demo_tight_layout.py

• sphx_glr_gallery_subplots_axes_and_figures_figure_title.py

• sphx_glr_gallery_subplots_axes_and_figures_invert_axes.py

• sphx_glr_gallery_subplots_axes_and_figures_secondary_axis.py

• sphx_glr_gallery_subplots_axes_and_figures_subfigures.py

• sphx_glr_gallery_subplots_axes_and_figures_subplot.py

• sphx_glr_gallery_subplots_axes_and_figures_two_scales.py

• sphx_glr_gallery_statistics_boxplot_color.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_statistics_boxplot_vs_violin.py

• sphx_glr_gallery_statistics_customized_violin.py

• sphx_glr_gallery_statistics_histogram_cumulative.py

• sphx_glr_gallery_statistics_histogram_features.py

• sphx_glr_gallery_statistics_multiple_histograms_side_by_side.py

• sphx_glr_gallery_text_labels_and_annotations_accented_text.py

• sphx_glr_gallery_text_labels_and_annotations_legend_demo.py

• sphx_glr_gallery_text_labels_and_annotations_mathtext_demo.py

• sphx_glr_gallery_text_labels_and_annotations_multiline.py

• sphx_glr_gallery_text_labels_and_annotations_tex_demo.py

• sphx_glr_gallery_pyplots_fig_axes_labels_simple.py

1464 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_pyplots_text_commands.py

• sphx_glr_gallery_color_color_demo.py

• sphx_glr_gallery_shapes_and_collections_collections.py

• sphx_glr_gallery_shapes_and_collections_ellipse_collection.py

• sphx_glr_gallery_style_sheets_dark_background.py

• sphx_glr_gallery_axes_grid1_make_room_for_ylabel_using_axesgrid.py

• sphx_glr_gallery_axes_grid1_parasite_simple.py

• sphx_glr_gallery_axisartist_demo_parasite_axes.py

• sphx_glr_gallery_axisartist_demo_parasite_axes2.py

• sphx_glr_gallery_axisartist_demo_ticklabel_alignment.py

• sphx_glr_gallery_axisartist_simple_axis_direction03.py

• sphx_glr_gallery_axisartist_simple_axisline.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_showcase_xkcd.py

• Animated 3D random walk

• sphx_glr_gallery_misc_pythonic_matplotlib.py

• sphx_glr_gallery_mplot3d_2dcollections3d.py

• sphx_glr_gallery_mplot3d_bars3d.py

• sphx_glr_gallery_mplot3d_contour3d_3.py

• sphx_glr_gallery_mplot3d_contourf3d_2.py

• sphx_glr_gallery_mplot3d_errorbar3d.py

• sphx_glr_gallery_mplot3d_lorenz_attractor.py

• sphx_glr_gallery_mplot3d_mixed_subplots.py

• sphx_glr_gallery_mplot3d_offset.py

• sphx_glr_gallery_mplot3d_polys3d.py

• sphx_glr_gallery_mplot3d_scatter3d.py

• sphx_glr_gallery_mplot3d_surface3d_radial.py

• sphx_glr_gallery_mplot3d_text3d.py

• sphx_glr_gallery_scales_log_bar.py

• sphx_glr_gallery_scales_symlog_demo.py

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• sphx_glr_gallery_specialty_plots_topographic_hillshading.py

18.5. matplotlib.axes 1465

Matplotlib, Release 3.4.3

• sphx_glr_gallery_ticks_and_spines_multiple_yaxis_with_spines.py

• Usage Guide

• Artist tutorial

• Constrained Layout Guide

• Tight Layout guide

• Choosing Colormaps in Matplotlib

• Text in Matplotlib Plots

matplotlib.axes.Axes.get_ylabel

Axes.get_ylabel()
Get the ylabel text string.

Examples using matplotlib.axes.Axes.get_ylabel

matplotlib.axes.Axes.set_title

Axes.set_title(label, fontdict=None, loc=None, pad=None, *, y=None, **kwargs)
Set a title for the Axes.

Set one of the three available Axes titles. The available titles are positioned above the Axes in the
center, flush with the left edge, and flush with the right edge.

Parameters

label
[str] Text to use for the title

fontdict
[dict] A dictionary controlling the appearance of the title text, the default fontdict
is:

{'fontsize': rcParams['axes.titlesize'],
'fontweight': rcParams['axes.titleweight'],
'color': rcParams['axes.titlecolor'],
'verticalalignment': 'baseline',
'horizontalalignment': loc}

loc
[{'center', 'left', 'right'}, default: rcParams["axes.titlelocation"]
(default: 'center')] Which title to set.

1466 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=axes.titlelocation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

y
[float, default: rcParams["axes.titley"] (default: None)] Vertical Axes
loation for the title (1.0 is the top). If None (the default), y is determined automat-
ically to avoid decorators on the Axes.

pad
[float, default: rcParams["axes.titlepad"] (default: 6.0)] The offset of
the title from the top of the Axes, in points.

Returns

Text

The matplotlib text instance representing the title

Other Parameters

**kwargs
[Text properties] Other keyword arguments are text properties, see Text for a
list of valid text properties.

Examples using matplotlib.axes.Axes.set_title

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_bar_stacked.py

• sphx_glr_gallery_lines_bars_and_markers_barchart.py

• sphx_glr_gallery_lines_bars_and_markers_barh.py

• sphx_glr_gallery_lines_bars_and_markers_errorbar_subsample.py

• sphx_glr_gallery_lines_bars_and_markers_eventcollection_demo.py

• sphx_glr_gallery_lines_bars_and_markers_fill_between_alpha.py

• sphx_glr_gallery_lines_bars_and_markers_fill_between_demo.py

• sphx_glr_gallery_lines_bars_and_markers_fill_betweenx_demo.py

• sphx_glr_gallery_lines_bars_and_markers_hat_graph.py

• sphx_glr_gallery_lines_bars_and_markers_markevery_demo.py

• sphx_glr_gallery_lines_bars_and_markers_psd_demo.py

• sphx_glr_gallery_lines_bars_and_markers_scatter_demo2.py

• sphx_glr_gallery_lines_bars_and_markers_span_regions.py

• sphx_glr_gallery_lines_bars_and_markers_stackplot_demo.py

• sphx_glr_gallery_lines_bars_and_markers_vline_hline_demo.py

18.5. matplotlib.axes 1467

../../tutorials/introductory/customizing.html?highlight=axes.titley#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.titlepad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

• sphx_glr_gallery_images_contours_and_fields_contour_corner_mask.py

• sphx_glr_gallery_images_contours_and_fields_contour_demo.py

• sphx_glr_gallery_images_contours_and_fields_contour_label_demo.py

• sphx_glr_gallery_images_contours_and_fields_contourf_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_images_contours_and_fields_image_antialiasing.py

• sphx_glr_gallery_images_contours_and_fields_image_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_masked.py

• sphx_glr_gallery_images_contours_and_fields_image_nonuniform.py

• sphx_glr_gallery_images_contours_and_fields_interpolation_methods.py

• sphx_glr_gallery_images_contours_and_fields_irregulardatagrid.py

• sphx_glr_gallery_images_contours_and_fields_pcolor_demo.py

• sphx_glr_gallery_images_contours_and_fields_pcolormesh_grids.py

• sphx_glr_gallery_images_contours_and_fields_pcolormesh_levels.py

• sphx_glr_gallery_images_contours_and_fields_plot_streamplot.py

• sphx_glr_gallery_images_contours_and_fields_quiver_demo.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_demo.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_smooth_delaunay.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_smooth_user.py

• sphx_glr_gallery_images_contours_and_fields_trigradient_demo.py

• sphx_glr_gallery_images_contours_and_fields_tripcolor_demo.py

• sphx_glr_gallery_images_contours_and_fields_triplot_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_margins.py

• sphx_glr_gallery_subplots_axes_and_figures_demo_constrained_layout.py

• sphx_glr_gallery_subplots_axes_and_figures_demo_tight_layout.py

• sphx_glr_gallery_subplots_axes_and_figures_figure_title.py

• sphx_glr_gallery_subplots_axes_and_figures_invert_axes.py

• sphx_glr_gallery_subplots_axes_and_figures_secondary_axis.py

• sphx_glr_gallery_subplots_axes_and_figures_subfigures.py

• sphx_glr_gallery_subplots_axes_and_figures_subplots_demo.py

• sphx_glr_gallery_statistics_boxplot_color.py

1468 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_statistics_confidence_ellipse.py

• sphx_glr_gallery_statistics_customized_violin.py

• sphx_glr_gallery_statistics_errorbar_features.py

• sphx_glr_gallery_statistics_errorbar_limits.py

• sphx_glr_gallery_statistics_hexbin_demo.py

• sphx_glr_gallery_statistics_histogram_cumulative.py

• sphx_glr_gallery_statistics_histogram_features.py

• sphx_glr_gallery_statistics_histogram_multihist.py

• sphx_glr_gallery_pie_and_polar_charts_bar_of_pie.py

• sphx_glr_gallery_pie_and_polar_charts_pie_and_donut_labels.py

• sphx_glr_gallery_pie_and_polar_charts_polar_demo.py

• sphx_glr_gallery_text_labels_and_annotations_accented_text.py

• sphx_glr_gallery_text_labels_and_annotations_angle_annotation.py

• sphx_glr_gallery_text_labels_and_annotations_date_index_formatter.py

• sphx_glr_gallery_text_labels_and_annotations_engineering_formatter.py

• sphx_glr_gallery_text_labels_and_annotations_font_file.py

• sphx_glr_gallery_text_labels_and_annotations_label_subplots.py

• sphx_glr_gallery_text_labels_and_annotations_legend_demo.py

• sphx_glr_gallery_text_labels_and_annotations_mathtext_demo.py

• sphx_glr_gallery_text_labels_and_annotations_multiline.py

• sphx_glr_gallery_text_labels_and_annotations_tex_demo.py

• sphx_glr_gallery_text_labels_and_annotations_titles_demo.py

• sphx_glr_gallery_text_labels_and_annotations_usetex_baseline_test.py

• sphx_glr_gallery_pyplots_boxplot_demo_pyplot.py

• sphx_glr_gallery_pyplots_fig_axes_labels_simple.py

• sphx_glr_gallery_pyplots_text_commands.py

• sphx_glr_gallery_pyplots_whats_new_98_4_fill_between.py

• sphx_glr_gallery_color_color_demo.py

• sphx_glr_gallery_color_custom_cmap.py

• sphx_glr_gallery_shapes_and_collections_collections.py

• sphx_glr_gallery_shapes_and_collections_compound_path.py

• sphx_glr_gallery_shapes_and_collections_donut.py

18.5. matplotlib.axes 1469

Matplotlib, Release 3.4.3

• sphx_glr_gallery_shapes_and_collections_line_collection.py

• sphx_glr_gallery_shapes_and_collections_quad_bezier.py

• sphx_glr_gallery_style_sheets_bmh.py

• sphx_glr_gallery_style_sheets_dark_background.py

• sphx_glr_gallery_style_sheets_fivethirtyeight.py

• sphx_glr_gallery_axes_grid1_make_room_for_ylabel_using_axesgrid.py

• sphx_glr_gallery_axisartist_axis_direction.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_showcase_xkcd.py

• sphx_glr_gallery_animation_animation_demo.py

• Animated 3D random walk

• sphx_glr_gallery_event_handling_data_browser.py

• sphx_glr_gallery_event_handling_image_slices_viewer.py

• sphx_glr_gallery_event_handling_keypress_demo.py

• sphx_glr_gallery_event_handling_lasso_demo.py

• sphx_glr_gallery_event_handling_legend_picking.py

• sphx_glr_gallery_event_handling_looking_glass.py

• sphx_glr_gallery_event_handling_path_editor.py

• sphx_glr_gallery_event_handling_pick_event_demo2.py

• sphx_glr_gallery_event_handling_poly_editor.py

• sphx_glr_gallery_event_handling_trifinder_event_demo.py

• sphx_glr_gallery_event_handling_viewlims.py

• sphx_glr_gallery_misc_agg_buffer_to_array.py

• sphx_glr_gallery_misc_cursor_demo.py

• sphx_glr_gallery_misc_packed_bubbles.py

• sphx_glr_gallery_misc_pythonic_matplotlib.py

• sphx_glr_gallery_misc_rasterization_demo.py

• sphx_glr_gallery_misc_zorder_demo.py

• sphx_glr_gallery_mplot3d_3d_bars.py

• sphx_glr_gallery_mplot3d_lorenz_attractor.py

• sphx_glr_gallery_mplot3d_wire3d_zero_stride.py

• sphx_glr_gallery_scales_aspect_loglog.py

1470 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_scales_power_norm.py

• sphx_glr_gallery_scales_scales.py

• sphx_glr_gallery_specialty_plots_radar_chart.py

• sphx_glr_gallery_specialty_plots_topographic_hillshading.py

• sphx_glr_gallery_ticks_and_spines_colorbar_tick_labelling_demo.py

• sphx_glr_gallery_ticks_and_spines_date_precision_and_epochs.py

• sphx_glr_gallery_ticks_and_spines_spine_placement_demo.py

• sphx_glr_gallery_ticks_and_spines_spines.py

• sphx_glr_gallery_ticks_and_spines_spines_dropped.py

• sphx_glr_gallery_ticks_and_spines_tick_xlabel_top.py

• sphx_glr_gallery_units_artist_tests.py

• sphx_glr_gallery_units_bar_unit_demo.py

• sphx_glr_gallery_units_evans_test.py

• sphx_glr_gallery_widgets_rectangle_selector.py

• sphx_glr_gallery_widgets_span_selector.py

• Usage Guide

• Image tutorial

• Artist tutorial

• Styling with cycler

• Customizing Figure Layouts Using GridSpec and Other Functions

• Constrained Layout Guide

• Tight Layout guide

• Transformations Tutorial

• Specifying Colors

• Colormap Normalization

• Text in Matplotlib Plots

18.5. matplotlib.axes 1471

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.get_title

Axes.get_title(loc='center')
Get an Axes title.

Get one of the three available Axes titles. The available titles are positioned above the Axes in the
center, flush with the left edge, and flush with the right edge.

Parameters

loc
[{'center', 'left', 'right'}, str, default: 'center'] Which title to return.

Returns

str
The title text string.

Examples using matplotlib.axes.Axes.get_title

matplotlib.axes.Axes.legend

Axes.legend(*args, **kwargs)
Place a legend on the Axes.

Call signatures:

legend()
legend(labels)
legend(handles, labels)

The call signatures correspond to these three different ways to use this method:

1. Automatic detection of elements to be shown in the legend
The elements to be added to the legend are automatically determined, when you do not pass in any
extra arguments.

In this case, the labels are taken from the artist. You can specify them either at artist creation or by
calling the set_label() method on the artist:

ax.plot([1, 2, 3], label='Inline label')
ax.legend()

or:

line, = ax.plot([1, 2, 3])
line.set_label('Label via method')
ax.legend()

1472 Chapter 18. Modules

Matplotlib, Release 3.4.3

Specific lines can be excluded from the automatic legend element selection by defining a label starting
with an underscore. This is default for all artists, so calling Axes.legend without any arguments
and without setting the labels manually will result in no legend being drawn.

2. Labeling existing plot elements
To make a legend for lines which already exist on the Axes (via plot for instance), simply call this
function with an iterable of strings, one for each legend item. For example:

ax.plot([1, 2, 3])
ax.legend(['A simple line'])

Note: This call signature is discouraged, because the relation between plot elements and labels is only
implicit by their order and can easily be mixed up.

3. Explicitly defining the elements in the legend
For full control of which artists have a legend entry, it is possible to pass an iterable of legend artists
followed by an iterable of legend labels respectively:

ax.legend([line1, line2, line3], ['label1', 'label2', 'label3'])

Parameters

handles
[sequence of Artist, optional] A list of Artists (lines, patches) to be added to
the legend. Use this together with labels, if you need full control on what is shown
in the legend and the automatic mechanism described above is not sufficient.

The length of handles and labels should be the same in this case. If they are not,
they are truncated to the smaller length.

labels
[list of str, optional] A list of labels to show next to the artists. Use this together
with handles, if you need full control on what is shown in the legend and the
automatic mechanism described above is not sufficient.

Returns

Legend

Other Parameters

loc
[str or pair of floats, default: rcParams["legend.loc"] (default: 'best')
('best' for axes, 'upper right' for figures)] The location of the legend.

The strings 'upper left', 'upper right', 'lower left',
'lower right' place the legend at the corresponding corner of the axes/figure.

18.5. matplotlib.axes 1473

../../tutorials/introductory/customizing.html?highlight=legend.loc#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

The strings 'upper center', 'lower center', 'center left',
'center right' place the legend at the center of the corresponding edge of
the axes/figure.

The string 'center' places the legend at the center of the axes/figure.

The string 'best' places the legend at the location, among the nine locations
defined so far, with the minimum overlap with other drawn artists. This option
can be quite slow for plots with large amounts of data; your plotting speed may
benefit from providing a specific location.

The location can also be a 2-tuple giving the coordinates of the lower-left corner
of the legend in axes coordinates (in which case bbox_to_anchor will be ignored).

For back-compatibility, 'center right' (but no other location) can also be
spelled 'right', and each "string" locations can also be given as a numeric
value:

Location String Location Code
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the leg-
end in conjunction with loc. Defaults to axes.bbox (if called as a method to
Axes.legend) or figure.bbox (if Figure.legend). This argument al-
lows arbitrary placement of the legend.

Bbox coordinates are interpreted in the coordinate system given by
bbox_transform, with the default transform Axes or Figure coordinates, de-
pending on which legend is called.

If a 4-tuple or BboxBase is given, then it specifies the bbox (x, y, width,
height) that the legend is placed in. To put the legend in the best location in
the bottom right quadrant of the axes (or figure):

loc='best', bbox_to_anchor=(0.5, 0., 0.5, 0.5)

A 2-tuple (x, y) places the corner of the legend specified by loc at x, y. For
example, to put the legend's upper right-hand corner in the center of the axes (or
figure) the following keywords can be used:

1474 Chapter 18. Modules

Matplotlib, Release 3.4.3

loc='upper right', bbox_to_anchor=(0.5, 0.5)

ncol
[int, default: 1] The number of columns that the legend has.

prop
[None or matplotlib.font_manager.FontProperties or dict] The
font properties of the legend. If None (default), the current matplotlib.
rcParams will be used.

fontsize
[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}] The
font size of the legend. If the value is numeric the size will be the absolute font
size in points. String values are relative to the current default font size. This
argument is only used if prop is not specified.

labelcolor
[str or list] The color of the text in the legend. Either a valid color string (for
example, 'red'), or a list of color strings. The labelcolor can also be made to match
the color of the line or marker using 'linecolor', 'markerfacecolor' (or 'mfc'), or
'markeredgecolor' (or 'mec').

numpoints
[int, default: rcParams["legend.numpoints"] (default: 1)] The number
of marker points in the legend when creating a legend entry for a Line2D (line).

scatterpoints
[int, default: rcParams["legend.scatterpoints"] (default: 1)] The
number of marker points in the legend when creating a legend entry for a Path-
Collection (scatter plot).

scatteryoffsets
[iterable of floats, default: [0.375, 0.5, 0.3125]] The vertical offset (rel-
ative to the font size) for the markers created for a scatter plot legend entry. 0.0 is
at the base the legend text, and 1.0 is at the top. To draw all markers at the same
height, set to [0.5].

markerscale
[float, default: rcParams["legend.markerscale"] (default: 1.0)] The
relative size of legend markers compared with the originally drawn ones.

markerfirst
[bool, default: True] If True, legend marker is placed to the left of the legend label.
If False, legend marker is placed to the right of the legend label.

frameon

18.5. matplotlib.axes 1475

../../tutorials/introductory/customizing.html?highlight=legend.numpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.scatterpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.markerscale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[bool, default: rcParams["legend.frameon"] (default: True)] Whether
the legend should be drawn on a patch (frame).

fancybox
[bool, default: rcParams["legend.fancybox"] (default: True)]
Whether round edges should be enabled around the FancyBboxPatch which
makes up the legend's background.

shadow
[bool, default: rcParams["legend.shadow"] (default: False)] Whether
to draw a shadow behind the legend.

framealpha
[float, default: rcParams["legend.framealpha"] (default: 0.8)] The
alpha transparency of the legend's background. If shadow is activated and frameal-
pha is None, the default value is ignored.

facecolor
["inherit" or color, default: rcParams["legend.facecolor"] (de-
fault: 'inherit')] The legend's background color. If "inherit", use
rcParams["axes.facecolor"] (default: 'white').

edgecolor
["inherit" or color, default: rcParams["legend.edgecolor"] (default:
'0.8')] The legend's background patch edge color. If "inherit", use take
rcParams["axes.edgecolor"] (default: 'black').

mode
[{"expand", None}] If mode is set to "expand" the legend will be horizontally
expanded to fill the axes area (or bbox_to_anchor if defines the legend's size).

bbox_transform
[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor). For a value of None (default) the Axes'
transAxes transform will be used.

title
[str or None] The legend's title. Default is no title (None).

title_fontsize
[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, default:
rcParams["legend.title_fontsize"] (default: None)] The font size
of the legend's title.

borderpad
[float, default: rcParams["legend.borderpad"] (default: 0.4)] The
fractional whitespace inside the legend border, in font-size units.

1476 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=legend.frameon#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.fancybox#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.shadow#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.framealpha#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.title_fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.borderpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

labelspacing
[float, default: rcParams["legend.labelspacing"] (default: 0.5)]
The vertical space between the legend entries, in font-size units.

handlelength
[float, default: rcParams["legend.handlelength"] (default: 2.0)]
The length of the legend handles, in font-size units.

handletextpad
[float, default: rcParams["legend.handletextpad"] (default: 0.8)]
The pad between the legend handle and text, in font-size units.

borderaxespad
[float, default: rcParams["legend.borderaxespad"] (default: 0.5)]
The pad between the axes and legend border, in font-size units.

columnspacing
[float, default: rcParams["legend.columnspacing"] (default: 2.0)]
The spacing between columns, in font-size units.

handler_map
[dict or None] The custom dictionary mapping instances or types to a legend han-
dler. This handler_map updates the default handler map found at matplotlib.
legend.Legend.get_legend_handler_map.

See also:

Figure.legend

Notes

Some artists are not supported by this function. See Legend guide for details.

Examples

Examples using matplotlib.axes.Axes.legend

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_bar_stacked.py

• sphx_glr_gallery_lines_bars_and_markers_barchart.py

• sphx_glr_gallery_lines_bars_and_markers_categorical_variables.py

• sphx_glr_gallery_lines_bars_and_markers_fill_between_alpha.py

• sphx_glr_gallery_lines_bars_and_markers_hat_graph.py

18.5. matplotlib.axes 1477

../../tutorials/introductory/customizing.html?highlight=legend.labelspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.handlelength#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.handletextpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.borderaxespad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.columnspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 Model length
Data length
Total message length

• sphx_glr_gallery_lines_bars_and_markers_line_demo_dash_control.py

• sphx_glr_gallery_lines_bars_and_markers_lines_with_ticks_demo.py

• sphx_glr_gallery_lines_bars_and_markers_markevery_prop_cycle.py

• sphx_glr_gallery_lines_bars_and_markers_scatter_with_legend.py

• sphx_glr_gallery_lines_bars_and_markers_stackplot_demo.py

• sphx_glr_gallery_lines_bars_and_markers_stairs_demo.py

• sphx_glr_gallery_images_contours_and_fields_contourf_hatching.py

• sphx_glr_gallery_subplots_axes_and_figures_secondary_axis.py

• sphx_glr_gallery_statistics_confidence_ellipse.py

• sphx_glr_gallery_statistics_histogram_cumulative.py

• sphx_glr_gallery_statistics_histogram_multihist.py

• sphx_glr_gallery_pie_and_polar_charts_bar_of_pie.py

• sphx_glr_gallery_pie_and_polar_charts_pie_and_donut_labels.py

• sphx_glr_gallery_pie_and_polar_charts_polar_legend.py

• sphx_glr_gallery_text_labels_and_annotations_custom_legends.py

1478 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_text_labels_and_annotations_legend.py

• sphx_glr_gallery_text_labels_and_annotations_legend_demo.py

• sphx_glr_gallery_text_labels_and_annotations_mathtext_demo.py

• sphx_glr_gallery_text_labels_and_annotations_tex_demo.py

• sphx_glr_gallery_axisartist_demo_parasite_axes.py

• sphx_glr_gallery_axisartist_demo_parasite_axes2.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_event_handling_legend_picking.py

• sphx_glr_gallery_misc_patheffect_demo.py

• sphx_glr_gallery_misc_tickedstroke_demo.py

• sphx_glr_gallery_mplot3d_2dcollections3d.py

• sphx_glr_gallery_mplot3d_lines3d.py

• sphx_glr_gallery_ticks_and_spines_multiple_yaxis_with_spines.py

• sphx_glr_gallery_units_bar_unit_demo.py

• sphx_glr_gallery_userdemo_simple_legend01.py

• sphx_glr_gallery_userdemo_simple_legend02.py

• Usage Guide

• Constrained Layout Guide

• Tight Layout guide

• Specifying Colors

matplotlib.axes.Axes.get_legend

Axes.get_legend()
Return the Legend instance, or None if no legend is defined.

Examples using matplotlib.axes.Axes.get_legend

matplotlib.axes.Axes.get_legend_handles_labels

Axes.get_legend_handles_labels(legend_handler_map=None)
Return handles and labels for legend

ax.legend() is equivalent to

18.5. matplotlib.axes 1479

Matplotlib, Release 3.4.3

h, l = ax.get_legend_handles_labels()
ax.legend(h, l)

Examples using matplotlib.axes.Axes.get_legend_handles_labels

• Legend guide

Axis scales

Axes.set_xscale Set the x-axis scale.
Axes.get_xscale Return the xaxis' scale (as a str).
Axes.set_yscale Set the y-axis scale.
Axes.get_yscale Return the yaxis' scale (as a str).

matplotlib.axes.Axes.set_xscale

Axes.set_xscale(value, **kwargs)
Set the x-axis scale.

Parameters

value
[{"linear", "log", "symlog", "logit", ...} or ScaleBase] The axis scale type to
apply.

**kwargs
Different keyword arguments are accepted, depending on the scale. See the re-
spective class keyword arguments:

• matplotlib.scale.LinearScale

• matplotlib.scale.LogScale

• matplotlib.scale.SymmetricalLogScale

• matplotlib.scale.LogitScale

• matplotlib.scale.FuncScale

1480 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

By default, Matplotlib supports the above mentioned scales. Additionally, custom scales may be reg-
istered using matplotlib.scale.register_scale. These scales can then also be used here.

Examples using matplotlib.axes.Axes.set_xscale

• sphx_glr_gallery_lines_bars_and_markers_markevery_demo.py

• sphx_glr_gallery_text_labels_and_annotations_engineering_formatter.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo.py

• sphx_glr_gallery_scales_aspect_loglog.py

• sphx_glr_gallery_scales_log_demo.py

• sphx_glr_gallery_scales_symlog_demo.py

• Transformations Tutorial

matplotlib.axes.Axes.get_xscale

Axes.get_xscale()
Return the xaxis' scale (as a str).

Examples using matplotlib.axes.Axes.get_xscale

matplotlib.axes.Axes.set_yscale

Axes.set_yscale(value, **kwargs)
Set the y-axis scale.

Parameters

value
[{"linear", "log", "symlog", "logit", ...} or ScaleBase] The axis scale type to
apply.

**kwargs
Different keyword arguments are accepted, depending on the scale. See the re-
spective class keyword arguments:

• matplotlib.scale.LinearScale

• matplotlib.scale.LogScale

• matplotlib.scale.SymmetricalLogScale

18.5. matplotlib.axes 1481

Matplotlib, Release 3.4.3

• matplotlib.scale.LogitScale

• matplotlib.scale.FuncScale

Notes

By default, Matplotlib supports the above mentioned scales. Additionally, custom scales may be reg-
istered using matplotlib.scale.register_scale. These scales can then also be used here.

Examples using matplotlib.axes.Axes.set_yscale

• sphx_glr_gallery_lines_bars_and_markers_markevery_demo.py

• sphx_glr_gallery_statistics_boxplot.py

• sphx_glr_gallery_statistics_bxp.py

• sphx_glr_gallery_statistics_errorbar_features.py

• sphx_glr_gallery_scales_aspect_loglog.py

• sphx_glr_gallery_scales_log_bar.py

• sphx_glr_gallery_scales_log_demo.py

• sphx_glr_gallery_scales_scales.py

• sphx_glr_gallery_scales_symlog_demo.py

matplotlib.axes.Axes.get_yscale

Axes.get_yscale()
Return the yaxis' scale (as a str).

Examples using matplotlib.axes.Axes.get_yscale

Autoscaling and margins

Axes.use_sticky_edges When autoscaling, whether to obey all Artist.
sticky_edges.

Axes.margins Set or retrieve autoscaling margins.
Axes.set_xmargin Set padding of X data limits prior to autoscaling.
Axes.set_ymargin Set padding of Y data limits prior to autoscaling.
Axes.relim Recompute the data limits based on current artists.
Axes.autoscale Autoscale the axis view to the data (toggle).
Axes.autoscale_view Autoscale the view limits using the data limits.

continues on next page

1482 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 103 – continued from previous page
Axes.set_autoscale_on Set whether autoscaling is applied to axes on the

next draw or call to Axes.autoscale_view.
Axes.get_autoscale_on Get whether autoscaling is applied for both axes on

plot commands
Axes.set_autoscalex_on Set whether autoscaling for the x-axis is ap-

plied to axes on the next draw or call to Axes.
autoscale_view.

Axes.get_autoscalex_on Get whether autoscaling for the x-axis is applied on
plot commands

Axes.set_autoscaley_on Set whether autoscaling for the y-axis is ap-
plied to axes on the next draw or call to Axes.
autoscale_view.

Axes.get_autoscaley_on Get whether autoscaling for the y-axis is applied on
plot commands

matplotlib.axes.Axes.use_sticky_edges

property Axes.use_sticky_edges
When autoscaling, whether to obey all Artist.sticky_edges.

Default is True.

Setting this to False ensures that the specified margins will be applied, even if the plot includes an
image, for example, which would otherwise force a view limit to coincide with its data limit.

The changing this property does not change the plot until autoscale or autoscale_view is
called.

matplotlib.axes.Axes.margins

Axes.margins(*margins, x=None, y=None, tight=True)
Set or retrieve autoscaling margins.

The padding added to each limit of the axes is the margin times the data interval. All input parameters
must be floats within the range [0, 1]. Passing both positional and keyword arguments is invalid and
will raise a TypeError. If no arguments (positional or otherwise) are provided, the current margins
will remain in place and simply be returned.

Specifying anymargin changes only the autoscaling; for example, if xmargin is not None, then xmargin
times the X data interval will be added to each end of that interval before it is used in autoscaling.

Parameters

*margins
[float, optional] If a single positional argument is provided, it specifies both mar-
gins of the x-axis and y-axis limits. If two positional arguments are provided, they

18.5. matplotlib.axes 1483

Matplotlib, Release 3.4.3

will be interpreted as xmargin, ymargin. If setting the margin on a single axis is
desired, use the keyword arguments described below.

x, y
[float, optional] Specific margin values for the x-axis and y-axis, respectively.
These cannot be used with positional arguments, but can be used individually to
alter on e.g., only the y-axis.

tight
[bool or None, default: True] The tight parameter is passed to au-
toscale_view(), which is executed after a margin is changed; the default here
is True, on the assumption that when margins are specified, no additional padding
to match tick marks is usually desired. Set tight to Nonewill preserve the previous
setting.

Returns

xmargin, ymargin
[float]

Notes

If a previously used Axes method such as pcolor() has set use_sticky_edges to True, only
the limits not set by the "sticky artists" will be modified. To force all of the margins to be set, set
use_sticky_edges to False before calling margins().

Examples using matplotlib.axes.Axes.margins

• sphx_glr_gallery_lines_bars_and_markers_marker_reference.py

• sphx_glr_gallery_lines_bars_and_markers_timeline.py

• sphx_glr_gallery_images_contours_and_fields_trigradient_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_margins.py

• sphx_glr_gallery_text_labels_and_annotations_angle_annotation.py

• sphx_glr_gallery_style_sheets_ggplot.py

• sphx_glr_gallery_widgets_slider_demo.py

• Autoscaling

1484 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.set_xmargin

Axes.set_xmargin(m)
Set padding of X data limits prior to autoscaling.

m times the data interval will be added to each end of that interval before it is used in autoscaling. For
example, if your data is in the range [0, 2], a factor of m = 0.1 will result in a range [-0.2, 2.2].

Negative values -0.5 < m < 0 will result in clipping of the data range. I.e. for a data range [0, 2], a
factor of m = -0.1 will result in a range [0.2, 1.8].

Parameters

m
[float greater than -0.5]

Examples using matplotlib.axes.Axes.set_xmargin

matplotlib.axes.Axes.set_ymargin

Axes.set_ymargin(m)
Set padding of Y data limits prior to autoscaling.

m times the data interval will be added to each end of that interval before it is used in autoscaling. For
example, if your data is in the range [0, 2], a factor of m = 0.1 will result in a range [-0.2, 2.2].

Negative values -0.5 < m < 0 will result in clipping of the data range. I.e. for a data range [0, 2], a
factor of m = -0.1 will result in a range [0.2, 1.8].

Parameters

m
[float greater than -0.5]

Examples using matplotlib.axes.Axes.set_ymargin

matplotlib.axes.Axes.relim

Axes.relim(visible_only=False)
Recompute the data limits based on current artists.

At present, Collection instances are not supported.

Parameters

visible_only
[bool, default: False] Whether to exclude invisible artists.

18.5. matplotlib.axes 1485

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.relim

• sphx_glr_gallery_misc_packed_bubbles.py

• sphx_glr_gallery_widgets_textbox.py

matplotlib.axes.Axes.autoscale

Axes.autoscale(enable=True, axis='both', tight=None)
Autoscale the axis view to the data (toggle).

Convenience method for simple axis view autoscaling. It turns autoscaling on or off, and then, if
autoscaling for either axis is on, it performs the autoscaling on the specified axis or axes.

Parameters

enable
[bool or None, default: True] True turns autoscaling on, False turns it off. None
leaves the autoscaling state unchanged.

axis
[{'both', 'x', 'y'}, default: 'both'] Which axis to operate on.

tight
[bool or None, default: None] If True, first set the margins to zero. Then, this
argument is forwarded to autoscale_view (regardless of its value); see the
description of its behavior there.

Examples using matplotlib.axes.Axes.autoscale

• sphx_glr_gallery_subplots_axes_and_figures_axes_box_aspect.py

• Autoscaling

matplotlib.axes.Axes.autoscale_view

Axes.autoscale_view(tight=None, scalex=True, scaley=True)
Autoscale the view limits using the data limits.

Parameters

tight
[bool or None] If True, only expand the axis limits using the margins. Note that
unlike for autoscale, tight=True does not set the margins to zero.

1486 Chapter 18. Modules

Matplotlib, Release 3.4.3

If False and rcParams["axes.autolimit_mode"] (default: 'data') is
'round_numbers', then after expansion by the margins, further expand the axis lim-
its using the axis major locator.

If None (the default), reuse the value set in the previous call to au-
toscale_view (the initial value is False, but the default style sets
rcParams["axes.autolimit_mode"] (default: 'data') to 'data', in
which case this behaves like True).

scalex
[bool, default: True] Whether to autoscale the x axis.

scaley
[bool, default: True] Whether to autoscale the y axis.

Notes

The autoscaling preserves any preexisting axis direction reversal.

The data limits are not updated automatically when artist data are changed after the artist has been
added to an Axes instance. In that case, use matplotlib.axes.Axes.relim() prior to calling
autoscale_view.

If the views of the axes are fixed, e.g. via set_xlim, they will not be changed by autoscale_view().
See matplotlib.axes.Axes.autoscale() for an alternative.

Examples using matplotlib.axes.Axes.autoscale_view

• sphx_glr_gallery_shapes_and_collections_collections.py

• sphx_glr_gallery_shapes_and_collections_compound_path.py

• sphx_glr_gallery_shapes_and_collections_ellipse_collection.py

• sphx_glr_gallery_misc_packed_bubbles.py

• sphx_glr_gallery_units_bar_unit_demo.py

• sphx_glr_gallery_widgets_textbox.py

• Autoscaling

18.5. matplotlib.axes 1487

../../tutorials/introductory/customizing.html?highlight=axes.autolimit_mode#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.autolimit_mode#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.set_autoscale_on

Axes.set_autoscale_on(b)
Set whether autoscaling is applied to axes on the next draw or call to Axes.autoscale_view.

Parameters

b
[bool]

Examples using matplotlib.axes.Axes.set_autoscale_on

• sphx_glr_gallery_event_handling_resample.py

matplotlib.axes.Axes.get_autoscale_on

Axes.get_autoscale_on()
Get whether autoscaling is applied for both axes on plot commands

Examples using matplotlib.axes.Axes.get_autoscale_on

matplotlib.axes.Axes.set_autoscalex_on

Axes.set_autoscalex_on(b)
Set whether autoscaling for the x-axis is applied to axes on the next draw or call to Axes.
autoscale_view.

Parameters

b
[bool]

Examples using matplotlib.axes.Axes.set_autoscalex_on

matplotlib.axes.Axes.get_autoscalex_on

Axes.get_autoscalex_on()
Get whether autoscaling for the x-axis is applied on plot commands

1488 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.get_autoscalex_on

matplotlib.axes.Axes.set_autoscaley_on

Axes.set_autoscaley_on(b)
Set whether autoscaling for the y-axis is applied to axes on the next draw or call to Axes.
autoscale_view.

Parameters

b
[bool]

Examples using matplotlib.axes.Axes.set_autoscaley_on

matplotlib.axes.Axes.get_autoscaley_on

Axes.get_autoscaley_on()
Get whether autoscaling for the y-axis is applied on plot commands

Examples using matplotlib.axes.Axes.get_autoscaley_on

Aspect ratio

Axes.apply_aspect Adjust the Axes for a specified data aspect ratio.
Axes.set_aspect Set the aspect of the axis scaling, i.e. the ratio of

y-unit to x-unit.
Axes.get_aspect

Axes.set_box_aspect Set the axes box aspect, i.e. the ratio of height to
width.

Axes.get_box_aspect Return the axes box aspect, i.e. the ratio of height
to width.

Axes.set_adjustable Set how the Axes adjusts to achieve the required
aspect ratio.

Axes.get_adjustable Return whether the Axes will adjust its physical
dimension ('box') or its data limits ('datalim') to
achieve the desired aspect ratio.

18.5. matplotlib.axes 1489

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.apply_aspect

Axes.apply_aspect(position=None)
Adjust the Axes for a specified data aspect ratio.

Depending on get_adjustable this will modify either the Axes box (position) or the view limits.
In the former case, get_anchor will affect the position.

See also:

matplotlib.axes.Axes.set_aspect

For a description of aspect ratio handling.

matplotlib.axes.Axes.set_adjustable

Set how the Axes adjusts to achieve the required aspect ratio.

matplotlib.axes.Axes.set_anchor

Set the position in case of extra space.

Notes

This is called automatically when each Axes is drawn. You may need to call it yourself if you need to
update the Axes position and/or view limits before the Figure is drawn.

Examples using matplotlib.axes.Axes.apply_aspect

matplotlib.axes.Axes.set_aspect

Axes.set_aspect(aspect, adjustable=None, anchor=None, share=False)
Set the aspect of the axis scaling, i.e. the ratio of y-unit to x-unit.

Parameters

aspect
[{'auto', 'equal'} or float] Possible values:

• 'auto': fill the position rectangle with data.

• 'equal': same as aspect=1, i.e. same scaling for x and y.

• float: A circle will be stretched such that the height is float times the width.

adjustable
[None or {'box', 'datalim'}, optional] If not None, this defines which parameter
will be adjusted to meet the required aspect. See set_adjustable for further
details.

1490 Chapter 18. Modules

Matplotlib, Release 3.4.3

anchor
[None or str or (float, float), optional] If not None, this defines where the Axes
will be drawn if there is extra space due to aspect constraints. The most common
way to to specify the anchor are abbreviations of cardinal directions:

value description
'C' centered
'SW' lower left corner
'S' middle of bottom edge
'SE' lower right corner
etc.

See set_anchor for further details.

share
[bool, default: False] If True, apply the settings to all shared Axes.

See also:

matplotlib.axes.Axes.set_adjustable

Set how the Axes adjusts to achieve the required aspect ratio.

matplotlib.axes.Axes.set_anchor

Set the position in case of extra space.

Examples using matplotlib.axes.Axes.set_aspect

• sphx_glr_gallery_lines_bars_and_markers_gradient_bar.py

• sphx_glr_gallery_images_contours_and_fields_plot_streamplot.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_demo.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_smooth_delaunay.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_smooth_user.py

• sphx_glr_gallery_images_contours_and_fields_trigradient_demo.py

• sphx_glr_gallery_images_contours_and_fields_tripcolor_demo.py

• sphx_glr_gallery_images_contours_and_fields_triplot_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_box_aspect.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_margins.py

• sphx_glr_gallery_subplots_axes_and_figures_colorbar_placement.py

• sphx_glr_gallery_text_labels_and_annotations_multiline.py

18.5. matplotlib.axes 1491

Matplotlib, Release 3.4.3

• sphx_glr_gallery_shapes_and_collections_donut.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo2.py

• sphx_glr_gallery_axes_grid1_scatter_hist_locatable_axes.py

• sphx_glr_gallery_axes_grid1_simple_anchored_artists.py

• sphx_glr_gallery_axisartist_demo_axis_direction.py

• sphx_glr_gallery_axisartist_simple_axis_pad.py

• The double pendulum problem

• sphx_glr_gallery_misc_anchored_artists.py

• sphx_glr_gallery_misc_rasterization_demo.py

• sphx_glr_gallery_scales_aspect_loglog.py

• sphx_glr_gallery_userdemo_annotate_text_arrow.py

• Transformations Tutorial

• Colormap Normalization

matplotlib.axes.Axes.get_aspect

Axes.get_aspect()

Examples using matplotlib.axes.Axes.get_aspect

matplotlib.axes.Axes.set_box_aspect

Axes.set_box_aspect(aspect=None)
Set the axes box aspect, i.e. the ratio of height to width.

This defines the aspect of the axes in figure space and is not to be confused with the data aspect (see
set_aspect).

Parameters

aspect
[float or None] Changes the physical dimensions of the Axes, such that the ratio of
the axes height to the axes width in physical units is equal to aspect. Defining a box
aspect will change the adjustable property to 'datalim' (see set_adjustable).

Nonewill disable a fixed box aspect so that height and width of the axes are chosen
independently.

See also:

1492 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.set_aspect

for a description of aspect handling.

Examples using matplotlib.axes.Axes.set_box_aspect

• sphx_glr_gallery_subplots_axes_and_figures_axes_box_aspect.py

matplotlib.axes.Axes.get_box_aspect

Axes.get_box_aspect()
Return the axes box aspect, i.e. the ratio of height to width.

The box aspect is None (i.e. chosen depending on the available figure space) unless explicitly speci-
fied.

See also:

matplotlib.axes.Axes.set_box_aspect

for a description of box aspect.

matplotlib.axes.Axes.set_aspect

for a description of aspect handling.

Examples using matplotlib.axes.Axes.get_box_aspect

matplotlib.axes.Axes.set_adjustable

Axes.set_adjustable(adjustable, share=False)
Set how the Axes adjusts to achieve the required aspect ratio.

Parameters

adjustable
[{'box', 'datalim'}] If 'box', change the physical dimensions of the Axes. If
'datalim', change the x or y data limits.

share
[bool, default: False] If True, apply the settings to all shared Axes.

See also:

matplotlib.axes.Axes.set_aspect

For a description of aspect handling.

18.5. matplotlib.axes 1493

Matplotlib, Release 3.4.3

Notes

Shared Axes (of which twinned Axes are a special case) impose restrictions on how aspect ratios can be
imposed. For twinnedAxes, use 'datalim'. For Axes that share both x and y, use 'box'. Otherwise, either
'datalim' or 'box' may be used. These limitations are partly a requirement to avoid over-specification,
and partly a result of the particular implementation we are currently using, in which the adjustments
for aspect ratios are done sequentially and independently on each Axes as it is drawn.

Examples using matplotlib.axes.Axes.set_adjustable

• sphx_glr_gallery_scales_aspect_loglog.py

matplotlib.axes.Axes.get_adjustable

Axes.get_adjustable()
Return whether the Axeswill adjust its physical dimension ('box') or its data limits ('datalim') to achieve
the desired aspect ratio.

See also:

matplotlib.axes.Axes.set_adjustable

Set how the Axes adjusts to achieve the required aspect ratio.

matplotlib.axes.Axes.set_aspect

For a description of aspect handling.

Examples using matplotlib.axes.Axes.get_adjustable

Ticks and tick labels

Axes.set_xticks Set the xaxis' tick locations.
Axes.get_xticks Return the xaxis' tick locations in data coordinates.
Axes.set_xticklabels Set the xaxis' labels with list of string labels.
Axes.get_xticklabels Get the xaxis' tick labels.
Axes.get_xmajorticklabels Return the xaxis' major tick labels, as a list ofText.
Axes.get_xminorticklabels Return the xaxis' minor tick labels, as a list of

Text.
Axes.get_xgridlines Return the xaxis' grid lines as a list of Line2Ds.
Axes.get_xticklines Return the xaxis' tick lines as a list of Line2Ds.
Axes.xaxis_date Set up axis ticks and labels to treat data along the

xaxis as dates.
Axes.set_yticks Set the yaxis' tick locations.

continues on next page

1494 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 105 – continued from previous page
Axes.get_yticks Return the yaxis' tick locations in data coordinates.
Axes.set_yticklabels Set the yaxis' labels with list of string labels.
Axes.get_yticklabels Get the yaxis' tick labels.
Axes.get_ymajorticklabels Return the yaxis' major tick labels, as a list ofText.
Axes.get_yminorticklabels Return the yaxis' minor tick labels, as a list of

Text.
Axes.get_ygridlines Return the yaxis' grid lines as a list of Line2Ds.
Axes.get_yticklines Return the yaxis' tick lines as a list of Line2Ds.
Axes.yaxis_date Set up axis ticks and labels to treat data along the

yaxis as dates.
Axes.minorticks_off Remove minor ticks from the axes.
Axes.minorticks_on Display minor ticks on the axes.
Axes.ticklabel_format Configure the ScalarFormatter used by de-

fault for linear axes.
Axes.tick_params Change the appearance of ticks, tick labels, and

gridlines.
Axes.locator_params Control behavior of major tick locators.

matplotlib.axes.Axes.set_xticks

Axes.set_xticks(ticks, *, minor=False)
Set the xaxis' tick locations.

If necessary, the view limits of the Axis are expanded so that all given ticks are visible.

Parameters

ticks
[list of floats] List of tick locations.

minor
[bool, default: False] If False, set the major ticks; if True, the minor ticks.

Notes

The mandatory expansion of the view limits is an intentional design choice to prevent the surprise of
a non-visible tick. If you need other limits, you should set the limits explicitly after setting the ticks.

18.5. matplotlib.axes 1495

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.set_xticks

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_barchart.py

• sphx_glr_gallery_lines_bars_and_markers_hat_graph.py

• sphx_glr_gallery_lines_bars_and_markers_psd_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_statistics_boxplot_vs_violin.py

• sphx_glr_gallery_statistics_customized_violin.py

• sphx_glr_gallery_statistics_multiple_histograms_side_by_side.py

• sphx_glr_gallery_text_labels_and_annotations_multiline.py

• sphx_glr_gallery_text_labels_and_annotations_tex_demo.py

• sphx_glr_gallery_style_sheets_ggplot.py

• sphx_glr_gallery_axes_grid1_scatter_hist_locatable_axes.py

• sphx_glr_gallery_axes_grid1_simple_axisline4.py

• sphx_glr_gallery_axisartist_demo_ticklabel_alignment.py

• sphx_glr_gallery_axisartist_demo_ticklabel_direction.py

• sphx_glr_gallery_showcase_bachelors_degrees_by_gender.py

• sphx_glr_gallery_showcase_integral.py

• sphx_glr_gallery_showcase_mandelbrot.py

• sphx_glr_gallery_showcase_xkcd.py

• Rain simulation

• MATPLOTLIB UNCHAINED

• sphx_glr_gallery_frontpage_3D.py

• sphx_glr_gallery_frontpage_contour.py

• sphx_glr_gallery_frontpage_histogram.py

• sphx_glr_gallery_frontpage_membrane.py

• sphx_glr_gallery_scales_log_bar.py

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• sphx_glr_gallery_ticks_and_spines_spines_bounds.py

• sphx_glr_gallery_units_bar_unit_demo.py

• The Lifecycle of a Plot

1496 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.get_xticks

Axes.get_xticks(*, minor=False)
Return the xaxis' tick locations in data coordinates.

Examples using matplotlib.axes.Axes.get_xticks

matplotlib.axes.Axes.set_xticklabels

Axes.set_xticklabels(labels, *, fontdict=None, minor=False, **kwargs)
Set the xaxis' labels with list of string labels.

Warning: This method should only be used after fixing the tick positions using Axes.
set_xticks. Otherwise, the labels may end up in unexpected positions.

Parameters

labels
[list of str] The label texts.

fontdict
[dict, optional] A dictionary controlling the appearance of the ticklabels. The de-
fault fontdict is:

{'fontsize': rcParams['axes.titlesize'],
'fontweight': rcParams['axes.titleweight'],
'verticalalignment': 'baseline',
'horizontalalignment': loc}

minor
[bool, default: False] Whether to set the minor ticklabels rather than the major
ones.

Returns

list of Text
The labels.

Other Parameters

**kwargs
[Text properties.]

18.5. matplotlib.axes 1497

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.set_xticklabels

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_barchart.py

• sphx_glr_gallery_lines_bars_and_markers_hat_graph.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_subplots_axes_and_figures_multiple_figs_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_zoom_inset_axes.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_statistics_customized_violin.py

• sphx_glr_gallery_statistics_multiple_histograms_side_by_side.py

• sphx_glr_gallery_text_labels_and_annotations_multiline.py

• sphx_glr_gallery_text_labels_and_annotations_tex_demo.py

• sphx_glr_gallery_style_sheets_ggplot.py

• sphx_glr_gallery_axes_grid1_simple_axisline4.py

• sphx_glr_gallery_axisartist_demo_ticklabel_alignment.py

• sphx_glr_gallery_showcase_integral.py

• sphx_glr_gallery_showcase_xkcd.py

• sphx_glr_gallery_scales_log_bar.py

• sphx_glr_gallery_ticks_and_spines_colorbar_tick_labelling_demo.py

• sphx_glr_gallery_ticks_and_spines_spines_bounds.py

• sphx_glr_gallery_units_bar_unit_demo.py

• Constrained Layout Guide

matplotlib.axes.Axes.get_xticklabels

Axes.get_xticklabels(minor=False, which=None)
Get the xaxis' tick labels.

Parameters

minor
[bool] Whether to return the minor or the major ticklabels.

which
[None, ('minor', 'major', 'both')] Overrides minor.

1498 Chapter 18. Modules

Matplotlib, Release 3.4.3

Selects which ticklabels to return

Returns

list of Text

Notes

The tick label strings are not populated until a draw method has been called.

See also: draw and draw.

Examples using matplotlib.axes.Axes.get_xticklabels

• sphx_glr_gallery_lines_bars_and_markers_timeline.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_subplots_axes_and_figures_align_labels_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_shared_axis_demo.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo2.py

• sphx_glr_gallery_ticks_and_spines_date_concise_formatter.py

• sphx_glr_gallery_units_evans_test.py

• The Lifecycle of a Plot

matplotlib.axes.Axes.get_xmajorticklabels

Axes.get_xmajorticklabels()
Return the xaxis' major tick labels, as a list of Text.

Examples using matplotlib.axes.Axes.get_xmajorticklabels

matplotlib.axes.Axes.get_xminorticklabels

Axes.get_xminorticklabels()
Return the xaxis' minor tick labels, as a list of Text.

18.5. matplotlib.axes 1499

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.get_xminorticklabels

matplotlib.axes.Axes.get_xgridlines

Axes.get_xgridlines()
Return the xaxis' grid lines as a list of Line2Ds.

Examples using matplotlib.axes.Axes.get_xgridlines

matplotlib.axes.Axes.get_xticklines

Axes.get_xticklines(minor=False)
Return the xaxis' tick lines as a list of Line2Ds.

Examples using matplotlib.axes.Axes.get_xticklines

matplotlib.axes.Axes.xaxis_date

Axes.xaxis_date(tz=None)
Set up axis ticks and labels to treat data along the xaxis as dates.

Parameters

tz
[str or datetime.tzinfo, default: rcParams["timezone"] (default:
'UTC')] The timezone used to create date labels.

Examples using matplotlib.axes.Axes.xaxis_date

matplotlib.axes.Axes.set_yticks

Axes.set_yticks(ticks, *, minor=False)
Set the yaxis' tick locations.

If necessary, the view limits of the Axis are expanded so that all given ticks are visible.

Parameters

ticks
[list of floats] List of tick locations.

minor
[bool, default: False] If False, set the major ticks; if True, the minor ticks.

1500 Chapter 18. Modules

https://docs.python.org/3/library/datetime.html#datetime.tzinfo
../../tutorials/introductory/customizing.html?highlight=timezone#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

The mandatory expansion of the view limits is an intentional design choice to prevent the surprise of
a non-visible tick. If you need other limits, you should set the limits explicitly after setting the ticks.

Examples using matplotlib.axes.Axes.set_yticks

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_barh.py

• sphx_glr_gallery_lines_bars_and_markers_broken_barh.py

• sphx_glr_gallery_lines_bars_and_markers_psd_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_text_labels_and_annotations_tex_demo.py

• sphx_glr_gallery_pyplots_auto_subplots_adjust.py

• sphx_glr_gallery_axes_grid1_make_room_for_ylabel_using_axesgrid.py

• sphx_glr_gallery_axes_grid1_scatter_hist_locatable_axes.py

• sphx_glr_gallery_axisartist_demo_ticklabel_alignment.py

• sphx_glr_gallery_axisartist_demo_ticklabel_direction.py

• sphx_glr_gallery_showcase_bachelors_degrees_by_gender.py

• sphx_glr_gallery_showcase_integral.py

• sphx_glr_gallery_showcase_mandelbrot.py

• sphx_glr_gallery_showcase_xkcd.py

• Rain simulation

• MATPLOTLIB UNCHAINED

• sphx_glr_gallery_frontpage_3D.py

• sphx_glr_gallery_frontpage_contour.py

• sphx_glr_gallery_frontpage_histogram.py

• sphx_glr_gallery_frontpage_membrane.py

• sphx_glr_gallery_mplot3d_bars3d.py

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• sphx_glr_gallery_specialty_plots_skewt.py

• sphx_glr_gallery_ticks_and_spines_spines_bounds.py

18.5. matplotlib.axes 1501

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.get_yticks

Axes.get_yticks(*, minor=False)
Return the yaxis' tick locations in data coordinates.

Examples using matplotlib.axes.Axes.get_yticks

matplotlib.axes.Axes.set_yticklabels

Axes.set_yticklabels(labels, *, fontdict=None, minor=False, **kwargs)
Set the yaxis' labels with list of string labels.

Warning: This method should only be used after fixing the tick positions using Axes.
set_yticks. Otherwise, the labels may end up in unexpected positions.

Parameters

labels
[list of str] The label texts.

fontdict
[dict, optional] A dictionary controlling the appearance of the ticklabels. The de-
fault fontdict is:

{'fontsize': rcParams['axes.titlesize'],
'fontweight': rcParams['axes.titleweight'],
'verticalalignment': 'baseline',
'horizontalalignment': loc}

minor
[bool, default: False] Whether to set the minor ticklabels rather than the major
ones.

Returns

list of Text
The labels.

Other Parameters

**kwargs
[Text properties.]

1502 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.set_yticklabels

• sphx_glr_gallery_lines_bars_and_markers_bar_label_demo.py

• sphx_glr_gallery_lines_bars_and_markers_barh.py

• sphx_glr_gallery_lines_bars_and_markers_broken_barh.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_subplots_axes_and_figures_zoom_inset_axes.py

• sphx_glr_gallery_statistics_boxplot.py

• sphx_glr_gallery_statistics_bxp.py

• sphx_glr_gallery_statistics_violinplot.py

• sphx_glr_gallery_text_labels_and_annotations_tex_demo.py

• sphx_glr_gallery_pyplots_auto_subplots_adjust.py

• sphx_glr_gallery_axes_grid1_make_room_for_ylabel_using_axesgrid.py

• sphx_glr_gallery_axisartist_demo_ticklabel_alignment.py

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• sphx_glr_gallery_ticks_and_spines_colorbar_tick_labelling_demo.py

• Constrained Layout Guide

matplotlib.axes.Axes.get_yticklabels

Axes.get_yticklabels(minor=False, which=None)
Get the yaxis' tick labels.

Parameters

minor
[bool] Whether to return the minor or the major ticklabels.

which
[None, ('minor', 'major', 'both')] Overrides minor.

Selects which ticklabels to return

Returns

list of Text

18.5. matplotlib.axes 1503

Matplotlib, Release 3.4.3

Notes

The tick label strings are not populated until a draw method has been called.

See also: draw and draw.

Examples using matplotlib.axes.Axes.get_yticklabels

• sphx_glr_gallery_lines_bars_and_markers_fill_between_alpha.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo2.py

matplotlib.axes.Axes.get_ymajorticklabels

Axes.get_ymajorticklabels()
Return the yaxis' major tick labels, as a list of Text.

Examples using matplotlib.axes.Axes.get_ymajorticklabels

matplotlib.axes.Axes.get_yminorticklabels

Axes.get_yminorticklabels()
Return the yaxis' minor tick labels, as a list of Text.

Examples using matplotlib.axes.Axes.get_yminorticklabels

matplotlib.axes.Axes.get_ygridlines

Axes.get_ygridlines()
Return the yaxis' grid lines as a list of Line2Ds.

Examples using matplotlib.axes.Axes.get_ygridlines

matplotlib.axes.Axes.get_yticklines

Axes.get_yticklines(minor=False)
Return the yaxis' tick lines as a list of Line2Ds.

1504 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.get_yticklines

matplotlib.axes.Axes.yaxis_date

Axes.yaxis_date(tz=None)
Set up axis ticks and labels to treat data along the yaxis as dates.

Parameters

tz
[str or datetime.tzinfo, default: rcParams["timezone"] (default:
'UTC')] The timezone used to create date labels.

Examples using matplotlib.axes.Axes.yaxis_date

matplotlib.axes.Axes.minorticks_off

Axes.minorticks_off()
Remove minor ticks from the axes.

Examples using matplotlib.axes.Axes.minorticks_off

matplotlib.axes.Axes.minorticks_on

Axes.minorticks_on()
Display minor ticks on the axes.

Displaying minor ticks may reduce performance; you may turn them off using minorticks_off()
if drawing speed is a problem.

Examples using matplotlib.axes.Axes.minorticks_on

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

matplotlib.axes.Axes.ticklabel_format

Axes.ticklabel_format(*, axis='both', style='', scilimits=None, useOffset=None, useLo-
cale=None, useMathText=None)

Configure the ScalarFormatter used by default for linear axes.

If a parameter is not set, the corresponding property of the formatter is left unchanged.

Parameters

18.5. matplotlib.axes 1505

https://docs.python.org/3/library/datetime.html#datetime.tzinfo
../../tutorials/introductory/customizing.html?highlight=timezone#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

axis
[{'x', 'y', 'both'}, default: 'both'] The axes to configure. Only major ticks are af-
fected.

style
[{'sci', 'scientific', 'plain'}] Whether to use scientific notation. The formatter de-
fault is to use scientific notation.

scilimits
[pair of ints (m, n)] Scientific notation is used only for numbers outside the range
10m to 10n (and only if the formatter is configured to use scientific notation at all).
Use (0, 0) to include all numbers. Use (m, m) where m != 0 to fix the order of
magnitude to 10m. The formatter default is rcParams["axes.formatter.
limits"] (default: [-5, 6]).

useOffset
[bool or float] If True, the offset is calculated as needed. If False, no offset is used.
If a numeric value, it sets the offset. The formatter default isrcParams["axes.
formatter.useoffset"] (default: True).

useLocale
[bool] Whether to format the number using the current locale or using the C (En-
glish) locale. This affects e.g. the decimal separator. The formatter default is
rcParams["axes.formatter.use_locale"] (default: False).

useMathText
[bool] Render the offset and scientific notation in mathtext. The formatter default
is rcParams["axes.formatter.use_mathtext"] (default: False).

Raises

AttributeError
If the current formatter is not a ScalarFormatter.

Examples using matplotlib.axes.Axes.ticklabel_format

• sphx_glr_gallery_ticks_and_spines_scalarformatter.py

1506 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=axes.formatter.limits#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.limits#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.useoffset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.useoffset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.use_locale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.use_mathtext#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.tick_params

Axes.tick_params(axis='both', **kwargs)
Change the appearance of ticks, tick labels, and gridlines.

Tick properties that are not explicitly set using the keyword arguments remain unchanged unless reset
is True.

Parameters

axis
[{'x', 'y', 'both'}, default: 'both'] The axis to which the parameters are applied.

which
[{'major', 'minor', 'both'}, default: 'major'] The group of ticks to which the param-
eters are applied.

reset
[bool, default: False] Whether to reset the ticks to defaults before updating them.

Other Parameters

direction
[{'in', 'out', 'inout'}] Puts ticks inside the axes, outside the axes, or both.

length
[float] Tick length in points.

width
[float] Tick width in points.

color
[color] Tick color.

pad
[float] Distance in points between tick and label.

labelsize
[float or str] Tick label font size in points or as a string (e.g., 'large').

labelcolor
[color] Tick label color.

colors
[color] Tick color and label color.

18.5. matplotlib.axes 1507

Matplotlib, Release 3.4.3

zorder
[float] Tick and label zorder.

bottom, top, left, right
[bool] Whether to draw the respective ticks.

labelbottom, labeltop, labelleft, labelright
[bool] Whether to draw the respective tick labels.

labelrotation
[float] Tick label rotation

grid_color
[color] Gridline color.

grid_alpha
[float] Transparency of gridlines: 0 (transparent) to 1 (opaque).

grid_linewidth
[float] Width of gridlines in points.

grid_linestyle
[str] Any valid Line2D line style spec.

Examples

ax.tick_params(direction='out', length=6, width=2, colors='r',
grid_color='r', grid_alpha=0.5)

This will make all major ticks be red, pointing out of the box, and with dimensions 6 points by 2 points.
Tick labels will also be red. Gridlines will be red and translucent.

Examples using matplotlib.axes.Axes.tick_params

• sphx_glr_gallery_lines_bars_and_markers_scatter_hist.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_props.py

• sphx_glr_gallery_subplots_axes_and_figures_broken_axis.py

• sphx_glr_gallery_subplots_axes_and_figures_two_scales.py

• sphx_glr_gallery_pie_and_polar_charts_polar_legend.py

• sphx_glr_gallery_color_color_demo.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo.py

1508 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_axes_grid1_make_room_for_ylabel_using_axesgrid.py

• sphx_glr_gallery_axes_grid1_simple_axes_divider1.py

• sphx_glr_gallery_axes_grid1_simple_axes_divider3.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_showcase_bachelors_degrees_by_gender.py

• sphx_glr_gallery_specialty_plots_anscombe.py

• sphx_glr_gallery_ticks_and_spines_major_minor_demo.py

• sphx_glr_gallery_ticks_and_spines_multiple_yaxis_with_spines.py

• Text in Matplotlib Plots

matplotlib.axes.Axes.locator_params

Axes.locator_params(axis='both', tight=None, **kwargs)
Control behavior of major tick locators.

Because the locator is involved in autoscaling, autoscale_view is called automatically after the
parameters are changed.

Parameters

axis
[{'both', 'x', 'y'}, default: 'both'] The axis on which to operate.

tight
[bool or None, optional] Parameter passed to autoscale_view. Default is
None, for no change.

Other Parameters

**kwargs
Remaining keyword arguments are passed to directly to the set_params()
method of the locator. Supported keywords depend on the type of the locator. See
for example set_params for the ticker.MaxNLocator used by default for
linear axes.

18.5. matplotlib.axes 1509

Matplotlib, Release 3.4.3

Examples

When plotting small subplots, one might want to reduce the maximum number of ticks and use tight
bounds, for example:

ax.locator_params(tight=True, nbins=4)

Examples using matplotlib.axes.Axes.locator_params

• sphx_glr_gallery_images_contours_and_fields_contourf_demo.py

• Constrained Layout Guide

• Tight Layout guide

18.5.9 Units

Axes.convert_xunits Convert x using the unit type of the xaxis.
Axes.convert_yunits Convert y using the unit type of the yaxis.
Axes.have_units Return whether units are set on any axis.

matplotlib.axes.Axes.convert_xunits

Axes.convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

Examples using matplotlib.axes.Axes.convert_xunits

matplotlib.axes.Axes.convert_yunits

Axes.convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

1510 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.convert_yunits

matplotlib.axes.Axes.have_units

Axes.have_units()
Return whether units are set on any axis.

Examples using matplotlib.axes.Axes.have_units

18.5.10 Adding artists

Axes.add_artist Add an Artist to the axes, and return the artist.
Axes.add_child_axes Add an AxesBase to the axes' children; return the

child axes.
Axes.add_collection Add aCollection to the axes' collections; return

the collection.
Axes.add_container Add a Container to the axes' containers; return

the container.
Axes.add_image Add an AxesImage to the axes' images; return the

image.
Axes.add_line Add a Line2D to the axes' lines; return the line.
Axes.add_patch Add a Patch to the axes' patches; return the patch.
Axes.add_table Add a Table to the axes' tables; return the table.

matplotlib.axes.Axes.add_artist

Axes.add_artist(a)
Add an Artist to the axes, and return the artist.

Use add_artist only for artists for which there is no dedicated "add" method; and if necessary, use
a method such as update_datalim to manually update the dataLim if the artist is to be included
in autoscaling.

If no transform has been specified when creating the artist (e.g. artist.get_transform()
== None) then the transform is set to ax.transData.

18.5. matplotlib.axes 1511

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.add_artist

• sphx_glr_gallery_lines_bars_and_markers_scatter_with_legend.py

• sphx_glr_gallery_images_contours_and_fields_demo_bboximage.py

• sphx_glr_gallery_pie_and_polar_charts_bar_of_pie.py

• sphx_glr_gallery_text_labels_and_annotations_annotation_demo.py

• sphx_glr_gallery_text_labels_and_annotations_demo_annotation_box.py

• sphx_glr_gallery_text_labels_and_annotations_demo_text_path.py

• sphx_glr_gallery_shapes_and_collections_ellipse_demo.py

• sphx_glr_gallery_axes_grid1_demo_anchored_direction_arrows.py

• sphx_glr_gallery_axes_grid1_demo_axes_grid2.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo2.py

• sphx_glr_gallery_axes_grid1_simple_anchored_artists.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_misc_anchored_artists.py

• sphx_glr_gallery_units_artist_tests.py

• sphx_glr_gallery_userdemo_anchored_box01.py

• sphx_glr_gallery_userdemo_anchored_box02.py

• sphx_glr_gallery_userdemo_anchored_box03.py

• sphx_glr_gallery_userdemo_anchored_box04.py

• sphx_glr_gallery_userdemo_annotate_explain.py

• sphx_glr_gallery_userdemo_connect_simple01.py

• sphx_glr_gallery_userdemo_simple_annotate01.py

• sphx_glr_gallery_userdemo_simple_legend02.py

matplotlib.axes.Axes.add_child_axes

Axes.add_child_axes(ax)
Add an AxesBase to the axes' children; return the child axes.

This is the lowlevel version. See axes.Axes.inset_axes.

1512 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.add_child_axes

matplotlib.axes.Axes.add_collection

Axes.add_collection(collection, autolim=True)
Add a Collection to the axes' collections; return the collection.

Examples using matplotlib.axes.Axes.add_collection

• sphx_glr_gallery_lines_bars_and_markers_eventcollection_demo.py

• sphx_glr_gallery_lines_bars_and_markers_span_regions.py

• sphx_glr_gallery_statistics_errorbars_and_boxes.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_shapes_and_collections_collections.py

• sphx_glr_gallery_shapes_and_collections_ellipse_collection.py

• sphx_glr_gallery_shapes_and_collections_line_collection.py

• sphx_glr_gallery_shapes_and_collections_patch_collection.py

• sphx_glr_gallery_event_handling_lasso_demo.py

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• sphx_glr_gallery_units_artist_tests.py

• Autoscaling

matplotlib.axes.Axes.add_container

Axes.add_container(container)
Add a Container to the axes' containers; return the container.

Examples using matplotlib.axes.Axes.add_container

matplotlib.axes.Axes.add_image

Axes.add_image(image)
Add an AxesImage to the axes' images; return the image.

18.5. matplotlib.axes 1513

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.add_image

• sphx_glr_gallery_images_contours_and_fields_image_nonuniform.py

matplotlib.axes.Axes.add_line

Axes.add_line(line)
Add a Line2D to the axes' lines; return the line.

Examples using matplotlib.axes.Axes.add_line

• sphx_glr_gallery_text_labels_and_annotations_line_with_text.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_units_artist_tests.py

• Artist tutorial

matplotlib.axes.Axes.add_patch

Axes.add_patch(p)
Add a Patch to the axes' patches; return the patch.

Examples using matplotlib.axes.Axes.add_patch

• sphx_glr_gallery_lines_bars_and_markers_curve_error_band.py

• sphx_glr_gallery_images_contours_and_fields_image_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_box_aspect.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_margins.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_zoom_effect.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_statistics_confidence_ellipse.py

• sphx_glr_gallery_text_labels_and_annotations_annotation_demo.py

• sphx_glr_gallery_text_labels_and_annotations_fancyarrow_demo.py

• sphx_glr_gallery_text_labels_and_annotations_text_alignment.py

• sphx_glr_gallery_shapes_and_collections_compound_path.py

• sphx_glr_gallery_shapes_and_collections_dolphin.py

• sphx_glr_gallery_shapes_and_collections_donut.py

1514 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_shapes_and_collections_fancybox_demo.py

• sphx_glr_gallery_shapes_and_collections_hatch_style_reference.py

• sphx_glr_gallery_shapes_and_collections_path_patch.py

• sphx_glr_gallery_shapes_and_collections_quad_bezier.py

• sphx_glr_gallery_style_sheets_ggplot.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo.py

• sphx_glr_gallery_showcase_firefox.py

• sphx_glr_gallery_showcase_integral.py

• sphx_glr_gallery_event_handling_looking_glass.py

• sphx_glr_gallery_event_handling_path_editor.py

• sphx_glr_gallery_event_handling_poly_editor.py

• sphx_glr_gallery_event_handling_trifinder_event_demo.py

• sphx_glr_gallery_event_handling_viewlims.py

• sphx_glr_gallery_misc_bbox_intersect.py

• sphx_glr_gallery_misc_histogram_path.py

• sphx_glr_gallery_misc_packed_bubbles.py

• sphx_glr_gallery_misc_svg_filter_pie.py

• sphx_glr_gallery_misc_tickedstroke_demo.py

• sphx_glr_gallery_mplot3d_pathpatch3d.py

• sphx_glr_gallery_units_artist_tests.py

• sphx_glr_gallery_units_ellipse_with_units.py

• Artist tutorial

• Path Tutorial

• Transformations Tutorial

• Specifying Colors

• Text properties and layout

18.5. matplotlib.axes 1515

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.add_table

Axes.add_table(tab)
Add a Table to the axes' tables; return the table.

Examples using matplotlib.axes.Axes.add_table

18.5.11 Twinning and sharing

Axes.twinx Create a twin Axes sharing the xaxis.
Axes.twiny Create a twin Axes sharing the yaxis.
Axes.sharex Share the x-axis with other.
Axes.sharey Share the y-axis with other.
Axes.get_shared_x_axes Return a reference to the shared axes Grouper ob-

ject for x axes.
Axes.get_shared_y_axes Return a reference to the shared axes Grouper ob-

ject for y axes.

matplotlib.axes.Axes.twinx

Axes.twinx()
Create a twin Axes sharing the xaxis.

Create a newAxeswith an invisible x-axis and an independent y-axis positioned opposite to the original
one (i.e. at right). The x-axis autoscale setting will be inherited from the original Axes. To ensure that
the tick marks of both y-axes align, see LinearLocator.

Returns

Axes
The newly created Axes instance

Notes

For those who are 'picking' artists while using twinx, pick events are only called for the artists in the
top-most axes.

1516 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.twinx

• sphx_glr_gallery_subplots_axes_and_figures_axes_box_aspect.py

• sphx_glr_gallery_subplots_axes_and_figures_two_scales.py

• sphx_glr_gallery_axes_grid1_parasite_simple.py

• sphx_glr_gallery_axisartist_demo_parasite_axes2.py

• sphx_glr_gallery_ticks_and_spines_multiple_yaxis_with_spines.py

matplotlib.axes.Axes.twiny

Axes.twiny()
Create a twin Axes sharing the yaxis.

Create a newAxeswith an invisible y-axis and an independent x-axis positioned opposite to the original
one (i.e. at top). The y-axis autoscale setting will be inherited from the original Axes. To ensure that
the tick marks of both x-axes align, see LinearLocator.

Returns

Axes
The newly created Axes instance

Notes

For those who are 'picking' artists while using twiny, pick events are only called for the artists in the
top-most axes.

Examples using matplotlib.axes.Axes.twiny

matplotlib.axes.Axes.sharex

Axes.sharex(other)
Share the x-axis with other.

This is equivalent to passing sharex=other when constructing the axes, and cannot be used if the
x-axis is already being shared with another axes.

18.5. matplotlib.axes 1517

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.sharex

matplotlib.axes.Axes.sharey

Axes.sharey(other)
Share the y-axis with other.

This is equivalent to passing sharey=other when constructing the axes, and cannot be used if the
y-axis is already being shared with another axes.

Examples using matplotlib.axes.Axes.sharey

matplotlib.axes.Axes.get_shared_x_axes

Axes.get_shared_x_axes()
Return a reference to the shared axes Grouper object for x axes.

Examples using matplotlib.axes.Axes.get_shared_x_axes

matplotlib.axes.Axes.get_shared_y_axes

Axes.get_shared_y_axes()
Return a reference to the shared axes Grouper object for y axes.

Examples using matplotlib.axes.Axes.get_shared_y_axes

18.5.12 Axes position

Axes.get_anchor Get the anchor location.
Axes.set_anchor Define the anchor location.
Axes.get_axes_locator Return the axes_locator.
Axes.set_axes_locator Set the axes locator.
Axes.reset_position Reset the active position to the original position.
Axes.get_position Get a copy of the axes rectangle as a Bbox.
Axes.set_position Set the axes position.

1518 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.get_anchor

Axes.get_anchor()
Get the anchor location.

See also:

matplotlib.axes.Axes.set_anchor

for a description of the anchor.

matplotlib.axes.Axes.set_aspect

for a description of aspect handling.

Examples using matplotlib.axes.Axes.get_anchor

matplotlib.axes.Axes.set_anchor

Axes.set_anchor(anchor, share=False)
Define the anchor location.

The actual drawing area (active position) of the Axes may be smaller than the Bbox (original position)
when a fixed aspect is required. The anchor defines where the drawing area will be located within the
available space.

Parameters

anchor
[2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}] The anchor position may be either:

• a sequence (cx, cy). cx and cy may range from 0 to 1, where 0 is left or bottom
and 1 is right or top.

• a string using cardinal directions as abbreviation:

– 'C' for centered

– 'S' (south) for bottom-center

– 'SW' (south west) for bottom-left

– etc.

Here is an overview of the possible positions:

'NW' 'N' 'NE'
'W' 'C' 'E'
'SW' 'S' 'SE'

share
[bool, default: False] If True, apply the settings to all shared Axes.

18.5. matplotlib.axes 1519

Matplotlib, Release 3.4.3

See also:

matplotlib.axes.Axes.set_aspect

for a description of aspect handling.

Examples using matplotlib.axes.Axes.set_anchor

matplotlib.axes.Axes.get_axes_locator

Axes.get_axes_locator()
Return the axes_locator.

Examples using matplotlib.axes.Axes.get_axes_locator

matplotlib.axes.Axes.set_axes_locator

Axes.set_axes_locator(locator)
Set the axes locator.

Parameters

locator
[Callable[[Axes, Renderer], Bbox]]

Examples using matplotlib.axes.Axes.set_axes_locator

• sphx_glr_gallery_axes_grid1_demo_axes_hbox_divider.py

matplotlib.axes.Axes.reset_position

Axes.reset_position()
Reset the active position to the original position.

This resets the a possible position change due to aspect constraints. For an explanation of the positions
see set_position.

1520 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.reset_position

matplotlib.axes.Axes.get_position

Axes.get_position(original=False)
Get a copy of the axes rectangle as a Bbox.

Parameters

original
[bool] If True, return the original position. Otherwise return the active position.
For an explanation of the positions see set_position.

Returns

Bbox

Examples using matplotlib.axes.Axes.get_position

• sphx_glr_gallery_images_contours_and_fields_contour_demo.py

matplotlib.axes.Axes.set_position

Axes.set_position(pos, which='both')
Set the axes position.

Axes have two position attributes. The 'original' position is the position allocated for the Axes. The
'active' position is the position the Axes is actually drawn at. These positions are usually the same
unless a fixed aspect is set to the Axes. See Axes.set_aspect for details.

Parameters

pos
[[left, bottom, width, height] or Bbox] The new position of the in Figure coor-
dinates.

which
[{'both', 'active', 'original'}, default: 'both'] Determines which position variables
to change.

See also:

matplotlib.transforms.Bbox.from_bounds

matplotlib.transforms.Bbox.from_extents

18.5. matplotlib.axes 1521

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.set_position

• sphx_glr_gallery_images_contours_and_fields_contour_demo.py

18.5.13 Async/event based

Axes.stale Whether the artist is 'stale' and needs to be re-drawn
for the output tomatch the internal state of the artist.

Axes.pchanged Call all of the registered callbacks.
Axes.add_callback Add a callback function that will be called when-

ever one of the Artist's properties changes.
Axes.remove_callback Remove a callback based on its observer id.

matplotlib.axes.Axes.stale

property Axes.stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of the
artist.

matplotlib.axes.Axes.pchanged

Axes.pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

Examples using matplotlib.axes.Axes.pchanged

matplotlib.axes.Axes.add_callback

Axes.add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

1522 Chapter 18. Modules

Matplotlib, Release 3.4.3

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing the
callback with remove_callback later.

See also:

remove_callback

Examples using matplotlib.axes.Axes.add_callback

matplotlib.axes.Axes.remove_callback

Axes.remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

Examples using matplotlib.axes.Axes.remove_callback

18.5.14 Interactive

Axes.can_pan Return whether this axes supports any pan/zoom
button functionality.

Axes.can_zoom Return whether this axes supports the zoom box
button functionality.

Axes.get_navigate Get whether the axes responds to navigation com-
mands

Axes.set_navigate Set whether the axes responds to navigation toolbar
commands

Axes.get_navigate_mode Get the navigation toolbar button status: 'PAN',
'ZOOM', or None

Axes.set_navigate_mode Set the navigation toolbar button status;
Axes.start_pan Called when a pan operation has started.
Axes.drag_pan Called when the mouse moves during a pan opera-

tion.
continues on next page

18.5. matplotlib.axes 1523

Matplotlib, Release 3.4.3

Table 111 – continued from previous page
Axes.end_pan Called when a pan operation completes (when the

mouse button is up.)
Axes.format_coord Return a format string formatting the x, y coordi-

nates.
Axes.format_cursor_data Return a string representation of data.
Axes.format_xdata Return x formatted as an x-value.
Axes.format_ydata Return y formatted as an y-value.
Axes.mouseover If this property is set to True, the artist will be

queried for custom context information when the
mouse cursor moves over it.

Axes.in_axes Return whether the given event (in display coords)
is in the Axes.

Axes.contains Test whether the artist contains the mouse event.
Axes.contains_point Return whether point (pair of pixel coordinates) is

inside the axes patch.
Axes.get_cursor_data Return the cursor data for a given event.

matplotlib.axes.Axes.can_pan

Axes.can_pan()
Return whether this axes supports any pan/zoom button functionality.

Examples using matplotlib.axes.Axes.can_pan

matplotlib.axes.Axes.can_zoom

Axes.can_zoom()
Return whether this axes supports the zoom box button functionality.

Examples using matplotlib.axes.Axes.can_zoom

matplotlib.axes.Axes.get_navigate

Axes.get_navigate()
Get whether the axes responds to navigation commands

1524 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.get_navigate

matplotlib.axes.Axes.set_navigate

Axes.set_navigate(b)
Set whether the axes responds to navigation toolbar commands

Parameters

b
[bool]

Examples using matplotlib.axes.Axes.set_navigate

matplotlib.axes.Axes.get_navigate_mode

Axes.get_navigate_mode()
Get the navigation toolbar button status: 'PAN', 'ZOOM', or None

Examples using matplotlib.axes.Axes.get_navigate_mode

matplotlib.axes.Axes.set_navigate_mode

Axes.set_navigate_mode(b)
Set the navigation toolbar button status;

Warning: this is not a user-API function.

Examples using matplotlib.axes.Axes.set_navigate_mode

matplotlib.axes.Axes.start_pan

Axes.start_pan(x, y, button)
Called when a pan operation has started.

Parameters

x, y
[float] The mouse coordinates in display coords.

button
[MouseButton] The pressed mouse button.

18.5. matplotlib.axes 1525

Matplotlib, Release 3.4.3

Notes

This is intended to be overridden by new projection types.

Examples using matplotlib.axes.Axes.start_pan

matplotlib.axes.Axes.drag_pan

Axes.drag_pan(button, key, x, y)
Called when the mouse moves during a pan operation.

Parameters

button
[MouseButton] The pressed mouse button.

key
[str or None] The pressed key, if any.

x, y
[float] The mouse coordinates in display coords.

Notes

This is intended to be overridden by new projection types.

Examples using matplotlib.axes.Axes.drag_pan

matplotlib.axes.Axes.end_pan

Axes.end_pan()
Called when a pan operation completes (when the mouse button is up.)

Notes

This is intended to be overridden by new projection types.

1526 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.end_pan

matplotlib.axes.Axes.format_coord

Axes.format_coord(x, y)
Return a format string formatting the x, y coordinates.

Examples using matplotlib.axes.Axes.format_coord

matplotlib.axes.Axes.format_cursor_data

Axes.format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Matplotlib
you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-separated
string enclosed in square brackets.

See also:

get_cursor_data

Examples using matplotlib.axes.Axes.format_cursor_data

matplotlib.axes.Axes.format_xdata

Axes.format_xdata(x)
Return x formatted as an x-value.

This function will use the fmt_xdata attribute if it is not None, else will fall back on the xaxis major
formatter.

Examples using matplotlib.axes.Axes.format_xdata

matplotlib.axes.Axes.format_ydata

Axes.format_ydata(y)
Return y formatted as an y-value.

This function will use the fmt_ydata attribute if it is not None, else will fall back on the yaxis major
formatter.

18.5. matplotlib.axes 1527

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.format_ydata

matplotlib.axes.Axes.mouseover

property Axes.mouseover
If this property is set to True, the artist will be queried for custom context information when the mouse
cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

matplotlib.axes.Axes.in_axes

Axes.in_axes(mouseevent)
Return whether the given event (in display coords) is in the Axes.

Examples using matplotlib.axes.Axes.in_axes

matplotlib.axes.Axes.contains

Axes.contains(mouseevent)
Test whether the artist contains the mouse event.

Parameters

mouseevent
[matplotlib.backend_bases.MouseEvent]

Returns

contains
[bool] Whether any values are within the radius.

details
[dict] An artist-specific dictionary of details of the event context, such as which
points are contained in the pick radius. See the individual Artist subclasses for
details.

1528 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.contains

matplotlib.axes.Axes.contains_point

Axes.contains_point(point)
Return whether point (pair of pixel coordinates) is inside the axes patch.

Examples using matplotlib.axes.Axes.contains_point

matplotlib.axes.Axes.get_cursor_data

Axes.get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Matplotlib
you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event. The
default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they must
ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of anAxesImage in the status bar of a plot window,
while moving the mouse.

Parameters

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

Examples using matplotlib.axes.Axes.get_cursor_data

18.5.15 Children

Axes.get_children Return a list of the child Artists of this Artist.
Axes.get_images Return a list of AxesImages contained by the

Axes.
Axes.get_lines Return a list of lines contained by the Axes.

continues on next page

18.5. matplotlib.axes 1529

Matplotlib, Release 3.4.3

Table 112 – continued from previous page
Axes.findobj Find artist objects.

matplotlib.axes.Axes.get_children

Axes.get_children()
Return a list of the child Artists of this Artist.

Examples using matplotlib.axes.Axes.get_children

matplotlib.axes.Axes.get_images

Axes.get_images()
Return a list of AxesImages contained by the Axes.

Examples using matplotlib.axes.Axes.get_images

matplotlib.axes.Axes.get_lines

Axes.get_lines()
Return a list of lines contained by the Axes.

Examples using matplotlib.axes.Axes.get_lines

matplotlib.axes.Axes.findobj

Axes.findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this class
or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

1530 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns

list of Artist

Examples using matplotlib.axes.Axes.findobj

18.5.16 Drawing

Axes.draw Draw the Artist (and its children) using the given
renderer.

Axes.draw_artist Efficiently redraw a single artist.
Axes.redraw_in_frame Efficiently redraw Axes data, but not axis ticks, la-

bels, etc.
Axes.get_renderer_cache

Axes.get_rasterization_zorder Return the zorder value below which artists will be
rasterized.

Axes.set_rasterization_zorder Set the zorder threshold for rasterization for vector
graphics output.

Axes.get_window_extent Return the axes bounding box in display space; args
and kwargs are empty.

Axes.get_tightbbox Return the tight bounding box of the axes, including
axis and their decorators (xlabel, title, etc).

matplotlib.axes.Axes.draw

Axes.draw(renderer=None, inframe=<deprecated parameter>)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

18.5. matplotlib.axes 1531

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.draw

matplotlib.axes.Axes.draw_artist

Axes.draw_artist(a)
Efficiently redraw a single artist.

This method can only be used after an initial draw of the figure, because that creates and caches the
renderer needed here.

Examples using matplotlib.axes.Axes.draw_artist

• Faster rendering by using blitting

matplotlib.axes.Axes.redraw_in_frame

Axes.redraw_in_frame()
Efficiently redraw Axes data, but not axis ticks, labels, etc.

This method can only be used after an initial draw which caches the renderer.

Examples using matplotlib.axes.Axes.redraw_in_frame

matplotlib.axes.Axes.get_renderer_cache

Axes.get_renderer_cache()

Examples using matplotlib.axes.Axes.get_renderer_cache

matplotlib.axes.Axes.get_rasterization_zorder

Axes.get_rasterization_zorder()
Return the zorder value below which artists will be rasterized.

Examples using matplotlib.axes.Axes.get_rasterization_zorder

matplotlib.axes.Axes.set_rasterization_zorder

Axes.set_rasterization_zorder(z)
Set the zorder threshold for rasterization for vector graphics output.

All artists with a zorder below the given value will be rasterized if they support rasterization.

This setting is ignored for pixel-based output.

1532 Chapter 18. Modules

Matplotlib, Release 3.4.3

See also /gallery/misc/rasterization_demo.

Parameters

z
[float or None] The zorder belowwhich artists are rasterized. If None rasterization
based on zorder is deactivated.

Examples using matplotlib.axes.Axes.set_rasterization_zorder

• sphx_glr_gallery_misc_rasterization_demo.py

matplotlib.axes.Axes.get_window_extent

Axes.get_window_extent(*args, **kwargs)
Return the axes bounding box in display space; args and kwargs are empty.

This bounding box does not include the spines, ticks, ticklables, or other labels. For a bounding box
including these elements use get_tightbbox.

See also:

matplotlib.axes.Axes.get_tightbbox

matplotlib.axis.Axis.get_tightbbox

matplotlib.spines.Spine.get_window_extent

Examples using matplotlib.axes.Axes.get_window_extent

matplotlib.axes.Axes.get_tightbbox

Axes.get_tightbbox(renderer, call_axes_locator=True, bbox_extra_artists=None, *,
for_layout_only=False)

Return the tight bounding box of the axes, including axis and their decorators (xlabel, title, etc).

Artists that have artist.set_in_layout(False) are not included in the bbox.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

bbox_extra_artists
[list of Artist or None] List of artists to include in the tight bounding box. If
None (default), then all artist children of the axes are included in the tight bound-
ing box.

18.5. matplotlib.axes 1533

Matplotlib, Release 3.4.3

call_axes_locator
[bool, default: True] If call_axes_locator is False, it does not call the
_axes_locator attribute, which is necessary to get the correct bounding box.
call_axes_locator=False can be used if the caller is only interested in
the relative size of the tightbbox compared to the axes bbox.

for_layout_only
[default: False] The bounding box will not include the x-extent of the title and the
xlabel, or the y-extent of the ylabel.

Returns

BboxBase

Bounding box in figure pixel coordinates.

See also:

matplotlib.axes.Axes.get_window_extent

matplotlib.axis.Axis.get_tightbbox

matplotlib.spines.Spine.get_window_extent

Examples using matplotlib.axes.Axes.get_tightbbox

18.5.17 Projection

Methods used by Axis that must be overridden for non-rectilinear Axes.

Axes.name

Axes.get_xaxis_transform Get the transformation used for drawing x-axis la-
bels, ticks and gridlines.

Axes.get_yaxis_transform Get the transformation used for drawing y-axis la-
bels, ticks and gridlines.

Axes.get_data_ratio Return the aspect ratio of the scaled data.
Axes.get_xaxis_text1_transform

Returns

Axes.get_xaxis_text2_transform
Returns

Axes.get_yaxis_text1_transform
Returns

continues on next page

1534 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 114 – continued from previous page
Axes.get_yaxis_text2_transform

Returns

matplotlib.axes.Axes.name

Axes.name = 'rectilinear'

matplotlib.axes.Axes.get_xaxis_transform

Axes.get_xaxis_transform(which='grid')
Get the transformation used for drawing x-axis labels, ticks and gridlines. The x-direction is in data
coordinates and the y-direction is in axis coordinates.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden by new
kinds of projections that may need to place axis elements in different locations.

Examples using matplotlib.axes.Axes.get_xaxis_transform

• sphx_glr_gallery_lines_bars_and_markers_fill_between_demo.py

• sphx_glr_gallery_lines_bars_and_markers_vline_hline_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_zoom_effect.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_text_labels_and_annotations_angle_annotation.py

• sphx_glr_gallery_ticks_and_spines_centered_spines_with_arrows.py

• Transformations Tutorial

matplotlib.axes.Axes.get_yaxis_transform

Axes.get_yaxis_transform(which='grid')
Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in axis
coordinates and the y-direction is in data coordinates.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden by new
kinds of projections that may need to place axis elements in different locations.

18.5. matplotlib.axes 1535

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.get_yaxis_transform

• sphx_glr_gallery_ticks_and_spines_centered_spines_with_arrows.py

• sphx_glr_gallery_userdemo_connect_simple01.py

• Transformations Tutorial

matplotlib.axes.Axes.get_data_ratio

Axes.get_data_ratio()
Return the aspect ratio of the scaled data.

Notes

This method is intended to be overridden by new projection types.

Examples using matplotlib.axes.Axes.get_data_ratio

matplotlib.axes.Axes.get_xaxis_text1_transform

Axes.get_xaxis_text1_transform(pad_points)

Returns

transform
[Transform] The transform used for drawing x-axis labels, which will add
pad_points of padding (in points) between the axes and the label. The x-direction
is in data coordinates and the y-direction is in axis coordinates

valign
[{'center', 'top', 'bottom', 'baseline', 'center_baseline'}] The text vertical alignment.

halign
[{'center', 'left', 'right'}] The text horizontal alignment.

Notes

This transformation is primarily used by the Axis class, and is meant to be overridden by new kinds
of projections that may need to place axis elements in different locations.

1536 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axes.Axes.get_xaxis_text1_transform

matplotlib.axes.Axes.get_xaxis_text2_transform

Axes.get_xaxis_text2_transform(pad_points)

Returns

transform
[Transform] The transform used for drawing secondary x-axis labels, which will
add pad_points of padding (in points) between the axes and the label. The x-
direction is in data coordinates and the y-direction is in axis coordinates

valign
[{'center', 'top', 'bottom', 'baseline', 'center_baseline'}] The text vertical alignment.

halign
[{'center', 'left', 'right'}] The text horizontal alignment.

Notes

This transformation is primarily used by the Axis class, and is meant to be overridden by new kinds
of projections that may need to place axis elements in different locations.

Examples using matplotlib.axes.Axes.get_xaxis_text2_transform

matplotlib.axes.Axes.get_yaxis_text1_transform

Axes.get_yaxis_text1_transform(pad_points)

Returns

transform
[Transform] The transform used for drawing y-axis labels, which will add
pad_points of padding (in points) between the axes and the label. The x-direction
is in axis coordinates and the y-direction is in data coordinates

valign
[{'center', 'top', 'bottom', 'baseline', 'center_baseline'}] The text vertical alignment.

halign
[{'center', 'left', 'right'}] The text horizontal alignment.

18.5. matplotlib.axes 1537

Matplotlib, Release 3.4.3

Notes

This transformation is primarily used by the Axis class, and is meant to be overridden by new kinds
of projections that may need to place axis elements in different locations.

Examples using matplotlib.axes.Axes.get_yaxis_text1_transform

matplotlib.axes.Axes.get_yaxis_text2_transform

Axes.get_yaxis_text2_transform(pad_points)

Returns

transform
[Transform] The transform used for drawing secondart y-axis labels, which will
add pad_points of padding (in points) between the axes and the label. The x-
direction is in axis coordinates and the y-direction is in data coordinates

valign
[{'center', 'top', 'bottom', 'baseline', 'center_baseline'}] The text vertical alignment.

halign
[{'center', 'left', 'right'}] The text horizontal alignment.

Notes

This transformation is primarily used by the Axis class, and is meant to be overridden by new kinds
of projections that may need to place axis elements in different locations.

Examples using matplotlib.axes.Axes.get_yaxis_text2_transform

18.5.18 Other

Axes.zorder

Axes.get_default_bbox_extra_artists Return a default list of artists that are used for the
bounding box calculation.

Axes.get_transformed_clip_path_and_affineReturn the clip path with the non-affine part of its
transformation applied, and the remaining affine
part of its transformation.

Axes.has_data Return whether any artists have been added to the
axes.

1538 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.axes.Axes.zorder

Axes.zorder = 0

matplotlib.axes.Axes.get_default_bbox_extra_artists

Axes.get_default_bbox_extra_artists()
Return a default list of artists that are used for the bounding box calculation.

Artists are excluded either by not being visible or artist.set_in_layout(False).

Examples using matplotlib.axes.Axes.get_default_bbox_extra_artists

matplotlib.axes.Axes.get_transformed_clip_path_and_affine

Axes.get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining affine
part of its transformation.

Examples using matplotlib.axes.Axes.get_transformed_clip_path_and_affine

matplotlib.axes.Axes.has_data

Axes.has_data()
Return whether any artists have been added to the axes.

This should not be used to determine whether the dataLim need to be updated, and may not actually
be useful for anything.

Examples using matplotlib.axes.Axes.has_data

18.6 matplotlib.axis

Table of Contents

• Inheritance

• Axis objects

– Formatters and Locators

– Axis Label

– Ticks, tick labels and Offset text

18.6. matplotlib.axis 1539

Matplotlib, Release 3.4.3

– Data and view intervals

– Rendering helpers

– Interactive

– Units

– Incremental navigation

– XAxis Specific

– YAxis Specific

– Other

– Discouraged

• Tick objects

Classes for the ticks and x and y axis.

18.6.1 Inheritance

matplotlib.artist.Artist
matplotlib.axis.Axis

matplotlib.axis.Tick

matplotlib.axis.XAxis

matplotlib.axis.YAxis

matplotlib.axis.XTick

matplotlib.axis.YTick

matplotlib.axis.Ticker

18.6.2 Axis objects

class matplotlib.axis.Axis(axes, pickradius=15)
Base class for XAxis and YAxis.

Attributes

isDefault_label
[bool]

axes

[matplotlib.axes.Axes] The Axes instance the artist resides in, or None.

1540 Chapter 18. Modules

Matplotlib, Release 3.4.3

major
[matplotlib.axis.Ticker] Determines the major tick positions and their
label format.

minor
[matplotlib.axis.Ticker] Determines the minor tick positions and their
label format.

callbacks
[matplotlib.cbook.CallbackRegistry]

label
[Text] The axis label.

labelpad
[float] The distance between the axis label and the tick labels. Defaults to
rcParams["axes.labelpad"] (default: 4.0) = 4.

offsetText
[Text] A Text object containing the data offset of the ticks (if any).

pickradius
[float] The acceptance radius for containment tests. See also Axis.contains.

majorTicks
[list of Tick] The major ticks.

minorTicks
[list of Tick] The minor ticks.

Parameters

axes
[matplotlib.axes.Axes] The Axes to which the created Axis belongs.

pickradius
[float] The acceptance radius for containment tests. See also Axis.contains.

class matplotlib.axis.XAxis(*args, **kwargs)

Parameters

axes
[matplotlib.axes.Axes] The Axes to which the created Axis belongs.

pickradius
[float] The acceptance radius for containment tests. See also Axis.contains.

18.6. matplotlib.axis 1541

../tutorials/introductory/customizing.html?highlight=axes.labelpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

class matplotlib.axis.YAxis(*args, **kwargs)

Parameters

axes
[matplotlib.axes.Axes] The Axes to which the created Axis belongs.

pickradius
[float] The acceptance radius for containment tests. See also Axis.contains.

class matplotlib.axis.Ticker
A container for the objects defining tick position and format.

Attributes

locator
[matplotlib.ticker.Locator subclass] Determines the positions of the
ticks.

formatter
[matplotlib.ticker.Formatter subclass] Determines the format of the
tick labels.

Axis.clear Clear the axis.
Axis.cla [Deprecated] Clear this axis.
Axis.get_scale Return this Axis' scale (as a str).

matplotlib.axis.Axis.clear

Axis.clear()
Clear the axis.

This resets axis properties to their default values:

• the label

• the scale

• locators, formatters and ticks

• major and minor grid

• units

• registered callbacks

1542 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axis.Axis.clear

matplotlib.axis.Axis.cla

Axis.cla()
[Deprecated] Clear this axis.

Notes

Deprecated since version 3.4.

Examples using matplotlib.axis.Axis.cla

matplotlib.axis.Axis.get_scale

Axis.get_scale()
Return this Axis' scale (as a str).

Examples using matplotlib.axis.Axis.get_scale

Formatters and Locators

Axis.get_major_formatter Get the formatter of the major ticker.
Axis.get_major_locator Get the locator of the major ticker.
Axis.get_minor_formatter Get the formatter of the minor ticker.
Axis.get_minor_locator Get the locator of the minor ticker.
Axis.set_major_formatter Set the formatter of the major ticker.
Axis.set_major_locator Set the locator of the major ticker.
Axis.set_minor_formatter Set the formatter of the minor ticker.
Axis.set_minor_locator Set the locator of the minor ticker.
Axis.remove_overlapping_locs If minor ticker locations that overlap with major

ticker locations should be trimmed.
Axis.get_remove_overlapping_locs

Axis.set_remove_overlapping_locs

18.6. matplotlib.axis 1543

Matplotlib, Release 3.4.3

matplotlib.axis.Axis.get_major_formatter

Axis.get_major_formatter()
Get the formatter of the major ticker.

Examples using matplotlib.axis.Axis.get_major_formatter

matplotlib.axis.Axis.get_major_locator

Axis.get_major_locator()
Get the locator of the major ticker.

Examples using matplotlib.axis.Axis.get_major_locator

• sphx_glr_gallery_axes_grid1_inset_locator_demo2.py

matplotlib.axis.Axis.get_minor_formatter

Axis.get_minor_formatter()
Get the formatter of the minor ticker.

Examples using matplotlib.axis.Axis.get_minor_formatter

matplotlib.axis.Axis.get_minor_locator

Axis.get_minor_locator()
Get the locator of the minor ticker.

Examples using matplotlib.axis.Axis.get_minor_locator

matplotlib.axis.Axis.set_major_formatter

Axis.set_major_formatter(formatter)
Set the formatter of the major ticker.

In addition to a Formatter instance, this also accepts a str or function.

For a str a StrMethodFormatter is used. The field used for the value must be labeled 'x' and
the field used for the position must be labeled 'pos'. See the StrMethodFormatter documen-
tation for more information.

1544 Chapter 18. Modules

Matplotlib, Release 3.4.3

For a function, a FuncFormatter is used. The function must take two inputs (a tick value x and a
position pos), and return a string containing the corresponding tick label. See the FuncFormatter
documentation for more information.

Parameters

formatter
[Formatter, str, or function]

Examples using matplotlib.axis.Axis.set_major_formatter

• sphx_glr_gallery_lines_bars_and_markers_timeline.py

• sphx_glr_gallery_text_labels_and_annotations_date.py

• sphx_glr_gallery_text_labels_and_annotations_date_index_formatter.py

• sphx_glr_gallery_text_labels_and_annotations_engineering_formatter.py

• sphx_glr_gallery_pyplots_dollar_ticks.py

• sphx_glr_gallery_showcase_bachelors_degrees_by_gender.py

• sphx_glr_gallery_mplot3d_surface3d.py

• sphx_glr_gallery_specialty_plots_skewt.py

• sphx_glr_gallery_ticks_and_spines_centered_ticklabels.py

• sphx_glr_gallery_ticks_and_spines_custom_ticker1.py

• sphx_glr_gallery_ticks_and_spines_date_concise_formatter.py

• sphx_glr_gallery_ticks_and_spines_date_demo_convert.py

• sphx_glr_gallery_ticks_and_spines_date_demo_rrule.py

• sphx_glr_gallery_ticks_and_spines_date_index_formatter2.py

• sphx_glr_gallery_ticks_and_spines_major_minor_demo.py

• sphx_glr_gallery_ticks_and_spines_tick_labels_from_values.py

• The Lifecycle of a Plot

• Artist tutorial

• Choosing Colormaps in Matplotlib

• Text in Matplotlib Plots

18.6. matplotlib.axis 1545

Matplotlib, Release 3.4.3

matplotlib.axis.Axis.set_major_locator

Axis.set_major_locator(locator)
Set the locator of the major ticker.

Parameters

locator
[Locator]

Examples using matplotlib.axis.Axis.set_major_locator

• sphx_glr_gallery_lines_bars_and_markers_filled_step.py

• sphx_glr_gallery_lines_bars_and_markers_timeline.py

• sphx_glr_gallery_text_labels_and_annotations_date.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_mplot3d_surface3d.py

• sphx_glr_gallery_mplot3d_surface3d_3.py

• sphx_glr_gallery_scales_scales.py

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• sphx_glr_gallery_specialty_plots_skewt.py

• sphx_glr_gallery_ticks_and_spines_centered_ticklabels.py

• sphx_glr_gallery_ticks_and_spines_date_concise_formatter.py

• sphx_glr_gallery_ticks_and_spines_date_demo_convert.py

• sphx_glr_gallery_ticks_and_spines_date_demo_rrule.py

• sphx_glr_gallery_ticks_and_spines_major_minor_demo.py

• sphx_glr_gallery_ticks_and_spines_tick_labels_from_values.py

• Choosing Colormaps in Matplotlib

• Text in Matplotlib Plots

1546 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.axis.Axis.set_minor_formatter

Axis.set_minor_formatter(formatter)
Set the formatter of the minor ticker.

In addition to a Formatter instance, this also accepts a str or function. See Axis.
set_major_formatter for more information.

Parameters

formatter
[Formatter, str, or function]

Examples using matplotlib.axis.Axis.set_minor_formatter

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_scales_scales.py

• sphx_glr_gallery_specialty_plots_skewt.py

• sphx_glr_gallery_ticks_and_spines_centered_ticklabels.py

matplotlib.axis.Axis.set_minor_locator

Axis.set_minor_locator(locator)
Set the locator of the minor ticker.

Parameters

locator
[Locator]

Examples using matplotlib.axis.Axis.set_minor_locator

• sphx_glr_gallery_subplots_axes_and_figures_secondary_axis.py

• sphx_glr_gallery_text_labels_and_annotations_date.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_ticks_and_spines_centered_ticklabels.py

• sphx_glr_gallery_ticks_and_spines_date_demo_convert.py

• sphx_glr_gallery_ticks_and_spines_major_minor_demo.py

18.6. matplotlib.axis 1547

Matplotlib, Release 3.4.3

matplotlib.axis.Axis.remove_overlapping_locs

property Axis.remove_overlapping_locs
If minor ticker locations that overlap with major ticker locations should be trimmed.

matplotlib.axis.Axis.get_remove_overlapping_locs

Axis.get_remove_overlapping_locs()

Examples using matplotlib.axis.Axis.get_remove_overlapping_locs

matplotlib.axis.Axis.set_remove_overlapping_locs

Axis.set_remove_overlapping_locs(val)

Examples using matplotlib.axis.Axis.set_remove_overlapping_locs

Axis Label

Axis.set_label_coords Set the coordinates of the label.
Axis.set_label_position Set the label position (top or bottom)
Axis.set_label_text Set the text value of the axis label.
Axis.get_label Return the axis label as a Text instance.
Axis.get_label_position Return the label position (top or bottom)
Axis.get_label_text Get the text of the label.

matplotlib.axis.Axis.set_label_coords

Axis.set_label_coords(x, y, transform=None)
Set the coordinates of the label.

By default, the x coordinate of the y label and the y coordinate of the x label are determined by the
tick label bounding boxes, but this can lead to poor alignment of multiple labels if there are multiple
axes.

You can also specify the coordinate system of the label with the transform. If None, the default coor-
dinate system will be the axes coordinate system: (0, 0) is bottom left, (0.5, 0.5) is center, etc.

1548 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axis.Axis.set_label_coords

matplotlib.axis.Axis.set_label_position

Axis.set_label_position(position)
Set the label position (top or bottom)

Parameters

position
[{'top', 'bottom'}]

Examples using matplotlib.axis.Axis.set_label_position

• sphx_glr_gallery_text_labels_and_annotations_titles_demo.py

matplotlib.axis.Axis.set_label_text

Axis.set_label_text(label, fontdict=None, **kwargs)
Set the text value of the axis label.

Parameters

label
[str] Text string.

fontdict
[dict] Text properties.

**kwargs
Merged into fontdict.

Examples using matplotlib.axis.Axis.set_label_text

matplotlib.axis.Axis.get_label

Axis.get_label()
Return the axis label as a Text instance.

18.6. matplotlib.axis 1549

Matplotlib, Release 3.4.3

Examples using matplotlib.axis.Axis.get_label

• sphx_glr_gallery_axes_grid1_parasite_simple.py

matplotlib.axis.Axis.get_label_position

Axis.get_label_position()
Return the label position (top or bottom)

Examples using matplotlib.axis.Axis.get_label_position

matplotlib.axis.Axis.get_label_text

Axis.get_label_text()
Get the text of the label.

Examples using matplotlib.axis.Axis.get_label_text

Ticks, tick labels and Offset text

Axis.get_major_ticks Return the list of major Ticks.
Axis.get_majorticklabels Return this Axis' major tick labels, as a list ofText.
Axis.get_majorticklines Return this Axis' major tick lines as a list of

Line2Ds.
Axis.get_majorticklocs Return this Axis' major tick locations in data coor-

dinates.
Axis.get_minor_ticks Return the list of minor Ticks.
Axis.get_minorticklabels Return this Axis' minor tick labels, as a list of

Text.
Axis.get_minorticklines Return this Axis' minor tick lines as a list of

Line2Ds.
Axis.get_minorticklocs Return this Axis' minor tick locations in data coor-

dinates.
Axis.get_offset_text Return the axis offsetText as a Text instance.
Axis.get_tick_padding

Axis.get_ticklabels Get this Axis' tick labels.
Axis.get_ticklines Return this Axis' tick lines as a list of Line2Ds.
Axis.get_ticklocs Return this Axis' tick locations in data coordinates.
Axis.get_gridlines Return this Axis' grid lines as a list of Line2Ds.
Axis.grid Configure the grid lines.
Axis.set_tick_params Set appearance parameters for ticks, ticklabels, and

gridlines.
continues on next page

1550 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 119 – continued from previous page
Axis.axis_date Set up axis ticks and labels to treat data along this

Axis as dates.

matplotlib.axis.Axis.get_major_ticks

Axis.get_major_ticks(numticks=None)
Return the list of major Ticks.

Examples using matplotlib.axis.Axis.get_major_ticks

matplotlib.axis.Axis.get_majorticklabels

Axis.get_majorticklabels()
Return this Axis' major tick labels, as a list of Text.

Examples using matplotlib.axis.Axis.get_majorticklabels

• sphx_glr_gallery_ticks_and_spines_date_precision_and_epochs.py

matplotlib.axis.Axis.get_majorticklines

Axis.get_majorticklines()
Return this Axis' major tick lines as a list of Line2Ds.

Examples using matplotlib.axis.Axis.get_majorticklines

matplotlib.axis.Axis.get_majorticklocs

Axis.get_majorticklocs()
Return this Axis' major tick locations in data coordinates.

Examples using matplotlib.axis.Axis.get_majorticklocs

matplotlib.axis.Axis.get_minor_ticks

Axis.get_minor_ticks(numticks=None)
Return the list of minor Ticks.

18.6. matplotlib.axis 1551

Matplotlib, Release 3.4.3

Examples using matplotlib.axis.Axis.get_minor_ticks

• sphx_glr_gallery_ticks_and_spines_centered_ticklabels.py

matplotlib.axis.Axis.get_minorticklabels

Axis.get_minorticklabels()
Return this Axis' minor tick labels, as a list of Text.

Examples using matplotlib.axis.Axis.get_minorticklabels

matplotlib.axis.Axis.get_minorticklines

Axis.get_minorticklines()
Return this Axis' minor tick lines as a list of Line2Ds.

Examples using matplotlib.axis.Axis.get_minorticklines

matplotlib.axis.Axis.get_minorticklocs

Axis.get_minorticklocs()
Return this Axis' minor tick locations in data coordinates.

Examples using matplotlib.axis.Axis.get_minorticklocs

matplotlib.axis.Axis.get_offset_text

Axis.get_offset_text()
Return the axis offsetText as a Text instance.

Examples using matplotlib.axis.Axis.get_offset_text

matplotlib.axis.Axis.get_tick_padding

Axis.get_tick_padding()

1552 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axis.Axis.get_tick_padding

matplotlib.axis.Axis.get_ticklabels

Axis.get_ticklabels(minor=False, which=None)
Get this Axis' tick labels.

Parameters

minor
[bool] Whether to return the minor or the major ticklabels.

which
[None, ('minor', 'major', 'both')] Overrides minor.

Selects which ticklabels to return

Returns

list of Text

Notes

The tick label strings are not populated until a draw method has been called.

See also: draw and draw.

Examples using matplotlib.axis.Axis.get_ticklabels

• sphx_glr_gallery_images_contours_and_fields_image_masked.py

• sphx_glr_gallery_pyplots_fig_axes_customize_simple.py

• Artist tutorial

matplotlib.axis.Axis.get_ticklines

Axis.get_ticklines(minor=False)
Return this Axis' tick lines as a list of Line2Ds.

18.6. matplotlib.axis 1553

Matplotlib, Release 3.4.3

Examples using matplotlib.axis.Axis.get_ticklines

• sphx_glr_gallery_pyplots_fig_axes_customize_simple.py

• Artist tutorial

matplotlib.axis.Axis.get_ticklocs

Axis.get_ticklocs(*, minor=False)
Return this Axis' tick locations in data coordinates.

Examples using matplotlib.axis.Axis.get_ticklocs

• Artist tutorial

matplotlib.axis.Axis.get_gridlines

Axis.get_gridlines()
Return this Axis' grid lines as a list of Line2Ds.

Examples using matplotlib.axis.Axis.get_gridlines

matplotlib.axis.Axis.grid

Axis.grid(b=None, which='major', **kwargs)
Configure the grid lines.

Parameters

b
[bool or None] Whether to show the grid lines. If any kwargs are supplied, it is
assumed you want the grid on and b will be set to True.

If b is None and there are no kwargs, this toggles the visibility of the lines.

which
[{'major', 'minor', 'both'}] The grid lines to apply the changes on.

**kwargs
[Line2D properties] Define the line properties of the grid, e.g.:

grid(color='r', linestyle='-', linewidth=2)

1554 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axis.Axis.grid

• sphx_glr_gallery_statistics_boxplot_color.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_statistics_boxplot_vs_violin.py

• sphx_glr_gallery_scales_symlog_demo.py

matplotlib.axis.Axis.set_tick_params

Axis.set_tick_params(which='major', reset=False, **kw)
Set appearance parameters for ticks, ticklabels, and gridlines.

For documentation of keyword arguments, see matplotlib.axes.Axes.tick_params().

Examples using matplotlib.axis.Axis.set_tick_params

• sphx_glr_gallery_statistics_customized_violin.py

• sphx_glr_gallery_pyplots_dollar_ticks.py

• sphx_glr_gallery_axes_grid1_scatter_hist_locatable_axes.py

• sphx_glr_gallery_misc_pythonic_matplotlib.py

• sphx_glr_gallery_ticks_and_spines_date_demo_rrule.py

• Choosing Colormaps in Matplotlib

matplotlib.axis.Axis.axis_date

Axis.axis_date(tz=None)
Set up axis ticks and labels to treat data along this Axis as dates.

Parameters

tz
[str or datetime.tzinfo, default: rcParams["timezone"] (default:
'UTC')] The timezone used to create date labels.

18.6. matplotlib.axis 1555

https://docs.python.org/3/library/datetime.html#datetime.tzinfo
../../tutorials/introductory/customizing.html?highlight=timezone#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Examples using matplotlib.axis.Axis.axis_date

Data and view intervals

Axis.get_data_interval Return the Interval instance for this axis data limits.
Axis.get_view_interval Return the view limits (min, max) of this axis.
Axis.get_inverted Returnwhether this Axis is oriented in the "inverse"

direction.
Axis.set_data_interval Set the axis data limits.
Axis.set_view_interval Set the axis view limits.
Axis.set_inverted Set whether this Axis is oriented in the "inverse"

direction.

matplotlib.axis.Axis.get_data_interval

Axis.get_data_interval()
Return the Interval instance for this axis data limits.

Examples using matplotlib.axis.Axis.get_data_interval

matplotlib.axis.Axis.get_view_interval

Axis.get_view_interval()
Return the view limits (min, max) of this axis.

Examples using matplotlib.axis.Axis.get_view_interval

matplotlib.axis.Axis.get_inverted

Axis.get_inverted()
Return whether this Axis is oriented in the "inverse" direction.

The "normal" direction is increasing to the right for the x-axis and to the top for the y-axis; the "inverse"
direction is increasing to the left for the x-axis and to the bottom for the y-axis.

1556 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axis.Axis.get_inverted

matplotlib.axis.Axis.set_data_interval

Axis.set_data_interval(vmin, vmax, ignore=False)
Set the axis data limits. This method is for internal use.

If ignore is False (the default), this method will never reduce the preexisting data limits, only expand
them if vmin or vmax are not within them. Moreover, the order of vmin and vmax does not matter; the
orientation of the axis will not change.

If ignore is True, the data limits will be set exactly to (vmin, vmax) in that order.

Examples using matplotlib.axis.Axis.set_data_interval

matplotlib.axis.Axis.set_view_interval

Axis.set_view_interval(vmin, vmax, ignore=False)
Set the axis view limits. This method is for internal use; Matplotlib users should typically use e.g.
set_xlim or set_ylim.

If ignore is False (the default), this method will never reduce the preexisting view limits, only expand
them if vmin or vmax are not within them. Moreover, the order of vmin and vmax does not matter; the
orientation of the axis will not change.

If ignore is True, the view limits will be set exactly to (vmin, vmax) in that order.

Examples using matplotlib.axis.Axis.set_view_interval

matplotlib.axis.Axis.set_inverted

Axis.set_inverted(inverted)
Set whether this Axis is oriented in the "inverse" direction.

The "normal" direction is increasing to the right for the x-axis and to the top for the y-axis; the "inverse"
direction is increasing to the left for the x-axis and to the bottom for the y-axis.

Examples using matplotlib.axis.Axis.set_inverted

Rendering helpers

Axis.get_minpos

Axis.get_tick_space Return the estimated number of ticks that can fit on
the axis.

continues on next page

18.6. matplotlib.axis 1557

Matplotlib, Release 3.4.3

Table 121 – continued from previous page
Axis.get_ticklabel_extents Get the extents of the tick labels on either side of

the axes.
Axis.get_tightbbox Return a bounding box that encloses the axis.

matplotlib.axis.Axis.get_minpos

Axis.get_minpos()

Examples using matplotlib.axis.Axis.get_minpos

matplotlib.axis.Axis.get_tick_space

Axis.get_tick_space()
Return the estimated number of ticks that can fit on the axis.

Examples using matplotlib.axis.Axis.get_tick_space

matplotlib.axis.Axis.get_ticklabel_extents

Axis.get_ticklabel_extents(renderer)
Get the extents of the tick labels on either side of the axes.

Examples using matplotlib.axis.Axis.get_ticklabel_extents

matplotlib.axis.Axis.get_tightbbox

Axis.get_tightbbox(renderer, *, for_layout_only=False)
Return a bounding box that encloses the axis. It only accounts tick labels, axis label, and offsetText.

If for_layout_only is True, then the width of the label (if this is an x-axis) or the height of the label
(if this is a y-axis) is collapsed to near zero. This allows tight/constrained_layout to ignore too-long
labels when doing their layout.

1558 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axis.Axis.get_tightbbox

Interactive

Axis.contains Test whether the artist contains the mouse event.
Axis.get_pickradius Return the depth of the axis used by the picker.
Axis.set_pickradius Set the depth of the axis used by the picker.

matplotlib.axis.Axis.contains

Axis.contains(mouseevent)
Test whether the artist contains the mouse event.

Parameters

mouseevent
[matplotlib.backend_bases.MouseEvent]

Returns

contains
[bool] Whether any values are within the radius.

details
[dict] An artist-specific dictionary of details of the event context, such as which
points are contained in the pick radius. See the individual Artist subclasses for
details.

Examples using matplotlib.axis.Axis.contains

matplotlib.axis.Axis.get_pickradius

Axis.get_pickradius()
Return the depth of the axis used by the picker.

18.6. matplotlib.axis 1559

Matplotlib, Release 3.4.3

Examples using matplotlib.axis.Axis.get_pickradius

matplotlib.axis.Axis.set_pickradius

Axis.set_pickradius(pickradius)
Set the depth of the axis used by the picker.

Parameters

pickradius
[float]

Examples using matplotlib.axis.Axis.set_pickradius

Units

Axis.convert_units

Axis.set_units Set the units for axis.
Axis.get_units Return the units for axis.
Axis.update_units Introspect data for units converter and update the

axis.converter instance if necessary.

matplotlib.axis.Axis.convert_units

Axis.convert_units(x)

Examples using matplotlib.axis.Axis.convert_units

matplotlib.axis.Axis.set_units

Axis.set_units(u)
Set the units for axis.

Parameters

u
[units tag]

1560 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

The units of any shared axis will also be updated.

Examples using matplotlib.axis.Axis.set_units

• sphx_glr_gallery_units_artist_tests.py

• sphx_glr_gallery_units_bar_unit_demo.py

• sphx_glr_gallery_units_units_scatter.py

matplotlib.axis.Axis.get_units

Axis.get_units()
Return the units for axis.

Examples using matplotlib.axis.Axis.get_units

matplotlib.axis.Axis.update_units

Axis.update_units(data)
Introspect data for units converter and update the axis.converter instance if necessary. Return True if
data is registered for unit conversion.

Examples using matplotlib.axis.Axis.update_units

Incremental navigation

Axis.pan [Deprecated] Pan by numsteps (can be positive or
negative).

Axis.zoom [Deprecated] Zoom in/out on axis; if direction is
>0 zoom in, else zoom out.

18.6. matplotlib.axis 1561

Matplotlib, Release 3.4.3

matplotlib.axis.Axis.pan

Axis.pan(numsteps)
[Deprecated] Pan by numsteps (can be positive or negative).

Notes

Deprecated since version 3.3.

Examples using matplotlib.axis.Axis.pan

matplotlib.axis.Axis.zoom

Axis.zoom(direction)
[Deprecated] Zoom in/out on axis; if direction is >0 zoom in, else zoom out.

Notes

Deprecated since version 3.3.

Examples using matplotlib.axis.Axis.zoom

XAxis Specific

XAxis.axis_name Read-only name identifying the axis.
XAxis.get_text_heights Return how much space should be reserved for text

above and below the axes, as a pair of floats.
XAxis.get_ticks_position Return the ticks position ("top", "bottom", "de-

fault", or "unknown").
XAxis.set_ticks_position Set the ticks position.
XAxis.tick_bottom Move ticks and ticklabels (if present) to the bottom

of the axes.
XAxis.tick_top Move ticks and ticklabels (if present) to the top of

the axes.

1562 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.axis.XAxis.axis_name

XAxis.axis_name = 'x'
Read-only name identifying the axis.

matplotlib.axis.XAxis.get_text_heights

XAxis.get_text_heights(renderer)
Return how much space should be reserved for text above and below the axes, as a pair of floats.

Examples using matplotlib.axis.XAxis.get_text_heights

matplotlib.axis.XAxis.get_ticks_position

XAxis.get_ticks_position()
Return the ticks position ("top", "bottom", "default", or "unknown").

Examples using matplotlib.axis.XAxis.get_ticks_position

matplotlib.axis.XAxis.set_ticks_position

XAxis.set_ticks_position(position)
Set the ticks position.

Parameters

position
[{'top', 'bottom', 'both', 'default', 'none'}] 'both' sets the ticks to appear on both
positions, but does not change the tick labels. 'default' resets the tick positions to
the default: ticks on both positions, labels at bottom. 'none' can be used if you
don't want any ticks. 'none' and 'both' affect only the ticks, not the labels.

Examples using matplotlib.axis.XAxis.set_ticks_position

• sphx_glr_gallery_statistics_customized_violin.py

• sphx_glr_gallery_pyplots_whats_new_99_spines.py

• sphx_glr_gallery_axes_grid1_demo_colorbar_with_axes_divider.py

• sphx_glr_gallery_axes_grid1_demo_colorbar_with_inset_locator.py

• sphx_glr_gallery_showcase_integral.py

• sphx_glr_gallery_showcase_xkcd.py

18.6. matplotlib.axis 1563

Matplotlib, Release 3.4.3

• sphx_glr_gallery_ticks_and_spines_spine_placement_demo.py

• sphx_glr_gallery_ticks_and_spines_spines.py

• sphx_glr_gallery_ticks_and_spines_spines_bounds.py

• sphx_glr_gallery_ticks_and_spines_spines_dropped.py

• Choosing Colormaps in Matplotlib

matplotlib.axis.XAxis.tick_bottom

XAxis.tick_bottom()
Move ticks and ticklabels (if present) to the bottom of the axes.

Examples using matplotlib.axis.XAxis.tick_bottom

• sphx_glr_gallery_subplots_axes_and_figures_broken_axis.py

• sphx_glr_gallery_showcase_bachelors_degrees_by_gender.py

matplotlib.axis.XAxis.tick_top

XAxis.tick_top()
Move ticks and ticklabels (if present) to the top of the axes.

Examples using matplotlib.axis.XAxis.tick_top

• sphx_glr_gallery_subplots_axes_and_figures_broken_axis.py

• sphx_glr_gallery_text_labels_and_annotations_titles_demo.py

YAxis Specific

YAxis.axis_name Read-only name identifying the axis.
YAxis.get_text_widths

YAxis.get_ticks_position Return the ticks position ("left", "right", "default",
or "unknown").

YAxis.set_offset_position
Parameters

YAxis.set_ticks_position Set the ticks position.
YAxis.tick_left Move ticks and ticklabels (if present) to the left of

the axes.
continues on next page

1564 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 126 – continued from previous page
YAxis.tick_right Move ticks and ticklabels (if present) to the right of

the axes.

matplotlib.axis.YAxis.axis_name

YAxis.axis_name = 'y'
Read-only name identifying the axis.

matplotlib.axis.YAxis.get_text_widths

YAxis.get_text_widths(renderer)

Examples using matplotlib.axis.YAxis.get_text_widths

matplotlib.axis.YAxis.get_ticks_position

YAxis.get_ticks_position()
Return the ticks position ("left", "right", "default", or "unknown").

Examples using matplotlib.axis.YAxis.get_ticks_position

matplotlib.axis.YAxis.set_offset_position

YAxis.set_offset_position(position)

Parameters

position
[{'left', 'right'}]

Examples using matplotlib.axis.YAxis.set_offset_position

matplotlib.axis.YAxis.set_ticks_position

YAxis.set_ticks_position(position)
Set the ticks position.

Parameters

18.6. matplotlib.axis 1565

Matplotlib, Release 3.4.3

position
[{'left', 'right', 'both', 'default', 'none'}] 'both' sets the ticks to appear on both posi-
tions, but does not change the tick labels. 'default' resets the tick positions to the
default: ticks on both positions, labels at left. 'none' can be used if you don't want
any ticks. 'none' and 'both' affect only the ticks, not the labels.

Examples using matplotlib.axis.YAxis.set_ticks_position

• sphx_glr_gallery_pyplots_whats_new_99_spines.py

• sphx_glr_gallery_ticks_and_spines_spine_placement_demo.py

• sphx_glr_gallery_ticks_and_spines_spines.py

• sphx_glr_gallery_ticks_and_spines_spines_bounds.py

• sphx_glr_gallery_ticks_and_spines_spines_dropped.py

matplotlib.axis.YAxis.tick_left

YAxis.tick_left()
Move ticks and ticklabels (if present) to the left of the axes.

Examples using matplotlib.axis.YAxis.tick_left

• sphx_glr_gallery_showcase_bachelors_degrees_by_gender.py

• sphx_glr_gallery_ticks_and_spines_tick_label_right.py

matplotlib.axis.YAxis.tick_right

YAxis.tick_right()
Move ticks and ticklabels (if present) to the right of the axes.

Examples using matplotlib.axis.YAxis.tick_right

Other

Axis.OFFSETTEXTPAD

Axis.axes The Axes instance the artist resides in, or None.
Axis.limit_range_for_scale

Axis.reset_ticks Re-initialize the major and minor Tick lists.
continues on next page

1566 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 127 – continued from previous page
Axis.set_default_intervals Set the default limits for the axis data and view in-

terval if they have not been not mutated yet.

matplotlib.axis.Axis.OFFSETTEXTPAD

Axis.OFFSETTEXTPAD = 3

matplotlib.axis.Axis.axes

property Axis.axes
The Axes instance the artist resides in, or None.

matplotlib.axis.Axis.limit_range_for_scale

Axis.limit_range_for_scale(vmin, vmax)

Examples using matplotlib.axis.Axis.limit_range_for_scale

matplotlib.axis.Axis.reset_ticks

Axis.reset_ticks()
Re-initialize the major and minor Tick lists.

Each list starts with a single fresh Tick.

Examples using matplotlib.axis.Axis.reset_ticks

matplotlib.axis.Axis.set_default_intervals

Axis.set_default_intervals()
Set the default limits for the axis data and view interval if they have not been not mutated yet.

Examples using matplotlib.axis.Axis.set_default_intervals

Discouraged

These methods should be used together with care, calling set_ticks to specify the desired tick locations
before calling set_ticklabels to specify a matching series of labels. Calling set_ticks makes a
FixedLocator; it's list of locations is then used by set_ticklabels to make an appropriate Func-
Formatter.

18.6. matplotlib.axis 1567

Matplotlib, Release 3.4.3

Axis.set_ticks Set this Axis' tick locations.
Axis.set_ticklabels Set the text values of the tick labels.

matplotlib.axis.Axis.set_ticks

Axis.set_ticks(ticks, *, minor=False)
Set this Axis' tick locations.

If necessary, the view limits of the Axis are expanded so that all given ticks are visible.

Parameters

ticks
[list of floats] List of tick locations.

minor
[bool, default: False] If False, set the major ticks; if True, the minor ticks.

Notes

The mandatory expansion of the view limits is an intentional design choice to prevent the surprise of
a non-visible tick. If you need other limits, you should set the limits explicitly after setting the ticks.

Examples using matplotlib.axis.Axis.set_ticks

• sphx_glr_gallery_pyplots_whats_new_99_spines.py

• sphx_glr_gallery_ticks_and_spines_spine_placement_demo.py

matplotlib.axis.Axis.set_ticklabels

Axis.set_ticklabels(ticklabels, *, minor=False, **kwargs)
Set the text values of the tick labels.

Warning: This method should only be used after fixing the tick positions using Axis.
set_ticks. Otherwise, the labels may end up in unexpected positions.

Parameters

ticklabels

1568 Chapter 18. Modules

Matplotlib, Release 3.4.3

[sequence of str or of Texts] Texts for labeling each tick location in the sequence
set by Axis.set_ticks; the number of labels must match the number of loca-
tions.

minor
[bool] If True, set minor ticks instead of major ticks.

**kwargs
Text properties.

Returns

list of Texts
For each tick, includes tick.label1 if it is visible, then tick.label2 if it
is visible, in that order.

Examples using matplotlib.axis.Axis.set_ticklabels

18.6.3 Tick objects

class matplotlib.axis.Tick(axes, loc, label=<deprecated parameter>, size=None,
width=None, color=None, tickdir=None, pad=None,
labelsize=None, labelcolor=None, zorder=None,
gridOn=None, tick1On=True, tick2On=True, la-
bel1On=True, label2On=False, major=True, label-
rotation=0, grid_color=None, grid_linestyle=None,
grid_linewidth=None, grid_alpha=None, **kw)

Abstract base class for the axis ticks, grid lines and labels.

Ticks mark a position on an Axis. They contain two lines as markers and two labels; one each for the
bottom and top positions (in case of an XAxis) or for the left and right positions (in case of a YAxis).

Attributes

tick1line
[Line2D] The left/bottom tick marker.

tick2line
[Line2D] The right/top tick marker.

gridline
[Line2D] The grid line associated with the label position.

label1
[Text] The left/bottom tick label.

18.6. matplotlib.axis 1569

Matplotlib, Release 3.4.3

label2
[Text] The right/top tick label.

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in points

class matplotlib.axis.XTick(*args, **kwargs)
Contains all the Artists needed to make an x tick - the tick line, the label text and the grid line

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in points

class matplotlib.axis.YTick(*args, **kwargs)
Contains all the Artists needed to make a Y tick - the tick line, the label text and the grid line

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in points

Tick.apply_tickdir Set tick direction.
Tick.get_loc Return the tick location (data coords) as a scalar.
Tick.get_pad Get the value of the tick label pad in points.
Tick.get_pad_pixels

Tick.get_tick_padding Get the length of the tick outside of the axes.
Tick.get_tickdir

Tick.get_view_interval Return the view limits (min, max) of the axis
the tick belongs to.

Tick.set_label1 Set the label1 text.
Tick.set_label2 Set the label2 text.
Tick.set_pad Set the tick label pad in points
Tick.update_position Set the location of tick in data coords with scalar

loc.

matplotlib.axis.Tick.apply_tickdir

Tick.apply_tickdir(tickdir)
Set tick direction. Valid values are 'out', 'in', 'inout'.

Examples using matplotlib.axis.Tick.apply_tickdir

matplotlib.axis.Tick.get_loc

Tick.get_loc()
Return the tick location (data coords) as a scalar.

1570 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.axis.Tick.get_loc

matplotlib.axis.Tick.get_pad

Tick.get_pad()
Get the value of the tick label pad in points.

Examples using matplotlib.axis.Tick.get_pad

matplotlib.axis.Tick.get_pad_pixels

Tick.get_pad_pixels()

Examples using matplotlib.axis.Tick.get_pad_pixels

matplotlib.axis.Tick.get_tick_padding

Tick.get_tick_padding()
Get the length of the tick outside of the axes.

Examples using matplotlib.axis.Tick.get_tick_padding

matplotlib.axis.Tick.get_tickdir

Tick.get_tickdir()

Examples using matplotlib.axis.Tick.get_tickdir

matplotlib.axis.Tick.get_view_interval

Tick.get_view_interval()
Return the view limits (min, max) of the axis the tick belongs to.

Examples using matplotlib.axis.Tick.get_view_interval

matplotlib.axis.Tick.set_label1

Tick.set_label1(s)
Set the label1 text.

Parameters

18.6. matplotlib.axis 1571

Matplotlib, Release 3.4.3

s
[str]

Examples using matplotlib.axis.Tick.set_label1

matplotlib.axis.Tick.set_label2

Tick.set_label2(s)
Set the label2 text.

Parameters

s
[str]

Examples using matplotlib.axis.Tick.set_label2

matplotlib.axis.Tick.set_pad

Tick.set_pad(val)
Set the tick label pad in points

Parameters

val
[float]

Examples using matplotlib.axis.Tick.set_pad

matplotlib.axis.Tick.update_position

Tick.update_position(loc)
Set the location of tick in data coords with scalar loc.

Examples using matplotlib.axis.Tick.update_position

18.7 matplotlib.backend_bases

Abstract base classes define the primitives that renderers and graphics contexts must implement to serve as
a Matplotlib backend.

1572 Chapter 18. Modules

Matplotlib, Release 3.4.3

RendererBase

An abstract base class to handle drawing/rendering operations.

FigureCanvasBase

The abstraction layer that separates the Figure from the backend specific details like a user interface
drawing area.

GraphicsContextBase

An abstract base class that provides color, line styles, etc.

Event

The base class for all of the Matplotlib event handling. Derived classes such as KeyEvent and
MouseEvent store the meta data like keys and buttons pressed, x and y locations in pixel and Axes
coordinates.

ShowBase

The base class for the Show class of each interactive backend; the 'show' callable is then set to Show.
__call__.

ToolContainerBase

The base class for the Toolbar class of each interactive backend.

class matplotlib.backend_bases.CloseEvent(name, canvas, guiEvent=None)
Bases: matplotlib.backend_bases.Event

An event triggered by a figure being closed.

class matplotlib.backend_bases.DrawEvent(name, canvas, renderer)
Bases: matplotlib.backend_bases.Event

An event triggered by a draw operation on the canvas

In most backends callbacks subscribed to this callback will be fired after the rendering is complete but
before the screen is updated. Any extra artists drawn to the canvas's renderer will be reflected without
an explicit call to blit.

Warning: Calling canvas.draw and canvas.blit in these callbacks may not be safe with
all backends and may cause infinite recursion.

In addition to the Event attributes, the following event attributes are defined:

Attributes

renderer
[RendererBase] The renderer for the draw event.

class matplotlib.backend_bases.Event(name, canvas, guiEvent=None)
Bases: object

18.7. matplotlib.backend_bases 1573

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

A Matplotlib event. Attach additional attributes as defined in FigureCanvasBase.
mpl_connect(). The following attributes are defined and shown with their default values

Attributes

name
[str] The event name.

canvas
[FigureCanvasBase] The backend-specific canvas instance generating the
event.

guiEvent
The GUI event that triggered the Matplotlib event.

class matplotlib.backend_bases.FigureCanvasBase(figure=None)
Bases: object

The canvas the figure renders into.

Attributes

figure
[matplotlib.figure.Figure] A high-level figure instance.

blit(bbox=None)
Blit the canvas in bbox (default entire canvas).

property button_pick_id

button_press_event(x, y, button, dblclick=False, guiEvent=None)
Callback processing for mouse button press events.

Backend derived classes should call this function on any mouse button press. (x, y) are the canvas
coords ((0, 0) is lower left). button and key are as defined in MouseEvent.

This method will call all functions connected to the 'button_press_event' with a MouseEvent
instance.

button_release_event(x, y, button, guiEvent=None)
Callback processing for mouse button release events.

Backend derived classes should call this function on any mouse button release.

This method will call all functions connected to the 'button_release_event' with a MouseEvent
instance.

Parameters

x
[float] The canvas coordinates where 0=left.

1574 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

y
[float] The canvas coordinates where 0=bottom.

guiEvent
The native UI event that generated the Matplotlib event.

property callbacks

close_event(guiEvent=None)
Pass a CloseEvent to all functions connected to close_event.

draw(*args, **kwargs)
Render the Figure.

It is important that this method actually walk the artist tree even if not output is produced because
this will trigger deferred work (like computing limits auto-limits and tick values) that users may
want access to before saving to disk.

draw_event(renderer)
Pass a DrawEvent to all functions connected to draw_event.

draw_idle(*args, **kwargs)
Request a widget redraw once control returns to the GUI event loop.

Even if multiple calls to draw_idle occur before control returns to the GUI event loop, the
figure will only be rendered once.

Notes

Backends may choose to override the method and implement their own strategy to prevent mul-
tiple renderings.

enter_notify_event(guiEvent=None, xy=None)
Callback processing for the mouse cursor entering the canvas.

Backend derived classes should call this function when entering canvas.

Parameters

guiEvent
The native UI event that generated the Matplotlib event.

xy
[(float, float)] The coordinate location of the pointer when the canvas is entered.

events = ['resize_event', 'draw_event', 'key_press_event', 'key_release_event', 'button_press_event', 'button_release_event', 'scroll_event', 'motion_notify_event', 'pick_event', 'figure_enter_event', 'figure_leave_event', 'axes_enter_event', 'axes_leave_event', 'close_event']

filetypes = {'eps': 'Encapsulated Postscript', 'jpeg': 'Joint Photographic Experts Group', 'jpg': 'Joint Photographic Experts Group', 'pdf': 'Portable Document Format', 'pgf': 'PGF code for LaTeX', 'png': 'Portable Network Graphics', 'ps': 'Postscript', 'raw': 'Raw RGBA bitmap', 'rgba': 'Raw RGBA bitmap', 'svg': 'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics', 'tif': 'Tagged Image File Format', 'tiff': 'Tagged Image File Format'}

fixed_dpi = None

18.7. matplotlib.backend_bases 1575

Matplotlib, Release 3.4.3

flush_events()
Flush the GUI events for the figure.

Interactive backends need to reimplement this method.

get_default_filename()
Return a string, which includes extension, suitable for use as a default filename.

classmethod get_default_filetype()
Return the default savefig file format as specified in rcParams["savefig.format"] (de-
fault: 'png').

The returned string does not include a period. This method is overridden in backends that only
support a single file type.

classmethod get_supported_filetypes()
Return dict of savefig file formats supported by this backend.

classmethod get_supported_filetypes_grouped()
Return a dict of savefig file formats supported by this backend, where the keys are a file type name,
such as 'Joint Photographic Experts Group', and the values are a list of filename extensions used
for that filetype, such as ['jpg', 'jpeg'].

get_width_height()
Return the figure width and height in points or pixels (depending on the backend), truncated to
integers.

get_window_title()
[Deprecated] Return the title text of the window containing the figure, or None if there is no
window (e.g., a PS backend).

Notes

Deprecated since version 3.4.

grab_mouse(ax)
Set the child Axes which is grabbing the mouse events.

Usually called by the widgets themselves. It is an error to call this if the mouse is already grabbed
by another axes.

inaxes(xy)
Return the topmost visible Axes containing the point xy.

Parameters

xy
[(float, float)] (x, y) pixel positions from left/bottom of the canvas.

Returns

Axes or None

1576 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

The topmost visible axes containing the point, or None if no axes.

is_saving()
Return whether the renderer is in the process of saving to a file, rather than rendering for an
on-screen buffer.

key_press_event(key, guiEvent=None)
Pass a KeyEvent to all functions connected to key_press_event.

key_release_event(key, guiEvent=None)
Pass a KeyEvent to all functions connected to key_release_event.

leave_notify_event(guiEvent=None)
Callback processing for the mouse cursor leaving the canvas.

Backend derived classes should call this function when leaving canvas.

Parameters

guiEvent
The native UI event that generated the Matplotlib event.

motion_notify_event(x, y, guiEvent=None)
Callback processing for mouse movement events.

Backend derived classes should call this function on any motion-notify-event.

This method will call all functions connected to the 'motion_notify_event' with a MouseEvent
instance.

Parameters

x
[float] The canvas coordinates where 0=left.

y
[float] The canvas coordinates where 0=bottom.

guiEvent
The native UI event that generated the Matplotlib event.

mpl_connect(s, func)
Bind function func to event s.

Parameters

s
[str] One of the following events ids:

• 'button_press_event'

• 'button_release_event'

18.7. matplotlib.backend_bases 1577

Matplotlib, Release 3.4.3

• 'draw_event'

• 'key_press_event'

• 'key_release_event'

• 'motion_notify_event'

• 'pick_event'

• 'resize_event'

• 'scroll_event'

• 'figure_enter_event',

• 'figure_leave_event',

• 'axes_enter_event',

• 'axes_leave_event'

• 'close_event'.

func
[callable] The callback function to be executed, which must have the signature:

def func(event: Event) -> Any

For the location events (button and key press/release), if the mouse is over the
axes, the inaxes attribute of the event will be set to the Axes the event occurs
is over, and additionally, the variables xdata and ydata attributes will be set
to the mouse location in data coordinates. See KeyEvent and MouseEvent
for more info.

Returns

cid
A connection id that can be used with FigureCanvasBase.
mpl_disconnect.

Examples

def on_press(event):
print('you pressed', event.button, event.xdata, event.ydata)

cid = canvas.mpl_connect('button_press_event', on_press)

mpl_disconnect(cid)
Disconnect the callback with id cid.

1578 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples

cid = canvas.mpl_connect('button_press_event', on_press)
... later
canvas.mpl_disconnect(cid)

new_timer(interval=None, callbacks=None)
Create a new backend-specific subclass of Timer.

This is useful for getting periodic events through the backend's native event loop. Implemented
only for backends with GUIs.

Parameters

interval
[int] Timer interval in milliseconds.

callbacks
[list[tuple[callable, tuple, dict]]] Sequence of (func, args, kwargs) where
func(*args, **kwargs) will be executed by the timer every interval.

Callbacks which return False or 0 will be removed from the timer.

Examples

>>> timer = fig.canvas.new_timer(callbacks=[(f1, (1,), {'a': 3})])

pick(mouseevent)

pick_event(mouseevent, artist, **kwargs)
Callback processing for pick events.

This method will be called by artists who are picked and will fire off PickEvent callbacks
registered listeners.

Note that artists are not pickable by default (see Artist.set_picker).

print_figure(filename, dpi=None, facecolor=None, edgecolor=None, orienta-
tion='portrait', format=None, *, bbox_inches=None, pad_inches=None,
bbox_extra_artists=None, backend=None, **kwargs)

Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because
some of the GUIs have a gray figure face color background and you'll probably want to override
this on hardcopy.

Parameters

filename
[str or path-like or file-like] The file where the figure is saved.

18.7. matplotlib.backend_bases 1579

Matplotlib, Release 3.4.3

dpi
[float, default: rcParams["savefig.dpi"] (default: 'figure')] The
dots per inch to save the figure in.

facecolor
[color or 'auto', default: rcParams["savefig.facecolor"] (default:
'auto')] The facecolor of the figure. If 'auto', use the current figure facecolor.

edgecolor
[color or 'auto', default: rcParams["savefig.edgecolor"] (default:
'auto')] The edgecolor of the figure. If 'auto', use the current figure edge-
color.

orientation
[{'landscape', 'portrait'}, default: 'portrait'] Only currently applies to PostScript
printing.

format
[str, optional] Force a specific file format. If not given, the format is inferred
from the filename extension, and if that fails from rcParams["savefig.
format"] (default: 'png').

bbox_inches
['tight' or Bbox, default: rcParams["savefig.bbox"] (default: None)]
Bounding box in inches: only the given portion of the figure is saved. If 'tight',
try to figure out the tight bbox of the figure.

pad_inches
[float, default: rcParams["savefig.pad_inches"] (default: 0.1)]
Amount of padding around the figure when bbox_inches is 'tight'.

bbox_extra_artists
[list of Artist, optional] A list of extra artists that will be considered when the
tight bbox is calculated.

backend
[str, optional] Use a non-default backend to render the file, e.g. to render a png
file with the "cairo" backend rather than the default "agg", or a pdf file with
the "pgf" backend rather than the default "pdf". Note that the default backend
is normally sufficient. See The builtin backends for a list of valid backends for
each file format. Custom backends can be referenced as "module://...".

release_mouse(ax)
Release the mouse grab held by the Axes ax.

Usually called by the widgets. It is ok to call this even if ax doesn't have the mouse grab currently.

required_interactive_framework = None

1580 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=savefig.dpi#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=savefig.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=savefig.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=savefig.bbox#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=savefig.pad_inches#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

resize(w, h)
Set the canvas size in pixels.

resize_event()
Pass a ResizeEvent to all functions connected to resize_event.

scroll_event(x, y, step, guiEvent=None)
Callback processing for scroll events.

Backend derived classes should call this function on any scroll wheel event. (x, y) are the canvas
coords ((0, 0) is lower left). button and key are as defined in MouseEvent.

This method will call all functions connected to the 'scroll_event' with a MouseEvent instance.

property scroll_pick_id

set_window_title(title)
[Deprecated] Set the title text of the window containing the figure. Note that this has no effect
if there is no window (e.g., a PS backend).

Notes

Deprecated since version 3.4.

start_event_loop(timeout=0)
Start a blocking event loop.

Such an event loop is used by interactive functions, such as ginput and waitforbutton-
press, to wait for events.

The event loop blocks until a callback function triggers stop_event_loop, or timeout is
reached.

If timeout is 0 or negative, never timeout.

Only interactive backends need to reimplement this method and it relies on flush_events
being properly implemented.

Interactive backends should implement this in a more native way.

stop_event_loop()
Stop the current blocking event loop.

Interactive backends need to reimplement this to match start_event_loop

supports_blit = False

switch_backends(FigureCanvasClass)
Instantiate an instance of FigureCanvasClass

This is used for backend switching, e.g., to instantiate a FigureCanvasPS from a FigureCanvas-
GTK. Note, deep copying is not done, so any changes to one of the instances (e.g., setting figure
size or line props), will be reflected in the other

class matplotlib.backend_bases.FigureManagerBase(canvas, num)
Bases: object

18.7. matplotlib.backend_bases 1581

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

A backend-independent abstraction of a figure container and controller.

The figure manager is used by pyplot to interact with the window in a backend-independent way. It's
an adapter for the real (GUI) framework that represents the visual figure on screen.

GUI backends define from this class to translate common operations such as show or resize to the
GUI-specific code. Non-GUI backends do not support these operations an can just use the base class.

This following basic operations are accessible:

Window operations
• show

• destroy

• full_screen_toggle

• resize

• get_window_title

• set_window_title

Key and mouse button press handling
The figure manager sets up default key and mouse button press handling by hooking up the
key_press_handler to the matplotlib event system. This ensures the same shortcuts and mouse
actions across backends.

Other operations
Subclasses will have additional attributes and functions to access additional functionality. This is of
course backend-specific. For example, most GUI backends have window and toolbar attributes
that give access to the native GUI widgets of the respective framework.

Attributes

canvas
[FigureCanvasBase] The backend-specific canvas instance.

num
[int or str] The figure number.

key_press_handler_id
[int] The default key handler cid, when using the toolmanager. To disable the
default key press handling use:

figure.canvas.mpl_disconnect(
figure.canvas.manager.key_press_handler_id)

button_press_handler_id
[int] The default mouse button handler cid, when using the toolmanager. To dis-
able the default button press handling use:

1582 Chapter 18. Modules

Matplotlib, Release 3.4.3

figure.canvas.mpl_disconnect(
figure.canvas.manager.button_press_handler_id)

button_press(event)
[Deprecated] The default Matplotlib button actions for extra mouse buttons.

Notes

Deprecated since version 3.4.

destroy()

full_screen_toggle()

get_window_title()
Return the title text of the window containing the figure, or None if there is no window (e.g., a
PS backend).

key_press(event)
[Deprecated] Implement the default Matplotlib key bindings defined at Navigation Keyboard
Shortcuts.

Notes

Deprecated since version 3.4.

resize(w, h)
For GUI backends, resize the window (in pixels).

set_window_title(title)
Set the title text of the window containing the figure.

This has no effect for non-GUI (e.g., PS) backends.

show()
For GUI backends, show the figure window and redraw. For non-GUI backends, raise an excep-
tion, unless running headless (i.e. on Linux with an unset DISPLAY); this exception is converted
to a warning in Figure.show.

property statusbar

class matplotlib.backend_bases.GraphicsContextBase
Bases: object

An abstract base class that provides color, line styles, etc.

copy_properties(gc)
Copy properties from gc to self.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

18.7. matplotlib.backend_bases 1583

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

get_antialiased()
Return whether the object should try to do antialiased rendering.

get_capstyle()
Return the CapStyle.

get_clip_path()
Return the clip path in the form (path, transform), where path is a Path instance, and transform
is an affine transform to apply to the path before clipping.

get_clip_rectangle()
Return the clip rectangle as a Bbox instance.

get_dashes()
Return the dash style as an (offset, dash-list) pair.

The dash list is a even-length list that gives the ink on, ink off in points. See p. 107 of to PostScript
blue book for more info.

Default value is (None, None).

get_forced_alpha()
Return whether the value given by get_alpha() should be used to override any other alpha-channel
values.

get_gid()
Return the object identifier if one is set, None otherwise.

get_hatch()
Get the current hatch style.

get_hatch_color()
Get the hatch color.

get_hatch_linewidth()
Get the hatch linewidth.

get_hatch_path(density=6.0)
Return a Path for the current hatch.

get_joinstyle()
Return the JoinStyle.

get_linewidth()
Return the line width in points.

get_rgb()
Return a tuple of three or four floats from 0-1.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

1584 Chapter 18. Modules

https://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF
https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

May return None if no sketch parameters were set.

get_snap()
Return the snap setting, which can be:

• True: snap vertices to the nearest pixel center

• False: leave vertices as-is

• None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

get_url()
Return a url if one is set, None otherwise.

restore()
Restore the graphics context from the stack - needed only for backends that save graphics contexts
on a stack.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

If alpha=None (the default), the alpha components of the foreground and fill colors will be
used to set their respective transparencies (where applicable); otherwise, alpha will override
them.

set_antialiased(b)
Set whether object should be drawn with antialiased rendering.

set_capstyle(cs)
Set how to draw endpoints of lines.

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clip_path(path)
Set the clip path to a TransformedPath or None.

set_clip_rectangle(rectangle)
Set the clip rectangle to a Bbox or None.

set_dashes(dash_offset, dash_list)
Set the dash style for the gc.

Parameters

18.7. matplotlib.backend_bases 1585

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

dash_offset
[float or None] The offset (usually 0).

dash_list
[array-like or None] The on-off sequence as points.

Notes

(None, None) specifies a solid line.

See p. 107 of to PostScript blue book for more info.

set_foreground(fg, isRGBA=False)
Set the foreground color.

Parameters

fg
[color]

isRGBA
[bool] If fg is known to be an (r, g, b, a) tuple, isRGBA can be set to True
to improve performance.

set_gid(id)
Set the id.

set_hatch(hatch)
Set the hatch style (for fills).

set_hatch_color(hatch_color)
Set the hatch color.

set_joinstyle(js)
Set how to draw connections between line segments.

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_linewidth(w)
Set the linewidth in points.

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

1586 Chapter 18. Modules

https://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF

Matplotlib, Release 3.4.3

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, default: 128] The length of the wiggle along the line, in pixels.

randomness
[float, default: 16] The scale factor by which the length is shrunken or expanded.

set_snap(snap)
Set the snap setting which may be:

• True: snap vertices to the nearest pixel center

• False: leave vertices as-is

• None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel
center

set_url(url)
Set the url for links in compatible backends.

class matplotlib.backend_bases.KeyEvent(name, canvas, key, x=0, y=0,
guiEvent=None)

Bases: matplotlib.backend_bases.LocationEvent

A key event (key press, key release).

Attach additional attributes as defined in FigureCanvasBase.mpl_connect().

In addition to the Event and LocationEvent attributes, the following attributes are defined:

Notes

Modifier keys will be prefixed to the pressed key and will be in the order "ctrl", "alt", "super".
The exception to this rule is when the pressed key is itself a modifier key, therefore "ctrl+alt" and
"alt+control" can both be valid key values.

Examples

def on_key(event):
print('you pressed', event.key, event.xdata, event.ydata)

cid = fig.canvas.mpl_connect('key_press_event', on_key)

Attributes

18.7. matplotlib.backend_bases 1587

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

key
[None or str] the key(s) pressed. Could be None, a single case sensitive ascii
character ("g", "G", "#", etc.), a special key ("control", "shift", "f1", "up", etc.) or
a combination of the above (e.g., "ctrl+alt+g", "ctrl+alt+G").

(x, y) in figure coords ((0, 0) = bottom left).

class matplotlib.backend_bases.LocationEvent(name, canvas, x, y,
guiEvent=None)

Bases: matplotlib.backend_bases.Event

An event that has a screen location.

The following additional attributes are defined and shown with their default values.

In addition to the Event attributes, the following event attributes are defined:

Attributes

x
[int] x position - pixels from left of canvas.

y
[int] y position - pixels from bottom of canvas.

inaxes
[Axes or None] The Axes instance over which the mouse is, if any.

xdata
[float or None] x data coordinate of the mouse.

ydata
[float or None] y data coordinate of the mouse.

(x, y) in figure coords ((0, 0) = bottom left).

lastevent = None

class matplotlib.backend_bases.MouseButton(value)
Bases: enum.IntEnum

An enumeration.

BACK = 8

FORWARD = 9

LEFT = 1

MIDDLE = 2

RIGHT = 3

1588 Chapter 18. Modules

https://docs.python.org/3/library/enum.html#enum.IntEnum

Matplotlib, Release 3.4.3

class matplotlib.backend_bases.MouseEvent(name, canvas, x, y, button=None,
key=None, step=0, dblclick=False,
guiEvent=None)

Bases: matplotlib.backend_bases.LocationEvent

A mouse event ('button_press_event',
'button_release_event', 'scroll_event', 'motion_notify_event').

In addition to the Event and LocationEvent attributes, the following attributes are defined:

Examples

def on_press(event):
print('you pressed', event.button, event.xdata, event.ydata)

cid = fig.canvas.mpl_connect('button_press_event', on_press)

Attributes

button
[None orMouseButton or {'up', 'down'}] The button pressed. 'up' and 'down' are
used for scroll events. Note that LEFT and RIGHT actually refer to the "primary"
and "secondary" buttons, i.e. if the user inverts their left and right buttons ("left-
handed setting") then the LEFT button will be the one physically on the right.

key
[None or str] The key pressed when the mouse event triggered, e.g. 'shift'. See
KeyEvent.

Warning: This key is currently obtained from the last 'key_press_event' or
'key_release_event' that occurred within the canvas. Thus, if the last change
of keyboard state occurred while the canvas did not have focus, this attribute
will be wrong.

step
[float] The number of scroll steps (positive for 'up', negative for 'down'). This
applies only to 'scroll_event' and defaults to 0 otherwise.

dblclick
[bool] Whether the event is a double-click. This applies only to 'but-
ton_press_event' and is False otherwise. In particular, it's not used in 'but-
ton_release_event'.

(x, y) in figure coords ((0, 0) = bottom left) button pressed None, 1, 2, 3, 'up', 'down'

18.7. matplotlib.backend_bases 1589

Matplotlib, Release 3.4.3

class matplotlib.backend_bases.NavigationToolbar2(canvas)
Bases: object

Base class for the navigation cursor, version 2.

Backends must implement a canvas that handles connections for 'button_press_event' and 'but-
ton_release_event'. See FigureCanvasBase.mpl_connect() for more information.

They must also define

save_figure()

save the current figure

set_cursor()

if you want the pointer icon to change

draw_rubberband() (optional)
draw the zoom to rect "rubberband" rectangle

set_message() (optional)
display message

set_history_buttons() (optional)
you can change the history back / forward buttons to indicate disabled / enabled state.

and override __init__ to set up the toolbar -- without forgetting to call the base-class init. Typically,
__init__ needs to set up toolbar buttons connected to the home, back, forward, pan, zoom,
and save_figure methods and using standard icons in the "images" subdirectory of the data path.

That's it, we'll do the rest!

back(*args)
Move back up the view lim stack.

For convenience of being directly connected as a GUI callback, which often get passed additional
parameters, this method accepts arbitrary parameters, but does not use them.

configure_subplots(*args)

drag_pan(event)
Callback for dragging in pan/zoom mode.

drag_zoom(event)
Callback for dragging in zoom mode.

draw()
[Deprecated] Redraw the canvases, update the locators.

1590 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

draw_rubberband(event, x0, y0, x1, y1)
Draw a rectangle rubberband to indicate zoom limits.

Note that it is not guaranteed that x0 <= x1 and y0 <= y1.

forward(*args)
Move forward in the view lim stack.

For convenience of being directly connected as a GUI callback, which often get passed additional
parameters, this method accepts arbitrary parameters, but does not use them.

home(*args)
Restore the original view.

For convenience of being directly connected as a GUI callback, which often get passed additional
parameters, this method accepts arbitrary parameters, but does not use them.

mouse_move(event)

pan(*args)
Toggle the pan/zoom tool.

Pan with left button, zoom with right.

press(event)
[Deprecated] Called whenever a mouse button is pressed.

Notes

Deprecated since version 3.3.

press_pan(event)
Callback for mouse button press in pan/zoom mode.

press_zoom(event)
Callback for mouse button press in zoom to rect mode.

push_current()
Push the current view limits and position onto the stack.

release(event)
[Deprecated] Callback for mouse button release.

18.7. matplotlib.backend_bases 1591

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

release_pan(event)
Callback for mouse button release in pan/zoom mode.

release_zoom(event)
Callback for mouse button release in zoom to rect mode.

remove_rubberband()
Remove the rubberband.

save_figure(*args)
Save the current figure.

set_cursor(cursor)
Set the current cursor to one of the Cursors enums values.

If required by the backend, this method should trigger an update in the backend event loop after
the cursor is set, as this method may be called e.g. before a long-running task during which the
GUI is not updated.

set_history_buttons()
Enable or disable the back/forward button.

set_message(s)
Display a message on toolbar or in status bar.

toolitems = (('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous view', 'back', 'back'), ('Forward', 'Forward to next view', 'forward', 'forward'), (None, None, None, None), ('Pan', 'Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect', 'move', 'pan'), ('Zoom', 'Zoom to rectangle\nx/y fixes axis, CTRL fixes aspect', 'zoom_to_rect', 'zoom'), ('Subplots', 'Configure subplots', 'subplots', 'configure_subplots'), (None, None, None, None), ('Save', 'Save the figure', 'filesave', 'save_figure'))

update()
Reset the axes stack.

zoom(*args)
Toggle zoom to rect mode.

exception matplotlib.backend_bases.NonGuiException
Bases: Exception

Raised when trying show a figure in a non-GUI backend.

class matplotlib.backend_bases.PickEvent(name, canvas, mouseevent, artist,
guiEvent=None, **kwargs)

Bases: matplotlib.backend_bases.Event

A pick event, fired when the user picks a location on the canvas sufficiently close to an artist that has
been made pickable with Artist.set_picker.

Attrs: all the Event attributes plus

1592 Chapter 18. Modules

https://docs.python.org/3/library/exceptions.html#Exception

Matplotlib, Release 3.4.3

Examples

Bind a function on_pick() to pick events, that prints the coordinates of the picked data point:

ax.plot(np.rand(100), 'o', picker=5) # 5 points tolerance

def on_pick(event):
line = event.artist
xdata, ydata = line.get_data()
ind = event.ind
print('on pick line:', np.array([xdata[ind], ydata[ind]]).T)

cid = fig.canvas.mpl_connect('pick_event', on_pick)

Attributes

mouseevent
[MouseEvent] The mouse event that generated the pick.

artist
[matplotlib.artist.Artist] The picked artist. Note that artists are not
pickable by default (see Artist.set_picker).

other
Additional attributes may be present depending on the type of the picked object;
e.g., a Line2D pick may define different extra attributes than a PatchCollec-
tion pick.

class matplotlib.backend_bases.RendererBase
Bases: object

An abstract base class to handle drawing/rendering operations.

The following methods must be implemented in the backend for full functionality (though just imple-
menting draw_path() alone would give a highly capable backend):

• draw_path()

• draw_image()

• draw_gouraud_triangle()

The following methods should be implemented in the backend for optimization reasons:

• draw_text()

• draw_markers()

• draw_path_collection()

• draw_quad_mesh()

18.7. matplotlib.backend_bases 1593

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

close_group(s)
Close a grouping element with label s.

Only used by the SVG renderer.

draw_gouraud_triangle(gc, points, colors, transform)
Draw a Gouraud-shaded triangle.

Parameters

gc
[GraphicsContextBase] The graphics context.

points
[(3, 2) array-like] Array of (x, y) points for the triangle.

colors
[(3, 4) array-like] RGBA colors for each point of the triangle.

transform
[matplotlib.transforms.Transform] An affine transform to apply to
the points.

draw_gouraud_triangles(gc, triangles_array, colors_array, transform)
Draw a series of Gouraud triangles.

Parameters

points
[(N, 3, 2) array-like] Array of N (x, y) points for the triangles.

colors
[(N, 3, 4) array-like] Array of N RGBA colors for each point of the triangles.

transform
[matplotlib.transforms.Transform] An affine transform to apply to
the points.

draw_image(gc, x, y, im, transform=None)
Draw an RGBA image.

Parameters

gc
[GraphicsContextBase] A graphics context with clipping information.

x
[scalar] The distance in physical units (i.e., dots or pixels) from the left hand side
of the canvas.

1594 Chapter 18. Modules

Matplotlib, Release 3.4.3

y
[scalar] The distance in physical units (i.e., dots or pixels) from the bottom side
of the canvas.

im
[(N, M, 4) array-like of np.uint8] An array of RGBA pixels.

transform
[matplotlib.transforms.Affine2DBase] If and only if the con-
crete backend is written such that option_scale_image() returns
True, an affine transformation (i.e., an Affine2DBase) may be passed to
draw_image(). The translation vector of the transformation is given in phys-
ical units (i.e., dots or pixels). Note that the transformation does not override x
and y, and has to be applied before translating the result by x and y (this can be
accomplished by adding x and y to the translation vector defined by transform).

draw_markers(gc, marker_path, marker_trans, path, trans, rgbFace=None)
Draw a marker at each of path's vertices (excluding control points).

This provides a fallback implementation of draw_markers that makes multiple calls to
draw_path(). Some backends may want to override this method in order to draw the marker
only once and reuse it multiple times.

Parameters

gc
[GraphicsContextBase] The graphics context.

marker_trans
[matplotlib.transforms.Transform] An affine transform applied to
the marker.

trans
[matplotlib.transforms.Transform] An affine transform applied to
the path.

draw_path(gc, path, transform, rgbFace=None)
Draw a Path instance using the given affine transform.

draw_path_collection(gc, master_transform, paths, all_transforms, offsets, offsetTrans,
facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls,
offset_position)

Draw a collection of paths selecting drawing properties from the lists facecolors, edgecolors,
linewidths, linestyles and antialiaseds. offsets is a list of offsets to apply to each of the paths. The
offsets in offsets are first transformed by offsetTrans before being applied.

offset_position may be either "screen" or "data" depending on the space that the offsets are in;
"data" is deprecated.

18.7. matplotlib.backend_bases 1595

Matplotlib, Release 3.4.3

This provides a fallback implementation of draw_path_collection() that makes mul-
tiple calls to draw_path(). Some backends may want to override this in order to render
each set of path data only once, and then reference that path multiple times with the different
offsets, colors, styles etc. The generator methods _iter_collection_raw_paths() and
_iter_collection() are provided to helpwith (and standardize) the implementation across
backends. It is highly recommended to use those generators, so that changes to the behavior of
draw_path_collection() can be made globally.

draw_quad_mesh(gc, master_transform, meshWidth, meshHeight, coordinates, offsets, off-
setTrans, facecolors, antialiased, edgecolors)

Fallback implementation of draw_quad_mesh() that generates paths and then calls
draw_path_collection().

draw_tex(gc, x, y, s, prop, angle, ismath=<deprecated parameter>, mtext=None)

draw_text(gc, x, y, s, prop, angle, ismath=False, mtext=None)
Draw the text instance.

Parameters

gc
[GraphicsContextBase] The graphics context.

x
[float] The x location of the text in display coords.

y
[float] The y location of the text baseline in display coords.

s
[str] The text string.

prop
[matplotlib.font_manager.FontProperties] The font properties.

angle
[float] The rotation angle in degrees anti-clockwise.

mtext
[matplotlib.text.Text] The original text object to be rendered.

1596 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Note for backend implementers:
When you are trying to determine if you have gotten your bounding box right (which is what
enables the text layout/alignment to work properly), it helps to change the line in text.py:

if 0: bbox_artist(self, renderer)

to if 1, and then the actual bounding box will be plotted along with your text.

flipy()
Return whether y values increase from top to bottom.

Note that this only affects drawing of texts and images.

get_canvas_width_height()
Return the canvas width and height in display coords.

get_image_magnification()
Get the factor by which to magnify images passed to draw_image(). Allows a backend to
have images at a different resolution to other artists.

get_texmanager()
Return the TexManager instance.

get_text_width_height_descent(s, prop, ismath)
Get the width, height, and descent (offset from the bottom to the baseline), in display coords, of
the string s with FontProperties prop.

new_gc()
Return an instance of a GraphicsContextBase.

open_group(s, gid=None)
Open a grouping element with label s and gid (if set) as id.

Only used by the SVG renderer.

option_image_nocomposite()
Return whether image composition by Matplotlib should be skipped.

Raster backends should usually return False (letting the C-level rasterizer take care of
image composition); vector backends should usually return not rcParams["image.
composite_image"].

option_scale_image()
Returnwhether arbitrary affine transformations indraw_image() are supported (True formost
vector backends).

points_to_pixels(points)
Convert points to display units.

You need to override this function (unless your backend doesn't have a dpi, e.g., postscript or
svg). Some imaging systems assume some value for pixels per inch:

18.7. matplotlib.backend_bases 1597

Matplotlib, Release 3.4.3

points to pixels = points * pixels_per_inch/72 * dpi/72

Parameters

points
[float or array-like] a float or a numpy array of float

Returns

Points converted to pixels

start_filter()
Switch to a temporary renderer for image filtering effects.

Currently only supported by the agg renderer.

start_rasterizing()
Switch to the raster renderer.

Used by MixedModeRenderer.

stop_filter(filter_func)
Switch back to the original renderer. The contents of the temporary renderer is processed with
the filter_func and is drawn on the original renderer as an image.

Currently only supported by the agg renderer.

stop_rasterizing()
Switch back to the vector renderer and draw the contents of the raster renderer as an image on
the vector renderer.

Used by MixedModeRenderer.

class matplotlib.backend_bases.ResizeEvent(name, canvas)
Bases: matplotlib.backend_bases.Event

An event triggered by a canvas resize

In addition to the Event attributes, the following event attributes are defined:

Attributes

width
[int] Width of the canvas in pixels.

height
[int] Height of the canvas in pixels.

class matplotlib.backend_bases.ShowBase
Bases: matplotlib.backend_bases._Backend

Simple base class to generate a show() function in backends.

1598 Chapter 18. Modules

Matplotlib, Release 3.4.3

Subclass must override mainloop() method.

class matplotlib.backend_bases.StatusbarBase(toolmanager)
Bases: object

[Deprecated] Base class for the statusbar.

Notes

Deprecated since version 3.3.

set_message(s)
Display a message on toolbar or in status bar.

Parameters

s
[str] Message text.

class matplotlib.backend_bases.TimerBase(interval=None, callbacks=None)
Bases: object

A base class for providing timer events, useful for things animations. Backends need to implement a
few specificmethods in order to use their own timingmechanisms so that the timer events are integrated
into their event loops.

Subclasses must override the following methods:

• _timer_start: Backend-specific code for starting the timer.

• _timer_stop: Backend-specific code for stopping the timer.

Subclasses may additionally override the following methods:

• _timer_set_single_shot: Code for setting the timer to single shot operating mode,
if supported by the timer object. If not, the Timer class itself will store the flag and the
_on_timer method should be overridden to support such behavior.

• _timer_set_interval: Code for setting the interval on the timer, if there is a method for
doing so on the timer object.

• _on_timer: The internal function that any timer object should call, which will handle the task
of running all callbacks that have been set.

Parameters

interval
[int, default: 1000ms] The time between timer events in milliseconds. Will be
stored as timer.interval.

18.7. matplotlib.backend_bases 1599

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

callbacks
[list[tuple[callable, tuple, dict]]] List of (func, args, kwargs) tuples that will
be called upon timer events. This list is accessible as timer.callbacks
and can be manipulated directly, or the functions add_callback and re-
move_callback can be used.

add_callback(func, *args, **kwargs)
Register func to be called by timer when the event fires. Any additional arguments provided will
be passed to func.

This function returns func, which makes it possible to use it as a decorator.

property interval
The time between timer events, in milliseconds.

remove_callback(func, *args, **kwargs)
Remove func from list of callbacks.

args and kwargs are optional and used to distinguish between copies of the same function regis-
tered to be called with different arguments. This behavior is deprecated. In the future, *args,
**kwargs won't be considered anymore; to keep a specific callback removable by itself, pass
it to add_callback as a functools.partial object.

property single_shot
Whether this timer should stop after a single run.

start(interval=None)
Start the timer object.

Parameters

interval
[int, optional] Timer interval in milliseconds; overrides a previously set interval
if provided.

stop()
Stop the timer.

class matplotlib.backend_bases.ToolContainerBase(toolmanager)
Bases: object

Base class for all tool containers, e.g. toolbars.

Attributes

toolmanager
[ToolManager] The tools with which this ToolContainerwants to commu-
nicate.

add_tool(tool, group, position=- 1)
Add a tool to this container.

1600 Chapter 18. Modules

https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Parameters

tool
[tool_like] The tool to add, see ToolManager.get_tool.

group
[str] The name of the group to add this tool to.

position
[int, default: -1] The position within the group to place this tool.

add_toolitem(name, group, position, image, description, toggle)
Add a toolitem to the container.

This method must be implemented per backend.

The callback associated with the button click event, must be exactly self.
trigger_tool(name).

Parameters

name
[str] Name of the tool to add, this gets used as the tool's ID and as the default
label of the buttons.

group
[str] Name of the group that this tool belongs to.

position
[int] Position of the tool within its group, if -1 it goes at the end.

image
[str] Filename of the image for the button or None.

description
[str] Description of the tool, used for the tooltips.

toggle
[bool]

• True : The button is a toggle (change the pressed/unpressed state between
consecutive clicks).

• False : The button is a normal button (returns to unpressed state after re-
lease).

remove_toolitem(name)
Remove a toolitem from the ToolContainer.

This method must get implemented per backend.

18.7. matplotlib.backend_bases 1601

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Matplotlib, Release 3.4.3

Called when ToolManager emits a tool_removed_event.

Parameters

name
[str] Name of the tool to remove.

set_message(s)
Display a message on the toolbar.

Parameters

s
[str] Message text.

toggle_toolitem(name, toggled)
Toggle the toolitem without firing event.

Parameters

name
[str] Id of the tool to toggle.

toggled
[bool] Whether to set this tool as toggled or not.

trigger_tool(name)
Trigger the tool.

Parameters

name
[str] Name (id) of the tool triggered from within the container.

matplotlib.backend_bases.button_press_handler(event, canvas=None, tool-
bar=None)

The default Matplotlib button actions for extra mouse buttons.

Parameters are as for key_press_handler, except that event is a MouseEvent.

matplotlib.backend_bases.get_registered_canvas_class(format)
Return the registered default canvas for given file format. Handles deferred import of required backend.

matplotlib.backend_bases.key_press_handler(event, canvas=None, tool-
bar=None)

Implement the default Matplotlib key bindings for the canvas and toolbar described at Navigation
Keyboard Shortcuts.

Parameters

1602 Chapter 18. Modules

Matplotlib, Release 3.4.3

event
[KeyEvent] A key press/release event.

canvas
[FigureCanvasBase, default: event.canvas] The backend-specific can-
vas instance. This parameter is kept for back-compatibility, but, if set, should
always be equal to event.canvas.

toolbar
[NavigationToolbar2, default: event.canvas.toolbar] The naviga-
tion cursor toolbar. This parameter is kept for back-compatibility, but, if set,
should always be equal to event.canvas.toolbar.

matplotlib.backend_bases.register_backend(format, backend, description=None)
Register a backend for saving to a given file format.

Parameters

format
[str] File extension

backend
[module string or canvas class] Backend for handling file output

description
[str, default: ""] Description of the file type.

18.8 matplotlib.backend_managers

class matplotlib.backend_managers.ToolEvent(name, sender, tool, data=None)
Bases: object

Event for tool manipulation (add/remove).

class matplotlib.backend_managers.ToolManager(figure=None)
Bases: object

Manager for actions triggered by user interactions (key press, toolbar clicks, ...) on a Figure.

Attributes

figure

[Figure] Figure that holds the canvas.

keypresslock
[LockDraw] LockDraw object to know if the canvas key_press_event is
locked.

18.8. matplotlib.backend_managers 1603

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

messagelock
[LockDraw] LockDraw object to know if the message is available to write.

property active_toggle
Currently toggled tools.

add_tool(name, tool, *args, **kwargs)
Add tool to ToolManager.

If successful, adds a new event tool_trigger_{name} where {name} is the name of the
tool; the event is fired every time the tool is triggered.

Parameters

name
[str] Name of the tool, treated as the ID, has to be unique.

tool
[class_like, i.e. str or type] Reference to find the class of the Tool to added.

See also:

matplotlib.backend_tools.ToolBase

The base class for tools.

Notes

args and kwargs get passed directly to the tools constructor.

property canvas
Canvas managed by FigureManager.

property figure
Figure that holds the canvas.

get_tool(name, warn=True)
Return the tool object with the given name.

For convenience, this passes tool objects through.

Parameters

name
[str or ToolBase] Name of the tool, or the tool itself.

warn
[bool, default: True] Whether a warning should be emitted it no tool with the
given name exists.

1604 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns

ToolBase or None
The tool or None if no tool with the given name exists.

get_tool_keymap(name)
Return the keymap associated with the specified tool.

Parameters

name
[str] Name of the Tool.

Returns

list of str
List of keys associated with the tool.

message_event(message, sender=None)
Emit a ToolManagerMessageEvent.

remove_tool(name)
Remove tool named name.

Parameters

name
[str] Name of the tool.

set_figure(figure, update_tools=True)
Bind the given figure to the tools.

Parameters

figure
[Figure]

update_tools
[bool, default: True] Force tools to update figure.

toolmanager_connect(s, func)
Connect event with string s to func.

Parameters

s
[str] The name of the event. The following events are recognized:

18.8. matplotlib.backend_managers 1605

Matplotlib, Release 3.4.3

• 'tool_message_event'

• 'tool_removed_event'

• 'tool_added_event'

For every tool added a new event is created

• 'tool_trigger_TOOLNAME', where TOOLNAME is the id of the tool.

func
[callable] Callback function for the toolmanager event with signature:

def func(event: ToolEvent) -> Any

Returns

cid
The callback id for the connection. This can be used in toolman-
ager_disconnect.

toolmanager_disconnect(cid)
Disconnect callback id cid.

Example usage:

cid = toolmanager.toolmanager_connect('tool_trigger_zoom', onpress)
#...later
toolmanager.toolmanager_disconnect(cid)

property tools
A dict mapping tool name -> controlled tool.

trigger_tool(name, sender=None, canvasevent=None, data=None)
Trigger a tool and emit the tool_trigger_{name} event.

Parameters

name
[str] Name of the tool.

sender
[object] Object that wishes to trigger the tool.

canvasevent
[Event] Original Canvas event or None.

data
[object] Extra data to pass to the tool when triggering.

1606 Chapter 18. Modules

Matplotlib, Release 3.4.3

update_keymap(name, key, *args)
Set the keymap to associate with the specified tool.

Parameters

name
[str] Name of the Tool.

key
[str or list of str] Keys to associate with the tool.

class matplotlib.backend_managers.ToolManagerMessageEvent(name, sender,
message)

Bases: object

Event carrying messages from toolmanager.

Messages usually get displayed to the user by the toolbar.

class matplotlib.backend_managers.ToolTriggerEvent(name, sender, tool,
canvasevent=None,
data=None)

Bases: matplotlib.backend_managers.ToolEvent

Event to inform that a tool has been triggered.

18.9 matplotlib.backend_tools

Abstract base classes define the primitives for Tools. These tools are used by matplotlib.
backend_managers.ToolManager

ToolBase

Simple stateless tool

ToolToggleBase

Tool that has two states, only one Toggle tool can be active at any given time for the same
matplotlib.backend_managers.ToolManager

class matplotlib.backend_tools.AxisScaleBase(*args, **kwargs)
Bases: matplotlib.backend_tools.ToolToggleBase

Base Tool to toggle between linear and logarithmic.

disable(event)
Disable the toggle tool.

trigger call this method when toggled is True.

This can happen in different circumstances.

• Click on the toolbar tool button.

18.9. matplotlib.backend_tools 1607

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

• Call to matplotlib.backend_managers.ToolManager.trigger_tool.

• Another ToolToggleBase derived tool is triggered (from the same ToolManager).

enable(event)
Enable the toggle tool.

trigger calls this method when toggled is False.

trigger(sender, event, data=None)
Calls enable or disable based on toggled value.

class matplotlib.backend_tools.ConfigureSubplotsBase(toolmanager, name)
Bases: matplotlib.backend_tools.ToolBase

Base tool for the configuration of subplots.

description = 'Configure subplots'

image = 'subplots'

class matplotlib.backend_tools.Cursors(value)
Bases: enum.IntEnum

Backend-independent cursor types.

HAND = 0

MOVE = 3

POINTER = 1

SELECT_REGION = 2

WAIT = 4

class matplotlib.backend_tools.RubberbandBase(toolmanager, name)
Bases: matplotlib.backend_tools.ToolBase

Draw and remove a rubberband.

draw_rubberband(*data)
Draw rubberband.

This method must get implemented per backend.

remove_rubberband()
Remove rubberband.

This method should get implemented per backend.

trigger(sender, event, data)
Call draw_rubberband or remove_rubberband based on data.

class matplotlib.backend_tools.SaveFigureBase(toolmanager, name)
Bases: matplotlib.backend_tools.ToolBase

Base tool for figure saving.

default_keymap = ['s', 'ctrl+s']

1608 Chapter 18. Modules

https://docs.python.org/3/library/enum.html#enum.IntEnum

Matplotlib, Release 3.4.3

description = 'Save the figure'

image = 'filesave'

class matplotlib.backend_tools.SetCursorBase(*args, **kwargs)
Bases: matplotlib.backend_tools.ToolBase

Change to the current cursor while inaxes.

This tool, keeps track of all ToolToggleBase derived tools, and calls set_cursor when a tool
gets triggered.

set_cursor(cursor)
Set the cursor.

This method has to be implemented per backend.

set_figure(figure)
Assign a figure to the tool.

Parameters

figure
[Figure]

class matplotlib.backend_tools.ToolBack(toolmanager, name)
Bases: matplotlib.backend_tools.ViewsPositionsBase

Move back up the view limits stack.

default_keymap = ['left', 'c', 'backspace', 'MouseButton.BACK']

description = 'Back to previous view'

image = 'back'

class matplotlib.backend_tools.ToolBase(toolmanager, name)
Bases: object

Base tool class.

A base tool, only implements trigger method or not method at all. The tool is instantiated by
matplotlib.backend_managers.ToolManager.

Attributes

toolmanager
[matplotlib.backend_managers.ToolManager] ToolManager that
controls this Tool.

figure
[FigureCanvas] Figure instance that is affected by this Tool.

name

[str] Tool Id.

18.9. matplotlib.backend_tools 1609

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

property canvas

default_keymap = None
Keymap to associate with this tool.

String: List of comma separated keys that will be used to call this tool when the keypress event
of self.figure.canvas is emitted.

description = None
Description of the Tool.

String: If the Tool is included in the Toolbar this text is used as a Tooltip.

destroy()
Destroy the tool.

This method is called when the tool is removed by matplotlib.backend_managers.
ToolManager.remove_tool.

property figure

image = None
Filename of the image.

String: Filename of the image to use in the toolbar. If None, the name is used as a label in the
toolbar button.

property name
Tool Id.

set_figure(figure)
Assign a figure to the tool.

Parameters

figure
[Figure]

property toolmanager

trigger(sender, event, data=None)
Called when this tool gets used.

This method is called by matplotlib.backend_managers.ToolManager.
trigger_tool.

Parameters

event
[Event] The canvas event that caused this tool to be called.

sender
[object] Object that requested the tool to be triggered.

1610 Chapter 18. Modules

Matplotlib, Release 3.4.3

data
[object] Extra data.

class matplotlib.backend_tools.ToolCopyToClipboardBase(toolmanager,
name)

Bases: matplotlib.backend_tools.ToolBase

Tool to copy the figure to the clipboard.

default_keymap = ['ctrl+c', 'cmd+c']

description = 'Copy the canvas figure to clipboard'

trigger(*args, **kwargs)
Called when this tool gets used.

This method is called by matplotlib.backend_managers.ToolManager.
trigger_tool.

Parameters

event
[Event] The canvas event that caused this tool to be called.

sender
[object] Object that requested the tool to be triggered.

data
[object] Extra data.

class matplotlib.backend_tools.ToolCursorPosition(*args, **kwargs)
Bases: matplotlib.backend_tools.ToolBase

Send message with the current pointer position.

This tool runs in the background reporting the position of the cursor.

send_message(event)
Call matplotlib.backend_managers.ToolManager.message_event.

set_figure(figure)
Assign a figure to the tool.

Parameters

figure
[Figure]

class matplotlib.backend_tools.ToolEnableAllNavigation(toolmanager,
name)

Bases: matplotlib.backend_tools._ToolEnableAllNavigation

[Deprecated]

18.9. matplotlib.backend_tools 1611

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

class matplotlib.backend_tools.ToolEnableNavigation(toolmanager, name)
Bases: matplotlib.backend_tools._ToolEnableNavigation

[Deprecated]

Notes

Deprecated since version 3.3:

class matplotlib.backend_tools.ToolForward(toolmanager, name)
Bases: matplotlib.backend_tools.ViewsPositionsBase

Move forward in the view lim stack.

default_keymap = ['right', 'v', 'MouseButton.FORWARD']

description = 'Forward to next view'

image = 'forward'

class matplotlib.backend_tools.ToolFullScreen(*args, **kwargs)
Bases: matplotlib.backend_tools.ToolToggleBase

Tool to toggle full screen.

default_keymap = ['f', 'ctrl+f']

description = 'Toggle fullscreen mode'

disable(event)
Disable the toggle tool.

trigger call this method when toggled is True.

This can happen in different circumstances.

• Click on the toolbar tool button.

• Call to matplotlib.backend_managers.ToolManager.trigger_tool.

• Another ToolToggleBase derived tool is triggered (from the same ToolManager).

enable(event)
Enable the toggle tool.

trigger calls this method when toggled is False.

class matplotlib.backend_tools.ToolGrid(toolmanager, name)
Bases: matplotlib.backend_tools.ToolBase

Tool to toggle the major grids of the figure.

default_keymap = ['g']

1612 Chapter 18. Modules

Matplotlib, Release 3.4.3

description = 'Toggle major grids'

trigger(sender, event, data=None)
Called when this tool gets used.

This method is called by matplotlib.backend_managers.ToolManager.
trigger_tool.

Parameters

event
[Event] The canvas event that caused this tool to be called.

sender
[object] Object that requested the tool to be triggered.

data
[object] Extra data.

class matplotlib.backend_tools.ToolHelpBase(toolmanager, name)
Bases: matplotlib.backend_tools.ToolBase

default_keymap = ['f1']

description = 'Print tool list, shortcuts and description'

static format_shortcut(key_sequence)
Converts a shortcut string from the notation used in rc config to the standard notation for dis-
playing shortcuts, e.g. 'ctrl+a' -> 'Ctrl+A'.

image = 'help'

class matplotlib.backend_tools.ToolHome(toolmanager, name)
Bases: matplotlib.backend_tools.ViewsPositionsBase

Restore the original view limits.

default_keymap = ['h', 'r', 'home']

description = 'Reset original view'

image = 'home'

class matplotlib.backend_tools.ToolMinorGrid(toolmanager, name)
Bases: matplotlib.backend_tools.ToolBase

Tool to toggle the major and minor grids of the figure.

default_keymap = ['G']

description = 'Toggle major and minor grids'

trigger(sender, event, data=None)
Called when this tool gets used.

18.9. matplotlib.backend_tools 1613

Matplotlib, Release 3.4.3

This method is called by matplotlib.backend_managers.ToolManager.
trigger_tool.

Parameters

event
[Event] The canvas event that caused this tool to be called.

sender
[object] Object that requested the tool to be triggered.

data
[object] Extra data.

class matplotlib.backend_tools.ToolPan(*args)
Bases: matplotlib.backend_tools.ZoomPanBase

Pan axes with left mouse, zoom with right.

cursor = 3

default_keymap = ['p']

description = 'Pan axes with left mouse, zoom with right'

image = 'move'

radio_group = 'default'

class matplotlib.backend_tools.ToolQuit(toolmanager, name)
Bases: matplotlib.backend_tools.ToolBase

Tool to call the figure manager destroy method.

default_keymap = ['ctrl+w', 'cmd+w', 'q']

description = 'Quit the figure'

trigger(sender, event, data=None)
Called when this tool gets used.

This method is called by matplotlib.backend_managers.ToolManager.
trigger_tool.

Parameters

event
[Event] The canvas event that caused this tool to be called.

sender
[object] Object that requested the tool to be triggered.

data
[object] Extra data.

1614 Chapter 18. Modules

Matplotlib, Release 3.4.3

class matplotlib.backend_tools.ToolQuitAll(toolmanager, name)
Bases: matplotlib.backend_tools.ToolBase

Tool to call the figure manager destroy method.

default_keymap = []

description = 'Quit all figures'

trigger(sender, event, data=None)
Called when this tool gets used.

This method is called by matplotlib.backend_managers.ToolManager.
trigger_tool.

Parameters

event
[Event] The canvas event that caused this tool to be called.

sender
[object] Object that requested the tool to be triggered.

data
[object] Extra data.

class matplotlib.backend_tools.ToolToggleBase(*args, **kwargs)
Bases: matplotlib.backend_tools.ToolBase

Toggleable tool.

Every time it is triggered, it switches between enable and disable.

Parameters

``*args``
Variable length argument to be used by the Tool.

``**kwargs``
toggled if present and True, sets the initial state of the Tool Arbitrary keyword
arguments to be consumed by the Tool

cursor = None
Cursor to use when the tool is active.

default_toggled = False
Default of toggled state.

disable(event=None)
Disable the toggle tool.

trigger call this method when toggled is True.

18.9. matplotlib.backend_tools 1615

Matplotlib, Release 3.4.3

This can happen in different circumstances.

• Click on the toolbar tool button.

• Call to matplotlib.backend_managers.ToolManager.trigger_tool.

• Another ToolToggleBase derived tool is triggered (from the same ToolManager).

enable(event=None)
Enable the toggle tool.

trigger calls this method when toggled is False.

radio_group = None
Attribute to group 'radio' like tools (mutually exclusive).

String that identifies the group or None if not belonging to a group.

set_figure(figure)
Assign a figure to the tool.

Parameters

figure
[Figure]

property toggled
State of the toggled tool.

trigger(sender, event, data=None)
Calls enable or disable based on toggled value.

class matplotlib.backend_tools.ToolViewsPositions(*args, **kwargs)
Bases: matplotlib.backend_tools.ToolBase

Auxiliary Tool to handle changes in views and positions.

Runs in the background and should get used by all the tools that need to access the figure's history of
views and positions, e.g.

• ToolZoom

• ToolPan

• ToolHome

• ToolBack

• ToolForward

add_figure(figure)
Add the current figure to the stack of views and positions.

back()
Back one step in the stack of views and positions.

clear(figure)
Reset the axes stack.

1616 Chapter 18. Modules

Matplotlib, Release 3.4.3

forward()
Forward one step in the stack of views and positions.

home()
Recall the first view and position from the stack.

push_current(figure=None)
Push the current view limits and position onto their respective stacks.

refresh_locators()
[Deprecated] Redraw the canvases, update the locators.

Notes

Deprecated since version 3.3.

update_home_views(figure=None)
Make sure that self.home_views has an entry for all axes present in the figure.

update_view()
Update the view limits and position for each axes from the current stack position. If any axes are
present in the figure that aren't in the current stack position, use the home view limits for those
axes and don't update any positions.

class matplotlib.backend_tools.ToolXScale(*args, **kwargs)
Bases: matplotlib.backend_tools.AxisScaleBase

Tool to toggle between linear and logarithmic scales on the X axis.

default_keymap = ['k', 'L']

description = 'Toggle scale X axis'

set_scale(ax, scale)

class matplotlib.backend_tools.ToolYScale(*args, **kwargs)
Bases: matplotlib.backend_tools.AxisScaleBase

Tool to toggle between linear and logarithmic scales on the Y axis.

default_keymap = ['l']

description = 'Toggle scale Y axis'

set_scale(ax, scale)

class matplotlib.backend_tools.ToolZoom(*args)
Bases: matplotlib.backend_tools.ZoomPanBase

A Tool for zooming using a rectangle selector.

cursor = 2

default_keymap = ['o']

description = 'Zoom to rectangle'

18.9. matplotlib.backend_tools 1617

Matplotlib, Release 3.4.3

image = 'zoom_to_rect'

radio_group = 'default'

class matplotlib.backend_tools.ViewsPositionsBase(toolmanager, name)
Bases: matplotlib.backend_tools.ToolBase

Base class for ToolHome, ToolBack and ToolForward.

trigger(sender, event, data=None)
Called when this tool gets used.

This method is called by matplotlib.backend_managers.ToolManager.
trigger_tool.

Parameters

event
[Event] The canvas event that caused this tool to be called.

sender
[object] Object that requested the tool to be triggered.

data
[object] Extra data.

class matplotlib.backend_tools.ZoomPanBase(*args)
Bases: matplotlib.backend_tools.ToolToggleBase

Base class for ToolZoom and ToolPan.

disable(event)
Release the canvas and disconnect press/release events.

enable(event)
Connect press/release events and lock the canvas.

scroll_zoom(event)

trigger(sender, event, data=None)
Calls enable or disable based on toggled value.

matplotlib.backend_tools.add_tools_to_container(container,
tools=[['navigation',
['home', 'back', 'forward']],
['zoompan', ['pan', 'zoom',
'subplots']], ['io', ['save',
'help']]])

Add multiple tools to the container.

Parameters

container

1618 Chapter 18. Modules

Matplotlib, Release 3.4.3

[Container] backend_bases.ToolContainerBase object that will get the
tools added.

tools
[list, optional] List in the form [[group1, [tool1, tool2 ...]],
[group2, [...]]] where the tools [tool1, tool2, ...] will display
in group1. See add_tool for details.

matplotlib.backend_tools.add_tools_to_manager(toolmanager,
tools={'allnav': <class 'mat-
plotlib.backend_tools._ToolEnableAllNavigation'>,
'back': <class 'mat-
plotlib.backend_tools.ToolBack'>,
'copy': 'ToolCopyToClipboard',
'cursor': 'ToolSetCursor',
'forward': <class 'mat-
plotlib.backend_tools.ToolForward'>,
'fullscreen': <class 'mat-
plotlib.backend_tools.ToolFullScreen'>,
'grid': <class 'mat-
plotlib.backend_tools.ToolGrid'>,
'grid_minor': <class 'mat-
plotlib.backend_tools.ToolMinorGrid'>,
'help': 'ToolHelp',
'home': <class 'mat-
plotlib.backend_tools.ToolHome'>,
'nav': <class 'mat-
plotlib.backend_tools._ToolEnableNavigation'>,
'pan': <class 'mat-
plotlib.backend_tools.ToolPan'>,
'position': <class 'mat-
plotlib.backend_tools.ToolCursorPosition'>,
'quit': <class 'mat-
plotlib.backend_tools.ToolQuit'>,
'quit_all': <class 'mat-
plotlib.backend_tools.ToolQuitAll'>,
'rubberband': 'ToolRubber-
band', 'save': 'ToolSaveFigure',
'subplots': 'ToolConfigureSub-
plots', 'viewpos': <class 'mat-
plotlib.backend_tools.ToolViewsPositions'>,
'xscale': <class 'mat-
plotlib.backend_tools.ToolXScale'>,
'yscale': <class 'mat-
plotlib.backend_tools.ToolYScale'>,
'zoom': <class 'mat-
plotlib.backend_tools.ToolZoom'>})

Add multiple tools to a ToolManager.

18.9. matplotlib.backend_tools 1619

Matplotlib, Release 3.4.3

Parameters

toolmanager
[backend_managers.ToolManager]Manager towhich the tools are added.

tools
[{str: class_like}, optional] The tools to add in a {name: tool} dict, see
add_tool for more info.

matplotlib.backend_tools.cursors
alias of matplotlib.backend_tools.Cursors

matplotlib.backend_tools.default_toolbar_tools = [['navigation', ['home', 'back', 'forward']], ['zoompan', ['pan', 'zoom', 'subplots']], ['io', ['save', 'help']]]
Default tools in the toolbar

matplotlib.backend_tools.default_tools = {'allnav': <class 'matplotlib.backend_tools._ToolEnableAllNavigation'>, 'back': <class 'matplotlib.backend_tools.ToolBack'>, 'copy': 'ToolCopyToClipboard', 'cursor': 'ToolSetCursor', 'forward': <class 'matplotlib.backend_tools.ToolForward'>, 'fullscreen': <class 'matplotlib.backend_tools.ToolFullScreen'>, 'grid': <class 'matplotlib.backend_tools.ToolGrid'>, 'grid_minor': <class 'matplotlib.backend_tools.ToolMinorGrid'>, 'help': 'ToolHelp', 'home': <class 'matplotlib.backend_tools.ToolHome'>, 'nav': <class 'matplotlib.backend_tools._ToolEnableNavigation'>, 'pan': <class 'matplotlib.backend_tools.ToolPan'>, 'position': <class 'matplotlib.backend_tools.ToolCursorPosition'>, 'quit': <class 'matplotlib.backend_tools.ToolQuit'>, 'quit_all': <class 'matplotlib.backend_tools.ToolQuitAll'>, 'rubberband': 'ToolRubberband', 'save': 'ToolSaveFigure', 'subplots': 'ToolConfigureSubplots', 'viewpos': <class 'matplotlib.backend_tools.ToolViewsPositions'>, 'xscale': <class 'matplotlib.backend_tools.ToolXScale'>, 'yscale': <class 'matplotlib.backend_tools.ToolYScale'>, 'zoom': <class 'matplotlib.backend_tools.ToolZoom'>}
Default tools

18.10 matplotlib.backends

18.10.1 matplotlib.backends.backend_mixed

class matplotlib.backends.backend_mixed.MixedModeRenderer(figure, width,
height,
dpi, vec-
tor_renderer,
raster_renderer_class=None,
bbox_inches_restore=None)

Bases: object

A helper class to implement a renderer that switches between vector and raster drawing. An example
may be a PDFwriter, wheremost things are drawnwith PDF vector commands, but some very complex
objects, such as quad meshes, are rasterised and then output as images.

Parameters

figure
[matplotlib.figure.Figure] The figure instance.

width
[scalar] The width of the canvas in logical units

height
[scalar] The height of the canvas in logical units

dpi
[float] The dpi of the canvas

1620 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

vector_renderer
[matplotlib.backend_bases.RendererBase] An instance of a sub-
class of RendererBase that will be used for the vector drawing.

raster_renderer_class
[matplotlib.backend_bases.RendererBase] The renderer class to
use for the raster drawing. If not provided, this will use the Agg backend (which
is currently the only viable option anyway.)

start_rasterizing()
Enter "raster" mode. All subsequent drawing commands (until stop_rasterizing is called)
will be drawn with the raster backend.

stop_rasterizing()
Exit "raster" mode. All of the drawing that was done since the last start_rasterizing call
will be copied to the vector backend by calling draw_image.

18.10.2 matplotlib.backends.backend_template

A fully functional, do-nothing backend intended as a template for backend writers. It is fully functional in
that you can select it as a backend e.g. with

import matplotlib
matplotlib.use("template")

and your program will (should!) run without error, though no output is produced. This provides a starting
point for backend writers; you can selectively implement drawing methods (draw_path, draw_image,
etc.) and slowly see your figure come to life instead having to have a full blown implementation before getting
any results.

Copy this file to a directory outside of the Matplotlib source tree, somewhere where Python can import it (by
adding the directory to your sys.path or by packaging it as a normal Python package); if the backend is
importable as import my.backend you can then select it using

import matplotlib
matplotlib.use("module://my.backend")

If your backend implements support for saving figures (i.e. has a print_xyz method), you can register it
as the default handler for a given file type:

from matplotlib.backend_bases import register_backend
register_backend('xyz', 'my_backend', 'XYZ File Format')
...
plt.savefig("figure.xyz")

matplotlib.backends.backend_template.FigureCanvas
alias of matplotlib.backends.backend_template.FigureCanvasTemplate

class matplotlib.backends.backend_template.FigureCanvasTemplate(figure=None)
Bases: matplotlib.backend_bases.FigureCanvasBase

18.10. matplotlib.backends 1621

Matplotlib, Release 3.4.3

The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc.

Note: GUI templates will want to connect events for button presses, mouse movements and key
presses to functions that call the base class methods button_press_event, button_release_event, mo-
tion_notify_event, key_press_event, and key_release_event. See the implementations of the interac-
tive backends for examples.

Attributes

figure
[matplotlib.figure.Figure] A high-level Figure instance

draw()
Draw the figure using the renderer.

It is important that this method actually walk the artist tree even if not output is produced because
this will trigger deferred work (like computing limits auto-limits and tick values) that users may
want access to before saving to disk.

filetypes = {'eps': 'Encapsulated Postscript', 'foo': 'My magic Foo format', 'jpeg': 'Joint Photographic Experts Group', 'jpg': 'Joint Photographic Experts Group', 'pdf': 'Portable Document Format', 'pgf': 'PGF code for LaTeX', 'png': 'Portable Network Graphics', 'ps': 'Postscript', 'raw': 'Raw RGBA bitmap', 'rgba': 'Raw RGBA bitmap', 'svg': 'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics', 'tif': 'Tagged Image File Format', 'tiff': 'Tagged Image File Format'}

get_default_filetype()
Return the default savefig file format as specified in rcParams["savefig.format"] (de-
fault: 'png').

The returned string does not include a period. This method is overridden in backends that only
support a single file type.

print_foo(filename, *args, **kwargs)
Write out format foo.

This method is normally called via Figure.savefig and FigureCanvasBase.
print_figure, which take care of setting the figure facecolor, edgecolor, and dpi to the de-
sired output values, and will restore them to the original values. Therefore, print_foo does
not need to handle these settings.

matplotlib.backends.backend_template.FigureManager
alias of matplotlib.backends.backend_template.FigureManagerTemplate

class matplotlib.backends.backend_template.FigureManagerTemplate(canvas,
num)

Bases: matplotlib.backend_bases.FigureManagerBase

Helper class for pyplot mode, wraps everything up into a neat bundle.

For non-interactive backends, the base class is sufficient.

class matplotlib.backends.backend_template.GraphicsContextTemplate
Bases: matplotlib.backend_bases.GraphicsContextBase

The graphics context provides the color, line styles, etc... See the cairo and postscript backends for
examples of mapping the graphics context attributes (cap styles, join styles, line widths, colors) to
a particular backend. In cairo this is done by wrapping a cairo.Context object and forwarding the

1622 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

appropriate calls to it using a dictionary mapping styles to gdk constants. In Postscript, all the work is
done by the renderer, mapping line styles to postscript calls.

If it's more appropriate to do the mapping at the renderer level (as in the postscript backend), you don't
need to override any of the GC methods. If it's more appropriate to wrap an instance (as in the cairo
backend) and do the mapping here, you'll need to override several of the setter methods.

The base GraphicsContext stores colors as a RGB tuple on the unit interval, e.g., (0.5, 0.0, 1.0). You
may need to map this to colors appropriate for your backend.

class matplotlib.backends.backend_template.RendererTemplate(dpi)
Bases: matplotlib.backend_bases.RendererBase

The renderer handles drawing/rendering operations.

This is a minimal do-nothing class that can be used to get started when writing a new backend. Refer
to backend_bases.RendererBase for documentation of the methods.

draw_image(gc, x, y, im)
Draw an RGBA image.

Parameters

gc
[GraphicsContextBase] A graphics context with clipping information.

x
[scalar] The distance in physical units (i.e., dots or pixels) from the left hand side
of the canvas.

y
[scalar] The distance in physical units (i.e., dots or pixels) from the bottom side
of the canvas.

im
[(N, M, 4) array-like of np.uint8] An array of RGBA pixels.

transform
[matplotlib.transforms.Affine2DBase] If and only if the con-
crete backend is written such that option_scale_image() returns
True, an affine transformation (i.e., an Affine2DBase) may be passed to
draw_image(). The translation vector of the transformation is given in phys-
ical units (i.e., dots or pixels). Note that the transformation does not override x
and y, and has to be applied before translating the result by x and y (this can be
accomplished by adding x and y to the translation vector defined by transform).

draw_path(gc, path, transform, rgbFace=None)
Draw a Path instance using the given affine transform.

draw_text(gc, x, y, s, prop, angle, ismath=False, mtext=None)
Draw the text instance.

18.10. matplotlib.backends 1623

Matplotlib, Release 3.4.3

Parameters

gc
[GraphicsContextBase] The graphics context.

x
[float] The x location of the text in display coords.

y
[float] The y location of the text baseline in display coords.

s
[str] The text string.

prop
[matplotlib.font_manager.FontProperties] The font properties.

angle
[float] The rotation angle in degrees anti-clockwise.

mtext
[matplotlib.text.Text] The original text object to be rendered.

Notes

Note for backend implementers:
When you are trying to determine if you have gotten your bounding box right (which is what
enables the text layout/alignment to work properly), it helps to change the line in text.py:

if 0: bbox_artist(self, renderer)

to if 1, and then the actual bounding box will be plotted along with your text.

flipy()
Return whether y values increase from top to bottom.

Note that this only affects drawing of texts and images.

get_canvas_width_height()
Return the canvas width and height in display coords.

get_text_width_height_descent(s, prop, ismath)
Get the width, height, and descent (offset from the bottom to the baseline), in display coords, of
the string s with FontProperties prop.

new_gc()
Return an instance of a GraphicsContextBase.

1624 Chapter 18. Modules

Matplotlib, Release 3.4.3

points_to_pixels(points)
Convert points to display units.

You need to override this function (unless your backend doesn't have a dpi, e.g., postscript or
svg). Some imaging systems assume some value for pixels per inch:

points to pixels = points * pixels_per_inch/72 * dpi/72

Parameters

points
[float or array-like] a float or a numpy array of float

Returns

Points converted to pixels

matplotlib.backends.backend_template.draw_if_interactive()
For image backends - is not required. For GUI backends - this should be overridden if drawing should
be done in interactive python mode.

matplotlib.backends.backend_template.new_figure_manager(num, *args,
Figure-
Class=<class
'mat-
plotlib.figure.Figure'>,
**kwargs)

Create a new figure manager instance.

matplotlib.backends.backend_template.new_figure_manager_given_figure(num,
fig-
ure)

Create a new figure manager instance for the given figure.

matplotlib.backends.backend_template.show(*, block=None)
For image backends - is not required. For GUI backends - show() is usually the last line of a pyplot
script and tells the backend that it is time to draw. In interactive mode, this should do nothing.

18.10.3 matplotlib.backends.backend_agg

An Anti-Grain Geometry (AGG) backend.

Features that are implemented:

• capstyles and join styles

• dashes

• linewidth

• lines, rectangles, ellipses

18.10. matplotlib.backends 1625

http://antigrain.com

Matplotlib, Release 3.4.3

• clipping to a rectangle

• output to RGBA and Pillow-supported image formats

• alpha blending

• DPI scaling properly - everything scales properly (dashes, linewidths, etc)

• draw polygon

• freetype2 w/ ft2font

Still TODO:

• integrate screen dpi w/ ppi and text

matplotlib.backends.backend_agg.FigureCanvas
alias of matplotlib.backends.backend_agg.FigureCanvasAgg

class matplotlib.backends.backend_agg.FigureCanvasAgg(figure=None)
Bases: matplotlib.backend_bases.FigureCanvasBase

buffer_rgba()
Get the image as a memoryview to the renderer's buffer.

draw must be called at least once before this function will work and to update the renderer for
any subsequent changes to the Figure.

copy_from_bbox(bbox)

draw()
Render the Figure.

It is important that this method actually walk the artist tree even if not output is produced because
this will trigger deferred work (like computing limits auto-limits and tick values) that users may
want access to before saving to disk.

get_renderer(cleared=False)

print_jpeg(filename_or_obj, *args, pil_kwargs=None, **kwargs)
Write the figure to a JPEG file.

Parameters

filename_or_obj
[str or path-like or file-like] The file to write to.

Other Parameters

quality
[int, default: rcParams["savefig.jpeg_quality"] (default: 95)] The
image quality, on a scale from 1 (worst) to 95 (best). Values above 95 should be
avoided; 100 disables portions of the JPEG compression algorithm, and results
in large files with hardly any gain in image quality. This parameter is deprecated.

1626 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#memoryview
../tutorials/introductory/customizing.html?highlight=savefig.jpeg_quality#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

optimize
[bool, default: False] Whether the encoder should make an extra pass over the
image in order to select optimal encoder settings. This parameter is deprecated.

progressive
[bool, default: False] Whether the image should be stored as a progressive JPEG
file. This parameter is deprecated.

pil_kwargs
[dict, optional] Additional keyword arguments that are passed to PIL.Image.
Image.save when saving the figure. These take precedence over quality, op-
timize and progressive.

print_jpg(filename_or_obj, *args, pil_kwargs=None, **kwargs)
Write the figure to a JPEG file.

Parameters

filename_or_obj
[str or path-like or file-like] The file to write to.

Other Parameters

quality
[int, default: rcParams["savefig.jpeg_quality"] (default: 95)] The
image quality, on a scale from 1 (worst) to 95 (best). Values above 95 should be
avoided; 100 disables portions of the JPEG compression algorithm, and results
in large files with hardly any gain in image quality. This parameter is deprecated.

optimize
[bool, default: False] Whether the encoder should make an extra pass over the
image in order to select optimal encoder settings. This parameter is deprecated.

progressive
[bool, default: False] Whether the image should be stored as a progressive JPEG
file. This parameter is deprecated.

pil_kwargs
[dict, optional] Additional keyword arguments that are passed to PIL.Image.
Image.save when saving the figure. These take precedence over quality, op-
timize and progressive.

print_png(filename_or_obj, *args, metadata=None, pil_kwargs=None)
Write the figure to a PNG file.

Parameters

18.10. matplotlib.backends 1627

https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save
../tutorials/introductory/customizing.html?highlight=savefig.jpeg_quality#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save

Matplotlib, Release 3.4.3

filename_or_obj
[str or path-like or file-like] The file to write to.

metadata
[dict, optional] Metadata in the PNG file as key-value pairs of bytes or latin-1
encodable strings. According to the PNG specification, keys must be shorter
than 79 chars.

The PNG specification defines some common keywords that may be used as
appropriate:

• Title: Short (one line) title or caption for image.

• Author: Name of image's creator.

• Description: Description of image (possibly long).

• Copyright: Copyright notice.

• Creation Time: Time of original image creation (usually RFC 1123 format).

• Software: Software used to create the image.

• Disclaimer: Legal disclaimer.

• Warning: Warning of nature of content.

• Source: Device used to create the image.

• Comment: Miscellaneous comment; conversion from other image format.

Other keywords may be invented for other purposes.

If 'Software' is not given, an autogenerated value for Matplotlib will be used.
This can be removed by setting it to None.

For more details see the PNG specification.

pil_kwargs
[dict, optional] Keyword arguments passed to PIL.Image.Image.save.

If the 'pnginfo' key is present, it completely overrides metadata, including the
default 'Software' key.

print_raw(filename_or_obj, *args)

print_rgba(filename_or_obj, *args)

print_tif(filename_or_obj, *, pil_kwargs=None)

print_tiff(filename_or_obj, *, pil_kwargs=None)

print_to_buffer()

restore_region(region, bbox=None, xy=None)

1628 Chapter 18. Modules

https://www.w3.org/TR/2003/REC-PNG-20031110/#11keywords
https://www.w3.org/TR/2003/REC-PNG-20031110/#11keywords
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save

Matplotlib, Release 3.4.3

tostring_argb()
Get the image as ARGB bytes.

draw must be called at least once before this function will work and to update the renderer for
any subsequent changes to the Figure.

tostring_rgb()
Get the image as RGB bytes.

draw must be called at least once before this function will work and to update the renderer for
any subsequent changes to the Figure.

class matplotlib.backends.backend_agg.RendererAgg(width, height, dpi)
Bases: matplotlib.backend_bases.RendererBase

The renderer handles all the drawing primitives using a graphics context instance that controls the
colors/styles

buffer_rgba()

clear()

draw_mathtext(gc, x, y, s, prop, angle)
Draw mathtext using matplotlib.mathtext.

draw_path(gc, path, transform, rgbFace=None)
Draw a Path instance using the given affine transform.

draw_path_collection(gc, master_transform, paths, all_transforms, offsets, offsetTrans,
facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls,
offset_position)

Draw a collection of paths selecting drawing properties from the lists facecolors, edgecolors,
linewidths, linestyles and antialiaseds. offsets is a list of offsets to apply to each of the paths. The
offsets in offsets are first transformed by offsetTrans before being applied.

offset_position may be either "screen" or "data" depending on the space that the offsets are in;
"data" is deprecated.

This provides a fallback implementation of draw_path_collection() that makes mul-
tiple calls to draw_path(). Some backends may want to override this in order to render
each set of path data only once, and then reference that path multiple times with the different
offsets, colors, styles etc. The generator methods _iter_collection_raw_paths() and
_iter_collection() are provided to helpwith (and standardize) the implementation across
backends. It is highly recommended to use those generators, so that changes to the behavior of
draw_path_collection() can be made globally.

draw_tex(gc, x, y, s, prop, angle, *, mtext=None)

draw_text(gc, x, y, s, prop, angle, ismath=False, mtext=None)
Draw the text instance.

Parameters

gc
[GraphicsContextBase] The graphics context.

18.10. matplotlib.backends 1629

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Matplotlib, Release 3.4.3

x
[float] The x location of the text in display coords.

y
[float] The y location of the text baseline in display coords.

s
[str] The text string.

prop
[matplotlib.font_manager.FontProperties] The font properties.

angle
[float] The rotation angle in degrees anti-clockwise.

mtext
[matplotlib.text.Text] The original text object to be rendered.

Notes

Note for backend implementers:
When you are trying to determine if you have gotten your bounding box right (which is what
enables the text layout/alignment to work properly), it helps to change the line in text.py:

if 0: bbox_artist(self, renderer)

to if 1, and then the actual bounding box will be plotted along with your text.

get_canvas_width_height()
Return the canvas width and height in display coords.

get_content_extents()
[Deprecated]

Notes

Deprecated since version 3.4:

get_text_width_height_descent(s, prop, ismath)
Get the width, height, and descent (offset from the bottom to the baseline), in display coords, of
the string s with FontProperties prop.

lock = <unlocked _thread.RLock object owner=0 count=0>

option_image_nocomposite()
Return whether image composition by Matplotlib should be skipped.

1630 Chapter 18. Modules

Matplotlib, Release 3.4.3

Raster backends should usually return False (letting the C-level rasterizer take care of
image composition); vector backends should usually return not rcParams["image.
composite_image"].

option_scale_image()
Returnwhether arbitrary affine transformations indraw_image() are supported (True formost
vector backends).

points_to_pixels(points)
Convert points to display units.

You need to override this function (unless your backend doesn't have a dpi, e.g., postscript or
svg). Some imaging systems assume some value for pixels per inch:

points to pixels = points * pixels_per_inch/72 * dpi/72

Parameters

points
[float or array-like] a float or a numpy array of float

Returns

Points converted to pixels

restore_region(region, bbox=None, xy=None)
Restore the saved region. If bbox (instance of BboxBase, or its extents) is given, only the region
specified by the bbox will be restored. xy (a pair of floats) optionally specifies the new position
(the LLC of the original region, not the LLC of the bbox) where the region will be restored.

>>> region = renderer.copy_from_bbox()
>>> x1, y1, x2, y2 = region.get_extents()
>>> renderer.restore_region(region, bbox=(x1+dx, y1, x2, y2),
... xy=(x1-dx, y1))

start_filter()
Start filtering. It simply create a new canvas (the old one is saved).

stop_filter(post_processing)
Save the plot in the current canvas as a image and apply the post_processing function.

def post_processing(image, dpi):
ny, nx, depth = image.shape # image (numpy array) has RGBA channels and has
a depth of 4. ... # create a new_image (numpy array of 4 channels, size can be
different). The resulting image may have offsets from # lower-left corner of the
original image return new_image, offset_x, offset_y

The saved renderer is restored and the returned image from post_processing is plotted (using
draw_image) on it.

tostring_argb()

18.10. matplotlib.backends 1631

Matplotlib, Release 3.4.3

tostring_rgb()

tostring_rgba_minimized()
[Deprecated]

Notes

Deprecated since version 3.4:

matplotlib.backends.backend_agg.get_hinting_flag()

18.10.4 matplotlib.backends.backend_cairo

A Cairo backend for matplotlib

Author
Steve Chaplin and others

This backend depends on cairocffi or pycairo.

matplotlib.backends.backend_cairo.FigureCanvas
alias of matplotlib.backends.backend_cairo.FigureCanvasCairo

class matplotlib.backends.backend_cairo.FigureCanvasCairo(figure=None)
Bases: matplotlib.backend_bases.FigureCanvasBase

copy_from_bbox(bbox)

print_pdf(fobj, *args, **kwargs)

print_png(fobj)

print_ps(fobj, *args, **kwargs)

print_raw(fobj)

print_rgba(fobj)

print_svg(fobj, *args, **kwargs)

print_svgz(fobj, *args, **kwargs)

restore_region(region)

class matplotlib.backends.backend_cairo.GraphicsContextCairo(renderer)
Bases: matplotlib.backend_bases.GraphicsContextBase

get_rgb()
Return a tuple of three or four floats from 0-1.

restore()
Restore the graphics context from the stack - needed only for backends that save graphics contexts
on a stack.

1632 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

If alpha=None (the default), the alpha components of the foreground and fill colors will be
used to set their respective transparencies (where applicable); otherwise, alpha will override
them.

set_antialiased(b)
Set whether object should be drawn with antialiased rendering.

set_capstyle(cs)
Set how to draw endpoints of lines.

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clip_path(path)
Set the clip path to a TransformedPath or None.

set_clip_rectangle(rectangle)
Set the clip rectangle to a Bbox or None.

set_dashes(offset, dashes)
Set the dash style for the gc.

Parameters

dash_offset
[float or None] The offset (usually 0).

dash_list
[array-like or None] The on-off sequence as points.

Notes

(None, None) specifies a solid line.

See p. 107 of to PostScript blue book for more info.

set_foreground(fg, isRGBA=None)
Set the foreground color.

Parameters

fg
[color]

18.10. matplotlib.backends 1633

https://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF

Matplotlib, Release 3.4.3

isRGBA
[bool] If fg is known to be an (r, g, b, a) tuple, isRGBA can be set to True
to improve performance.

set_joinstyle(js)
Set how to draw connections between line segments.

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_linewidth(w)
Set the linewidth in points.

class matplotlib.backends.backend_cairo.RendererCairo(dpi)
Bases: matplotlib.backend_bases.RendererBase

draw_image(gc, x, y, im)
Draw an RGBA image.

Parameters

gc
[GraphicsContextBase] A graphics context with clipping information.

x
[scalar] The distance in physical units (i.e., dots or pixels) from the left hand side
of the canvas.

y
[scalar] The distance in physical units (i.e., dots or pixels) from the bottom side
of the canvas.

im
[(N, M, 4) array-like of np.uint8] An array of RGBA pixels.

transform
[matplotlib.transforms.Affine2DBase] If and only if the con-
crete backend is written such that option_scale_image() returns
True, an affine transformation (i.e., an Affine2DBase) may be passed to
draw_image(). The translation vector of the transformation is given in phys-
ical units (i.e., dots or pixels). Note that the transformation does not override x
and y, and has to be applied before translating the result by x and y (this can be
accomplished by adding x and y to the translation vector defined by transform).

draw_markers(gc, marker_path, marker_trans, path, transform, rgbFace=None)
Draw a marker at each of path's vertices (excluding control points).

1634 Chapter 18. Modules

Matplotlib, Release 3.4.3

This provides a fallback implementation of draw_markers that makes multiple calls to
draw_path(). Some backends may want to override this method in order to draw the marker
only once and reuse it multiple times.

Parameters

gc
[GraphicsContextBase] The graphics context.

marker_trans
[matplotlib.transforms.Transform] An affine transform applied to
the marker.

trans
[matplotlib.transforms.Transform] An affine transform applied to
the path.

draw_path(gc, path, transform, rgbFace=None)
Draw a Path instance using the given affine transform.

draw_text(gc, x, y, s, prop, angle, ismath=False, mtext=None)
Draw the text instance.

Parameters

gc
[GraphicsContextBase] The graphics context.

x
[float] The x location of the text in display coords.

y
[float] The y location of the text baseline in display coords.

s
[str] The text string.

prop
[matplotlib.font_manager.FontProperties] The font properties.

angle
[float] The rotation angle in degrees anti-clockwise.

mtext
[matplotlib.text.Text] The original text object to be rendered.

18.10. matplotlib.backends 1635

Matplotlib, Release 3.4.3

Notes

Note for backend implementers:
When you are trying to determine if you have gotten your bounding box right (which is what
enables the text layout/alignment to work properly), it helps to change the line in text.py:

if 0: bbox_artist(self, renderer)

to if 1, and then the actual bounding box will be plotted along with your text.

property fontangles

property fontweights

get_canvas_width_height()
Return the canvas width and height in display coords.

get_text_width_height_descent(s, prop, ismath)
Get the width, height, and descent (offset from the bottom to the baseline), in display coords, of
the string s with FontProperties prop.

property mathtext_parser

new_gc()
Return an instance of a GraphicsContextBase.

points_to_pixels(points)
Convert points to display units.

You need to override this function (unless your backend doesn't have a dpi, e.g., postscript or
svg). Some imaging systems assume some value for pixels per inch:

points to pixels = points * pixels_per_inch/72 * dpi/72

Parameters

points
[float or array-like] a float or a numpy array of float

Returns

Points converted to pixels

set_ctx_from_surface(surface)

set_width_height(width, height)

NOTE These backends are not documented here, to avoid adding a dependency to building the docs.

1636 Chapter 18. Modules

Matplotlib, Release 3.4.3

18.10.5 matplotlib.backends.backend_gtk3agg

18.10.6 matplotlib.backends.backend_gtk3cairo

18.10.7 matplotlib.backends.backend_nbagg

Interactive figures in the IPython notebook

class matplotlib.backends.backend_nbagg.CommSocket(manager)
Bases: object

Manages the Comm connection between IPython and the browser (client).

Comms are 2 way, with the CommSocket being able to publish a message via the send_json method,
and handle a message with on_message. On the JS side figure.send_message and figure.ws.onmessage
do the sending and receiving respectively.

is_open()

on_close()

on_message(message)

send_binary(blob)

send_json(content)

matplotlib.backends.backend_nbagg.FigureCanvas
alias of matplotlib.backends.backend_nbagg.FigureCanvasNbAgg

class matplotlib.backends.backend_nbagg.FigureCanvasNbAgg(*args,
**kwargs)

Bases: matplotlib.backends.backend_webagg_core.FigureCanvasWebAggCore

matplotlib.backends.backend_nbagg.FigureManager
alias of matplotlib.backends.backend_nbagg.FigureManagerNbAgg

class matplotlib.backends.backend_nbagg.FigureManagerNbAgg(canvas,
num)

Bases: matplotlib.backends.backend_webagg_core.FigureManagerWebAgg

ToolbarCls
alias of matplotlib.backends.backend_nbagg.NavigationIPy

clearup_closed()
Clear up any closed Comms.

property connected

destroy()

display_js()

classmethod get_javascript(stream=None)

remove_comm(comm_id)

18.10. matplotlib.backends 1637

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

reshow()
A special method to re-show the figure in the notebook.

show()
For GUI backends, show the figure window and redraw. For non-GUI backends, raise an excep-
tion, unless running headless (i.e. on Linux with an unset DISPLAY); this exception is converted
to a warning in Figure.show.

class matplotlib.backends.backend_nbagg.NavigationIPy(canvas)
Bases: matplotlib.backends.backend_webagg_core.
NavigationToolbar2WebAgg

toolitems = [('Home', 'Reset original view', 'fa fa-home icon-home', 'home'), ('Back', 'Back to previous view', 'fa fa-arrow-left icon-arrow-left', 'back'), ('Forward', 'Forward to next view', 'fa fa-arrow-right icon-arrow-right', 'forward'), (None, None, None, None), ('Pan', 'Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect', 'fa fa-arrows icon-move', 'pan'), ('Zoom', 'Zoom to rectangle\nx/y fixes axis, CTRL fixes aspect', 'fa fa-square-o icon-check-empty', 'zoom'), (None, None, None, None), ('Download', 'Download plot', 'fa fa-floppy-o icon-save', 'download')]

matplotlib.backends.backend_nbagg.connection_info()
Return a string showing the figure and connection status for the backend.

This is intended as a diagnostic tool, and not for general use.

matplotlib.backends.backend_nbagg.new_figure_manager_given_figure(num,
fig-
ure)

Create a new figure manager instance for the given figure.

matplotlib.backends.backend_nbagg.show(block=None)
Show all figures.

show blocks by calling mainloop if block is True, or if it is None and we are neither in IPython's
%pylab mode, nor in interactive mode.

18.10.8 matplotlib.backends.backend_pdf

A PDF matplotlib backend Author: Jouni K Seppänen <jks@iki.fi>

matplotlib.backends.backend_pdf.FigureCanvas
alias of matplotlib.backends.backend_pdf.FigureCanvasPdf

class matplotlib.backends.backend_pdf.FigureCanvasPdf(figure=None)
Bases: matplotlib.backend_bases.FigureCanvasBase

draw()
Render the Figure.

It is important that this method actually walk the artist tree even if not output is produced because
this will trigger deferred work (like computing limits auto-limits and tick values) that users may
want access to before saving to disk.

filetypes = {'pdf': 'Portable Document Format'}

fixed_dpi = 72

get_default_filetype()
Return the default savefig file format as specified in rcParams["savefig.format"] (de-
fault: 'png').

1638 Chapter 18. Modules

mailto:jks@iki.fi
../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

The returned string does not include a period. This method is overridden in backends that only
support a single file type.

print_pdf(filename, *, dpi=<deprecated parameter>, bbox_inches_restore=None, meta-
data=None)

class matplotlib.backends.backend_pdf.GraphicsContextPdf(file)
Bases: matplotlib.backend_bases.GraphicsContextBase

alpha_cmd(alpha, forced, effective_alphas)

capstyle_cmd(style)

capstyles = {'butt': 0, 'projecting': 2, 'round': 1}

clip_cmd(cliprect, clippath)
Set clip rectangle. Calls pop() and push().

commands = ((('_cliprect', '_clippath'), <function GraphicsContextPdf.clip_cmd>), (('_alpha', '_forced_alpha', '_effective_alphas'), <function GraphicsContextPdf.alpha_cmd>), (('_capstyle',), <function GraphicsContextPdf.capstyle_cmd>), (('_fillcolor',), <function GraphicsContextPdf.fillcolor_cmd>), (('_joinstyle',), <function GraphicsContextPdf.joinstyle_cmd>), (('_linewidth',), <function GraphicsContextPdf.linewidth_cmd>), (('_dashes',), <function GraphicsContextPdf.dash_cmd>), (('_rgb',), <function GraphicsContextPdf.rgb_cmd>), (('_hatch', '_hatch_color'), <function GraphicsContextPdf.hatch_cmd>))

copy_properties(other)
Copy properties of other into self.

dash_cmd(dashes)

delta(other)
Copy properties of other into self and return PDF commands needed to transform self into other.

fill(*args)
Predicate: does the path need to be filled?

An optional argument can be used to specify an alternative _fillcolor, as needed by Render-
erPdf.draw_markers.

fillcolor_cmd(rgb)

finalize()
Make sure every pushed graphics state is popped.

hatch_cmd(hatch, hatch_color)

joinstyle_cmd(style)

joinstyles = {'bevel': 2, 'miter': 0, 'round': 1}

linewidth_cmd(width)

paint()
Return the appropriate pdf operator to cause the path to be stroked, filled, or both.

pop()

push()

rgb_cmd(rgb)

stroke()
Predicate: does the path need to be stroked (its outline drawn)? This tests for the various condi-
tions that disable stroking the path, in which case it would presumably be filled.

18.10. matplotlib.backends 1639

Matplotlib, Release 3.4.3

class matplotlib.backends.backend_pdf.Name(name)
Bases: object

PDF name object.

static hexify(match)

name

pdfRepr()

class matplotlib.backends.backend_pdf.Op(value)
Bases: matplotlib.backends.backend_pdf.Operator, enum.Enum

An enumeration.

begin_text = (b'BT',)

clip = b'W'

close_fill_stroke = b'b'

close_stroke = b's'

closepath = (b'h',)

concat_matrix = b'cm'

curveto = b'c'

end_text = b'ET'

endpath = b'n'

fill = b'f'

fill_stroke = b'B'

grestore = b'Q'

gsave = (b'q',)

lineto = b'l'

moveto = (b'm',)

op

classmethod paint_path(fill, stroke)
Return the PDF operator to paint a path.

Parameters

fill
[bool] Fill the path with the fill color.

stroke
[bool] Stroke the outline of the path with the line color.

1640 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/enum.html#enum.Enum

Matplotlib, Release 3.4.3

rectangle = b're'

selectfont = b'Tf'

setcolor_nonstroke = b'scn'

setcolor_stroke = b'SCN'

setcolorspace_nonstroke = (b'cs',)

setcolorspace_stroke = b'CS'

setdash = (b'd',)

setgray_nonstroke = b'g'

setgray_stroke = (b'G',)

setgstate = b'gs'

setlinecap = b'J'

setlinejoin = b'j'

setlinewidth = b'w'

setrgb_nonstroke = (b'rg',)

setrgb_stroke = b'RG'

shading = b'sh'

show = b'Tj'

showkern = b'TJ'

stroke = b'S'

textmatrix = (b'Tm',)

textpos = b'Td'

use_xobject = b'Do'

class matplotlib.backends.backend_pdf.Operator(op)
Bases: object

PDF operator object.

op

pdfRepr()

class matplotlib.backends.backend_pdf.PdfFile(filename, metadata=None)
Bases: object

PDF file object.

Parameters

18.10. matplotlib.backends 1641

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

filename
[str or path-like or file-like] Output target; if a string, a file will be opened for
writing.

metadata
[dict from strings to strings and dates] Information dictionary object (see PDF ref-
erence section 10.2.1 'Document Information Dictionary'), e.g.: {'Creator':
'My software', 'Author': 'Me', 'Title': 'Awesome'}.

The standard keys are 'Title', 'Author', 'Subject', 'Keywords', 'Creator', 'Producer',
'CreationDate', 'ModDate', and 'Trapped'. Values have been predefined for 'Cre-
ator', 'Producer' and 'CreationDate'. They can be removed by setting them toNone.

addGouraudTriangles(points, colors)
Add a Gouraud triangle shading.

Parameters

points
[np.ndarray] Triangle vertices, shape (n, 3, 2) where n = number of triangles, 3
= vertices, 2 = x, y.

colors
[np.ndarray] Vertex colors, shape (n, 3, 1) or (n, 3, 4) as with points, but last
dimension is either (gray,) or (r, g, b, alpha).

Returns

Name, Reference

alphaState(alpha)
Return name of an ExtGState that sets alpha to the given value.

beginStream(id, len, extra=None, png=None)

close()
Flush all buffers and free all resources.

createType1Descriptor(t1font, fontfile)

dviFontName(dvifont)
Given a dvi font object, return a name suitable for Op.selectfont. This registers the font informa-
tion in self.dviFontInfo if not yet registered.

embedTTF(filename, characters)
Embed the TTF font from the named file into the document.

endStream()

finalize()
Write out the various deferred objects and the pdf end matter.

1642 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

fontName(fontprop)
Select a font based on fontprop and return a name suitable for Op.selectfont. If fontprop is a
string, it will be interpreted as the filename of the font.

hatchPattern(hatch_style)

imageObject(image)
Return name of an image XObject representing the given image.

markerObject(path, trans, fill, stroke, lw, joinstyle, capstyle)
Return name of a marker XObject representing the given path.

newPage(width, height)

newTextnote(text, positionRect=[- 100, - 100, 0, 0])

output(*data)

pathCollectionObject(gc, path, trans, padding, filled, stroked)

static pathOperations(path, transform, clip=None, simplify=None, sketch=None)

recordXref(id)

reserveObject(name='')
Reserve an ID for an indirect object.

The name is used for debugging in case we forget to print out the object with writeObject.

property used_characters

write(data)

writeExtGSTates()

writeFonts()

writeGouraudTriangles()

writeHatches()

writeImages()

writeInfoDict()
Write out the info dictionary, checking it for good form

writeMarkers()

writeObject(object, contents)

writePath(path, transform, clip=False, sketch=None)

writePathCollectionTemplates()

writeTrailer()
Write out the PDF trailer.

writeXref()
Write out the xref table.

18.10. matplotlib.backends 1643

Matplotlib, Release 3.4.3

class matplotlib.backends.backend_pdf.PdfPages(filename, keep_empty=True,
metadata=None)

Bases: object

A multi-page PDF file.

Notes

In reality PdfPages is a thin wrapper around PdfFile, in order to avoid confusion when using
savefig and forgetting the format argument.

Examples

>>> import matplotlib.pyplot as plt
>>> # Initialize:
>>> with PdfPages('foo.pdf') as pdf:
... # As many times as you like, create a figure fig and save it:
... fig = plt.figure()
... pdf.savefig(fig)
... # When no figure is specified the current figure is saved
... pdf.savefig()

Create a new PdfPages object.

Parameters

filename
[str or path-like or file-like] Plots using PdfPages.savefig will be written to
a file at this location. The file is opened at once and any older file with the same
name is overwritten.

keep_empty
[bool, optional] If set to False, then empty pdf files will be deleted automatically
when closed.

metadata
[dict, optional] Information dictionary object (see PDF reference section 10.2.1
'Document Information Dictionary'), e.g.: {'Creator': 'My software',
'Author': 'Me', 'Title': 'Awesome'}.

The standard keys are 'Title', 'Author', 'Subject', 'Keywords', 'Creator', 'Producer',
'CreationDate', 'ModDate', and 'Trapped'. Values have been predefined for 'Cre-
ator', 'Producer' and 'CreationDate'. They can be removed by setting them toNone.

attach_note(text, positionRect=[- 100, - 100, 0, 0])
Add a new text note to the page to be saved next. The optional positionRect specifies the position
of the new note on the page. It is outside the page per default to make sure it is invisible on
printouts.

1644 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

close()
Finalize this object, making the underlying file a complete PDF file.

get_pagecount()
Return the current number of pages in the multipage pdf file.

infodict()
Return a modifiable information dictionary object (see PDF reference section 10.2.1 'Document
Information Dictionary').

keep_empty

savefig(figure=None, **kwargs)
Save a Figure to this file as a new page.

Any other keyword arguments are passed to savefig.

Parameters

figure
[Figure or int, optional] Specifies what figure is saved to file. If not specified,
the active figure is saved. If a Figure instance is provided, this figure is saved.
If an int is specified, the figure instance to save is looked up by number.

class matplotlib.backends.backend_pdf.Reference(id)
Bases: object

PDF reference object.

Use PdfFile.reserveObject() to create References.

pdfRepr()

write(contents, file)

class matplotlib.backends.backend_pdf.RendererPdf(file, image_dpi, height,
width)

Bases: matplotlib.backends._backend_pdf_ps.RendererPDFPSBase

check_gc(gc, fillcolor=None)

draw_gouraud_triangle(gc, points, colors, trans)
Draw a Gouraud-shaded triangle.

Parameters

gc
[GraphicsContextBase] The graphics context.

points
[(3, 2) array-like] Array of (x, y) points for the triangle.

colors
[(3, 4) array-like] RGBA colors for each point of the triangle.

18.10. matplotlib.backends 1645

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

transform
[matplotlib.transforms.Transform] An affine transform to apply to
the points.

draw_gouraud_triangles(gc, points, colors, trans)
Draw a series of Gouraud triangles.

Parameters

points
[(N, 3, 2) array-like] Array of N (x, y) points for the triangles.

colors
[(N, 3, 4) array-like] Array of N RGBA colors for each point of the triangles.

transform
[matplotlib.transforms.Transform] An affine transform to apply to
the points.

draw_image(gc, x, y, im, transform=None)
Draw an RGBA image.

Parameters

gc
[GraphicsContextBase] A graphics context with clipping information.

x
[scalar] The distance in physical units (i.e., dots or pixels) from the left hand side
of the canvas.

y
[scalar] The distance in physical units (i.e., dots or pixels) from the bottom side
of the canvas.

im
[(N, M, 4) array-like of np.uint8] An array of RGBA pixels.

transform
[matplotlib.transforms.Affine2DBase] If and only if the con-
crete backend is written such that option_scale_image() returns
True, an affine transformation (i.e., an Affine2DBase) may be passed to
draw_image(). The translation vector of the transformation is given in phys-
ical units (i.e., dots or pixels). Note that the transformation does not override x
and y, and has to be applied before translating the result by x and y (this can be
accomplished by adding x and y to the translation vector defined by transform).

1646 Chapter 18. Modules

Matplotlib, Release 3.4.3

draw_markers(gc, marker_path, marker_trans, path, trans, rgbFace=None)
Draw a marker at each of path's vertices (excluding control points).

This provides a fallback implementation of draw_markers that makes multiple calls to
draw_path(). Some backends may want to override this method in order to draw the marker
only once and reuse it multiple times.

Parameters

gc
[GraphicsContextBase] The graphics context.

marker_trans
[matplotlib.transforms.Transform] An affine transform applied to
the marker.

trans
[matplotlib.transforms.Transform] An affine transform applied to
the path.

draw_mathtext(gc, x, y, s, prop, angle)

draw_path(gc, path, transform, rgbFace=None)
Draw a Path instance using the given affine transform.

draw_path_collection(gc, master_transform, paths, all_transforms, offsets, offsetTrans,
facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls,
offset_position)

Draw a collection of paths selecting drawing properties from the lists facecolors, edgecolors,
linewidths, linestyles and antialiaseds. offsets is a list of offsets to apply to each of the paths. The
offsets in offsets are first transformed by offsetTrans before being applied.

offset_position may be either "screen" or "data" depending on the space that the offsets are in;
"data" is deprecated.

This provides a fallback implementation of draw_path_collection() that makes mul-
tiple calls to draw_path(). Some backends may want to override this in order to render
each set of path data only once, and then reference that path multiple times with the different
offsets, colors, styles etc. The generator methods _iter_collection_raw_paths() and
_iter_collection() are provided to helpwith (and standardize) the implementation across
backends. It is highly recommended to use those generators, so that changes to the behavior of
draw_path_collection() can be made globally.

draw_tex(gc, x, y, s, prop, angle, ismath=<deprecated parameter>, mtext=None)

draw_text(gc, x, y, s, prop, angle, ismath=False, mtext=None)
Draw the text instance.

Parameters

gc

18.10. matplotlib.backends 1647

Matplotlib, Release 3.4.3

[GraphicsContextBase] The graphics context.

x
[float] The x location of the text in display coords.

y
[float] The y location of the text baseline in display coords.

s
[str] The text string.

prop
[matplotlib.font_manager.FontProperties] The font properties.

angle
[float] The rotation angle in degrees anti-clockwise.

mtext
[matplotlib.text.Text] The original text object to be rendered.

Notes

Note for backend implementers:
When you are trying to determine if you have gotten your bounding box right (which is what
enables the text layout/alignment to work properly), it helps to change the line in text.py:

if 0: bbox_artist(self, renderer)

to if 1, and then the actual bounding box will be plotted along with your text.

encode_string(s, fonttype)

finalize()

get_image_magnification()
Get the factor by which to magnify images passed to draw_image(). Allows a backend to
have images at a different resolution to other artists.

property mathtext_parser

merge_used_characters(*args, **kwargs)
[Deprecated]

1648 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

new_gc()
Return an instance of a GraphicsContextBase.

track_characters(*args, **kwargs)
[Deprecated] Keep track of which characters are required from each font.

Notes

Deprecated since version 3.3.

class matplotlib.backends.backend_pdf.Stream(id, len, file, extra=None,
png=None)

Bases: object

PDF stream object.

This has no pdfRepr method. Instead, call begin(), then output the contents of the stream by calling
write(), and finally call end().

Parameters

id
[int] Object id of the stream.

len
[Reference or None] An unused Reference object for the length of the stream;
None means to use a memory buffer so the length can be inlined.

file
[PdfFile] The underlying object to write the stream to.

extra
[dict from Name to anything, or None] Extra key-value pairs to include in the
stream header.

png
[dict or None] If the data is already png encoded, the decode parameters.

compressobj

end()
Finalize stream.

extra

file

id

18.10. matplotlib.backends 1649

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

len

pdfFile

pos

write(data)
Write some data on the stream.

class matplotlib.backends.backend_pdf.Verbatim(x)
Bases: object

Store verbatim PDF command content for later inclusion in the stream.

pdfRepr()

matplotlib.backends.backend_pdf.fill(strings, linelen=75)
Make one string from sequence of strings, with whitespace in between.

The whitespace is chosen to form lines of at most linelen characters, if possible.

matplotlib.backends.backend_pdf.pdfRepr(obj)
Map Python objects to PDF syntax.

18.10.9 matplotlib.backends.backend_pgf

matplotlib.backends.backend_pgf.FigureCanvas
alias of matplotlib.backends.backend_pgf.FigureCanvasPgf

class matplotlib.backends.backend_pgf.FigureCanvasPgf(figure=None)
Bases: matplotlib.backend_bases.FigureCanvasBase

draw()
Render the Figure.

It is important that this method actually walk the artist tree even if not output is produced because
this will trigger deferred work (like computing limits auto-limits and tick values) that users may
want access to before saving to disk.

filetypes = {'pdf': 'LaTeX compiled PGF picture', 'pgf': 'LaTeX PGF picture', 'png': 'Portable Network Graphics'}

get_default_filetype()
Return the default savefig file format as specified in rcParams["savefig.format"] (de-
fault: 'png').

The returned string does not include a period. This method is overridden in backends that only
support a single file type.

get_renderer()

print_pdf(fname_or_fh, *args, metadata=None, **kwargs)
Use LaTeX to compile a pgf generated figure to pdf.

print_pgf(fname_or_fh, *args, **kwargs)
Output pgf macros for drawing the figure so it can be included and rendered in latex documents.

1650 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object
../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

print_png(fname_or_fh, *args, **kwargs)
Use LaTeX to compile a pgf figure to pdf and convert it to png.

class matplotlib.backends.backend_pgf.GraphicsContextPgf
Bases: matplotlib.backend_bases.GraphicsContextBase

[Deprecated]

Notes

Deprecated since version 3.3:

exception matplotlib.backends.backend_pgf.LatexError(message, la-
tex_output='')

Bases: Exception

class matplotlib.backends.backend_pgf.LatexManager
Bases: object

The LatexManager opens an instance of the LaTeX application for determining the metrics of text
elements. The LaTeX environment can be modified by setting fonts and/or a custom preamble in
rcParams.

get_width_height_descent(text, prop)
Get the width, total height and descent for a text typeset by the current LaTeX environment.

latex_stdin_utf8()
[Deprecated]

Notes

Deprecated since version 3.3:

class matplotlib.backends.backend_pgf.PdfPages(filename, *,
keep_empty=True, meta-
data=None)

Bases: object

A multi-page PDF file using the pgf backend

Examples

>>> import matplotlib.pyplot as plt
>>> # Initialize:
>>> with PdfPages('foo.pdf') as pdf:
... # As many times as you like, create a figure fig and save it:
... fig = plt.figure()
... pdf.savefig(fig)
... # When no figure is specified the current figure is saved
... pdf.savefig()

18.10. matplotlib.backends 1651

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Create a new PdfPages object.

Parameters

filename
[str or path-like] Plots using PdfPages.savefig will be written to a file at this
location. Any older file with the same name is overwritten.

keep_empty
[bool, default: True] If set to False, then empty pdf files will be deleted automati-
cally when closed.

metadata
[dict, optional] Information dictionary object (see PDF reference section 10.2.1
'Document Information Dictionary'), e.g.: {'Creator': 'My software',
'Author': 'Me', 'Title': 'Awesome'}.

The standard keys are 'Title', 'Author', 'Subject', 'Keywords', 'Creator', 'Producer',
'CreationDate', 'ModDate', and 'Trapped'. Values have been predefined for 'Cre-
ator', 'Producer' and 'CreationDate'. They can be removed by setting them toNone.

Note that some versions of LaTeX engines may ignore the 'Producer' key and set
it to themselves.

close()
Finalize this object, running LaTeX in a temporary directory and moving the final pdf file to
filename.

get_pagecount()
Return the current number of pages in the multipage pdf file.

keep_empty

property metadata

savefig(figure=None, **kwargs)
Save a Figure to this file as a new page.

Any other keyword arguments are passed to savefig.

Parameters

figure
[Figure or int, optional] Specifies what figure is saved to file. If not specified,
the active figure is saved. If a Figure instance is provided, this figure is saved.
If an int is specified, the figure instance to save is looked up by number.

class matplotlib.backends.backend_pgf.RendererPgf(figure, fh,
dummy=<deprecated
parameter>)

Bases: matplotlib.backend_bases.RendererBase

1652 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

Create a new PGF renderer that translates any drawing instruction into text commands to be interpreted
in a latex pgfpicture environment.

Attributes

figure
[matplotlib.figure.Figure] Matplotlib figure to initialize height, width
and dpi from.

fh
[file-like] File handle for the output of the drawing commands.

draw_image(gc, x, y, im, transform=None)
Draw an RGBA image.

Parameters

gc
[GraphicsContextBase] A graphics context with clipping information.

x
[scalar] The distance in physical units (i.e., dots or pixels) from the left hand side
of the canvas.

y
[scalar] The distance in physical units (i.e., dots or pixels) from the bottom side
of the canvas.

im
[(N, M, 4) array-like of np.uint8] An array of RGBA pixels.

transform
[matplotlib.transforms.Affine2DBase] If and only if the con-
crete backend is written such that option_scale_image() returns
True, an affine transformation (i.e., an Affine2DBase) may be passed to
draw_image(). The translation vector of the transformation is given in phys-
ical units (i.e., dots or pixels). Note that the transformation does not override x
and y, and has to be applied before translating the result by x and y (this can be
accomplished by adding x and y to the translation vector defined by transform).

draw_markers(gc, marker_path, marker_trans, path, trans, rgbFace=None)
Draw a marker at each of path's vertices (excluding control points).

This provides a fallback implementation of draw_markers that makes multiple calls to
draw_path(). Some backends may want to override this method in order to draw the marker
only once and reuse it multiple times.

Parameters

18.10. matplotlib.backends 1653

Matplotlib, Release 3.4.3

gc
[GraphicsContextBase] The graphics context.

marker_trans
[matplotlib.transforms.Transform] An affine transform applied to
the marker.

trans
[matplotlib.transforms.Transform] An affine transform applied to
the path.

draw_path(gc, path, transform, rgbFace=None)
Draw a Path instance using the given affine transform.

draw_tex(gc, x, y, s, prop, angle, ismath='TeX!', mtext=None)

draw_text(gc, x, y, s, prop, angle, ismath=False, mtext=None)
Draw the text instance.

Parameters

gc
[GraphicsContextBase] The graphics context.

x
[float] The x location of the text in display coords.

y
[float] The y location of the text baseline in display coords.

s
[str] The text string.

prop
[matplotlib.font_manager.FontProperties] The font properties.

angle
[float] The rotation angle in degrees anti-clockwise.

mtext
[matplotlib.text.Text] The original text object to be rendered.

1654 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Note for backend implementers:
When you are trying to determine if you have gotten your bounding box right (which is what
enables the text layout/alignment to work properly), it helps to change the line in text.py:

if 0: bbox_artist(self, renderer)

to if 1, and then the actual bounding box will be plotted along with your text.

flipy()
Return whether y values increase from top to bottom.

Note that this only affects drawing of texts and images.

get_canvas_width_height()
Return the canvas width and height in display coords.

get_text_width_height_descent(s, prop, ismath)
Get the width, height, and descent (offset from the bottom to the baseline), in display coords, of
the string s with FontProperties prop.

option_image_nocomposite()
Return whether image composition by Matplotlib should be skipped.

Raster backends should usually return False (letting the C-level rasterizer take care of
image composition); vector backends should usually return not rcParams["image.
composite_image"].

option_scale_image()
Returnwhether arbitrary affine transformations indraw_image() are supported (True formost
vector backends).

points_to_pixels(points)
Convert points to display units.

You need to override this function (unless your backend doesn't have a dpi, e.g., postscript or
svg). Some imaging systems assume some value for pixels per inch:

points to pixels = points * pixels_per_inch/72 * dpi/72

Parameters

points
[float or array-like] a float or a numpy array of float

Returns

Points converted to pixels

18.10. matplotlib.backends 1655

Matplotlib, Release 3.4.3

class matplotlib.backends.backend_pgf.TmpDirCleaner(*args, **kwargs)
Bases: object

[Deprecated]

Notes

Deprecated since version 3.4:

static add(tmpdir)
[Deprecated]

Notes

Deprecated since version 3.4:

static cleanup_remaining_tmpdirs()
[Deprecated]

Notes

Deprecated since version 3.4:

remaining_tmpdirs = {}

matplotlib.backends.backend_pgf.common_texification(text)
Do some necessary and/or useful substitutions for texts to be included in LaTeX documents.

This distinguishes text-mode and math-mode by replacing the math separator $ with \(\
displaystyle %s\). Escaped math separators (\$) are ignored.

The following characters are escaped in text segments: _^$%

matplotlib.backends.backend_pgf.get_fontspec()
Build fontspec preamble from rc.

matplotlib.backends.backend_pgf.get_preamble()
Get LaTeX preamble from rc.

matplotlib.backends.backend_pgf.make_pdf_to_png_converter()
Return a function that converts a pdf file to a png file.

matplotlib.backends.backend_pgf.writeln(fh, line)

1656 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

18.10.10 matplotlib.backends.backend_ps

A PostScript backend, which can produce both PostScript .ps and .eps.

matplotlib.backends.backend_ps.FigureCanvas
alias of matplotlib.backends.backend_ps.FigureCanvasPS

class matplotlib.backends.backend_ps.FigureCanvasPS(figure=None)
Bases: matplotlib.backend_bases.FigureCanvasBase

draw()
Render the Figure.

It is important that this method actually walk the artist tree even if not output is produced because
this will trigger deferred work (like computing limits auto-limits and tick values) that users may
want access to before saving to disk.

filetypes = {'eps': 'Encapsulated Postscript', 'ps': 'Postscript'}

fixed_dpi = 72

get_default_filetype()
Return the default savefig file format as specified in rcParams["savefig.format"] (de-
fault: 'png').

The returned string does not include a period. This method is overridden in backends that only
support a single file type.

print_eps(outfile, *args, **kwargs)

print_ps(outfile, *args, **kwargs)

class matplotlib.backends.backend_ps.GraphicsContextPS
Bases: matplotlib.backend_bases.GraphicsContextBase

[Deprecated]

Notes

Deprecated since version 3.4:

get_capstyle()
Return the CapStyle.

get_joinstyle()
Return the JoinStyle.

class matplotlib.backends.backend_ps.PsBackendHelper
Bases: object

class matplotlib.backends.backend_ps.RendererPS(width, height, pswriter, im-
agedpi=72)

Bases: matplotlib.backends._backend_pdf_ps.RendererPDFPSBase

The renderer handles all the drawing primitives using a graphics context instance that controls the
colors/styles.

18.10. matplotlib.backends 1657

../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

create_hatch(hatch)

draw_gouraud_triangle(gc, points, colors, trans)
Draw a Gouraud-shaded triangle.

Parameters

gc
[GraphicsContextBase] The graphics context.

points
[(3, 2) array-like] Array of (x, y) points for the triangle.

colors
[(3, 4) array-like] RGBA colors for each point of the triangle.

transform
[matplotlib.transforms.Transform] An affine transform to apply to
the points.

draw_gouraud_triangles(gc, points, colors, trans)
Draw a series of Gouraud triangles.

Parameters

points
[(N, 3, 2) array-like] Array of N (x, y) points for the triangles.

colors
[(N, 3, 4) array-like] Array of N RGBA colors for each point of the triangles.

transform
[matplotlib.transforms.Transform] An affine transform to apply to
the points.

draw_image(gc, x, y, im, transform=None)
Draw an RGBA image.

Parameters

gc
[GraphicsContextBase] A graphics context with clipping information.

x
[scalar] The distance in physical units (i.e., dots or pixels) from the left hand side
of the canvas.

1658 Chapter 18. Modules

Matplotlib, Release 3.4.3

y
[scalar] The distance in physical units (i.e., dots or pixels) from the bottom side
of the canvas.

im
[(N, M, 4) array-like of np.uint8] An array of RGBA pixels.

transform
[matplotlib.transforms.Affine2DBase] If and only if the con-
crete backend is written such that option_scale_image() returns
True, an affine transformation (i.e., an Affine2DBase) may be passed to
draw_image(). The translation vector of the transformation is given in phys-
ical units (i.e., dots or pixels). Note that the transformation does not override x
and y, and has to be applied before translating the result by x and y (this can be
accomplished by adding x and y to the translation vector defined by transform).

draw_markers(gc, marker_path, marker_trans, path, trans, rgbFace=None)
Draw a marker at each of path's vertices (excluding control points).

This provides a fallback implementation of draw_markers that makes multiple calls to
draw_path(). Some backends may want to override this method in order to draw the marker
only once and reuse it multiple times.

Parameters

gc
[GraphicsContextBase] The graphics context.

marker_trans
[matplotlib.transforms.Transform] An affine transform applied to
the marker.

trans
[matplotlib.transforms.Transform] An affine transform applied to
the path.

draw_mathtext(gc, x, y, s, prop, angle)
Draw the math text using matplotlib.mathtext.

draw_path(gc, path, transform, rgbFace=None)
Draw a Path instance using the given affine transform.

draw_path_collection(gc, master_transform, paths, all_transforms, offsets, offsetTrans,
facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls,
offset_position)

Draw a collection of paths selecting drawing properties from the lists facecolors, edgecolors,
linewidths, linestyles and antialiaseds. offsets is a list of offsets to apply to each of the paths. The
offsets in offsets are first transformed by offsetTrans before being applied.

18.10. matplotlib.backends 1659

Matplotlib, Release 3.4.3

offset_position may be either "screen" or "data" depending on the space that the offsets are in;
"data" is deprecated.

This provides a fallback implementation of draw_path_collection() that makes mul-
tiple calls to draw_path(). Some backends may want to override this in order to render
each set of path data only once, and then reference that path multiple times with the different
offsets, colors, styles etc. The generator methods _iter_collection_raw_paths() and
_iter_collection() are provided to helpwith (and standardize) the implementation across
backends. It is highly recommended to use those generators, so that changes to the behavior of
draw_path_collection() can be made globally.

draw_tex(gc, x, y, s, prop, angle, ismath=<deprecated parameter>, mtext=None)

draw_text(gc, x, y, s, prop, angle, ismath=False, mtext=None)
Draw the text instance.

Parameters

gc
[GraphicsContextBase] The graphics context.

x
[float] The x location of the text in display coords.

y
[float] The y location of the text baseline in display coords.

s
[str] The text string.

prop
[matplotlib.font_manager.FontProperties] The font properties.

angle
[float] The rotation angle in degrees anti-clockwise.

mtext
[matplotlib.text.Text] The original text object to be rendered.

Notes

Note for backend implementers:
When you are trying to determine if you have gotten your bounding box right (which is what
enables the text layout/alignment to work properly), it helps to change the line in text.py:

if 0: bbox_artist(self, renderer)

to if 1, and then the actual bounding box will be plotted along with your text.

1660 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_image_magnification()
Get the factor by which to magnify images passed to draw_image. Allows a backend to have
images at a different resolution to other artists.

property mathtext_parser

merge_used_characters(*args, **kwargs)
[Deprecated]

Notes

Deprecated since version 3.3:

set_color(r, g, b, store=True)

set_font(fontname, fontsize, store=True)

set_linecap(linecap, store=True)

set_linedash(offset, seq, store=True)

set_linejoin(linejoin, store=True)

set_linewidth(linewidth, store=True)

track_characters(*args, **kwargs)
[Deprecated] Keep track of which characters are required from each font.

Notes

Deprecated since version 3.3.

property used_characters

matplotlib.backends.backend_ps.convert_psfrags(tmpfile, psfrags,
font_preamble, cus-
tom_preamble, paper_width,
paper_height, orientation)

When we want to use the LaTeX backend with postscript, we write PSFrag tags to a temporary
postscript file, each one marking a position for LaTeX to render some text. convert_psfrags generates
a LaTeX document containing the commands to convert those tags to text. LaTeX/dvips produces the
postscript file that includes the actual text.

matplotlib.backends.backend_ps.get_bbox_header(lbrt, rotated=False)
Return a postscript header string for the given bbox lbrt=(l, b, r, t). Optionally, return rotate command.

matplotlib.backends.backend_ps.gs_distill(tmpfile, eps=False, ptype='letter',
bbox=None, rotated=False)

Use ghostscript's pswrite or epswrite device to distill a file. This yields smaller files without illegal
encapsulated postscript operators. The output is low-level, converting text to outlines.

matplotlib.backends.backend_ps.pstoeps(tmpfile, bbox=None, rotated=False)
Convert the postscript to encapsulated postscript. The bbox of the eps file will be replaced with the
given bbox argument. If None, original bbox will be used.

18.10. matplotlib.backends 1661

Matplotlib, Release 3.4.3

matplotlib.backends.backend_ps.quote_ps_string(s)
Quote dangerous characters of S for use in a PostScript string constant.

matplotlib.backends.backend_ps.xpdf_distill(tmpfile, eps=False, ptype='letter',
bbox=None, rotated=False)

Use ghostscript's ps2pdf and xpdf's/poppler's pdftops to distill a file. This yields smaller files without
illegal encapsulated postscript operators. This distiller is preferred, generating high-level postscript
output that treats text as text.

NOTE These backends are not documented here, to avoid adding a dependency to building the docs.

18.10.11 matplotlib.backends.backend_qt4agg

18.10.12 matplotlib.backends.backend_qt4cairo

18.10.13 matplotlib.backends.backend_qt5agg

18.10.14 matplotlib.backends.backend_qt5cairo

18.10.15 matplotlib.backends.backend_svg

matplotlib.backends.backend_svg.FigureCanvas
alias of matplotlib.backends.backend_svg.FigureCanvasSVG

class matplotlib.backends.backend_svg.FigureCanvasSVG(figure=None)
Bases: matplotlib.backend_bases.FigureCanvasBase

draw()
Render the Figure.

It is important that this method actually walk the artist tree even if not output is produced because
this will trigger deferred work (like computing limits auto-limits and tick values) that users may
want access to before saving to disk.

filetypes = {'svg': 'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics'}

fixed_dpi = 72

get_default_filetype()
Return the default savefig file format as specified in rcParams["savefig.format"] (de-
fault: 'png').

The returned string does not include a period. This method is overridden in backends that only
support a single file type.

print_svg(filename, *args, **kwargs)

Parameters

filename
[str or path-like or file-like] Output target; if a string, a file will be opened for
writing.

1662 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

metadata
[dict[str, Any], optional] Metadata in the SVG file defined as key-value pairs
of strings, datetimes, or lists of strings, e.g., {'Creator': 'My soft-
ware', 'Contributor': ['Me', 'My Friend'], 'Title':
'Awesome'}.

The standard keys and their value types are:

• str: 'Coverage', 'Description', 'Format', 'Identifier',
'Language', 'Relation', 'Source', 'Title', and 'Type'.

• str or list of str: 'Contributor', 'Creator', 'Keywords', 'Pub-
lisher', and 'Rights'.

• str, date, datetime, or tuple of same: 'Date'. If a non-str, then it will be
formatted as ISO 8601.

Values have been predefined for 'Creator', 'Date', 'Format', and
'Type'. They can be removed by setting them to None.

Information is encoded as Dublin Core Metadata.

print_svgz(filename, *args, **kwargs)

class matplotlib.backends.backend_svg.RendererSVG(width, height, svg-
writer, basename=None,
image_dpi=72, *, meta-
data=None)

Bases: matplotlib.backend_bases.RendererBase

close_group(s)
Close a grouping element with label s.

Only used by the SVG renderer.

draw_gouraud_triangle(gc, points, colors, trans)
Draw a Gouraud-shaded triangle.

Parameters

gc
[GraphicsContextBase] The graphics context.

points
[(3, 2) array-like] Array of (x, y) points for the triangle.

colors
[(3, 4) array-like] RGBA colors for each point of the triangle.

transform
[matplotlib.transforms.Transform] An affine transform to apply to
the points.

18.10. matplotlib.backends 1663

https://docs.python.org/3/library/constants.html#None
https://www.dublincore.org/specifications/dublin-core/

Matplotlib, Release 3.4.3

draw_gouraud_triangles(gc, triangles_array, colors_array, transform)
Draw a series of Gouraud triangles.

Parameters

points
[(N, 3, 2) array-like] Array of N (x, y) points for the triangles.

colors
[(N, 3, 4) array-like] Array of N RGBA colors for each point of the triangles.

transform
[matplotlib.transforms.Transform] An affine transform to apply to
the points.

draw_image(gc, x, y, im, transform=None)
Draw an RGBA image.

Parameters

gc
[GraphicsContextBase] A graphics context with clipping information.

x
[scalar] The distance in physical units (i.e., dots or pixels) from the left hand side
of the canvas.

y
[scalar] The distance in physical units (i.e., dots or pixels) from the bottom side
of the canvas.

im
[(N, M, 4) array-like of np.uint8] An array of RGBA pixels.

transform
[matplotlib.transforms.Affine2DBase] If and only if the con-
crete backend is written such that option_scale_image() returns
True, an affine transformation (i.e., an Affine2DBase) may be passed to
draw_image(). The translation vector of the transformation is given in phys-
ical units (i.e., dots or pixels). Note that the transformation does not override x
and y, and has to be applied before translating the result by x and y (this can be
accomplished by adding x and y to the translation vector defined by transform).

draw_markers(gc, marker_path, marker_trans, path, trans, rgbFace=None)
Draw a marker at each of path's vertices (excluding control points).

1664 Chapter 18. Modules

Matplotlib, Release 3.4.3

This provides a fallback implementation of draw_markers that makes multiple calls to
draw_path(). Some backends may want to override this method in order to draw the marker
only once and reuse it multiple times.

Parameters

gc
[GraphicsContextBase] The graphics context.

marker_trans
[matplotlib.transforms.Transform] An affine transform applied to
the marker.

trans
[matplotlib.transforms.Transform] An affine transform applied to
the path.

draw_path(gc, path, transform, rgbFace=None)
Draw a Path instance using the given affine transform.

draw_path_collection(gc, master_transform, paths, all_transforms, offsets, offsetTrans,
facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls,
offset_position)

Draw a collection of paths selecting drawing properties from the lists facecolors, edgecolors,
linewidths, linestyles and antialiaseds. offsets is a list of offsets to apply to each of the paths. The
offsets in offsets are first transformed by offsetTrans before being applied.

offset_position may be either "screen" or "data" depending on the space that the offsets are in;
"data" is deprecated.

This provides a fallback implementation of draw_path_collection() that makes mul-
tiple calls to draw_path(). Some backends may want to override this in order to render
each set of path data only once, and then reference that path multiple times with the different
offsets, colors, styles etc. The generator methods _iter_collection_raw_paths() and
_iter_collection() are provided to helpwith (and standardize) the implementation across
backends. It is highly recommended to use those generators, so that changes to the behavior of
draw_path_collection() can be made globally.

draw_tex(gc, x, y, s, prop, angle, ismath=<deprecated parameter>, mtext=None)

draw_text(gc, x, y, s, prop, angle, ismath=False, mtext=None)
Draw the text instance.

Parameters

gc
[GraphicsContextBase] The graphics context.

x
[float] The x location of the text in display coords.

18.10. matplotlib.backends 1665

Matplotlib, Release 3.4.3

y
[float] The y location of the text baseline in display coords.

s
[str] The text string.

prop
[matplotlib.font_manager.FontProperties] The font properties.

angle
[float] The rotation angle in degrees anti-clockwise.

mtext
[matplotlib.text.Text] The original text object to be rendered.

Notes

Note for backend implementers:
When you are trying to determine if you have gotten your bounding box right (which is what
enables the text layout/alignment to work properly), it helps to change the line in text.py:

if 0: bbox_artist(self, renderer)

to if 1, and then the actual bounding box will be plotted along with your text.

finalize()

flipy()
Return whether y values increase from top to bottom.

Note that this only affects drawing of texts and images.

get_canvas_width_height()
Return the canvas width and height in display coords.

get_image_magnification()
Get the factor by which to magnify images passed to draw_image(). Allows a backend to
have images at a different resolution to other artists.

get_text_width_height_descent(s, prop, ismath)
Get the width, height, and descent (offset from the bottom to the baseline), in display coords, of
the string s with FontProperties prop.

property mathtext_parser

open_group(s, gid=None)
Open a grouping element with label s and gid (if set) as id.

Only used by the SVG renderer.

1666 Chapter 18. Modules

Matplotlib, Release 3.4.3

option_image_nocomposite()
Return whether image composition by Matplotlib should be skipped.

Raster backends should usually return False (letting the C-level rasterizer take care of
image composition); vector backends should usually return not rcParams["image.
composite_image"].

option_scale_image()
Returnwhether arbitrary affine transformations indraw_image() are supported (True formost
vector backends).

class matplotlib.backends.backend_svg.XMLWriter(file)
Bases: object

Parameters

file
[writable text file-like object]

close(id)
Close open elements, up to (and including) the element identified by the given identifier.

Parameters

id
Element identifier, as returned by the start() method.

comment(comment)
Add a comment to the output stream.

Parameters

comment
[str] Comment text.

data(text)
Add character data to the output stream.

Parameters

text
[str] Character data.

element(tag, text=None, attrib={}, **extra)
Add an entire element. This is the same as calling start(), data(), and end() in sequence.
The text argument can be omitted.

end(tag=None, indent=True)
Close the current element (opened by the most recent call to start()).

18.10. matplotlib.backends 1667

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Parameters

tag
Element tag. If given, the tag must match the start tag. If omitted, the current
element is closed.

flush()
Flush the output stream.

start(tag, attrib={}, **extra)
Open a new element. Attributes can be given as keyword arguments, or as a string/string dictio-
nary. The method returns an opaque identifier that can be passed to the close() method, to
close all open elements up to and including this one.

Parameters

tag
Element tag.

attrib
Attribute dictionary. Alternatively, attributes can be given as keyword argu-
ments.

Returns

An element identifier.

matplotlib.backends.backend_svg.escape_attrib(s)

matplotlib.backends.backend_svg.escape_cdata(s)

matplotlib.backends.backend_svg.escape_comment(s)

matplotlib.backends.backend_svg.generate_css(attrib={})

matplotlib.backends.backend_svg.generate_transform(transform_list=[])

matplotlib.backends.backend_svg.short_float_fmt(x)
Create a short string representation of a float, which is %f formatting with trailing zeros and the decimal
point removed.

1668 Chapter 18. Modules

Matplotlib, Release 3.4.3

18.10.16 matplotlib.backends.backend_tkagg

matplotlib.backends.backend_tkagg.FigureCanvas
alias of matplotlib.backends.backend_tkagg.FigureCanvasTkAgg

class matplotlib.backends.backend_tkagg.FigureCanvasTkAgg(figure=None,
mas-
ter=None, re-
size_callback=<deprecated
parameter>)

Bases: matplotlib.backends.backend_agg.FigureCanvasAgg, matplotlib.
backends._backend_tk.FigureCanvasTk

blit(bbox=None)
Blit the canvas in bbox (default entire canvas).

draw()
Render the Figure.

It is important that this method actually walk the artist tree even if not output is produced because
this will trigger deferred work (like computing limits auto-limits and tick values) that users may
want access to before saving to disk.

18.10.17 matplotlib.backends.backend_tkcairo

matplotlib.backends.backend_tkcairo.FigureCanvas
alias of matplotlib.backends.backend_tkcairo.FigureCanvasTkCairo

class matplotlib.backends.backend_tkcairo.FigureCanvasTkCairo(*args,
**kwargs)

Bases: matplotlib.backends.backend_cairo.FigureCanvasCairo,
matplotlib.backends._backend_tk.FigureCanvasTk

draw()
Render the Figure.

It is important that this method actually walk the artist tree even if not output is produced because
this will trigger deferred work (like computing limits auto-limits and tick values) that users may
want access to before saving to disk.

18.10.18 matplotlib.backends.backend_webagg

Note: The WebAgg backend is not documented here, in order to avoid adding Tornado to the doc build
requirements.

NOTE These backends are not documented here, to avoid adding a dependency to building the docs.

18.10. matplotlib.backends 1669

Matplotlib, Release 3.4.3

18.10.19 matplotlib.backends.backend_wxagg

18.10.20 matplotlib.backends.backend_wxcairo

18.11 matplotlib.bezier

A module providing some utility functions regarding Bezier path manipulation.

class matplotlib.bezier.BezierSegment(control_points)
Bases: object

A d-dimensional Bezier segment.

Parameters

control_points
[(N, d) array] Location of the N control points.

axis_aligned_extrema()
Return the dimension and location of the curve's interior extrema.

The extrema are the points along the curve where one of its partial derivatives is zero.

Returns

dims
[array of int] Index 𝑖 of the partial derivative which is zero at each interior ex-
trema.

dzeros
[array of float] Of same size as dims. The 𝑡 such that 𝑑/𝑑𝑥𝑖𝐵(𝑡) = 0

property control_points
The control points of the curve.

property degree
Degree of the polynomial. One less the number of control points.

property dimension
The dimension of the curve.

point_at_t(t)
Evaluate the curve at a single point, returning a tuple of d floats.

property polynomial_coefficients
The polynomial coefficients of the Bezier curve.

Warning: Follows opposite convention from numpy.polyval.

1670 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.polyval.html#numpy.polyval

Matplotlib, Release 3.4.3

Returns

(n+1, d) array
Coefficients after expanding in polynomial basis, where 𝑛 is the degree of the
bezier curve and 𝑑 its dimension. These are the numbers (𝐶𝑗) such that the
curve can be written ∑𝑛

𝑗=0 𝐶𝑗𝑡𝑗 .

Notes

The coefficients are calculated as

(
𝑛
𝑗)

𝑗

∑
𝑖=0

(−1)𝑖+𝑗
(

𝑗
𝑖)𝑃𝑖

where 𝑃𝑖 are the control points of the curve.

exception matplotlib.bezier.NonIntersectingPathException
Bases: ValueError

matplotlib.bezier.check_if_parallel(dx1, dy1, dx2, dy2, tolerance=1e-05)
Check if two lines are parallel.

Parameters

dx1, dy1, dx2, dy2
[float] The gradients dy/dx of the two lines.

tolerance
[float] The angular tolerance in radians up to which the lines are considered par-
allel.

Returns

is_parallel

• 1 if two lines are parallel in same direction.

• -1 if two lines are parallel in opposite direction.

• False otherwise.

matplotlib.bezier.concatenate_paths(paths)
[Deprecated] Concatenate a list of paths into a single path.

18.11. matplotlib.bezier 1671

https://docs.python.org/3/library/exceptions.html#ValueError

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

matplotlib.bezier.find_bezier_t_intersecting_with_closedpath(bezier_point_at_t,
in-
side_closedpath,
t0=0.0,
t1=1.0,
toler-
ance=0.01)

Find the intersection of the Bezier curve with a closed path.

The intersection point t is approximated by two parameters t0, t1 such that t0 <= t <= t1.

Search starts from t0 and t1 and uses a simple bisecting algorithm therefore one of the end points
must be inside the path while the other doesn't. The search stops when the distance of the points
parametrized by t0 and t1 gets smaller than the given tolerance.

Parameters

bezier_point_at_t
[callable] A function returning x, y coordinates of the Bezier at parameter t. It
must have the signature:

bezier_point_at_t(t: float) -> tuple[float, float]

inside_closedpath
[callable] A function returning True if a given point (x, y) is inside the closed path.
It must have the signature:

inside_closedpath(point: tuple[float, float]) -> bool

t0, t1
[float] Start parameters for the search.

tolerance
[float] Maximal allowed distance between the final points.

Returns

t0, t1
[float] The Bezier path parameters.

matplotlib.bezier.find_control_points(c1x, c1y, mmx, mmy, c2x, c2y)
Find control points of the Bezier curve passing through (c1x, c1y), (mmx, mmy), and (c2x, c2y), at
parametric values 0, 0.5, and 1.

matplotlib.bezier.get_cos_sin(x0, y0, x1, y1)

1672 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.bezier.get_intersection(cx1, cy1, cos_t1, sin_t1, cx2, cy2, cos_t2, sin_t2)
Return the intersection between the line through (cx1, cy1) at angle t1 and the line through (cx2, cy2)
at angle t2.

matplotlib.bezier.get_normal_points(cx, cy, cos_t, sin_t, length)
For a line passing through (cx, cy) and having an angle t, return locations of the two points located
along its perpendicular line at the distance of length.

matplotlib.bezier.get_parallels(bezier2, width)
Given the quadratic Bezier control points bezier2, returns control points of quadratic Bezier lines
roughly parallel to given one separated by width.

matplotlib.bezier.inside_circle(cx, cy, r)
Return a function that checks whether a point is in a circle with center (cx, cy) and radius r.

The returned function has the signature:

f(xy: tuple[float, float]) -> bool

matplotlib.bezier.make_path_regular(p)
[Deprecated] If the codes attribute of Path p is None, return a copy of p with codes set to
(MOVETO, LINETO, LINETO, ..., LINETO); otherwise return p itself.

Notes

Deprecated since version 3.3.

matplotlib.bezier.make_wedged_bezier2(bezier2, width, w1=1.0, wm=0.5, w2=0.0)
Being similar to get_parallels, returns control points of two quadratic Bezier lines having a width
roughly parallel to given one separated by width.

matplotlib.bezier.split_bezier_intersecting_with_closedpath(bezier, in-
side_closedpath,
toler-
ance=0.01)

Split a Bezier curve into two at the intersection with a closed path.

Parameters

bezier
[(N, 2) array-like] Control points of the Bezier segment. See BezierSegment.

inside_closedpath
[callable] A function returning True if a given point (x, y) is inside the closed path.
See also find_bezier_t_intersecting_with_closedpath.

tolerance
[float] The tolerance for the intersection. See also
find_bezier_t_intersecting_with_closedpath.

Returns

18.11. matplotlib.bezier 1673

Matplotlib, Release 3.4.3

left, right
Lists of control points for the two Bezier segments.

matplotlib.bezier.split_de_casteljau(beta, t)
Split a Bezier segment defined by its control points beta into two separate segments divided at t and
return their control points.

matplotlib.bezier.split_path_inout(path, inside, tolerance=0.01, re-
order_inout=False)

Divide a path into two segments at the point where inside(x, y) becomes False.

18.12 matplotlib.blocking_input

Classes used for blocking interaction with figure windows:

BlockingInput

Creates a callable object to retrieve events in a blocking way for interactive sessions. Base class of the
other classes listed here.

BlockingKeyMouseInput

Creates a callable object to retrieve key or mouse clicks in a blocking way for interactive sessions.
Used by waitforbuttonpress.

BlockingMouseInput

Creates a callable object to retrieve mouse clicks in a blocking way for interactive sessions. Used by
ginput.

BlockingContourLabeler

Creates a callable object to retrieve mouse clicks in a blocking way that will then be used to place
labels on a ContourSet. Used by clabel.

class matplotlib.blocking_input.BlockingContourLabeler(cs)
Bases: matplotlib.blocking_input.BlockingMouseInput

Callable for retrieving mouse clicks and key presses in a blocking way.

Used to place contour labels.

add_click(event)
Add the coordinates of an event to the list of clicks.

Parameters

event
[MouseEvent]

button1(event)
Process an button-1 event (add a label to a contour).

1674 Chapter 18. Modules

Matplotlib, Release 3.4.3

Parameters

event
[MouseEvent]

button3(event)
Process an button-3 event (remove a label if not in inline mode).

Unfortunately, if one is doing inline labels, then there is currently no way to fix the broken contour
- once humpty-dumpty is broken, he can't be put back together. In inline mode, this does nothing.

Parameters

event
[MouseEvent]

pop_click(event, index=- 1)
Remove a click (by default, the last) from the list of clicks.

Parameters

event
[MouseEvent]

class matplotlib.blocking_input.BlockingInput(fig, eventslist=())
Bases: object

Callable for retrieving events in a blocking way.

add_event(event)
For base class, this just appends an event to events.

cleanup()
Disconnect all callbacks.

on_event(event)
Event handler; will be passed to the current figure to retrieve events.

pop(index=- 1)
Remove an event from the event list -- by default, the last.

Note that this does not check that there are events, much like the normal pop method. If no events
exist, this will throw an exception.

pop_event(index=- 1)
Remove an event from the event list -- by default, the last.

Note that this does not check that there are events, much like the normal pop method. If no events
exist, this will throw an exception.

post_event()
For baseclass, do nothing but collect events.

18.12. matplotlib.blocking_input 1675

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

class matplotlib.blocking_input.BlockingKeyMouseInput(fig)
Bases: matplotlib.blocking_input.BlockingInput

Callable for retrieving mouse clicks and key presses in a blocking way.

post_event()
Determine if it is a key event.

class matplotlib.blocking_input.BlockingMouseInput(fig,
mouse_add=<MouseButton.LEFT:
1>,
mouse_pop=<MouseButton.RIGHT:
3>,
mouse_stop=<MouseButton.MIDDLE:
2>)

Bases: matplotlib.blocking_input.BlockingInput

Callable for retrieving mouse clicks in a blocking way.

This class will also retrieve keypresses and map them to mouse clicks: delete and backspace are a right
click, enter is like a middle click, and all others are like a left click.

add_click(event)
Add the coordinates of an event to the list of clicks.

Parameters

event
[MouseEvent]

button_add = 1

button_pop = 3

button_stop = 2

cleanup(event=None)

Parameters

event
[MouseEvent, optional] Not used

key_event()
Process a key press event, mapping keys to appropriate mouse clicks.

mouse_event()
Process a mouse click event.

mouse_event_add(event)
Process an button-1 event (add a click if inside axes).

Parameters

1676 Chapter 18. Modules

Matplotlib, Release 3.4.3

event
[MouseEvent]

mouse_event_pop(event)
Process an button-3 event (remove the last click).

Parameters

event
[MouseEvent]

mouse_event_stop(event)
Process an button-2 event (end blocking input).

Parameters

event
[MouseEvent]

pop(event, index=- 1)
Remove a click and the associated event from the list of clicks.

Defaults to the last click.

pop_click(event, index=- 1)
Remove a click (by default, the last) from the list of clicks.

Parameters

event
[MouseEvent]

post_event()
Process an event.

18.13 matplotlib.category

Plotting of string "category" data: plot(['d', 'f', 'a'], [1, 2, 3])will plot three points with
x-axis values of 'd', 'f', 'a'.

See /gallery/lines_bars_and_markers/categorical_variables for an example.

The module uses Matplotlib's matplotlib.units mechanism to convert from strings to integers and
provides a tick locator, a tick formatter, and the UnitData class that creates and stores the string-to-integer
mapping.

class matplotlib.category.StrCategoryConverter
Bases: matplotlib.units.ConversionInterface

18.13. matplotlib.category 1677

Matplotlib, Release 3.4.3

static axisinfo(unit, axis)
Set the default axis ticks and labels.

Parameters

unit
[UnitData] object string unit information for value

axis
[Axis] axis for which information is being set

Returns

AxisInfo

Information to support default tick labeling

static convert(value, unit, axis)
Convert strings in value to floats using mapping information stored in the unit object.

Parameters

value
[str or iterable] Value or list of values to be converted.

unit
[UnitData] An object mapping strings to integers.

axis
[Axis] The axis on which the converted value is plotted.

Note: axis is unused.

Returns

float or ndarray[float]

static default_units(data, axis)
Set and update the Axis units.

Parameters

data
[str or iterable of str]

axis
[Axis] axis on which the data is plotted

1678 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns

UnitData

object storing string to integer mapping

class matplotlib.category.StrCategoryFormatter(units_mapping)
Bases: matplotlib.ticker.Formatter

String representation of the data at every tick.

Parameters

units_mapping
[dict] Mapping of category names (str) to indices (int).

format_ticks(values)
Return the tick labels for all the ticks at once.

class matplotlib.category.StrCategoryLocator(units_mapping)
Bases: matplotlib.ticker.Locator

Tick at every integer mapping of the string data.

Parameters

units_mapping
[dict] Mapping of category names (str) to indices (int).

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

class matplotlib.category.UnitData(data=None)
Bases: object

Create mapping between unique categorical values and integer ids.

Parameters

data
[iterable] sequence of string values

18.13. matplotlib.category 1679

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

update(data)
Map new values to integer identifiers.

Parameters

data
[iterable of str or bytes]

Raises

TypeError
If elements in data are neither str nor bytes.

18.14 matplotlib.cbook

A collection of utility functions and classes. Originally, many (but not all) were from the Python Cookbook
-- hence the name cbook.

This module is safe to import from anywhere within Matplotlib; it imports Matplotlib only at runtime.

class matplotlib.cbook.CallbackRegistry(exception_handler=<function _excep-
tion_printer>)

Bases: object

Handle registering and disconnecting for a set of signals and callbacks:

>>> def oneat(x):
... print('eat', x)
>>> def ondrink(x):
... print('drink', x)

>>> from matplotlib.cbook import CallbackRegistry
>>> callbacks = CallbackRegistry()

>>> id_eat = callbacks.connect('eat', oneat)
>>> id_drink = callbacks.connect('drink', ondrink)

>>> callbacks.process('drink', 123)
drink 123
>>> callbacks.process('eat', 456)
eat 456
>>> callbacks.process('be merry', 456) # nothing will be called
>>> callbacks.disconnect(id_eat)
>>> callbacks.process('eat', 456) # nothing will be called

In practice, one should always disconnect all callbacks when they are no longer needed to avoid dan-
gling references (and thus memory leaks). However, real code in Matplotlib rarely does so, and due
to its design, it is rather difficult to place this kind of code. To get around this, and prevent this class

1680 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

of memory leaks, we instead store weak references to bound methods only, so when the destination
object needs to die, the CallbackRegistry won't keep it alive.

Parameters

exception_handler
[callable, optional] If not None, exception_handlermust be a function that takes an
Exception as single parameter. It gets called with any Exception raised by
the callbacks during CallbackRegistry.process, and may either re-raise
the exception or handle it in another manner.

The default handler prints the exception (with traceback.print_exc) if an
interactive event loop is running; it re-raises the exception if no interactive event
loop is running.

connect(signal, func)
Register func to be called when signal signal is generated.

disconnect(cid)
Disconnect the callback registered with callback id cid.

No error is raised if such a callback does not exist.

process(s, *args, **kwargs)
Process signal s.

All of the functions registered to receive callbacks on s will be called with *args and
**kwargs.

class matplotlib.cbook.Grouper(init=())
Bases: object

A disjoint-set data structure.

Objects can be joined using join(), tested for connectedness using joined(), and all disjoint sets
can be retrieved by using the object as an iterator.

The objects being joined must be hashable and weak-referenceable.

Examples

>>> from matplotlib.cbook import Grouper
>>> class Foo:
... def __init__(self, s):
... self.s = s
... def __repr__(self):
... return self.s
...
>>> a, b, c, d, e, f = [Foo(x) for x in 'abcdef']
>>> grp = Grouper()
>>> grp.join(a, b)
>>> grp.join(b, c)

(continues on next page)

18.14. matplotlib.cbook 1681

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/traceback.html#traceback.print_exc
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

(continued from previous page)
>>> grp.join(d, e)
>>> list(grp)
[[a, b, c], [d, e]]
>>> grp.joined(a, b)
True
>>> grp.joined(a, c)
True
>>> grp.joined(a, d)
False

clean()
Clean dead weak references from the dictionary.

get_siblings(a)
Return all of the items joined with a, including itself.

join(a, *args)
Join given arguments into the same set. Accepts one or more arguments.

joined(a, b)
Return whether a and b are members of the same set.

remove(a)

exception matplotlib.cbook.IgnoredKeywordWarning(*args, **kwargs)
Bases: UserWarning

[Deprecated] A class for issuingwarnings about keyword arguments that will be ignored byMatplotlib.

Notes

Deprecated since version 3.3.

class matplotlib.cbook.Stack(default=None)
Bases: object

Stack of elements with a movable cursor.

Mimics home/back/forward in a web browser.

back()
Move the position back and return the current element.

bubble(o)
Raise all references of o to the top of the stack, and return it.

Raises

ValueError
If o is not in the stack.

1682 Chapter 18. Modules

https://docs.python.org/3/library/exceptions.html#UserWarning
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

clear()
Empty the stack.

empty()
Return whether the stack is empty.

forward()
Move the position forward and return the current element.

home()
Push the first element onto the top of the stack.

The first element is returned.

push(o)
Push o to the stack at current position. Discard all later elements.

o is returned.

remove(o)
Remove o from the stack.

Raises

ValueError
If o is not in the stack.

matplotlib.cbook.boxplot_stats(X, whis=1.5, bootstrap=None, labels=None, autor-
ange=False)

Return a list of dictionaries of statistics used to draw a series of box and whisker plots using bxp.

Parameters

X
[array-like] Data that will be represented in the boxplots. Should have 2 or fewer
dimensions.

whis
[float or (float, float), default: 1.5] The position of the whiskers.

If a float, the lower whisker is at the lowest datum above Q1 - whis*(Q3-Q1),
and the upper whisker at the highest datum below Q3 + whis*(Q3-Q1), where
Q1 and Q3 are the first and third quartiles. The default value of whis = 1.5
corresponds to Tukey's original definition of boxplots.

If a pair of floats, they indicate the percentiles at which to draw the whiskers (e.g.,
(5, 95)). In particular, setting this to (0, 100) results in whiskers covering the whole
range of the data.

In the edge case where Q1 == Q3, whis is automatically set to (0, 100) (cover
the whole range of the data) if autorange is True.

18.14. matplotlib.cbook 1683

Matplotlib, Release 3.4.3

Beyond the whiskers, data are considered outliers and are plotted as individual
points.

bootstrap
[int, optional] Number of times the confidence intervals around the median should
be bootstrapped (percentile method).

labels
[array-like, optional] Labels for each dataset. Length must be compatible with
dimensions of X.

autorange
[bool, optional (False)] When True and the data are distributed such that the 25th
and 75th percentiles are equal, whis is set to (0, 100) such that the whisker ends
are at the minimum and maximum of the data.

Returns

list of dict
A list of dictionaries containing the results for each column of data. Keys of each
dictionary are the following:

Key Value Description
label tick label for the boxplot
mean arithmetic mean value
med 50th percentile
q1 first quartile (25th percentile)
q3 third quartile (75th percentile)
cilo lower notch around the median
cihi upper notch around the median
whislo end of the lower whisker
whishi end of the upper whisker
fliers outliers

Notes

Non-bootstrapping approach to confidence interval uses Gaussian-based asymptotic approximation:

med ± 1.57 × iqr
√𝑁

General approach from: McGill, R., Tukey, J.W., and Larsen, W.A. (1978) "Variations of Boxplots",
The American Statistician, 32:12-16.

matplotlib.cbook.contiguous_regions(mask)
Return a list of (ind0, ind1) such that mask[ind0:ind1].all() is True and we cover all such
regions.

1684 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

matplotlib.cbook.delete_masked_points(*args)
Find all masked and/or non-finite points in a set of arguments, and return the arguments with only the
unmasked points remaining.

Arguments can be in any of 5 categories:

1) 1-D masked arrays

2) 1-D ndarrays

3) ndarrays with more than one dimension

4) other non-string iterables

5) anything else

The first argument must be in one of the first four categories; any argument with a length differing from
that of the first argument (and hence anything in category 5) then will be passed through unchanged.

Masks are obtained from all arguments of the correct length in categories 1, 2, and 4; a point is bad if
masked in a masked array or if it is a nan or inf. No attempt is made to extract a mask from categories
2, 3, and 4 if numpy.isfinite does not yield a Boolean array.

All input arguments that are not passed unchanged are returned as ndarrays after removing the points
or rows corresponding to masks in any of the arguments.

A vastly simpler version of this function was originally written as a helper for Axes.scatter().

matplotlib.cbook.deprecated(*args, **kwargs)
[Deprecated]

Notes

Deprecated since version 3.4:

matplotlib.cbook.file_requires_unicode(x)
Return whether the given writable file-like object requires Unicode to be written to it.

matplotlib.cbook.flatten(seq, scalarp=<function is_scalar_or_string>)
Return a generator of flattened nested containers.

For example:

>>> from matplotlib.cbook import flatten
>>> l = (('John', ['Hunter']), (1, 23), [[([42, (5, 23)],)]])
>>> print(list(flatten(l)))
['John', 'Hunter', 1, 23, 42, 5, 23]

By: Composite of Holger Krekel and Luther Blissett From: https://code.activestate.com/recipes/
121294/ and Recipe 1.12 in cookbook

matplotlib.cbook.get_realpath_and_stat(path)
[Deprecated]

18.14. matplotlib.cbook 1685

https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html#numpy.isfinite
https://code.activestate.com/recipes/121294/
https://code.activestate.com/recipes/121294/

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

matplotlib.cbook.get_sample_data(fname, asfileobj=True, *, np_load=False)
Return a sample data file. fname is a path relative to the mpl-data/sample_data directory. If
asfileobj is True return a file object, otherwise just a file path.

Sample data files are stored in the 'mpl-data/sample_data' directory within the Matplotlib package.

If the filename ends in .gz, the file is implicitly ungzipped. If the filename ends with .npy or .npz,
asfileobj is True, and np_load is True, the file is loadedwithnumpy.load. np_load currently defaults
to False but will default to True in a future release.

matplotlib.cbook.index_of(y)
A helper function to create reasonable x values for the given y.

This is used for plotting (x, y) if x values are not explicitly given.

First try y.index (assuming y is a pandas.Series), if that fails, use range(len(y)).

This will be extended in the future to deal with more types of labeled data.

Parameters

y
[float or array-like]

Returns

x, y
[ndarray] The x and y values to plot.

matplotlib.cbook.is_math_text(s)
Return whether the string s contains math expressions.

This is done by checking whether s contains an even number of non-escaped dollar signs.

matplotlib.cbook.is_scalar_or_string(val)
Return whether the given object is a scalar or string like.

matplotlib.cbook.is_writable_file_like(obj)
Return whether obj looks like a file object with a write method.

matplotlib.cbook.local_over_kwdict(local_var, kwargs, *keys)
[Deprecated] Enforces the priority of a local variable over potentially conflicting argument(s) from a
kwargs dict. The following possible output values are considered in order of priority:

local_var > kwargs[keys[0]] > ... > kwargs[keys[-1]]

The first of these whose value is not None will be returned. If all are None then None will be returned.
Each key in keys will be removed from the kwargs dict in place.

1686 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#True
https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

Matplotlib, Release 3.4.3

Parameters

local_var
[any object] The local variable (highest priority).

kwargs
[dict] Dictionary of keyword arguments; modified in place.

keys
[str(s)] Name(s) of keyword arguments to process, in descending order of priority.

Returns

any object
Either local_var or one of kwargs[key] for key in keys.

Raises

IgnoredKeywordWarning
For each key in keys that is removed from kwargs but not used as the output value.

Notes

Deprecated since version 3.3.

matplotlib.cbook.ls_mapper = {'-': 'solid', '--': 'dashed', '-.': 'dashdot', ':': 'dotted'}
Maps short codes for line style to their full name used by backends.

matplotlib.cbook.ls_mapper_r = {'dashdot': '-.', 'dashed': '--', 'dotted': ':', 'solid': '-'}
Maps full names for line styles used by backends to their short codes.

class matplotlib.cbook.maxdict(maxsize)
Bases: dict

A dictionary with a maximum size.

Notes

This doesn't override all the relevant methods to constrain the size, just __setitem__, so use with
caution.

matplotlib.cbook.normalize_kwargs(kw, alias_mapping=None, required=<deprecated
parameter>, forbidden=<deprecated parame-
ter>, allowed=<deprecated parameter>)

Helper function to normalize kwarg inputs.

The order they are resolved are:

18.14. matplotlib.cbook 1687

https://docs.python.org/3/library/stdtypes.html#dict

Matplotlib, Release 3.4.3

1. aliasing

2. required

3. forbidden

4. allowed

This order means that only the canonical names need appear in allowed, forbidden, required.

Parameters

kw
[dict or None] A dict of keyword arguments. None is explicitly supported and
treated as an empty dict, to support functions with an optional parameter of the
form props=None.

alias_mapping
[dict or Artist subclass or Artist instance, optional] Amapping between a canonical
name to a list of aliases, in order of precedence from lowest to highest.

If the canonical value is not in the list it is assumed to have the highest priority.

If an Artist subclass or instance is passed, use its properties alias mapping.

required
[list of str, optional] A list of keys that must be in kws. This parameter is depre-
cated.

forbidden
[list of str, optional] A list of keys which may not be in kw. This parameter is
deprecated.

allowed
[list of str, optional] A list of allowed fields. If this not None, then raise if kw con-
tains any keys not in the union of required and allowed. To allow only the required
fields pass in an empty tuple allowed=(). This parameter is deprecated.

Raises

TypeError
To match what python raises if invalid args/kwargs are passed to a callable.

matplotlib.cbook.open_file_cm(path_or_file, mode='r', encoding=None)
Pass through file objects and context-manage path-likes.

matplotlib.cbook.print_cycles(objects, outstream=<_io.TextIOWrapper
name='<stdout>' mode='w' encoding='utf-8'>,
show_progress=False)

Print loops of cyclic references in the given objects.

1688 Chapter 18. Modules

Matplotlib, Release 3.4.3

It is often useful to pass in gc.garbage to find the cycles that are preventing some objects from
being garbage collected.

Parameters

objects
A list of objects to find cycles in.

outstream
The stream for output.

show_progress
[bool] If True, print the number of objects reached as they are found.

matplotlib.cbook.pts_to_midstep(x, *args)
Convert continuous line to mid-steps.

Given a set of N points convert to 2N points which when connected linearly give a step function which
changes values at the middle of the intervals.

Parameters

x
[array] The x location of the steps. May be empty.

y1, ..., yp
[array] y arrays to be turned into steps; all must be the same length as x.

Returns

array
The x and y values converted to steps in the same order as the input; can be un-
packed as x_out, y1_out, ..., yp_out. If the input is length N, each of
these arrays will be length 2N.

Examples

>>> x_s, y1_s, y2_s = pts_to_midstep(x, y1, y2)

matplotlib.cbook.pts_to_poststep(x, *args)
Convert continuous line to post-steps.

Given a set of N points convert to 2N + 1 points, which when connected linearly give a step function
which changes values at the end of the intervals.

Parameters

18.14. matplotlib.cbook 1689

Matplotlib, Release 3.4.3

x
[array] The x location of the steps. May be empty.

y1, ..., yp
[array] y arrays to be turned into steps; all must be the same length as x.

Returns

array
The x and y values converted to steps in the same order as the input; can be un-
packed as x_out, y1_out, ..., yp_out. If the input is length N, each of
these arrays will be length 2N + 1. For N=0, the length will be 0.

Examples

>>> x_s, y1_s, y2_s = pts_to_poststep(x, y1, y2)

matplotlib.cbook.pts_to_prestep(x, *args)
Convert continuous line to pre-steps.

Given a set of N points, convert to 2N - 1 points, which when connected linearly give a step function
which changes values at the beginning of the intervals.

Parameters

x
[array] The x location of the steps. May be empty.

y1, ..., yp
[array] y arrays to be turned into steps; all must be the same length as x.

Returns

array
The x and y values converted to steps in the same order as the input; can be un-
packed as x_out, y1_out, ..., yp_out. If the input is length N, each of
these arrays will be length 2N + 1. For N=0, the length will be 0.

1690 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples

>>> x_s, y1_s, y2_s = pts_to_prestep(x, y1, y2)

matplotlib.cbook.report_memory(i=0)
Return the memory consumed by the process.

matplotlib.cbook.safe_first_element(obj)
Return the first element in obj.

This is an type-independent way of obtaining the first element, supporting both index access and the
iterator protocol.

matplotlib.cbook.safe_masked_invalid(x, copy=False)

matplotlib.cbook.sanitize_sequence(data)
Convert dictview objects to list. Other inputs are returned unchanged.

class matplotlib.cbook.silent_list(type, seq=None)
Bases: list

A list with a short repr().

This is meant to be used for a homogeneous list of artists, so that they don't cause long, meaningless
output.

Instead of

[<matplotlib.lines.Line2D object at 0x7f5749fed3c8>,
<matplotlib.lines.Line2D object at 0x7f5749fed4e0>,
<matplotlib.lines.Line2D object at 0x7f5758016550>]

one will get

<a list of 3 Line2D objects>

If self.type is None, the type name is obtained from the first item in the list (if any).

matplotlib.cbook.simple_linear_interpolation(a, steps)
Resample an array with steps - 1 points between original point pairs.

Along each column of a, (steps - 1) points are introduced between each original values; the
values are linearly interpolated.

Parameters

a
[array, shape (n, ...)]

steps
[int]

Returns

18.14. matplotlib.cbook 1691

https://docs.python.org/3/library/stdtypes.html#list

Matplotlib, Release 3.4.3

array
shape ((n - 1) * steps + 1, ...)

matplotlib.cbook.strip_math(s)
Remove latex formatting from mathtext.

Only handles fully math and fully non-math strings.

matplotlib.cbook.to_filehandle(fname, flag='r', return_opened=False, encod-
ing=None)

Convert a path to an open file handle or pass-through a file-like object.

Consider using open_file_cm instead, as it allows one to properly close newly created file objects
more easily.

Parameters

fname
[str or path-like or file-like] If str or os.PathLike, the file is opened using
the flags specified by flag and encoding. If a file-like object, it is passed through.

flag
[str, default: 'r'] Passed as the mode argument to open when fname is str or
os.PathLike; ignored if fname is file-like.

return_opened
[bool, default: False] If True, return both the file object and a boolean indicating
whether this was a new file (that the caller needs to close). If False, return only
the new file.

encoding
[str or None, default: None] Passed as the mode argument to open when fname
is str or os.PathLike; ignored if fname is file-like.

Returns

fh
[file-like]

opened
[bool] opened is only returned if return_opened is True.

matplotlib.cbook.violin_stats(X, method, points=100, quantiles=None)
Return a list of dictionaries of data which can be used to draw a series of violin plots.

See the Returns section below to view the required keys of the dictionary.

1692 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike

Matplotlib, Release 3.4.3

Users can skip this function and pass a user-defined set of dictionaries with the same keys to vio-
linplot instead of using Matplotlib to do the calculations. See the Returns section below for the
keys that must be present in the dictionaries.

Parameters

X
[array-like] Sample data that will be used to produce the gaussian kernel density
estimates. Must have 2 or fewer dimensions.

method
[callable] Themethod used to calculate the kernel density estimate for each column
of data. When called via method(v, coords), it should return a vector of the
values of the KDE evaluated at the values specified in coords.

points
[int, default: 100] Defines the number of points to evaluate each of the gaussian
kernel density estimates at.

quantiles
[array-like, default: None] Defines (if not None) a list of floats in interval [0, 1]
for each column of data, which represents the quantiles that will be rendered for
that column of data. Must have 2 or fewer dimensions. 1D array will be treated as
a singleton list containing them.

Returns

list of dict
A list of dictionaries containing the results for each column of data. The dictio-
naries contain at least the following:

• coords: A list of scalars containing the coordinates this particular kernel density
estimate was evaluated at.

• vals: A list of scalars containing the values of the kernel density estimate at
each of the coordinates given in coords.

• mean: The mean value for this column of data.

• median: The median value for this column of data.

• min: The minimum value for this column of data.

• max: The maximum value for this column of data.

• quantiles: The quantile values for this column of data.

matplotlib.cbook.warn_deprecated(*args, **kwargs)
[Deprecated]

18.14. matplotlib.cbook 1693

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.4:

18.15 matplotlib.cm

Builtin colormaps, colormap handling utilities, and the ScalarMappable mixin.

See also:
/gallery/color/colormap_reference for a list of builtin colormaps.

Creating Colormaps in Matplotlib for examples of how to make colormaps.

Choosing Colormaps in Matplotlib an in-depth discussion of choosing colormaps.

Colormap Normalization for more details about data normalization.

class matplotlib.cm.ScalarMappable(norm=None, cmap=None)
Bases: object

A mixin class to map scalar data to RGBA.

The ScalarMappable applies data normalization before returning RGBA colors from the given col-
ormap.

Parameters

norm
[matplotlib.colors.Normalize (or subclass thereof)] The normalizing
object which scales data, typically into the interval [0, 1]. If None, norm de-
faults to a colors.Normalize object which initializes its scaling based on the first
data processed.

cmap
[str or Colormap] The colormap used to map normalized data values to RGBA
colors.

add_checker(checker)
[Deprecated]

1694 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

colorbar
The last colorbar associated with this ScalarMappable. May be None.

get_alpha()

Returns

float
Always returns 1.

get_array()
Return the data array.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_cmap()
Return the Colormap instance.

set_array(A)
Set the image array from numpy array A.

Parameters

A
[ndarray or None]

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

18.15. matplotlib.cm 1695

Matplotlib, Release 3.4.3

Parameters

vmin, vmax
[float] The limits.

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

1696 Chapter 18. Modules

Matplotlib, Release 3.4.3

property update_dict

matplotlib.cm.get_cmap(name=None, lut=None)
Get a colormap instance, defaulting to rc values if name is None.

Colormaps added with register_cmap() take precedence over built-in colormaps.

Parameters

name
[matplotlib.colors.Colormap or str or None, default: None] If a Col-
ormap instance, it will be returned. Otherwise, the name of a colormap known
to Matplotlib, which will be resampled by lut. The default, None, means
rcParams["image.cmap"] (default: 'viridis').

lut
[int or None, default: None] If name is not already a Colormap instance and lut is
not None, the colormap will be resampled to have lut entries in the lookup table.

Notes

Currently, this returns the global colormap object, which is deprecated. In Matplotlib 3.5, you will no
longer be able to modify the global colormaps in-place.

matplotlib.cm.register_cmap(name=None, cmap=None, *, override_builtin=False)
Add a colormap to the set recognized by get_cmap().

Register a new colormap to be accessed by name

LinearSegmentedColormap('swirly', data, lut)
register_cmap(cmap=swirly_cmap)

Parameters

name
[str, optional] The name that can be used in get_cmap() or
rcParams["image.cmap"] (default: 'viridis')

If absent, the name will be the name attribute of the cmap.

cmap
[matplotlib.colors.Colormap] Despite being the second argument and having a de-
fault value, this is a required argument.

override_builtin
[bool] Allow built-in colormaps to be overridden by a user-supplied colormap.

Please do not use this unless you are sure you need it.

18.15. matplotlib.cm 1697

../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

Registering a colormap stores a reference to the colormap object which can currently be modified and
inadvertently change the global colormap state. This behavior is deprecated and in Matplotlib 3.5 the
registered colormap will be immutable.

matplotlib.cm.unregister_cmap(name)
Remove a colormap recognized by get_cmap().

You may not remove built-in colormaps.

If the named colormap is not registered, returns with no error, raises if you try to de-register a default
colormap.

Warning: Colormap names are currently a shared namespace that may be used by multiple
packages. Use unregister_cmap only if you know you have registered that name before. In
particular, do not unregister just in case to clean the name before registering a new colormap.

Parameters

name
[str] The name of the colormap to be un-registered

Returns

ColorMap or None
If the colormap was registered, return it if not return None

Raises

ValueError
If you try to de-register a default built-in colormap.

1698 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

18.16 matplotlib.collections

artist.Artist
collections.Collection

cm.ScalarMappable

collections.AsteriskPolygonCollection

collections.RegularPolyCollection collections.StarPolygonCollection

collections.BrokenBarHCollectioncollections.PolyCollection

collections.CircleCollectioncollections._CollectionWithSizes

collections.PathCollectioncollections.EllipseCollection

collections.LineCollection

collections.PatchCollection

collections.QuadMesh

collections.TriMesh

collections.EventCollection

Classes for the efficient drawing of large collections of objects that share most properties, e.g., a large number
of line segments or polygons.

The classes are not meant to be as flexible as their single element counterparts (e.g., you may not be able
to select all line styles) but they are meant to be fast for common use cases (e.g., a large set of solid line
segments).

class matplotlib.collections.AsteriskPolygonCollection(numsides, rota-
tion=0, sizes=(1),
**kwargs)

Bases: matplotlib.collections.RegularPolyCollection

Draw a collection of regular asterisks with numsides points.

Parameters

numsides
[int] The number of sides of the polygon.

rotation
[float] The rotation of the polygon in radians.

sizes
[tuple of float] The area of the circle circumscribing the polygon in points^2.

**kwargs
Forwarded to Collection.

18.16. matplotlib.collections 1699

Matplotlib, Release 3.4.3

Examples

See /gallery/event_handling/lasso_demo for a complete example:

offsets = np.random.rand(20, 2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]

collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors=facecolors,
edgecolors=("black",),
linewidths=(1,),
offsets=offsets,
transOffset=ax.transData,
)

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_checker(checker)
[Deprecated]

1700 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

18.16. matplotlib.collections 1701

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

1702 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event

18.16. matplotlib.collections 1703

Matplotlib, Release 3.4.3

[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

get_figure()
Return the Figure instance the artist belongs to.

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()

1704 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_numsides()

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_path_effects()

get_paths()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_rasterized()
Return whether the artist is to be rasterized.

get_rotation()

get_sizes()
Return the sizes ('areas') of the elements in the collection.

Returns

array
The 'area' of each element.

18.16. matplotlib.collections 1705

Matplotlib, Release 3.4.3

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

1706 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_visible()
Return the visibility.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

18.16. matplotlib.collections 1707

Matplotlib, Release 3.4.3

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

1708 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

set_array(A)
Set the image array from numpy array A.

Parameters

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

18.16. matplotlib.collections 1709

Matplotlib, Release 3.4.3

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

1710 Chapter 18. Modules

Matplotlib, Release 3.4.3

cmap
[Colormap or str or None]

set_color(c)
Set both the edgecolor and the facecolor.

Parameters

c
[color or list of rgba tuples]

See also:

Collection.set_facecolor, Collection.set_edgecolor
For setting the edge or face color individually.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

18.16. matplotlib.collections 1711

Matplotlib, Release 3.4.3

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_edgecolors(c)
Alias for set_edgecolor.

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

set_fc(c)
Alias for set_facecolor.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

1712 Chapter 18. Modules

Matplotlib, Release 3.4.3

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

18.16. matplotlib.collections 1713

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

set_linestyle(ls)
Set the linestyle(s) for the collection.

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls
[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm

1714 Chapter 18. Modules

Matplotlib, Release 3.4.3

[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

offset_position
[{'screen', 'data'}]

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

offsets
[(N, 2) or (2,) array-like]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths()

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

18.16. matplotlib.collections 1715

Matplotlib, Release 3.4.3

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

set_sizes(sizes, dpi=72.0)
Set the sizes of each member of the collection.

Parameters

sizes
[ndarray or None] The size to set for each element of the collection. The value
is the 'area' of the element.

1716 Chapter 18. Modules

Matplotlib, Release 3.4.3

dpi
[float, default: 72] The dpi of the canvas.

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

18.16. matplotlib.collections 1717

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

set_url(url)
Set the url for the artist.

Parameters

url
[str]

set_urls(urls)

Parameters

urls
[list of str or None]

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

1718 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

zorder = 0

class matplotlib.collections.BrokenBarHCollection(xranges, yrange,
**kwargs)

Bases: matplotlib.collections.PolyCollection

A collection of horizontal bars spanning yrange with a sequence of xranges.

Parameters

18.16. matplotlib.collections 1719

Matplotlib, Release 3.4.3

xranges
[list of (float, float)] The sequence of (left-edge-position, width) pairs for each bar.

yrange
[(float, float)] The (lower-edge, height) common to all bars.

**kwargs
Forwarded to Collection.

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_checker(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

1720 Chapter 18. Modules

Matplotlib, Release 3.4.3

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

18.16. matplotlib.collections 1721

Matplotlib, Release 3.4.3

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

1722 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

18.16. matplotlib.collections 1723

Matplotlib, Release 3.4.3

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

get_figure()
Return the Figure instance the artist belongs to.

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

1724 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_path_effects()

get_paths()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_rasterized()
Return whether the artist is to be rasterized.

get_sizes()
Return the sizes ('areas') of the elements in the collection.

Returns

array
The 'area' of each element.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

18.16. matplotlib.collections 1725

Matplotlib, Release 3.4.3

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

get_visible()
Return the visibility.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_zorder()
Return the artist's zorder.

1726 Chapter 18. Modules

Matplotlib, Release 3.4.3

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

18.16. matplotlib.collections 1727

Matplotlib, Release 3.4.3

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

1728 Chapter 18. Modules

Matplotlib, Release 3.4.3

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

set_array(A)
Set the image array from numpy array A.

Parameters

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

18.16. matplotlib.collections 1729

Matplotlib, Release 3.4.3

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

set_color(c)
Set both the edgecolor and the facecolor.

Parameters

c
[color or list of rgba tuples]

See also:

Collection.set_facecolor, Collection.set_edgecolor
For setting the edge or face color individually.

1730 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_edgecolors(c)
Alias for set_edgecolor.

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

18.16. matplotlib.collections 1731

Matplotlib, Release 3.4.3

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

set_fc(c)
Alias for set_facecolor.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

1732 Chapter 18. Modules

Matplotlib, Release 3.4.3

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linestyle(ls)
Set the linestyle(s) for the collection.

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls

18.16. matplotlib.collections 1733

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

offset_position
[{'screen', 'data'}]

1734 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

offsets
[(N, 2) or (2,) array-like]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths(verts, closed=True)
Set the vertices of the polygons.

Parameters

verts
[list of array-like] The sequence of polygons [verts0, verts1, ...] where each
element verts_i defines the vertices of polygon i as a 2D array-like of shape (M,
2).

closed
[bool, default: True]Whether the polygon should be closed by adding a CLOSE-
POLY connection at the end.

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse

18.16. matplotlib.collections 1735

Matplotlib, Release 3.4.3

event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

set_sizes(sizes, dpi=72.0)
Set the sizes of each member of the collection.

Parameters

sizes
[ndarray or None] The size to set for each element of the collection. The value
is the 'area' of the element.

dpi
[float, default: 72] The dpi of the canvas.

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

1736 Chapter 18. Modules

Matplotlib, Release 3.4.3

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

set_url(url)
Set the url for the artist.

Parameters

18.16. matplotlib.collections 1737

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

url
[str]

set_urls(urls)

Parameters

urls
[list of str or None]

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_verts(verts, closed=True)
Set the vertices of the polygons.

Parameters

verts
[list of array-like] The sequence of polygons [verts0, verts1, ...] where each
element verts_i defines the vertices of polygon i as a 2D array-like of shape (M,
2).

closed
[bool, default: True]Whether the polygon should be closed by adding a CLOSE-
POLY connection at the end.

set_verts_and_codes(verts, codes)
Initialize vertices with path codes.

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

1738 Chapter 18. Modules

Matplotlib, Release 3.4.3

classmethod span_where(x, ymin, ymax, where, **kwargs)
Return a BrokenBarHCollection that plots horizontal bars from over the regions in xwhere
where is True. The bars range on the y-axis from ymin to ymax

kwargs are passed on to the collection.

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

update(props)
Update this artist's properties from the dict props.

Parameters

props

18.16. matplotlib.collections 1739

Matplotlib, Release 3.4.3

[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

zorder = 0

class matplotlib.collections.CircleCollection(sizes, **kwargs)
Bases: matplotlib.collections._CollectionWithSizes

A collection of circles, drawn using splines.

Parameters

sizes
[float or array-like] The area of each circle in points^2.

**kwargs
Forwarded to Collection.

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

1740 Chapter 18. Modules

Matplotlib, Release 3.4.3

add_checker(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

18.16. matplotlib.collections 1741

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

1742 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event

18.16. matplotlib.collections 1743

Matplotlib, Release 3.4.3

[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

get_figure()
Return the Figure instance the artist belongs to.

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()

1744 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_path_effects()

get_paths()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_rasterized()
Return whether the artist is to be rasterized.

get_sizes()
Return the sizes ('areas') of the elements in the collection.

Returns

array
The 'area' of each element.

get_sketch_params()
Return the sketch parameters for the artist.

18.16. matplotlib.collections 1745

Matplotlib, Release 3.4.3

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

get_visible()
Return the visibility.

1746 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

18.16. matplotlib.collections 1747

Matplotlib, Release 3.4.3

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

set_animated(b)
Set whether the artist is intended to be used in an animation.

1748 Chapter 18. Modules

Matplotlib, Release 3.4.3

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

set_array(A)
Set the image array from numpy array A.

Parameters

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

18.16. matplotlib.collections 1749

Matplotlib, Release 3.4.3

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

1750 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_color(c)
Set both the edgecolor and the facecolor.

Parameters

c
[color or list of rgba tuples]

See also:

Collection.set_facecolor, Collection.set_edgecolor
For setting the edge or face color individually.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

18.16. matplotlib.collections 1751

Matplotlib, Release 3.4.3

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_edgecolors(c)
Alias for set_edgecolor.

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

set_fc(c)
Alias for set_facecolor.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed

(continues on next page)

1752 Chapter 18. Modules

Matplotlib, Release 3.4.3

(continued from previous page)
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linestyle(ls)
Set the linestyle(s) for the collection.

18.16. matplotlib.collections 1753

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls
[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

1754 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

offset_position
[{'screen', 'data'}]

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

offsets
[(N, 2) or (2,) array-like]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths()

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

18.16. matplotlib.collections 1755

Matplotlib, Release 3.4.3

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

set_sizes(sizes, dpi=72.0)
Set the sizes of each member of the collection.

Parameters

sizes
[ndarray or None] The size to set for each element of the collection. The value
is the 'area' of the element.

1756 Chapter 18. Modules

Matplotlib, Release 3.4.3

dpi
[float, default: 72] The dpi of the canvas.

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

18.16. matplotlib.collections 1757

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

set_url(url)
Set the url for the artist.

Parameters

url
[str]

set_urls(urls)

Parameters

urls
[list of str or None]

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

1758 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

zorder = 0

18.16. matplotlib.collections 1759

Matplotlib, Release 3.4.3

class matplotlib.collections.Collection(edgecolors=None, facecolors=None,
linewidths=None, linestyles='solid',
capstyle=None, joinstyle=None, an-
tialiaseds=None, offsets=None, transOff-
set=None, norm=None, cmap=None,
pickradius=5.0, hatch=None,
urls=None, offset_position=<deprecated
parameter>, zorder=1, **kwargs)

Bases: matplotlib.artist.Artist, matplotlib.cm.ScalarMappable

Base class for Collections. Must be subclassed to be usable.

A Collection represents a sequence of Patches that can be drawn more efficiently together than indi-
vidually. For example, when a single path is being drawn repeatedly at different offsets, the renderer
can typically execute a draw_marker() call much more efficiently than a series of repeated calls
to draw_path() with the offsets put in one-by-one.

Most properties of a collection can be configured per-element. Therefore, Collections have "plural"
versions of many of the properties of a Patch (e.g. Collection.get_paths instead of Patch.
get_path). Exceptions are the zorder, hatch, pickradius, capstyle and joinstyle properties, which
can only be set globally for the whole collection.

Besides these exceptions, all properties can be specified as single values (applying to all elements) or
sequences of values. The property of the ith element of the collection is:

prop[i % len(prop)]

Each Collection can optionally be used as its own ScalarMappable by passing the norm and cmap
parameters to its constructor. If the Collection's ScalarMappable matrix _A has been set (via a
call to Collection.set_array), then at draw time this internal scalar mappable will be used to
set the facecolors and edgecolors, ignoring those that were manually passed in.

Parameters

edgecolors
[color or list of colors, default: rcParams["patch.edgecolor"] (default:
'black')] Edge color for each patch making up the collection. The special value
'face' can be passed to make the edgecolor match the facecolor.

facecolors
[color or list of colors, default: rcParams["patch.facecolor"] (default:
'C0')] Face color for each patch making up the collection.

linewidths
[float or list of floats, default: rcParams["patch.linewidth"] (default:
1.0)] Line width for each patch making up the collection.

linestyles
[str or tuple or list thereof, default: 'solid'] Valid strings are ['solid', 'dashed', 'dash-
dot', 'dotted', '-', '--', '-.', ':']. Dash tuples should be of the form:

1760 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=patch.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink lengths in points. For
examples, see /gallery/lines_bars_and_markers/linestyles.

capstyle
[CapStyle-like, default: rcParams["patch.capstyle"]] Style to use
for capping lines for all paths in the collection. Allowed values are {'butt', 'pro-
jecting', 'round'}.

joinstyle
[JoinStyle-like, default: rcParams["patch.joinstyle"]] Style to
use for joining lines for all paths in the collection. Allowed values are {'miter',
'round', 'bevel'}.

antialiaseds
[bool or list of bool, default: rcParams["patch.antialiased"] (default:
True)] Whether each patch in the collection should be drawn with antialiasing.

offsets
[(float, float) or list thereof, default: (0, 0)] A vector by which to translate each
patch after rendering (default is no translation). The translation is performed in
screen (pixel) coordinates (i.e. after the Artist's transform is applied).

transOffset
[Transform, default: IdentityTransform] A single transform which will
be applied to each offsets vector before it is used.

offset_position
[{{'screen' (default), 'data' (deprecated)}}] If set to 'data' (deprecated), offsets will
be treated as if it is in data coordinates instead of in screen coordinates.

norm
[Normalize, optional] Forwarded toScalarMappable. The default of None
means that the first draw call will set vmin and vmax using the minimum and
maximum values of the data.

cmap
[Colormap, optional] Forwarded to ScalarMappable. The default of None
will result in rcParams["image.cmap"] (default: 'viridis') being
used.

hatch
[str, optional] Hatching pattern to use in filled paths, if any.
Valid strings are ['/', '', '|', '-', '+', 'x', 'o', 'O', '.', '*']. See
/gallery/shapes_and_collections/hatch_style_reference for the meaning of
each hatch type.

18.16. matplotlib.collections 1761

../tutorials/introductory/customizing.html?highlight=patch.capstyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.joinstyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

pickradius
[float, default: 5.0] If pickradius <= 0, then Collection.contains
will return True whenever the test point is inside of one of the polygons formed
by the control points of a Path in the Collection. On the other hand, if it is greater
than 0, then we instead check if the test point is contained in a stroke of width
2*pickradius following any of the Paths in the Collection.

urls
[list of str, default: None] A URL for each patch to link to once drawn. Currently
only works for the SVG backend. See /gallery/misc/hyperlinks_sgskip for exam-
ples.

zorder
[float, default: 1] The drawing order, shared by all Patches in the Collection. See
/gallery/misc/zorder_demo for all defaults and examples.

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_checker(checker)
[Deprecated]

1762 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

18.16. matplotlib.collections 1763

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

1764 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event

18.16. matplotlib.collections 1765

Matplotlib, Release 3.4.3

[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

get_figure()
Return the Figure instance the artist belongs to.

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()

1766 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_path_effects()

get_paths()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_rasterized()
Return whether the artist is to be rasterized.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

18.16. matplotlib.collections 1767

Matplotlib, Release 3.4.3

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

get_visible()
Return the visibility.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing

1768 Chapter 18. Modules

Matplotlib, Release 3.4.3

the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

18.16. matplotlib.collections 1769

Matplotlib, Release 3.4.3

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

1770 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

set_array(A)
Set the image array from numpy array A.

Parameters

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

18.16. matplotlib.collections 1771

Matplotlib, Release 3.4.3

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

set_color(c)
Set both the edgecolor and the facecolor.

Parameters

c
[color or list of rgba tuples]

1772 Chapter 18. Modules

Matplotlib, Release 3.4.3

See also:

Collection.set_facecolor, Collection.set_edgecolor
For setting the edge or face color individually.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_edgecolors(c)
Alias for set_edgecolor.

18.16. matplotlib.collections 1773

Matplotlib, Release 3.4.3

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

set_fc(c)
Alias for set_facecolor.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

1774 Chapter 18. Modules

Matplotlib, Release 3.4.3

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linestyle(ls)
Set the linestyle(s) for the collection.

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

18.16. matplotlib.collections 1775

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls
[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

1776 Chapter 18. Modules

Matplotlib, Release 3.4.3

offset_position
[{'screen', 'data'}]

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

offsets
[(N, 2) or (2,) array-like]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths()

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

18.16. matplotlib.collections 1777

Matplotlib, Release 3.4.3

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value

1778 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

set_url(url)
Set the url for the artist.

Parameters

url
[str]

set_urls(urls)

Parameters

urls
[list of str or None]

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_visible(b)
Set the artist's visibility.

Parameters

18.16. matplotlib.collections 1779

Matplotlib, Release 3.4.3

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

1780 Chapter 18. Modules

Matplotlib, Release 3.4.3

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

zorder = 0

class matplotlib.collections.EllipseCollection(widths, heights, angles,
units='points', **kwargs)

Bases: matplotlib.collections.Collection

A collection of ellipses, drawn using splines.

Parameters

widths
[array-like] The lengths of the first axes (e.g., major axis lengths).

heights
[array-like] The lengths of second axes.

angles
[array-like] The angles of the first axes, degrees CCW from the x-axis.

units
[{'points', 'inches', 'dots', 'width', 'height', 'x', 'y', 'xy'}] The units in which majors
and minors are given; 'width' and 'height' refer to the dimensions of the axes, while
'x' and 'y' refer to the offsets data units. 'xy' differs from all others in that the angle
as plotted varies with the aspect ratio, and equals the specified angle only when
the aspect ratio is unity. Hence it behaves the same as the Ellipse with axes.
transData as its transform.

**kwargs
Forwarded to Collection.

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

18.16. matplotlib.collections 1781

Matplotlib, Release 3.4.3

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_checker(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

1782 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

18.16. matplotlib.collections 1783

Matplotlib, Release 3.4.3

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

1784 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

18.16. matplotlib.collections 1785

Matplotlib, Release 3.4.3

get_figure()
Return the Figure instance the artist belongs to.

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_path_effects()

1786 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_paths()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_rasterized()
Return whether the artist is to be rasterized.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

18.16. matplotlib.collections 1787

Matplotlib, Release 3.4.3

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

get_visible()
Return the visibility.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

1788 Chapter 18. Modules

Matplotlib, Release 3.4.3

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

18.16. matplotlib.collections 1789

Matplotlib, Release 3.4.3

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

set_array(A)
Set the image array from numpy array A.

Parameters

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

1790 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

18.16. matplotlib.collections 1791

Matplotlib, Release 3.4.3

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

set_color(c)
Set both the edgecolor and the facecolor.

Parameters

c
[color or list of rgba tuples]

See also:

Collection.set_facecolor, Collection.set_edgecolor
For setting the edge or face color individually.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

1792 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_edgecolors(c)
Alias for set_edgecolor.

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

set_fc(c)
Alias for set_facecolor.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

18.16. matplotlib.collections 1793

Matplotlib, Release 3.4.3

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

1794 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linestyle(ls)
Set the linestyle(s) for the collection.

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls
[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

18.16. matplotlib.collections 1795

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

offset_position
[{'screen', 'data'}]

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

offsets
[(N, 2) or (2,) array-like]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths()

1796 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

18.16. matplotlib.collections 1797

Matplotlib, Release 3.4.3

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

set_url(url)
Set the url for the artist.

Parameters

1798 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

url
[str]

set_urls(urls)

Parameters

urls
[list of str or None]

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

18.16. matplotlib.collections 1799

Matplotlib, Release 3.4.3

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

zorder = 0

class matplotlib.collections.EventCollection(positions, orienta-
tion='horizontal', lineoffset=0,
linelength=1, linewidth=None,
color=None, linestyle='solid',
antialiased=None, **kwargs)

Bases: matplotlib.collections.LineCollection

1800 Chapter 18. Modules

Matplotlib, Release 3.4.3

A collection of locations along a single axis at which an "event" occurred.

The events are given by a 1-dimensional array. They do not have an amplitude and are displayed as
parallel lines.

Parameters

positions
[1D array-like] Each value is an event.

orientation
[{'horizontal', 'vertical'}, default: 'horizontal'] The sequence of events is plotted
along this direction. The marker lines of the single events are along the orthogonal
direction.

lineoffset
[float, default: 0] The offset of the center of the markers from the origin, in the
direction orthogonal to orientation.

linelength
[float, default: 1] The total height of the marker (i.e. the marker stretches from
lineoffset - linelength/2 to lineoffset + linelength/2).

linewidth
[float or list thereof, default: rcParams["lines.linewidth"] (default:
1.5)] The line width of the event lines, in points.

color
[color or list of colors, default: rcParams["lines.color"] (default:
'C0')] The color of the event lines.

linestyle
[str or tuple or list thereof, default: 'solid'] Valid strings are ['solid', 'dashed', 'dash-
dot', 'dotted', '-', '--', '-.', ':']. Dash tuples should be of the form:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

antialiased
[bool or list thereof, default: rcParams["lines.antialiased"] (default:
True)] Whether to use antialiasing for drawing the lines.

**kwargs
Forwarded to LineCollection.

18.16. matplotlib.collections 1801

../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=lines.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Examples

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
line plot with data points

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

1802 Chapter 18. Modules

Matplotlib, Release 3.4.3

remove_callback

add_checker(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

add_positions(position)
Add one or more events at the specified positions.

append_positions(position)
Add one or more events at the specified positions.

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

18.16. matplotlib.collections 1803

Matplotlib, Release 3.4.3

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

extend_positions(position)
Add one or more events at the specified positions.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

1804 Chapter 18. Modules

Matplotlib, Release 3.4.3

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

get_color()
Return the color of the lines used to mark each event.

get_colors()

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

18.16. matplotlib.collections 1805

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

get_figure()
Return the Figure instance the artist belongs to.

1806 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

get_linelength()
Return the length of the lines used to mark each event.

get_lineoffset()
Return the offset of the lines used to mark each event.

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()
Get the width of the lines used to mark each event.

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

18.16. matplotlib.collections 1807

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_orientation()
Return the orientation of the event line ('horizontal' or 'vertical').

get_path_effects()

get_paths()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_positions()
Return an array containing the floating-point values of the positions.

get_rasterized()
Return whether the artist is to be rasterized.

get_segments()

Returns

list
List of segments in the LineCollection. Each list item contains an array of ver-
tices.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

1808 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

get_visible()
Return the visibility.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can

18.16. matplotlib.collections 1809

Matplotlib, Release 3.4.3

lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

is_horizontal()
True if the eventcollection is horizontal, False if vertical.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

1810 Chapter 18. Modules

Matplotlib, Release 3.4.3

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

18.16. matplotlib.collections 1811

Matplotlib, Release 3.4.3

b
[bool]

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

set_array(A)
Set the image array from numpy array A.

Parameters

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

1812 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

set_color(c)
Set the edgecolor(s) of the LineCollection.

Parameters

c
[color or list of colors] Single color (all lines have same color), or a sequence of
rgba tuples; if it is a sequence the lines will cycle through the sequence.

18.16. matplotlib.collections 1813

Matplotlib, Release 3.4.3

set_colors(c)
Set the edgecolor(s) of the LineCollection.

Parameters

c
[color or list of colors] Single color (all lines have same color), or a sequence of
rgba tuples; if it is a sequence the lines will cycle through the sequence.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

1814 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_edgecolors(c)
Alias for set_edgecolor.

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

set_fc(c)
Alias for set_facecolor.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

18.16. matplotlib.collections 1815

Matplotlib, Release 3.4.3

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linelength(linelength)
Set the length of the lines used to mark each event.

set_lineoffset(lineoffset)
Set the offset of the lines used to mark each event.

set_linestyle(ls)
Set the linestyle(s) for the collection.

1816 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls
[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

18.16. matplotlib.collections 1817

Matplotlib, Release 3.4.3

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

offset_position
[{'screen', 'data'}]

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

offsets
[(N, 2) or (2,) array-like]

set_orientation(orientation=None)
Set the orientation of the event line.

Parameters

orientation
[{'horizontal', 'vertical'}]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths(segments)

set_picker(picker)
Define the picking behavior of the artist.

1818 Chapter 18. Modules

Matplotlib, Release 3.4.3

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

set_positions(positions)
Set the positions of the events.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

18.16. matplotlib.collections 1819

Matplotlib, Release 3.4.3

set_segments(segments)

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

set_url(url)
Set the url for the artist.

1820 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

Parameters

url
[str]

set_urls(urls)

Parameters

urls
[list of str or None]

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_verts(segments)

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

18.16. matplotlib.collections 1821

Matplotlib, Release 3.4.3

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

switch_orientation()
Switch the orientation of the event line, either from vertical to horizontal or vice versus.

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

zorder = 0

class matplotlib.collections.LineCollection(segments, *args, zorder=2,
**kwargs)

Bases: matplotlib.collections.Collection

1822 Chapter 18. Modules

Matplotlib, Release 3.4.3

Represents a sequence of Line2Ds that should be drawn together.

This class extends Collection to represent a sequence of Line2Ds instead of just a sequence of
Patchs. Just as in Collection, each property of a LineCollection may be either a single value or
a list of values. This list is then used cyclically for each element of the LineCollection, so the property
of the ith element of the collection is:

prop[i % len(prop)]

The properties of each member of a LineCollection default to their values in rcParams["lines.
"] instead of rcParams["patch."], and the property colors is added in place of edgecolors.

Parameters

segments
[list of array-like] A sequence of (line0, line1, line2), where:

linen = (x0, y0), (x1, y1), ... (xm, ym)

or the equivalent numpy array with two columns. Each line can have a different
number of segments.

linewidths
[float or list of float, default: rcParams["lines.linewidth"] (default:
1.5)] The width of each line in points.

colors
[color or list of color, default: rcParams["lines.color"] (default: 'C0')]
A sequence of RGBA tuples (e.g., arbitrary color strings, etc, not allowed).

antialiaseds
[bool or list of bool, default: rcParams["lines.antialiased"] (default:
True)] Whether to use antialiasing for each line.

zorder
[int, default: 2] zorder of the lines once drawn.

facecolors
[color or list of color, default: 'none'] When setting facecolors, each line is inter-
preted as a boundary for an area, implicitly closing the path from the last point
to the first point. The enclosed area is filled with facecolor. In order to manually
specify what should count as the "interior" of each line, please use PathCol-
lection instead, where the "interior" can be specified by appropriate usage of
CLOSEPOLY.

**kwargs
Forwarded to Collection.

18.16. matplotlib.collections 1823

../tutorials/introductory/customizing.html?highlight=lines.*#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=lines.*#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.*#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=lines.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_checker(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

1824 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

18.16. matplotlib.collections 1825

Matplotlib, Release 3.4.3

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

get_color()

get_colors()

1826 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

18.16. matplotlib.collections 1827

Matplotlib, Release 3.4.3

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

get_figure()
Return the Figure instance the artist belongs to.

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

1828 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_path_effects()

get_paths()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_rasterized()
Return whether the artist is to be rasterized.

get_segments()

Returns

list
List of segments in the LineCollection. Each list item contains an array of ver-
tices.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

18.16. matplotlib.collections 1829

Matplotlib, Release 3.4.3

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

get_visible()
Return the visibility.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_zorder()
Return the artist's zorder.

1830 Chapter 18. Modules

Matplotlib, Release 3.4.3

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

18.16. matplotlib.collections 1831

Matplotlib, Release 3.4.3

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

1832 Chapter 18. Modules

Matplotlib, Release 3.4.3

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

set_array(A)
Set the image array from numpy array A.

Parameters

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

18.16. matplotlib.collections 1833

Matplotlib, Release 3.4.3

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

set_color(c)
Set the edgecolor(s) of the LineCollection.

Parameters

c
[color or list of colors] Single color (all lines have same color), or a sequence of
rgba tuples; if it is a sequence the lines will cycle through the sequence.

set_colors(c)
Set the edgecolor(s) of the LineCollection.

Parameters

1834 Chapter 18. Modules

Matplotlib, Release 3.4.3

c
[color or list of colors] Single color (all lines have same color), or a sequence of
rgba tuples; if it is a sequence the lines will cycle through the sequence.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_edgecolors(c)
Alias for set_edgecolor.

18.16. matplotlib.collections 1835

Matplotlib, Release 3.4.3

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

set_fc(c)
Alias for set_facecolor.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

1836 Chapter 18. Modules

Matplotlib, Release 3.4.3

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linestyle(ls)
Set the linestyle(s) for the collection.

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

18.16. matplotlib.collections 1837

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls
[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

1838 Chapter 18. Modules

Matplotlib, Release 3.4.3

offset_position
[{'screen', 'data'}]

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

offsets
[(N, 2) or (2,) array-like]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths(segments)

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

18.16. matplotlib.collections 1839

Matplotlib, Release 3.4.3

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

set_segments(segments)

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image

1840 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

set_url(url)
Set the url for the artist.

Parameters

url
[str]

set_urls(urls)

Parameters

urls
[list of str or None]

18.16. matplotlib.collections 1841

Matplotlib, Release 3.4.3

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_verts(segments)

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is

1842 Chapter 18. Modules

Matplotlib, Release 3.4.3

either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

zorder = 0

class matplotlib.collections.PatchCollection(patches, match_original=False,
**kwargs)

Bases: matplotlib.collections.Collection

A generic collection of patches.

This makes it easier to assign a colormap to a heterogeneous collection of patches.

This also may improve plotting speed, since PatchCollection will draw faster than a large number of
patches.

patches

a sequence of Patch objects. This list may include a heterogeneous assortment of different patch
types.

match_original

If True, use the colors and linewidths of the original patches. If False, new colors may be assigned
by providing the standard collection arguments, facecolor, edgecolor, linewidths, norm or cmap.

18.16. matplotlib.collections 1843

Matplotlib, Release 3.4.3

If any of edgecolors, facecolors, linewidths, antialiaseds are None, they default to their rcParams
patch setting, in sequence form.

The use of ScalarMappable functionality is optional. If the ScalarMappable matrix _A has
been set (via a call to set_array), at draw time a call to scalar mappable will be made to set the
face colors.

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_checker(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

1844 Chapter 18. Modules

Matplotlib, Release 3.4.3

check_update(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

18.16. matplotlib.collections 1845

Matplotlib, Release 3.4.3

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

1846 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

18.16. matplotlib.collections 1847

Matplotlib, Release 3.4.3

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

get_figure()
Return the Figure instance the artist belongs to.

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

1848 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_path_effects()

get_paths()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_rasterized()
Return whether the artist is to be rasterized.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer

18.16. matplotlib.collections 1849

Matplotlib, Release 3.4.3

[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

get_visible()
Return the visibility.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

1850 Chapter 18. Modules

Matplotlib, Release 3.4.3

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

18.16. matplotlib.collections 1851

Matplotlib, Release 3.4.3

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

1852 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_array(A)
Set the image array from numpy array A.

Parameters

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

18.16. matplotlib.collections 1853

Matplotlib, Release 3.4.3

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

set_color(c)
Set both the edgecolor and the facecolor.

Parameters

c
[color or list of rgba tuples]

See also:

Collection.set_facecolor, Collection.set_edgecolor
For setting the edge or face color individually.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker

1854 Chapter 18. Modules

Matplotlib, Release 3.4.3

[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_edgecolors(c)
Alias for set_edgecolor.

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

18.16. matplotlib.collections 1855

Matplotlib, Release 3.4.3

set_fc(c)
Alias for set_facecolor.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

1856 Chapter 18. Modules

Matplotlib, Release 3.4.3

Parameters

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linestyle(ls)
Set the linestyle(s) for the collection.

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls
[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

18.16. matplotlib.collections 1857

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

offset_position
[{'screen', 'data'}]

1858 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

offsets
[(N, 2) or (2,) array-like]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths(patches)

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

18.16. matplotlib.collections 1859

Matplotlib, Release 3.4.3

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

1860 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

set_url(url)
Set the url for the artist.

Parameters

url
[str]

set_urls(urls)

Parameters

urls
[list of str or None]

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

18.16. matplotlib.collections 1861

Matplotlib, Release 3.4.3

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

update(props)
Update this artist's properties from the dict props.

Parameters

1862 Chapter 18. Modules

Matplotlib, Release 3.4.3

props
[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

zorder = 0

class matplotlib.collections.PathCollection(paths, sizes=None, **kwargs)
Bases: matplotlib.collections._CollectionWithSizes

A collection of Paths, as created by e.g. scatter.

Parameters

paths
[list of path.Path] The paths that will make up the Collection.

sizes
[array-like] The factor by which to scale each drawn Path. One unit squared in
the Path's data space is scaled to be sizes**2 points when rendered.

**kwargs
Forwarded to Collection.

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

18.16. matplotlib.collections 1863

Matplotlib, Release 3.4.3

See also:

remove_callback

add_checker(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

1864 Chapter 18. Modules

Matplotlib, Release 3.4.3

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

18.16. matplotlib.collections 1865

Matplotlib, Release 3.4.3

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

1866 Chapter 18. Modules

Matplotlib, Release 3.4.3

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

get_figure()
Return the Figure instance the artist belongs to.

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

18.16. matplotlib.collections 1867

Matplotlib, Release 3.4.3

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_path_effects()

get_paths()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_rasterized()
Return whether the artist is to be rasterized.

get_sizes()
Return the sizes ('areas') of the elements in the collection.

Returns

1868 Chapter 18. Modules

Matplotlib, Release 3.4.3

array
The 'area' of each element.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

18.16. matplotlib.collections 1869

Matplotlib, Release 3.4.3

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

get_visible()
Return the visibility.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

legend_elements(prop='colors', num='auto', fmt=None, func=<function PathCollec-
tion.<lambda>>, **kwargs)

Create legend handles and labels for a PathCollection.

Each legend handle is a Line2D representing the Path that was drawn, and each label is a string
what each Path represents.

This is useful for obtaining a legend for a scatter plot; e.g.:

scatter = plt.scatter([1, 2, 3], [4, 5, 6], c=[7, 2, 3])
plt.legend(*scatter.legend_elements())

creates three legend elements, one for each color with the numerical values passed to c as the
labels.

Also see the automatedlegendcreation example.

Parameters

prop

1870 Chapter 18. Modules

Matplotlib, Release 3.4.3

[{"colors", "sizes"}, default: "colors"] If "colors", the legend handles will show
the different colors of the collection. If "sizes", the legend will show the different
sizes. To set both, use kwargs to directly edit the Line2D properties.

num
[int, None, "auto" (default), array-like, or Locator] Target number of elements
to create. If None, use all unique elements of the mappable array. If an integer,
target to use num elements in the normed range. If "auto", try to determine which
option better suits the nature of the data. The number of created elements may
slightly deviate from num due to a Locator being used to find useful locations.
If a list or array, use exactly those elements for the legend. Finally, a Locator
can be provided.

fmt
[str, Formatter, or None (default)] The format or formatter to use for the la-
bels. If a string must be a valid input for a StrMethodFormatter. If None
(the default), use a ScalarFormatter.

func
[function, default: lambda x: x] Function to calculate the labels. Often
the size (or color) argument to scatter will have been pre-processed by the
user using a function s = f(x) to make the markers visible; e.g. size =
np.log10(x). Providing the inverse of this function here allows that pre-
processing to be inverted, so that the legend labels have the correct values; e.g.
func = lambda x: 10**x.

**kwargs
Allowed keyword arguments are color and size. E.g. it may be useful to set
the color of the markers if prop="sizes" is used; similarly to set the size of the
markers if prop="colors" is used. Any further parameters are passed onto the
Line2D instance. This may be useful to e.g. specify a different markeredge-
color or alpha for the legend handles.

Returns

handles
[list of Line2D] Visual representation of each element of the legend.

labels
[list of str] The string labels for elements of the legend.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

18.16. matplotlib.collections 1871

Matplotlib, Release 3.4.3

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

1872 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

set_array(A)
Set the image array from numpy array A.

Parameters

18.16. matplotlib.collections 1873

Matplotlib, Release 3.4.3

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path

1874 Chapter 18. Modules

Matplotlib, Release 3.4.3

[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

set_color(c)
Set both the edgecolor and the facecolor.

Parameters

c
[color or list of rgba tuples]

See also:

Collection.set_facecolor, Collection.set_edgecolor
For setting the edge or face color individually.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

18.16. matplotlib.collections 1875

Matplotlib, Release 3.4.3

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_edgecolors(c)
Alias for set_edgecolor.

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

set_fc(c)
Alias for set_facecolor.

1876 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

18.16. matplotlib.collections 1877

Matplotlib, Release 3.4.3

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linestyle(ls)
Set the linestyle(s) for the collection.

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls
[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

1878 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

offset_position
[{'screen', 'data'}]

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

18.16. matplotlib.collections 1879

Matplotlib, Release 3.4.3

offsets
[(N, 2) or (2,) array-like]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths(paths)

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

1880 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

set_sizes(sizes, dpi=72.0)
Set the sizes of each member of the collection.

Parameters

sizes
[ndarray or None] The size to set for each element of the collection. The value
is the 'area' of the element.

dpi
[float, default: 72] The dpi of the canvas.

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value

18.16. matplotlib.collections 1881

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

set_url(url)
Set the url for the artist.

Parameters

url
[str]

set_urls(urls)

Parameters

urls
[list of str or None]

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_visible(b)
Set the artist's visibility.

Parameters

1882 Chapter 18. Modules

Matplotlib, Release 3.4.3

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

18.16. matplotlib.collections 1883

Matplotlib, Release 3.4.3

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

zorder = 0

class matplotlib.collections.PolyCollection(verts, sizes=None, closed=True,
**kwargs)

Bases: matplotlib.collections._CollectionWithSizes

Parameters

verts
[list of array-like] The sequence of polygons [verts0, verts1, ...] where each el-
ement verts_i defines the vertices of polygon i as a 2D array-like of shape (M,
2).

sizes
[array-like, default: None] Squared scaling factors for the polygons. The coordi-
nates of each polygon verts_i are multiplied by the square-root of the correspond-
ing entry in sizes (i.e., sizes specify the scaling of areas). The scaling is applied
before the Artist master transform.

closed
[bool, default: True] Whether the polygon should be closed by adding a CLOSE-
POLY connection at the end.

**kwargs
Forwarded to Collection.

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

1884 Chapter 18. Modules

Matplotlib, Release 3.4.3

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_checker(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

18.16. matplotlib.collections 1885

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

1886 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

18.16. matplotlib.collections 1887

Matplotlib, Release 3.4.3

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

1888 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_figure()
Return the Figure instance the artist belongs to.

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_path_effects()

18.16. matplotlib.collections 1889

Matplotlib, Release 3.4.3

get_paths()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_rasterized()
Return whether the artist is to be rasterized.

get_sizes()
Return the sizes ('areas') of the elements in the collection.

Returns

array
The 'area' of each element.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

1890 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

get_visible()
Return the visibility.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

18.16. matplotlib.collections 1891

Matplotlib, Release 3.4.3

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

1892 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

set_array(A)
Set the image array from numpy array A.

Parameters

18.16. matplotlib.collections 1893

Matplotlib, Release 3.4.3

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path

1894 Chapter 18. Modules

Matplotlib, Release 3.4.3

[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

set_color(c)
Set both the edgecolor and the facecolor.

Parameters

c
[color or list of rgba tuples]

See also:

Collection.set_facecolor, Collection.set_edgecolor
For setting the edge or face color individually.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

18.16. matplotlib.collections 1895

Matplotlib, Release 3.4.3

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_edgecolors(c)
Alias for set_edgecolor.

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

set_fc(c)
Alias for set_facecolor.

1896 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

18.16. matplotlib.collections 1897

Matplotlib, Release 3.4.3

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linestyle(ls)
Set the linestyle(s) for the collection.

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls
[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

1898 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

offset_position
[{'screen', 'data'}]

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

18.16. matplotlib.collections 1899

Matplotlib, Release 3.4.3

offsets
[(N, 2) or (2,) array-like]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths(verts, closed=True)
Set the vertices of the polygons.

Parameters

verts
[list of array-like] The sequence of polygons [verts0, verts1, ...] where each
element verts_i defines the vertices of polygon i as a 2D array-like of shape (M,
2).

closed
[bool, default: True]Whether the polygon should be closed by adding a CLOSE-
POLY connection at the end.

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

1900 Chapter 18. Modules

Matplotlib, Release 3.4.3

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

set_sizes(sizes, dpi=72.0)
Set the sizes of each member of the collection.

Parameters

sizes
[ndarray or None] The size to set for each element of the collection. The value
is the 'area' of the element.

dpi
[float, default: 72] The dpi of the canvas.

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

18.16. matplotlib.collections 1901

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

set_url(url)
Set the url for the artist.

Parameters

url
[str]

set_urls(urls)

Parameters

1902 Chapter 18. Modules

Matplotlib, Release 3.4.3

urls
[list of str or None]

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_verts(verts, closed=True)
Set the vertices of the polygons.

Parameters

verts
[list of array-like] The sequence of polygons [verts0, verts1, ...] where each
element verts_i defines the vertices of polygon i as a 2D array-like of shape (M,
2).

closed
[bool, default: True]Whether the polygon should be closed by adding a CLOSE-
POLY connection at the end.

set_verts_and_codes(verts, codes)
Initialize vertices with path codes.

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

18.16. matplotlib.collections 1903

Matplotlib, Release 3.4.3

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

1904 Chapter 18. Modules

Matplotlib, Release 3.4.3

zorder = 0

class matplotlib.collections.QuadMesh(meshWidth, meshHeight, coordinates, an-
tialiased=True, shading='flat', **kwargs)

Bases: matplotlib.collections.Collection

Class for the efficient drawing of a quadrilateral mesh.

A quadrilateral mesh consists of a grid of vertices. The dimensions of this array are (meshWidth + 1,
meshHeight + 1). Each vertex in the mesh has a different set of "mesh coordinates" representing its
position in the topology of the mesh. For any values (m, n) such that 0 <= m <= meshWidth and 0 <=
n <= meshHeight, the vertices at mesh coordinates (m, n), (m, n + 1), (m + 1, n + 1), and (m + 1, n)
form one of the quadrilaterals in the mesh. There are thus (meshWidth * meshHeight) quadrilaterals
in the mesh. The mesh need not be regular and the polygons need not be convex.

A quadrilateral mesh is represented by a (2 x ((meshWidth + 1) * (meshHeight + 1))) numpy array
coordinates, where each row is the x and y coordinates of one of the vertices. To define the function
that maps from a data point to its corresponding color, use the set_cmap() method. Each of these
arrays is indexed in row-major order by the mesh coordinates of the vertex (or the mesh coordinates
of the lower left vertex, in the case of the colors).

For example, the first entry in coordinates is the coordinates of the vertex at mesh coordinates (0, 0),
then the one at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and so on.

shading may be 'flat', or 'gouraud'

Parameters

edgecolors
[color or list of colors, default: rcParams["patch.edgecolor"] (default:
'black')] Edge color for each patch making up the collection. The special value
'face' can be passed to make the edgecolor match the facecolor.

facecolors
[color or list of colors, default: rcParams["patch.facecolor"] (default:
'C0')] Face color for each patch making up the collection.

linewidths
[float or list of floats, default: rcParams["patch.linewidth"] (default:
1.0)] Line width for each patch making up the collection.

linestyles
[str or tuple or list thereof, default: 'solid'] Valid strings are ['solid', 'dashed', 'dash-
dot', 'dotted', '-', '--', '-.', ':']. Dash tuples should be of the form:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink lengths in points. For
examples, see /gallery/lines_bars_and_markers/linestyles.

capstyle

18.16. matplotlib.collections 1905

../tutorials/introductory/customizing.html?highlight=patch.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[CapStyle-like, default: rcParams["patch.capstyle"]] Style to use
for capping lines for all paths in the collection. Allowed values are {'butt', 'pro-
jecting', 'round'}.

joinstyle
[JoinStyle-like, default: rcParams["patch.joinstyle"]] Style to
use for joining lines for all paths in the collection. Allowed values are {'miter',
'round', 'bevel'}.

antialiaseds
[bool or list of bool, default: rcParams["patch.antialiased"] (default:
True)] Whether each patch in the collection should be drawn with antialiasing.

offsets
[(float, float) or list thereof, default: (0, 0)] A vector by which to translate each
patch after rendering (default is no translation). The translation is performed in
screen (pixel) coordinates (i.e. after the Artist's transform is applied).

transOffset
[Transform, default: IdentityTransform] A single transform which will
be applied to each offsets vector before it is used.

offset_position
[{{'screen' (default), 'data' (deprecated)}}] If set to 'data' (deprecated), offsets will
be treated as if it is in data coordinates instead of in screen coordinates.

norm
[Normalize, optional] Forwarded toScalarMappable. The default of None
means that the first draw call will set vmin and vmax using the minimum and
maximum values of the data.

cmap
[Colormap, optional] Forwarded to ScalarMappable. The default of None
will result in rcParams["image.cmap"] (default: 'viridis') being
used.

hatch
[str, optional] Hatching pattern to use in filled paths, if any.
Valid strings are ['/', '', '|', '-', '+', 'x', 'o', 'O', '.', '*']. See
/gallery/shapes_and_collections/hatch_style_reference for the meaning of
each hatch type.

pickradius
[float, default: 5.0] If pickradius <= 0, then Collection.contains
will return True whenever the test point is inside of one of the polygons formed
by the control points of a Path in the Collection. On the other hand, if it is greater
than 0, then we instead check if the test point is contained in a stroke of width
2*pickradius following any of the Paths in the Collection.

1906 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=patch.capstyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.joinstyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

urls
[list of str, default: None] A URL for each patch to link to once drawn. Currently
only works for the SVG backend. See /gallery/misc/hyperlinks_sgskip for exam-
ples.

zorder
[float, default: 1] The drawing order, shared by all Patches in the Collection. See
/gallery/misc/zorder_demo for all defaults and examples.

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_checker(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

18.16. matplotlib.collections 1907

Matplotlib, Release 3.4.3

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

static convert_mesh_to_paths(meshWidth, meshHeight, coordinates)
Convert a given mesh into a sequence of Path objects.

This function is primarily of use to implementers of backends that do not directly support
quadmeshes.

convert_mesh_to_triangles(meshWidth, meshHeight, coordinates)
Convert a given mesh into a sequence of triangles, each point with its own color. This is useful
for experiments using draw_gouraud_triangle.

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

1908 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

18.16. matplotlib.collections 1909

Matplotlib, Release 3.4.3

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event

1910 Chapter 18. Modules

Matplotlib, Release 3.4.3

[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

get_figure()
Return the Figure instance the artist belongs to.

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()

18.16. matplotlib.collections 1911

Matplotlib, Release 3.4.3

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_path_effects()

get_paths()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_rasterized()
Return whether the artist is to be rasterized.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

1912 Chapter 18. Modules

Matplotlib, Release 3.4.3

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

get_visible()
Return the visibility.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing

18.16. matplotlib.collections 1913

Matplotlib, Release 3.4.3

the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

1914 Chapter 18. Modules

Matplotlib, Release 3.4.3

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

18.16. matplotlib.collections 1915

Matplotlib, Release 3.4.3

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

set_array(A)
Set the image array from numpy array A.

Parameters

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

1916 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

set_color(c)
Set both the edgecolor and the facecolor.

Parameters

c
[color or list of rgba tuples]

18.16. matplotlib.collections 1917

Matplotlib, Release 3.4.3

See also:

Collection.set_facecolor, Collection.set_edgecolor
For setting the edge or face color individually.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_edgecolors(c)
Alias for set_edgecolor.

1918 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

set_fc(c)
Alias for set_facecolor.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

18.16. matplotlib.collections 1919

Matplotlib, Release 3.4.3

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linestyle(ls)
Set the linestyle(s) for the collection.

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

1920 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls
[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

18.16. matplotlib.collections 1921

Matplotlib, Release 3.4.3

offset_position
[{'screen', 'data'}]

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

offsets
[(N, 2) or (2,) array-like]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths()

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

1922 Chapter 18. Modules

Matplotlib, Release 3.4.3

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value

18.16. matplotlib.collections 1923

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

set_url(url)
Set the url for the artist.

Parameters

url
[str]

set_urls(urls)

Parameters

urls
[list of str or None]

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_visible(b)
Set the artist's visibility.

Parameters

1924 Chapter 18. Modules

Matplotlib, Release 3.4.3

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

18.16. matplotlib.collections 1925

Matplotlib, Release 3.4.3

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

zorder = 0

class matplotlib.collections.RegularPolyCollection(numsides, rotation=0,
sizes=(1), **kwargs)

Bases: matplotlib.collections._CollectionWithSizes

A collection of n-sided regular polygons.

Parameters

numsides
[int] The number of sides of the polygon.

rotation
[float] The rotation of the polygon in radians.

sizes
[tuple of float] The area of the circle circumscribing the polygon in points^2.

**kwargs
Forwarded to Collection.

Examples

See /gallery/event_handling/lasso_demo for a complete example:

offsets = np.random.rand(20, 2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]

collection = RegularPolyCollection(
numsides=5, # a pentagon

(continues on next page)

1926 Chapter 18. Modules

Matplotlib, Release 3.4.3

(continued from previous page)
rotation=0, sizes=(50,),
facecolors=facecolors,
edgecolors=("black",),
linewidths=(1,),
offsets=offsets,
transOffset=ax.transData,
)

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_checker(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

18.16. matplotlib.collections 1927

Matplotlib, Release 3.4.3

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

1928 Chapter 18. Modules

Matplotlib, Release 3.4.3

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

18.16. matplotlib.collections 1929

Matplotlib, Release 3.4.3

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

1930 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

get_figure()
Return the Figure instance the artist belongs to.

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_numsides()

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

18.16. matplotlib.collections 1931

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_path_effects()

get_paths()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_rasterized()
Return whether the artist is to be rasterized.

get_rotation()

get_sizes()
Return the sizes ('areas') of the elements in the collection.

Returns

array
The 'area' of each element.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

1932 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_snap()
Return the snap setting.

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

get_visible()
Return the visibility.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

18.16. matplotlib.collections 1933

Matplotlib, Release 3.4.3

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

1934 Chapter 18. Modules

Matplotlib, Release 3.4.3

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

18.16. matplotlib.collections 1935

Matplotlib, Release 3.4.3

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

set_array(A)
Set the image array from numpy array A.

Parameters

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

1936 Chapter 18. Modules

Matplotlib, Release 3.4.3

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

set_color(c)
Set both the edgecolor and the facecolor.

Parameters

c
[color or list of rgba tuples]

See also:

Collection.set_facecolor, Collection.set_edgecolor
For setting the edge or face color individually.

18.16. matplotlib.collections 1937

Matplotlib, Release 3.4.3

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_edgecolors(c)
Alias for set_edgecolor.

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

1938 Chapter 18. Modules

Matplotlib, Release 3.4.3

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

set_fc(c)
Alias for set_facecolor.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

18.16. matplotlib.collections 1939

Matplotlib, Release 3.4.3

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linestyle(ls)
Set the linestyle(s) for the collection.

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls

1940 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

offset_position
[{'screen', 'data'}]

18.16. matplotlib.collections 1941

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

offsets
[(N, 2) or (2,) array-like]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths()

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

1942 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

set_sizes(sizes, dpi=72.0)
Set the sizes of each member of the collection.

Parameters

sizes
[ndarray or None] The size to set for each element of the collection. The value
is the 'area' of the element.

dpi
[float, default: 72] The dpi of the canvas.

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

18.16. matplotlib.collections 1943

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

set_url(url)
Set the url for the artist.

Parameters

url
[str]

set_urls(urls)

Parameters

urls
[list of str or None]

1944 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError

18.16. matplotlib.collections 1945

Matplotlib, Release 3.4.3

will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

zorder = 0

class matplotlib.collections.StarPolygonCollection(numsides, rotation=0,
sizes=(1), **kwargs)

Bases: matplotlib.collections.RegularPolyCollection

Draw a collection of regular stars with numsides points.

Parameters

numsides
[int] The number of sides of the polygon.

rotation
[float] The rotation of the polygon in radians.

sizes
[tuple of float] The area of the circle circumscribing the polygon in points^2.

**kwargs
Forwarded to Collection.

1946 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples

See /gallery/event_handling/lasso_demo for a complete example:

offsets = np.random.rand(20, 2)
facecolors = [cm.jet(x) for x in np.random.rand(20)]

collection = RegularPolyCollection(
numsides=5, # a pentagon
rotation=0, sizes=(50,),
facecolors=facecolors,
edgecolors=("black",),
linewidths=(1,),
offsets=offsets,
transOffset=ax.transData,
)

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_checker(checker)
[Deprecated]

18.16. matplotlib.collections 1947

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

1948 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

18.16. matplotlib.collections 1949

Matplotlib, Release 3.4.3

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event

1950 Chapter 18. Modules

Matplotlib, Release 3.4.3

[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

get_figure()
Return the Figure instance the artist belongs to.

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()

18.16. matplotlib.collections 1951

Matplotlib, Release 3.4.3

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_numsides()

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_path_effects()

get_paths()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_rasterized()
Return whether the artist is to be rasterized.

get_rotation()

get_sizes()
Return the sizes ('areas') of the elements in the collection.

Returns

array
The 'area' of each element.

1952 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

18.16. matplotlib.collections 1953

Matplotlib, Release 3.4.3

get_visible()
Return the visibility.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

1954 Chapter 18. Modules

Matplotlib, Release 3.4.3

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

18.16. matplotlib.collections 1955

Matplotlib, Release 3.4.3

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

set_array(A)
Set the image array from numpy array A.

Parameters

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

1956 Chapter 18. Modules

Matplotlib, Release 3.4.3

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

18.16. matplotlib.collections 1957

Matplotlib, Release 3.4.3

cmap
[Colormap or str or None]

set_color(c)
Set both the edgecolor and the facecolor.

Parameters

c
[color or list of rgba tuples]

See also:

Collection.set_facecolor, Collection.set_edgecolor
For setting the edge or face color individually.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

1958 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_edgecolors(c)
Alias for set_edgecolor.

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

set_fc(c)
Alias for set_facecolor.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

18.16. matplotlib.collections 1959

Matplotlib, Release 3.4.3

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

1960 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

set_linestyle(ls)
Set the linestyle(s) for the collection.

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls
[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm

18.16. matplotlib.collections 1961

Matplotlib, Release 3.4.3

[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

offset_position
[{'screen', 'data'}]

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

offsets
[(N, 2) or (2,) array-like]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths()

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

1962 Chapter 18. Modules

Matplotlib, Release 3.4.3

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

set_sizes(sizes, dpi=72.0)
Set the sizes of each member of the collection.

Parameters

sizes
[ndarray or None] The size to set for each element of the collection. The value
is the 'area' of the element.

18.16. matplotlib.collections 1963

Matplotlib, Release 3.4.3

dpi
[float, default: 72] The dpi of the canvas.

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

1964 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

set_url(url)
Set the url for the artist.

Parameters

url
[str]

set_urls(urls)

Parameters

urls
[list of str or None]

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

18.16. matplotlib.collections 1965

Matplotlib, Release 3.4.3

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

zorder = 0

class matplotlib.collections.TriMesh(triangulation, **kwargs)
Bases: matplotlib.collections.Collection

Class for the efficient drawing of a triangular mesh using Gouraud shading.

A triangular mesh is a Triangulation object.

1966 Chapter 18. Modules

Matplotlib, Release 3.4.3

Parameters

edgecolors
[color or list of colors, default: rcParams["patch.edgecolor"] (default:
'black')] Edge color for each patch making up the collection. The special value
'face' can be passed to make the edgecolor match the facecolor.

facecolors
[color or list of colors, default: rcParams["patch.facecolor"] (default:
'C0')] Face color for each patch making up the collection.

linewidths
[float or list of floats, default: rcParams["patch.linewidth"] (default:
1.0)] Line width for each patch making up the collection.

linestyles
[str or tuple or list thereof, default: 'solid'] Valid strings are ['solid', 'dashed', 'dash-
dot', 'dotted', '-', '--', '-.', ':']. Dash tuples should be of the form:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink lengths in points. For
examples, see /gallery/lines_bars_and_markers/linestyles.

capstyle
[CapStyle-like, default: rcParams["patch.capstyle"]] Style to use
for capping lines for all paths in the collection. Allowed values are {'butt', 'pro-
jecting', 'round'}.

joinstyle
[JoinStyle-like, default: rcParams["patch.joinstyle"]] Style to
use for joining lines for all paths in the collection. Allowed values are {'miter',
'round', 'bevel'}.

antialiaseds
[bool or list of bool, default: rcParams["patch.antialiased"] (default:
True)] Whether each patch in the collection should be drawn with antialiasing.

offsets
[(float, float) or list thereof, default: (0, 0)] A vector by which to translate each
patch after rendering (default is no translation). The translation is performed in
screen (pixel) coordinates (i.e. after the Artist's transform is applied).

transOffset
[Transform, default: IdentityTransform] A single transform which will
be applied to each offsets vector before it is used.

18.16. matplotlib.collections 1967

../tutorials/introductory/customizing.html?highlight=patch.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.capstyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.joinstyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=patch.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

offset_position
[{{'screen' (default), 'data' (deprecated)}}] If set to 'data' (deprecated), offsets will
be treated as if it is in data coordinates instead of in screen coordinates.

norm
[Normalize, optional] Forwarded toScalarMappable. The default of None
means that the first draw call will set vmin and vmax using the minimum and
maximum values of the data.

cmap
[Colormap, optional] Forwarded to ScalarMappable. The default of None
will result in rcParams["image.cmap"] (default: 'viridis') being
used.

hatch
[str, optional] Hatching pattern to use in filled paths, if any.
Valid strings are ['/', '', '|', '-', '+', 'x', 'o', 'O', '.', '*']. See
/gallery/shapes_and_collections/hatch_style_reference for the meaning of
each hatch type.

pickradius
[float, default: 5.0] If pickradius <= 0, then Collection.contains
will return True whenever the test point is inside of one of the polygons formed
by the control points of a Path in the Collection. On the other hand, if it is greater
than 0, then we instead check if the test point is contained in a stroke of width
2*pickradius following any of the Paths in the Collection.

urls
[list of str, default: None] A URL for each patch to link to once drawn. Currently
only works for the SVG backend. See /gallery/misc/hyperlinks_sgskip for exam-
ples.

zorder
[float, default: 1] The drawing order, shared by all Patches in the Collection. See
/gallery/misc/zorder_demo for all defaults and examples.

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

1968 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_checker(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

autoscale()
Autoscale the scalar limits on the norm instance using the current array

autoscale_None()
Autoscale the scalar limits on the norm instance using the current array, changing only limits that
are None

property axes
The Axes instance the artist resides in, or None.

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

check_update(checker)
[Deprecated]

Notes

Deprecated since version 3.3:

contains(mouseevent)
Test whether the mouse event occurred in the collection.

Returns bool, dict(ind=itemlist), where every item in itemlist contains the event.

static convert_mesh_to_paths(tri)
Convert a given mesh into a sequence of Path objects.

This function is primarily of use to implementers of backends that do not directly support meshes.

convert_xunits(x)
Convert x using the unit type of the xaxis.

18.16. matplotlib.collections 1969

Matplotlib, Release 3.4.3

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

1970 Chapter 18. Modules

Matplotlib, Release 3.4.3

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

get_array()
Return the data array.

get_capstyle()

get_children()
Return a list of the child Artists of this Artist.

get_clim()
Return the values (min, max) that are mapped to the colormap limits.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_cmap()
Return the Colormap instance.

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

18.16. matplotlib.collections 1971

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_dashes()
Alias for get_linestyle.

get_datalim(transData)

get_ec()
Alias for get_edgecolor.

get_edgecolor()

get_edgecolors()
Alias for get_edgecolor.

get_facecolor()

get_facecolors()
Alias for get_facecolor.

get_fc()
Alias for get_facecolor.

get_figure()
Return the Figure instance the artist belongs to.

1972 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_fill()
Return whether face is colored.

get_gid()
Return the group id.

get_hatch()
Return the current hatching pattern.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_joinstyle()

get_label()
Return the label used for this artist in the legend.

get_linestyle()

get_linestyles()
Alias for get_linestyle.

get_linewidth()

get_linewidths()
Alias for get_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_offset_position()
[Deprecated] Return how offsets are applied for the collection. If offset_position is 'screen', the
offset is applied after the master transform has been applied, that is, the offsets are in screen
coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the
offsets are in data coordinates.

Notes

Deprecated since version 3.3.

get_offset_transform()

get_offsets()
Return the offsets for the collection.

get_path_effects()

get_paths()

18.16. matplotlib.collections 1973

Matplotlib, Release 3.4.3

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_pickradius()

get_rasterized()
Return whether the artist is to be rasterized.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

1974 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_transforms()

get_url()
Return the url.

get_urls()
Return a list of URLs, one for each element of the collection.

The list contains None for elements without a URL. See /gallery/misc/hyperlinks_sgskip for an
example.

get_visible()
Return the visibility.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

18.16. matplotlib.collections 1975

Matplotlib, Release 3.4.3

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_aa(aa)
Alias for set_antialiased.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

1976 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_antialiased(aa)
Set the antialiasing state for rendering.

Parameters

aa
[bool or list of bools]

set_antialiaseds(aa)
Alias for set_antialiased.

set_array(A)
Set the image array from numpy array A.

Parameters

A
[ndarray or None]

set_capstyle(cs)
Set the CapStyle for the collection (for all its elements).

Parameters

cs
[CapStyle or {'butt', 'projecting', 'round'}]

18.16. matplotlib.collections 1977

Matplotlib, Release 3.4.3

set_clim(vmin=None, vmax=None)
Set the norm limits for image scaling.

Parameters

vmin, vmax
[float] The limits.

The limits may also be passed as a tuple (vmin, vmax) as a single positional
argument.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

1978 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

set_color(c)
Set both the edgecolor and the facecolor.

Parameters

c
[color or list of rgba tuples]

See also:

Collection.set_facecolor, Collection.set_edgecolor
For setting the edge or face color individually.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

18.16. matplotlib.collections 1979

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

set_dashes(ls)
Alias for set_linestyle.

set_ec(c)
Alias for set_edgecolor.

set_edgecolor(c)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_edgecolors(c)
Alias for set_edgecolor.

set_facecolor(c)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

Parameters

c
[color or list of colors]

set_facecolors(c)
Alias for set_facecolor.

set_fc(c)
Alias for set_facecolor.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_gid(gid)
Set the (group) id for the artist.

Parameters

1980 Chapter 18. Modules

Matplotlib, Release 3.4.3

gid
[str]

set_hatch(hatch)
Set the hatching pattern

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Unlike other properties such as linewidth and colors, hatching can only be specified for the col-
lection as a whole, not separately for each member.

Parameters

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_joinstyle(js)
Set the JoinStyle for the collection (for all its elements).

Parameters

js
[JoinStyle or {'miter', 'round', 'bevel'}]

18.16. matplotlib.collections 1981

Matplotlib, Release 3.4.3

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linestyle(ls)
Set the linestyle(s) for the collection.

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls
[str or tuple or list thereof] Valid values for individual linestyles include {'-', '--',
'-.', ':', '', (offset, on-off-seq)}. See Line2D.set_linestyle for a complete
description.

set_linestyles(ls)
Alias for set_linestyle.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

Parameters

lw
[float or list of floats]

set_linewidths(lw)
Alias for set_linewidth.

set_ls(ls)
Alias for set_linestyle.

1982 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

set_lw(lw)
Alias for set_linewidth.

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

set_offset_position(offset_position)
[Deprecated] Set how offsets are applied. If offset_position is 'screen' (default) the offset is ap-
plied after the master transform has been applied, that is, the offsets are in screen coordinates. If
offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in
data coordinates.

Parameters

offset_position
[{'screen', 'data'}]

Notes

Deprecated since version 3.3.

set_offsets(offsets)
Set the offsets for the collection.

Parameters

offsets
[(N, 2) or (2,) array-like]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_paths()

18.16. matplotlib.collections 1983

Matplotlib, Release 3.4.3

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_pickradius(pr)
Set the pick radius used for containment tests.

Parameters

pr
[float] Pick radius, in points.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

1984 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

set_url(url)
Set the url for the artist.

Parameters

18.16. matplotlib.collections 1985

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

url
[str]

set_urls(urls)

Parameters

urls
[list of str or None]

Notes

URLs are currently only implemented by the SVG backend. They are ignored by all other back-
ends.

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

1986 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

to_rgba(x, alpha=None, bytes=False, norm=True)
Return a normalized rgba array corresponding to x.

In the normal case, x is a 1D or 2D sequence of scalars, and the corresponding ndarray of rgba
values will be returned, based on the norm and colormap set for this ScalarMappable.

There is one special case, for handling images that are already rgb or rgba, such as might have
been read from an image file. If x is an ndarray with 3 dimensions, and the last dimension is
either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The
array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError
will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the
alpha kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the
alpha kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if
the third dimension is other than 3 or 4.

In either case, if bytes is False (default), the rgba array will be floats in the 0-1 range; if it is True,
the returned rgba array will be uint8 in the 0 to 255 range.

If norm is False, no normalization of the input data is performed, and it is assumed to be in the
range (0-1).

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

property update_dict

update_from(other)
Copy properties from other to self.

update_scalarmappable()
Update colors from the scalar mappable array, if any.

Assign colors to edges and faces based on the array and/or colors that were directly set, as ap-
propriate.

zorder = 0

18.16. matplotlib.collections 1987

Matplotlib, Release 3.4.3

18.17 matplotlib.colorbar

Colorbars are a visualization of the mapping from scalar values to colors. In Matplotlib they are drawn into
a dedicated Axes.

Note: Colorbars are typically created through Figure.colorbar or its pyplot wrapper pyplot.
colorbar, which use make_axes and Colorbar internally.

As an end-user, you most likely won't have to call the methods or instantiate the classes in this module
explicitly.

ColorbarBase

The base class with full colorbar drawing functionality. It can be used as-is to make a colorbar for a
given colormap; a mappable object (e.g., image) is not needed.

Colorbar

On top of ColorbarBase this connects the colorbar with a ScalarMappable such as an image
or contour plot.

make_axes()

Create an Axes suitable for a colorbar. This functions can be used with figures containing a single
axes or with freely placed axes.

make_axes_gridspec()

Create a SubplotBase suitable for a colorbar. This function should be used for adding a colorbar
to a GridSpec.

class matplotlib.colorbar.Colorbar(ax, mappable, **kwargs)
Bases: matplotlib.colorbar.ColorbarBase

This class connects a ColorbarBase to a ScalarMappable such as an AxesImage generated
via imshow.

Note: This class is not intended to be instantiated directly; instead, use Figure.colorbar or
pyplot.colorbar to create a colorbar.

add_lines(CS, erase=True)
Add the lines from a non-filled ContourSet to the colorbar.

Parameters

CS
[ContourSet] The line positions are taken from the ContourSet levels. The
ContourSet must not be filled.

erase

1988 Chapter 18. Modules

Matplotlib, Release 3.4.3

[bool, default: True] Whether to remove any previously added lines.

on_mappable_changed(mappable)
[Deprecated] Update this colorbar to match the mappable's properties.

Typically this is automatically registered as an event handler by colorbar_factory() and
should not be called manually.

Notes

Deprecated since version 3.3.

remove()
Remove this colorbar from the figure.

If the colorbar was created with use_gridspec=True the previous gridspec is restored.

update_bruteforce(mappable)
[Deprecated] Destroy and rebuild the colorbar. This is intended to become obsolete, and will
probably be deprecated and then removed. It is not called when the pyplot.colorbar function or
the Figure.colorbar method are used to create the colorbar.

Notes

Deprecated since version 3.3.

update_normal(mappable)
Update solid patches, lines, etc.

This is meant to be called when the norm of the image or contour plot to which this colorbar
belongs changes.

If the norm on the mappable is different than before, this resets the locator and formatter for
the axis, so if these have been customized, they will need to be customized again. However, if
the norm only changes values of vmin, vmax or cmap then the old formatter and locator will be
preserved.

class matplotlib.colorbar.ColorbarBase(ax, *, cmap=None, norm=None, al-
pha=None, values=None, bound-
aries=None, orientation='vertical',
ticklocation='auto', extend=None, spac-
ing='uniform', ticks=None, format=None,
drawedges=False, filled=True, extend-
frac=None, extendrect=False, label='')

Bases: object

Draw a colorbar in an existing axes.

There are only some rare cases in which you would work directly with a ColorbarBase as an end-
user. Typically, colorbars are used with ScalarMappables such as an AxesImage generated via

18.17. matplotlib.colorbar 1989

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

imshow. For these cases you will use Colorbar and likely create it via pyplot.colorbar or
Figure.colorbar.

The main application of using a ColorbarBase explicitly is drawing colorbars that are not associ-
ated with other elements in the figure, e.g. when showing a colormap by itself.

If the cmap kwarg is given but boundaries and values are left as None, then the colormap will be
displayed on a 0-1 scale. To show the under- and over-value colors, specify the norm as:

norm=colors.Normalize(clip=False)

To show the colors versus index instead of on the 0-1 scale, use:

norm=colors.NoNorm()

Useful public methods are set_label() and add_lines().

Parameters

ax
[Axes] The Axes instance in which the colorbar is drawn.

cmap
[Colormap, default: rcParams["image.cmap"] (default: 'viridis')]
The colormap to use.

norm
[Normalize]

alpha
[float] The colorbar transparency between 0 (transparent) and 1 (opaque).

values
boundaries
orientation

[{'vertical', 'horizontal'}]

ticklocation
[{'auto', 'left', 'right', 'top', 'bottom'}]

extend
[{'neither', 'both', 'min', 'max'}]

spacing
[{'uniform', 'proportional'}]

ticks
[Locator or array-like of float]

1990 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

format
[str or Formatter]

drawedges
[bool]

filled
[bool]

extendfrac
extendrec
label

[str]

Attributes

ax
[Axes] The Axes instance in which the colorbar is drawn.

lines
[list] A list of LineCollection (empty if no lines were drawn).

dividers
[LineCollection] A LineCollection (empty if drawedges is False).

add_lines(levels, colors, linewidths, erase=True)
Draw lines on the colorbar.

The lines are appended to the list lines.

Parameters

levels
[array-like] The positions of the lines.

colors
[color or list of colors] Either a single color applying to all lines or one color
value for each line.

linewidths
[float or array-like] Either a single linewidth applying to all lines or one linewidth
for each line.

erase
[bool, default: True] Whether to remove any previously added lines.

18.17. matplotlib.colorbar 1991

Matplotlib, Release 3.4.3

config_axis()
[Deprecated]

Notes

Deprecated since version 3.3:

draw_all()
Calculate any free parameters based on the current cmap and norm, and do all the drawing.

get_ticks(minor=False)
Return the x ticks as a list of locations.

minorticks_off()
Turn the minor ticks of the colorbar off.

minorticks_on()
Turn the minor ticks of the colorbar on without extruding into the "extend regions".

n_rasterize = 50

remove()
Remove this colorbar from the figure.

set_alpha(alpha)
Set the transparency between 0 (transparent) and 1 (opaque).

set_label(label, *, loc=None, **kwargs)
Add a label to the long axis of the colorbar.

Parameters

label
[str] The label text.

loc
[str, optional] The location of the label.

• For horizontal orientation one of {'left', 'center', 'right'}

• For vertical orientation one of {'bottom', 'center', 'top'}

Defaults to rcParams["xaxis.labellocation"] (default: 'cen-
ter') or rcParams["yaxis.labellocation"] (default: 'center')
depending on the orientation.

**kwargs
Keyword arguments are passed to set_xlabel / set_ylabel. Supported
keywords are labelpad and Text properties.

set_ticklabels(ticklabels, update_ticks=True)
Set tick labels.

1992 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=xaxis.labellocation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=yaxis.labellocation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Tick labels are updated immediately unless update_ticks is False, in which case one should call
update_ticks explicitly.

set_ticks(ticks, update_ticks=True)
Set tick locations.

Parameters

ticks
[array-like or Locator or None] The tick positions can be hard-coded by an
array of values; or they can be defined by a Locator. Setting to None reverts
to using a default locator.

update_ticks
[bool, default: True] If True, tick locations are updated immediately. If False,
the user has to call update_ticks later to update the ticks.

update_ticks()
Force the update of the ticks and ticklabels. This must be called whenever the tick locator and/or
tick formatter changes.

class matplotlib.colorbar.ColorbarPatch(ax, mappable, **kwargs)
Bases: matplotlib.colorbar.Colorbar

[Deprecated]

Notes

Deprecated since version 3.4:

matplotlib.colorbar.colorbar_factory(cax, mappable, **kwargs)
[Deprecated] Create a colorbar on the given axes for the given mappable.

Note: This is a low-level function to turn an existing axes into a colorbar axes. Typically, you'll want
to use colorbar instead, which automatically handles creation and placement of a suitable axes as
well.

Parameters

cax
[Axes] The Axes to turn into a colorbar.

mappable
[ScalarMappable] The mappable to be described by the colorbar.

**kwargs
Keyword arguments are passed to the respective colorbar class.

18.17. matplotlib.colorbar 1993

Matplotlib, Release 3.4.3

Returns

Colorbar

The created colorbar instance.

Notes

Deprecated since version 3.4.

matplotlib.colorbar.make_axes(parents, location=None, orientation=None, frac-
tion=0.15, shrink=1.0, aspect=20, **kw)

Create an Axes suitable for a colorbar.

The axes is placed in the figure of the parents axes, by resizing and repositioning parents.

Parameters

parents
[Axes or list of Axes] The Axes to use as parents for placing the colorbar.

location
[None or {'left', 'right', 'top', 'bottom'}] The location, relative to the parent axes,
where the colorbar axes is created. It also determines the orientation of the col-
orbar (colorbars on the left and right are vertical, colorbars at the top and bottom
are horizontal). If None, the location will come from the orientation if it is set
(vertical colorbars on the right, horizontal ones at the bottom), or default to 'right'
if orientation is unset.

orientation
[None or {'vertical', 'horizontal'}] The orientation of the colorbar. It is preferable
to set the location of the colorbar, as that also determines the orientation; passing
incompatible values for location and orientation raises an exception.

fraction
[float, default: 0.15] Fraction of original axes to use for colorbar.

shrink
[float, default: 1.0] Fraction by which to multiply the size of the colorbar.

aspect
[float, default: 20] Ratio of long to short dimensions.

Returns

cax
[Axes] The child axes.

1994 Chapter 18. Modules

Matplotlib, Release 3.4.3

kw
[dict] The reduced keyword dictionary to be passed when creating the colorbar
instance.

Other Parameters

pad
[float, default: 0.05 if vertical, 0.15 if horizontal] Fraction of original axes between
colorbar and new image axes.

anchor
[(float, float), optional] The anchor point of the colorbar axes. Defaults to (0.0,
0.5) if vertical; (0.5, 1.0) if horizontal.

panchor
[(float, float), or False, optional] The anchor point of the colorbar parent axes. If
False, the parent axes' anchor will be unchanged. Defaults to (1.0, 0.5) if vertical;
(0.5, 0.0) if horizontal.

matplotlib.colorbar.make_axes_gridspec(parent, *, location=None, orienta-
tion=None, fraction=0.15, shrink=1.0,
aspect=20, **kw)

Create a SubplotBase suitable for a colorbar.

The axes is placed in the figure of the parent axes, by resizing and repositioning parent.

This function is similar to make_axes. Primary differences are

• make_axes_gridspec should only be used with a SubplotBase parent.

• make_axes creates an Axes; make_axes_gridspec creates a SubplotBase.

• make_axes updates the position of the parent. make_axes_gridspec replaces the
grid_spec attribute of the parent with a new one.

While this function is meant to be compatible with make_axes, there could be some minor differ-
ences.

Parameters

parent
[Axes] The Axes to use as parent for placing the colorbar.

location
[None or {'left', 'right', 'top', 'bottom'}] The location, relative to the parent axes,
where the colorbar axes is created. It also determines the orientation of the col-
orbar (colorbars on the left and right are vertical, colorbars at the top and bottom
are horizontal). If None, the location will come from the orientation if it is set
(vertical colorbars on the right, horizontal ones at the bottom), or default to 'right'
if orientation is unset.

18.17. matplotlib.colorbar 1995

Matplotlib, Release 3.4.3

orientation
[None or {'vertical', 'horizontal'}] The orientation of the colorbar. It is preferable
to set the location of the colorbar, as that also determines the orientation; passing
incompatible values for location and orientation raises an exception.

fraction
[float, default: 0.15] Fraction of original axes to use for colorbar.

shrink
[float, default: 1.0] Fraction by which to multiply the size of the colorbar.

aspect
[float, default: 20] Ratio of long to short dimensions.

Returns

cax
[SubplotBase] The child axes.

kw
[dict] The reduced keyword dictionary to be passed when creating the colorbar
instance.

Other Parameters

pad
[float, default: 0.05 if vertical, 0.15 if horizontal] Fraction of original axes between
colorbar and new image axes.

anchor
[(float, float), optional] The anchor point of the colorbar axes. Defaults to (0.0,
0.5) if vertical; (0.5, 1.0) if horizontal.

panchor
[(float, float), or False, optional] The anchor point of the colorbar parent axes. If
False, the parent axes' anchor will be unchanged. Defaults to (1.0, 0.5) if vertical;
(0.5, 0.0) if horizontal.

1996 Chapter 18. Modules

Matplotlib, Release 3.4.3

18.18 matplotlib.colors

The Color tutorials and examples demonstrate how to set colors and colormaps.

A module for converting numbers or color arguments to RGB or RGBA.

RGB and RGBA are sequences of, respectively, 3 or 4 floats in the range 0-1.

This module includes functions and classes for color specification conversions, and for mapping numbers to
colors in a 1-D array of colors called a colormap.

Mapping data onto colors using a colormap typically involves two steps: a data array is first mapped onto
the range 0-1 using a subclass of Normalize, then this number is mapped to a color using a subclass of
Colormap. Two subclasses of Colormap provided here: LinearSegmentedColormap, which uses
piecewise-linear interpolation to define colormaps, and ListedColormap, which makes a colormap from
a list of colors.

See also:
Creating Colormaps in Matplotlib for examples of how to make colormaps and

Choosing Colormaps in Matplotlib for a list of built-in colormaps.

Colormap Normalization for more details about data normalization

More colormaps are available at palettable.

The module also provides functions for checking whether an object can be interpreted as a color
(is_color_like), for converting such an object to an RGBA tuple (to_rgba) or to an HTML-
like hex string in the "#rrggbb" format (to_hex), and a sequence of colors to an (n, 4) RGBA array
(to_rgba_array). Caching is used for efficiency.

Matplotlib recognizes the following formats to specify a color:

• an RGB or RGBA (red, green, blue, alpha) tuple of float values in closed interval [0, 1] (e.g.,
(0.1, 0.2, 0.5) or (0.1, 0.2, 0.5, 0.3));

• a hex RGB or RGBA string (e.g., '#0f0f0f' or '#0f0f0f80'; case-insensitive);

• a shorthand hex RGB or RGBA string, equivalent to the hex RGB or RGBA string obtained by duplicat-
ing each character, (e.g., '#abc', equivalent to '#aabbcc', or '#abcd', equivalent to '#aab-
bccdd'; case-insensitive);

• a string representation of a float value in [0, 1] inclusive for gray level (e.g., '0.5');

• one of the characters {'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'}, which are short-hand
notations for shades of blue, green, red, cyan, magenta, yellow, black, and white. Note that the colors
'g', 'c', 'm', 'y' do not coincide with the X11/CSS4 colors. Their particular shades were
chosen for better visibility of colored lines against typical backgrounds.

• a X11/CSS4 color name (case-insensitive);

• a name from the xkcd color survey, prefixed with 'xkcd:' (e.g., 'xkcd:sky blue'; case insen-
sitive);

18.18. matplotlib.colors 1997

https://jiffyclub.github.io/palettable/
https://xkcd.com/color/rgb/

Matplotlib, Release 3.4.3

• one of the Tableau Colors from the 'T10' categorical palette (the default color cycle): {'tab:blue',
'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown',
'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'} (case-insensitive);

• a "CN" color spec, i.e. 'C' followed by a number, which is an index into the default property
cycle (rcParams["axes.prop_cycle"] (default: cycler('color', ['#1f77b4',
'#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2',
'#7f7f7f', '#bcbd22', '#17becf']))); the indexing is intended to occur at rendering
time, and defaults to black if the cycle does not include color.

18.18.1 Classes

BoundaryNorm(boundaries, ncolors[, clip, ex-
tend])

Generate a colormap index based on discrete inter-
vals.

Colormap(name[, N]) Baseclass for all scalar to RGBA mappings.
CenteredNorm([vcenter, halfrange, clip]) Normalize symmetrical data around a center (0 by

default).
LightSource([azdeg, altdeg, hsv_min_val, ...]) Create a light source coming from the specified az-

imuth and elevation.
LinearSegmentedColormap(name, seg-
mentdata[, ...])

Colormap objects based on lookup tables using lin-
ear segments.

ListedColormap(colors[, name, N]) Colormap object generated from a list of colors.
LogNorm([vmin, vmax, clip]) Normalize a given value to the 0-1 range on a log

scale.
NoNorm([vmin, vmax, clip]) Dummy replacement for Normalize, for the

case where we want to use indices directly in a
ScalarMappable.

Normalize([vmin, vmax, clip]) A class which, when called, linearly normalizes
data into the [0.0, 1.0] interval.

PowerNorm(gamma[, vmin, vmax, clip]) Linearlymap a given value to the 0-1 range and then
apply a power-law normalization over that range.

SymLogNorm(linthresh[, linscale, vmin, ...]) The symmetrical logarithmic scale is logarithmic in
both the positive and negative directions from the
origin.

TwoSlopeNorm(vcenter[, vmin, vmax]) Normalize data with a set center.
FuncNorm(functions[, vmin, vmax, clip]) Arbitrary normalization using functions for the for-

ward and inverse.

1998 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

matplotlib.colors.BoundaryNorm

class matplotlib.colors.BoundaryNorm(boundaries, ncolors, clip=False, *, ex-
tend='neither')

Bases: matplotlib.colors.Normalize

Generate a colormap index based on discrete intervals.

Unlike Normalize or LogNorm, BoundaryNormmaps values to integers instead of to the interval
0-1.

Mapping to the 0-1 interval could have been done via piece-wise linear interpolation, but using integers
seems simpler, and reduces the number of conversions back and forth between integer and floating
point.

Parameters

boundaries
[array-like] Monotonically increasing sequence of at least 2 boundaries.

ncolors
[int] Number of colors in the colormap to be used.

clip
[bool, optional] If clip is True, out of range values are mapped to 0 if they
are below boundaries[0] or mapped to ncolors - 1 if they are above
boundaries[-1].

If clip is False, out of range values are mapped to -1 if they are below bound-
aries[0] or mapped to ncolors if they are above boundaries[-1]. These
are then converted to valid indices by Colormap.__call__.

extend
[{'neither', 'both', 'min', 'max'}, default: 'neither'] Extend the number of bins to
include one or both of the regions beyond the boundaries. For example, if extend
is 'min', then the color to which the region between the first pair of boundaries
is mapped will be distinct from the first color in the colormap, and by default a
Colorbar will be drawn with the triangle extension on the left or lower end.

Returns

int16 scalar or array

18.18. matplotlib.colors 1999

Matplotlib, Release 3.4.3

Notes

boundaries defines the edges of bins, and data falling within a bin is mapped to the color with the same
index.

If the number of bins, including any extensions, is less than ncolors, the color index is chosen by linear
interpolation, mapping the [0, nbins - 1] range onto the [0, ncolors - 1] range.

__call__(value, clip=None)
Normalize value data in the [vmin, vmax] interval into the [0.0, 1.0] interval and return
it.

Parameters

value
Data to normalize.

clip
[bool] If None, defaults to self.clip (which defaults to False).

Notes

If not already initialized, self.vmin and self.vmax are initialized using self.
autoscale_None(value).

__init__(boundaries, ncolors, clip=False, *, extend='neither')

Parameters

boundaries
[array-like] Monotonically increasing sequence of at least 2 boundaries.

ncolors
[int] Number of colors in the colormap to be used.

clip
[bool, optional] If clip is True, out of range values are mapped to 0 if they
are below boundaries[0] or mapped to ncolors - 1 if they are above
boundaries[-1].

If clip is False, out of range values are mapped to -1 if they are below bound-
aries[0] or mapped to ncolors if they are above boundaries[-1]. These
are then converted to valid indices by Colormap.__call__.

extend
[{'neither', 'both', 'min', 'max'}, default: 'neither'] Extend the number of bins
to include one or both of the regions beyond the boundaries. For example, if
extend is 'min', then the color to which the region between the first pair of
boundaries is mapped will be distinct from the first color in the colormap, and

2000 Chapter 18. Modules

Matplotlib, Release 3.4.3

by default a Colorbar will be drawn with the triangle extension on the left or
lower end.

Returns

int16 scalar or array

Notes

boundaries defines the edges of bins, and data falling within a bin is mapped to the color with
the same index.

If the number of bins, including any extensions, is less than ncolors, the color index is chosen by
linear interpolation, mapping the [0, nbins - 1] range onto the [0, ncolors - 1]
range.

__module__ = 'matplotlib.colors'

__slotnames__ = []

inverse(value)

Raises

ValueError
BoundaryNorm is not invertible, so calling this method will always raise an error

Examples using matplotlib.colors.BoundaryNorm

• sphx_glr_gallery_lines_bars_and_markers_multicolored_line.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_images_contours_and_fields_image_masked.py

• sphx_glr_gallery_images_contours_and_fields_pcolormesh_levels.py

• sphx_glr_gallery_specialty_plots_leftventricle_bulleye.py

• sphx_glr_gallery_userdemo_colormap_normalizations.py

• Customized Colorbars Tutorial

• Colormap Normalization

18.18. matplotlib.colors 2001

Matplotlib, Release 3.4.3

matplotlib.colors.Colormap

class matplotlib.colors.Colormap(name, N=256)
Bases: object

Baseclass for all scalar to RGBA mappings.

Typically, Colormap instances are used to convert data values (floats) from the interval [0, 1] to the
RGBA color that the respective Colormap represents. For scaling of data into the [0, 1] interval see
matplotlib.colors.Normalize. Subclasses of matplotlib.cm.ScalarMappable
make heavy use of this data -> normalize -> map-to-color processing chain.

Parameters

name
[str] The name of the colormap.

N
[int] The number of rgb quantization levels.

__call__(X, alpha=None, bytes=False)

Parameters

X
[float or int, ndarray or scalar] The data value(s) to convert to RGBA. For floats,
X should be in the interval [0.0, 1.0] to return the RGBA values X*100
percent along the Colormap line. For integers, X should be in the interval [0,
Colormap.N) to return RGBA values indexed from the Colormap with index
X.

alpha
[float or array-like or None] Alpha must be a scalar between 0 and 1, a sequence
of such floats with shape matching X, or None.

bytes
[bool] If False (default), the returned RGBA values will be floats in the interval
[0, 1] otherwise they will be uint8s in the interval [0, 255].

Returns

Tuple of RGBA values if X is scalar, otherwise an array of
RGBA values with a shape of X.shape + (4,).

__copy__()

__dict__ = mappingproxy({'__module__': 'matplotlib.colors', '__doc__': '\n Baseclass for all scalar to RGBA mappings.\n\n Typically, Colormap instances are used to convert data values (floats)\n from the interval ``[0, 1]`` to the RGBA color that the respective\n Colormap represents. For scaling of data into the ``[0, 1]`` interval see\n `matplotlib.colors.Normalize`. Subclasses of `matplotlib.cm.ScalarMappable`\n make heavy use of this ``data -> normalize -> map-to-color`` processing\n chain.\n ', '__init__': <function Colormap.__init__>, '__call__': <function Colormap.__call__>, '__copy__': <function Colormap.__copy__>, 'get_bad': <function Colormap.get_bad>, 'set_bad': <function Colormap.set_bad>, 'get_under': <function Colormap.get_under>, 'set_under': <function Colormap.set_under>, 'get_over': <function Colormap.get_over>, 'set_over': <function Colormap.set_over>, 'set_extremes': <function Colormap.set_extremes>, 'with_extremes': <function Colormap.with_extremes>, '_set_extremes': <function Colormap._set_extremes>, '_init': <function Colormap._init>, 'is_gray': <function Colormap.is_gray>, '_resample': <function Colormap._resample>, 'reversed': <function Colormap.reversed>, '_repr_png_': <function Colormap._repr_png_>, '_repr_html_': <function Colormap._repr_html_>, 'copy': <function Colormap.copy>, '__dict__': <attribute '__dict__' of 'Colormap' objects>, '__weakref__': <attribute '__weakref__' of 'Colormap' objects>, '__annotations__': {}})

__init__(name, N=256)

2002 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Parameters

name
[str] The name of the colormap.

N
[int] The number of rgb quantization levels.

__module__ = 'matplotlib.colors'

__weakref__
list of weak references to the object (if defined)

colorbar_extend
When this colormap exists on a scalar mappable and colorbar_extend is not False, colorbar cre-
ation will pick up colorbar_extend as the default value for the extend keyword in the
matplotlib.colorbar.Colorbar constructor.

copy()
Return a copy of the colormap.

get_bad()
Get the color for masked values.

get_over()
Get the color for high out-of-range values.

get_under()
Get the color for low out-of-range values.

is_gray()
Return whether the colormap is grayscale.

reversed(name=None)
Return a reversed instance of the Colormap.

Note: This function is not implemented for base class.

Parameters

name
[str, optional] The name for the reversed colormap. If it's None the name will be
the name of the parent colormap + "_r".

See also:

LinearSegmentedColormap.reversed

ListedColormap.reversed

18.18. matplotlib.colors 2003

Matplotlib, Release 3.4.3

set_bad(color='k', alpha=None)
Set the color for masked values.

set_extremes(*, bad=None, under=None, over=None)
Set the colors for masked (bad) values and, when norm.clip = False, low (under) and
high (over) out-of-range values.

set_over(color='k', alpha=None)
Set the color for high out-of-range values.

set_under(color='k', alpha=None)
Set the color for low out-of-range values.

with_extremes(*, bad=None, under=None, over=None)
Return a copy of the colormap, for which the colors for masked (bad) values and, when norm.
clip = False, low (under) and high (over) out-of-range values, have been set accordingly.

Examples using matplotlib.colors.Colormap

• sphx_glr_gallery_lines_bars_and_markers_multicolored_line.py

• sphx_glr_gallery_color_custom_cmap.py

• sphx_glr_gallery_specialty_plots_leftventricle_bulleye.py

• Customized Colorbars Tutorial

• Creating Colormaps in Matplotlib

matplotlib.colors.CenteredNorm

class matplotlib.colors.CenteredNorm(vcenter=0, halfrange=None, clip=False)
Bases: matplotlib.colors.Normalize

Normalize symmetrical data around a center (0 by default).

Unlike TwoSlopeNorm, CenteredNorm applies an equal rate of change around the center.

Useful when mapping symmetrical data around a conceptual center e.g., data that range from -2 to 4,
with 0 as the midpoint, and with equal rates of change around that midpoint.

Parameters

vcenter
[float, default: 0] The data value that defines 0.5 in the normalization.

halfrange
[float, optional] The range of data values that defines a range of 0.5 in the nor-
malization, so that vcenter - halfrange is 0.0 and vcenter + halfrange is 1.0 in
the normalization. Defaults to the largest absolute difference to vcenter for the
values in the dataset.

2004 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples

This maps data values -2 to 0.25, 0 to 0.5, and 4 to 1.0 (assuming equal rates of change above and
below 0.0):

>>> import matplotlib.colors as mcolors
>>> norm = mcolors.CenteredNorm(halfrange=4.0)
>>> data = [-2., 0., 4.]
>>> norm(data)
array([0.25, 0.5 , 1.])

__call__(value, clip=None)
Normalize value data in the [vmin, vmax] interval into the [0.0, 1.0] interval and return
it.

Parameters

value
Data to normalize.

clip
[bool] If None, defaults to self.clip (which defaults to False).

Notes

If not already initialized, self.vmin and self.vmax are initialized using self.
autoscale_None(value).

__init__(vcenter=0, halfrange=None, clip=False)
Normalize symmetrical data around a center (0 by default).

Unlike TwoSlopeNorm, CenteredNorm applies an equal rate of change around the center.

Useful when mapping symmetrical data around a conceptual center e.g., data that range from -2
to 4, with 0 as the midpoint, and with equal rates of change around that midpoint.

Parameters

vcenter
[float, default: 0] The data value that defines 0.5 in the normalization.

halfrange
[float, optional] The range of data values that defines a range of 0.5 in the nor-
malization, so that vcenter - halfrange is 0.0 and vcenter + halfrange is 1.0 in
the normalization. Defaults to the largest absolute difference to vcenter for the
values in the dataset.

18.18. matplotlib.colors 2005

Matplotlib, Release 3.4.3

Examples

This maps data values -2 to 0.25, 0 to 0.5, and 4 to 1.0 (assuming equal rates of change above
and below 0.0):

>>> import matplotlib.colors as mcolors
>>> norm = mcolors.CenteredNorm(halfrange=4.0)
>>> data = [-2., 0., 4.]
>>> norm(data)
array([0.25, 0.5 , 1.])

__module__ = 'matplotlib.colors'

__slotnames__ = []

autoscale(A)
Set halfrange to max(abs(A-vcenter)), then set vmin and vmax.

autoscale_None(A)
Set vmin and vmax.

property halfrange

property vcenter

Examples using matplotlib.colors.CenteredNorm

• Colormap Normalization

matplotlib.colors.LightSource

class matplotlib.colors.LightSource(azdeg=315, altdeg=45, hsv_min_val=0,
hsv_max_val=1, hsv_min_sat=1,
hsv_max_sat=0)

Bases: object

Create a light source coming from the specified azimuth and elevation. Angles are in degrees, with
the azimuth measured clockwise from north and elevation up from the zero plane of the surface.

shade is used to produce "shaded" rgb values for a data array. shade_rgb can be used to combine
an rgb image with an elevation map. hillshade produces an illumination map of a surface.

Specify the azimuth (measured clockwise from south) and altitude (measured up from the plane of the
surface) of the light source in degrees.

Parameters

azdeg
[float, default: 315 degrees (from the northwest)] The azimuth (0-360, degrees
clockwise from North) of the light source.

2006 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

altdeg
[float, default: 45 degrees] The altitude (0-90, degrees up from horizontal) of the
light source.

Notes

For backwards compatibility, the parameters hsv_min_val, hsv_max_val, hsv_min_sat, and
hsv_max_sat may be supplied at initialization as well. However, these parameters will only be used if
"blend_mode='hsv'" is passed into shade or shade_rgb. See the documentation for blend_hsv
for more details.

__dict__ = mappingproxy({'__module__': 'matplotlib.colors', '__doc__': '\n Create a light source coming from the specified azimuth and elevation.\n Angles are in degrees, with the azimuth measured\n clockwise from north and elevation up from the zero plane of the surface.\n\n `shade` is used to produce "shaded" rgb values for a data array.\n `shade_rgb` can be used to combine an rgb image with an elevation map.\n `hillshade` produces an illumination map of a surface.\n ', '__init__': <function LightSource.__init__>, 'direction': <property object>, 'hillshade': <function LightSource.hillshade>, 'shade_normals': <function LightSource.shade_normals>, 'shade': <function LightSource.shade>, 'shade_rgb': <function LightSource.shade_rgb>, 'blend_hsv': <function LightSource.blend_hsv>, 'blend_soft_light': <function LightSource.blend_soft_light>, 'blend_overlay': <function LightSource.blend_overlay>, '__dict__': <attribute '__dict__' of 'LightSource' objects>, '__weakref__': <attribute '__weakref__' of 'LightSource' objects>, '__annotations__': {}})

__init__(azdeg=315, altdeg=45, hsv_min_val=0, hsv_max_val=1, hsv_min_sat=1,
hsv_max_sat=0)

Specify the azimuth (measured clockwise from south) and altitude (measured up from the plane
of the surface) of the light source in degrees.

Parameters

azdeg
[float, default: 315 degrees (from the northwest)] The azimuth (0-360, degrees
clockwise from North) of the light source.

altdeg
[float, default: 45 degrees] The altitude (0-90, degrees up from horizontal) of
the light source.

Notes

For backwards compatibility, the parameters hsv_min_val, hsv_max_val, hsv_min_sat, and
hsv_max_sat may be supplied at initialization as well. However, these parameters will only
be used if "blend_mode='hsv'" is passed into shade or shade_rgb. See the documentation
for blend_hsv for more details.

__module__ = 'matplotlib.colors'

__weakref__
list of weak references to the object (if defined)

blend_hsv(rgb, intensity, hsv_max_sat=None, hsv_max_val=None, hsv_min_val=None,
hsv_min_sat=None)

Take the input data array, convert to HSV values in the given colormap, then adjust those color
values to give the impression of a shaded relief map with a specified light source. RGBA values
are returned, which can then be used to plot the shaded image with imshow.

The color of the resulting image will be darkened by moving the (s, v) values (in hsv colorspace)
toward (hsv_min_sat, hsv_min_val) in the shaded regions, or lightened by sliding (s, v) toward
(hsv_max_sat, hsv_max_val) in regions that are illuminated. The default extremes are chose so

18.18. matplotlib.colors 2007

Matplotlib, Release 3.4.3

that completely shaded points are nearly black (s = 1, v = 0) and completely illuminated points
are nearly white (s = 0, v = 1).

Parameters

rgb
[ndarray] An MxNx3 RGB array of floats ranging from 0 to 1 (color image).

intensity
[ndarray] An MxNx1 array of floats ranging from 0 to 1 (grayscale image).

hsv_max_sat
[number, default: 1] The maximum saturation value that the intensity map can
shift the output image to.

hsv_min_sat
[number, optional] Theminimum saturation value that the intensitymap can shift
the output image to. Defaults to 0.

hsv_max_val
[number, optional] The maximum value ("v" in "hsv") that the intensitymap can
shift the output image to. Defaults to 1.

hsv_min_val
[number, optional] The minimum value ("v" in "hsv") that the intensitymap can
shift the output image to. Defaults to 0.

Returns

ndarray
An MxNx3 RGB array representing the combined images.

blend_overlay(rgb, intensity)
Combines an rgb image with an intensity map using "overlay" blending.

Parameters

rgb
[ndarray] An MxNx3 RGB array of floats ranging from 0 to 1 (color image).

intensity
[ndarray] An MxNx1 array of floats ranging from 0 to 1 (grayscale image).

Returns

ndarray
An MxNx3 RGB array representing the combined images.

2008 Chapter 18. Modules

Matplotlib, Release 3.4.3

blend_soft_light(rgb, intensity)
Combine an rgb image with an intensity map using "soft light" blending, using the "pegtop"
formula.

Parameters

rgb
[ndarray] An MxNx3 RGB array of floats ranging from 0 to 1 (color image).

intensity
[ndarray] An MxNx1 array of floats ranging from 0 to 1 (grayscale image).

Returns

ndarray
An MxNx3 RGB array representing the combined images.

property direction
The unit vector direction towards the light source.

hillshade(elevation, vert_exag=1, dx=1, dy=1, fraction=1.0)
Calculate the illumination intensity for a surface using the defined azimuth and elevation for the
light source.

This computes the normal vectors for the surface, and then passes them on to shade_normals

Parameters

elevation
[2D array-like] The height values used to generate an illumination map

vert_exag
[number, optional] The amount to exaggerate the elevation values by when cal-
culating illumination. This can be used either to correct for differences in units
between the x-y coordinate system and the elevation coordinate system (e.g. dec-
imal degrees vs. meters) or to exaggerate or de-emphasize topographic effects.

dx
[number, optional] The x-spacing (columns) of the input elevation grid.

dy
[number, optional] The y-spacing (rows) of the input elevation grid.

fraction
[number, optional] Increases or decreases the contrast of the hillshade. Values
greater than onewill cause intermediate values tomove closer to full illumination
or shadow (and clipping any values that move beyond 0 or 1). Note that this is
not visually or mathematically the same as vertical exaggeration.

18.18. matplotlib.colors 2009

Matplotlib, Release 3.4.3

Returns

ndarray
A 2D array of illumination values between 0-1, where 0 is completely in shadow
and 1 is completely illuminated.

shade(data, cmap, norm=None, blend_mode='overlay', vmin=None, vmax=None,
vert_exag=1, dx=1, dy=1, fraction=1, **kwargs)

Combine colormapped data values with an illumination intensity map (a.k.a. "hillshade") of the
values.

Parameters

data
[2D array-like] The height values used to generate a shaded map.

cmap
[Colormap] The colormap used to color the data array. Note that
this must be a Colormap instance. For example, rather than passing
in cmap='gist_earth', use cmap=plt.get_cmap('gist_earth')
instead.

norm
[Normalize instance, optional] The normalization used to scale values before
colormapping. If None, the input will be linearly scaled between its min and
max.

blend_mode
[{'hsv', 'overlay', 'soft'} or callable, optional] The type of blending used to com-
bine the colormapped data values with the illumination intensity. Default is
"overlay". Note that for most topographic surfaces, "overlay" or "soft" appear
more visually realistic. If a user-defined function is supplied, it is expected to
combine an MxNx3 RGB array of floats (ranging 0 to 1) with an MxNx1 hill-
shade array (also 0 to 1). (Call signature func(rgb, illum, **kwargs))
Additional kwargs supplied to this function will be passed on to the blend_mode
function.

vmin
[float or None, optional] Theminimum value used in colormapping data. IfNone
the minimum value in data is used. If norm is specified, then this argument will
be ignored.

vmax
[float or None, optional] The maximum value used in colormapping data. If
None the maximum value in data is used. If norm is specified, then this argument
will be ignored.

2010 Chapter 18. Modules

Matplotlib, Release 3.4.3

vert_exag
[number, optional] The amount to exaggerate the elevation values by when cal-
culating illumination. This can be used either to correct for differences in units
between the x-y coordinate system and the elevation coordinate system (e.g. dec-
imal degrees vs. meters) or to exaggerate or de-emphasize topography.

dx
[number, optional] The x-spacing (columns) of the input elevation grid.

dy
[number, optional] The y-spacing (rows) of the input elevation grid.

fraction
[number, optional] Increases or decreases the contrast of the hillshade. Values
greater than onewill cause intermediate values tomove closer to full illumination
or shadow (and clipping any values that move beyond 0 or 1). Note that this is
not visually or mathematically the same as vertical exaggeration.

Additional kwargs are passed on to the *blend_mode* function.

Returns

ndarray
An MxNx4 array of floats ranging between 0-1.

shade_normals(normals, fraction=1.0)
Calculate the illumination intensity for the normal vectors of a surface using the defined azimuth
and elevation for the light source.

Imagine an artificial sun placed at infinity in some azimuth and elevation position illuminating
our surface. The parts of the surface that slope toward the sun should brighten while those sides
facing away should become darker.

Parameters

fraction
[number, optional] Increases or decreases the contrast of the hillshade. Values
greater than onewill cause intermediate values tomove closer to full illumination
or shadow (and clipping any values that move beyond 0 or 1). Note that this is
not visually or mathematically the same as vertical exaggeration.

Returns

ndarray
A 2D array of illumination values between 0-1, where 0 is completely in shadow
and 1 is completely illuminated.

18.18. matplotlib.colors 2011

Matplotlib, Release 3.4.3

shade_rgb(rgb, elevation, fraction=1.0, blend_mode='hsv', vert_exag=1, dx=1, dy=1,
**kwargs)

Use this light source to adjust the colors of the rgb input array to give the impression of a shaded
relief map with the given elevation.

Parameters

rgb
[array-like] An (M, N, 3) RGB array, assumed to be in the range of 0 to 1.

elevation
[array-like] An (M, N) array of the height values used to generate a shaded map.

fraction
[number] Increases or decreases the contrast of the hillshade. Values greater than
one will cause intermediate values to move closer to full illumination or shadow
(and clipping any values that move beyond 0 or 1). Note that this is not visually
or mathematically the same as vertical exaggeration.

blend_mode
[{'hsv', 'overlay', 'soft'} or callable, optional] The type of blending used to com-
bine the colormapped data values with the illumination intensity. For backwards
compatibility, this defaults to "hsv". Note that for most topographic surfaces,
"overlay" or "soft" appear more visually realistic. If a user-defined function is
supplied, it is expected to combine an MxNx3 RGB array of floats (ranging 0
to 1) with an MxNx1 hillshade array (also 0 to 1). (Call signature func(rgb,
illum, **kwargs)) Additional kwargs supplied to this function will be
passed on to the blend_mode function.

vert_exag
[number, optional] The amount to exaggerate the elevation values by when cal-
culating illumination. This can be used either to correct for differences in units
between the x-y coordinate system and the elevation coordinate system (e.g. dec-
imal degrees vs. meters) or to exaggerate or de-emphasize topography.

dx
[number, optional] The x-spacing (columns) of the input elevation grid.

dy
[number, optional] The y-spacing (rows) of the input elevation grid.

Additional kwargs are passed on to the *blend_mode* function.

Returns

ndarray
An (m, n, 3) array of floats ranging between 0-1.

2012 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.colors.LightSource

• sphx_glr_gallery_images_contours_and_fields_shading_example.py

• sphx_glr_gallery_showcase_mandelbrot.py

• sphx_glr_gallery_frontpage_3D.py

• sphx_glr_gallery_misc_demo_agg_filter.py

• sphx_glr_gallery_mplot3d_custom_shaded_3d_surface.py

• sphx_glr_gallery_specialty_plots_advanced_hillshading.py

• sphx_glr_gallery_specialty_plots_topographic_hillshading.py

matplotlib.colors.LinearSegmentedColormap

class matplotlib.colors.LinearSegmentedColormap(name, segmentdata, N=256,
gamma=1.0)

Bases: matplotlib.colors.Colormap

Colormap objects based on lookup tables using linear segments.

The lookup table is generated using linear interpolation for each primary color, with the 0-1 domain
divided into any number of segments.

Create colormap from linear mapping segments

segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a list of
x, y0, y1 tuples, forming rows in a table. Entries for alpha are optional.

Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same over
the middle half, and blue over the top half. Then you would use:

cdict = {'red': [(0.0, 0.0, 0.0),
(0.5, 1.0, 1.0),
(1.0, 1.0, 1.0)],

'green': [(0.0, 0.0, 0.0),
(0.25, 0.0, 0.0),
(0.75, 1.0, 1.0),
(1.0, 1.0, 1.0)],

'blue': [(0.0, 0.0, 0.0),
(0.5, 0.0, 0.0),
(1.0, 1.0, 1.0)]}

Each row in the table for a given color is a sequence of x, y0, y1 tuples. In each sequence, x must
increase monotonically from 0 to 1. For any input value z falling between x[i] and x[i+1], the output
value of a given color will be linearly interpolated between y1[i] and y0[i+1]:

18.18. matplotlib.colors 2013

Matplotlib, Release 3.4.3

row i: x y0 y1
/
/

row i+1: x y0 y1

Hence y0 in the first row and y1 in the last row are never used.

See also:

LinearSegmentedColormap.from_list

Static method; factory function for generating a smoothly-varying LinearSegmentedColormap.

__init__(name, segmentdata, N=256, gamma=1.0)
Create colormap from linear mapping segments

segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a
list of x, y0, y1 tuples, forming rows in a table. Entries for alpha are optional.

Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the
same over the middle half, and blue over the top half. Then you would use:

cdict = {'red': [(0.0, 0.0, 0.0),
(0.5, 1.0, 1.0),
(1.0, 1.0, 1.0)],

'green': [(0.0, 0.0, 0.0),
(0.25, 0.0, 0.0),
(0.75, 1.0, 1.0),
(1.0, 1.0, 1.0)],

'blue': [(0.0, 0.0, 0.0),
(0.5, 0.0, 0.0),
(1.0, 1.0, 1.0)]}

Each row in the table for a given color is a sequence of x, y0, y1 tuples. In each sequence, xmust
increase monotonically from 0 to 1. For any input value z falling between x[i] and x[i+1], the
output value of a given color will be linearly interpolated between y1[i] and y0[i+1]:

row i: x y0 y1
/
/

row i+1: x y0 y1

Hence y0 in the first row and y1 in the last row are never used.

See also:

LinearSegmentedColormap.from_list

Static method; factory function for generating a smoothly-varying LinearSegmentedCol-
ormap.

2014 Chapter 18. Modules

Matplotlib, Release 3.4.3

__module__ = 'matplotlib.colors'

static from_list(name, colors, N=256, gamma=1.0)
Create a LinearSegmentedColormap from a list of colors.

Parameters

name
[str] The name of the colormap.

colors
[array-like of colors or array-like of (value, color)] If only colors are given, they
are equidistantly mapped from the range [0, 1]; i.e. 0 maps to colors[0] and
1 maps to colors[-1]. If (value, color) pairs are given, the mapping is from
value to color. This can be used to divide the range unevenly.

N
[int] The number of rgb quantization levels.

gamma
[float]

reversed(name=None)
Return a reversed instance of the Colormap.

Parameters

name
[str, optional] The name for the reversed colormap. If it's None the name will be
the name of the parent colormap + "_r".

Returns

LinearSegmentedColormap
The reversed colormap.

set_gamma(gamma)
Set a new gamma value and regenerate colormap.

18.18. matplotlib.colors 2015

Matplotlib, Release 3.4.3

Examples using matplotlib.colors.LinearSegmentedColormap

• sphx_glr_gallery_lines_bars_and_markers_gradient_bar.py

• sphx_glr_gallery_lines_bars_and_markers_scatter_with_legend.py

• sphx_glr_gallery_images_contours_and_fields_contour_demo.py

• sphx_glr_gallery_images_contours_and_fields_contour_image.py

• sphx_glr_gallery_images_contours_and_fields_contourf_demo.py

• sphx_glr_gallery_images_contours_and_fields_contourf_log.py

• sphx_glr_gallery_images_contours_and_fields_image_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_masked.py

• sphx_glr_gallery_images_contours_and_fields_image_nonuniform.py

• sphx_glr_gallery_images_contours_and_fields_layer_images.py

• sphx_glr_gallery_images_contours_and_fields_pcolormesh_levels.py

• sphx_glr_gallery_images_contours_and_fields_shading_example.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_smooth_delaunay.py

• sphx_glr_gallery_images_contours_and_fields_tricontour_smooth_user.py

• sphx_glr_gallery_images_contours_and_fields_trigradient_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_box_aspect.py

• sphx_glr_gallery_subplots_axes_and_figures_subplots_adjust.py

• sphx_glr_gallery_text_labels_and_annotations_custom_legends.py

• sphx_glr_gallery_text_labels_and_annotations_demo_text_path.py

• sphx_glr_gallery_color_custom_cmap.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_shapes_and_collections_dolphin.py

• sphx_glr_gallery_axisartist_demo_curvelinear_grid2.py

• sphx_glr_gallery_showcase_mandelbrot.py

• sphx_glr_gallery_frontpage_3D.py

• sphx_glr_gallery_misc_contour_manual.py

• sphx_glr_gallery_misc_demo_agg_filter.py

• sphx_glr_gallery_misc_logos2.py

• sphx_glr_gallery_misc_table_demo.py

• sphx_glr_gallery_mplot3d_contour3d.py

2016 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_mplot3d_contour3d_2.py

• sphx_glr_gallery_mplot3d_contour3d_3.py

• sphx_glr_gallery_mplot3d_contourf3d.py

• sphx_glr_gallery_mplot3d_contourf3d_2.py

• sphx_glr_gallery_mplot3d_custom_shaded_3d_surface.py

• sphx_glr_gallery_mplot3d_subplot3d.py

• sphx_glr_gallery_mplot3d_surface3d.py

• sphx_glr_gallery_mplot3d_surface3d_radial.py

• sphx_glr_gallery_mplot3d_tricontour3d.py

• sphx_glr_gallery_mplot3d_tricontourf3d.py

• sphx_glr_gallery_mplot3d_trisurf3d_2.py

• sphx_glr_gallery_specialty_plots_advanced_hillshading.py

• sphx_glr_gallery_specialty_plots_leftventricle_bulleye.py

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• sphx_glr_gallery_specialty_plots_topographic_hillshading.py

• sphx_glr_gallery_ticks_and_spines_colorbar_tick_labelling_demo.py

• sphx_glr_gallery_ticks_and_spines_spines_dropped.py

• Customized Colorbars Tutorial

• Creating Colormaps in Matplotlib

• Colormap Normalization

matplotlib.colors.ListedColormap

class matplotlib.colors.ListedColormap(colors, name='from_list', N=None)
Bases: matplotlib.colors.Colormap

Colormap object generated from a list of colors.

This may be most useful when indexing directly into a colormap, but it can also be used to generate
special colormaps for ordinary mapping.

Parameters

colors
[list, array] List of Matplotlib color specifications, or an equivalent Nx3 or Nx4
floating point array (N rgb or rgba values).

18.18. matplotlib.colors 2017

Matplotlib, Release 3.4.3

name
[str, optional] String to identify the colormap.

N
[int, optional] Number of entries in the map. The default is None, in which case
there is one colormap entry for each element in the list of colors. If

N < len(colors)

the list will be truncated at N. If

N > len(colors)

the list will be extended by repetition.

Parameters

name
[str] The name of the colormap.

N
[int] The number of rgb quantization levels.

__init__(colors, name='from_list', N=None)

Parameters

name
[str] The name of the colormap.

N
[int] The number of rgb quantization levels.

__module__ = 'matplotlib.colors'

reversed(name=None)
Return a reversed instance of the Colormap.

Parameters

name
[str, optional] The name for the reversed colormap. If it's None the name will be
the name of the parent colormap + "_r".

Returns

2018 Chapter 18. Modules

Matplotlib, Release 3.4.3

ListedColormap
A reversed instance of the colormap.

Examples using matplotlib.colors.ListedColormap

• sphx_glr_gallery_lines_bars_and_markers_multicolored_line.py

• sphx_glr_gallery_images_contours_and_fields_layer_images.py

• sphx_glr_gallery_images_contours_and_fields_quadmesh_demo.py

• sphx_glr_gallery_statistics_hist.py

• sphx_glr_gallery_statistics_time_series_histogram.py

• sphx_glr_gallery_pie_and_polar_charts_nested_pie.py

• sphx_glr_gallery_pie_and_polar_charts_polar_bar.py

• sphx_glr_gallery_pyplots_whats_new_1_subplot3d.py

• sphx_glr_gallery_pyplots_whats_new_99_mplot3d.py

• sphx_glr_gallery_specialty_plots_leftventricle_bulleye.py

• Customized Colorbars Tutorial

• Creating Colormaps in Matplotlib

matplotlib.colors.LogNorm

class matplotlib.colors.LogNorm(vmin=None, vmax=None, clip=False)
Bases: matplotlib.colors.LogNorm

Normalize a given value to the 0-1 range on a log scale.

__call__(value, clip=None)
Normalize value data in the [vmin, vmax] interval into the [0.0, 1.0] interval and return
it.

Parameters

value
Data to normalize.

clip
[bool] If None, defaults to self.clip (which defaults to False).

18.18. matplotlib.colors 2019

Matplotlib, Release 3.4.3

Notes

If not already initialized, self.vmin and self.vmax are initialized using self.
autoscale_None(value).

__init__(vmin=None, vmax=None, clip=False)

Parameters

vmin, vmax
[float or None] If vmin and/or vmax is not given, they are initialized from the
minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A) calls autoscale_None(A).

clip
[bool, default: False] If True values falling outside the range [vmin, vmax],
are mapped to 0 or 1, whichever is closer, and masked values are set to 1. If
False masked values remain masked.

Clipping silently defeats the purpose of setting the over, under, and masked col-
ors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False.

Notes

Returns 0 if vmin == vmax.

__module__ = 'matplotlib.colors'

__slotnames__ = []

inverse(value)

Examples using matplotlib.colors.LogNorm

• sphx_glr_gallery_images_contours_and_fields_pcolor_demo.py

• sphx_glr_gallery_statistics_hist.py

• sphx_glr_gallery_statistics_time_series_histogram.py

• sphx_glr_gallery_userdemo_colormap_normalizations.py

• Colormap Normalization

2020 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.colors.NoNorm

class matplotlib.colors.NoNorm(vmin=None, vmax=None, clip=False)
Bases: matplotlib.colors.Normalize

Dummy replacement for Normalize, for the case where we want to use indices directly in a
ScalarMappable.

Parameters

vmin, vmax
[float or None] If vmin and/or vmax is not given, they are initialized from the
minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A) calls autoscale_None(A).

clip
[bool, default: False] If True values falling outside the range [vmin, vmax],
are mapped to 0 or 1, whichever is closer, andmasked values are set to 1. If False
masked values remain masked.

Clipping silently defeats the purpose of setting the over, under, and masked col-
ors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False.

Notes

Returns 0 if vmin == vmax.

__call__(value, clip=None)
Normalize value data in the [vmin, vmax] interval into the [0.0, 1.0] interval and return
it.

Parameters

value
Data to normalize.

clip
[bool] If None, defaults to self.clip (which defaults to False).

18.18. matplotlib.colors 2021

Matplotlib, Release 3.4.3

Notes

If not already initialized, self.vmin and self.vmax are initialized using self.
autoscale_None(value).

__module__ = 'matplotlib.colors'

__slotnames__ = []

inverse(value)

Examples using matplotlib.colors.NoNorm

matplotlib.colors.Normalize

class matplotlib.colors.Normalize(vmin=None, vmax=None, clip=False)
Bases: object

A class which, when called, linearly normalizes data into the [0.0, 1.0] interval.

Parameters

vmin, vmax
[float or None] If vmin and/or vmax is not given, they are initialized from the
minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A) calls autoscale_None(A).

clip
[bool, default: False] If True values falling outside the range [vmin, vmax],
are mapped to 0 or 1, whichever is closer, andmasked values are set to 1. If False
masked values remain masked.

Clipping silently defeats the purpose of setting the over, under, and masked col-
ors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False.

Notes

Returns 0 if vmin == vmax.

__call__(value, clip=None)
Normalize value data in the [vmin, vmax] interval into the [0.0, 1.0] interval and return
it.

Parameters

value
Data to normalize.

2022 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

clip
[bool] If None, defaults to self.clip (which defaults to False).

Notes

If not already initialized, self.vmin and self.vmax are initialized using self.
autoscale_None(value).

__dict__ = mappingproxy({'__module__': 'matplotlib.colors', '__doc__': '\n A class which, when called, linearly normalizes data into the\n ``[0.0, 1.0]`` interval.\n ', '__init__': <function Normalize.__init__>, 'process_value': <staticmethod object>, '__call__': <function Normalize.__call__>, 'inverse': <function Normalize.inverse>, 'autoscale': <function Normalize.autoscale>, 'autoscale_None': <function Normalize.autoscale_None>, 'scaled': <function Normalize.scaled>, '__dict__': <attribute '__dict__' of 'Normalize' objects>, '__weakref__': <attribute '__weakref__' of 'Normalize' objects>, '__slotnames__': [], '__annotations__': {}})

__init__(vmin=None, vmax=None, clip=False)

Parameters

vmin, vmax
[float or None] If vmin and/or vmax is not given, they are initialized from the
minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A) calls autoscale_None(A).

clip
[bool, default: False] If True values falling outside the range [vmin, vmax],
are mapped to 0 or 1, whichever is closer, and masked values are set to 1. If
False masked values remain masked.

Clipping silently defeats the purpose of setting the over, under, and masked col-
ors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False.

Notes

Returns 0 if vmin == vmax.

__module__ = 'matplotlib.colors'

__slotnames__ = []

__weakref__
list of weak references to the object (if defined)

autoscale(A)
Set vmin, vmax to min, max of A.

autoscale_None(A)
If vmin or vmax are not set, use the min/max of A to set them.

inverse(value)

static process_value(value)
Homogenize the input value for easy and efficient normalization.

value can be a scalar or sequence.

18.18. matplotlib.colors 2023

Matplotlib, Release 3.4.3

Returns

result
[masked array] Masked array with the same shape as value.

is_scalar
[bool] Whether value is a scalar.

Notes

Float dtypes are preserved; integer types with two bytes or smaller are converted to np.float32,
and larger types are converted to np.float64. Preserving float32 when possible, and using in-place
operations, greatly improves speed for large arrays.

scaled()
Return whether vmin and vmax are set.

Examples using matplotlib.colors.Normalize

• sphx_glr_gallery_lines_bars_and_markers_multicolored_line.py

• sphx_glr_gallery_images_contours_and_fields_contour_image.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_images_contours_and_fields_image_masked.py

• sphx_glr_gallery_images_contours_and_fields_image_transparency_blend.py

• sphx_glr_gallery_images_contours_and_fields_multi_image.py

• sphx_glr_gallery_images_contours_and_fields_pcolor_demo.py

• sphx_glr_gallery_images_contours_and_fields_pcolormesh_levels.py

• sphx_glr_gallery_statistics_hist.py

• sphx_glr_gallery_statistics_time_series_histogram.py

• sphx_glr_gallery_axes_grid1_demo_axes_grid2.py

• sphx_glr_gallery_showcase_mandelbrot.py

• sphx_glr_gallery_frontpage_contour.py

• sphx_glr_gallery_scales_power_norm.py

• sphx_glr_gallery_specialty_plots_advanced_hillshading.py

• sphx_glr_gallery_specialty_plots_leftventricle_bulleye.py

• sphx_glr_gallery_userdemo_colormap_normalizations.py

• sphx_glr_gallery_userdemo_colormap_normalizations_symlognorm.py

2024 Chapter 18. Modules

Matplotlib, Release 3.4.3

• Constrained Layout Guide

• Customized Colorbars Tutorial

• Colormap Normalization

matplotlib.colors.PowerNorm

class matplotlib.colors.PowerNorm(gamma, vmin=None, vmax=None, clip=False)
Bases: matplotlib.colors.Normalize

Linearly map a given value to the 0-1 range and then apply a power-law normalization over that range.

Parameters

vmin, vmax
[float or None] If vmin and/or vmax is not given, they are initialized from the
minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A) calls autoscale_None(A).

clip
[bool, default: False] If True values falling outside the range [vmin, vmax],
are mapped to 0 or 1, whichever is closer, andmasked values are set to 1. If False
masked values remain masked.

Clipping silently defeats the purpose of setting the over, under, and masked col-
ors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False.

Notes

Returns 0 if vmin == vmax.

__call__(value, clip=None)
Normalize value data in the [vmin, vmax] interval into the [0.0, 1.0] interval and return
it.

Parameters

value
Data to normalize.

clip
[bool] If None, defaults to self.clip (which defaults to False).

18.18. matplotlib.colors 2025

Matplotlib, Release 3.4.3

Notes

If not already initialized, self.vmin and self.vmax are initialized using self.
autoscale_None(value).

__init__(gamma, vmin=None, vmax=None, clip=False)

Parameters

vmin, vmax
[float or None] If vmin and/or vmax is not given, they are initialized from the
minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A) calls autoscale_None(A).

clip
[bool, default: False] If True values falling outside the range [vmin, vmax],
are mapped to 0 or 1, whichever is closer, and masked values are set to 1. If
False masked values remain masked.

Clipping silently defeats the purpose of setting the over, under, and masked col-
ors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False.

Notes

Returns 0 if vmin == vmax.

__module__ = 'matplotlib.colors'

__slotnames__ = []

inverse(value)

Examples using matplotlib.colors.PowerNorm

• sphx_glr_gallery_showcase_mandelbrot.py

• sphx_glr_gallery_scales_power_norm.py

• sphx_glr_gallery_userdemo_colormap_normalizations.py

• Colormap Normalization

2026 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.colors.SymLogNorm

class matplotlib.colors.SymLogNorm(linthresh, linscale=1.0, vmin=None,
vmax=None, clip=False, *, base=10)

Bases: matplotlib.colors.SymLogNorm

The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the
origin.

Since the values close to zero tend toward infinity, there is a need to have a range around zero that is
linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).

Parameters

linthresh
[float] The range within which the plot is linear (to avoid having the plot go to
infinity around zero).

linscale
[float, default: 1] This allows the linear range (-linthresh to linthresh) to be
stretched relative to the logarithmic range. Its value is the number of decades
to use for each half of the linear range. For example, when linscale == 1.0 (the
default), the space used for the positive and negative halves of the linear range will
be equal to one decade in the logarithmic range.

base
[float, default: 10]

__call__(value, clip=None)
Normalize value data in the [vmin, vmax] interval into the [0.0, 1.0] interval and return
it.

Parameters

value
Data to normalize.

clip
[bool] If None, defaults to self.clip (which defaults to False).

18.18. matplotlib.colors 2027

Matplotlib, Release 3.4.3

Notes

If not already initialized, self.vmin and self.vmax are initialized using self.
autoscale_None(value).

__init__(linthresh, linscale=1.0, vmin=None, vmax=None, clip=False, *, base=10)

Parameters

vmin, vmax
[float or None] If vmin and/or vmax is not given, they are initialized from the
minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A) calls autoscale_None(A).

clip
[bool, default: False] If True values falling outside the range [vmin, vmax],
are mapped to 0 or 1, whichever is closer, and masked values are set to 1. If
False masked values remain masked.

Clipping silently defeats the purpose of setting the over, under, and masked col-
ors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False.

Notes

Returns 0 if vmin == vmax.

__module__ = 'matplotlib.colors'

__slotnames__ = []

inverse(value)

Examples using matplotlib.colors.SymLogNorm

• sphx_glr_gallery_userdemo_colormap_normalizations.py

• sphx_glr_gallery_userdemo_colormap_normalizations_symlognorm.py

• Colormap Normalization

2028 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.colors.TwoSlopeNorm

class matplotlib.colors.TwoSlopeNorm(vcenter, vmin=None, vmax=None)
Bases: matplotlib.colors.Normalize

Normalize data with a set center.

Useful when mapping data with an unequal rates of change around a conceptual center, e.g., data that
range from -2 to 4, with 0 as the midpoint.

Parameters

vcenter
[float] The data value that defines 0.5 in the normalization.

vmin
[float, optional] The data value that defines 0.0 in the normalization. Defaults to
the min value of the dataset.

vmax
[float, optional] The data value that defines 1.0 in the normalization. Defaults to
the the max value of the dataset.

Examples

This maps data value -4000 to 0., 0 to 0.5, and +10000 to 1.0; data between is linearly interpolated:

>>> import matplotlib.colors as mcolors
>>> offset = mcolors.TwoSlopeNorm(vmin=-4000.,

vcenter=0., vmax=10000)
>>> data = [-4000., -2000., 0., 2500., 5000., 7500., 10000.]
>>> offset(data)
array([0., 0.25, 0.5, 0.625, 0.75, 0.875, 1.0])

__call__(value, clip=None)
Map value to the interval [0, 1]. The clip argument is unused.

__init__(vcenter, vmin=None, vmax=None)
Normalize data with a set center.

Useful when mapping data with an unequal rates of change around a conceptual center, e.g., data
that range from -2 to 4, with 0 as the midpoint.

Parameters

vcenter
[float] The data value that defines 0.5 in the normalization.

vmin

18.18. matplotlib.colors 2029

Matplotlib, Release 3.4.3

[float, optional] The data value that defines 0.0 in the normalization. Defaults
to the min value of the dataset.

vmax
[float, optional] The data value that defines 1.0 in the normalization. Defaults
to the the max value of the dataset.

Examples

This maps data value -4000 to 0., 0 to 0.5, and +10000 to 1.0; data between is linearly interpo-
lated:

>>> import matplotlib.colors as mcolors
>>> offset = mcolors.TwoSlopeNorm(vmin=-4000.,

vcenter=0., vmax=10000)
>>> data = [-4000., -2000., 0., 2500., 5000., 7500., 10000.]
>>> offset(data)
array([0., 0.25, 0.5, 0.625, 0.75, 0.875, 1.0])

__module__ = 'matplotlib.colors'

__slotnames__ = []

autoscale_None(A)
Get vmin and vmax, and then clip at vcenter

Examples using matplotlib.colors.TwoSlopeNorm

• Colormap Normalization

matplotlib.colors.FuncNorm

class matplotlib.colors.FuncNorm(functions, vmin=None, vmax=None, clip=False)
Bases: matplotlib.colors.FuncNorm

Arbitrary normalization using functions for the forward and inverse.

Parameters

functions
[(callable, callable)] two-tuple of the forward and inverse functions for the nor-
malization. The forward function must be monotonic.

Both functions must have the signature

def forward(values: array-like) -> array-like

2030 Chapter 18. Modules

Matplotlib, Release 3.4.3

vmin, vmax
[float or None] If vmin and/or vmax is not given, they are initialized from the
minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A) calls autoscale_None(A).

clip
[bool, default: False] If True values falling outside the range [vmin, vmax],
are mapped to 0 or 1, whichever is closer, andmasked values are set to 1. If False
masked values remain masked.

Clipping silently defeats the purpose of setting the over, under, and masked col-
ors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False.

__call__(value, clip=None)
Normalize value data in the [vmin, vmax] interval into the [0.0, 1.0] interval and return
it.

Parameters

value
Data to normalize.

clip
[bool] If None, defaults to self.clip (which defaults to False).

Notes

If not already initialized, self.vmin and self.vmax are initialized using self.
autoscale_None(value).

__init__(functions, vmin=None, vmax=None, clip=False)

Parameters

vmin, vmax
[float or None] If vmin and/or vmax is not given, they are initialized from the
minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A) calls autoscale_None(A).

clip
[bool, default: False] If True values falling outside the range [vmin, vmax],
are mapped to 0 or 1, whichever is closer, and masked values are set to 1. If
False masked values remain masked.

Clipping silently defeats the purpose of setting the over, under, and masked col-
ors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False.

18.18. matplotlib.colors 2031

Matplotlib, Release 3.4.3

Notes

Returns 0 if vmin == vmax.

__module__ = 'matplotlib.colors'

__slotnames__ = []

inverse(value)

Examples using matplotlib.colors.FuncNorm

• Colormap Normalization

18.18.2 Functions

from_levels_and_colors(levels, colors[,
extend])

A helper routine to generate a cmap and a norm in-
stance which behave similar to contourf's levels and
colors arguments.

hsv_to_rgb(hsv) Convert hsv values to rgb.
rgb_to_hsv(arr) Convert float rgb values (in the range [0, 1]), in a

numpy array to hsv values.
to_hex(c[, keep_alpha]) Convert c to a hex color.
to_rgb(c) Convert c to an RGB color, silently dropping the

alpha channel.
to_rgba(c[, alpha]) Convert c to an RGBA color.
to_rgba_array(c[, alpha]) Convert c to a (n, 4) array of RGBA colors.
is_color_like(c) Return whether c can be interpreted as an RGB(A)

color.
same_color(c1, c2) Return whether the colors c1 and c2 are the same.
get_named_colors_mapping() Return the global mapping of names to named col-

ors.

matplotlib.colors.from_levels_and_colors

matplotlib.colors.from_levels_and_colors(levels, colors, extend='neither')
A helper routine to generate a cmap and a norm instance which behave similar to contourf's levels and
colors arguments.

Parameters

levels
[sequence of numbers] The quantization levels used to construct the Bound-
aryNorm. Value v is quantized to level i if lev[i] <= v < lev[i+1].

colors

2032 Chapter 18. Modules

Matplotlib, Release 3.4.3

[sequence of colors] The fill color to use for each level. If extend is "neither" there
must be n_level - 1 colors. For an extend of "min" or "max" add one extra
color, and for an extend of "both" add two colors.

extend
[{'neither', 'min', 'max', 'both'}, optional] The behaviour when a value falls out of
range of the given levels. See contourf for details.

Returns

cmap
[Normalize]

norm
[Colormap]

Examples using matplotlib.colors.from_levels_and_colors

matplotlib.colors.hsv_to_rgb

matplotlib.colors.hsv_to_rgb(hsv)
Convert hsv values to rgb.

Parameters

hsv
[(..., 3) array-like] All values assumed to be in range [0, 1]

Returns

(..., 3) ndarray
Colors converted to RGB values in range [0, 1]

Examples using matplotlib.colors.hsv_to_rgb

• sphx_glr_gallery_mplot3d_voxels_torus.py

18.18. matplotlib.colors 2033

Matplotlib, Release 3.4.3

matplotlib.colors.rgb_to_hsv

matplotlib.colors.rgb_to_hsv(arr)
Convert float rgb values (in the range [0, 1]), in a numpy array to hsv values.

Parameters

arr
[(..., 3) array-like] All values must be in the range [0, 1]

Returns

(..., 3) ndarray
Colors converted to hsv values in range [0, 1]

Examples using matplotlib.colors.rgb_to_hsv

• sphx_glr_gallery_color_named_colors.py

matplotlib.colors.to_hex

matplotlib.colors.to_hex(c, keep_alpha=False)
Convert c to a hex color.

Uses the #rrggbb format if keep_alpha is False (the default), #rrggbbaa otherwise.

Examples using matplotlib.colors.to_hex

matplotlib.colors.to_rgb

matplotlib.colors.to_rgb(c)
Convert c to an RGB color, silently dropping the alpha channel.

Examples using matplotlib.colors.to_rgb

• sphx_glr_gallery_color_named_colors.py

2034 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.colors.to_rgba

matplotlib.colors.to_rgba(c, alpha=None)
Convert c to an RGBA color.

Parameters

c
[Matplotlib color or np.ma.masked]

alpha
[float, optional] If alpha is not None, it forces the alpha value, except if c is
"none" (case-insensitive), which always maps to (0, 0, 0, 0).

Returns

tuple
Tuple of (r, g, b, a) scalars.

Examples using matplotlib.colors.to_rgba

• sphx_glr_gallery_shapes_and_collections_collections.py

• sphx_glr_gallery_shapes_and_collections_line_collection.py

• sphx_glr_gallery_event_handling_lasso_demo.py

• sphx_glr_gallery_misc_demo_ribbon_box.py

matplotlib.colors.to_rgba_array

matplotlib.colors.to_rgba_array(c, alpha=None)
Convert c to a (n, 4) array of RGBA colors.

Parameters

c
[Matplotlib color or array of colors] If c is a masked array, an ndarray is returned
with a (0, 0, 0, 0) row for each masked value or row in c.

alpha
[float or sequence of floats, optional] If alpha is not None, it forces the alpha
value, except if c is "none" (case-insensitive), which always maps to (0, 0,
0, 0). If alpha is a sequence and c is a single color, c will be repeated to match
the length of alpha.

Returns

18.18. matplotlib.colors 2035

Matplotlib, Release 3.4.3

array
(n, 4) array of RGBA colors.

Examples using matplotlib.colors.to_rgba_array

matplotlib.colors.is_color_like

matplotlib.colors.is_color_like(c)
Return whether c can be interpreted as an RGB(A) color.

Examples using matplotlib.colors.is_color_like

matplotlib.colors.same_color

matplotlib.colors.same_color(c1, c2)
Return whether the colors c1 and c2 are the same.

c1, c2 can be single colors or lists/arrays of colors.

Examples using matplotlib.colors.same_color

matplotlib.colors.get_named_colors_mapping

matplotlib.colors.get_named_colors_mapping()
Return the global mapping of names to named colors.

Examples using matplotlib.colors.get_named_colors_mapping

18.19 matplotlib.container

class matplotlib.container.BarContainer(*args, **kwargs)
Bases: matplotlib.container.Container

Container for the artists of bar plots (e.g. created by Axes.bar).

The container can be treated as a tuple of the patches themselves. Additionally, you can access these
and further parameters by the attributes.

Attributes

patches
[list of Rectangle] The artists of the bars.

2036 Chapter 18. Modules

Matplotlib, Release 3.4.3

errorbar
[None or ErrorbarContainer] A container for the error bar artists if error
bars are present. None otherwise.

datavalues
[None or array-like] The underlying data values corresponding to the bars.

orientation
[{'vertical', 'horizontal'}, default: None] If 'vertical', the bars are assumed to be
vertical. If 'horizontal', the bars are assumed to be horizontal.

class matplotlib.container.Container(*args, **kwargs)
Bases: tuple

Base class for containers.

Containers are classes that collect semantically related Artists such as the bars of a bar plot.

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

get_children()

get_label()
Return the label used for this artist in the legend.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

18.19. matplotlib.container 2037

https://docs.python.org/3/library/stdtypes.html#tuple

Matplotlib, Release 3.4.3

See also:

add_callback

remove_callback

remove()

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

class matplotlib.container.ErrorbarContainer(*args, **kwargs)
Bases: matplotlib.container.Container

Container for the artists of error bars (e.g. created by Axes.errorbar).

The container can be treated as the lines tuple itself. Additionally, you can access these and further
parameters by the attributes.

Attributes

lines
[tuple] Tuple of (data_line, caplines, barlinecols).

• data_line : Line2D instance of x, y plot markers and/or line.

• caplines : tuple of Line2D instances of the error bar caps.

• barlinecols : list of LineCollection with the horizontal and vertical error
ranges.

has_xerr, has_yerr
[bool] True if the errorbar has x/y errors.

class matplotlib.container.StemContainer(*args, **kwargs)
Bases: matplotlib.container.Container

Container for the artists created in a Axes.stem() plot.

The container can be treated like a namedtuple (markerline, stemlines, baseline).

2038 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

Attributes

markerline
[Line2D] The artist of the markers at the stem heads.

stemlines
[list of Line2D] The artists of the vertical lines for all stems.

baseline
[Line2D] The artist of the horizontal baseline.

Parameters

markerline_stemlines_baseline
[tuple] Tuple of (markerline, stemlines, baseline). markerline
contains the LineCollection of the markers, stemlines is a LineCol-
lection of the main lines, baseline is the Line2D of the baseline.

18.20 matplotlib.contour

Classes to support contour plotting and labelling for the Axes class.

class matplotlib.contour.ClabelText(x=0, y=0, text='', color=None, verticalalign-
ment='baseline', horizontalalignment='left',
multialignment=None, fontproperties=None,
rotation=None, linespacing=None, rota-
tion_mode=None, usetex=None, wrap=False,
transform_rotates_text=False, **kwargs)

Bases: matplotlib.text.Text

Unlike the ordinary text, the get_rotation returns an updated angle in the pixel coordinate assuming
that the input rotation is an angle in data coordinate (or whatever transform set).

Create a Text instance at x, y with string text.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None

continues on next page

18.20. matplotlib.contour 2039

Matplotlib, Release 3.4.3

Table 132 – continued from previous page
Property Description
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
visible bool
wrap bool
x float
y float
zorder float

get_rotation()
Return the text angle in degrees between 0 and 360.

class matplotlib.contour.ContourLabeler
Bases: object

Mixin to provide labelling capability to ContourSet.

2040 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

add_label(x, y, rotation, lev, cvalue)
Add contour label using Text class.

add_label_clabeltext(x, y, rotation, lev, cvalue)
Add contour label using ClabelText class.

add_label_near(x, y, inline=True, inline_spacing=5, transform=None)
Add a label near the point (x, y).

Parameters

x, y
[float] The approximate location of the label.

inline
[bool, default: True] If True remove the segment of the contour beneath the label.

inline_spacing
[int, default: 5] Space in pixels to leave on each side of label when placing inline.
This spacing will be exact for labels at locations where the contour is straight,
less so for labels on curved contours.

transform
[Transform or False, default: self.axes.transData] A transform
applied to (x, y) before labeling. The default causes (x, y) to be inter-
preted as data coordinates. False is a synonym for IdentityTransform;
i.e. (x, y) should be interpreted as display coordinates.

calc_label_rot_and_inline(slc, ind, lw, lc=None, spacing=5)
Calculate the appropriate label rotation given the linecontour coordinates in screen units, the
index of the label location and the label width.

If lc is not None or empty, also break contours and compute inlining.

spacing is the empty space to leave around the label, in pixels.

Both tasks are done together to avoid calculating path lengths multiple times, which is relatively
costly.

The method used here involves computing the path length along the contour in pixel coordinates
and then looking approximately (label width / 2) away from central point to determine rotation
and then to break contour if desired.

clabel(levels=None, *, fontsize=None, inline=True, inline_spacing=5, fmt=None, col-
ors=None, use_clabeltext=False, manual=False, rightside_up=True, zorder=None)

Label a contour plot.

Adds labels to line contours in this ContourSet (which inherits from this mixin class).

Parameters

levels

18.20. matplotlib.contour 2041

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False

Matplotlib, Release 3.4.3

[array-like, optional] A list of level values, that should be labeled. The list must
be a subset of cs.levels. If not given, all levels are labeled.

fontsize
[str or float, default: rcParams["font.size"] (default: 10.0)] Size in
points or relative size e.g., 'smaller', 'x-large'. See Text.set_size for ac-
cepted string values.

colors
[color or colors or None, default: None] The label colors:

• IfNone, the color of each label matches the color of the corresponding contour.

• If one string color, e.g., colors = 'r' or colors = 'red', all labels will be plotted
in this color.

• If a tuple of colors (string, float, rgb, etc), different labels will be plotted in
different colors in the order specified.

inline
[bool, default: True] If True the underlying contour is removed where the label
is placed.

inline_spacing
[float, default: 5] Space in pixels to leave on each side of label when placing
inline.

This spacing will be exact for labels at locations where the contour is straight,
less so for labels on curved contours.

fmt
[Formatter or str or callable or dict, optional] How the levels are formatted:

• If a Formatter, it is used to format all levels at once, using its
Formatter.format_ticks method.

• If a str, it is interpreted as a %-style format string.

• If a callable, it is called with one level at a time and should return the corre-
sponding label.

• If a dict, it should directly map levels to labels.

The default is to use a standard ScalarFormatter.

manual
[bool or iterable, default: False] If True, contour labels will be placed manually
using mouse clicks. Click the first button near a contour to add a label, click the
second button (or potentially both mouse buttons at once) to finish adding labels.
The third button can be used to remove the last label added, but only if labels are
not inline. Alternatively, the keyboard can be used to select label locations (enter

2042 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=font.size#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

to end label placement, delete or backspace act like the third mouse button, and
any other key will select a label location).

manual can also be an iterable object of (x, y) tuples. Contour labels will be
created as if mouse is clicked at each (x, y) position.

rightside_up
[bool, default: True] If True, label rotations will always be plus or minus 90
degrees from level.

use_clabeltext
[bool, default: False] If True, ClabelText class (instead of Text) is used
to create labels. ClabelText recalculates rotation angles of texts during the
drawing time, therefore this can be used if aspect of the axes changes.

zorder
[float or None, default: (2 + contour.get_zorder())] zorder of the
contour labels.

Returns

labels
A list of Text instances for the labels.

get_label_coords(distances, XX, YY, ysize, lw)
[Deprecated] Return x, y, and the index of a label location.

Labels are plotted at a location with the smallest deviation of the contour from a straight line
unless there is another label nearby, in which case the next best place on the contour is picked
up. If all such candidates are rejected, the beginning of the contour is chosen.

Notes

Deprecated since version 3.4.

get_label_width(lev, fmt, fsize)
Return the width of the label in points.

get_text(lev, fmt)
Get the text of the label.

labels(inline, inline_spacing)

locate_label(linecontour, labelwidth)
Find good place to draw a label (relatively flat part of the contour).

pop_label(index=- 1)
Defaults to removing last label, but any index can be supplied

18.20. matplotlib.contour 2043

Matplotlib, Release 3.4.3

print_label(linecontour, labelwidth)
Return whether a contour is long enough to hold a label.

set_label_props(label, text, color)
Set the label properties - color, fontsize, text.

too_close(x, y, lw)
Return whether a label is already near this location.

class matplotlib.contour.ContourSet(ax, *args, levels=None, filled=False,
linewidths=None, linestyles=None,
hatches=(None), alpha=None, origin=None,
extent=None, cmap=None, colors=None,
norm=None, vmin=None, vmax=None, ex-
tend='neither', antialiased=None, nchunk=0,
locator=None, transform=None, **kwargs)

Bases: matplotlib.cm.ScalarMappable, matplotlib.contour.ContourLabeler

Store a set of contour lines or filled regions.

User-callable method: clabel

Parameters

ax
[Axes]

levels
[[level0, level1, ..., leveln]] A list of floating point numbers indicating the contour
levels.

allsegs
[[level0segs, level1segs, ...]] List of all the polygon segments for all the levels.
For contour lines len(allsegs) == len(levels), and for filled contour
regions len(allsegs) = len(levels)-1. The lists should look like

level0segs = [polygon0, polygon1, ...]
polygon0 = [[x0, y0], [x1, y1], ...]

allkinds
[None or [level0kinds, level1kinds, ...]] Optional list of all the polygon ver-
tex kinds (code types), as described and used in Path. This is used to allow
multiply- connected paths such as holes within filled polygons. If not None,
len(allkinds) == len(allsegs). The lists should look like

level0kinds = [polygon0kinds, ...]
polygon0kinds = [vertexcode0, vertexcode1, ...]

If allkinds is not None, usually all polygons for a particular contour level are
grouped together so that level0segs = [polygon0] and level0kinds
= [polygon0kinds].

2044 Chapter 18. Modules

Matplotlib, Release 3.4.3

**kwargs
Keyword arguments are as described in the docstring of contour.

Attributes

ax
[Axes] The Axes object in which the contours are drawn.

collections
[silent_list of LineCollections or PathCollections] The
Artists representing the contour. This is a list of LineCollections for line
contours and a list of PathCollections for filled contours.

levels
[array] The values of the contour levels.

layers
[array] Same as levels for line contours; half-way between levels for filled contours.
See ContourSet._process_colors.

Draw contour lines or filled regions, depending on whether keyword arg filled is False (default) or
True.

Call signature:

ContourSet(ax, levels, allsegs, [allkinds], **kwargs)

Parameters

ax
[Axes] The Axes object to draw on.

levels
[[level0, level1, ..., leveln]] A list of floating point numbers indicating the contour
levels.

allsegs
[[level0segs, level1segs, ...]] List of all the polygon segments for all the levels.
For contour lines len(allsegs) == len(levels), and for filled contour
regions len(allsegs) = len(levels)-1. The lists should look like

level0segs = [polygon0, polygon1, ...]
polygon0 = [[x0, y0], [x1, y1], ...]

allkinds

18.20. matplotlib.contour 2045

Matplotlib, Release 3.4.3

[[level0kinds, level1kinds, ...], optional] Optional list of all the polygon ver-
tex kinds (code types), as described and used in Path. This is used to allow
multiply- connected paths such as holes within filled polygons. If not None,
len(allkinds) == len(allsegs). The lists should look like

level0kinds = [polygon0kinds, ...]
polygon0kinds = [vertexcode0, vertexcode1, ...]

If allkinds is not None, usually all polygons for a particular contour level are
grouped together so that level0segs = [polygon0] and level0kinds
= [polygon0kinds].

**kwargs
Keyword arguments are as described in the docstring of contour.

property ax

changed()
Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed'
signal.

find_nearest_contour(x, y, indices=None, pixel=True)
Find the point in the contour plot that is closest to (x, y).

Parameters

x, y: float
The reference point.

indices
[list of int or None, default: None] Indices of contour levels to consider. If None
(the default), all levels are considered.

pixel
[bool, default: True] If True, measure distance in pixel (screen) space, which is
useful for manual contour labeling; else, measure distance in axes space.

Returns

contour
[Collection] The contour that is closest to (x, y).

segment
[int] The index of the Path in contour that is closest to (x, y).

index
[int] The index of the path segment in segment that is closest to (x, y).

2046 Chapter 18. Modules

Matplotlib, Release 3.4.3

xmin, ymin
[float] The point in the contour plot that is closest to (x, y).

d2
[float] The squared distance from (xmin, ymin) to (x, y).

get_alpha()
Return alpha to be applied to all ContourSet artists.

get_transform()
Return the Transform instance used by this ContourSet.

legend_elements(variable_name='x', str_format=<class 'str'>)
Return a list of artists and labels suitable for passing through to legend which represent this
ContourSet.

The labels have the form "0 < x <= 1" stating the data ranges which the artists represent.

Parameters

variable_name
[str] The string used inside the inequality used on the labels.

str_format
[function: float -> str] Function used to format the numbers in the labels.

Returns

artists
[list[Artist]] A list of the artists.

labels
[list[str]] A list of the labels.

set_alpha(alpha)
Set the alpha blending value for all ContourSet artists. alpha must be between 0 (transparent)
and 1 (opaque).

class matplotlib.contour.QuadContourSet(ax, *args, levels=None, filled=False,
linewidths=None, linestyles=None,
hatches=(None), alpha=None, ori-
gin=None, extent=None, cmap=None,
colors=None, norm=None, vmin=None,
vmax=None, extend='neither', an-
tialiased=None, nchunk=0, loca-
tor=None, transform=None, **kwargs)

Bases: matplotlib.contour.ContourSet

Create and store a set of contour lines or filled regions.

18.20. matplotlib.contour 2047

Matplotlib, Release 3.4.3

This class is typically not instantiated directly by the user but by contour and contourf.

Attributes

ax
[Axes] The Axes object in which the contours are drawn.

collections
[silent_list of LineCollections or PathCollections] The
Artists representing the contour. This is a list of LineCollections for line
contours and a list of PathCollections for filled contours.

levels
[array] The values of the contour levels.

layers
[array] Same as levels for line contours; half-way between levels for filled contours.
See ContourSet._process_colors.

Draw contour lines or filled regions, depending on whether keyword arg filled is False (default) or
True.

Call signature:

ContourSet(ax, levels, allsegs, [allkinds], **kwargs)

Parameters

ax
[Axes] The Axes object to draw on.

levels
[[level0, level1, ..., leveln]] A list of floating point numbers indicating the contour
levels.

allsegs
[[level0segs, level1segs, ...]] List of all the polygon segments for all the levels.
For contour lines len(allsegs) == len(levels), and for filled contour
regions len(allsegs) = len(levels)-1. The lists should look like

level0segs = [polygon0, polygon1, ...]
polygon0 = [[x0, y0], [x1, y1], ...]

allkinds
[[level0kinds, level1kinds, ...], optional] Optional list of all the polygon ver-
tex kinds (code types), as described and used in Path. This is used to allow

2048 Chapter 18. Modules

Matplotlib, Release 3.4.3

multiply- connected paths such as holes within filled polygons. If not None,
len(allkinds) == len(allsegs). The lists should look like

level0kinds = [polygon0kinds, ...]
polygon0kinds = [vertexcode0, vertexcode1, ...]

If allkinds is not None, usually all polygons for a particular contour level are
grouped together so that level0segs = [polygon0] and level0kinds
= [polygon0kinds].

**kwargs
Keyword arguments are as described in the docstring of contour.

18.21 matplotlib.dates

AutoDateFormatter

Formatter

ConciseDateFormatter

DateFormatter

IndexDateFormatter
AutoDateLocator

DateLocator
RRuleLocator

MicrosecondLocator

YearLocator

ConciseDateConverterDateConverterConversionInterface

Locator

DayLocator

HourLocator

MinuteLocator

MonthLocator

SecondLocator

WeekdayLocator

TickHelper

rrulewrapper

Matplotlib provides sophisticated date plotting capabilities, standing on the shoulders of python datetime
and the add-on module dateutil.

18.21.1 Matplotlib date format

Matplotlib represents dates using floating point numbers specifying the number of days since a default epoch
of 1970-01-01 UTC; for example, 1970-01-01, 06:00 is the floating point number 0.25. The formatters and
locators require the use of datetime.datetime objects, so only dates between year 0001 and 9999
can be represented. Microsecond precision is achievable for (approximately) 70 years on either side of the
epoch, and 20 microseconds for the rest of the allowable range of dates (year 0001 to 9999). The epoch can
be changed at import time via dates.set_epoch or rcParams["dates.epoch"] to other dates if
necessary; see /gallery/ticks_and_spines/date_precision_and_epochs for a discussion.

18.21. matplotlib.dates 2049

https://docs.python.org/3/library/datetime.html#module-datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
../tutorials/introductory/customizing.html?highlight=dates.epoch#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Note: Before Matplotlib 3.3, the epoch was 0000-12-31 which lost modern microsecond precision and also
made the default axis limit of 0 an invalid datetime. In 3.3 the epoch was changed as above. To convert old
ordinal floats to the new epoch, users can do:

new_ordinal = old_ordinal + mdates.date2num(np.datetime64('0000-12-31'))

There are a number of helper functions to convert between datetime objects and Matplotlib dates:

datestr2num Convert a date string to a datenum using
dateutil.parser.parse.

date2num Convert datetime objects to Matplotlib dates.
num2date Convert Matplotlib dates to datetime objects.
num2timedelta Convert number of days to a timedelta object.
drange Return a sequence of equally spaced Matplotlib

dates.
set_epoch Set the epoch (origin for dates) for datetime calcu-

lations.
get_epoch Get the epoch used by dates.

Note: Like Python's datetime.datetime, Matplotlib uses the Gregorian calendar for all conversions
between dates and floating point numbers. This practice is not universal, and calendar differences can cause
confusing differences between what Python and Matplotlib give as the number of days since 0001-01-01
and what other software and databases yield. For example, the US Naval Observatory uses a calendar that
switches from Julian to Gregorian in October, 1582. Hence, using their calculator, the number of days
between 0001-01-01 and 2006-04-01 is 732403, whereas using the Gregorian calendar via the datetime
module we find:

In [1]: date(2006, 4, 1).toordinal() - date(1, 1, 1).toordinal()
Out[1]: 732401

All the Matplotlib date converters, tickers and formatters are timezone aware. If no explicit timezone is
provided, rcParams["timezone"] (default: 'UTC') is assumed. If you want to use a custom time
zone, pass a datetime.tzinfo instance with the tz keyword argument to num2date, plot_date,
and any custom date tickers or locators you create.

A wide range of specific and general purpose date tick locators and formatters are provided in this module.
See matplotlib.ticker for general information on tick locators and formatters. These are described
below.

The dateutil module provides additional code to handle date ticking, making it easy to place ticks on any
kinds of dates. See examples below.

2050 Chapter 18. Modules

https://docs.python.org/3/library/datetime.html#module-datetime
https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.datetime
../tutorials/introductory/customizing.html?highlight=timezone#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
https://dateutil.readthedocs.io

Matplotlib, Release 3.4.3

18.21.2 Date tickers

Most of the date tickers can locate single or multiple values. For example:

import constants for the days of the week
from matplotlib.dates import MO, TU, WE, TH, FR, SA, SU

tick on mondays every week
loc = WeekdayLocator(byweekday=MO, tz=tz)

tick on mondays and saturdays
loc = WeekdayLocator(byweekday=(MO, SA))

In addition, most of the constructors take an interval argument:

tick on mondays every second week
loc = WeekdayLocator(byweekday=MO, interval=2)

The rrule locator allows completely general date ticking:

tick every 5th easter
rule = rrulewrapper(YEARLY, byeaster=1, interval=5)
loc = RRuleLocator(rule)

The available date tickers are:

• MicrosecondLocator: Locate microseconds.

• SecondLocator: Locate seconds.

• MinuteLocator: Locate minutes.

• HourLocator: Locate hours.

• DayLocator: Locate specified days of the month.

• WeekdayLocator: Locate days of the week, e.g., MO, TU.

• MonthLocator: Locate months, e.g., 7 for July.

• YearLocator: Locate years that are multiples of base.

• RRuleLocator: Locate using a matplotlib.dates.rrulewrapper. rrulewrapper is
a simple wrapper around dateutil's dateutil.rrule which allow almost arbitrary date tick speci-
fications. See rrule example.

• AutoDateLocator: On autoscale, this class picks the best DateLocator (e.g., RRuleLoca-
tor) to set the view limits and the tick locations. If called with interval_multiples=True it
will make ticks line up with sensible multiples of the tick intervals. E.g. if the interval is 4 hours, it
will pick hours 0, 4, 8, etc as ticks. This behaviour is not guaranteed by default.

18.21. matplotlib.dates 2051

https://dateutil.readthedocs.io
https://dateutil.readthedocs.io/en/stable/rrule.html#module-dateutil.rrule

Matplotlib, Release 3.4.3

18.21.3 Date formatters

The available date formatters are:

• AutoDateFormatter: attempts to figure out the best format to use. This is most useful when used
with the AutoDateLocator.

• ConciseDateFormatter: also attempts to figure out the best format to use, and to make the
format as compact as possible while still having complete date information. This is most useful when
used with the AutoDateLocator.

• DateFormatter: use strftime format strings.

• IndexDateFormatter: date plots with implicit x indexing.

class matplotlib.dates.AutoDateFormatter(locator, tz=None, defaultfmt='%Y-%m-
%d', *, usetex=None)

Bases: matplotlib.ticker.Formatter

A Formatter which attempts to figure out the best format to use. This is most useful when used
with the AutoDateLocator.

The AutoDateFormatter has a scale dictionary that maps the scale of the tick (the distance in days
between one major tick) and a format string. The default looks like this:

self.scaled = {
DAYS_PER_YEAR: rcParams['date.autoformat.year'],
DAYS_PER_MONTH: rcParams['date.autoformat.month'],
1.0: rcParams['date.autoformat.day'],
1. / HOURS_PER_DAY: rcParams['date.autoformat.hour'],
1. / (MINUTES_PER_DAY): rcParams['date.autoformat.minute'],
1. / (SEC_PER_DAY): rcParams['date.autoformat.second'],
1. / (MUSECONDS_PER_DAY): rcParams['date.autoformat.microsecond'],

}

The algorithm picks the key in the dictionary that is >= the current scale and uses that format string.
You can customize this dictionary by doing:

>>> locator = AutoDateLocator()
>>> formatter = AutoDateFormatter(locator)
>>> formatter.scaled[1/(24.*60.)] = '%M:%S' # only show min and sec

A custom FuncFormatter can also be used. The following example shows how to use a custom
format function to strip trailing zeros from decimal seconds and adds the date to the first ticklabel:

>>> def my_format_function(x, pos=None):
... x = matplotlib.dates.num2date(x)
... if pos == 0:
... fmt = '%D %H:%M:%S.%f'
... else:
... fmt = '%H:%M:%S.%f'
... label = x.strftime(fmt)
... label = label.rstrip("0")
... label = label.rstrip(".")

(continues on next page)

2052 Chapter 18. Modules

https://docs.python.org/3/library/datetime.html#datetime.datetime.strftime

Matplotlib, Release 3.4.3

(continued from previous page)
... return label
>>> from matplotlib.ticker import FuncFormatter
>>> formatter.scaled[1/(24.*60.)] = FuncFormatter(my_format_function)

Autoformat the date labels.

Parameters

locator
[ticker.Locator] Locator that this axis is using.

tz
[str, optional] Passed to dates.date2num.

defaultfmt
[str] The default format to use if none of the values in self.scaled are greater
than the unit returned by locator._get_unit().

usetex
[bool, default: rcParams["text.usetex"] (default: False)] To en-
able/disable the use of TeX's math mode for rendering the results of the formatter.
If any entries inself.scaled are set as functions, then it is up to the customized
function to enable or disable TeX's math mode itself.

class matplotlib.dates.AutoDateLocator(tz=None, minticks=5, maxticks=None, in-
terval_multiples=True)

Bases: matplotlib.dates.DateLocator

On autoscale, this class picks the best DateLocator to set the view limits and the tick locations.

Attributes

intervald
[dict]Mapping of tick frequencies tomultiples allowed for that ticking. The default
is

self.intervald = {
YEARLY : [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400,␣

↪500,
1000, 2000, 4000, 5000, 10000],

MONTHLY : [1, 2, 3, 4, 6],
DAILY : [1, 2, 3, 7, 14, 21],
HOURLY : [1, 2, 3, 4, 6, 12],
MINUTELY: [1, 5, 10, 15, 30],
SECONDLY: [1, 5, 10, 15, 30],
MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500,

1000, 2000, 5000, 10000, 20000, 50000,
100000, 200000, 500000, 1000000],

}

18.21. matplotlib.dates 2053

../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

where the keys are defined in dateutil.rrule.

The interval is used to specify multiples that are appropriate for the frequency
of ticking. For instance, every 7 days is sensible for daily ticks, but for min-
utes/seconds, 15 or 30 make sense.

When customizing, you should only modify the values for the existing keys. You
should not add or delete entries.

Example for forcing ticks every 3 hours:

locator = AutoDateLocator()
locator.intervald[HOURLY] = [3] # only show every 3 hours

Parameters

tz
[datetime.tzinfo] Ticks timezone.

minticks
[int] The minimum number of ticks desired; controls whether ticks occur yearly,
monthly, etc.

maxticks
[int] The maximum number of ticks desired; controls the interval between ticks
(ticking every other, every 3, etc.). For fine-grained control, this can be a dictio-
nary mapping individual rrule frequency constants (YEARLY, MONTHLY, etc.)
to their own maximum number of ticks. This can be used to keep the number of
ticks appropriate to the format chosen inAutoDateFormatter. Any frequency
not specified in this dictionary is given a default value.

interval_multiples
[bool, default: True]Whether ticks should be chosen to be multiple of the interval,
locking them to 'nicer' locations. For example, this will force the ticks to be at
hours 0, 6, 12, 18 when hourly ticking is done at 6 hour intervals.

get_locator(dmin, dmax)
Pick the best locator based on a distance.

nonsingular(vmin, vmax)
Given the proposed upper and lower extent, adjust the range if it is too close to being singular
(i.e. a range of ~0).

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

2054 Chapter 18. Modules

https://dateutil.readthedocs.io/en/stable/rrule.html#module-dateutil.rrule
https://docs.python.org/3/library/datetime.html#datetime.tzinfo

Matplotlib, Release 3.4.3

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

class matplotlib.dates.ConciseDateConverter(formats=None,
zero_formats=None,
offset_formats=None,
show_offset=True, *, inter-
val_multiples=True)

Bases: matplotlib.dates.DateConverter

axisinfo(unit, axis)
Return the AxisInfo for unit.

unit is a tzinfo instance or None. The axis argument is required but not used.

class matplotlib.dates.ConciseDateFormatter(locator, tz=None, for-
mats=None, offset_formats=None,
zero_formats=None,
show_offset=True, *, use-
tex=None)

Bases: matplotlib.ticker.Formatter

A Formatter which attempts to figure out the best format to use for the date, and to make it as com-
pact as possible, but still be complete. This is most useful when used with the AutoDateLocator:

>>> locator = AutoDateLocator()
>>> formatter = ConciseDateFormatter(locator)

Parameters

locator
[ticker.Locator] Locator that this axis is using.

tz
[str, optional] Passed to dates.date2num.

formats
[list of 6 strings, optional] Format strings for 6 levels of tick labelling: mostly
years, months, days, hours, minutes, and seconds. Strings use the same for-
mat codes as strftime. Default is ['%Y', '%b', '%d', '%H:%M',
'%H:%M', '%S.%f']

zero_formats
[list of 6 strings, optional] Format strings for tick labels that are "zeros" for a given
tick level. For instance, if most ticks are months, ticks around 1 Jan 2005 will be

18.21. matplotlib.dates 2055

https://docs.python.org/3/library/datetime.html#datetime.datetime.strftime

Matplotlib, Release 3.4.3

labeled "Dec", "2005", "Feb". The default is ['', '%Y', '%b', '%b-%d',
'%H:%M', '%H:%M']

offset_formats
[list of 6 strings, optional] Format strings for the 6 levels that is applied to the
"offset" string found on the right side of an x-axis, or top of a y-axis. Combined
with the tick labels this should completely specify the date. The default is:

['', '%Y', '%Y-%b', '%Y-%b-%d', '%Y-%b-%d', '%Y-%b-%d %H:%M
↪']

show_offset
[bool, default: True] Whether to show the offset or not.

usetex
[bool, default: rcParams["text.usetex"] (default: False)] To en-
able/disable the use of TeX's math mode for rendering the results of the formatter.

Examples

See /gallery/ticks_and_spines/date_concise_formatter

Feb 08 15 22 Mar 08 15 22 Apr
2005-Apr

10

0

10

20

30

40

Concise Date Formatter

2056 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Autoformat the date labels. The default format is used to form an initial string, and then redundant
elements are removed.

format_data_short(value)
Return a short string version of the tick value.

Defaults to the position-independent long value.

format_ticks(values)
Return the tick labels for all the ticks at once.

get_offset()

class matplotlib.dates.DateConverter(*, interval_multiples=True)
Bases: matplotlib.units.ConversionInterface

Converter for datetime.date and datetime.datetime data, or for date/time data represented
as it would be converted by date2num.

The 'unit' tag for such data is None or a tzinfo instance.

axisinfo(unit, axis)
Return the AxisInfo for unit.

unit is a tzinfo instance or None. The axis argument is required but not used.

static convert(value, unit, axis)
If value is not already a number or sequence of numbers, convert it with date2num.

The unit and axis arguments are not used.

static default_units(x, axis)
Return the tzinfo instance of x or of its first element, or None

class matplotlib.dates.DateFormatter(fmt, tz=None, *, usetex=None)
Bases: matplotlib.ticker.Formatter

Format a tick (in days since the epoch) with a strftime format string.

Parameters

fmt
[str] strftime format string

tz
[datetime.tzinfo, default: rcParams["timezone"] (default:
'UTC')] Ticks timezone.

usetex
[bool, default: rcParams["text.usetex"] (default: False)] To en-
able/disable the use of TeX's math mode for rendering the results of the formatter.

property illegal_s

set_tzinfo(tz)

18.21. matplotlib.dates 2057

https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strftime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strftime
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
../tutorials/introductory/customizing.html?highlight=timezone#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

class matplotlib.dates.DateLocator(tz=None)
Bases: matplotlib.ticker.Locator

Determines the tick locations when plotting dates.

This class is subclassed by other Locators and is not meant to be used on its own.

Parameters

tz
[datetime.tzinfo]

datalim_to_dt()
Convert axis data interval to datetime objects.

hms0d = {'byhour': 0, 'byminute': 0, 'bysecond': 0}

nonsingular(vmin, vmax)
Given the proposed upper and lower extent, adjust the range if it is too close to being singular
(i.e. a range of ~0).

set_tzinfo(tz)
Set time zone info.

viewlim_to_dt()
Convert the view interval to datetime objects.

class matplotlib.dates.DayLocator(bymonthday=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurrences of each day of the month. For example, 1, 15, 30.

Mark every day in bymonthday; bymonthday can be an int or sequence.

Default is to tick every day of the month: bymonthday=range(1, 32).

class matplotlib.dates.HourLocator(byhour=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurrences of each hour.

Mark every hour in byhour; byhour can be an int or sequence. Default is to tick every hour: by-
hour=range(24)

interval is the interval between each iteration. For example, if interval=2, mark every second
occurrence.

class matplotlib.dates.IndexDateFormatter(t, fmt, tz=None)
Bases: matplotlib.ticker.Formatter

[Deprecated] Use with IndexLocator to cycle format strings by index.

2058 Chapter 18. Modules

https://docs.python.org/3/library/datetime.html#datetime.tzinfo

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

Parameters

t
[list of float] A sequence of dates (floating point days).

fmt
[str] A strftime format string.

class matplotlib.dates.MicrosecondLocator(interval=1, tz=None)
Bases: matplotlib.dates.DateLocator

Make ticks on regular intervals of one or more microsecond(s).

Note: By default, Matplotlib uses a floating point representation of time in days since the epoch,
so plotting data with microsecond time resolution does not work well for dates that are far (about 70
years) from the epoch (check with get_epoch).

If you want sub-microsecond resolution time plots, it is strongly recommended to use floating point
seconds, not datetime-like time representation.

If you really must use datetime.datetime() or similar and still need microsecond precision, change
the time origin via dates.set_epoch to something closer to the dates being plotted. See
/gallery/ticks_and_spines/date_precision_and_epochs.

interval is the interval between each iteration. For example, if interval=2, mark every second
microsecond.

set_axis(axis)

set_data_interval(vmin, vmax)

set_view_interval(vmin, vmax)

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

18.21. matplotlib.dates 2059

https://docs.python.org/3/library/datetime.html#datetime.datetime.strftime

Matplotlib, Release 3.4.3

class matplotlib.dates.MinuteLocator(byminute=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurrences of each minute.

Mark every minute in byminute; byminute can be an int or sequence. Default is to tick every minute:
byminute=range(60)

interval is the interval between each iteration. For example, if interval=2, mark every second
occurrence.

class matplotlib.dates.MonthLocator(bymonth=None, bymonthday=1, interval=1,
tz=None)

Bases: matplotlib.dates.RRuleLocator

Make ticks on occurrences of each month, e.g., 1, 3, 12.

Mark every month in bymonth; bymonth can be an int or sequence. Default is range(1, 13), i.e.
every month.

interval is the interval between each iteration. For example, if interval=2, mark every second
occurrence.

class matplotlib.dates.RRuleLocator(o, tz=None)
Bases: matplotlib.dates.DateLocator

Parameters

tz
[datetime.tzinfo]

static get_unit_generic(freq)

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

class matplotlib.dates.SecondLocator(bysecond=None, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurrences of each second.

Mark every second in bysecond; bysecond can be an int or sequence. Default is to tick every second:
bysecond = range(60)

2060 Chapter 18. Modules

https://docs.python.org/3/library/datetime.html#datetime.tzinfo

Matplotlib, Release 3.4.3

interval is the interval between each iteration. For example, if interval=2, mark every second
occurrence.

class matplotlib.dates.WeekdayLocator(byweekday=1, interval=1, tz=None)
Bases: matplotlib.dates.RRuleLocator

Make ticks on occurrences of each weekday.

Mark every weekday in byweekday; byweekday can be a number or sequence.

Elements of byweekday must be one of MO, TU, WE, TH, FR, SA, SU, the constants from
dateutil.rrule, which have been imported into the matplotlib.dates namespace.

interval specifies the number of weeks to skip. For example, interval=2 plots every second week.

class matplotlib.dates.YearLocator(base=1, month=1, day=1, tz=None)
Bases: matplotlib.dates.DateLocator

Make ticks on a given day of each year that is a multiple of base.

Examples:

Tick every year on Jan 1st
locator = YearLocator()

Tick every 5 years on July 4th
locator = YearLocator(5, month=7, day=4)

Mark years that are multiple of base on a given month and day (default jan 1).

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

matplotlib.dates.date2num(d)
Convert datetime objects to Matplotlib dates.

Parameters

d
[datetime.datetime or numpy.datetime64 or sequences of these]

Returns

float or sequence of floats

18.21. matplotlib.dates 2061

https://dateutil.readthedocs.io/en/stable/rrule.html#module-dateutil.rrule
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64

Matplotlib, Release 3.4.3

Number of days since the epoch. See get_epoch for the epoch, which
can be changed by rcParams["date.epoch"] (default: '1970-01-
01T00:00:00') or set_epoch. If the epoch is "1970-01-01T00:00:00" (de-
fault) then noon Jan 1 1970 ("1970-01-01T12:00:00") returns 0.5.

Notes

The Gregorian calendar is assumed; this is not universal practice. For details see the module docstring.

matplotlib.dates.datestr2num(d, default=None)
Convert a date string to a datenum using dateutil.parser.parse.

Parameters

d
[str or sequence of str] The dates to convert.

default
[datetime.datetime, optional] The default date to use when fields are missing in d.

matplotlib.dates.drange(dstart, dend, delta)
Return a sequence of equally spaced Matplotlib dates.

The dates start at dstart and reach up to, but not including dend. They are spaced by delta.

Parameters

dstart, dend
[datetime] The date limits.

delta
[datetime.timedelta] Spacing of the dates.

Returns

numpy.array

A list floats representing Matplotlib dates.

matplotlib.dates.epoch2num(e)
Convert UNIX time to days since Matplotlib epoch.

Parameters

e
[list of floats] Time in seconds since 1970-01-01.

Returns

2062 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=date.epoch#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array

Matplotlib, Release 3.4.3

numpy.array

Time in days since Matplotlib epoch (see get_epoch()).

matplotlib.dates.get_epoch()
Get the epoch used by dates.

Returns

epoch
[str] String for the epoch (parsable by numpy.datetime64).

matplotlib.dates.num2date(x, tz=None)
Convert Matplotlib dates to datetime objects.

Parameters

x
[float or sequence of floats] Number of days (fraction part represents hours,
minutes, seconds) since the epoch. See get_epoch for the epoch, which
can be changed by rcParams["date.epoch"] (default: '1970-01-
01T00:00:00') or set_epoch.

tz
[str, default: rcParams["timezone"] (default: 'UTC')] Timezone of x.

Returns

datetime or sequence of datetime
Dates are returned in timezone tz.

If x is a sequence, a sequence of datetime objects will be returned.

Notes

The addition of one here is a historical artifact. Also, note that the Gregorian calendar is assumed; this
is not universal practice. For details, see the module docstring.

matplotlib.dates.num2epoch(d)
Convert days since Matplotlib epoch to UNIX time.

Parameters

d
[list of floats] Time in days since Matplotlib epoch (see get_epoch()).

Returns

18.21. matplotlib.dates 2063

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64
https://docs.python.org/3/library/datetime.html#datetime.datetime
../tutorials/introductory/customizing.html?highlight=date.epoch#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=timezone#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Matplotlib, Release 3.4.3

numpy.array

Time in seconds since 1970-01-01.

matplotlib.dates.num2timedelta(x)
Convert number of days to a timedelta object.

If x is a sequence, a sequence of timedelta objects will be returned.

Parameters

x
[float, sequence of floats] Number of days. The fraction part represents hours,
minutes, seconds.

Returns

datetime.timedelta or list[datetime.timedelta]

class matplotlib.dates.relativedelta(dt1=None, dt2=None, years=0, months=0,
days=0, leapdays=0, weeks=0, hours=0,
minutes=0, seconds=0, microseconds=0,
year=None, month=None, day=None, week-
day=None, yearday=None, nlyearday=None,
hour=None, minute=None, second=None,
microsecond=None)

Bases: object

The relativedelta type is designed to be applied to an existing datetime and can replace specific com-
ponents of that datetime, or represents an interval of time.

It is based on the specification of the excellent work done by M.-A. Lemburg in his mx.DateTime
extension. However, notice that this type does NOT implement the same algorithm as his work. Do
NOT expect it to behave like mx.DateTime's counterpart.

There are two different ways to build a relativedelta instance. The first one is passing it two
date/datetime classes:

relativedelta(datetime1, datetime2)

The second one is passing it any number of the following keyword arguments:

relativedelta(arg1=x,arg2=y,arg3=z...)

year, month, day, hour, minute, second, microsecond:
Absolute information (argument is singular); adding or subtracting a
relativedelta with absolute information does not perform an␣

↪arithmetic
operation, but rather REPLACES the corresponding value in the
original datetime with the value(s) in relativedelta.

(continues on next page)

2064 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#object
https://www.egenix.com/products/python/mxBase/mxDateTime/

Matplotlib, Release 3.4.3

(continued from previous page)
years, months, weeks, days, hours, minutes, seconds, microseconds:

Relative information, may be negative (argument is plural); adding
or subtracting a relativedelta with relative information performs
the corresponding arithmetic operation on the original datetime value
with the information in the relativedelta.

weekday:
One of the weekday instances (MO, TU, etc) available in the
relativedelta module. These instances may receive a parameter N,
specifying the Nth weekday, which could be positive or negative
(like MO(+1) or MO(-2)). Not specifying it is the same as specifying
+1. You can also use an integer, where 0=MO. This argument is always
relative e.g. if the calculated date is already Monday, using MO(1)
or MO(-1) won't change the day. To effectively make it absolute, use
it in combination with the day argument (e.g. day=1, MO(1) for first
Monday of the month).

leapdays:
Will add given days to the date found, if year is a leap
year, and the date found is post 28 of february.

yearday, nlyearday:
Set the yearday or the non-leap year day (jump leap days).
These are converted to day/month/leapdays information.

There are relative and absolute forms of the keyword arguments. The plural is relative, and the singular
is absolute. For each argument in the order below, the absolute form is applied first (by setting each
attribute to that value) and then the relative form (by adding the value to the attribute).

The order of attributes considered when this relativedelta is added to a datetime is:

1. Year

2. Month

3. Day

4. Hours

5. Minutes

6. Seconds

7. Microseconds

Finally, weekday is applied, using the rule described above.

For example

>>> from datetime import datetime
>>> from dateutil.relativedelta import relativedelta, MO
>>> dt = datetime(2018, 4, 9, 13, 37, 0)
>>> delta = relativedelta(hours=25, day=1, weekday=MO(1))
>>> dt + delta
datetime.datetime(2018, 4, 2, 14, 37)

18.21. matplotlib.dates 2065

Matplotlib, Release 3.4.3

First, the day is set to 1 (the first of the month), then 25 hours are added, to get to the 2nd day and 14th
hour, finally the weekday is applied, but since the 2nd is already a Monday there is no effect.

normalized()
Return a version of this object represented entirely using integer values for the relative attributes.

>>> relativedelta(days=1.5, hours=2).normalized()
relativedelta(days=+1, hours=+14)

Returns
Returns a dateutil.relativedelta.relativedelta object.

property weeks

class matplotlib.dates.rrule(freq, dtstart=None, interval=1, wkst=None, count=None,
until=None, bysetpos=None, bymonth=None, by-
monthday=None, byyearday=None, byeaster=None,
byweekno=None, byweekday=None, byhour=None,
byminute=None, bysecond=None, cache=False)

Bases: dateutil.rrule.rrulebase

That's the base of the rrule operation. It accepts all the keywords defined in the RFC as its constructor
parameters (except byday, which was renamed to byweekday) and more. The constructor prototype is:

rrule(freq)

Where freq must be one of YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, or
SECONDLY.

Note: Per RFC section 3.3.10, recurrence instances falling on invalid dates and times are ignored
rather than coerced:

Recurrence rules may generate recurrence instances with an invalid date (e.g., February 30)
or nonexistent local time (e.g., 1:30 AM on a day where the local time is moved forward
by an hour at 1:00 AM). Such recurrence instances MUST be ignored and MUST NOT be
counted as part of the recurrence set.

This can lead to possibly surprising behavior when, for example, the start date occurs at the end of the
month:

>>> from dateutil.rrule import rrule, MONTHLY
>>> from datetime import datetime
>>> start_date = datetime(2014, 12, 31)
>>> list(rrule(freq=MONTHLY, count=4, dtstart=start_date))
...
[datetime.datetime(2014, 12, 31, 0, 0),
datetime.datetime(2015, 1, 31, 0, 0),
datetime.datetime(2015, 3, 31, 0, 0),
datetime.datetime(2015, 5, 31, 0, 0)]

2066 Chapter 18. Modules

https://dateutil.readthedocs.io/en/stable/relativedelta.html#dateutil.relativedelta.relativedelta

Matplotlib, Release 3.4.3

Additionally, it supports the following keyword arguments:

Parameters

• dtstart -- The recurrence start. Besides being the base for the recurrence, miss-
ing parameters in the final recurrence instances will also be extracted from this
date. If not given, datetime.now() will be used instead.

• interval -- The interval between each freq iteration. For example, when using
YEARLY, an interval of 2 means once every two years, but with HOURLY, it
means once every two hours. The default interval is 1.

• wkst -- The week start day. Must be one of the MO, TU, WE constants, or an
integer, specifying the first day of the week. This will affect recurrences based on
weekly periods. The default week start is got from calendar.firstweekday(), and
may be modified by calendar.setfirstweekday().

• count -- If given, this determines how many occurrences will be generated.

Note: As of version 2.5.0, the use of the keyword until in conjunction with
count is deprecated, to make sure dateutil is fully compliant with RFC-5545
Sec. 3.3.10. Therefore, until and count must not occur in the same call to
rrule.

• until -- If given, this must be a datetime instance specifying the upper-bound
limit of the recurrence. The last recurrence in the rule is the greatest datetime that
is less than or equal to the value specified in the until parameter.

Note: As of version 2.5.0, the use of the keyword until in conjunction with
count is deprecated, to make sure dateutil is fully compliant with RFC-5545
Sec. 3.3.10. Therefore, until and count must not occur in the same call to
rrule.

• bysetpos -- If given, it must be either an integer, or a sequence of integers,
positive or negative. Each given integer will specify an occurrence number, corre-
sponding to the nth occurrence of the rule inside the frequency period. For exam-
ple, a bysetpos of -1 if combined with a MONTHLY frequency, and a byweekday
of (MO, TU, WE, TH, FR), will result in the last work day of every month.

• bymonth -- If given, it must be either an integer, or a sequence of integers, mean-
ing the months to apply the recurrence to.

• bymonthday -- If given, it must be either an integer, or a sequence of integers,
meaning the month days to apply the recurrence to.

• byyearday -- If given, it must be either an integer, or a sequence of integers,
meaning the year days to apply the recurrence to.

• byeaster -- If given, it must be either an integer, or a sequence of integers,
positive or negative. Each integer will define an offset from the Easter Sunday.

18.21. matplotlib.dates 2067

https://tools.ietf.org/html/rfc5545#section-3.3.10
https://tools.ietf.org/html/rfc5545#section-3.3.10
https://tools.ietf.org/html/rfc5545#section-3.3.10
https://tools.ietf.org/html/rfc5545#section-3.3.10

Matplotlib, Release 3.4.3

Passing the offset 0 to byeaster will yield the Easter Sunday itself. This is an
extension to the RFC specification.

• byweekno -- If given, it must be either an integer, or a sequence of integers,
meaning the week numbers to apply the recurrence to. Week numbers have the
meaning described in ISO8601, that is, the first week of the year is that containing
at least four days of the new year.

• byweekday -- If given, it must be either an integer (0 == MO), a sequence of
integers, one of the weekday constants (MO, TU, etc), or a sequence of these con-
stants. When given, these variables will define the weekdays where the recurrence
will be applied. It's also possible to use an argument n for the weekday instances,
which will mean the nth occurrence of this weekday in the period. For example,
with MONTHLY, or with YEARLY and BYMONTH, using FR(+1) in byweek-
day will specify the first friday of the month where the recurrence happens. Notice
that in the RFC documentation, this is specified as BYDAY, but was renamed to
avoid the ambiguity of that keyword.

• byhour -- If given, it must be either an integer, or a sequence of integers, meaning
the hours to apply the recurrence to.

• byminute -- If given, it must be either an integer, or a sequence of integers,
meaning the minutes to apply the recurrence to.

• bysecond -- If given, it must be either an integer, or a sequence of integers,
meaning the seconds to apply the recurrence to.

• cache -- If given, it must be a boolean value specifying to enable or disable
caching of results. If you will use the same rrule instance multiple times, enabling
caching will improve the performance considerably.

replace(**kwargs)
Return new rrule with same attributes except for those attributes given new values by whichever
keyword arguments are specified.

matplotlib.dates.set_epoch(epoch)
Set the epoch (origin for dates) for datetime calculations.

The default epoch is rcParams["dates.epoch"] (by default 1970-01-01T00:00).

If microsecond accuracy is desired, the date being plotted needs to be within approximately 70 years
of the epoch. Matplotlib internally represents dates as days since the epoch, so floating point dynamic
range needs to be within a factor of 2^52.

set_epoch must be called before any dates are converted (i.e. near the import section) or a Run-
timeError will be raised.

See also /gallery/ticks_and_spines/date_precision_and_epochs.

Parameters

epoch

2068 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=dates.epoch#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[str] valid UTC date parsable by numpy.datetime64 (do not include time-
zone).

18.22 matplotlib.docstring

class matplotlib.docstring.Substitution(*args, **kwargs)
Bases: object

A decorator that performs %-substitution on an object's docstring.

This decorator should be robust even if obj.__doc__ is None (for example, if -OO was passed to
the interpreter).

Usage: construct a docstring.Substitution with a sequence or dictionary suitable for performing sub-
stitution; then decorate a suitable function with the constructed object, e.g.:

sub_author_name = Substitution(author='Jason')

@sub_author_name
def some_function(x):

"%(author)s wrote this function"

note that some_function.__doc__ is now "Jason wrote this function"

One can also use positional arguments:

sub_first_last_names = Substitution('Edgar Allen', 'Poe')

@sub_first_last_names
def some_function(x):

"%s %s wrote the Raven"

update(*args, **kwargs)
Update self.params (which must be a dict) with the supplied args.

matplotlib.docstring.copy(source)
Copy a docstring from another source function (if present).

18.23 matplotlib.dviread

Amodule for reading dvi files output by TeX. Several limitationsmake this not (currently) useful as a general-
purpose dvi preprocessor, but it is currently used by the pdf backend for processing usetex text.

Interface:

with Dvi(filename, 72) as dvi:
iterate over pages:
for page in dvi:

w, h, d = page.width, page.height, page.descent

(continues on next page)

18.22. matplotlib.docstring 2069

https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

(continued from previous page)
for x, y, font, glyph, width in page.text:

fontname = font.texname
pointsize = font.size
...

for x, y, height, width in page.boxes:
...

class matplotlib.dviread.Dvi(filename, dpi)
Bases: object

A reader for a dvi ("device-independent") file, as produced by TeX. The current implementation can
only iterate through pages in order, and does not even attempt to verify the postamble.

This class can be used as a context manager to close the underlying file upon exit. Pages can be read
via iteration. Here is an overly simple way to extract text without trying to detect whitespace:

>>> with matplotlib.dviread.Dvi('input.dvi', 72) as dvi:
... for page in dvi:
... print(''.join(chr(t.glyph) for t in page.text))

Read the data from the file named filename and convert TeX's internal units to units of dpi per inch.
dpi only sets the units and does not limit the resolution. Use None to return TeX's internal units.

close()
Close the underlying file if it is open.

class matplotlib.dviread.DviFont(scale, tfm, texname, vf)
Bases: object

Encapsulation of a font that a DVI file can refer to.

This class holds a font's texname and size, supports comparison, and knows the widths of glyphs in
the same units as the AFM file. There are also internal attributes (for use by dviread.py) that are not
used for comparison.

The size is in Adobe points (converted from TeX points).

Parameters

scale
[float] Factor by which the font is scaled from its natural size.

tfm
[Tfm] TeX font metrics for this font

texname
[bytes] Name of the font as used internally by TeX and friends, as an ASCII
bytestring. This is usually very different from any external font names; Ps-
fontsMap can be used to find the external name of the font.

vf

2070 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

[Vf] A TeX "virtual font" file, or None if this font is not virtual.

Attributes

texname
[bytes]

size
[float] Size of the font in Adobe points, converted from the slightly smaller TeX
points.

widths
[list] Widths of glyphs in glyph-space units, typically 1/1000ths of the point size.

size

texname

widths

class matplotlib.dviread.Encoding(filename)
Bases: object

[Deprecated] Parse a *.enc file referenced from a psfonts.map style file.

The format this class understands is a very limited subset of PostScript.

Usage (subject to change):

for name in Encoding(filename):
whatever(name)

Parameters

filename
[str or path-like]

Notes

Deprecated since version 3.3.

Attributes

encoding
[list] List of character names

encoding

18.23. matplotlib.dviread 2071

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

class matplotlib.dviread.PsFont(texname, psname, effects, encoding, filename)
Bases: tuple

Create new instance of PsFont(texname, psname, effects, encoding, filename)

effects
Alias for field number 2

encoding
Alias for field number 3

filename
Alias for field number 4

psname
Alias for field number 1

texname
Alias for field number 0

class matplotlib.dviread.PsfontsMap(filename)
Bases: object

A psfonts.map formatted file, mapping TeX fonts to PS fonts.

Parameters

filename
[str or path-like]

Notes

For historical reasons, TeX knows many Type-1 fonts by different names than the outside world. (For
one thing, the names have to fit in eight characters.) Also, TeX's native fonts are not Type-1 but Meta-
font, which is nontrivial to convert to PostScript except as a bitmap. While high-quality conversions
to Type-1 format exist and are shipped with modern TeX distributions, we need to know which Type-1
fonts are the counterparts of which native fonts. For these reasons a mapping is needed from internal
font names to font file names.

A texmf tree typically includes mapping files called e.g. psfonts.map, pdftex.map, or
dvipdfm.map. The file psfonts.map is used by dvips, pdftex.map by pdfTeX, and
dvipdfm.map by dvipdfm. psfonts.map might avoid embedding the 35 PostScript fonts (i.e.,
have no filename for them, as in the Times-Bold example above), while the pdf-related files perhaps
only avoid the "Base 14" pdf fonts. But the user may have configured these files differently.

2072 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Examples

>>> map = PsfontsMap(find_tex_file('pdftex.map'))
>>> entry = map[b'ptmbo8r']
>>> entry.texname
b'ptmbo8r'
>>> entry.psname
b'Times-Bold'
>>> entry.encoding
'/usr/local/texlive/2008/texmf-dist/fonts/enc/dvips/base/8r.enc'
>>> entry.effects
{'slant': 0.16700000000000001}
>>> entry.filename

class matplotlib.dviread.Tfm(filename)
Bases: object

A TeX Font Metric file.

This implementation covers only the bare minimum needed by the Dvi class.

Parameters

filename
[str or path-like]

Attributes

checksum
[int] Used for verifying against the dvi file.

design_size
[int] Design size of the font (unknown units)

width, height, depth
[dict] Dimensions of each character, need to be scaled by the factor specified in
the dvi file. These are dicts because indexing may not start from 0.

checksum

depth

design_size

height

width

class matplotlib.dviread.Vf(filename)
Bases: matplotlib.dviread.Dvi

A virtual font (*.vf file) containing subroutines for dvi files.

18.23. matplotlib.dviread 2073

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Parameters

filename
[str or path-like]

Notes

The virtual font format is a derivative of dvi: http://mirrors.ctan.org/info/knuth/virtual-fonts This class
reuses some of the machinery of Dvi but replaces the _read loop and dispatch mechanism.

Examples

vf = Vf(filename)
glyph = vf[code]
glyph.text, glyph.boxes, glyph.width

Read the data from the file named filename and convert TeX's internal units to units of dpi per inch.
dpi only sets the units and does not limit the resolution. Use None to return TeX's internal units.

matplotlib.dviread.find_tex_file(filename, format=None)
Find a file in the texmf tree.

Calls kpsewhich which is an interface to the kpathsea library [1]. Most existing TeX distributions
on Unix-like systems use kpathsea. It is also available as part of MikTeX, a popular distribution on
Windows.

If the file is not found, an empty string is returned.

Parameters

filename
[str or path-like]

format
[str or bytes] Used as the value of the --format option to kpsewhich. Could
be e.g. 'tfm' or 'vf' to limit the search to that type of files.

References

[1]

2074 Chapter 18. Modules

http://mirrors.ctan.org/info/knuth/virtual-fonts

Matplotlib, Release 3.4.3

18.24 matplotlib.figure

matplotlib.figure implements the following classes:

Figure

Top level Artist, which holds all plot elements. Many methods are implemented in FigureBase.

SubFigure

A logical figure inside a figure, usually added to a figure (or parent SubFigure) with Figure.
add_subfigure or Figure.subfigures methods (provisional API v3.4).

SubplotParams

Control the default spacing between subplots.

class matplotlib.figure.Figure(figsize=None, dpi=None, facecolor=None, edge-
color=None, linewidth=0.0, frameon=None,
subplotpars=None, tight_layout=None, con-
strained_layout=None)

The top level container for all the plot elements.

The Figure instance supports callbacks through a callbacks attribute which is a CallbackReg-
istry instance. The events you can connect to are 'dpi_changed', and the callback will be called
with func(fig) where fig is the Figure instance.

Attributes

patch
The Rectangle instance representing the figure background patch.

suppressComposite
For multiple figure images, the figure will make composite images depending
on the renderer option_image_nocomposite function. If suppressComposite is a
boolean, this will override the renderer.

Parameters

figsize
[2-tuple of floats, default: rcParams["figure.figsize"] (default: [6.
4, 4.8])] Figure dimension (width, height) in inches.

dpi
[float, default: rcParams["figure.dpi"] (default: 100.0)] Dots per inch.

facecolor
[default: rcParams["figure.facecolor"] (default: 'white')] The fig-
ure patch facecolor.

18.24. matplotlib.figure 2075

../tutorials/introductory/customizing.html?highlight=figure.figsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.dpi#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

edgecolor
[default: rcParams["figure.edgecolor"] (default: 'white')] The fig-
ure patch edge color.

linewidth
[float] The linewidth of the frame (i.e. the edge linewidth of the figure patch).

frameon
[bool, default: rcParams["figure.frameon"] (default: True)] If
False, suppress drawing the figure background patch.

subplotpars
[SubplotParams] Subplot parameters. If not given, the default subplot param-
eters rcParams["figure.subplot.*"] are used.

tight_layout
[bool or dict, default: rcParams["figure.autolayout"] (default:
False)] If False use subplotpars. If True adjust subplot parameters using
tight_layout with default padding. When providing a dict containing the
keys pad, w_pad, h_pad, and rect, the default tight_layout paddings
will be overridden.

constrained_layout
[bool, default: rcParams["figure.constrained_layout.use"] (de-
fault: False)] If True use constrained layout to adjust positioning of plot ele-
ments. Like tight_layout, but designed to be more flexible. See Constrained
Layout Guide for examples. (Note: does not work with add_subplot or sub-
plot2grid.)

add_artist(artist, clip=False)
Add an Artist to the figure.

Usually artists are added to Axes objects using Axes.add_artist; this method can be used
in the rare cases where one needs to add artists directly to the figure instead.

Parameters

artist
[Artist] The artist to add to the figure. If the added artist has no transform
previously set, its transform will be set to figure.transSubfigure.

clip
[bool, default: False] Whether the added artist should be clipped by the figure
patch.

Returns

2076 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=figure.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.frameon#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.subplot.*#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.autolayout#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.constrained_layout.use#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Artist

The added artist.

add_axes(*args, **kwargs)
Add an Axes to the figure.

Call signatures:

add_axes(rect, projection=None, polar=False, **kwargs)
add_axes(ax)

Parameters

rect
[sequence of float] The dimensions [left, bottom, width, height] of the newAxes.
All quantities are in fractions of figure width and height.

projection
[{None, 'aitoff', 'hammer', 'lambert', 'mollweide', 'polar', 'rectilinear', str}, op-
tional] The projection type of the Axes. str is the name of a custom projection,
see projections. The default None results in a 'rectilinear' projection.

polar
[bool, default: False] If True, equivalent to projection='polar'.

axes_class
[subclass type of Axes, optional] The axes.Axes subclass that is instantiated.
This parameter is incompatible with projection and polar. See axisartist for
examples.

sharex, sharey
[Axes, optional] Share the x or y axiswith sharex and/or sharey. The axis will
have the same limits, ticks, and scale as the axis of the shared axes.

label
[str] A label for the returned Axes.

Returns

Axes, or a subclass of Axes
The returned axes class depends on the projection used. It is Axes if rectilinear
projection is used and projections.polar.PolarAxes if polar projec-
tion is used.

Other Parameters

18.24. matplotlib.figure 2077

Matplotlib, Release 3.4.3

**kwargs
This method also takes the keyword arguments for the returned Axes class. The
keyword arguments for the rectilinear Axes class Axes can be found in the fol-
lowing table but there might also be other keyword arguments if another projec-
tion is used, see the actual Axes class.

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str

continues on next page

2078 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 134 – continued from previous page
Property Description
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

See also:

Figure.add_subplot

pyplot.subplot

pyplot.axes

Figure.subplots

pyplot.subplots

Notes

In rare circumstances, add_axes may be called with a single argument, an Axes instance al-
ready created in the present figure but not in the figure's list of Axes.

Examples

Some simple examples:

rect = l, b, w, h
fig = plt.figure()
fig.add_axes(rect)
fig.add_axes(rect, frameon=False, facecolor='g')
fig.add_axes(rect, polar=True)
ax = fig.add_axes(rect, projection='polar')
fig.delaxes(ax)
fig.add_axes(ax)

add_axobserver(func)
Whenever the Axes state change, func(self) will be called.

18.24. matplotlib.figure 2079

Matplotlib, Release 3.4.3

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_gridspec(nrows=1, ncols=1, **kwargs)
Return a GridSpec that has this figure as a parent. This allows complex layout of Axes in the
figure.

Parameters

nrows
[int, default: 1] Number of rows in grid.

ncols
[int, default: 1] Number or columns in grid.

Returns

GridSpec

Other Parameters

**kwargs
Keyword arguments are passed to GridSpec.

See also:

matplotlib.pyplot.subplots

2080 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples

Adding a subplot that spans two rows:

fig = plt.figure()
gs = fig.add_gridspec(2, 2)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[1, 0])
spans two rows:
ax3 = fig.add_subplot(gs[:, 1])

add_subfigure(subplotspec, **kwargs)
Add a SubFigure to the figure as part of a subplot arrangement.

Parameters

subplotspec
[gridspec.SubplotSpec] Defines the region in a parent gridspec where
the subfigure will be placed.

Returns

figure.SubFigure

Other Parameters

**kwargs
Are passed to the SubFigure object.

See also:

Figure.subfigures

add_subplot(*args, **kwargs)
Add an Axes to the figure as part of a subplot arrangement.

Call signatures:

add_subplot(nrows, ncols, index, **kwargs)
add_subplot(pos, **kwargs)
add_subplot(ax)
add_subplot()

Parameters

*args
[int, (int, int, index), or SubplotSpec, default: (1, 1, 1)] The position of the
subplot described by one of

18.24. matplotlib.figure 2081

Matplotlib, Release 3.4.3

• Three integers (nrows, ncols, index). The subplot will take the index position
on a grid with nrows rows and ncols columns. index starts at 1 in the upper
left corner and increases to the right. index can also be a two-tuple specifying
the (first, last) indices (1-based, and including last) of the subplot, e.g., fig.
add_subplot(3, 1, (1, 2)) makes a subplot that spans the upper
2/3 of the figure.

• A 3-digit integer. The digits are interpreted as if given separately as three
single-digit integers, i.e. fig.add_subplot(235) is the same as fig.
add_subplot(2, 3, 5). Note that this can only be used if there are no
more than 9 subplots.

• A SubplotSpec.

In rare circumstances, add_subplot may be called with a single argument, a
subplot Axes instance already created in the present figure but not in the figure's
list of Axes.

projection
[{None, 'aitoff', 'hammer', 'lambert', 'mollweide', 'polar', 'rectilinear', str}, op-
tional] The projection type of the subplot (Axes). str is the name of a custom
projection, see projections. The default None results in a 'rectilinear' pro-
jection.

polar
[bool, default: False] If True, equivalent to projection='polar'.

axes_class
[subclass type of Axes, optional] The axes.Axes subclass that is instantiated.
This parameter is incompatible with projection and polar. See axisartist for
examples.

sharex, sharey
[Axes, optional] Share the x or y axiswith sharex and/or sharey. The axis will
have the same limits, ticks, and scale as the axis of the shared axes.

label
[str] A label for the returned Axes.

Returns

axes.SubplotBase, or another subclass of Axes
The Axes of the subplot. The returned Axes base class depends on the projection
used. It is Axes if rectilinear projection is used and projections.polar.
PolarAxes if polar projection is used. The returned Axes is then a subplot
subclass of the base class.

Other Parameters

2082 Chapter 18. Modules

Matplotlib, Release 3.4.3

**kwargs
This method also takes the keyword arguments for the returned Axes base class;
except for the figure argument. The keyword arguments for the rectilinear base
class Axes can be found in the following table but there might also be other
keyword arguments if another projection is used.

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str

continues on next page

18.24. matplotlib.figure 2083

Matplotlib, Release 3.4.3

Table 135 – continued from previous page
Property Description
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

See also:

Figure.add_axes

pyplot.subplot

pyplot.axes

Figure.subplots

pyplot.subplots

Examples

fig = plt.figure()

fig.add_subplot(231)
ax1 = fig.add_subplot(2, 3, 1) # equivalent but more general

fig.add_subplot(232, frameon=False) # subplot with no frame
fig.add_subplot(233, projection='polar') # polar subplot
fig.add_subplot(234, sharex=ax1) # subplot sharing x-axis with ax1
fig.add_subplot(235, facecolor="red") # red subplot

ax1.remove() # delete ax1 from the figure
fig.add_subplot(ax1) # add ax1 back to the figure

align_labels(axs=None)
Align the xlabels and ylabels of subplots with the same subplots row or column (respectively) if
label alignment is being done automatically (i.e. the label position is not manually set).

Alignment persists for draw events after this is called.

Parameters

2084 Chapter 18. Modules

Matplotlib, Release 3.4.3

axs
[list of Axes] Optional list (or ndarray) of Axes to align the labels. Default is
to align all Axes on the figure.

See also:

matplotlib.figure.Figure.align_xlabels

matplotlib.figure.Figure.align_ylabels

align_xlabels(axs=None)
Align the xlabels of subplots in the same subplot column if label alignment is being done auto-
matically (i.e. the label position is not manually set).

Alignment persists for draw events after this is called.

If a label is on the bottom, it is aligned with labels on Axes that also have their label on the
bottom and that have the same bottom-most subplot row. If the label is on the top, it is aligned
with labels on Axes with the same top-most row.

Parameters

axs
[list of Axes] Optional list of (or ndarray) Axes to align the xlabels. Default is
to align all Axes on the figure.

See also:

matplotlib.figure.Figure.align_ylabels

matplotlib.figure.Figure.align_labels

Notes

This assumes that axs are from the same GridSpec, so that their SubplotSpec positions
correspond to figure positions.

Examples

Example with rotated xtick labels:

fig, axs = plt.subplots(1, 2)
for tick in axs[0].get_xticklabels():

tick.set_rotation(55)
axs[0].set_xlabel('XLabel 0')
axs[1].set_xlabel('XLabel 1')
fig.align_xlabels()

18.24. matplotlib.figure 2085

Matplotlib, Release 3.4.3

align_ylabels(axs=None)
Align the ylabels of subplots in the same subplot column if label alignment is being done auto-
matically (i.e. the label position is not manually set).

Alignment persists for draw events after this is called.

If a label is on the left, it is aligned with labels on Axes that also have their label on the left and
that have the same left-most subplot column. If the label is on the right, it is aligned with labels
on Axes with the same right-most column.

Parameters

axs
[list of Axes] Optional list (or ndarray) of Axes to align the ylabels. Default is
to align all Axes on the figure.

See also:

matplotlib.figure.Figure.align_xlabels

matplotlib.figure.Figure.align_labels

Notes

This assumes that axs are from the same GridSpec, so that their SubplotSpec positions
correspond to figure positions.

Examples

Example with large yticks labels:

fig, axs = plt.subplots(2, 1)
axs[0].plot(np.arange(0, 1000, 50))
axs[0].set_ylabel('YLabel 0')
axs[1].set_ylabel('YLabel 1')
fig.align_ylabels()

autofmt_xdate(bottom=0.2, rotation=30, ha='right', which='major')
Date ticklabels often overlap, so it is useful to rotate them and right align them. Also, a common
use case is a number of subplots with shared x-axis where the x-axis is date data. The ticklabels
are often long, and it helps to rotate them on the bottom subplot and turn them off on other
subplots, as well as turn off xlabels.

Parameters

bottom
[float, default: 0.2] The bottom of the subplots for subplots_adjust.

2086 Chapter 18. Modules

Matplotlib, Release 3.4.3

rotation
[float, default: 30 degrees] The rotation angle of the xtick labels in degrees.

ha
[{'left', 'center', 'right'}, default: 'right'] The horizontal alignment of the xtickla-
bels.

which
[{'major', 'minor', 'both'}, default: 'major'] Selects which ticklabels to rotate.

property axes
List of Axes in the Figure. You can access and modify the Axes in the Figure through this list.

Do not modify the list itself. Instead, use "add_axes, add_subplot or delaxes to add or
remove an Axes.

clear(keep_observers=False)
Clear the figure -- synonym for clf.

clf(keep_observers=False)
Clear the figure.

Set keep_observers to True if, for example, a gui widget is tracking the Axes in the figure.

colorbar(mappable, cax=None, ax=None, use_gridspec=True, **kw)
Add a colorbar to a plot.

Parameters

mappable
The matplotlib.cm.ScalarMappable (i.e., AxesImage, Con-
tourSet, etc.) described by this colorbar. This argument is mandatory for
the Figure.colorbar method but optional for the pyplot.colorbar
function, which sets the default to the current image.

Note that one can create a ScalarMappable "on-the-fly" to generate color-
bars not attached to a previously drawn artist, e.g.

fig.colorbar(cm.ScalarMappable(norm=norm, cmap=cmap),␣
↪ax=ax)

cax
[Axes, optional] Axes into which the colorbar will be drawn.

ax
[Axes, list of Axes, optional] One or more parent axes from which space for a
new colorbar axes will be stolen, if cax is None. This has no effect if cax is set.

use_gridspec

18.24. matplotlib.figure 2087

Matplotlib, Release 3.4.3

[bool, optional] If cax is None, a new cax is created as an instance of Axes. If ax
is an instance of Subplot and use_gridspec is True, cax is created as an instance
of Subplot using the gridspec module.

Returns

colorbar
[Colorbar] See also its base class, ColorbarBase.

Notes

Additional keyword arguments are of two kinds:

axes properties:

location
[None or {'left', 'right', 'top', 'bottom'}] The location, relative to the parent
axes, where the colorbar axes is created. It also determines the orientation
of the colorbar (colorbars on the left and right are vertical, colorbars at the
top and bottom are horizontal). If None, the location will come from the
orientation if it is set (vertical colorbars on the right, horizontal ones at the
bottom), or default to 'right' if orientation is unset.

orientation
[None or {'vertical', 'horizontal'}] The orientation of the colorbar. It is
preferable to set the location of the colorbar, as that also determines the
orientation; passing incompatible values for location and orientation raises
an exception.

fraction
[float, default: 0.15] Fraction of original axes to use for colorbar.

shrink
[float, default: 1.0] Fraction by which to multiply the size of the colorbar.

aspect
[float, default: 20] Ratio of long to short dimensions.

pad
[float, default: 0.05 if vertical, 0.15 if horizontal] Fraction of original axes
between colorbar and new image axes.

anchor
[(float, float), optional] The anchor point of the colorbar axes. Defaults to
(0.0, 0.5) if vertical; (0.5, 1.0) if horizontal.

2088 Chapter 18. Modules

Matplotlib, Release 3.4.3

panchor
[(float, float), or False, optional] The anchor point of the colorbar parent
axes. If False, the parent axes' anchor will be unchanged. Defaults to (1.0,
0.5) if vertical; (0.5, 0.0) if horizontal.

colorbar properties:

Prop-
erty

Description

ex-
tend

{'neither', 'both', 'min', 'max'} If not 'neither', make pointed end(s) for
out-of- range values. These are set for a given colormap using the
colormap set_under and set_over methods.

ex-
tend-
frac

{None, 'auto', length, lengths} If set to None, both the minimum and
maximum triangular colorbar extensions with have a length of 5% of
the interior colorbar length (this is the default setting). If set to 'auto',
makes the triangular colorbar extensions the same lengths as the in-
terior boxes (when spacing is set to 'uniform') or the same lengths
as the respective adjacent interior boxes (when spacing is set to 'pro-
portional'). If a scalar, indicates the length of both the minimum and
maximum triangular colorbar extensions as a fraction of the interior
colorbar length. A two-element sequence of fractions may also be
given, indicating the lengths of the minimum and maximum colorbar
extensions respectively as a fraction of the interior colorbar length.

ex-
ten-
drect

bool If False the minimum and maximum colorbar extensions will be
triangular (the default). If True the extensions will be rectangular.

spac-
ing

{'uniform', 'proportional'} Uniform spacing gives each discrete color
the same space; proportional makes the space proportional to the data
interval.

ticks None or list of ticks or Locator If None, ticks are determined auto-
matically from the input.

for-
mat

None or str or Formatter If None, ScalarFormatter is used. If a
format string is given, e.g., '%.3f', that is used. An alternative For-
matter may be given instead.

drawedgesbool Whether to draw lines at color boundaries.
la-
bel

str The label on the colorbar's long axis.

The followingwill probably be useful only in the context of indexed colors (that
is, when the mappable has norm=NoNorm()), or other unusual circumstances.

18.24. matplotlib.figure 2089

Matplotlib, Release 3.4.3

Prop-
erty

Description

bound-
aries

None or a sequence

val-
ues

None or a sequence which must be of length 1 less than the se-
quence of boundaries. For each region delimited by adjacent entries
in boundaries, the colormapped to the corresponding value in values
will be used.

If mappable is a ContourSet, its extend kwarg is included automatically.

The shrink kwarg provides a simple way to scale the colorbar with respect to the axes. Note
that if cax is specified, it determines the size of the colorbar and shrink and aspect kwargs are
ignored.

For more precise control, you can manually specify the positions of the axes objects in which the
mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs.

It is known that some vector graphics viewers (svg and pdf) renders white gaps between segments
of the colorbar. This is due to bugs in the viewers, not Matplotlib. As a workaround, the colorbar
can be rendered with overlapping segments:

cbar = colorbar()
cbar.solids.set_edgecolor("face")
draw()

However this has negative consequences in other circumstances, e.g. with semi-transparent im-
ages (alpha < 1) and colorbar extensions; therefore, this workaround is not used by default (see
issue #1188).

contains(mouseevent)
Test whether the mouse event occurred on the figure.

Returns

bool, {}

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

delaxes(ax)
Remove the Axes ax from the figure; update the current Axes.

property dpi
The resolution in dots per inch.

2090 Chapter 18. Modules

Matplotlib, Release 3.4.3

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

draw_artist(a)
Draw Artist a only.

This method can only be used after an initial draw of the figure, because that creates and caches
the renderer needed here.

execute_constrained_layout(renderer=None)
Use layoutgrid to determine pos positions within Axes.

See also set_constrained_layout_pads.

figimage(X, xo=0, yo=0, alpha=None, norm=None, cmap=None, vmin=None, vmax=None,
origin=None, resize=False, **kwargs)

Add a non-resampled image to the figure.

The image is attached to the lower or upper left corner depending on origin.

Parameters

X
The image data. This is an array of one of the following shapes:

• MxN: luminance (grayscale) values

• MxNx3: RGB values

• MxNx4: RGBA values

xo, yo
[int] The x/y image offset in pixels.

alpha
[None or float] The alpha blending value.

norm
[matplotlib.colors.Normalize] A Normalize instance to map the
luminance to the interval [0, 1].

18.24. matplotlib.figure 2091

Matplotlib, Release 3.4.3

cmap
[str or matplotlib.colors.Colormap, default: rcParams["image.
cmap"] (default: 'viridis')] The colormap to use.

vmin, vmax
[float] If norm is not given, these values set the data limits for the colormap.

origin
[{'upper', 'lower'}, default: rcParams["image.origin"] (default: 'up-
per')] Indicates where the [0, 0] index of the array is in the upper left or lower
left corner of the axes.

resize
[bool] If True, resize the figure to match the given image size.

Returns

matplotlib.image.FigureImage

Other Parameters

**kwargs
Additional kwargs are Artist kwargs passed on to FigureImage.

Notes

figimage complements the Axes image (imshow) which will be resampled to fit the current
Axes. If you want a resampled image to fill the entire figure, you can define an Axes with extent
[0, 0, 1, 1].

Examples

f = plt.figure()
nx = int(f.get_figwidth() * f.dpi)
ny = int(f.get_figheight() * f.dpi)
data = np.random.random((ny, nx))
f.figimage(data)
plt.show()

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

2092 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

property frameon
Return the figure's background patch visibility, i.e. whether the figure background will be drawn.
Equivalent to Figure.patch.get_visible().

gca(**kwargs)
Get the current Axes, creating one if necessary.

The following kwargs are supported for ensuring the returned Axes adheres to the given projec-
tion etc., and for Axes creation if the active Axes does not exist:

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float

continues on next page

18.24. matplotlib.figure 2093

Matplotlib, Release 3.4.3

Table 136 – continued from previous page
Property Description
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown

continues on next page

2094 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 136 – continued from previous page
Property Description
yticks unknown
zorder float

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

get_axes()
Return a list of Axes in the Figure. You can access and modify the Axes in the Figure through
this list.

Do not modify the list itself. Instead, use add_axes, add_subplot or delaxes to add or
remove an Axes.

Note: This is equivalent to the property axes.

get_children()
Get a list of artists contained in the figure.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_constrained_layout()
Return whether constrained layout is being used.

See Constrained Layout Guide.

get_constrained_layout_pads(relative=False)
Get padding for constrained_layout.

Returns a list of w_pad, h_pad in inches andwspace andhspace as fractions of the subplot.

See Constrained Layout Guide.

Parameters

relative
[bool] If True, then convert from inches to figure relative.

18.24. matplotlib.figure 2095

https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_default_bbox_extra_artists()

get_dpi()
Return the resolution in dots per inch as a float.

get_edgecolor()
Get the edge color of the Figure rectangle.

get_facecolor()
Get the face color of the Figure rectangle.

get_figheight()
Return the figure height in inches.

2096 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_figure()
Return the Figure instance the artist belongs to.

get_figwidth()
Return the figure width in inches.

get_frameon()
Return the figure's background patch visibility, i.e. whether the figure background will be drawn.
Equivalent to Figure.patch.get_visible().

get_gid()
Return the group id.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_label()
Return the label used for this artist in the legend.

get_linewidth()
Get the line width of the Figure rectangle.

get_path_effects()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_rasterized()
Return whether the artist is to be rasterized.

get_size_inches()
Return the current size of the figure in inches.

Returns

ndarray
The size (width, height) of the figure in inches.

See also:

matplotlib.figure.Figure.set_size_inches

matplotlib.figure.Figure.get_figwidth

matplotlib.figure.Figure.get_figheight

18.24. matplotlib.figure 2097

Matplotlib, Release 3.4.3

Notes

The size in pixels can be obtained by multiplying with Figure.dpi.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

get_tight_layout()
Return whether tight_layout is called when drawing.

get_tightbbox(renderer, bbox_extra_artists=None)
Return a (tight) bounding box of the figure in inches.

Artists that have artist.set_in_layout(False) are not included in the bbox.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

bbox_extra_artists
[list of Artist or None] List of artists to include in the tight bounding box.
If None (default), then all artist children of each Axes are included in the tight
bounding box.

Returns

BboxBase

containing the bounding box (in figure inches).

get_transform()
Return the Transform instance used by this artist.

2098 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_url()
Return the url.

get_visible()
Return the visibility.

get_window_extent(*args, **kwargs)
Return the figure bounding box in display space. Arguments are ignored.

get_zorder()
Return the artist's zorder.

ginput(n=1, timeout=30, show_clicks=True, mouse_add=<MouseButton.LEFT: 1>,
mouse_pop=<MouseButton.RIGHT: 3>, mouse_stop=<MouseButton.MIDDLE:
2>)

Blocking call to interact with a figure.

Wait until the user clicks n times on the figure, and return the coordinates of each click in a list.

There are three possible interactions:

• Add a point.

• Remove the most recently added point.

• Stop the interaction and return the points added so far.

The actions are assigned to mouse buttons via the arguments mouse_add, mouse_pop and
mouse_stop.

Parameters

n
[int, default: 1] Number of mouse clicks to accumulate. If negative, accumulate
clicks until the input is terminated manually.

timeout
[float, default: 30 seconds] Number of seconds to wait before timing out. If zero
or negative will never timeout.

show_clicks
[bool, default: True] If True, show a red cross at the location of each click.

mouse_add
[MouseButton or None, default: MouseButton.LEFT] Mouse button used
to add points.

mouse_pop

18.24. matplotlib.figure 2099

Matplotlib, Release 3.4.3

[MouseButton or None, default: MouseButton.RIGHT] Mouse button
used to remove the most recently added point.

mouse_stop
[MouseButton or None, default: MouseButton.MIDDLE] Mouse button
used to stop input.

Returns

list of tuples
A list of the clicked (x, y) coordinates.

Notes

The keyboard can also be used to select points in case your mouse does not have one or more of
the buttons. The delete and backspace keys act like right clicking (i.e., remove last point), the
enter key terminates input and any other key (not already used by the window manager) selects
a point.

have_units()
Return whether units are set on any axis.

init_layoutgrid()
Initialize the layoutgrid for use in constrained_layout.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

legend(*args, **kwargs)
Place a legend on the figure.

Call signatures:

legend()
legend(labels)
legend(handles, labels)

The call signatures correspond to these three different ways to use this method:

1. Automatic detection of elements to be shown in the legend
The elements to be added to the legend are automatically determined, when you do not pass in
any extra arguments.

In this case, the labels are taken from the artist. You can specify them either at artist creation or
by calling the set_label() method on the artist:

ax.plot([1, 2, 3], label='Inline label')
fig.legend()

2100 Chapter 18. Modules

Matplotlib, Release 3.4.3

or:

line, = ax.plot([1, 2, 3])
line.set_label('Label via method')
fig.legend()

Specific lines can be excluded from the automatic legend element selection by defining a label
starting with an underscore. This is default for all artists, so calling Figure.legend without
any arguments and without setting the labels manually will result in no legend being drawn.

2. Labeling existing plot elements
To make a legend for all artists on all Axes, call this function with an iterable of strings, one for
each legend item. For example:

fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.plot([1, 3, 5], color='blue')
ax2.plot([2, 4, 6], color='red')
fig.legend(['the blues', 'the reds'])

Note: This call signature is discouraged, because the relation between plot elements and labels
is only implicit by their order and can easily be mixed up.

3. Explicitly defining the elements in the legend
For full control of which artists have a legend entry, it is possible to pass an iterable of legend
artists followed by an iterable of legend labels respectively:

fig.legend([line1, line2, line3], ['label1', 'label2', 'label3'])

Parameters

handles
[list of Artist, optional] A list of Artists (lines, patches) to be added to the
legend. Use this together with labels, if you need full control on what is shown
in the legend and the automatic mechanism described above is not sufficient.

The length of handles and labels should be the same in this case. If they are not,
they are truncated to the smaller length.

labels
[list of str, optional] A list of labels to show next to the artists. Use this together
with handles, if you need full control on what is shown in the legend and the
automatic mechanism described above is not sufficient.

Returns

Legend

Other Parameters

18.24. matplotlib.figure 2101

Matplotlib, Release 3.4.3

loc
[str or pair of floats, default: rcParams["legend.loc"] (default:
'best') ('best' for axes, 'upper right' for figures)] The location of the legend.

The strings 'upper left', 'upper right', 'lower left',
'lower right' place the legend at the corresponding corner of the
axes/figure.

The strings 'upper center', 'lower center', 'center left',
'center right' place the legend at the center of the corresponding edge of
the axes/figure.

The string 'center' places the legend at the center of the axes/figure.

The string 'best' places the legend at the location, among the nine locations
defined so far, with the minimum overlap with other drawn artists. This option
can be quite slow for plots with large amounts of data; your plotting speed may
benefit from providing a specific location.

The location can also be a 2-tuple giving the coordinates of the lower-left cor-
ner of the legend in axes coordinates (in which case bbox_to_anchor will be
ignored).

For back-compatibility, 'center right' (but no other location) can also be
spelled 'right', and each "string" locations can also be given as a numeric
value:

Location String Location Code
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the leg-
end in conjunction with loc. Defaults to axes.bbox (if called as a method
to Axes.legend) or figure.bbox (if Figure.legend). This argument
allows arbitrary placement of the legend.

Bbox coordinates are interpreted in the coordinate system given by
bbox_transform, with the default transform Axes or Figure coordinates,
depending on which legend is called.

2102 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=legend.loc#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

If a 4-tuple or BboxBase is given, then it specifies the bbox (x, y, width,
height) that the legend is placed in. To put the legend in the best location in
the bottom right quadrant of the axes (or figure):

loc='best', bbox_to_anchor=(0.5, 0., 0.5, 0.5)

A 2-tuple (x, y) places the corner of the legend specified by loc at x, y. For
example, to put the legend's upper right-hand corner in the center of the axes (or
figure) the following keywords can be used:

loc='upper right', bbox_to_anchor=(0.5, 0.5)

ncol
[int, default: 1] The number of columns that the legend has.

prop
[None or matplotlib.font_manager.FontProperties or dict] The
font properties of the legend. If None (default), the current matplotlib.
rcParams will be used.

fontsize
[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}] The
font size of the legend. If the value is numeric the size will be the absolute font
size in points. String values are relative to the current default font size. This
argument is only used if prop is not specified.

labelcolor
[str or list] The color of the text in the legend. Either a valid color string (for
example, 'red'), or a list of color strings. The labelcolor can also bemade tomatch
the color of the line or marker using 'linecolor', 'markerfacecolor' (or 'mfc'), or
'markeredgecolor' (or 'mec').

numpoints
[int, default: rcParams["legend.numpoints"] (default: 1)] The num-
ber of marker points in the legend when creating a legend entry for a Line2D
(line).

scatterpoints
[int, default: rcParams["legend.scatterpoints"] (default: 1)] The
number of marker points in the legend when creating a legend entry for a Path-
Collection (scatter plot).

scatteryoffsets
[iterable of floats, default: [0.375, 0.5, 0.3125]] The vertical offset
(relative to the font size) for the markers created for a scatter plot legend entry.
0.0 is at the base the legend text, and 1.0 is at the top. To draw all markers at the
same height, set to [0.5].

18.24. matplotlib.figure 2103

../tutorials/introductory/customizing.html?highlight=legend.numpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.scatterpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

markerscale
[float, default: rcParams["legend.markerscale"] (default: 1.0)]
The relative size of legend markers compared with the originally drawn ones.

markerfirst
[bool, default: True] If True, legend marker is placed to the left of the legend
label. If False, legend marker is placed to the right of the legend label.

frameon
[bool, default: rcParams["legend.frameon"] (default: True)]
Whether the legend should be drawn on a patch (frame).

fancybox
[bool, default: rcParams["legend.fancybox"] (default: True)]
Whether round edges should be enabled around the FancyBboxPatch which
makes up the legend's background.

shadow
[bool, default: rcParams["legend.shadow"] (default: False)]
Whether to draw a shadow behind the legend.

framealpha
[float, default: rcParams["legend.framealpha"] (default: 0.8)] The
alpha transparency of the legend's background. If shadow is activated and
framealpha is None, the default value is ignored.

facecolor
["inherit" or color, default: rcParams["legend.facecolor"] (de-
fault: 'inherit')] The legend's background color. If "inherit", use
rcParams["axes.facecolor"] (default: 'white').

edgecolor
["inherit" or color, default: rcParams["legend.edgecolor"] (default:
'0.8')] The legend's background patch edge color. If "inherit", use take
rcParams["axes.edgecolor"] (default: 'black').

mode
[{"expand", None}] If mode is set to "expand" the legend will be horizontally
expanded to fill the axes area (or bbox_to_anchor if defines the legend's size).

bbox_transform
[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor). For a value of None (default) the Axes'
transAxes transform will be used.

title
[str or None] The legend's title. Default is no title (None).

2104 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=legend.markerscale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.frameon#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.fancybox#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.shadow#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.framealpha#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

title_fontsize
[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, de-
fault: rcParams["legend.title_fontsize"] (default: None)] The
font size of the legend's title.

borderpad
[float, default: rcParams["legend.borderpad"] (default: 0.4)] The
fractional whitespace inside the legend border, in font-size units.

labelspacing
[float, default: rcParams["legend.labelspacing"] (default: 0.5)]
The vertical space between the legend entries, in font-size units.

handlelength
[float, default: rcParams["legend.handlelength"] (default: 2.0)]
The length of the legend handles, in font-size units.

handletextpad
[float, default: rcParams["legend.handletextpad"] (default: 0.8)]
The pad between the legend handle and text, in font-size units.

borderaxespad
[float, default: rcParams["legend.borderaxespad"] (default: 0.5)]
The pad between the axes and legend border, in font-size units.

columnspacing
[float, default: rcParams["legend.columnspacing"] (default: 2.0)]
The spacing between columns, in font-size units.

handler_map
[dict or None] The custom dictionary mapping instances or types to a leg-
end handler. This handler_map updates the default handler map found at
matplotlib.legend.Legend.get_legend_handler_map.

See also:

Axes.legend

18.24. matplotlib.figure 2105

../tutorials/introductory/customizing.html?highlight=legend.title_fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.borderpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.labelspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.handlelength#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.handletextpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.borderaxespad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.columnspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

Some artists are not supported by this function. See Legend guide for details.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

2106 Chapter 18. Modules

Matplotlib, Release 3.4.3

add_callback

savefig(fname, *, transparent=None, **kwargs)
Save the current figure.

Call signature:

savefig(fname, dpi=None, facecolor='w', edgecolor='w',
orientation='portrait', papertype=None, format=None,
transparent=False, bbox_inches=None, pad_inches=0.1,
frameon=None, metadata=None)

The available output formats depend on the backend being used.

Parameters

fname
[str or path-like or binary file-like] A path, or a Python file-like object, or
possibly some backend-dependent object such as matplotlib.backends.
backend_pdf.PdfPages.

If format is set, it determines the output format, and the file is saved as fname.
Note that fname is used verbatim, and there is no attempt to make the extension,
if any, of fname match format, and no extension is appended.

If format is not set, then the format is inferred from the extension of fname,
if there is one. If format is not set and fname has no extension, then the file
is saved with rcParams["savefig.format"] (default: 'png') and the
appropriate extension is appended to fname.

Other Parameters

dpi
[float or 'figure', default: rcParams["savefig.dpi"] (default: 'fig-
ure')] The resolution in dots per inch. If 'figure', use the figure's dpi value.

quality
[int, default: rcParams["savefig.jpeg_quality"] (default: 95)] Ap-
plicable only if format is 'jpg' or 'jpeg', ignored otherwise.

The image quality, on a scale from 1 (worst) to 95 (best). Values above 95 should
be avoided; 100 disables portions of the JPEG compression algorithm, and re-
sults in large files with hardly any gain in image quality.

This parameter is deprecated.

optimize
[bool, default: False] Applicable only if format is 'jpg' or 'jpeg', ignored other-
wise.

18.24. matplotlib.figure 2107

../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=savefig.dpi#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=savefig.jpeg_quality#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Whether the encoder should make an extra pass over the image in order to select
optimal encoder settings.

This parameter is deprecated.

progressive
[bool, default: False] Applicable only if format is 'jpg' or 'jpeg', ignored other-
wise.

Whether the image should be stored as a progressive JPEG file.

This parameter is deprecated.

facecolor
[color or 'auto', default: rcParams["savefig.facecolor"] (default:
'auto')] The facecolor of the figure. If 'auto', use the current figure facecolor.

edgecolor
[color or 'auto', default: rcParams["savefig.edgecolor"] (default:
'auto')] The edgecolor of the figure. If 'auto', use the current figure edge-
color.

orientation
[{'landscape', 'portrait'}] Currently only supported by the postscript backend.

papertype
[str] One of 'letter', 'legal', 'executive', 'ledger', 'a0' through 'a10', 'b0' through
'b10'. Only supported for postscript output.

format
[str] The file format, e.g. 'png', 'pdf', 'svg', ... The behavior when this is unset is
documented under fname.

transparent
[bool] If True, the Axes patches will all be transparent; the figure patch will also
be transparent unless facecolor and/or edgecolor are specified via kwargs. This
is useful, for example, for displaying a plot on top of a colored background on
a web page. The transparency of these patches will be restored to their original
values upon exit of this function.

bbox_inches
[str or Bbox, default: rcParams["savefig.bbox"] (default: None)]
Bounding box in inches: only the given portion of the figure is saved. If 'tight',
try to figure out the tight bbox of the figure.

pad_inches
[float, default: rcParams["savefig.pad_inches"] (default: 0.1)]
Amount of padding around the figure when bbox_inches is 'tight'.

2108 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=savefig.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=savefig.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=savefig.bbox#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=savefig.pad_inches#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

bbox_extra_artists
[list of Artist, optional] A list of extra artists that will be considered when the
tight bbox is calculated.

backend
[str, optional] Use a non-default backend to render the file, e.g. to render a png
file with the "cairo" backend rather than the default "agg", or a pdf file with
the "pgf" backend rather than the default "pdf". Note that the default backend
is normally sufficient. See The builtin backends for a list of valid backends for
each file format. Custom backends can be referenced as "module://...".

metadata
[dict, optional] Key/value pairs to store in the image metadata. The supported
keys and defaults depend on the image format and backend:

• 'png' with Agg backend: See the parameter metadata of print_png.

• 'pdf' with pdf backend: See the parameter metadata of PdfPages.

• 'svg' with svg backend: See the parameter metadata of print_svg.

• 'eps' and 'ps' with PS backend: Only 'Creator' is supported.

pil_kwargs
[dict, optional] Additional keyword arguments that are passed to PIL.Image.
Image.save when saving the figure.

sca(a)
Set the current Axes to be a and return a.

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[scalar or None] alpha must be within the 0-1 range, inclusive.

18.24. matplotlib.figure 2109

https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save

Matplotlib, Release 3.4.3

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_canvas(canvas)
Set the canvas that contains the figure

Parameters

canvas
[FigureCanvas]

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

2110 Chapter 18. Modules

Matplotlib, Release 3.4.3

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_constrained_layout(constrained)
Set whether constrained_layout is used upon drawing. If None,
rcParams["figure.constrained_layout.use"] (default: False) value will
be used.

When providing a dict containing the keys w_pad, h_pad the default con-
strained_layout paddings will be overridden. These pads are in inches and default
to 3.0/72.0. w_pad is the width padding and h_pad is the height padding.

See Constrained Layout Guide.

Parameters

constrained
[bool or dict or None]

set_constrained_layout_pads(**kwargs)
Set padding for constrained_layout. Note the kwargs can be passed as a dictionary fig.
set_constrained_layout(**paddict).

See Constrained Layout Guide.

Parameters

w_pad
[float] Width padding in inches. This is the pad around Axes and is meant to
make sure there is enough room for fonts to look good. Defaults to 3 pts =
0.04167 inches

h_pad
[float] Height padding in inches. Defaults to 3 pts.

wspace
[float] Width padding between subplots, expressed as a fraction of the subplot
width. The total padding ends up being w_pad + wspace.

18.24. matplotlib.figure 2111

../tutorials/introductory/customizing.html?highlight=figure.constrained_layout.use#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

hspace
[float] Height padding between subplots, expressed as a fraction of the subplot
width. The total padding ends up being h_pad + hspace.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_dpi(val)
Set the resolution of the figure in dots-per-inch.

Parameters

val
[float]

set_edgecolor(color)
Set the edge color of the Figure rectangle.

Parameters

color
[color]

set_facecolor(color)
Set the face color of the Figure rectangle.

2112 Chapter 18. Modules

Matplotlib, Release 3.4.3

Parameters

color
[color]

set_figheight(val, forward=True)
Set the height of the figure in inches.

Parameters

val
[float]

forward
[bool] See set_size_inches.

See also:

matplotlib.figure.Figure.set_figwidth

matplotlib.figure.Figure.set_size_inches

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_figwidth(val, forward=True)
Set the width of the figure in inches.

Parameters

val
[float]

forward
[bool] See set_size_inches.

See also:

matplotlib.figure.Figure.set_figheight

matplotlib.figure.Figure.set_size_inches

18.24. matplotlib.figure 2113

Matplotlib, Release 3.4.3

set_frameon(b)
Set the figure's background patch visibility, i.e. whether the figure background will be drawn.
Equivalent to Figure.patch.set_visible().

Parameters

b
[bool]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linewidth(linewidth)
Set the line width of the Figure rectangle.

Parameters

linewidth
[number]

set_path_effects(path_effects)
Set the path effects.

Parameters

2114 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

path_effects
[AbstractPathEffect]

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

set_size_inches(w, h=None, forward=True)
Set the figure size in inches.

Call signatures:

18.24. matplotlib.figure 2115

Matplotlib, Release 3.4.3

fig.set_size_inches(w, h) # OR
fig.set_size_inches((w, h))

Parameters

w
[(float, float) or float] Width and height in inches (if height not specified as a
separate argument) or width.

h
[float] Height in inches.

forward
[bool, default: True] If True, the canvas size is automatically updated, e.g., you
can resize the figure window from the shell.

See also:

matplotlib.figure.Figure.get_size_inches

matplotlib.figure.Figure.set_figwidth

matplotlib.figure.Figure.set_figheight

Notes

To transform from pixels to inches divide by Figure.dpi.

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

2116 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_tight_layout(tight)
Set whether and how tight_layout is called when drawing.

Parameters

tight
[bool or dict with keys "pad", "w_pad", "h_pad", "rect" or None] If a bool, sets
whether to call tight_layout upon drawing. If None, use the figure.
autolayout rcparam instead. If a dict, pass it as kwargs to tight_layout,
overriding the default paddings.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

set_url(url)
Set the url for the artist.

Parameters

url
[str]

set_visible(b)
Set the artist's visibility.

18.24. matplotlib.figure 2117

Matplotlib, Release 3.4.3

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

show(warn=True)
If using a GUI backend with pyplot, display the figure window.

If the figure was not created using figure, it will lack a FigureManagerBase, and this
method will raise an AttributeError.

Warning: This does not manage an GUI event loop. Consequently, the figure may only be
shown briefly or not shown at all if you or your environment are not managing an event loop.

Proper use cases for Figure.show include running this from a GUI application or an
IPython shell.

If you're running a pure python shell or executing a non-GUI python script, you should use
matplotlib.pyplot.show instead, which takes care of managing the event loop for
you.

Parameters

warn
[bool, default: True] If True and we are not running headless (i.e. on Linux
with an unset DISPLAY), issue warning when called on a non-GUI backend.

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

2118 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

subfigures(nrows=1, ncols=1, squeeze=True, wspace=None, hspace=None,
width_ratios=None, height_ratios=None, **kwargs)

Add a subfigure to this figure or subfigure.

A subfigure has the same artist methods as a figure, and is logically the same as a figure, but
cannot print itself. See /gallery/subplots_axes_and_figures/subfigures.

Parameters

nrows, ncols
[int, default: 1] Number of rows/columns of the subfigure grid.

squeeze
[bool, default: True] If True, extra dimensions are squeezed out from the re-
turned array of subfigures.

wspace, hspace
[float, default: None] The amount of width/height reserved for space between
subfigures, expressed as a fraction of the average subfigure width/height. If not
given, the values will be inferred from a figure or rcParams when necessary.

width_ratios
[array-like of length ncols, optional] Defines the relative widths of the
columns. Each column gets a relative width of width_ratios[i] /
sum(width_ratios). If not given, all columns will have the same width.

height_ratios
[array-like of length nrows, optional] Defines the relative heights of the
rows. Each row gets a relative height of height_ratios[i] /
sum(height_ratios). If not given, all rows will have the same height.

subplot_mosaic(mosaic, *, subplot_kw=None, gridspec_kw=None, empty_sentinel='.')
Build a layout of Axes based on ASCII art or nested lists.

This is a helper function to build complex GridSpec layouts visually.

Note: This API is provisional and may be revised in the future based on early user feedback.

Parameters

mosaic

18.24. matplotlib.figure 2119

Matplotlib, Release 3.4.3

[list of list of {hashable or nested} or str] A visual layout of how you want your
Axes to be arranged labeled as strings. For example

x = [['A panel', 'A panel', 'edge'],
['C panel', '.', 'edge']]

Produces 4 Axes:

• 'A panel' which is 1 row high and spans the first two columns

• 'edge' which is 2 rows high and is on the right edge

• 'C panel' which in 1 row and 1 column wide in the bottom left

• a blank space 1 row and 1 column wide in the bottom center

Any of the entries in the layout can be a list of lists of the same form to create
nested layouts.

If input is a str, then it can either be a multi-line string of the form

'''
AAE
C.E
'''

where each character is a column and each line is a row. Or it can be a single-line
string where rows are separated by ;:

'AB;CC'

The string notation allows only single character Axes labels and does not support
nesting but is very terse.

subplot_kw
[dict, optional] Dictionary with keywords passed to the Figure.
add_subplot call used to create each subplot.

gridspec_kw
[dict, optional] Dictionary with keywords passed to the GridSpec constructor
used to create the grid the subplots are placed on.

empty_sentinel
[object, optional] Entry in the layout to mean "leave this space empty". Defaults
to '.'. Note, if layout is a string, it is processed via inspect.cleandoc to
remove leading white space, which may interfere with using white-space as the
empty sentinel.

Returns

dict[label, Axes]

2120 Chapter 18. Modules

https://docs.python.org/3/library/inspect.html#inspect.cleandoc

Matplotlib, Release 3.4.3

A dictionary mapping the labels to the Axes objects. The order of the axes is
left-to-right and top-to-bottom of their position in the total layout.

subplots(nrows=1, ncols=1, *, sharex=False, sharey=False, squeeze=True, sub-
plot_kw=None, gridspec_kw=None)

Add a set of subplots to this figure.

This utility wrapper makes it convenient to create common layouts of subplots in a single call.

Parameters

nrows, ncols
[int, default: 1] Number of rows/columns of the subplot grid.

sharex, sharey
[bool or {'none', 'all', 'row', 'col'}, default: False] Controls sharing of properties
among x (sharex) or y (sharey) axes:

• True or 'all': x- or y-axis will be shared among all subplots.

• False or 'none': each subplot x- or y-axis will be independent.

• 'row': each subplot row will share an x- or y-axis.

• 'col': each subplot column will share an x- or y-axis.

When subplots have a shared x-axis along a column, only the x tick labels of the
bottom subplot are created. Similarly, when subplots have a shared y-axis along
a row, only the y tick labels of the first column subplot are created. To later turn
other subplots' ticklabels on, use tick_params.

When subplots have a shared axis that has units, calling Axis.set_units
will update each axis with the new units.

squeeze
[bool, default: True]

• If True, extra dimensions are squeezed out from the returned array of Axes:

– if only one subplot is constructed (nrows=ncols=1), the resulting single
Axes object is returned as a scalar.

– for Nx1 or 1xM subplots, the returned object is a 1D numpy object array of
Axes objects.

– for NxM, subplots with N>1 and M>1 are returned as a 2D array.

• If False, no squeezing at all is done: the returned Axes object is always a 2D
array containing Axes instances, even if it ends up being 1x1.

subplot_kw
[dict, optional] Dict with keywords passed to the Figure.add_subplot call
used to create each subplot.

18.24. matplotlib.figure 2121

Matplotlib, Release 3.4.3

gridspec_kw
[dict, optional] Dict with keywords passed to the GridSpec constructor used
to create the grid the subplots are placed on.

Returns

Axes or array of Axes
Either a single Axes object or an array of Axes objects if more than one subplot
was created. The dimensions of the resulting array can be controlled with the
squeeze keyword, see above.

See also:

pyplot.subplots

Figure.add_subplot

pyplot.subplot

Examples

First create some toy data:
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)

Create a figure
plt.figure()

Create a subplot
ax = fig.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')

Create two subplots and unpack the output array immediately
ax1, ax2 = fig.subplots(1, 2, sharey=True)
ax1.plot(x, y)
ax1.set_title('Sharing Y axis')
ax2.scatter(x, y)

Create four polar Axes and access them through the returned array
axes = fig.subplots(2, 2, subplot_kw=dict(projection='polar'))
axes[0, 0].plot(x, y)
axes[1, 1].scatter(x, y)

Share a X axis with each column of subplots
fig.subplots(2, 2, sharex='col')

Share a Y axis with each row of subplots
fig.subplots(2, 2, sharey='row')

(continues on next page)

2122 Chapter 18. Modules

Matplotlib, Release 3.4.3

(continued from previous page)

Share both X and Y axes with all subplots
fig.subplots(2, 2, sharex='all', sharey='all')

Note that this is the same as
fig.subplots(2, 2, sharex=True, sharey=True)

subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None,
hspace=None)

Adjust the subplot layout parameters.

Unset parameters are left unmodified; initial values are given by rcParams["figure.
subplot.[name]"].

Parameters

left
[float, optional] The position of the left edge of the subplots, as a fraction of the
figure width.

right
[float, optional] The position of the right edge of the subplots, as a fraction of
the figure width.

bottom
[float, optional] The position of the bottom edge of the subplots, as a fraction of
the figure height.

top
[float, optional] The position of the top edge of the subplots, as a fraction of the
figure height.

wspace
[float, optional] The width of the padding between subplots, as a fraction of the
average Axes width.

hspace
[float, optional] The height of the padding between subplots, as a fraction of the
average Axes height.

suptitle(t, **kwargs)
Add a centered suptitle to the figure.

Parameters

t
[str] The suptitle text.

18.24. matplotlib.figure 2123

../tutorials/introductory/customizing.html?highlight=figure.subplot.{[}name{]}#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.subplot.{[}name{]}#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

x
[float, default: 0.5] The x location of the text in figure coordinates.

y
[float, default: 0.98] The y location of the text in figure coordinates.

horizontalalignment, ha
[{'center', 'left', 'right'}, default: center] The horizontal alignment of the text
relative to (x, y).

verticalalignment, va
[{'top', 'center', 'bottom', 'baseline'}, default: top] The vertical alignment of the
text relative to (x, y).

fontsize, size
[default: rcParams["figure.titlesize"] (default: 'large')] The
font size of the text. See Text.set_size for possible values.

fontweight, weight
[default: rcParams["figure.titleweight"] (default: 'normal')]
The font weight of the text. See Text.set_weight for possible values.

Returns

text
The Text instance of the suptitle.

Other Parameters

fontproperties
[None or dict, optional] A dict of font properties. If fontproperties is given
the default values for font size and weight are taken from the FontProper-
ties defaults. rcParams["figure.titlesize"] (default: 'large')
and rcParams["figure.titleweight"] (default: 'normal') are ig-
nored in this case.

**kwargs
Additional kwargs are matplotlib.text.Text properties.

supxlabel(t, **kwargs)
Add a centered supxlabel to the figure.

Parameters

t
[str] The supxlabel text.

2124 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

x
[float, default: 0.5] The x location of the text in figure coordinates.

y
[float, default: 0.01] The y location of the text in figure coordinates.

horizontalalignment, ha
[{'center', 'left', 'right'}, default: center] The horizontal alignment of the text
relative to (x, y).

verticalalignment, va
[{'top', 'center', 'bottom', 'baseline'}, default: bottom] The vertical alignment of
the text relative to (x, y).

fontsize, size
[default: rcParams["figure.titlesize"] (default: 'large')] The
font size of the text. See Text.set_size for possible values.

fontweight, weight
[default: rcParams["figure.titleweight"] (default: 'normal')]
The font weight of the text. See Text.set_weight for possible values.

Returns

text
The Text instance of the supxlabel.

Other Parameters

fontproperties
[None or dict, optional] A dict of font properties. If fontproperties is given
the default values for font size and weight are taken from the FontProper-
ties defaults. rcParams["figure.titlesize"] (default: 'large')
and rcParams["figure.titleweight"] (default: 'normal') are ig-
nored in this case.

**kwargs
Additional kwargs are matplotlib.text.Text properties.

supylabel(t, **kwargs)
Add a centered supylabel to the figure.

Parameters

t
[str] The supylabel text.

18.24. matplotlib.figure 2125

../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

x
[float, default: 0.02] The x location of the text in figure coordinates.

y
[float, default: 0.5] The y location of the text in figure coordinates.

horizontalalignment, ha
[{'center', 'left', 'right'}, default: left] The horizontal alignment of the text relative
to (x, y).

verticalalignment, va
[{'top', 'center', 'bottom', 'baseline'}, default: center] The vertical alignment of
the text relative to (x, y).

fontsize, size
[default: rcParams["figure.titlesize"] (default: 'large')] The
font size of the text. See Text.set_size for possible values.

fontweight, weight
[default: rcParams["figure.titleweight"] (default: 'normal')]
The font weight of the text. See Text.set_weight for possible values.

Returns

text
The Text instance of the supylabel.

Other Parameters

fontproperties
[None or dict, optional] A dict of font properties. If fontproperties is given
the default values for font size and weight are taken from the FontProper-
ties defaults. rcParams["figure.titlesize"] (default: 'large')
and rcParams["figure.titleweight"] (default: 'normal') are ig-
nored in this case.

**kwargs
Additional kwargs are matplotlib.text.Text properties.

text(x, y, s, fontdict=None, **kwargs)
Add text to figure.

Parameters

x, y

2126 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[float] The position to place the text. By default, this is in figure coordinates,
floats in [0, 1]. The coordinate system can be changed using the transform key-
word.

s
[str] The text string.

fontdict
[dict, optional] A dictionary to override the default text properties. If not given,
the defaults are determined by rcParams["font.*"]. Properties passed as
kwargs override the corresponding ones given in fontdict.

Returns

Text

Other Parameters

**kwargs
[Text properties] Other miscellaneous text parameters.

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)

continues on next page

18.24. matplotlib.figure 2127

../tutorials/introductory/customizing.html?highlight=font.*#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Table 137 – continued from previous page
Property Description
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
visible bool
wrap bool
x float
y float
zorder float

See also:

Axes.text

pyplot.text

tight_layout(*, pad=1.08, h_pad=None, w_pad=None, rect=None)
Adjust the padding between and around subplots.

To exclude an artist on the Axes from the bounding box calculation that determines the subplot
parameters (i.e. legend, or annotation), set a.set_in_layout(False) for that artist.

Parameters

pad
[float, default: 1.08] Padding between the figure edge and the edges of subplots,
as a fraction of the font size.

h_pad, w_pad
[float, default: pad] Padding (height/width) between edges of adjacent subplots,
as a fraction of the font size.

rect

2128 Chapter 18. Modules

Matplotlib, Release 3.4.3

[tuple (left, bottom, right, top), default: (0, 0, 1, 1)] A rectangle in normalized
figure coordinates into which the whole subplots area (including labels) will fit.

See also:

Figure.set_tight_layout

pyplot.tight_layout

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

update_from(other)
Copy properties from other to self.

waitforbuttonpress(timeout=- 1)
Blocking call to interact with the figure.

Wait for user input and return True if a key was pressed, False if a mouse button was pressed and
None if no input was given within timeout seconds. Negative values deactivate timeout.

zorder = 0

class matplotlib.figure.FigureBase
Base class for figure.Figure and figure.SubFigure containing the methods that add artists
to the figure or subfigure, create Axes, etc.

add_artist(artist, clip=False)
Add an Artist to the figure.

Usually artists are added to Axes objects using Axes.add_artist; this method can be used
in the rare cases where one needs to add artists directly to the figure instead.

Parameters

artist
[Artist] The artist to add to the figure. If the added artist has no transform
previously set, its transform will be set to figure.transSubfigure.

clip
[bool, default: False] Whether the added artist should be clipped by the figure
patch.

Returns

18.24. matplotlib.figure 2129

Matplotlib, Release 3.4.3

Artist

The added artist.

add_axes(*args, **kwargs)
Add an Axes to the figure.

Call signatures:

add_axes(rect, projection=None, polar=False, **kwargs)
add_axes(ax)

Parameters

rect
[sequence of float] The dimensions [left, bottom, width, height] of the newAxes.
All quantities are in fractions of figure width and height.

projection
[{None, 'aitoff', 'hammer', 'lambert', 'mollweide', 'polar', 'rectilinear', str}, op-
tional] The projection type of the Axes. str is the name of a custom projection,
see projections. The default None results in a 'rectilinear' projection.

polar
[bool, default: False] If True, equivalent to projection='polar'.

axes_class
[subclass type of Axes, optional] The axes.Axes subclass that is instantiated.
This parameter is incompatible with projection and polar. See axisartist for
examples.

sharex, sharey
[Axes, optional] Share the x or y axiswith sharex and/or sharey. The axis will
have the same limits, ticks, and scale as the axis of the shared axes.

label
[str] A label for the returned Axes.

Returns

Axes, or a subclass of Axes
The returned axes class depends on the projection used. It is Axes if rectilinear
projection is used and projections.polar.PolarAxes if polar projec-
tion is used.

Other Parameters

2130 Chapter 18. Modules

Matplotlib, Release 3.4.3

**kwargs
This method also takes the keyword arguments for the returned Axes class. The
keyword arguments for the rectilinear Axes class Axes can be found in the fol-
lowing table but there might also be other keyword arguments if another projec-
tion is used, see the actual Axes class.

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str

continues on next page

18.24. matplotlib.figure 2131

Matplotlib, Release 3.4.3

Table 138 – continued from previous page
Property Description
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

See also:

Figure.add_subplot

pyplot.subplot

pyplot.axes

Figure.subplots

pyplot.subplots

Notes

In rare circumstances, add_axes may be called with a single argument, an Axes instance al-
ready created in the present figure but not in the figure's list of Axes.

Examples

Some simple examples:

rect = l, b, w, h
fig = plt.figure()
fig.add_axes(rect)
fig.add_axes(rect, frameon=False, facecolor='g')
fig.add_axes(rect, polar=True)
ax = fig.add_axes(rect, projection='polar')
fig.delaxes(ax)
fig.add_axes(ax)

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

2132 Chapter 18. Modules

Matplotlib, Release 3.4.3

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_gridspec(nrows=1, ncols=1, **kwargs)
Return a GridSpec that has this figure as a parent. This allows complex layout of Axes in the
figure.

Parameters

nrows
[int, default: 1] Number of rows in grid.

ncols
[int, default: 1] Number or columns in grid.

Returns

GridSpec

Other Parameters

**kwargs
Keyword arguments are passed to GridSpec.

See also:

matplotlib.pyplot.subplots

18.24. matplotlib.figure 2133

Matplotlib, Release 3.4.3

Examples

Adding a subplot that spans two rows:

fig = plt.figure()
gs = fig.add_gridspec(2, 2)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[1, 0])
spans two rows:
ax3 = fig.add_subplot(gs[:, 1])

add_subfigure(subplotspec, **kwargs)
Add a SubFigure to the figure as part of a subplot arrangement.

Parameters

subplotspec
[gridspec.SubplotSpec] Defines the region in a parent gridspec where
the subfigure will be placed.

Returns

figure.SubFigure

Other Parameters

**kwargs
Are passed to the SubFigure object.

See also:

Figure.subfigures

add_subplot(*args, **kwargs)
Add an Axes to the figure as part of a subplot arrangement.

Call signatures:

add_subplot(nrows, ncols, index, **kwargs)
add_subplot(pos, **kwargs)
add_subplot(ax)
add_subplot()

Parameters

*args
[int, (int, int, index), or SubplotSpec, default: (1, 1, 1)] The position of the
subplot described by one of

2134 Chapter 18. Modules

Matplotlib, Release 3.4.3

• Three integers (nrows, ncols, index). The subplot will take the index position
on a grid with nrows rows and ncols columns. index starts at 1 in the upper
left corner and increases to the right. index can also be a two-tuple specifying
the (first, last) indices (1-based, and including last) of the subplot, e.g., fig.
add_subplot(3, 1, (1, 2)) makes a subplot that spans the upper
2/3 of the figure.

• A 3-digit integer. The digits are interpreted as if given separately as three
single-digit integers, i.e. fig.add_subplot(235) is the same as fig.
add_subplot(2, 3, 5). Note that this can only be used if there are no
more than 9 subplots.

• A SubplotSpec.

In rare circumstances, add_subplot may be called with a single argument, a
subplot Axes instance already created in the present figure but not in the figure's
list of Axes.

projection
[{None, 'aitoff', 'hammer', 'lambert', 'mollweide', 'polar', 'rectilinear', str}, op-
tional] The projection type of the subplot (Axes). str is the name of a custom
projection, see projections. The default None results in a 'rectilinear' pro-
jection.

polar
[bool, default: False] If True, equivalent to projection='polar'.

axes_class
[subclass type of Axes, optional] The axes.Axes subclass that is instantiated.
This parameter is incompatible with projection and polar. See axisartist for
examples.

sharex, sharey
[Axes, optional] Share the x or y axiswith sharex and/or sharey. The axis will
have the same limits, ticks, and scale as the axis of the shared axes.

label
[str] A label for the returned Axes.

Returns

axes.SubplotBase, or another subclass of Axes
The Axes of the subplot. The returned Axes base class depends on the projection
used. It is Axes if rectilinear projection is used and projections.polar.
PolarAxes if polar projection is used. The returned Axes is then a subplot
subclass of the base class.

Other Parameters

18.24. matplotlib.figure 2135

Matplotlib, Release 3.4.3

**kwargs
This method also takes the keyword arguments for the returned Axes base class;
except for the figure argument. The keyword arguments for the rectilinear base
class Axes can be found in the following table but there might also be other
keyword arguments if another projection is used.

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str

continues on next page

2136 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 139 – continued from previous page
Property Description
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

See also:

Figure.add_axes

pyplot.subplot

pyplot.axes

Figure.subplots

pyplot.subplots

Examples

fig = plt.figure()

fig.add_subplot(231)
ax1 = fig.add_subplot(2, 3, 1) # equivalent but more general

fig.add_subplot(232, frameon=False) # subplot with no frame
fig.add_subplot(233, projection='polar') # polar subplot
fig.add_subplot(234, sharex=ax1) # subplot sharing x-axis with ax1
fig.add_subplot(235, facecolor="red") # red subplot

ax1.remove() # delete ax1 from the figure
fig.add_subplot(ax1) # add ax1 back to the figure

align_labels(axs=None)
Align the xlabels and ylabels of subplots with the same subplots row or column (respectively) if
label alignment is being done automatically (i.e. the label position is not manually set).

Alignment persists for draw events after this is called.

Parameters

18.24. matplotlib.figure 2137

Matplotlib, Release 3.4.3

axs
[list of Axes] Optional list (or ndarray) of Axes to align the labels. Default is
to align all Axes on the figure.

See also:

matplotlib.figure.Figure.align_xlabels

matplotlib.figure.Figure.align_ylabels

align_xlabels(axs=None)
Align the xlabels of subplots in the same subplot column if label alignment is being done auto-
matically (i.e. the label position is not manually set).

Alignment persists for draw events after this is called.

If a label is on the bottom, it is aligned with labels on Axes that also have their label on the
bottom and that have the same bottom-most subplot row. If the label is on the top, it is aligned
with labels on Axes with the same top-most row.

Parameters

axs
[list of Axes] Optional list of (or ndarray) Axes to align the xlabels. Default is
to align all Axes on the figure.

See also:

matplotlib.figure.Figure.align_ylabels

matplotlib.figure.Figure.align_labels

Notes

This assumes that axs are from the same GridSpec, so that their SubplotSpec positions
correspond to figure positions.

Examples

Example with rotated xtick labels:

fig, axs = plt.subplots(1, 2)
for tick in axs[0].get_xticklabels():

tick.set_rotation(55)
axs[0].set_xlabel('XLabel 0')
axs[1].set_xlabel('XLabel 1')
fig.align_xlabels()

2138 Chapter 18. Modules

Matplotlib, Release 3.4.3

align_ylabels(axs=None)
Align the ylabels of subplots in the same subplot column if label alignment is being done auto-
matically (i.e. the label position is not manually set).

Alignment persists for draw events after this is called.

If a label is on the left, it is aligned with labels on Axes that also have their label on the left and
that have the same left-most subplot column. If the label is on the right, it is aligned with labels
on Axes with the same right-most column.

Parameters

axs
[list of Axes] Optional list (or ndarray) of Axes to align the ylabels. Default is
to align all Axes on the figure.

See also:

matplotlib.figure.Figure.align_xlabels

matplotlib.figure.Figure.align_labels

Notes

This assumes that axs are from the same GridSpec, so that their SubplotSpec positions
correspond to figure positions.

Examples

Example with large yticks labels:

fig, axs = plt.subplots(2, 1)
axs[0].plot(np.arange(0, 1000, 50))
axs[0].set_ylabel('YLabel 0')
axs[1].set_ylabel('YLabel 1')
fig.align_ylabels()

autofmt_xdate(bottom=0.2, rotation=30, ha='right', which='major')
Date ticklabels often overlap, so it is useful to rotate them and right align them. Also, a common
use case is a number of subplots with shared x-axis where the x-axis is date data. The ticklabels
are often long, and it helps to rotate them on the bottom subplot and turn them off on other
subplots, as well as turn off xlabels.

Parameters

bottom
[float, default: 0.2] The bottom of the subplots for subplots_adjust.

18.24. matplotlib.figure 2139

Matplotlib, Release 3.4.3

rotation
[float, default: 30 degrees] The rotation angle of the xtick labels in degrees.

ha
[{'left', 'center', 'right'}, default: 'right'] The horizontal alignment of the xtickla-
bels.

which
[{'major', 'minor', 'both'}, default: 'major'] Selects which ticklabels to rotate.

property axes
The Axes instance the artist resides in, or None.

colorbar(mappable, cax=None, ax=None, use_gridspec=True, **kw)
Add a colorbar to a plot.

Parameters

mappable
The matplotlib.cm.ScalarMappable (i.e., AxesImage, Con-
tourSet, etc.) described by this colorbar. This argument is mandatory for
the Figure.colorbar method but optional for the pyplot.colorbar
function, which sets the default to the current image.

Note that one can create a ScalarMappable "on-the-fly" to generate color-
bars not attached to a previously drawn artist, e.g.

fig.colorbar(cm.ScalarMappable(norm=norm, cmap=cmap),␣
↪ax=ax)

cax
[Axes, optional] Axes into which the colorbar will be drawn.

ax
[Axes, list of Axes, optional] One or more parent axes from which space for a
new colorbar axes will be stolen, if cax is None. This has no effect if cax is set.

use_gridspec
[bool, optional] If cax is None, a new cax is created as an instance of Axes. If ax
is an instance of Subplot and use_gridspec is True, cax is created as an instance
of Subplot using the gridspec module.

Returns

colorbar
[Colorbar] See also its base class, ColorbarBase.

2140 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Additional keyword arguments are of two kinds:

axes properties:

location
[None or {'left', 'right', 'top', 'bottom'}] The location, relative to the parent
axes, where the colorbar axes is created. It also determines the orientation
of the colorbar (colorbars on the left and right are vertical, colorbars at the
top and bottom are horizontal). If None, the location will come from the
orientation if it is set (vertical colorbars on the right, horizontal ones at the
bottom), or default to 'right' if orientation is unset.

orientation
[None or {'vertical', 'horizontal'}] The orientation of the colorbar. It is
preferable to set the location of the colorbar, as that also determines the
orientation; passing incompatible values for location and orientation raises
an exception.

fraction
[float, default: 0.15] Fraction of original axes to use for colorbar.

shrink
[float, default: 1.0] Fraction by which to multiply the size of the colorbar.

aspect
[float, default: 20] Ratio of long to short dimensions.

pad
[float, default: 0.05 if vertical, 0.15 if horizontal] Fraction of original axes
between colorbar and new image axes.

anchor
[(float, float), optional] The anchor point of the colorbar axes. Defaults to
(0.0, 0.5) if vertical; (0.5, 1.0) if horizontal.

panchor
[(float, float), or False, optional] The anchor point of the colorbar parent
axes. If False, the parent axes' anchor will be unchanged. Defaults to (1.0,
0.5) if vertical; (0.5, 0.0) if horizontal.

colorbar properties:

18.24. matplotlib.figure 2141

Matplotlib, Release 3.4.3

Prop-
erty

Description

ex-
tend

{'neither', 'both', 'min', 'max'} If not 'neither', make pointed end(s) for
out-of- range values. These are set for a given colormap using the
colormap set_under and set_over methods.

ex-
tend-
frac

{None, 'auto', length, lengths} If set to None, both the minimum and
maximum triangular colorbar extensions with have a length of 5% of
the interior colorbar length (this is the default setting). If set to 'auto',
makes the triangular colorbar extensions the same lengths as the in-
terior boxes (when spacing is set to 'uniform') or the same lengths
as the respective adjacent interior boxes (when spacing is set to 'pro-
portional'). If a scalar, indicates the length of both the minimum and
maximum triangular colorbar extensions as a fraction of the interior
colorbar length. A two-element sequence of fractions may also be
given, indicating the lengths of the minimum and maximum colorbar
extensions respectively as a fraction of the interior colorbar length.

ex-
ten-
drect

bool If False the minimum and maximum colorbar extensions will be
triangular (the default). If True the extensions will be rectangular.

spac-
ing

{'uniform', 'proportional'} Uniform spacing gives each discrete color
the same space; proportional makes the space proportional to the data
interval.

ticks None or list of ticks or Locator If None, ticks are determined auto-
matically from the input.

for-
mat

None or str or Formatter If None, ScalarFormatter is used. If a
format string is given, e.g., '%.3f', that is used. An alternative For-
matter may be given instead.

drawedgesbool Whether to draw lines at color boundaries.
la-
bel

str The label on the colorbar's long axis.

The followingwill probably be useful only in the context of indexed colors (that
is, when the mappable has norm=NoNorm()), or other unusual circumstances.

Prop-
erty

Description

bound-
aries

None or a sequence

val-
ues

None or a sequence which must be of length 1 less than the se-
quence of boundaries. For each region delimited by adjacent entries
in boundaries, the colormapped to the corresponding value in values
will be used.

If mappable is a ContourSet, its extend kwarg is included automatically.

The shrink kwarg provides a simple way to scale the colorbar with respect to the axes. Note
that if cax is specified, it determines the size of the colorbar and shrink and aspect kwargs are

2142 Chapter 18. Modules

Matplotlib, Release 3.4.3

ignored.

For more precise control, you can manually specify the positions of the axes objects in which the
mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs.

It is known that some vector graphics viewers (svg and pdf) renders white gaps between segments
of the colorbar. This is due to bugs in the viewers, not Matplotlib. As a workaround, the colorbar
can be rendered with overlapping segments:

cbar = colorbar()
cbar.solids.set_edgecolor("face")
draw()

However this has negative consequences in other circumstances, e.g. with semi-transparent im-
ages (alpha < 1) and colorbar extensions; therefore, this workaround is not used by default (see
issue #1188).

contains(mouseevent)
Test whether the mouse event occurred on the figure.

Returns

bool, {}

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

delaxes(ax)
Remove the Axes ax from the figure; update the current Axes.

draw(renderer, *args, **kwargs)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

18.24. matplotlib.figure 2143

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

property frameon
Return the figure's background patch visibility, i.e. whether the figure background will be drawn.
Equivalent to Figure.patch.get_visible().

gca(**kwargs)
Get the current Axes, creating one if necessary.

2144 Chapter 18. Modules

Matplotlib, Release 3.4.3

The following kwargs are supported for ensuring the returned Axes adheres to the given projec-
tion etc., and for Axes creation if the active Axes does not exist:

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase

continues on next page

18.24. matplotlib.figure 2145

Matplotlib, Release 3.4.3

Table 140 – continued from previous page
Property Description
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

get_children()
Get a list of artists contained in the figure.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

2146 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_default_bbox_extra_artists()

get_edgecolor()
Get the edge color of the Figure rectangle.

get_facecolor()
Get the face color of the Figure rectangle.

get_figure()
Return the Figure instance the artist belongs to.

get_frameon()
Return the figure's background patch visibility, i.e. whether the figure background will be drawn.
Equivalent to Figure.patch.get_visible().

get_gid()
Return the group id.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

18.24. matplotlib.figure 2147

Matplotlib, Release 3.4.3

get_label()
Return the label used for this artist in the legend.

get_linewidth()
Get the line width of the Figure rectangle.

get_path_effects()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_rasterized()
Return whether the artist is to be rasterized.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

get_tightbbox(renderer, bbox_extra_artists=None)
Return a (tight) bounding box of the figure in inches.

Artists that have artist.set_in_layout(False) are not included in the bbox.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

bbox_extra_artists

2148 Chapter 18. Modules

Matplotlib, Release 3.4.3

[list of Artist or None] List of artists to include in the tight bounding box.
If None (default), then all artist children of each Axes are included in the tight
bounding box.

Returns

BboxBase

containing the bounding box (in figure inches).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_url()
Return the url.

get_visible()
Return the visibility.

get_window_extent(*args, **kwargs)
Return the figure bounding box in display space. Arguments are ignored.

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

legend(*args, **kwargs)
Place a legend on the figure.

Call signatures:

legend()
legend(labels)
legend(handles, labels)

The call signatures correspond to these three different ways to use this method:

1. Automatic detection of elements to be shown in the legend
The elements to be added to the legend are automatically determined, when you do not pass in
any extra arguments.

In this case, the labels are taken from the artist. You can specify them either at artist creation or
by calling the set_label() method on the artist:

18.24. matplotlib.figure 2149

Matplotlib, Release 3.4.3

ax.plot([1, 2, 3], label='Inline label')
fig.legend()

or:

line, = ax.plot([1, 2, 3])
line.set_label('Label via method')
fig.legend()

Specific lines can be excluded from the automatic legend element selection by defining a label
starting with an underscore. This is default for all artists, so calling Figure.legend without
any arguments and without setting the labels manually will result in no legend being drawn.

2. Labeling existing plot elements
To make a legend for all artists on all Axes, call this function with an iterable of strings, one for
each legend item. For example:

fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.plot([1, 3, 5], color='blue')
ax2.plot([2, 4, 6], color='red')
fig.legend(['the blues', 'the reds'])

Note: This call signature is discouraged, because the relation between plot elements and labels
is only implicit by their order and can easily be mixed up.

3. Explicitly defining the elements in the legend
For full control of which artists have a legend entry, it is possible to pass an iterable of legend
artists followed by an iterable of legend labels respectively:

fig.legend([line1, line2, line3], ['label1', 'label2', 'label3'])

Parameters

handles
[list of Artist, optional] A list of Artists (lines, patches) to be added to the
legend. Use this together with labels, if you need full control on what is shown
in the legend and the automatic mechanism described above is not sufficient.

The length of handles and labels should be the same in this case. If they are not,
they are truncated to the smaller length.

labels
[list of str, optional] A list of labels to show next to the artists. Use this together
with handles, if you need full control on what is shown in the legend and the
automatic mechanism described above is not sufficient.

Returns

2150 Chapter 18. Modules

Matplotlib, Release 3.4.3

Legend

Other Parameters

loc
[str or pair of floats, default: rcParams["legend.loc"] (default:
'best') ('best' for axes, 'upper right' for figures)] The location of the legend.

The strings 'upper left', 'upper right', 'lower left',
'lower right' place the legend at the corresponding corner of the
axes/figure.

The strings 'upper center', 'lower center', 'center left',
'center right' place the legend at the center of the corresponding edge of
the axes/figure.

The string 'center' places the legend at the center of the axes/figure.

The string 'best' places the legend at the location, among the nine locations
defined so far, with the minimum overlap with other drawn artists. This option
can be quite slow for plots with large amounts of data; your plotting speed may
benefit from providing a specific location.

The location can also be a 2-tuple giving the coordinates of the lower-left cor-
ner of the legend in axes coordinates (in which case bbox_to_anchor will be
ignored).

For back-compatibility, 'center right' (but no other location) can also be
spelled 'right', and each "string" locations can also be given as a numeric
value:

Location String Location Code
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the leg-
end in conjunction with loc. Defaults to axes.bbox (if called as a method
to Axes.legend) or figure.bbox (if Figure.legend). This argument
allows arbitrary placement of the legend.

18.24. matplotlib.figure 2151

../tutorials/introductory/customizing.html?highlight=legend.loc#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Bbox coordinates are interpreted in the coordinate system given by
bbox_transform, with the default transform Axes or Figure coordinates,
depending on which legend is called.

If a 4-tuple or BboxBase is given, then it specifies the bbox (x, y, width,
height) that the legend is placed in. To put the legend in the best location in
the bottom right quadrant of the axes (or figure):

loc='best', bbox_to_anchor=(0.5, 0., 0.5, 0.5)

A 2-tuple (x, y) places the corner of the legend specified by loc at x, y. For
example, to put the legend's upper right-hand corner in the center of the axes (or
figure) the following keywords can be used:

loc='upper right', bbox_to_anchor=(0.5, 0.5)

ncol
[int, default: 1] The number of columns that the legend has.

prop
[None or matplotlib.font_manager.FontProperties or dict] The
font properties of the legend. If None (default), the current matplotlib.
rcParams will be used.

fontsize
[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}] The
font size of the legend. If the value is numeric the size will be the absolute font
size in points. String values are relative to the current default font size. This
argument is only used if prop is not specified.

labelcolor
[str or list] The color of the text in the legend. Either a valid color string (for
example, 'red'), or a list of color strings. The labelcolor can also bemade tomatch
the color of the line or marker using 'linecolor', 'markerfacecolor' (or 'mfc'), or
'markeredgecolor' (or 'mec').

numpoints
[int, default: rcParams["legend.numpoints"] (default: 1)] The num-
ber of marker points in the legend when creating a legend entry for a Line2D
(line).

scatterpoints
[int, default: rcParams["legend.scatterpoints"] (default: 1)] The
number of marker points in the legend when creating a legend entry for a Path-
Collection (scatter plot).

scatteryoffsets

2152 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=legend.numpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.scatterpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[iterable of floats, default: [0.375, 0.5, 0.3125]] The vertical offset
(relative to the font size) for the markers created for a scatter plot legend entry.
0.0 is at the base the legend text, and 1.0 is at the top. To draw all markers at the
same height, set to [0.5].

markerscale
[float, default: rcParams["legend.markerscale"] (default: 1.0)]
The relative size of legend markers compared with the originally drawn ones.

markerfirst
[bool, default: True] If True, legend marker is placed to the left of the legend
label. If False, legend marker is placed to the right of the legend label.

frameon
[bool, default: rcParams["legend.frameon"] (default: True)]
Whether the legend should be drawn on a patch (frame).

fancybox
[bool, default: rcParams["legend.fancybox"] (default: True)]
Whether round edges should be enabled around the FancyBboxPatch which
makes up the legend's background.

shadow
[bool, default: rcParams["legend.shadow"] (default: False)]
Whether to draw a shadow behind the legend.

framealpha
[float, default: rcParams["legend.framealpha"] (default: 0.8)] The
alpha transparency of the legend's background. If shadow is activated and
framealpha is None, the default value is ignored.

facecolor
["inherit" or color, default: rcParams["legend.facecolor"] (de-
fault: 'inherit')] The legend's background color. If "inherit", use
rcParams["axes.facecolor"] (default: 'white').

edgecolor
["inherit" or color, default: rcParams["legend.edgecolor"] (default:
'0.8')] The legend's background patch edge color. If "inherit", use take
rcParams["axes.edgecolor"] (default: 'black').

mode
[{"expand", None}] If mode is set to "expand" the legend will be horizontally
expanded to fill the axes area (or bbox_to_anchor if defines the legend's size).

bbox_transform

18.24. matplotlib.figure 2153

../tutorials/introductory/customizing.html?highlight=legend.markerscale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.frameon#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.fancybox#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.shadow#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.framealpha#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor). For a value of None (default) the Axes'
transAxes transform will be used.

title
[str or None] The legend's title. Default is no title (None).

title_fontsize
[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, de-
fault: rcParams["legend.title_fontsize"] (default: None)] The
font size of the legend's title.

borderpad
[float, default: rcParams["legend.borderpad"] (default: 0.4)] The
fractional whitespace inside the legend border, in font-size units.

labelspacing
[float, default: rcParams["legend.labelspacing"] (default: 0.5)]
The vertical space between the legend entries, in font-size units.

handlelength
[float, default: rcParams["legend.handlelength"] (default: 2.0)]
The length of the legend handles, in font-size units.

handletextpad
[float, default: rcParams["legend.handletextpad"] (default: 0.8)]
The pad between the legend handle and text, in font-size units.

borderaxespad
[float, default: rcParams["legend.borderaxespad"] (default: 0.5)]
The pad between the axes and legend border, in font-size units.

columnspacing
[float, default: rcParams["legend.columnspacing"] (default: 2.0)]
The spacing between columns, in font-size units.

handler_map
[dict or None] The custom dictionary mapping instances or types to a leg-
end handler. This handler_map updates the default handler map found at
matplotlib.legend.Legend.get_legend_handler_map.

See also:

Axes.legend

2154 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=legend.title_fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.borderpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.labelspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.handlelength#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.handletextpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.borderaxespad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.columnspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

Some artists are not supported by this function. See Legend guide for details.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

18.24. matplotlib.figure 2155

Matplotlib, Release 3.4.3

add_callback

sca(a)
Set the current Axes to be a and return a.

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[scalar or None] alpha must be within the 0-1 range, inclusive.

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

2156 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

18.24. matplotlib.figure 2157

Matplotlib, Release 3.4.3

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_edgecolor(color)
Set the edge color of the Figure rectangle.

Parameters

color
[color]

set_facecolor(color)
Set the face color of the Figure rectangle.

Parameters

color
[color]

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_frameon(b)
Set the figure's background patch visibility, i.e. whether the figure background will be drawn.
Equivalent to Figure.patch.set_visible().

Parameters

b
[bool]

set_gid(gid)
Set the (group) id for the artist.

Parameters

2158 Chapter 18. Modules

Matplotlib, Release 3.4.3

gid
[str]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linewidth(linewidth)
Set the line width of the Figure rectangle.

Parameters

linewidth
[number]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

18.24. matplotlib.figure 2159

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

rasterized
[bool]

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

2160 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

set_url(url)
Set the url for the artist.

Parameters

url
[str]

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

18.24. matplotlib.figure 2161

Matplotlib, Release 3.4.3

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

subfigures(nrows=1, ncols=1, squeeze=True, wspace=None, hspace=None,
width_ratios=None, height_ratios=None, **kwargs)

Add a subfigure to this figure or subfigure.

A subfigure has the same artist methods as a figure, and is logically the same as a figure, but
cannot print itself. See /gallery/subplots_axes_and_figures/subfigures.

Parameters

nrows, ncols
[int, default: 1] Number of rows/columns of the subfigure grid.

squeeze
[bool, default: True] If True, extra dimensions are squeezed out from the re-
turned array of subfigures.

wspace, hspace
[float, default: None] The amount of width/height reserved for space between
subfigures, expressed as a fraction of the average subfigure width/height. If not
given, the values will be inferred from a figure or rcParams when necessary.

width_ratios
[array-like of length ncols, optional] Defines the relative widths of the
columns. Each column gets a relative width of width_ratios[i] /
sum(width_ratios). If not given, all columns will have the same width.

2162 Chapter 18. Modules

Matplotlib, Release 3.4.3

height_ratios
[array-like of length nrows, optional] Defines the relative heights of the
rows. Each row gets a relative height of height_ratios[i] /
sum(height_ratios). If not given, all rows will have the same height.

subplot_mosaic(mosaic, *, subplot_kw=None, gridspec_kw=None, empty_sentinel='.')
Build a layout of Axes based on ASCII art or nested lists.

This is a helper function to build complex GridSpec layouts visually.

Note: This API is provisional and may be revised in the future based on early user feedback.

Parameters

mosaic
[list of list of {hashable or nested} or str] A visual layout of how you want your
Axes to be arranged labeled as strings. For example

x = [['A panel', 'A panel', 'edge'],
['C panel', '.', 'edge']]

Produces 4 Axes:

• 'A panel' which is 1 row high and spans the first two columns

• 'edge' which is 2 rows high and is on the right edge

• 'C panel' which in 1 row and 1 column wide in the bottom left

• a blank space 1 row and 1 column wide in the bottom center

Any of the entries in the layout can be a list of lists of the same form to create
nested layouts.

If input is a str, then it can either be a multi-line string of the form

'''
AAE
C.E
'''

where each character is a column and each line is a row. Or it can be a single-line
string where rows are separated by ;:

'AB;CC'

The string notation allows only single character Axes labels and does not support
nesting but is very terse.

subplot_kw

18.24. matplotlib.figure 2163

Matplotlib, Release 3.4.3

[dict, optional] Dictionary with keywords passed to the Figure.
add_subplot call used to create each subplot.

gridspec_kw
[dict, optional] Dictionary with keywords passed to the GridSpec constructor
used to create the grid the subplots are placed on.

empty_sentinel
[object, optional] Entry in the layout to mean "leave this space empty". Defaults
to '.'. Note, if layout is a string, it is processed via inspect.cleandoc to
remove leading white space, which may interfere with using white-space as the
empty sentinel.

Returns

dict[label, Axes]
A dictionary mapping the labels to the Axes objects. The order of the axes is
left-to-right and top-to-bottom of their position in the total layout.

subplots(nrows=1, ncols=1, *, sharex=False, sharey=False, squeeze=True, sub-
plot_kw=None, gridspec_kw=None)

Add a set of subplots to this figure.

This utility wrapper makes it convenient to create common layouts of subplots in a single call.

Parameters

nrows, ncols
[int, default: 1] Number of rows/columns of the subplot grid.

sharex, sharey
[bool or {'none', 'all', 'row', 'col'}, default: False] Controls sharing of properties
among x (sharex) or y (sharey) axes:

• True or 'all': x- or y-axis will be shared among all subplots.

• False or 'none': each subplot x- or y-axis will be independent.

• 'row': each subplot row will share an x- or y-axis.

• 'col': each subplot column will share an x- or y-axis.

When subplots have a shared x-axis along a column, only the x tick labels of the
bottom subplot are created. Similarly, when subplots have a shared y-axis along
a row, only the y tick labels of the first column subplot are created. To later turn
other subplots' ticklabels on, use tick_params.

When subplots have a shared axis that has units, calling Axis.set_units
will update each axis with the new units.

2164 Chapter 18. Modules

https://docs.python.org/3/library/inspect.html#inspect.cleandoc

Matplotlib, Release 3.4.3

squeeze
[bool, default: True]

• If True, extra dimensions are squeezed out from the returned array of Axes:

– if only one subplot is constructed (nrows=ncols=1), the resulting single
Axes object is returned as a scalar.

– for Nx1 or 1xM subplots, the returned object is a 1D numpy object array of
Axes objects.

– for NxM, subplots with N>1 and M>1 are returned as a 2D array.

• If False, no squeezing at all is done: the returned Axes object is always a 2D
array containing Axes instances, even if it ends up being 1x1.

subplot_kw
[dict, optional] Dict with keywords passed to the Figure.add_subplot call
used to create each subplot.

gridspec_kw
[dict, optional] Dict with keywords passed to the GridSpec constructor used
to create the grid the subplots are placed on.

Returns

Axes or array of Axes
Either a single Axes object or an array of Axes objects if more than one subplot
was created. The dimensions of the resulting array can be controlled with the
squeeze keyword, see above.

See also:

pyplot.subplots

Figure.add_subplot

pyplot.subplot

Examples

First create some toy data:
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)

Create a figure
plt.figure()

Create a subplot

(continues on next page)

18.24. matplotlib.figure 2165

Matplotlib, Release 3.4.3

(continued from previous page)
ax = fig.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')

Create two subplots and unpack the output array immediately
ax1, ax2 = fig.subplots(1, 2, sharey=True)
ax1.plot(x, y)
ax1.set_title('Sharing Y axis')
ax2.scatter(x, y)

Create four polar Axes and access them through the returned array
axes = fig.subplots(2, 2, subplot_kw=dict(projection='polar'))
axes[0, 0].plot(x, y)
axes[1, 1].scatter(x, y)

Share a X axis with each column of subplots
fig.subplots(2, 2, sharex='col')

Share a Y axis with each row of subplots
fig.subplots(2, 2, sharey='row')

Share both X and Y axes with all subplots
fig.subplots(2, 2, sharex='all', sharey='all')

Note that this is the same as
fig.subplots(2, 2, sharex=True, sharey=True)

subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None,
hspace=None)

Adjust the subplot layout parameters.

Unset parameters are left unmodified; initial values are given by rcParams["figure.
subplot.[name]"].

Parameters

left
[float, optional] The position of the left edge of the subplots, as a fraction of the
figure width.

right
[float, optional] The position of the right edge of the subplots, as a fraction of
the figure width.

bottom
[float, optional] The position of the bottom edge of the subplots, as a fraction of
the figure height.

top

2166 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=figure.subplot.{[}name{]}#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.subplot.{[}name{]}#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[float, optional] The position of the top edge of the subplots, as a fraction of the
figure height.

wspace
[float, optional] The width of the padding between subplots, as a fraction of the
average Axes width.

hspace
[float, optional] The height of the padding between subplots, as a fraction of the
average Axes height.

suptitle(t, **kwargs)
Add a centered suptitle to the figure.

Parameters

t
[str] The suptitle text.

x
[float, default: 0.5] The x location of the text in figure coordinates.

y
[float, default: 0.98] The y location of the text in figure coordinates.

horizontalalignment, ha
[{'center', 'left', 'right'}, default: center] The horizontal alignment of the text
relative to (x, y).

verticalalignment, va
[{'top', 'center', 'bottom', 'baseline'}, default: top] The vertical alignment of the
text relative to (x, y).

fontsize, size
[default: rcParams["figure.titlesize"] (default: 'large')] The
font size of the text. See Text.set_size for possible values.

fontweight, weight
[default: rcParams["figure.titleweight"] (default: 'normal')]
The font weight of the text. See Text.set_weight for possible values.

Returns

text
The Text instance of the suptitle.

Other Parameters

18.24. matplotlib.figure 2167

../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

fontproperties
[None or dict, optional] A dict of font properties. If fontproperties is given
the default values for font size and weight are taken from the FontProper-
ties defaults. rcParams["figure.titlesize"] (default: 'large')
and rcParams["figure.titleweight"] (default: 'normal') are ig-
nored in this case.

**kwargs
Additional kwargs are matplotlib.text.Text properties.

supxlabel(t, **kwargs)
Add a centered supxlabel to the figure.

Parameters

t
[str] The supxlabel text.

x
[float, default: 0.5] The x location of the text in figure coordinates.

y
[float, default: 0.01] The y location of the text in figure coordinates.

horizontalalignment, ha
[{'center', 'left', 'right'}, default: center] The horizontal alignment of the text
relative to (x, y).

verticalalignment, va
[{'top', 'center', 'bottom', 'baseline'}, default: bottom] The vertical alignment of
the text relative to (x, y).

fontsize, size
[default: rcParams["figure.titlesize"] (default: 'large')] The
font size of the text. See Text.set_size for possible values.

fontweight, weight
[default: rcParams["figure.titleweight"] (default: 'normal')]
The font weight of the text. See Text.set_weight for possible values.

Returns

text
The Text instance of the supxlabel.

Other Parameters

2168 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

fontproperties
[None or dict, optional] A dict of font properties. If fontproperties is given
the default values for font size and weight are taken from the FontProper-
ties defaults. rcParams["figure.titlesize"] (default: 'large')
and rcParams["figure.titleweight"] (default: 'normal') are ig-
nored in this case.

**kwargs
Additional kwargs are matplotlib.text.Text properties.

supylabel(t, **kwargs)
Add a centered supylabel to the figure.

Parameters

t
[str] The supylabel text.

x
[float, default: 0.02] The x location of the text in figure coordinates.

y
[float, default: 0.5] The y location of the text in figure coordinates.

horizontalalignment, ha
[{'center', 'left', 'right'}, default: left] The horizontal alignment of the text relative
to (x, y).

verticalalignment, va
[{'top', 'center', 'bottom', 'baseline'}, default: center] The vertical alignment of
the text relative to (x, y).

fontsize, size
[default: rcParams["figure.titlesize"] (default: 'large')] The
font size of the text. See Text.set_size for possible values.

fontweight, weight
[default: rcParams["figure.titleweight"] (default: 'normal')]
The font weight of the text. See Text.set_weight for possible values.

Returns

text
The Text instance of the supylabel.

Other Parameters

18.24. matplotlib.figure 2169

../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

fontproperties
[None or dict, optional] A dict of font properties. If fontproperties is given
the default values for font size and weight are taken from the FontProper-
ties defaults. rcParams["figure.titlesize"] (default: 'large')
and rcParams["figure.titleweight"] (default: 'normal') are ig-
nored in this case.

**kwargs
Additional kwargs are matplotlib.text.Text properties.

text(x, y, s, fontdict=None, **kwargs)
Add text to figure.

Parameters

x, y
[float] The position to place the text. By default, this is in figure coordinates,
floats in [0, 1]. The coordinate system can be changed using the transform key-
word.

s
[str] The text string.

fontdict
[dict, optional] A dictionary to override the default text properties. If not given,
the defaults are determined by rcParams["font.*"]. Properties passed as
kwargs override the corresponding ones given in fontdict.

Returns

Text

Other Parameters

**kwargs
[Text properties] Other miscellaneous text parameters.

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch
clip_box Bbox

clip_on bool
continues on next page

2170 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=font.*#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Table 141 – continued from previous page
Property Description
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
visible bool
wrap bool
x float
y float
zorder float

See also:

Axes.text

pyplot.text

update(props)

18.24. matplotlib.figure 2171

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Update this artist's properties from the dict props.

Parameters

props
[dict]

update_from(other)
Copy properties from other to self.

zorder = 0

class matplotlib.figure.SubFigure(parent, subplotspec, *, facecolor=None, edge-
color=None, linewidth=0.0, frameon=None)

Logical figure that can be placed inside a figure.

Typically instantiated using Figure.add_subfigure or SubFigure.add_subfigure, or
SubFigure.subfigures. A subfigure has the same methods as a figure except for those partic-
ularly tied to the size or dpi of the figure, and is confined to a prescribed region of the figure. For
example the following puts two subfigures side-by-side:

fig = plt.figure()
sfigs = fig.subfigures(1, 2)
axsL = sfigs[0].subplots(1, 2)
axsR = sfigs[1].subplots(2, 1)

See /gallery/subplots_axes_and_figures/subfigures

Parameters

parent
[figure.Figure or figure.SubFigure] Figure or subfigure that contains
the SubFigure. SubFigures can be nested.

subplotspec
[gridspec.SubplotSpec] Defines the region in a parent gridspec where the
subfigure will be placed.

facecolor
[default: rcParams["figure.facecolor"] (default: 'white')] The fig-
ure patch face color.

edgecolor
[default: rcParams["figure.edgecolor"] (default: 'white')] The fig-
ure patch edge color.

linewidth
[float] The linewidth of the frame (i.e. the edge linewidth of the figure patch).

2172 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=figure.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

frameon
[bool, default: rcParams["figure.frameon"] (default: True)] If
False, suppress drawing the figure background patch.

add_artist(artist, clip=False)
Add an Artist to the figure.

Usually artists are added to Axes objects using Axes.add_artist; this method can be used
in the rare cases where one needs to add artists directly to the figure instead.

Parameters

artist
[Artist] The artist to add to the figure. If the added artist has no transform
previously set, its transform will be set to figure.transSubfigure.

clip
[bool, default: False] Whether the added artist should be clipped by the figure
patch.

Returns

Artist

The added artist.

add_axes(*args, **kwargs)
Add an Axes to the figure.

Call signatures:

add_axes(rect, projection=None, polar=False, **kwargs)
add_axes(ax)

Parameters

rect
[sequence of float] The dimensions [left, bottom, width, height] of the newAxes.
All quantities are in fractions of figure width and height.

projection
[{None, 'aitoff', 'hammer', 'lambert', 'mollweide', 'polar', 'rectilinear', str}, op-
tional] The projection type of the Axes. str is the name of a custom projection,
see projections. The default None results in a 'rectilinear' projection.

polar
[bool, default: False] If True, equivalent to projection='polar'.

18.24. matplotlib.figure 2173

../tutorials/introductory/customizing.html?highlight=figure.frameon#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

axes_class
[subclass type of Axes, optional] The axes.Axes subclass that is instantiated.
This parameter is incompatible with projection and polar. See axisartist for
examples.

sharex, sharey
[Axes, optional] Share the x or y axiswith sharex and/or sharey. The axis will
have the same limits, ticks, and scale as the axis of the shared axes.

label
[str] A label for the returned Axes.

Returns

Axes, or a subclass of Axes
The returned axes class depends on the projection used. It is Axes if rectilinear
projection is used and projections.polar.PolarAxes if polar projec-
tion is used.

Other Parameters

**kwargs
This method also takes the keyword arguments for the returned Axes class. The
keyword arguments for the rectilinear Axes class Axes can be found in the fol-
lowing table but there might also be other keyword arguments if another projec-
tion is used, see the actual Axes class.

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown

continues on next page

2174 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 142 – continued from previous page
Property Description
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

See also:

Figure.add_subplot

pyplot.subplot

pyplot.axes

Figure.subplots

18.24. matplotlib.figure 2175

Matplotlib, Release 3.4.3

pyplot.subplots

Notes

In rare circumstances, add_axes may be called with a single argument, an Axes instance al-
ready created in the present figure but not in the figure's list of Axes.

Examples

Some simple examples:

rect = l, b, w, h
fig = plt.figure()
fig.add_axes(rect)
fig.add_axes(rect, frameon=False, facecolor='g')
fig.add_axes(rect, polar=True)
ax = fig.add_axes(rect, projection='polar')
fig.delaxes(ax)
fig.add_axes(ax)

add_callback(func)
Add a callback function that will be called whenever one of the Artist's properties changes.

Parameters

func
[callable] The callback function. It must have the signature:

def func(artist: Artist) -> Any

where artist is the calling Artist. Return values may exist but are ignored.

Returns

int
The observer id associated with the callback. This id can be used for removing
the callback with remove_callback later.

See also:

remove_callback

add_gridspec(nrows=1, ncols=1, **kwargs)
Return a GridSpec that has this figure as a parent. This allows complex layout of Axes in the
figure.

Parameters

2176 Chapter 18. Modules

Matplotlib, Release 3.4.3

nrows
[int, default: 1] Number of rows in grid.

ncols
[int, default: 1] Number or columns in grid.

Returns

GridSpec

Other Parameters

**kwargs
Keyword arguments are passed to GridSpec.

See also:

matplotlib.pyplot.subplots

Examples

Adding a subplot that spans two rows:

fig = plt.figure()
gs = fig.add_gridspec(2, 2)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[1, 0])
spans two rows:
ax3 = fig.add_subplot(gs[:, 1])

add_subfigure(subplotspec, **kwargs)
Add a SubFigure to the figure as part of a subplot arrangement.

Parameters

subplotspec
[gridspec.SubplotSpec] Defines the region in a parent gridspec where
the subfigure will be placed.

Returns

figure.SubFigure

Other Parameters

18.24. matplotlib.figure 2177

Matplotlib, Release 3.4.3

**kwargs
Are passed to the SubFigure object.

See also:

Figure.subfigures

add_subplot(*args, **kwargs)
Add an Axes to the figure as part of a subplot arrangement.

Call signatures:

add_subplot(nrows, ncols, index, **kwargs)
add_subplot(pos, **kwargs)
add_subplot(ax)
add_subplot()

Parameters

*args
[int, (int, int, index), or SubplotSpec, default: (1, 1, 1)] The position of the
subplot described by one of

• Three integers (nrows, ncols, index). The subplot will take the index position
on a grid with nrows rows and ncols columns. index starts at 1 in the upper
left corner and increases to the right. index can also be a two-tuple specifying
the (first, last) indices (1-based, and including last) of the subplot, e.g., fig.
add_subplot(3, 1, (1, 2)) makes a subplot that spans the upper
2/3 of the figure.

• A 3-digit integer. The digits are interpreted as if given separately as three
single-digit integers, i.e. fig.add_subplot(235) is the same as fig.
add_subplot(2, 3, 5). Note that this can only be used if there are no
more than 9 subplots.

• A SubplotSpec.

In rare circumstances, add_subplot may be called with a single argument, a
subplot Axes instance already created in the present figure but not in the figure's
list of Axes.

projection
[{None, 'aitoff', 'hammer', 'lambert', 'mollweide', 'polar', 'rectilinear', str}, op-
tional] The projection type of the subplot (Axes). str is the name of a custom
projection, see projections. The default None results in a 'rectilinear' pro-
jection.

polar
[bool, default: False] If True, equivalent to projection='polar'.

2178 Chapter 18. Modules

Matplotlib, Release 3.4.3

axes_class
[subclass type of Axes, optional] The axes.Axes subclass that is instantiated.
This parameter is incompatible with projection and polar. See axisartist for
examples.

sharex, sharey
[Axes, optional] Share the x or y axiswith sharex and/or sharey. The axis will
have the same limits, ticks, and scale as the axis of the shared axes.

label
[str] A label for the returned Axes.

Returns

axes.SubplotBase, or another subclass of Axes
The Axes of the subplot. The returned Axes base class depends on the projection
used. It is Axes if rectilinear projection is used and projections.polar.
PolarAxes if polar projection is used. The returned Axes is then a subplot
subclass of the base class.

Other Parameters

**kwargs
This method also takes the keyword arguments for the returned Axes base class;
except for the figure argument. The keyword arguments for the rectilinear base
class Axes can be found in the following table but there might also be other
keyword arguments if another projection is used.

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None

continues on next page

18.24. matplotlib.figure 2179

Matplotlib, Release 3.4.3

Table 143 – continued from previous page
Property Description
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

See also:

Figure.add_axes

pyplot.subplot

pyplot.axes

Figure.subplots

2180 Chapter 18. Modules

Matplotlib, Release 3.4.3

pyplot.subplots

Examples

fig = plt.figure()

fig.add_subplot(231)
ax1 = fig.add_subplot(2, 3, 1) # equivalent but more general

fig.add_subplot(232, frameon=False) # subplot with no frame
fig.add_subplot(233, projection='polar') # polar subplot
fig.add_subplot(234, sharex=ax1) # subplot sharing x-axis with ax1
fig.add_subplot(235, facecolor="red") # red subplot

ax1.remove() # delete ax1 from the figure
fig.add_subplot(ax1) # add ax1 back to the figure

align_labels(axs=None)
Align the xlabels and ylabels of subplots with the same subplots row or column (respectively) if
label alignment is being done automatically (i.e. the label position is not manually set).

Alignment persists for draw events after this is called.

Parameters

axs
[list of Axes] Optional list (or ndarray) of Axes to align the labels. Default is
to align all Axes on the figure.

See also:

matplotlib.figure.Figure.align_xlabels

matplotlib.figure.Figure.align_ylabels

align_xlabels(axs=None)
Align the xlabels of subplots in the same subplot column if label alignment is being done auto-
matically (i.e. the label position is not manually set).

Alignment persists for draw events after this is called.

If a label is on the bottom, it is aligned with labels on Axes that also have their label on the
bottom and that have the same bottom-most subplot row. If the label is on the top, it is aligned
with labels on Axes with the same top-most row.

Parameters

axs
[list of Axes] Optional list of (or ndarray) Axes to align the xlabels. Default is
to align all Axes on the figure.

18.24. matplotlib.figure 2181

Matplotlib, Release 3.4.3

See also:

matplotlib.figure.Figure.align_ylabels

matplotlib.figure.Figure.align_labels

Notes

This assumes that axs are from the same GridSpec, so that their SubplotSpec positions
correspond to figure positions.

Examples

Example with rotated xtick labels:

fig, axs = plt.subplots(1, 2)
for tick in axs[0].get_xticklabels():

tick.set_rotation(55)
axs[0].set_xlabel('XLabel 0')
axs[1].set_xlabel('XLabel 1')
fig.align_xlabels()

align_ylabels(axs=None)
Align the ylabels of subplots in the same subplot column if label alignment is being done auto-
matically (i.e. the label position is not manually set).

Alignment persists for draw events after this is called.

If a label is on the left, it is aligned with labels on Axes that also have their label on the left and
that have the same left-most subplot column. If the label is on the right, it is aligned with labels
on Axes with the same right-most column.

Parameters

axs
[list of Axes] Optional list (or ndarray) of Axes to align the ylabels. Default is
to align all Axes on the figure.

See also:

matplotlib.figure.Figure.align_xlabels

matplotlib.figure.Figure.align_labels

2182 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

This assumes that axs are from the same GridSpec, so that their SubplotSpec positions
correspond to figure positions.

Examples

Example with large yticks labels:

fig, axs = plt.subplots(2, 1)
axs[0].plot(np.arange(0, 1000, 50))
axs[0].set_ylabel('YLabel 0')
axs[1].set_ylabel('YLabel 1')
fig.align_ylabels()

autofmt_xdate(bottom=0.2, rotation=30, ha='right', which='major')
Date ticklabels often overlap, so it is useful to rotate them and right align them. Also, a common
use case is a number of subplots with shared x-axis where the x-axis is date data. The ticklabels
are often long, and it helps to rotate them on the bottom subplot and turn them off on other
subplots, as well as turn off xlabels.

Parameters

bottom
[float, default: 0.2] The bottom of the subplots for subplots_adjust.

rotation
[float, default: 30 degrees] The rotation angle of the xtick labels in degrees.

ha
[{'left', 'center', 'right'}, default: 'right'] The horizontal alignment of the xtickla-
bels.

which
[{'major', 'minor', 'both'}, default: 'major'] Selects which ticklabels to rotate.

property axes
List of Axes in the SubFigure. You can access and modify the Axes in the SubFigure through
this list.

Do not modify the list itself. Instead, use add_axes, add_subplot or delaxes to add or
remove an Axes.

colorbar(mappable, cax=None, ax=None, use_gridspec=True, **kw)
Add a colorbar to a plot.

Parameters

18.24. matplotlib.figure 2183

Matplotlib, Release 3.4.3

mappable
The matplotlib.cm.ScalarMappable (i.e., AxesImage, Con-
tourSet, etc.) described by this colorbar. This argument is mandatory for
the Figure.colorbar method but optional for the pyplot.colorbar
function, which sets the default to the current image.

Note that one can create a ScalarMappable "on-the-fly" to generate color-
bars not attached to a previously drawn artist, e.g.

fig.colorbar(cm.ScalarMappable(norm=norm, cmap=cmap),␣
↪ax=ax)

cax
[Axes, optional] Axes into which the colorbar will be drawn.

ax
[Axes, list of Axes, optional] One or more parent axes from which space for a
new colorbar axes will be stolen, if cax is None. This has no effect if cax is set.

use_gridspec
[bool, optional] If cax is None, a new cax is created as an instance of Axes. If ax
is an instance of Subplot and use_gridspec is True, cax is created as an instance
of Subplot using the gridspec module.

Returns

colorbar
[Colorbar] See also its base class, ColorbarBase.

Notes

Additional keyword arguments are of two kinds:

axes properties:

location
[None or {'left', 'right', 'top', 'bottom'}] The location, relative to the parent
axes, where the colorbar axes is created. It also determines the orientation
of the colorbar (colorbars on the left and right are vertical, colorbars at the
top and bottom are horizontal). If None, the location will come from the
orientation if it is set (vertical colorbars on the right, horizontal ones at the
bottom), or default to 'right' if orientation is unset.

orientation
[None or {'vertical', 'horizontal'}] The orientation of the colorbar. It is
preferable to set the location of the colorbar, as that also determines the

2184 Chapter 18. Modules

Matplotlib, Release 3.4.3

orientation; passing incompatible values for location and orientation raises
an exception.

fraction
[float, default: 0.15] Fraction of original axes to use for colorbar.

shrink
[float, default: 1.0] Fraction by which to multiply the size of the colorbar.

aspect
[float, default: 20] Ratio of long to short dimensions.

pad
[float, default: 0.05 if vertical, 0.15 if horizontal] Fraction of original axes
between colorbar and new image axes.

anchor
[(float, float), optional] The anchor point of the colorbar axes. Defaults to
(0.0, 0.5) if vertical; (0.5, 1.0) if horizontal.

panchor
[(float, float), or False, optional] The anchor point of the colorbar parent
axes. If False, the parent axes' anchor will be unchanged. Defaults to (1.0,
0.5) if vertical; (0.5, 0.0) if horizontal.

colorbar properties:

18.24. matplotlib.figure 2185

Matplotlib, Release 3.4.3

Prop-
erty

Description

ex-
tend

{'neither', 'both', 'min', 'max'} If not 'neither', make pointed end(s) for
out-of- range values. These are set for a given colormap using the
colormap set_under and set_over methods.

ex-
tend-
frac

{None, 'auto', length, lengths} If set to None, both the minimum and
maximum triangular colorbar extensions with have a length of 5% of
the interior colorbar length (this is the default setting). If set to 'auto',
makes the triangular colorbar extensions the same lengths as the in-
terior boxes (when spacing is set to 'uniform') or the same lengths
as the respective adjacent interior boxes (when spacing is set to 'pro-
portional'). If a scalar, indicates the length of both the minimum and
maximum triangular colorbar extensions as a fraction of the interior
colorbar length. A two-element sequence of fractions may also be
given, indicating the lengths of the minimum and maximum colorbar
extensions respectively as a fraction of the interior colorbar length.

ex-
ten-
drect

bool If False the minimum and maximum colorbar extensions will be
triangular (the default). If True the extensions will be rectangular.

spac-
ing

{'uniform', 'proportional'} Uniform spacing gives each discrete color
the same space; proportional makes the space proportional to the data
interval.

ticks None or list of ticks or Locator If None, ticks are determined auto-
matically from the input.

for-
mat

None or str or Formatter If None, ScalarFormatter is used. If a
format string is given, e.g., '%.3f', that is used. An alternative For-
matter may be given instead.

drawedgesbool Whether to draw lines at color boundaries.
la-
bel

str The label on the colorbar's long axis.

The followingwill probably be useful only in the context of indexed colors (that
is, when the mappable has norm=NoNorm()), or other unusual circumstances.

Prop-
erty

Description

bound-
aries

None or a sequence

val-
ues

None or a sequence which must be of length 1 less than the se-
quence of boundaries. For each region delimited by adjacent entries
in boundaries, the colormapped to the corresponding value in values
will be used.

If mappable is a ContourSet, its extend kwarg is included automatically.

The shrink kwarg provides a simple way to scale the colorbar with respect to the axes. Note
that if cax is specified, it determines the size of the colorbar and shrink and aspect kwargs are

2186 Chapter 18. Modules

Matplotlib, Release 3.4.3

ignored.

For more precise control, you can manually specify the positions of the axes objects in which the
mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs.

It is known that some vector graphics viewers (svg and pdf) renders white gaps between segments
of the colorbar. This is due to bugs in the viewers, not Matplotlib. As a workaround, the colorbar
can be rendered with overlapping segments:

cbar = colorbar()
cbar.solids.set_edgecolor("face")
draw()

However this has negative consequences in other circumstances, e.g. with semi-transparent im-
ages (alpha < 1) and colorbar extensions; therefore, this workaround is not used by default (see
issue #1188).

contains(mouseevent)
Test whether the mouse event occurred on the figure.

Returns

bool, {}

convert_xunits(x)
Convert x using the unit type of the xaxis.

If the artist is not in contained in an Axes or if the xaxis does not have units, x itself is returned.

convert_yunits(y)
Convert y using the unit type of the yaxis.

If the artist is not in contained in an Axes or if the yaxis does not have units, y itself is returned.

delaxes(ax)
Remove the Axes ax from the figure; update the current Axes.

property dpi

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

18.24. matplotlib.figure 2187

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

findobj(match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this
class or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

property frameon
Return the figure's background patch visibility, i.e. whether the figure background will be drawn.
Equivalent to Figure.patch.get_visible().

gca(**kwargs)
Get the current Axes, creating one if necessary.

2188 Chapter 18. Modules

Matplotlib, Release 3.4.3

The following kwargs are supported for ensuring the returned Axes adheres to the given projec-
tion etc., and for Axes creation if the active Axes does not exist:

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase

continues on next page

18.24. matplotlib.figure 2189

Matplotlib, Release 3.4.3

Table 144 – continued from previous page
Property Description
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

get_agg_filter()
Return filter function to be used for agg filter.

get_alpha()
Return the alpha value used for blending - not supported on all backends.

get_animated()
Return whether the artist is animated.

get_axes()
Return a list of Axes in the SubFigure. You can access and modify the Axes in the Figure through
this list.

Do not modify the list itself. Instead, use add_axes, add_subplot or delaxes to add or
remove an Axes.

Note: This is equivalent to the property axes.

get_children()
Get a list of artists contained in the figure.

get_clip_box()
Return the clipbox.

get_clip_on()
Return whether the artist uses clipping.

get_clip_path()
Return the clip path.

get_constrained_layout()
Return whether constrained layout is being used.

See Constrained Layout Guide.

get_constrained_layout_pads(relative=False)
Get padding for constrained_layout.

Returns a list of w_pad, h_pad in inches andwspace andhspace as fractions of the subplot.

2190 Chapter 18. Modules

Matplotlib, Release 3.4.3

See Constrained Layout Guide.

Parameters

relative
[bool] If True, then convert from inches to figure relative.

get_contains()
[Deprecated] Return the custom contains function of the artist if set, or None.

See also:

set_contains

Notes

Deprecated since version 3.3.

get_cursor_data(event)
Return the cursor data for a given event.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

Cursor data can be used by Artists to provide additional context information for a given event.
The default implementation just returns None.

Subclasses can override the method and return arbitrary data. However, when doing so, they
must ensure that format_cursor_data can convert the data to a string representation.

The only current use case is displaying the z-value of an AxesImage in the status bar of a plot
window, while moving the mouse.

Parameters

event
[matplotlib.backend_bases.MouseEvent]

See also:

format_cursor_data

get_default_bbox_extra_artists()

get_edgecolor()
Get the edge color of the Figure rectangle.

get_facecolor()
Get the face color of the Figure rectangle.

18.24. matplotlib.figure 2191

https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

get_figure()
Return the Figure instance the artist belongs to.

get_frameon()
Return the figure's background patch visibility, i.e. whether the figure background will be drawn.
Equivalent to Figure.patch.get_visible().

get_gid()
Return the group id.

get_in_layout()
Return boolean flag, True if artist is included in layout calculations.

E.g. Constrained Layout Guide, Figure.tight_layout(), and fig.
savefig(fname, bbox_inches='tight').

get_label()
Return the label used for this artist in the legend.

get_linewidth()
Get the line width of the Figure rectangle.

get_path_effects()

get_picker()
Return the picking behavior of the artist.

The possible values are described in set_picker.

See also:

set_picker, pickable, pick

get_rasterized()
Return whether the artist is to be rasterized.

get_sketch_params()
Return the sketch parameters for the artist.

Returns

tuple or None
A 3-tuple with the following elements:

• scale: The amplitude of the wiggle perpendicular to the source line.

• length: The length of the wiggle along the line.

• randomness: The scale factor by which the length is shrunken or expanded.

Returns None if no sketch parameters were set.

get_snap()
Return the snap setting.

See set_snap for details.

2192 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_tightbbox(renderer, bbox_extra_artists=None)
Return a (tight) bounding box of the figure in inches.

Artists that have artist.set_in_layout(False) are not included in the bbox.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

bbox_extra_artists
[list of Artist or None] List of artists to include in the tight bounding box.
If None (default), then all artist children of each Axes are included in the tight
bounding box.

Returns

BboxBase

containing the bounding box (in figure inches).

get_transform()
Return the Transform instance used by this artist.

get_transformed_clip_path_and_affine()
Return the clip path with the non-affine part of its transformation applied, and the remaining
affine part of its transformation.

get_url()
Return the url.

get_visible()
Return the visibility.

get_window_extent(*args, **kwargs)
Return the figure bounding box in display space. Arguments are ignored.

get_zorder()
Return the artist's zorder.

have_units()
Return whether units are set on any axis.

init_layoutgrid()
Initialize the layoutgrid for use in constrained_layout.

is_transform_set()
Return whether the Artist has an explicitly set transform.

This is True after set_transform has been called.

18.24. matplotlib.figure 2193

Matplotlib, Release 3.4.3

legend(*args, **kwargs)
Place a legend on the figure.

Call signatures:

legend()
legend(labels)
legend(handles, labels)

The call signatures correspond to these three different ways to use this method:

1. Automatic detection of elements to be shown in the legend
The elements to be added to the legend are automatically determined, when you do not pass in
any extra arguments.

In this case, the labels are taken from the artist. You can specify them either at artist creation or
by calling the set_label() method on the artist:

ax.plot([1, 2, 3], label='Inline label')
fig.legend()

or:

line, = ax.plot([1, 2, 3])
line.set_label('Label via method')
fig.legend()

Specific lines can be excluded from the automatic legend element selection by defining a label
starting with an underscore. This is default for all artists, so calling Figure.legend without
any arguments and without setting the labels manually will result in no legend being drawn.

2. Labeling existing plot elements
To make a legend for all artists on all Axes, call this function with an iterable of strings, one for
each legend item. For example:

fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.plot([1, 3, 5], color='blue')
ax2.plot([2, 4, 6], color='red')
fig.legend(['the blues', 'the reds'])

Note: This call signature is discouraged, because the relation between plot elements and labels
is only implicit by their order and can easily be mixed up.

3. Explicitly defining the elements in the legend
For full control of which artists have a legend entry, it is possible to pass an iterable of legend
artists followed by an iterable of legend labels respectively:

fig.legend([line1, line2, line3], ['label1', 'label2', 'label3'])

Parameters

2194 Chapter 18. Modules

Matplotlib, Release 3.4.3

handles
[list of Artist, optional] A list of Artists (lines, patches) to be added to the
legend. Use this together with labels, if you need full control on what is shown
in the legend and the automatic mechanism described above is not sufficient.

The length of handles and labels should be the same in this case. If they are not,
they are truncated to the smaller length.

labels
[list of str, optional] A list of labels to show next to the artists. Use this together
with handles, if you need full control on what is shown in the legend and the
automatic mechanism described above is not sufficient.

Returns

Legend

Other Parameters

loc
[str or pair of floats, default: rcParams["legend.loc"] (default:
'best') ('best' for axes, 'upper right' for figures)] The location of the legend.

The strings 'upper left', 'upper right', 'lower left',
'lower right' place the legend at the corresponding corner of the
axes/figure.

The strings 'upper center', 'lower center', 'center left',
'center right' place the legend at the center of the corresponding edge of
the axes/figure.

The string 'center' places the legend at the center of the axes/figure.

The string 'best' places the legend at the location, among the nine locations
defined so far, with the minimum overlap with other drawn artists. This option
can be quite slow for plots with large amounts of data; your plotting speed may
benefit from providing a specific location.

The location can also be a 2-tuple giving the coordinates of the lower-left cor-
ner of the legend in axes coordinates (in which case bbox_to_anchor will be
ignored).

For back-compatibility, 'center right' (but no other location) can also be
spelled 'right', and each "string" locations can also be given as a numeric
value:

18.24. matplotlib.figure 2195

../tutorials/introductory/customizing.html?highlight=legend.loc#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Location String Location Code
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the leg-
end in conjunction with loc. Defaults to axes.bbox (if called as a method
to Axes.legend) or figure.bbox (if Figure.legend). This argument
allows arbitrary placement of the legend.

Bbox coordinates are interpreted in the coordinate system given by
bbox_transform, with the default transform Axes or Figure coordinates,
depending on which legend is called.

If a 4-tuple or BboxBase is given, then it specifies the bbox (x, y, width,
height) that the legend is placed in. To put the legend in the best location in
the bottom right quadrant of the axes (or figure):

loc='best', bbox_to_anchor=(0.5, 0., 0.5, 0.5)

A 2-tuple (x, y) places the corner of the legend specified by loc at x, y. For
example, to put the legend's upper right-hand corner in the center of the axes (or
figure) the following keywords can be used:

loc='upper right', bbox_to_anchor=(0.5, 0.5)

ncol
[int, default: 1] The number of columns that the legend has.

prop
[None or matplotlib.font_manager.FontProperties or dict] The
font properties of the legend. If None (default), the current matplotlib.
rcParams will be used.

fontsize
[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}] The
font size of the legend. If the value is numeric the size will be the absolute font

2196 Chapter 18. Modules

Matplotlib, Release 3.4.3

size in points. String values are relative to the current default font size. This
argument is only used if prop is not specified.

labelcolor
[str or list] The color of the text in the legend. Either a valid color string (for
example, 'red'), or a list of color strings. The labelcolor can also bemade tomatch
the color of the line or marker using 'linecolor', 'markerfacecolor' (or 'mfc'), or
'markeredgecolor' (or 'mec').

numpoints
[int, default: rcParams["legend.numpoints"] (default: 1)] The num-
ber of marker points in the legend when creating a legend entry for a Line2D
(line).

scatterpoints
[int, default: rcParams["legend.scatterpoints"] (default: 1)] The
number of marker points in the legend when creating a legend entry for a Path-
Collection (scatter plot).

scatteryoffsets
[iterable of floats, default: [0.375, 0.5, 0.3125]] The vertical offset
(relative to the font size) for the markers created for a scatter plot legend entry.
0.0 is at the base the legend text, and 1.0 is at the top. To draw all markers at the
same height, set to [0.5].

markerscale
[float, default: rcParams["legend.markerscale"] (default: 1.0)]
The relative size of legend markers compared with the originally drawn ones.

markerfirst
[bool, default: True] If True, legend marker is placed to the left of the legend
label. If False, legend marker is placed to the right of the legend label.

frameon
[bool, default: rcParams["legend.frameon"] (default: True)]
Whether the legend should be drawn on a patch (frame).

fancybox
[bool, default: rcParams["legend.fancybox"] (default: True)]
Whether round edges should be enabled around the FancyBboxPatch which
makes up the legend's background.

shadow
[bool, default: rcParams["legend.shadow"] (default: False)]
Whether to draw a shadow behind the legend.

framealpha

18.24. matplotlib.figure 2197

../tutorials/introductory/customizing.html?highlight=legend.numpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.scatterpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.markerscale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.frameon#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.fancybox#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.shadow#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[float, default: rcParams["legend.framealpha"] (default: 0.8)] The
alpha transparency of the legend's background. If shadow is activated and
framealpha is None, the default value is ignored.

facecolor
["inherit" or color, default: rcParams["legend.facecolor"] (de-
fault: 'inherit')] The legend's background color. If "inherit", use
rcParams["axes.facecolor"] (default: 'white').

edgecolor
["inherit" or color, default: rcParams["legend.edgecolor"] (default:
'0.8')] The legend's background patch edge color. If "inherit", use take
rcParams["axes.edgecolor"] (default: 'black').

mode
[{"expand", None}] If mode is set to "expand" the legend will be horizontally
expanded to fill the axes area (or bbox_to_anchor if defines the legend's size).

bbox_transform
[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor). For a value of None (default) the Axes'
transAxes transform will be used.

title
[str or None] The legend's title. Default is no title (None).

title_fontsize
[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, de-
fault: rcParams["legend.title_fontsize"] (default: None)] The
font size of the legend's title.

borderpad
[float, default: rcParams["legend.borderpad"] (default: 0.4)] The
fractional whitespace inside the legend border, in font-size units.

labelspacing
[float, default: rcParams["legend.labelspacing"] (default: 0.5)]
The vertical space between the legend entries, in font-size units.

handlelength
[float, default: rcParams["legend.handlelength"] (default: 2.0)]
The length of the legend handles, in font-size units.

handletextpad
[float, default: rcParams["legend.handletextpad"] (default: 0.8)]
The pad between the legend handle and text, in font-size units.

2198 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=legend.framealpha#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.title_fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.borderpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.labelspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.handlelength#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.handletextpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

borderaxespad
[float, default: rcParams["legend.borderaxespad"] (default: 0.5)]
The pad between the axes and legend border, in font-size units.

columnspacing
[float, default: rcParams["legend.columnspacing"] (default: 2.0)]
The spacing between columns, in font-size units.

handler_map
[dict or None] The custom dictionary mapping instances or types to a leg-
end handler. This handler_map updates the default handler map found at
matplotlib.legend.Legend.get_legend_handler_map.

See also:

Axes.legend

Notes

Some artists are not supported by this function. See Legend guide for details.

property mouseover
If this property is set to True, the artist will be queried for custom context information when the
mouse cursor moves over it.

See also get_cursor_data(), ToolCursorPosition and NavigationToolbar2.

pchanged()
Call all of the registered callbacks.

This function is triggered internally when a property is changed.

See also:

add_callback

remove_callback

pick(mouseevent)
Process a pick event.

Each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set.

See also:

set_picker, get_picker, pickable

pickable()
Return whether the artist is pickable.

See also:

18.24. matplotlib.figure 2199

../tutorials/introductory/customizing.html?highlight=legend.borderaxespad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.columnspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

set_picker, get_picker, pick

properties()
Return a dictionary of all the properties of the artist.

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

remove_callback(oid)
Remove a callback based on its observer id.

See also:

add_callback

sca(a)
Set the current Axes to be a and return a.

set(**kwargs)
A property batch setter. Pass kwargs to set properties.

set_agg_filter(filter_func)
Set the agg filter.

Parameters

filter_func
[callable] A filter function, which takes a (m, n, 3) float array and a dpi value,
and returns a (m, n, 3) array.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[scalar or None] alpha must be within the 0-1 range, inclusive.

set_animated(b)
Set whether the artist is intended to be used in an animation.

If True, the artist is excluded from regular drawing of the figure. You have to call Figure.
draw_artist / Axes.draw_artist explicitly on the artist. This appoach is used to speed
up animations using blitting.

2200 Chapter 18. Modules

Matplotlib, Release 3.4.3

See also matplotlib.animation and Faster rendering by using blitting.

Parameters

b
[bool]

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

18.24. matplotlib.figure 2201

Matplotlib, Release 3.4.3

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_contains(picker)
[Deprecated] Define a custom contains test for the artist.

The provided callable replaces the default contains method of the artist.

Parameters

picker
[callable] A custom picker function to evaluate if an event is within the artist.
The function must have the signature:

def contains(artist: Artist, event: MouseEvent) -> bool,␣
↪dict

that returns:

• a bool indicating if the event is within the artist

• a dict of additional information. The dict should at least return the same infor-
mation as the default contains() implementation of the respective artist,
but may provide additional information.

Notes

Deprecated since version 3.3.

set_edgecolor(color)
Set the edge color of the Figure rectangle.

Parameters

color
[color]

set_facecolor(color)
Set the face color of the Figure rectangle.

Parameters

color
[color]

2202 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_frameon(b)
Set the figure's background patch visibility, i.e. whether the figure background will be drawn.
Equivalent to Figure.patch.set_visible().

Parameters

b
[bool]

set_gid(gid)
Set the (group) id for the artist.

Parameters

gid
[str]

set_in_layout(in_layout)
Set if artist is to be included in layout calculations, E.g. Constrained Layout Guide, Figure.
tight_layout(), and fig.savefig(fname, bbox_inches='tight').

Parameters

in_layout
[bool]

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_linewidth(linewidth)
Set the line width of the Figure rectangle.

Parameters

18.24. matplotlib.figure 2203

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

linewidth
[number]

set_path_effects(path_effects)
Set the path effects.

Parameters

path_effects
[AbstractPathEffect]

set_picker(picker)
Define the picking behavior of the artist.

Parameters

picker
[None or bool or float or callable] This can be one of the following:

• None: Picking is disabled for this artist (default).

• A boolean: If True then picking will be enabled and the artist will fire a pick
event if the mouse event is over the artist.

• A float: If picker is a number it is interpreted as an epsilon tolerance in points
and the artist will fire off an event if its data is within epsilon of the mouse
event. For some artists like lines and patch collections, the artist may provide
additional data to the pick event that is generated, e.g., the indices of the data
within epsilon of the pick event

• A function: If picker is callable, it is a user supplied functionwhich determines
whether the artist is hit by the mouse event:

hit, props = picker(artist, mouseevent)

to determine the hit test. if the mouse event is over the artist, return hit=True
and props is a dictionary of properties you want added to the PickEvent at-
tributes.

set_rasterized(rasterized)
Force rasterized (bitmap) drawing for vector graphics output.

Rasterized drawing is not supported by all artists. If you try to enable this on an artist that does
not support it, the command has no effect and a warning will be issued.

This setting is ignored for pixel-based output.

See also /gallery/misc/rasterization_demo.

Parameters

2204 Chapter 18. Modules

Matplotlib, Release 3.4.3

rasterized
[bool]

set_sketch_params(scale=None, length=None, randomness=None)
Set the sketch parameters.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line, in
pixels. If scale is None, or not provided, no sketch filter will be provided.

length
[float, optional] The length of the wiggle along the line, in pixels (default 128.0)

randomness
[float, optional] The scale factor by which the length is shrunken or expanded
(default 16.0)

set_snap(snap)
Set the snapping behavior.

Snapping aligns positions with the pixel grid, which results in clearer images. For example, if
a black line of 1px width was defined at a position in between two pixels, the resulting image
would contain the interpolated value of that line in the pixel grid, which would be a grey value
on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer
pixel value, so that the resulting image will really contain a 1px wide black line.

Snapping is currently only supported by the Agg and MacOSX backends.

Parameters

snap
[bool or None] Possible values:

• True: Snap vertices to the nearest pixel center.

• False: Do not modify vertex positions.

• None: (auto) If the path contains only rectilinear line segments, round to the
nearest pixel center.

set_transform(t)
Set the artist transform.

Parameters

t
[Transform]

18.24. matplotlib.figure 2205

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

set_url(url)
Set the url for the artist.

Parameters

url
[str]

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

set_zorder(level)
Set the zorder for the artist. Artists with lower zorder values are drawn first.

Parameters

level
[float]

property stale
Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of
the artist.

property sticky_edges
x and y sticky edge lists for autoscaling.

When performing autoscaling, if a data limit coincides with a value in the corresponding
sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typi-
cal use case is histograms, where one usually expects no margin on the bottom edge (0) of the
histogram.

This attribute cannot be assigned to; however, thex andy lists can bemodified in place as needed.

Examples

>>> artist.sticky_edges.x[:] = (xmin, xmax)
>>> artist.sticky_edges.y[:] = (ymin, ymax)

subfigures(nrows=1, ncols=1, squeeze=True, wspace=None, hspace=None,
width_ratios=None, height_ratios=None, **kwargs)

Add a subfigure to this figure or subfigure.

A subfigure has the same artist methods as a figure, and is logically the same as a figure, but
cannot print itself. See /gallery/subplots_axes_and_figures/subfigures.

2206 Chapter 18. Modules

Matplotlib, Release 3.4.3

Parameters

nrows, ncols
[int, default: 1] Number of rows/columns of the subfigure grid.

squeeze
[bool, default: True] If True, extra dimensions are squeezed out from the re-
turned array of subfigures.

wspace, hspace
[float, default: None] The amount of width/height reserved for space between
subfigures, expressed as a fraction of the average subfigure width/height. If not
given, the values will be inferred from a figure or rcParams when necessary.

width_ratios
[array-like of length ncols, optional] Defines the relative widths of the
columns. Each column gets a relative width of width_ratios[i] /
sum(width_ratios). If not given, all columns will have the same width.

height_ratios
[array-like of length nrows, optional] Defines the relative heights of the
rows. Each row gets a relative height of height_ratios[i] /
sum(height_ratios). If not given, all rows will have the same height.

subplot_mosaic(mosaic, *, subplot_kw=None, gridspec_kw=None, empty_sentinel='.')
Build a layout of Axes based on ASCII art or nested lists.

This is a helper function to build complex GridSpec layouts visually.

Note: This API is provisional and may be revised in the future based on early user feedback.

Parameters

mosaic
[list of list of {hashable or nested} or str] A visual layout of how you want your
Axes to be arranged labeled as strings. For example

x = [['A panel', 'A panel', 'edge'],
['C panel', '.', 'edge']]

Produces 4 Axes:

• 'A panel' which is 1 row high and spans the first two columns

• 'edge' which is 2 rows high and is on the right edge

• 'C panel' which in 1 row and 1 column wide in the bottom left

18.24. matplotlib.figure 2207

Matplotlib, Release 3.4.3

• a blank space 1 row and 1 column wide in the bottom center

Any of the entries in the layout can be a list of lists of the same form to create
nested layouts.

If input is a str, then it can either be a multi-line string of the form

'''
AAE
C.E
'''

where each character is a column and each line is a row. Or it can be a single-line
string where rows are separated by ;:

'AB;CC'

The string notation allows only single character Axes labels and does not support
nesting but is very terse.

subplot_kw
[dict, optional] Dictionary with keywords passed to the Figure.
add_subplot call used to create each subplot.

gridspec_kw
[dict, optional] Dictionary with keywords passed to the GridSpec constructor
used to create the grid the subplots are placed on.

empty_sentinel
[object, optional] Entry in the layout to mean "leave this space empty". Defaults
to '.'. Note, if layout is a string, it is processed via inspect.cleandoc to
remove leading white space, which may interfere with using white-space as the
empty sentinel.

Returns

dict[label, Axes]
A dictionary mapping the labels to the Axes objects. The order of the axes is
left-to-right and top-to-bottom of their position in the total layout.

subplots(nrows=1, ncols=1, *, sharex=False, sharey=False, squeeze=True, sub-
plot_kw=None, gridspec_kw=None)

Add a set of subplots to this figure.

This utility wrapper makes it convenient to create common layouts of subplots in a single call.

Parameters

nrows, ncols
[int, default: 1] Number of rows/columns of the subplot grid.

2208 Chapter 18. Modules

https://docs.python.org/3/library/inspect.html#inspect.cleandoc

Matplotlib, Release 3.4.3

sharex, sharey
[bool or {'none', 'all', 'row', 'col'}, default: False] Controls sharing of properties
among x (sharex) or y (sharey) axes:

• True or 'all': x- or y-axis will be shared among all subplots.

• False or 'none': each subplot x- or y-axis will be independent.

• 'row': each subplot row will share an x- or y-axis.

• 'col': each subplot column will share an x- or y-axis.

When subplots have a shared x-axis along a column, only the x tick labels of the
bottom subplot are created. Similarly, when subplots have a shared y-axis along
a row, only the y tick labels of the first column subplot are created. To later turn
other subplots' ticklabels on, use tick_params.

When subplots have a shared axis that has units, calling Axis.set_units
will update each axis with the new units.

squeeze
[bool, default: True]

• If True, extra dimensions are squeezed out from the returned array of Axes:

– if only one subplot is constructed (nrows=ncols=1), the resulting single
Axes object is returned as a scalar.

– for Nx1 or 1xM subplots, the returned object is a 1D numpy object array of
Axes objects.

– for NxM, subplots with N>1 and M>1 are returned as a 2D array.

• If False, no squeezing at all is done: the returned Axes object is always a 2D
array containing Axes instances, even if it ends up being 1x1.

subplot_kw
[dict, optional] Dict with keywords passed to the Figure.add_subplot call
used to create each subplot.

gridspec_kw
[dict, optional] Dict with keywords passed to the GridSpec constructor used
to create the grid the subplots are placed on.

Returns

Axes or array of Axes
Either a single Axes object or an array of Axes objects if more than one subplot
was created. The dimensions of the resulting array can be controlled with the
squeeze keyword, see above.

See also:

18.24. matplotlib.figure 2209

Matplotlib, Release 3.4.3

pyplot.subplots

Figure.add_subplot

pyplot.subplot

Examples

First create some toy data:
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)

Create a figure
plt.figure()

Create a subplot
ax = fig.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')

Create two subplots and unpack the output array immediately
ax1, ax2 = fig.subplots(1, 2, sharey=True)
ax1.plot(x, y)
ax1.set_title('Sharing Y axis')
ax2.scatter(x, y)

Create four polar Axes and access them through the returned array
axes = fig.subplots(2, 2, subplot_kw=dict(projection='polar'))
axes[0, 0].plot(x, y)
axes[1, 1].scatter(x, y)

Share a X axis with each column of subplots
fig.subplots(2, 2, sharex='col')

Share a Y axis with each row of subplots
fig.subplots(2, 2, sharey='row')

Share both X and Y axes with all subplots
fig.subplots(2, 2, sharex='all', sharey='all')

Note that this is the same as
fig.subplots(2, 2, sharex=True, sharey=True)

subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None,
hspace=None)

Adjust the subplot layout parameters.

Unset parameters are left unmodified; initial values are given by rcParams["figure.
subplot.[name]"].

Parameters

left

2210 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=figure.subplot.{[}name{]}#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.subplot.{[}name{]}#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[float, optional] The position of the left edge of the subplots, as a fraction of the
figure width.

right
[float, optional] The position of the right edge of the subplots, as a fraction of
the figure width.

bottom
[float, optional] The position of the bottom edge of the subplots, as a fraction of
the figure height.

top
[float, optional] The position of the top edge of the subplots, as a fraction of the
figure height.

wspace
[float, optional] The width of the padding between subplots, as a fraction of the
average Axes width.

hspace
[float, optional] The height of the padding between subplots, as a fraction of the
average Axes height.

suptitle(t, **kwargs)
Add a centered suptitle to the figure.

Parameters

t
[str] The suptitle text.

x
[float, default: 0.5] The x location of the text in figure coordinates.

y
[float, default: 0.98] The y location of the text in figure coordinates.

horizontalalignment, ha
[{'center', 'left', 'right'}, default: center] The horizontal alignment of the text
relative to (x, y).

verticalalignment, va
[{'top', 'center', 'bottom', 'baseline'}, default: top] The vertical alignment of the
text relative to (x, y).

fontsize, size
[default: rcParams["figure.titlesize"] (default: 'large')] The
font size of the text. See Text.set_size for possible values.

18.24. matplotlib.figure 2211

../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

fontweight, weight
[default: rcParams["figure.titleweight"] (default: 'normal')]
The font weight of the text. See Text.set_weight for possible values.

Returns

text
The Text instance of the suptitle.

Other Parameters

fontproperties
[None or dict, optional] A dict of font properties. If fontproperties is given
the default values for font size and weight are taken from the FontProper-
ties defaults. rcParams["figure.titlesize"] (default: 'large')
and rcParams["figure.titleweight"] (default: 'normal') are ig-
nored in this case.

**kwargs
Additional kwargs are matplotlib.text.Text properties.

supxlabel(t, **kwargs)
Add a centered supxlabel to the figure.

Parameters

t
[str] The supxlabel text.

x
[float, default: 0.5] The x location of the text in figure coordinates.

y
[float, default: 0.01] The y location of the text in figure coordinates.

horizontalalignment, ha
[{'center', 'left', 'right'}, default: center] The horizontal alignment of the text
relative to (x, y).

verticalalignment, va
[{'top', 'center', 'bottom', 'baseline'}, default: bottom] The vertical alignment of
the text relative to (x, y).

fontsize, size
[default: rcParams["figure.titlesize"] (default: 'large')] The
font size of the text. See Text.set_size for possible values.

2212 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

fontweight, weight
[default: rcParams["figure.titleweight"] (default: 'normal')]
The font weight of the text. See Text.set_weight for possible values.

Returns

text
The Text instance of the supxlabel.

Other Parameters

fontproperties
[None or dict, optional] A dict of font properties. If fontproperties is given
the default values for font size and weight are taken from the FontProper-
ties defaults. rcParams["figure.titlesize"] (default: 'large')
and rcParams["figure.titleweight"] (default: 'normal') are ig-
nored in this case.

**kwargs
Additional kwargs are matplotlib.text.Text properties.

supylabel(t, **kwargs)
Add a centered supylabel to the figure.

Parameters

t
[str] The supylabel text.

x
[float, default: 0.02] The x location of the text in figure coordinates.

y
[float, default: 0.5] The y location of the text in figure coordinates.

horizontalalignment, ha
[{'center', 'left', 'right'}, default: left] The horizontal alignment of the text relative
to (x, y).

verticalalignment, va
[{'top', 'center', 'bottom', 'baseline'}, default: center] The vertical alignment of
the text relative to (x, y).

fontsize, size
[default: rcParams["figure.titlesize"] (default: 'large')] The
font size of the text. See Text.set_size for possible values.

18.24. matplotlib.figure 2213

../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

fontweight, weight
[default: rcParams["figure.titleweight"] (default: 'normal')]
The font weight of the text. See Text.set_weight for possible values.

Returns

text
The Text instance of the supylabel.

Other Parameters

fontproperties
[None or dict, optional] A dict of font properties. If fontproperties is given
the default values for font size and weight are taken from the FontProper-
ties defaults. rcParams["figure.titlesize"] (default: 'large')
and rcParams["figure.titleweight"] (default: 'normal') are ig-
nored in this case.

**kwargs
Additional kwargs are matplotlib.text.Text properties.

text(x, y, s, fontdict=None, **kwargs)
Add text to figure.

Parameters

x, y
[float] The position to place the text. By default, this is in figure coordinates,
floats in [0, 1]. The coordinate system can be changed using the transform key-
word.

s
[str] The text string.

fontdict
[dict, optional] A dictionary to override the default text properties. If not given,
the defaults are determined by rcParams["font.*"]. Properties passed as
kwargs override the corresponding ones given in fontdict.

Returns

Text

Other Parameters

2214 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=font.*#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

**kwargs
[Text properties] Other miscellaneous text parameters.

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
visible bool
wrap bool

continues on next page

18.24. matplotlib.figure 2215

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Table 145 – continued from previous page
Property Description
x float
y float
zorder float

See also:

Axes.text

pyplot.text

update(props)
Update this artist's properties from the dict props.

Parameters

props
[dict]

update_from(other)
Copy properties from other to self.

zorder = 0

class matplotlib.figure.SubplotParams(left=None, bottom=None, right=None,
top=None, wspace=None, hspace=None)

A class to hold the parameters for a subplot.

Defaults are given by rcParams["figure.subplot.[name]"].

Parameters

left
[float] The position of the left edge of the subplots, as a fraction of the figure width.

right
[float] The position of the right edge of the subplots, as a fraction of the figure
width.

bottom
[float] The position of the bottom edge of the subplots, as a fraction of the figure
height.

top
[float] The position of the top edge of the subplots, as a fraction of the figure height.

wspace

2216 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=figure.subplot.{[}name{]}#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[float] The width of the padding between subplots, as a fraction of the average
Axes width.

hspace
[float] The height of the padding between subplots, as a fraction of the average
Axes height.

update(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None)
Update the dimensions of the passed parameters. None means unchanged.

matplotlib.figure.figaspect(arg)
Calculate the width and height for a figure with a specified aspect ratio.

While the height is taken from rcParams["figure.figsize"] (default: [6.4, 4.8]), the
width is adjusted to match the desired aspect ratio. Additionally, it is ensured that the width is in the
range [4., 16.] and the height is in the range [2., 16.]. If necessary, the default height is adjusted to
ensure this.

Parameters

arg
[float or 2D array] If a float, this defines the aspect ratio (i.e. the ratio height /
width). In case of an array the aspect ratio is number of rows / number of columns,
so that the array could be fitted in the figure undistorted.

Returns

width, height
[float] The figure size in inches.

Notes

If you want to create an Axes within the figure, that still preserves the aspect ratio, be sure to create it
with equal width and height. See examples below.

Thanks to Fernando Perez for this function.

Examples

Make a figure twice as tall as it is wide:

w, h = figaspect(2.)
fig = Figure(figsize=(w, h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)

Make a figure with the proper aspect for an array:

18.24. matplotlib.figure 2217

../tutorials/introductory/customizing.html?highlight=figure.figsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

A = rand(5, 3)
w, h = figaspect(A)
fig = Figure(figsize=(w, h))
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.imshow(A, **kwargs)

18.25 matplotlib.font_manager

A module for finding, managing, and using fonts across platforms.

This module provides a single FontManager instance that can be shared across backends and platforms.
The findfont function returns the best TrueType (TTF) font file in the local or system font path that
matches the specified FontProperties instance. The FontManager also handles Adobe Font Metrics
(AFM) font files for use by the PostScript backend.

The design is based on the W3C Cascading Style Sheet, Level 1 (CSS1) font specification. Future versions
may implement the Level 2 or 2.1 specifications.

class matplotlib.font_manager.FontEntry(fname='', name='', style='normal',
variant='normal', weight='normal',
stretch='normal', size='medium')

Bases: object

A class for storing Font properties. It is used when populating the font lookup dictionary.

class matplotlib.font_manager.FontManager(size=None, weight='normal')
Bases: object

On import, the FontManager singleton instance creates a list of ttf and afm fonts and caches their
FontProperties. The FontManager.findfont method does a nearest neighbor search to
find the font that most closely matches the specification. If no good enough match is found, the default
font is returned.

addfont(path)
Cache the properties of the font at path to make it available to the FontManager. The type of
font is inferred from the path suffix.

Parameters

path
[str or path-like]

property defaultFont

findfont(prop, fontext='ttf', directory=None, fallback_to_default=True, re-
build_if_missing=True)

Find a font that most closely matches the given font properties.

Parameters

2218 Chapter 18. Modules

http://www.w3.org/TR/1998/REC-CSS2-19980512/
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

prop
[str or FontProperties] The font properties to search for. This can be either
a FontProperties object or a string defining a fontconfig patterns.

fontext
[{'ttf', 'afm'}, default: 'ttf'] The extension of the font file:

• 'ttf': TrueType and OpenType fonts (.ttf, .ttc, .otf)

• 'afm': Adobe Font Metrics (.afm)

directory
[str, optional] If given, only search this directory and its subdirectories.

fallback_to_default
[bool] If True, will fallback to the default font family (usually "DejaVu Sans" or
"Helvetica") if the first lookup hard-fails.

rebuild_if_missing
[bool] Whether to rebuild the font cache and search again if the first match ap-
pears to point to a nonexisting font (i.e., the font cache contains outdated entries).

Returns

str
The filename of the best matching font.

Notes

This performs a nearest neighbor search. Each font is given a similarity score to the target font
properties. The first font with the highest score is returned. If no matches below a certain thresh-
old are found, the default font (usually DejaVu Sans) is returned.

The result is cached, so subsequent lookups don't have to perform the O(n) nearest neighbor
search.

See the W3C Cascading Style Sheet, Level 1 documentation for a description of the font finding
algorithm.

static get_default_size()
Return the default font size.

get_default_weight()
Return the default font weight.

score_family(families, family2)
Return amatch score between the list of font families in families and the font family name family2.

An exact match at the head of the list returns 0.0.

18.25. matplotlib.font_manager 2219

https://www.freedesktop.org/software/fontconfig/fontconfig-user.html
http://www.w3.org/TR/1998/REC-CSS2-19980512/

Matplotlib, Release 3.4.3

A match further down the list will return between 0 and 1.

No match will return 1.0.

score_size(size1, size2)
Return a match score between size1 and size2.

If size2 (the size specified in the font file) is 'scalable', this function always returns 0.0, since any
font size can be generated.

Otherwise, the result is the absolute distance between size1 and size2, normalized so that the
usual range of font sizes (6pt - 72pt) will lie between 0.0 and 1.0.

score_stretch(stretch1, stretch2)
Return a match score between stretch1 and stretch2.

The result is the absolute value of the difference between the CSS numeric values of stretch1 and
stretch2, normalized between 0.0 and 1.0.

score_style(style1, style2)
Return a match score between style1 and style2.

An exact match returns 0.0.

A match between 'italic' and 'oblique' returns 0.1.

No match returns 1.0.

score_variant(variant1, variant2)
Return a match score between variant1 and variant2.

An exact match returns 0.0, otherwise 1.0.

score_weight(weight1, weight2)
Return a match score between weight1 and weight2.

The result is 0.0 if both weight1 and weight 2 are given as strings and have the same value.

Otherwise, the result is the absolute value of the difference between the CSS numeric values of
weight1 and weight2, normalized between 0.05 and 1.0.

set_default_weight(weight)
Set the default font weight. The initial value is 'normal'.

class matplotlib.font_manager.FontProperties(family=None, style=None,
variant=None,
weight=None, stretch=None,
size=None, fname=None,
math_fontfamily=None)

Bases: object

A class for storing and manipulating font properties.

The font properties are the six properties described in the W3C Cascading Style Sheet, Level 1 font
specification and math_fontfamily for math fonts:

2220 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object
http://www.w3.org/TR/1998/REC-CSS2-19980512/

Matplotlib, Release 3.4.3

• family: A list of font names in decreasing order of priority. The items may include a generic font
family name, either 'sans-serif' (default), 'serif', 'cursive', 'fantasy', or 'monospace'. In that case,
the actual font to be used will be looked up from the associated rcParam.

• style: Either 'normal' (default), 'italic' or 'oblique'.

• variant: Either 'normal' (default) or 'small-caps'.

• stretch: A numeric value in the range 0-1000 or one of 'ultra-condensed', 'extra-condensed', 'con-
densed', 'semi-condensed', 'normal' (default), 'semi-expanded', 'expanded', 'extra-expanded' or
'ultra-expanded'.

• weight: A numeric value in the range 0-1000 or one of 'ultralight', 'light', 'normal' (default), 'reg-
ular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'.

• size: Either an relative value of 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'
or an absolute font size, e.g., 10 (default).

• math_fontfamily: The family of fonts used to render math text; overrides
rcParams["mathtext.fontset"] (default: 'dejavusans'). Supported values
are the same as the ones supported by rcParams["mathtext.fontset"] (default:
'dejavusans'): 'dejavusans', 'dejavuserif', 'cm', 'stix', 'stixsans' and 'custom'.

Alternatively, a font may be specified using the absolute path to a font file, by using the fname kwarg.
However, in this case, it is typically simpler to just pass the path (as a pathlib.Path, not a str)
to the font kwarg of the Text object.

The preferred usage of font sizes is to use the relative values, e.g., 'large', instead of absolute font sizes,
e.g., 12. This approach allows all text sizes to be made larger or smaller based on the font manager's
default font size.

This class will also accept a fontconfig pattern, if it is the only argument provided. This support does
not depend on fontconfig; we are merely borrowing its pattern syntax for use here.

Note that Matplotlib's internal font manager and fontconfig use a different algorithm to lookup fonts,
so the results of the same pattern may be different in Matplotlib than in other applications that use
fontconfig.

copy()
Return a copy of self.

get_family()
Return a list of font names that comprise the font family.

get_file()
Return the filename of the associated font.

get_fontconfig_pattern()
Get a fontconfig pattern suitable for looking up the font as specified with fontconfig's fc-match
utility.

This support does not depend on fontconfig; we are merely borrowing its pattern syntax for use
here.

get_math_fontfamily()
Return the name of the font family used for math text.

18.25. matplotlib.font_manager 2221

../tutorials/introductory/customizing.html?highlight=mathtext.fontset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=mathtext.fontset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://www.freedesktop.org/wiki/Software/fontconfig/
https://www.freedesktop.org/software/fontconfig/fontconfig-user.html
https://www.freedesktop.org/wiki/Software/fontconfig/
https://www.freedesktop.org/software/fontconfig/fontconfig-user.html

Matplotlib, Release 3.4.3

The default font is rcParams["mathtext.fontset"] (default: 'dejavusans').

get_name()
Return the name of the font that best matches the font properties.

get_size()
Return the font size.

get_size_in_points()

get_slant()
Return the font style. Values are: 'normal', 'italic' or 'oblique'.

get_stretch()
Return the font stretch or width. Options are: 'ultra-condensed', 'extra-condensed', 'condensed',
'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'.

get_style()
Return the font style. Values are: 'normal', 'italic' or 'oblique'.

get_variant()
Return the font variant. Values are: 'normal' or 'small-caps'.

get_weight()
Set the font weight. Options are: A numeric value in the range 0-1000 or one of 'light', 'nor-
mal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold',
'black'

set_family(family)
Change the font family. May be either an alias (generic name is CSS parlance), such as: 'serif',
'sans-serif', 'cursive', 'fantasy', or 'monospace', a real font name or a list of real font names.
Real font names are not supported when rcParams["text.usetex"] (default: False)
is True.

set_file(file)
Set the filename of the fontfile to use. In this case, all other properties will be ignored.

set_fontconfig_pattern(pattern)
Set the properties by parsing a fontconfig pattern.

This support does not depend on fontconfig; we are merely borrowing its pattern syntax for use
here.

set_math_fontfamily(fontfamily)
Set the font family for text in math mode.

If not set explicitly, rcParams["mathtext.fontset"] (default: 'dejavusans') will
be used.

Parameters

fontfamily
[str] The name of the font family.

Available font families are defined in the matplotlibrc.template file here

2222 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=mathtext.fontset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/constants.html#True
https://www.freedesktop.org/wiki/Software/fontconfig/
../tutorials/introductory/customizing.html?highlight=mathtext.fontset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

See also:

text.Text.get_math_fontfamily

set_name(family)
Change the font family. May be either an alias (generic name is CSS parlance), such as: 'serif',
'sans-serif', 'cursive', 'fantasy', or 'monospace', a real font name or a list of real font names.
Real font names are not supported when rcParams["text.usetex"] (default: False)
is True.

set_size(size)
Set the font size. Either an relative value of 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-
large', 'xx-large' or an absolute font size, e.g., 12.

set_slant(style)
Set the font style. Values are: 'normal', 'italic' or 'oblique'.

set_stretch(stretch)
Set the font stretch or width. Options are: 'ultra-condensed', 'extra-condensed', 'condensed',
'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded' or 'ultra-expanded', or
a numeric value in the range 0-1000.

set_style(style)
Set the font style. Values are: 'normal', 'italic' or 'oblique'.

set_variant(variant)
Set the font variant. Values are: 'normal' or 'small-caps'.

set_weight(weight)
Set the font weight. May be either a numeric value in the range 0-1000 or one of 'ultralight',
'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy',
'extra bold', 'black'

matplotlib.font_manager.afmFontProperty(fontpath, font)
Extract information from an AFM font file.

Parameters

font
[AFM] The AFM font file from which information will be extracted.

Returns

FontEntry

The extracted font properties.

matplotlib.font_manager.findSystemFonts(fontpaths=None, fontext='ttf')
Search for fonts in the specified font paths. If no paths are given, will use a standard set of system
paths, as well as the list of fonts tracked by fontconfig if fontconfig is installed and available. A list of
TrueType fonts are returned by default with AFM fonts as an option.

18.25. matplotlib.font_manager 2223

../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

matplotlib.font_manager.findfont(prop, fontext='ttf', directory=None, fall-
back_to_default=True, rebuild_if_missing=True)

Find a font that most closely matches the given font properties.

Parameters

prop
[str or FontProperties] The font properties to search for. This can be either
a FontProperties object or a string defining a fontconfig patterns.

fontext
[{'ttf', 'afm'}, default: 'ttf'] The extension of the font file:

• 'ttf': TrueType and OpenType fonts (.ttf, .ttc, .otf)

• 'afm': Adobe Font Metrics (.afm)

directory
[str, optional] If given, only search this directory and its subdirectories.

fallback_to_default
[bool] If True, will fallback to the default font family (usually "DejaVu Sans" or
"Helvetica") if the first lookup hard-fails.

rebuild_if_missing
[bool] Whether to rebuild the font cache and search again if the first match appears
to point to a nonexisting font (i.e., the font cache contains outdated entries).

Returns

str
The filename of the best matching font.

Notes

This performs a nearest neighbor search. Each font is given a similarity score to the target font prop-
erties. The first font with the highest score is returned. If no matches below a certain threshold are
found, the default font (usually DejaVu Sans) is returned.

The result is cached, so subsequent lookups don't have to perform the O(n) nearest neighbor search.

See the W3C Cascading Style Sheet, Level 1 documentation for a description of the font finding algo-
rithm.

matplotlib.font_manager.get_font(filename, hinting_factor=None)

matplotlib.font_manager.get_fontconfig_fonts(fontext='ttf')
List font filenames known to fc-list having the given extension.

2224 Chapter 18. Modules

https://www.freedesktop.org/software/fontconfig/fontconfig-user.html
http://www.w3.org/TR/1998/REC-CSS2-19980512/

Matplotlib, Release 3.4.3

matplotlib.font_manager.get_fontext_synonyms(fontext)
Return a list of file extensions extensions that are synonyms for the given file extension fileext.

matplotlib.font_manager.is_opentype_cff_font(filename)
Return whether the given font is a Postscript Compact Font Format Font embedded in an OpenType
wrapper. Used by the PostScript and PDF backends that can not subset these fonts.

matplotlib.font_manager.json_dump(data, filename)
Dump FontManager data as JSON to the file named filename.

See also:

json_load

Notes

File paths that are children of the Matplotlib data path (typically, fonts shipped with Matplotlib) are
stored relative to that data path (to remain valid across virtualenvs).

This function temporarily locks the output file to prevent multiple processes from overwriting one
another's output.

matplotlib.font_manager.json_load(filename)
Load a FontManager from the JSON file named filename.

See also:

json_dump

matplotlib.font_manager.list_fonts(directory, extensions)
Return a list of all fonts matching any of the extensions, found recursively under the directory.

matplotlib.font_manager.ttfFontProperty(font)
Extract information from a TrueType font file.

Parameters

font
[FT2Font] The TrueType font file from which information will be extracted.

Returns

FontEntry

The extracted font properties.

matplotlib.font_manager.win32FontDirectory()
Return the user-specified font directory for Win32. This is looked up from the registry key

\\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\
↪Shell Folders\Fonts

18.25. matplotlib.font_manager 2225

Matplotlib, Release 3.4.3

If the key is not found, %WINDIR%\Fonts will be returned.

matplotlib.font_manager.win32InstalledFonts(directory=None, fontext='ttf')
Search for fonts in the specified font directory, or use the system directories if none given. Additionally,
it is searched for user fonts installed. A list of TrueType font filenames are returned by default, or AFM
fonts if fontext == 'afm'.

18.26 matplotlib.fontconfig_pattern

A module for parsing and generating fontconfig patterns.

class matplotlib.fontconfig_pattern.FontconfigPatternParser
Bases: object

A simple pyparsing-based parser for fontconfig patterns.

parse(pattern)
Parse the given fontconfig pattern and return a dictionary of key/value pairs useful for initializing
a font_manager.FontProperties object.

matplotlib.fontconfig_pattern.family_escape(/, repl, string, count=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string
by the replacement repl.

matplotlib.fontconfig_pattern.family_unescape(/, repl, string, count=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string
by the replacement repl.

matplotlib.fontconfig_pattern.generate_fontconfig_pattern(d)
Given a dictionary of key/value pairs, generates a fontconfig pattern string.

matplotlib.fontconfig_pattern.parse_fontconfig_pattern(pattern)
Parse the given fontconfig pattern and return a dictionary of key/value pairs useful for initializing a
font_manager.FontProperties object.

matplotlib.fontconfig_pattern.value_escape(/, repl, string, count=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string
by the replacement repl.

matplotlib.fontconfig_pattern.value_unescape(/, repl, string, count=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string
by the replacement repl.

2226 Chapter 18. Modules

https://www.freedesktop.org/software/fontconfig/fontconfig-user.html
https://docs.python.org/3/library/functions.html#object
https://www.freedesktop.org/software/fontconfig/fontconfig-user.html

Matplotlib, Release 3.4.3

18.27 matplotlib.gridspec

gridspec contains classes that help to layout multiple Axes in a grid-like pattern within a figure.

The GridSpec specifies the overall grid structure. Individual cells within the grid are referenced by Sub-
plotSpecs.

See the tutorialCustomizing Figure Layouts Using GridSpec and Other Functions for a comprehensive usage
guide.

18.27.1 Classes

GridSpec(nrows, ncols[, figure, left, ...]) A grid layout to place subplots within a figure.
SubplotSpec(gridspec, num1[, num2]) Specifies the location of a subplot in a GridSpec.
GridSpecBase(nrows, ncols[, height_ratios,
...])

A base class of GridSpec that specifies the geome-
try of the grid that a subplot will be placed.

GridSpecFromSubplotSpec(nrows, ncols,
...[, ...])

GridSpec whose subplot layout parameters are in-
herited from the location specified by a given Sub-
plotSpec.

matplotlib.gridspec.GridSpec

class matplotlib.gridspec.GridSpec(nrows, ncols, figure=None, left=None, bot-
tom=None, right=None, top=None, ws-
pace=None, hspace=None, width_ratios=None,
height_ratios=None)

Bases: matplotlib.gridspec.GridSpecBase

A grid layout to place subplots within a figure.

The location of the grid cells is determined in a similar way to SubplotParams using left, right,
top, bottom, wspace and hspace.

Parameters

nrows, ncols
[int] The number of rows and columns of the grid.

figure
[Figure, optional] Only used for constrained layout to create a proper layoutgrid.

left, right, top, bottom
[float, optional] Extent of the subplots as a fraction of figure width or height.
Left cannot be larger than right, and bottom cannot be larger than top. If not
given, the values will be inferred from a figure or rcParams at draw time. See also
GridSpec.get_subplot_params.

18.27. matplotlib.gridspec 2227

Matplotlib, Release 3.4.3

wspace
[float, optional] The amount of width reserved for space between subplots, ex-
pressed as a fraction of the average axis width. If not given, the values will
be inferred from a figure or rcParams when necessary. See also GridSpec.
get_subplot_params.

hspace
[float, optional] The amount of height reserved for space between subplots, ex-
pressed as a fraction of the average axis height. If not given, the values will
be inferred from a figure or rcParams when necessary. See also GridSpec.
get_subplot_params.

width_ratios
[array-like of length ncols, optional] Defines the relative widths of the
columns. Each column gets a relative width of width_ratios[i] /
sum(width_ratios). If not given, all columns will have the same width.

height_ratios
[array-like of length nrows, optional] Defines the relative heights of the
rows. Each column gets a relative height of height_ratios[i] /
sum(height_ratios). If not given, all rows will have the same height.

__getstate__()

__init__(nrows, ncols, figure=None, left=None, bottom=None, right=None, top=None, ws-
pace=None, hspace=None, width_ratios=None, height_ratios=None)

Parameters

nrows, ncols
[int] The number of rows and columns of the grid.

figure
[Figure, optional] Only used for constrained layout to create a proper layout-
grid.

left, right, top, bottom
[float, optional] Extent of the subplots as a fraction of figure width or height.
Left cannot be larger than right, and bottom cannot be larger than top. If not
given, the values will be inferred from a figure or rcParams at draw time. See
also GridSpec.get_subplot_params.

wspace
[float, optional] The amount of width reserved for space between subplots, ex-
pressed as a fraction of the average axis width. If not given, the values will
be inferred from a figure or rcParams when necessary. See also GridSpec.
get_subplot_params.

2228 Chapter 18. Modules

Matplotlib, Release 3.4.3

hspace
[float, optional] The amount of height reserved for space between subplots, ex-
pressed as a fraction of the average axis height. If not given, the values will
be inferred from a figure or rcParams when necessary. See also GridSpec.
get_subplot_params.

width_ratios
[array-like of length ncols, optional] Defines the relative widths of the
columns. Each column gets a relative width of width_ratios[i] /
sum(width_ratios). If not given, all columns will have the same width.

height_ratios
[array-like of length nrows, optional] Defines the relative heights of the
rows. Each column gets a relative height of height_ratios[i] /
sum(height_ratios). If not given, all rows will have the same height.

__module__ = 'matplotlib.gridspec'

get_subplot_params(figure=None)
Return the SubplotParams for the GridSpec.

In order of precedence the values are taken from

• non-None attributes of the GridSpec

• the provided figure

• rcParams["figure.subplot.*"]

locally_modified_subplot_params()
Return a list of the names of the subplot parameters explicitly set in the GridSpec.

This is a subset of the attributes of SubplotParams.

tight_layout(figure, renderer=None, pad=1.08, h_pad=None, w_pad=None, rect=None)
Adjust subplot parameters to give specified padding.

Parameters

pad
[float] Padding between the figure edge and the edges of subplots, as a fraction
of the font-size.

h_pad, w_pad
[float, optional] Padding (height/width) between edges of adjacent subplots. De-
faults to pad.

rect
[tuple of 4 floats, default: (0, 0, 1, 1), i.e. the whole figure] (left, bottom, right,
top) rectangle in normalized figure coordinates that the whole subplots area (in-
cluding labels) will fit into.

18.27. matplotlib.gridspec 2229

../../tutorials/introductory/customizing.html?highlight=figure.subplot.*#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

update(**kwargs)
Update the subplot parameters of the grid.

Parameters that are not explicitly given are not changed. Setting a parameter to None resets it to
rcParams["figure.subplot.*"].

Parameters

left, right, top, bottom
[float or None, optional] Extent of the subplots as a fraction of figure width or
height.

wspace, hspace
[float, optional] Spacing between the subplots as a fraction of the average subplot
width / height.

Examples using matplotlib.gridspec.GridSpec

• sphx_glr_gallery_lines_bars_and_markers_psd_demo.py

• sphx_glr_gallery_lines_bars_and_markers_scatter_hist.py

• sphx_glr_gallery_images_contours_and_fields_plot_streamplot.py

• sphx_glr_gallery_subplots_axes_and_figures_align_labels_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_demo_constrained_layout.py

• sphx_glr_gallery_subplots_axes_and_figures_demo_tight_layout.py

• sphx_glr_gallery_subplots_axes_and_figures_gridspec_and_subplots.py

• sphx_glr_gallery_subplots_axes_and_figures_gridspec_multicolumn.py

• sphx_glr_gallery_subplots_axes_and_figures_gridspec_nested.py

• sphx_glr_gallery_subplots_axes_and_figures_subfigures.py

• sphx_glr_gallery_subplots_axes_and_figures_subplots_demo.py

• sphx_glr_gallery_userdemo_demo_gridspec03.py

• sphx_glr_gallery_userdemo_demo_gridspec06.py

• Customizing Figure Layouts Using GridSpec and Other Functions

• Constrained Layout Guide

• Tight Layout guide

• origin and extent in imshow

2230 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=figure.subplot.*#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

matplotlib.gridspec.SubplotSpec

class matplotlib.gridspec.SubplotSpec(gridspec, num1, num2=None)
Bases: object

Specifies the location of a subplot in a GridSpec.

Note: Likely, you'll never instantiate a SubplotSpec yourself. Instead you will typically obtain
one from a GridSpec using item-access.

Parameters

gridspec
[GridSpec] The GridSpec, which the subplot is referencing.

num1, num2
[int] The subplot will occupy the num1-th cell of the given gridspec. If num2 is
provided, the subplot will span between num1-th cell and num2-th cell inclusive.

The index starts from 0.

__dict__ = mappingproxy({'__module__': 'matplotlib.gridspec', '__doc__': "\n Specifies the location of a subplot in a `GridSpec`.\n\n .. note::\n\n Likely, you'll never instantiate a `SubplotSpec` yourself. Instead you\n will typically obtain one from a `GridSpec` using item-access.\n\n Parameters\n ----------\n gridspec : `~matplotlib.gridspec.GridSpec`\n The GridSpec, which the subplot is referencing.\n num1, num2 : int\n The subplot will occupy the num1-th cell of the given\n gridspec. If num2 is provided, the subplot will span between\n num1-th cell and num2-th cell *inclusive*.\n\n The index starts from 0.\n ", '__init__': <function SubplotSpec.__init__>, '__repr__': <function SubplotSpec.__repr__>, '_from_subplot_args': <staticmethod object>, 'num2': <property object>, '__getstate__': <function SubplotSpec.__getstate__>, 'get_gridspec': <function SubplotSpec.get_gridspec>, 'get_geometry': <function SubplotSpec.get_geometry>, 'get_rows_columns': <function SubplotSpec.get_rows_columns>, 'rowspan': <property object>, 'colspan': <property object>, 'is_first_row': <function SubplotSpec.is_first_row>, 'is_last_row': <function SubplotSpec.is_last_row>, 'is_first_col': <function SubplotSpec.is_first_col>, 'is_last_col': <function SubplotSpec.is_last_col>, 'get_position': <function SubplotSpec.get_position>, 'get_topmost_subplotspec': <function SubplotSpec.get_topmost_subplotspec>, '__eq__': <function SubplotSpec.__eq__>, '__hash__': <function SubplotSpec.__hash__>, 'subgridspec': <function SubplotSpec.subgridspec>, '__dict__': <attribute '__dict__' of 'SubplotSpec' objects>, '__weakref__': <attribute '__weakref__' of 'SubplotSpec' objects>, '__annotations__': {}})

__eq__(other)
Two SubplotSpecs are considered equal if they refer to the same position(s) in the same Grid-
Spec.

__getstate__()

__hash__()
Return hash(self).

__init__(gridspec, num1, num2=None)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'matplotlib.gridspec'

__repr__()
Return repr(self).

__weakref__
list of weak references to the object (if defined)

property colspan
The columns spanned by this subplot, as a range object.

get_geometry()
Return the subplot geometry as tuple (n_rows, n_cols, start, stop).

The indices start and stop define the range of the subplot within the GridSpec. stop is inclusive
(i.e. for a single cell start == stop).

18.27. matplotlib.gridspec 2231

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#range

Matplotlib, Release 3.4.3

get_gridspec()

get_position(figure, return_all=<deprecated parameter>)
Update the subplot position from figure.subplotpars.

get_rows_columns()
[Deprecated] Return the subplot row and column numbers as a tuple (n_rows, n_cols,
row_start, row_stop, col_start, col_stop).

Notes

Deprecated since version 3.3.

get_topmost_subplotspec()
Return the topmost SubplotSpec instance associated with the subplot.

is_first_col()

is_first_row()

is_last_col()

is_last_row()

property num2

property rowspan
The rows spanned by this subplot, as a range object.

subgridspec(nrows, ncols, **kwargs)
Create a GridSpec within this subplot.

The created GridSpecFromSubplotSpec will have this SubplotSpec as a parent.

Parameters

nrows
[int] Number of rows in grid.

ncols
[int] Number or columns in grid.

Returns

GridSpecFromSubplotSpec

Other Parameters

**kwargs
All other parameters are passed to GridSpecFromSubplotSpec.

See also:

2232 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#range

Matplotlib, Release 3.4.3

matplotlib.pyplot.subplots

Examples

Adding three subplots in the space occupied by a single subplot:

fig = plt.figure()
gs0 = fig.add_gridspec(3, 1)
ax1 = fig.add_subplot(gs0[0])
ax2 = fig.add_subplot(gs0[1])
gssub = gs0[2].subgridspec(1, 3)
for i in range(3):

fig.add_subplot(gssub[0, i])

Examples using matplotlib.gridspec.SubplotSpec

• sphx_glr_gallery_userdemo_demo_gridspec06.py

• Customizing Figure Layouts Using GridSpec and Other Functions

• Constrained Layout Guide

matplotlib.gridspec.GridSpecBase

class matplotlib.gridspec.GridSpecBase(nrows, ncols, height_ratios=None,
width_ratios=None)

Bases: object

A base class of GridSpec that specifies the geometry of the grid that a subplot will be placed.

Parameters

nrows, ncols
[int] The number of rows and columns of the grid.

width_ratios
[array-like of length ncols, optional] Defines the relative widths of the
columns. Each column gets a relative width of width_ratios[i] /
sum(width_ratios). If not given, all columns will have the same width.

height_ratios
[array-like of length nrows, optional] Defines the relative heights of the
rows. Each column gets a relative height of height_ratios[i] /
sum(height_ratios). If not given, all rows will have the same height.

__dict__ = mappingproxy({'__module__': 'matplotlib.gridspec', '__doc__': '\n A base class of GridSpec that specifies the geometry of the grid\n that a subplot will be placed.\n ', '__init__': <function GridSpecBase.__init__>, '__repr__': <function GridSpecBase.__repr__>, 'nrows': <property object>, 'ncols': <property object>, 'get_geometry': <function GridSpecBase.get_geometry>, 'get_subplot_params': <function GridSpecBase.get_subplot_params>, 'new_subplotspec': <function GridSpecBase.new_subplotspec>, 'set_width_ratios': <function GridSpecBase.set_width_ratios>, 'get_width_ratios': <function GridSpecBase.get_width_ratios>, 'set_height_ratios': <function GridSpecBase.set_height_ratios>, 'get_height_ratios': <function GridSpecBase.get_height_ratios>, 'get_grid_positions': <function GridSpecBase.get_grid_positions>, '_check_gridspec_exists': <staticmethod object>, '__getitem__': <function GridSpecBase.__getitem__>, 'subplots': <function GridSpecBase.subplots>, '__dict__': <attribute '__dict__' of 'GridSpecBase' objects>, '__weakref__': <attribute '__weakref__' of 'GridSpecBase' objects>, '__annotations__': {}})

18.27. matplotlib.gridspec 2233

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

__getitem__(key)
Create and return a SubplotSpec instance.

__init__(nrows, ncols, height_ratios=None, width_ratios=None)

Parameters

nrows, ncols
[int] The number of rows and columns of the grid.

width_ratios
[array-like of length ncols, optional] Defines the relative widths of the
columns. Each column gets a relative width of width_ratios[i] /
sum(width_ratios). If not given, all columns will have the same width.

height_ratios
[array-like of length nrows, optional] Defines the relative heights of the
rows. Each column gets a relative height of height_ratios[i] /
sum(height_ratios). If not given, all rows will have the same height.

__module__ = 'matplotlib.gridspec'

__repr__()
Return repr(self).

__weakref__
list of weak references to the object (if defined)

get_geometry()
Return a tuple containing the number of rows and columns in the grid.

get_grid_positions(fig, raw=False)
Return the positions of the grid cells in figure coordinates.

Parameters

fig
[Figure] The figure the grid should be applied to. The subplot parameters
(margins and spacing between subplots) are taken from fig.

raw
[bool, default: False] If True, the subplot parameters of the figure are not taken
into account. The grid spans the range [0, 1] in both directions without margins
and there is no space between grid cells. This is used for constrained_layout.

Returns

bottoms, tops, lefts, rights
[array] The bottom, top, left, right positions of the grid cells in figure coordinates.

2234 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_height_ratios()
Return the height ratios.

This is None if no height ratios have been set explicitly.

get_subplot_params(figure=None)

get_width_ratios()
Return the width ratios.

This is None if no width ratios have been set explicitly.

property ncols
The number of columns in the grid.

new_subplotspec(loc, rowspan=1, colspan=1)
Create and return a SubplotSpec instance.

Parameters

loc
[(int, int)] The position of the subplot in the grid as (row_index, col-
umn_index).

rowspan, colspan
[int, default: 1] The number of rows and columns the subplot should span in the
grid.

property nrows
The number of rows in the grid.

set_height_ratios(height_ratios)
Set the relative heights of the rows.

height_ratiosmust be of length nrows. Each row gets a relative height of height_ratios[i]
/ sum(height_ratios).

set_width_ratios(width_ratios)
Set the relative widths of the columns.

width_ratiosmust be of length ncols. Each column gets a relative width of width_ratios[i]
/ sum(width_ratios).

subplots(*, sharex=False, sharey=False, squeeze=True, subplot_kw=None)
Add all subplots specified by this GridSpec to its parent figure.

See Figure.subplots for detailed documentation.

18.27. matplotlib.gridspec 2235

Matplotlib, Release 3.4.3

Examples using matplotlib.gridspec.GridSpecBase

• sphx_glr_gallery_lines_bars_and_markers_psd_demo.py

• sphx_glr_gallery_images_contours_and_fields_plot_streamplot.py

• sphx_glr_gallery_subplots_axes_and_figures_align_labels_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_demo_constrained_layout.py

• sphx_glr_gallery_subplots_axes_and_figures_gridspec_multicolumn.py

• sphx_glr_gallery_subplots_axes_and_figures_gridspec_nested.py

• sphx_glr_gallery_userdemo_demo_gridspec03.py

• Customizing Figure Layouts Using GridSpec and Other Functions

• Constrained Layout Guide

• Tight Layout guide

• origin and extent in imshow

matplotlib.gridspec.GridSpecFromSubplotSpec

class matplotlib.gridspec.GridSpecFromSubplotSpec(nrows, ncols, sub-
plot_spec, wspace=None,
hspace=None,
height_ratios=None,
width_ratios=None)

Bases: matplotlib.gridspec.GridSpecBase

GridSpec whose subplot layout parameters are inherited from the location specified by a given Sub-
plotSpec.

The number of rows and number of columns of the grid need to be set. An instance of SubplotSpec is
also needed to be set from which the layout parameters will be inherited. The wspace and hspace of
the layout can be optionally specified or the default values (from the figure or rcParams) will be used.

__init__(nrows, ncols, subplot_spec, wspace=None, hspace=None, height_ratios=None,
width_ratios=None)

The number of rows and number of columns of the grid need to be set. An instance of Subplot-
Spec is also needed to be set from which the layout parameters will be inherited. The wspace
and hspace of the layout can be optionally specified or the default values (from the figure or
rcParams) will be used.

__module__ = 'matplotlib.gridspec'

get_subplot_params(figure=None)
Return a dictionary of subplot layout parameters.

get_topmost_subplotspec()
Return the topmost SubplotSpec instance associated with the subplot.

2236 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.gridspec.GridSpecFromSubplotSpec

• sphx_glr_gallery_subplots_axes_and_figures_demo_constrained_layout.py

• sphx_glr_gallery_subplots_axes_and_figures_gridspec_nested.py

• sphx_glr_gallery_userdemo_demo_gridspec06.py

• Customizing Figure Layouts Using GridSpec and Other Functions

• Constrained Layout Guide

18.28 matplotlib.image

The image module supports basic image loading, rescaling and display operations.

class matplotlib.image.AxesImage(ax, cmap=None, norm=None, interpolation=None,
origin=None, extent=None, filternorm=True, filter-
rad=4.0, resample=False, **kwargs)

Bases: matplotlib.image._ImageBase

An image attached to an Axes.

Parameters

ax
[Axes] The axes the image will belong to.

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] The Colormap instance or registered colormap name used
to map scalar data to colors.

norm
[Normalize] Maps luminance to 0-1.

interpolation
[str, default: rcParams["image.interpolation"] (default: 'an-
tialiased')] Supported values are 'none', 'antialiased', 'nearest', 'bilinear',
'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric',
'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos', 'blackman'.

origin
[{'upper', 'lower'}, default: rcParams["image.origin"] (default: 'up-
per')] Place the [0, 0] index of the array in the upper left or lower left corner of
the axes. The convention 'upper' is typically used for matrices and images.

extent

18.28. matplotlib.image 2237

../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=image.interpolation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[tuple, optional] The data axes (left, right, bottom, top) for making image plots
registered with data plots. Default is to label the pixel centers with the zero-based
row and column indices.

filternorm
[bool, default: True] A parameter for the antigrain image resize filter (see the
antigrain documentation). If filternorm is set, the filter normalizes integer values
and corrects the rounding errors. It doesn't do anything with the source floating
point values, it corrects only integers according to the rule of 1.0 which means that
any sum of pixel weights must be equal to 1.0. So, the filter function must produce
a graph of the proper shape.

filterrad
[float > 0, default: 4] The filter radius for filters that have a radius parameter, i.e.
when interpolation is one of: 'sinc', 'lanczos' or 'blackman'.

resample
[bool, default: False] When True, use a full resampling method. When False, only
resample when the output image is larger than the input image.

**kwargs
[Artist properties]

Parameters

norm
[matplotlib.colors.Normalize (or subclass thereof)] The normalizing
object which scales data, typically into the interval [0, 1]. If None, norm de-
faults to a colors.Normalize object which initializes its scaling based on the first
data processed.

cmap
[str or Colormap] The colormap used to map normalized data values to RGBA
colors.

format_cursor_data(data)
Return a string representation of data.

Note: This method is intended to be overridden by artist subclasses. As an end-user of Mat-
plotlib you will most likely not call this method yourself.

The default implementation converts ints and floats and arrays of ints and floats into a comma-
separated string enclosed in square brackets.

See also:

get_cursor_data

2238 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_cursor_data(event)
Return the image value at the event position or None if the event is outside the image.

See also:

matplotlib.artist.Artist.get_cursor_data

get_extent()
Return the image extent as tuple (left, right, bottom, top).

get_window_extent(renderer=None)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

make_image(renderer, magnification=1.0, unsampled=False)
Normalize, rescale, and colormap this image's data for rendering using renderer, with the given
magnification.

If unsampled is True, the image will not be scaled, but an appropriate affine transformation will
be returned instead.

Returns

image
[(M, N, 4) uint8 array] The RGBA image, resampled unless unsampled is True.

x, y
[float] The upper left corner where the image should be drawn, in pixel space.

trans
[Affine2D] The affine transformation from image to pixel space.

set_extent(extent)
Set the image extent.

Parameters

extent
[4-tuple of float] The position and size of the image as tuple (left, right,
bottom, top) in data coordinates.

18.28. matplotlib.image 2239

Matplotlib, Release 3.4.3

Notes

This updates ax.dataLim, and, if autoscaling, sets ax.viewLim to tightly fit the im-
age, regardless of dataLim. Autoscaling state is not changed, so following this with ax.
autoscale_view() will redo the autoscaling in accord with dataLim.

class matplotlib.image.BboxImage(bbox, cmap=None, norm=None, interpola-
tion=None, origin=None, filternorm=True,
filterrad=4.0, resample=False, **kwargs)

Bases: matplotlib.image._ImageBase

The Image class whose size is determined by the given bbox.

cmap is a colors.Colormap instance norm is a colors.Normalize instance to map luminance to 0-1

kwargs are an optional list of Artist keyword args

contains(mouseevent)
Test whether the mouse event occurred within the image.

get_window_extent(renderer=None)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

make_image(renderer, magnification=1.0, unsampled=False)
Normalize, rescale, and colormap this image's data for rendering using renderer, with the given
magnification.

If unsampled is True, the image will not be scaled, but an appropriate affine transformation will
be returned instead.

Returns

image
[(M, N, 4) uint8 array] The RGBA image, resampled unless unsampled is True.

x, y
[float] The upper left corner where the image should be drawn, in pixel space.

trans
[Affine2D] The affine transformation from image to pixel space.

2240 Chapter 18. Modules

Matplotlib, Release 3.4.3

class matplotlib.image.FigureImage(fig, cmap=None, norm=None, offsetx=0, off-
sety=0, origin=None, **kwargs)

Bases: matplotlib.image._ImageBase

An image attached to a figure.

cmap is a colors.Colormap instance norm is a colors.Normalize instance to map luminance to 0-1

kwargs are an optional list of Artist keyword args

get_extent()
Return the image extent as tuple (left, right, bottom, top).

make_image(renderer, magnification=1.0, unsampled=False)
Normalize, rescale, and colormap this image's data for rendering using renderer, with the given
magnification.

If unsampled is True, the image will not be scaled, but an appropriate affine transformation will
be returned instead.

Returns

image
[(M, N, 4) uint8 array] The RGBA image, resampled unless unsampled is True.

x, y
[float] The upper left corner where the image should be drawn, in pixel space.

trans
[Affine2D] The affine transformation from image to pixel space.

set_data(A)
Set the image array.

zorder = 0

class matplotlib.image.NonUniformImage(ax, *, interpolation='nearest', **kwargs)
Bases: matplotlib.image.AxesImage

Parameters

interpolation
[{'nearest', 'bilinear'}, default: 'nearest']

**kwargs
All other keyword arguments are identical to those of AxesImage.

get_extent()
Return the image extent as tuple (left, right, bottom, top).

property is_grayscale

18.28. matplotlib.image 2241

Matplotlib, Release 3.4.3

make_image(renderer, magnification=1.0, unsampled=False)
Normalize, rescale, and colormap this image's data for rendering using renderer, with the given
magnification.

If unsampled is True, the image will not be scaled, but an appropriate affine transformation will
be returned instead.

Returns

image
[(M, N, 4) uint8 array] The RGBA image, resampled unless unsampled is True.

x, y
[float] The upper left corner where the image should be drawn, in pixel space.

trans
[Affine2D] The affine transformation from image to pixel space.

mouseover = False

set_array(*args)
Retained for backwards compatibility - use set_data instead.

Parameters

A
[array-like]

set_cmap(cmap)
Set the colormap for luminance data.

Parameters

cmap
[Colormap or str or None]

set_data(x, y, A)
Set the grid for the pixel centers, and the pixel values.

Parameters

x, y
[1D array-like] Monotonic arrays of shapes (N,) and (M,), respectively, specify-
ing pixel centers.

A
[array-like] (M, N) ndarray or masked array of values to be colormapped, or (M,
N, 3) RGB array, or (M, N, 4) RGBA array.

2242 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_filternorm(s)
Set whether the resize filter normalizes the weights.

See help for imshow.

Parameters

filternorm
[bool]

set_filterrad(s)
Set the resize filter radius only applicable to some interpolation schemes -- see help for imshow

Parameters

filterrad
[positive float]

set_interpolation(s)

Parameters

s
[{'nearest', 'bilinear'} or None] If None, use rcParams["image.
interpolation"] (default: 'antialiased').

set_norm(norm)
Set the normalization instance.

Parameters

norm
[Normalize or None]

Notes

If there are any colorbars using the mappable for this norm, setting the norm of the mappable
will reset the norm, locator, and formatters on the colorbar to default.

class matplotlib.image.PcolorImage(ax, x=None, y=None, A=None, cmap=None,
norm=None, **kwargs)

Bases: matplotlib.image.AxesImage

Make a pcolor-style plot with an irregular rectangular grid.

This uses a variation of the original irregular image code, and it is used by pcolorfast for the corre-
sponding grid type.

Parameters

18.28. matplotlib.image 2243

../tutorials/introductory/customizing.html?highlight=image.interpolation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=image.interpolation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

ax
[Axes] The axes the image will belong to.

x, y
[1D array-like, optional] Monotonic arrays of length N+1 and M+1, respectively,
specifying rectangle boundaries. If not given, will default to range(N + 1)
and range(M + 1), respectively.

A
[array-like] The data to be color-coded. The interpretation depends on the shape:

• (M, N) ndarray or masked array: values to be colormapped

• (M, N, 3): RGB array

• (M, N, 4): RGBA array

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] The Colormap instance or registered colormap name used
to map scalar data to colors.

norm
[Normalize] Maps luminance to 0-1.

**kwargs
[Artist properties]

get_cursor_data(event)
Return the image value at the event position or None if the event is outside the image.

See also:

matplotlib.artist.Artist.get_cursor_data

property is_grayscale

make_image(renderer, magnification=1.0, unsampled=False)
Normalize, rescale, and colormap this image's data for rendering using renderer, with the given
magnification.

If unsampled is True, the image will not be scaled, but an appropriate affine transformation will
be returned instead.

Returns

image
[(M, N, 4) uint8 array] The RGBA image, resampled unless unsampled is True.

2244 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

x, y
[float] The upper left corner where the image should be drawn, in pixel space.

trans
[Affine2D] The affine transformation from image to pixel space.

set_array(*args)
Retained for backwards compatibility - use set_data instead.

Parameters

A
[array-like]

set_data(x, y, A)
Set the grid for the rectangle boundaries, and the data values.

Parameters

x, y
[1D array-like, optional] Monotonic arrays of length N+1 and M+1, respec-
tively, specifying rectangle boundaries. If not given, will default to range(N
+ 1) and range(M + 1), respectively.

A
[array-like] The data to be color-coded. The interpretation depends on the shape:

• (M, N) ndarray or masked array: values to be colormapped

• (M, N, 3): RGB array

• (M, N, 4): RGBA array

matplotlib.image.composite_images(images, renderer, magnification=1.0)
Composite a number of RGBA images into one. The images are composited in the order in which they
appear in the images list.

Parameters

images
[list of Images] Each must have a make_image method. For each image,
can_composite should return True, though this is not enforced by this func-
tion. Each image must have a purely affine transformation with no shear.

renderer
[RendererBase]

magnification
[float, default: 1] The additional magnification to apply for the renderer in use.

18.28. matplotlib.image 2245

https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

Returns

image
[uint8 array (M, N, 4)] The composited RGBA image.

offset_x, offset_y
[float] The (left, bottom) offset where the composited image should be placed in
the output figure.

matplotlib.image.imread(fname, format=None)
Read an image from a file into an array.

Parameters

fname
[str or file-like] The image file to read: a filename, a URL or a file-like object
opened in read-binary mode.

Passing a URL is deprecated. Please open the URL for reading and pass
the result to Pillow, e.g. with PIL.Image.open(urllib.request.
urlopen(url)).

format
[str, optional] The image file format assumed for reading the data. If not given,
the format is deduced from the filename. If nothing can be deduced, PNG is tried.

Returns

numpy.array

The image data. The returned array has shape

• (M, N) for grayscale images.

• (M, N, 3) for RGB images.

• (M, N, 4) for RGBA images.

matplotlib.image.imsave(fname, arr, vmin=None, vmax=None, cmap=None, for-
mat=None, origin=None, dpi=100, *, metadata=None,
pil_kwargs=None)

Save an array as an image file.

Parameters

fname
[str or path-like or file-like] A path or a file-like object to store the image in. If
format is not set, then the output format is inferred from the extension of fname,
if any, and from rcParams["savefig.format"] (default: 'png') other-
wise. If format is set, it determines the output format.

2246 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

arr
[array-like] The image data. The shape can be one of MxN (luminance), MxNx3
(RGB) or MxNx4 (RGBA).

vmin, vmax
[float, optional] vmin and vmax set the color scaling for the image by fixing the
values that map to the colormap color limits. If either vmin or vmax is None, that
limit is determined from the arr min/max value.

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps scalar data to colors. It is ignored for RGB(A) data.

format
[str, optional] The file format, e.g. 'png', 'pdf', 'svg', ... The behavior when this is
unset is documented under fname.

origin
[{'upper', 'lower'}, default: rcParams["image.origin"] (default: 'up-
per')] Indicates whether the (0, 0) index of the array is in the upper left or
lower left corner of the axes.

dpi
[float] The DPI to store in the metadata of the file. This does not affect the reso-
lution of the output image. Depending on file format, this may be rounded to the
nearest integer.

metadata
[dict, optional] Metadata in the image file. The supported keys depend on the
output format, see the documentation of the respective backends for more infor-
mation.

pil_kwargs
[dict, optional] Keyword arguments passed to PIL.Image.Image.save. If
the 'pnginfo' key is present, it completely overridesmetadata, including the default
'Software' key.

matplotlib.image.pil_to_array(pilImage)
Load a PIL image and return it as a numpy int array.

Returns

numpy.array
The array shape depends on the image type:

• (M, N) for grayscale images.

18.28. matplotlib.image 2247

../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save
https://pillow.readthedocs.io/en/latest/reference/Image.html

Matplotlib, Release 3.4.3

• (M, N, 3) for RGB images.

• (M, N, 4) for RGBA images.

matplotlib.image.thumbnail(infile, thumbfile, scale=0.1, interpolation='bilinear', pre-
view=False)

Make a thumbnail of image in infile with output filename thumbfile.

See /gallery/misc/image_thumbnail_sgskip.

Parameters

infile
[str or file-like] The image file. Matplotlib relies on Pillow for image reading, and
thus supports a wide range of file formats, including PNG, JPG, TIFF and others.

thumbfile
[str or file-like] The thumbnail filename.

scale
[float, default: 0.1] The scale factor for the thumbnail.

interpolation
[str, default: 'bilinear'] The interpolation scheme used in the resampling. See the
interpolation parameter of imshow for possible values.

preview
[bool, default: False] If True, the default backend (presumably a user interface
backend) will be used which will cause a figure to be raised if show is called.
If it is False, the figure is created using FigureCanvasBase and the drawing
backend is selected as Figure.savefig would normally do.

Returns

Figure

The figure instance containing the thumbnail.

18.29 matplotlib.legend

The legend module defines the Legend class, which is responsible for drawing legends associated with axes
and/or figures.

Important: It is unlikely that youwould ever create a Legend instancemanually. Most users would normally
create a legend via the legend function. For more details on legends there is also a legend guide.

The Legend class is a container of legend handles and legend texts.

2248 Chapter 18. Modules

https://python-pillow.org/

Matplotlib, Release 3.4.3

The legend handler map specifies how to create legend handles from artists (lines, patches, etc.) in the axes
or figures. Default legend handlers are defined in the legend_handler module. While not all artist
types are covered by the default legend handlers, custom legend handlers can be defined to support arbitrary
objects.

See the legend guide for more information.

class matplotlib.legend.DraggableLegend(legend, use_blit=False, update='loc')
Bases: matplotlib.offsetbox.DraggableOffsetBox

Wrapper around a Legend to support mouse dragging.

Parameters

legend
[Legend] The Legend instance to wrap.

use_blit
[bool, optional] Use blitting for faster image composition. For details see FuncAn-
imation.

update
[{'loc', 'bbox'}, optional] If "loc", update the loc parameter of the legend upon
finalizing. If "bbox", update the bbox_to_anchor parameter.

finalize_offset()

class matplotlib.legend.Legend(parent, handles, labels, loc=None, numpoints=None,
markerscale=None, markerfirst=True, scatter-
points=None, scatteryoffsets=None, prop=None,
fontsize=None, labelcolor=None, borderpad=None,
labelspacing=None, handlelength=None, han-
dleheight=None, handletextpad=None, border-
axespad=None, columnspacing=None, ncol=1,
mode=None, fancybox=None, shadow=None,
title=None, title_fontsize=None, frameal-
pha=None, edgecolor=None, facecolor=None,
bbox_to_anchor=None, bbox_transform=None,
frameon=None, handler_map=None)

Bases: matplotlib.artist.Artist

Place a legend on the axes at location loc.

Parameters

parent
[Axes or Figure] The artist that contains the legend.

handles
[list of Artist] A list of Artists (lines, patches) to be added to the legend.

18.29. matplotlib.legend 2249

Matplotlib, Release 3.4.3

labels
[list of str] A list of labels to show next to the artists. The length of handles and
labels should be the same. If they are not, they are truncated to the smaller of both
lengths.

Other Parameters

loc
[str or pair of floats, default: rcParams["legend.loc"] (default: 'best')
('best' for axes, 'upper right' for figures)] The location of the legend.

The strings 'upper left', 'upper right', 'lower left',
'lower right' place the legend at the corresponding corner of the axes/figure.

The strings 'upper center', 'lower center', 'center left',
'center right' place the legend at the center of the corresponding edge of
the axes/figure.

The string 'center' places the legend at the center of the axes/figure.

The string 'best' places the legend at the location, among the nine locations
defined so far, with the minimum overlap with other drawn artists. This option
can be quite slow for plots with large amounts of data; your plotting speed may
benefit from providing a specific location.

The location can also be a 2-tuple giving the coordinates of the lower-left corner
of the legend in axes coordinates (in which case bbox_to_anchor will be ignored).

For back-compatibility, 'center right' (but no other location) can also be
spelled 'right', and each "string" locations can also be given as a numeric
value:

Location String Location Code
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the leg-
end in conjunction with loc. Defaults to axes.bbox (if called as a method to

2250 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=legend.loc#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Axes.legend) or figure.bbox (if Figure.legend). This argument al-
lows arbitrary placement of the legend.

Bbox coordinates are interpreted in the coordinate system given by
bbox_transform, with the default transform Axes or Figure coordinates, de-
pending on which legend is called.

If a 4-tuple or BboxBase is given, then it specifies the bbox (x, y, width,
height) that the legend is placed in. To put the legend in the best location in
the bottom right quadrant of the axes (or figure):

loc='best', bbox_to_anchor=(0.5, 0., 0.5, 0.5)

A 2-tuple (x, y) places the corner of the legend specified by loc at x, y. For
example, to put the legend's upper right-hand corner in the center of the axes (or
figure) the following keywords can be used:

loc='upper right', bbox_to_anchor=(0.5, 0.5)

ncol
[int, default: 1] The number of columns that the legend has.

prop
[None or matplotlib.font_manager.FontProperties or dict] The
font properties of the legend. If None (default), the current matplotlib.
rcParams will be used.

fontsize
[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}] The
font size of the legend. If the value is numeric the size will be the absolute font
size in points. String values are relative to the current default font size. This
argument is only used if prop is not specified.

labelcolor
[str or list] The color of the text in the legend. Either a valid color string (for
example, 'red'), or a list of color strings. The labelcolor can also be made to match
the color of the line or marker using 'linecolor', 'markerfacecolor' (or 'mfc'), or
'markeredgecolor' (or 'mec').

numpoints
[int, default: rcParams["legend.numpoints"] (default: 1)] The number
of marker points in the legend when creating a legend entry for a Line2D (line).

scatterpoints
[int, default: rcParams["legend.scatterpoints"] (default: 1)] The
number of marker points in the legend when creating a legend entry for a Path-
Collection (scatter plot).

scatteryoffsets

18.29. matplotlib.legend 2251

../tutorials/introductory/customizing.html?highlight=legend.numpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.scatterpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[iterable of floats, default: [0.375, 0.5, 0.3125]] The vertical offset (rel-
ative to the font size) for the markers created for a scatter plot legend entry. 0.0 is
at the base the legend text, and 1.0 is at the top. To draw all markers at the same
height, set to [0.5].

markerscale
[float, default: rcParams["legend.markerscale"] (default: 1.0)] The
relative size of legend markers compared with the originally drawn ones.

markerfirst
[bool, default: True] If True, legend marker is placed to the left of the legend label.
If False, legend marker is placed to the right of the legend label.

frameon
[bool, default: rcParams["legend.frameon"] (default: True)] Whether
the legend should be drawn on a patch (frame).

fancybox
[bool, default: rcParams["legend.fancybox"] (default: True)]
Whether round edges should be enabled around the FancyBboxPatch which
makes up the legend's background.

shadow
[bool, default: rcParams["legend.shadow"] (default: False)] Whether
to draw a shadow behind the legend.

framealpha
[float, default: rcParams["legend.framealpha"] (default: 0.8)] The
alpha transparency of the legend's background. If shadow is activated and frameal-
pha is None, the default value is ignored.

facecolor
["inherit" or color, default: rcParams["legend.facecolor"] (de-
fault: 'inherit')] The legend's background color. If "inherit", use
rcParams["axes.facecolor"] (default: 'white').

edgecolor
["inherit" or color, default: rcParams["legend.edgecolor"] (default:
'0.8')] The legend's background patch edge color. If "inherit", use take
rcParams["axes.edgecolor"] (default: 'black').

mode
[{"expand", None}] If mode is set to "expand" the legend will be horizontally
expanded to fill the axes area (or bbox_to_anchor if defines the legend's size).

bbox_transform

2252 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=legend.markerscale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.frameon#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.fancybox#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.shadow#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.framealpha#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor). For a value of None (default) the Axes'
transAxes transform will be used.

title
[str or None] The legend's title. Default is no title (None).

title_fontsize
[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, default:
rcParams["legend.title_fontsize"] (default: None)] The font size
of the legend's title.

borderpad
[float, default: rcParams["legend.borderpad"] (default: 0.4)] The
fractional whitespace inside the legend border, in font-size units.

labelspacing
[float, default: rcParams["legend.labelspacing"] (default: 0.5)]
The vertical space between the legend entries, in font-size units.

handlelength
[float, default: rcParams["legend.handlelength"] (default: 2.0)]
The length of the legend handles, in font-size units.

handletextpad
[float, default: rcParams["legend.handletextpad"] (default: 0.8)]
The pad between the legend handle and text, in font-size units.

borderaxespad
[float, default: rcParams["legend.borderaxespad"] (default: 0.5)]
The pad between the axes and legend border, in font-size units.

columnspacing
[float, default: rcParams["legend.columnspacing"] (default: 2.0)]
The spacing between columns, in font-size units.

handler_map
[dict or None] The custom dictionary mapping instances or types to a legend han-
dler. This handler_map updates the default handler map found at matplotlib.
legend.Legend.get_legend_handler_map.

18.29. matplotlib.legend 2253

../tutorials/introductory/customizing.html?highlight=legend.title_fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.borderpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.labelspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.handlelength#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.handletextpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.borderaxespad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=legend.columnspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

Users can specify any arbitrary location for the legend using the bbox_to_anchor keyword argu-
ment. bbox_to_anchor can be a BboxBase (or derived therefrom) or a tuple of 2 or 4 floats. See
set_bbox_to_anchor for more detail.

The legend location can be specified by setting loc with a tuple of 2 floats, which is interpreted as the
lower-left corner of the legend in the normalized axes coordinate.

codes = {'best': 0, 'center': 10, 'center left': 6, 'center right': 7, 'lower center': 8, 'lower left': 3, 'lower right': 4, 'right': 5, 'upper center': 9, 'upper left': 2, 'upper right': 1}

contains(event)
Test whether the artist contains the mouse event.

Parameters

mouseevent
[matplotlib.backend_bases.MouseEvent]

Returns

contains
[bool] Whether any values are within the radius.

details
[dict] An artist-specific dictionary of details of the event context, such as which
points are contained in the pick radius. See the individual Artist subclasses for
details.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

draw_frame(b)
Set whether the legend box patch is drawn.

Parameters

2254 Chapter 18. Modules

Matplotlib, Release 3.4.3

b
[bool]

get_bbox_to_anchor()
Return the bbox that the legend will be anchored to.

get_children()
Return a list of the child Artists of this Artist.

classmethod get_default_handler_map()
A class method that returns the default handler map.

get_draggable()
Return True if the legend is draggable, False otherwise.

get_frame()
Return the Rectangle used to frame the legend.

get_frame_on()
Get whether the legend box patch is drawn.

static get_legend_handler(legend_handler_map, orig_handle)
Return a legend handler from legend_handler_map that corresponds to orig_handler.

legend_handler_map should be a dictionary object (that is returned by the
get_legend_handler_map method).

It first checks if the orig_handle itself is a key in the legend_handler_map and return the asso-
ciated value. Otherwise, it checks for each of the classes in its method-resolution-order. If no
matching key is found, it returns None.

get_legend_handler_map()
Return the handler map.

get_lines()
Return the list of Line2Ds in the legend.

get_patches()
Return the list of Patchs in the legend.

get_texts()
Return the list of Texts in the legend.

get_tightbbox(renderer)
Like Legend.get_window_extent, but uses the box for the legend.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

18.29. matplotlib.legend 2255

Matplotlib, Release 3.4.3

BboxBase

The bounding box in figure pixel coordinates.

get_title()
Return the Text instance for the legend title.

get_window_extent(renderer=None)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

set_bbox_to_anchor(bbox, transform=None)
Set the bbox that the legend will be anchored to.

Parameters

bbox
[BboxBase or tuple] The bounding box can be specified in the following ways:

• A BboxBase instance

• A tuple of (left, bottom, width, height) in the given transform
(normalized axes coordinate if None)

• A tuple of (left, bottom) where the width and height will be assumed
to be zero.

• None, to remove the bbox anchoring, and use the parent bbox.

transform
[Transform, optional] A transform to apply to the bounding box. If not spec-
ified, this will use a transform to the bounding box of the parent.

classmethod set_default_handler_map(handler_map)
A class method to set the default handler map.

set_draggable(state, use_blit=False, update='loc')
Enable or disable mouse dragging support of the legend.

Parameters

state
[bool] Whether mouse dragging is enabled.

2256 Chapter 18. Modules

Matplotlib, Release 3.4.3

use_blit
[bool, optional] Use blitting for faster image composition. For details see Fun-
cAnimation.

update
[{'loc', 'bbox'}, optional] The legend parameter to be changed when dragged:

• 'loc': update the loc parameter of the legend

• 'bbox': update the bbox_to_anchor parameter of the legend

Returns

DraggableLegend or None
If state is True this returns the DraggableLegend helper instance. Other-
wise this returns None.

set_frame_on(b)
Set whether the legend box patch is drawn.

Parameters

b
[bool]

set_title(title, prop=None)
Set the legend title. Fontproperties can be optionally set with prop parameter.

classmethod update_default_handler_map(handler_map)
A class method to update the default handler map.

zorder = 5

18.30 matplotlib.legend_handler

Default legend handlers.

It is strongly encouraged to have read the legend guide before this documentation.

Legend handlers are expected to be a callable object with a following signature.

legend_handler(legend, orig_handle, fontsize, handlebox)

Where legend is the legend itself, orig_handle is the original plot, fontsize is the fontsize in pixels, and
handlebox is a OffsetBox instance. Within the call, you should create relevant artists (using relevant prop-
erties from the legend and/or orig_handle) and add them into the handlebox. The artists needs to be scaled
according to the fontsize (note that the size is in pixel, i.e., this is dpi-scaled value).

18.30. matplotlib.legend_handler 2257

Matplotlib, Release 3.4.3

This module includes definition of several legend handler classes derived from the base class (HandlerBase)
with the following method:

def legend_artist(self, legend, orig_handle, fontsize, handlebox)

class matplotlib.legend_handler.HandlerBase(xpad=0.0, ypad=0.0, up-
date_func=None)

A Base class for default legend handlers.

The derived classes are meant to override create_artists method, which has a following signature.:

def create_artists(self, legend, orig_handle,
xdescent, ydescent, width, height, fontsize,
trans):

The overridden method needs to create artists of the given transform that fits in the given dimension
(xdescent, ydescent, width, height) that are scaled by fontsize if necessary.

adjust_drawing_area(legend, orig_handle, xdescent, ydescent, width, height, fontsize)

create_artists(legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans)

legend_artist(legend, orig_handle, fontsize, handlebox)
Return the artist that this HandlerBase generates for the given original artist/handle.

Parameters

legend
[Legend] The legend for which these legend artists are being created.

orig_handle
[matplotlib.artist.Artist or similar] The object for which these leg-
end artists are being created.

fontsize
[int] The fontsize in pixels. The artists being created should be scaled according
to the given fontsize.

handlebox
[matplotlib.offsetbox.OffsetBox] The box which has been created
to hold this legend entry's artists. Artists created in the legend_artist
method must be added to this handlebox inside this method.

update_prop(legend_handle, orig_handle, legend)

class matplotlib.legend_handler.HandlerCircleCollection(yoffsets=None,
sizes=None,
**kw)

Handler for CircleCollections.

Parameters

2258 Chapter 18. Modules

Matplotlib, Release 3.4.3

numpoints
[int] Number of points to show in legend entry.

yoffsets
[array of floats] Length numpoints list of y offsets for each point in legend entry.

Notes

Any other keyword arguments are given to HandlerNpoints.

create_collection(orig_handle, sizes, offsets, transOffset)

class matplotlib.legend_handler.HandlerErrorbar(xerr_size=0.5,
yerr_size=None,
marker_pad=0.3, num-
points=None, **kw)

Handler for Errorbars.

Parameters

marker_pad
[float] Padding between points in legend entry.

numpoints
[int] Number of points to show in legend entry.

Notes

Any other keyword arguments are given to HandlerNpoints.

create_artists(legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans)

get_err_size(legend, xdescent, ydescent, width, height, fontsize)

class matplotlib.legend_handler.HandlerLine2D(marker_pad=0.3, num-
points=None, **kw)

Handler for Line2D instances.

Parameters

marker_pad
[float] Padding between points in legend entry.

numpoints
[int] Number of points to show in legend entry.

18.30. matplotlib.legend_handler 2259

Matplotlib, Release 3.4.3

Notes

Any other keyword arguments are given to HandlerNpoints.

create_artists(legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans)

class matplotlib.legend_handler.HandlerLineCollection(marker_pad=0.3,
numpoints=None,
**kw)

Handler for LineCollection instances.

Parameters

marker_pad
[float] Padding between points in legend entry.

numpoints
[int] Number of points to show in legend entry.

Notes

Any other keyword arguments are given to HandlerNpoints.

create_artists(legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans)

get_numpoints(legend)

class matplotlib.legend_handler.HandlerNpoints(marker_pad=0.3, num-
points=None, **kw)

A legend handler that shows numpoints points in the legend entry.

Parameters

marker_pad
[float] Padding between points in legend entry.

numpoints
[int] Number of points to show in legend entry.

Notes

Any other keyword arguments are given to HandlerBase.

get_numpoints(legend)

get_xdata(legend, xdescent, ydescent, width, height, fontsize)

2260 Chapter 18. Modules

Matplotlib, Release 3.4.3

class matplotlib.legend_handler.HandlerNpointsYoffsets(numpoints=None,
yoffsets=None,
**kw)

A legend handler that shows numpoints in the legend, and allows them to be individually offset in the
y-direction.

Parameters

numpoints
[int] Number of points to show in legend entry.

yoffsets
[array of floats] Length numpoints list of y offsets for each point in legend entry.

Notes

Any other keyword arguments are given to HandlerNpoints.

get_ydata(legend, xdescent, ydescent, width, height, fontsize)

class matplotlib.legend_handler.HandlerPatch(patch_func=None, **kw)
Handler for Patch instances.

Parameters

patch_func
[callable, optional] The function that creates the legend key artist. patch_func
should have the signature:

def patch_func(legend=legend, orig_handle=orig_handle,
xdescent=xdescent, ydescent=ydescent,
width=width, height=height,␣

↪fontsize=fontsize)

Subsequently the created artist will have its update_prop method called and
the appropriate transform will be applied.

Notes

Any other keyword arguments are given to HandlerBase.

create_artists(legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans)

class matplotlib.legend_handler.HandlerPathCollection(yoffsets=None,
sizes=None, **kw)

Handler for PathCollections, which are used by scatter.

Parameters

18.30. matplotlib.legend_handler 2261

Matplotlib, Release 3.4.3

numpoints
[int] Number of points to show in legend entry.

yoffsets
[array of floats] Length numpoints list of y offsets for each point in legend entry.

Notes

Any other keyword arguments are given to HandlerNpoints.

create_collection(orig_handle, sizes, offsets, transOffset)

class matplotlib.legend_handler.HandlerPolyCollection(xpad=0.0,
ypad=0.0, up-
date_func=None)

Handler for PolyCollection used in fill_between and stackplot.

create_artists(legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans)

class matplotlib.legend_handler.HandlerRegularPolyCollection(yoffsets=None,
sizes=None,
**kw)

Handler for RegularPolyCollections.

Parameters

numpoints
[int] Number of points to show in legend entry.

yoffsets
[array of floats] Length numpoints list of y offsets for each point in legend entry.

Notes

Any other keyword arguments are given to HandlerNpoints.

create_artists(legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans)

create_collection(orig_handle, sizes, offsets, transOffset)

get_numpoints(legend)

get_sizes(legend, orig_handle, xdescent, ydescent, width, height, fontsize)

update_prop(legend_handle, orig_handle, legend)

class matplotlib.legend_handler.HandlerStem(marker_pad=0.3, num-
points=None, bottom=None,
yoffsets=None, **kw)

Handler for plots produced by stem.

Parameters

2262 Chapter 18. Modules

Matplotlib, Release 3.4.3

marker_pad
[float, default: 0.3] Padding between points in legend entry.

numpoints
[int, optional] Number of points to show in legend entry.

bottom
[float, optional]

yoffsets
[array of floats, optional] Length numpoints list of y offsets for each point in legend
entry.

Notes

Any other keyword arguments are given to HandlerNpointsYoffsets.

create_artists(legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans)

get_ydata(legend, xdescent, ydescent, width, height, fontsize)

class matplotlib.legend_handler.HandlerStepPatch(**kw)
Handler for StepPatch instances.

Any other keyword arguments are given to HandlerBase.

create_artists(legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans)

class matplotlib.legend_handler.HandlerTuple(ndivide=1, pad=None,
**kwargs)

Handler for Tuple.

Additional kwargs are passed through to HandlerBase.

Parameters

ndivide
[int, default: 1] The number of sections to divide the legend area into. If None,
use the length of the input tuple.

pad
[float, default: rcParams["legend.borderpad"] (default: 0.4)] Padding
in units of fraction of font size.

create_artists(legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans)

matplotlib.legend_handler.update_from_first_child(tgt, src)

18.30. matplotlib.legend_handler 2263

../tutorials/introductory/customizing.html?highlight=legend.borderpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

18.31 matplotlib.lines

The 2D line class which can draw with a variety of line styles, markers and colors.

18.31.1 Classes

Line2D(xdata, ydata[, linewidth, linestyle, ...]) A line - the line can have both a solid linestyle con-
necting all the vertices, and a marker at each vertex.

VertexSelector(line) Manage the callbacks to maintain a list of selected
vertices for Line2D.

matplotlib.lines.Line2D

class matplotlib.lines.Line2D(xdata, ydata, linewidth=None, linestyle=None,
color=None, marker=None, markersize=None,
markeredgewidth=None, markeredgecolor=None,
markerfacecolor=None,markerfacecoloralt='none', fill-
style=None, antialiased=None, dash_capstyle=None,
solid_capstyle=None, dash_joinstyle=None,
solid_joinstyle=None, pickradius=5, drawstyle=None,
markevery=None, **kwargs)

Bases: matplotlib.artist.Artist

A line - the line can have both a solid linestyle connecting all the vertices, and a marker at each vertex.
Additionally, the drawing of the solid line is influenced by the drawstyle, e.g., one can create "stepped"
lines in various styles.

Create a Line2D instance with x and y data in sequences of xdata, ydata.

Additional keyword arguments are Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays

continues on next page

2264 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 148 – continued from previous page
Property Description
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See set_linestyle() for a description of the line styles, set_marker() for a description of
the markers, and set_drawstyle() for a description of the draw styles.

__init__(xdata, ydata, linewidth=None, linestyle=None, color=None, marker=None,
markersize=None, markeredgewidth=None, markeredgecolor=None, markerface-
color=None, markerfacecoloralt='none', fillstyle=None, antialiased=None,
dash_capstyle=None, solid_capstyle=None, dash_joinstyle=None,
solid_joinstyle=None, pickradius=5, drawstyle=None, markevery=None,
**kwargs)

Create a Line2D instance with x and y data in sequences of xdata, ydata.

Additional keyword arguments are Line2D properties:

18.31. matplotlib.lines 2265

Matplotlib, Release 3.4.3

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See set_linestyle() for a description of the line styles, set_marker() for a description

2266 Chapter 18. Modules

Matplotlib, Release 3.4.3

of the markers, and set_drawstyle() for a description of the draw styles.

__module__ = 'matplotlib.lines'

__str__()
Return str(self).

property axes
The Axes instance the artist resides in, or None.

contains(mouseevent)
Test whether mouseevent occurred on the line.

An event is deemed to have occurred "on" the line if it is less than self.pickradius (default:
5 points) away from it. Use get_pickradius or set_pickradius to get or set the pick
radius.

Parameters

mouseevent
[matplotlib.backend_bases.MouseEvent]

Returns

contains
[bool] Whether any values are within the radius.

details
[dict] A dictionary {'ind': pointlist}, where pointlist is a list of points
of the line that are within the pickradius around the event position.

TODO: sort returned indices by distance

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

18.31. matplotlib.lines 2267

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

drawStyleKeys = ['default', 'steps-mid', 'steps-pre', 'steps-post', 'steps']

drawStyles = {'default': '_draw_lines', 'steps': '_draw_steps_pre', 'steps-mid': '_draw_steps_mid', 'steps-post': '_draw_steps_post', 'steps-pre': '_draw_steps_pre'}

fillStyles = ('full', 'left', 'right', 'bottom', 'top', 'none')

filled_markers = ('o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd', 'P', 'X')

get_aa()
Alias for get_antialiased.

get_antialiased()
Return whether antialiased rendering is used.

get_c()
Alias for get_color.

get_color()
Return the line color.

See also set_color.

get_dash_capstyle()
Return the CapStyle for dashed lines.

See also set_dash_capstyle.

get_dash_joinstyle()
Return the JoinStyle for dashed lines.

See also set_dash_joinstyle.

get_data(orig=True)
Return the line data as an (xdata, ydata) pair.

If orig is True, return the original data.

get_drawstyle()
Return the drawstyle.

See also set_drawstyle.

get_ds()
Alias for get_drawstyle.

get_fillstyle()
Return the marker fill style.

See also set_fillstyle.

get_linestyle()
Return the linestyle.

See also set_linestyle.

2268 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_linewidth()
Return the linewidth in points.

See also set_linewidth.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_marker()
Return the line marker.

See also set_marker.

get_markeredgecolor()
Return the marker edge color.

See also set_markeredgecolor.

get_markeredgewidth()
Return the marker edge width in points.

See also set_markeredgewidth.

get_markerfacecolor()
Return the marker face color.

See also set_markerfacecolor.

get_markerfacecoloralt()
Return the alternate marker face color.

See also set_markerfacecoloralt.

get_markersize()
Return the marker size in points.

See also set_markersize.

get_markevery()
Return the markevery setting for marker subsampling.

See also set_markevery.

get_mec()
Alias for get_markeredgecolor.

get_mew()
Alias for get_markeredgewidth.

get_mfc()
Alias for get_markerfacecolor.

get_mfcalt()
Alias for get_markerfacecoloralt.

18.31. matplotlib.lines 2269

Matplotlib, Release 3.4.3

get_ms()
Alias for get_markersize.

get_path()
Return the Path object associated with this line.

get_pickradius()
Return the pick radius used for containment tests.

See contains for more details.

get_solid_capstyle()
Return the CapStyle for solid lines.

See also set_solid_capstyle.

get_solid_joinstyle()
Return the JoinStyle for solid lines.

See also set_solid_joinstyle.

get_window_extent(renderer)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

get_xdata(orig=True)
Return the xdata.

If orig is True, return the original data, else the processed data.

get_xydata()
Return the xy data as a Nx2 numpy array.

get_ydata(orig=True)
Return the ydata.

If orig is True, return the original data, else the processed data.

is_dashed()
Return whether line has a dashed linestyle.

A custom linestyle is assumed to be dashed, we do not inspect the onoffseq directly.

See also set_linestyle.

lineStyles = {'': '_draw_nothing', ' ': '_draw_nothing', '-': '_draw_solid', '--': '_draw_dashed', '-.': '_draw_dash_dot', ':': '_draw_dotted', 'None': '_draw_nothing'}

markers = {'.': 'point', ',': 'pixel', 'o': 'circle', 'v': 'triangle_down', '^': 'triangle_up', '<': 'triangle_left', '>': 'triangle_right', '1': 'tri_down', '2': 'tri_up', '3': 'tri_left', '4': 'tri_right', '8': 'octagon', 's': 'square', 'p': 'pentagon', '*': 'star', 'h': 'hexagon1', 'H': 'hexagon2', '+': 'plus', 'x': 'x', 'D': 'diamond', 'd': 'thin_diamond', '|': 'vline', '_': 'hline', 'P': 'plus_filled', 'X': 'x_filled', 0: 'tickleft', 1: 'tickright', 2: 'tickup', 3: 'tickdown', 4: 'caretleft', 5: 'caretright', 6: 'caretup', 7: 'caretdown', 8: 'caretleftbase', 9: 'caretrightbase', 10: 'caretupbase', 11: 'caretdownbase', 'None': 'nothing', None: 'nothing', ' ': 'nothing', '': 'nothing'}

2270 Chapter 18. Modules

Matplotlib, Release 3.4.3

property pickradius
Return the pick radius used for containment tests.

See contains for more details.

recache(always=False)

recache_always()

set_aa(b)
Alias for set_antialiased.

set_antialiased(b)
Set whether to use antialiased rendering.

Parameters

b
[bool]

set_c(color)
Alias for set_color.

set_color(color)
Set the color of the line.

Parameters

color
[color]

set_dash_capstyle(s)
How to draw the end caps if the line is is_dashed.

Parameters

s
[CapStyle or {'butt', 'projecting', 'round'}]

set_dash_joinstyle(s)
How to join segments of the line if it is_dashed.

Parameters

s
[JoinStyle or {'miter', 'round', 'bevel'}]

set_dashes(seq)
Set the dash sequence.

18.31. matplotlib.lines 2271

Matplotlib, Release 3.4.3

The dash sequence is a sequence of floats of even length describing the length of dashes and
spaces in points.

For example, (5, 2, 1, 2) describes a sequence of 5 point and 1 point dashes separated by 2 point
spaces.

Parameters

seq
[sequence of floats (on/off ink in points) or (None, None)] If seq is empty or
(None, None), the linestyle will be set to solid.

set_data(*args)
Set the x and y data.

Parameters

*args
[(2, N) array or two 1D arrays]

set_drawstyle(drawstyle)
Set the drawstyle of the plot.

The drawstyle determines how the points are connected.

Parameters

drawstyle
[{'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'] For 'de-
fault', the points are connected with straight lines.

The steps variants connect the points with step-like lines, i.e. horizontal lines
with vertical steps. They differ in the location of the step:

• 'steps-pre': The step is at the beginning of the line segment, i.e. the line will
be at the y-value of point to the right.

• 'steps-mid': The step is halfway between the points.

• 'steps-post: The step is at the end of the line segment, i.e. the line will be at
the y-value of the point to the left.

• 'steps' is equal to 'steps-pre' and is maintained for backward-compatibility.

For examples see /gallery/lines_bars_and_markers/step_demo.

set_ds(drawstyle)
Alias for set_drawstyle.

set_fillstyle(fs)
Set the marker fill style.

Parameters

2272 Chapter 18. Modules

Matplotlib, Release 3.4.3

fs
[{'full', 'left', 'right', 'bottom', 'top', 'none'}] Possible values:

• 'full': Fill the whole marker with the markerfacecolor.

• 'left', 'right', 'bottom', 'top': Fill the marker half at the given side with themark-
erfacecolor. The other half of the marker is filled with markerfacecoloralt.

• 'none': No filling.

For examples see marker_fill_styles.

set_linestyle(ls)
Set the linestyle of the line.

Parameters

ls
[{'-', '--', '-.', ':', '', (offset, on-off-seq), ...}] Possible values:

• A string:

Linestyle Description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line
'None' or ' ' or '' draw nothing

• Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq)

where onoffseq is an even length tuple of on and off ink in points. See also
set_dashes().

For examples see /gallery/lines_bars_and_markers/linestyles.

set_linewidth(w)
Set the line width in points.

Parameters

w
[float] Line width, in points.

set_ls(ls)
Alias for set_linestyle.

18.31. matplotlib.lines 2273

Matplotlib, Release 3.4.3

set_lw(w)
Alias for set_linewidth.

set_marker(marker)
Set the line marker.

Parameters

marker
[marker style string, Path or MarkerStyle] See markers for full descrip-
tion of possible arguments.

set_markeredgecolor(ec)
Set the marker edge color.

Parameters

ec
[color]

set_markeredgewidth(ew)
Set the marker edge width in points.

Parameters

ew
[float] Marker edge width, in points.

set_markerfacecolor(fc)
Set the marker face color.

Parameters

fc
[color]

set_markerfacecoloralt(fc)
Set the alternate marker face color.

Parameters

fc
[color]

set_markersize(sz)
Set the marker size in points.

Parameters

2274 Chapter 18. Modules

Matplotlib, Release 3.4.3

sz
[float] Marker size, in points.

set_markevery(every)
Set the markevery property to subsample the plot when using markers.

e.g., if every=5, every 5-th marker will be plotted.

Parameters

every
[None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]]
Which markers to plot.

• every=None, every point will be plotted.

• every=N, every N-th marker will be plotted starting with marker 0.

• every=(start, N), every N-th marker, starting at point start, will be plotted.

• every=slice(start, end, N), every N-th marker, starting at point start, up to but
not including point end, will be plotted.

• every=[i, j, m, n], only markers at points i, j, m, and n will be plotted.

• every=[True, False, True], positions that are True will be plotted.

• every=0.1, (i.e. a float) then markers will be spaced at approximately equal
distances along the line; the distance along the line between markers is deter-
mined by multiplying the display-coordinate distance of the axes bounding-
box diagonal by the value of every.

• every=(0.5, 0.1) (i.e. a length-2 tuple of float), the same functionality as ev-
ery=0.1 is exhibited but the first marker will be 0.5 multiplied by the display-
coordinate-diagonal-distance along the line.

For examples see /gallery/lines_bars_and_markers/markevery_demo.

Notes

Setting the markevery property will only show markers at actual data points. When using float
arguments to set the markevery property on irregularly spaced data, the markers will likely not
appear evenly spaced because the actual data points do not coincide with the theoretical spacing
between markers.

When using a start offset to specify the first marker, the offset will be from the first data point
which may be different from the first the visible data point if the plot is zoomed in.

If zooming in on a plot when using float arguments then the actual data points that have mark-
ers will change because the distance between markers is always determined from the display-
coordinates axes-bounding-box-diagonal regardless of the actual axes data limits.

18.31. matplotlib.lines 2275

Matplotlib, Release 3.4.3

set_mec(ec)
Alias for set_markeredgecolor.

set_mew(ew)
Alias for set_markeredgewidth.

set_mfc(fc)
Alias for set_markerfacecolor.

set_mfcalt(fc)
Alias for set_markerfacecoloralt.

set_ms(sz)
Alias for set_markersize.

set_picker(p)
Sets the event picker details for the line.

Parameters

p
[float or callable[[Artist, Event], tuple[bool, dict]]] If a float, it is used as the pick
radius in points.

set_pickradius(d)
Set the pick radius used for containment tests.

See contains for more details.

Parameters

d
[float] Pick radius, in points.

set_solid_capstyle(s)
How to draw the end caps if the line is solid (not is_dashed)

Parameters

s
[CapStyle or {'butt', 'projecting', 'round'}]

set_solid_joinstyle(s)
How to join segments if the line is solid (not is_dashed).

Parameters

s
[JoinStyle or {'miter', 'round', 'bevel'}]

2276 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_transform(t)
Set the Transformation instance used by this artist.

Parameters

t
[matplotlib.transforms.Transform]

set_xdata(x)
Set the data array for x.

Parameters

x
[1D array]

set_ydata(y)
Set the data array for y.

Parameters

y
[1D array]

update_from(other)
Copy properties from other to self.

validCap = ('butt', 'projecting', 'round')

validJoin = ('miter', 'round', 'bevel')

zorder = 2

Examples using matplotlib.lines.Line2D

• sphx_glr_gallery_lines_bars_and_markers_line_demo_dash_control.py

• sphx_glr_gallery_lines_bars_and_markers_stem_plot.py

• sphx_glr_gallery_subplots_axes_and_figures_figure_title.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_text_labels_and_annotations_angle_annotation.py

• sphx_glr_gallery_text_labels_and_annotations_annotation_demo.py

• sphx_glr_gallery_text_labels_and_annotations_custom_legends.py

• sphx_glr_gallery_text_labels_and_annotations_figlegend_demo.py

• sphx_glr_gallery_text_labels_and_annotations_legend_demo.py

18.31. matplotlib.lines 2277

Matplotlib, Release 3.4.3

• sphx_glr_gallery_text_labels_and_annotations_line_with_text.py

• sphx_glr_gallery_pyplots_annotation_basic.py

• sphx_glr_gallery_pyplots_annotation_polar.py

• sphx_glr_gallery_pyplots_fig_axes_customize_simple.py

• sphx_glr_gallery_pyplots_fig_axes_labels_simple.py

• sphx_glr_gallery_pyplots_fig_x.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_shapes_and_collections_path_patch.py

• sphx_glr_gallery_axes_grid1_parasite_simple.py

• sphx_glr_gallery_axisartist_demo_parasite_axes.py

• sphx_glr_gallery_axisartist_demo_parasite_axes2.py

• sphx_glr_gallery_showcase_bachelors_degrees_by_gender.py

• Decay

• The double pendulum problem

• Animated line plot

• Oscilloscope

• MATPLOTLIB UNCHAINED

• sphx_glr_gallery_event_handling_data_browser.py

• sphx_glr_gallery_event_handling_legend_picking.py

• sphx_glr_gallery_event_handling_looking_glass.py

• sphx_glr_gallery_event_handling_pick_event_demo.py

• sphx_glr_gallery_event_handling_pick_event_demo2.py

• sphx_glr_gallery_event_handling_poly_editor.py

• sphx_glr_gallery_event_handling_resample.py

• sphx_glr_gallery_misc_anchored_artists.py

• sphx_glr_gallery_misc_cursor_demo.py

• sphx_glr_gallery_misc_patheffect_demo.py

• sphx_glr_gallery_misc_set_and_get.py

• sphx_glr_gallery_misc_svg_filter_line.py

• sphx_glr_gallery_specialty_plots_skewt.py

• sphx_glr_gallery_ticks_and_spines_multiple_yaxis_with_spines.py

• sphx_glr_gallery_units_artist_tests.py

2278 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_userdemo_simple_legend02.py

• sphx_glr_gallery_widgets_buttons.py

• sphx_glr_gallery_widgets_check_buttons.py

• sphx_glr_gallery_widgets_radio_buttons.py

• sphx_glr_gallery_widgets_range_slider.py

• sphx_glr_gallery_widgets_slider_demo.py

• sphx_glr_gallery_widgets_slider_snap_demo.py

• sphx_glr_gallery_widgets_span_selector.py

• sphx_glr_gallery_widgets_textbox.py

• Usage Guide

• Pyplot tutorial

• Artist tutorial

• Legend guide

• Faster rendering by using blitting

• Transformations Tutorial

matplotlib.lines.VertexSelector

class matplotlib.lines.VertexSelector(line)
Bases: object

Manage the callbacks to maintain a list of selected vertices for Line2D. Derived classes should over-
ride process_selected() to do something with the picks.

Here is an example which highlights the selected verts with red circles:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as lines

class HighlightSelected(lines.VertexSelector):
def __init__(self, line, fmt='ro', **kwargs):

lines.VertexSelector.__init__(self, line)
self.markers, = self.axes.plot([], [], fmt, **kwargs)

def process_selected(self, ind, xs, ys):
self.markers.set_data(xs, ys)
self.canvas.draw()

fig, ax = plt.subplots()
x, y = np.random.rand(2, 30)
line, = ax.plot(x, y, 'bs-', picker=5)

(continues on next page)

18.31. matplotlib.lines 2279

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

(continued from previous page)

selector = HighlightSelected(line)
plt.show()

Initialize the class with a Line2D instance. The line should already be added to some matplotlib.
axes.Axes instance and should have the picker property set.

__dict__ = mappingproxy({'__module__': 'matplotlib.lines', '__doc__': "\n Manage the callbacks to maintain a list of selected vertices for\n `.Line2D`. Derived classes should override\n :meth:`~matplotlib.lines.VertexSelector.process_selected` to do\n something with the picks.\n\n Here is an example which highlights the selected verts with red\n circles::\n\n import numpy as np\n import matplotlib.pyplot as plt\n import matplotlib.lines as lines\n\n class HighlightSelected(lines.VertexSelector):\n def __init__(self, line, fmt='ro', **kwargs):\n lines.VertexSelector.__init__(self, line)\n self.markers, = self.axes.plot([], [], fmt, **kwargs)\n\n def process_selected(self, ind, xs, ys):\n self.markers.set_data(xs, ys)\n self.canvas.draw()\n\n fig, ax = plt.subplots()\n x, y = np.random.rand(2, 30)\n line, = ax.plot(x, y, 'bs-', picker=5)\n\n selector = HighlightSelected(line)\n plt.show()\n\n ", '__init__': <function VertexSelector.__init__>, 'process_selected': <function VertexSelector.process_selected>, 'onpick': <function VertexSelector.onpick>, '__dict__': <attribute '__dict__' of 'VertexSelector' objects>, '__weakref__': <attribute '__weakref__' of 'VertexSelector' objects>, '__annotations__': {}})

__init__(line)
Initialize the class with a Line2D instance. The line should already be added to some
matplotlib.axes.Axes instance and should have the picker property set.

__module__ = 'matplotlib.lines'

__weakref__
list of weak references to the object (if defined)

onpick(event)
When the line is picked, update the set of selected indices.

process_selected(ind, xs, ys)
Default "do nothing" implementation of the process_selected() method.

Parameters

ind
[list of int] The indices of the selected vertices.

xs, ys
[array-like] The coordinates of the selected vertices.

Examples using matplotlib.lines.VertexSelector

18.31.2 Functions

segment_hits(cx, cy, x, y, radius) Return the indices of the segments in the polyline
with coordinates (cx, cy) that are within a distance
radius of the point (x, y).

2280 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.lines.segment_hits

matplotlib.lines.segment_hits(cx, cy, x, y, radius)
Return the indices of the segments in the polyline with coordinates (cx, cy) that are within a distance
radius of the point (x, y).

Examples using matplotlib.lines.segment_hits

18.32 matplotlib.markers

Functions to handle markers; used by the marker functionality of plot, scatter, and errorbar.

All possible markers are defined here:

marker symbol description
"." point
"," pixel
"o" circle
"v" triangle_down
"^" triangle_up
"<" triangle_left
">" triangle_right
"1" tri_down
"2" tri_up
"3" tri_left
"4" tri_right
"8" octagon
"s" square
"p" pentagon
"P" plus (filled)
"*" star
"h" hexagon1
"H" hexagon2
"+" plus
"x" x
"X" x (filled)
"D" diamond

continues on next page

18.32. matplotlib.markers 2281

Matplotlib, Release 3.4.3

Table 151 – continued from previous page
marker symbol description
"d" thin_diamond
"|" vline
"_" hline
0 (TICKLEFT) tickleft
1 (TICKRIGHT) tickright
2 (TICKUP) tickup
3 (TICKDOWN) tickdown
4 (CARETLEFT) caretleft
5 (CARETRIGHT) caretright
6 (CARETUP) caretup
7 (CARETDOWN) caretdown
8 (CARETLEFTBASE) caretleft (centered at base)
9 (CARETRIGHTBASE) caretright (centered at base)
10 (CARETUPBASE) caretup (centered at base)
11 (CARETDOWNBASE) caretdown (centered at base)
"None", " " or "" nothing
'$...$' Render the string using mathtext. E.g "f" for marker showing the letter f.
verts A list of (x, y) pairs used for Path vertices. The center of the marker is located at (0, 0) and the size is normalized, such that the created path is encapsulated inside the unit cell.
path A Path instance.
(numsides, 0, angle) A regular polygon with numsides sides, rotated by angle.
(numsides, 1, angle) A star-like symbol with numsides sides, rotated by angle.
(numsides, 2, angle) An asterisk with numsides sides, rotated by angle.

None is the default which means 'nothing', however this table is referred to from other docs for the valid
inputs from marker inputs and in those cases None still means 'default'.

Note that special symbols can be defined via the STIX math font, e.g. "$\u266B$".
For an overview over the STIX font symbols refer to the STIX font table. Also see the
/gallery/text_labels_and_annotations/stix_fonts_demo.

Integer numbers from 0 to 11 create lines and triangles. Those are equally accessible via capitalized vari-
ables, like CARETDOWNBASE. Hence the following are equivalent:

plt.plot([1, 2, 3], marker=11)
plt.plot([1, 2, 3], marker=matplotlib.markers.CARETDOWNBASE)

Examples showing the use of markers:

• /gallery/lines_bars_and_markers/marker_reference

• /gallery/shapes_and_collections/marker_path

• /gallery/lines_bars_and_markers/scatter_star_poly

2282 Chapter 18. Modules

http://www.stixfonts.org/allGlyphs.html

Matplotlib, Release 3.4.3

18.32.1 Classes

MarkerStyle([marker, fillstyle]) A class representing marker types.

matplotlib.markers.MarkerStyle

class matplotlib.markers.MarkerStyle(marker=None, fillstyle=None)
Bases: object

A class representing marker types.

Instances are immutable. If you need to change anything, create a new instance.

Attributes

markers
[list] All known markers.

filled_markers
[list] All known filled markers. This is a subset of markers.

fillstyles
[list] The supported fillstyles.

Parameters

marker
[str, array-like, Path, MarkerStyle, or None, default: None]

• Another instance of MarkerStyle copies the details of that marker.

• None means no marker.

• For other possible marker values see the module docstring matplotlib.
markers.

fillstyle
[str, default: 'full'] One of 'full', 'left', 'right', 'bottom', 'top', 'none'.

__bool__()

__dict__ = mappingproxy({'__module__': 'matplotlib.markers', '__doc__': '\n A class representing marker types.\n\n Instances are immutable. If you need to change anything, create a new\n instance.\n\n Attributes\n ----------\n markers : list\n All known markers.\n filled_markers : list\n All known filled markers. This is a subset of *markers*.\n fillstyles : list\n The supported fillstyles.\n ', 'markers': {'.': 'point', ',': 'pixel', 'o': 'circle', 'v': 'triangle_down', '^': 'triangle_up', '<': 'triangle_left', '>': 'triangle_right', '1': 'tri_down', '2': 'tri_up', '3': 'tri_left', '4': 'tri_right', '8': 'octagon', 's': 'square', 'p': 'pentagon', '*': 'star', 'h': 'hexagon1', 'H': 'hexagon2', '+': 'plus', 'x': 'x', 'D': 'diamond', 'd': 'thin_diamond', '|': 'vline', '_': 'hline', 'P': 'plus_filled', 'X': 'x_filled', 0: 'tickleft', 1: 'tickright', 2: 'tickup', 3: 'tickdown', 4: 'caretleft', 5: 'caretright', 6: 'caretup', 7: 'caretdown', 8: 'caretleftbase', 9: 'caretrightbase', 10: 'caretupbase', 11: 'caretdownbase', 'None': 'nothing', None: 'nothing', ' ': 'nothing', '': 'nothing'}, 'filled_markers': ('o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd', 'P', 'X'), 'fillstyles': ('full', 'left', 'right', 'bottom', 'top', 'none'), '_half_fillstyles': ('left', 'right', 'bottom', 'top'), '_point_size_reduction': 0.5, '__init__': <function MarkerStyle.__init__>, '_recache': <function MarkerStyle._recache>, '__bool__': <function MarkerStyle.__bool__>, 'is_filled': <function MarkerStyle.is_filled>, 'get_fillstyle': <function MarkerStyle.get_fillstyle>, 'set_fillstyle': <function MarkerStyle.set_fillstyle>, '_set_fillstyle': <function MarkerStyle._set_fillstyle>, 'get_joinstyle': <function MarkerStyle.get_joinstyle>, 'get_capstyle': <function MarkerStyle.get_capstyle>, 'get_marker': <function MarkerStyle.get_marker>, 'set_marker': <function MarkerStyle.set_marker>, '_set_marker': <function MarkerStyle._set_marker>, 'get_path': <function MarkerStyle.get_path>, 'get_transform': <function MarkerStyle.get_transform>, 'get_alt_path': <function MarkerStyle.get_alt_path>, 'get_alt_transform': <function MarkerStyle.get_alt_transform>, 'get_snap_threshold': <function MarkerStyle.get_snap_threshold>, '_set_nothing': <function MarkerStyle._set_nothing>, '_set_custom_marker': <function MarkerStyle._set_custom_marker>, '_set_path_marker': <function MarkerStyle._set_path_marker>, '_set_vertices': <function MarkerStyle._set_vertices>, '_set_tuple_marker': <function MarkerStyle._set_tuple_marker>, '_set_mathtext_path': <function MarkerStyle._set_mathtext_path>, '_half_fill': <function MarkerStyle._half_fill>, '_set_circle': <function MarkerStyle._set_circle>, '_set_pixel': <function MarkerStyle._set_pixel>, '_set_point': <function MarkerStyle._set_point>, '_triangle_path': Path(array([[0., 1.], [-1., -1.], [1., -1.], [0., 1.]]), array([1, 2, 2, 79], dtype=uint8)), '_triangle_path_u': Path(array([[0. , 1.], [-0.6, -0.2], [0.6, -0.2], [0. , 1.]]), array([1, 2, 2, 79], dtype=uint8)), '_triangle_path_d': Path(array([[-0.6, -0.2], [0.6, -0.2], [1. , -1.], [-1. , -1.], [-0.6, -0.2]]), array([1, 2, 2, 2, 79], dtype=uint8)), '_triangle_path_l': Path(array([[0., 1.], [0., -1.], [-1., -1.], [0., 1.]]), array([1, 2, 2, 79], dtype=uint8)), '_triangle_path_r': Path(array([[0., 1.], [0., -1.], [1., -1.], [0., 1.]]), array([1, 2, 2, 79], dtype=uint8)), '_set_triangle': <function MarkerStyle._set_triangle>, '_set_triangle_up': <function MarkerStyle._set_triangle_up>, '_set_triangle_down': <function MarkerStyle._set_triangle_down>, '_set_triangle_left': <function MarkerStyle._set_triangle_left>, '_set_triangle_right': <function MarkerStyle._set_triangle_right>, '_set_square': <function MarkerStyle._set_square>, '_set_diamond': <function MarkerStyle._set_diamond>, '_set_thin_diamond': <function MarkerStyle._set_thin_diamond>, '_set_pentagon': <function MarkerStyle._set_pentagon>, '_set_star': <function MarkerStyle._set_star>, '_set_hexagon1': <function MarkerStyle._set_hexagon1>, '_set_hexagon2': <function MarkerStyle._set_hexagon2>, '_set_octagon': <function MarkerStyle._set_octagon>, '_line_marker_path': Path(array([[0., -1.], [0., 1.]]), None), '_set_vline': <function MarkerStyle._set_vline>, '_set_hline': <function MarkerStyle._set_hline>, '_tickhoriz_path': Path(array([[0., 0.], [1., 0.]]), None), '_set_tickleft': <function MarkerStyle._set_tickleft>, '_set_tickright': <function MarkerStyle._set_tickright>, '_tickvert_path': Path(array([[-0., 0.], [-0., 1.]]), None), '_set_tickup': <function MarkerStyle._set_tickup>, '_set_tickdown': <function MarkerStyle._set_tickdown>, '_tri_path': Path(array([[0. , 0.], [0. , -1.], [0. , 0.], [0.8, 0.5], [0. , 0.], [-0.8, 0.5]]), array([1, 2, 1, 2, 1, 2], dtype=uint8)), '_set_tri_down': <function MarkerStyle._set_tri_down>, '_set_tri_up': <function MarkerStyle._set_tri_up>, '_set_tri_left': <function MarkerStyle._set_tri_left>, '_set_tri_right': <function MarkerStyle._set_tri_right>, '_caret_path': Path(array([[-1. , 1.5], [0. , 0.], [1. , 1.5]]), None), '_set_caretdown': <function MarkerStyle._set_caretdown>, '_set_caretup': <function MarkerStyle._set_caretup>, '_set_caretleft': <function MarkerStyle._set_caretleft>, '_set_caretright': <function MarkerStyle._set_caretright>, '_caret_path_base': Path(array([[-1. , 0.], [0. , -1.5], [1. , 0.]]), None), '_set_caretdownbase': <function MarkerStyle._set_caretdownbase>, '_set_caretupbase': <function MarkerStyle._set_caretupbase>, '_set_caretleftbase': <function MarkerStyle._set_caretleftbase>, '_set_caretrightbase': <function MarkerStyle._set_caretrightbase>, '_plus_path': Path(array([[-1., 0.], [1., 0.], [0., -1.], [0., 1.]]), array([1, 2, 1, 2], dtype=uint8)), '_set_plus': <function MarkerStyle._set_plus>, '_x_path': Path(array([[-1., -1.], [1., 1.], [-1., 1.], [1., -1.]]), array([1, 2, 1, 2], dtype=uint8)), '_set_x': <function MarkerStyle._set_x>, '_plus_filled_path': Path(array([[-0.16666667, -0.5], [0.16666667, -0.5], [0.16666667, -0.16666667], [0.5 , -0.16666667], [0.5 , 0.16666667], [0.16666667, 0.16666667], [0.16666667, 0.5], [-0.16666667, 0.5], [-0.16666667, 0.16666667], [-0.5 , 0.16666667], [-0.5 , -0.16666667], [-0.16666667, -0.16666667], [-0.16666667, -0.5]]), array([1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 79], dtype=uint8)), '_plus_filled_path_t': Path(array([[0.5 , 0.], [0.5 , 0.16666667], [0.16666667, 0.16666667], [0.16666667, 0.5], [-0.16666667, 0.5], [-0.16666667, 0.16666667], [-0.5 , 0.16666667], [-0.5 , 0.], [0.5 , 0.]]), array([1, 2, 2, 2, 2, 2, 2, 2, 79], dtype=uint8)), '_set_plus_filled': <function MarkerStyle._set_plus_filled>, '_x_filled_path': Path(array([[-0.25, -0.5], [0. , -0.25], [0.25, -0.5], [0.5 , -0.25], [0.25, 0.], [0.5 , 0.25], [0.25, 0.5], [0. , 0.25], [-0.25, 0.5], [-0.5 , 0.25], [-0.25, 0.], [-0.5 , -0.25], [-0.25, -0.5]]), array([1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 79], dtype=uint8)), '_x_filled_path_t': Path(array([[0.25, 0.], [0.5 , 0.25], [0.25, 0.5], [0. , 0.25], [-0.25, 0.5], [-0.5 , 0.25], [-0.25, 0.], [0.25, 0.]]), array([1, 2, 2, 2, 2, 2, 2, 79], dtype=uint8)), '_set_x_filled': <function MarkerStyle._set_x_filled>, '__dict__': <attribute '__dict__' of 'MarkerStyle' objects>, '__weakref__': <attribute '__weakref__' of 'MarkerStyle' objects>, '__annotations__': {}})

__init__(marker=None, fillstyle=None)

Parameters

marker
[str, array-like, Path, MarkerStyle, or None, default: None]

18.32. matplotlib.markers 2283

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

• Another instance of MarkerStyle copies the details of that marker.

• None means no marker.

• For other possible marker values see the module docstring matplotlib.
markers.

fillstyle
[str, default: 'full'] One of 'full', 'left', 'right', 'bottom', 'top', 'none'.

__module__ = 'matplotlib.markers'

__weakref__
list of weak references to the object (if defined)

filled_markers = ('o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd', 'P', 'X')

fillstyles = ('full', 'left', 'right', 'bottom', 'top', 'none')

get_alt_path()
Return a Path for the alternate part of the marker.

For unfilled markers, this is None; for filled markers, this is the area to be drawn with marker-
facecoloralt.

get_alt_transform()
Return the transform to be applied to the Path from MarkerStyle.get_alt_path().

get_capstyle()

get_fillstyle()

get_joinstyle()

get_marker()

get_path()
Return a Path for the primary part of the marker.

For unfilled markers this is the whole marker, for filled markers, this is the area to be drawn with
markerfacecolor.

get_snap_threshold()

get_transform()
Return the transform to be applied to the Path from MarkerStyle.get_path().

is_filled()

markers = {'.': 'point', ',': 'pixel', 'o': 'circle', 'v': 'triangle_down', '^': 'triangle_up', '<': 'triangle_left', '>': 'triangle_right', '1': 'tri_down', '2': 'tri_up', '3': 'tri_left', '4': 'tri_right', '8': 'octagon', 's': 'square', 'p': 'pentagon', '*': 'star', 'h': 'hexagon1', 'H': 'hexagon2', '+': 'plus', 'x': 'x', 'D': 'diamond', 'd': 'thin_diamond', '|': 'vline', '_': 'hline', 'P': 'plus_filled', 'X': 'x_filled', 0: 'tickleft', 1: 'tickright', 2: 'tickup', 3: 'tickdown', 4: 'caretleft', 5: 'caretright', 6: 'caretup', 7: 'caretdown', 8: 'caretleftbase', 9: 'caretrightbase', 10: 'caretupbase', 11: 'caretdownbase', 'None': 'nothing', None: 'nothing', ' ': 'nothing', '': 'nothing'}

set_fillstyle(fillstyle)
[Deprecated]

2284 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.4:

set_marker(marker)
[Deprecated]

Notes

Deprecated since version 3.4:

18.32. matplotlib.markers 2285

Matplotlib, Release 3.4.3

Examples using matplotlib.markers.MarkerStyle

18.33 matplotlib.mathtext

Box

Node

Char

Glue

Kern

ComputerModernFontConstants

FontConstantsBase

DejaVuSansFontConstants

DejaVuSerifFontConstants

STIXFontConstants

STIXSansFontConstants

Fonts

StandardPsFonts

TruetypeFonts

GlueSpec

MathTextParser

MathTextWarning

MathtextBackend

MathtextBackendAgg

MathtextBackendCairo

MathtextBackendPath

MathtextBackendPdf

MathtextBackendPs

MathtextBackendSvg

MathtextBackendBitmap

Parser

Ship

A module
for parsing a subset of the TeX math syntax and rendering it to a Matplotlib backend.

For a tutorial of its usage, seeWriting mathematical expressions. This document is primarily concerned with
implementation details.

The module uses pyparsing to parse the TeX expression.

2286 Chapter 18. Modules

https://pypi.org/project/pyparsing/

Matplotlib, Release 3.4.3

The Bakoma distribution of the TeX Computer Modern fonts, and STIX fonts are supported. There is ex-
perimental support for using arbitrary fonts, but results may vary without proper tweaking and metrics for
those fonts.

class matplotlib.mathtext.GlueSpec(width=0.0, stretch=0.0, stretch_order=0,
shrink=0.0, shrink_order=0)

Bases: object

[Deprecated] See Glue.

Notes

Deprecated since version 3.3.

copy()

classmethod factory(glue_type)

class matplotlib.mathtext.MathTextParser(output)
Bases: object

Create a MathTextParser for the given backend output.

get_depth(texstr, dpi=120, fontsize=14)
[Deprecated] Get the depth of a mathtext string.

Parameters

texstr
[str] A valid mathtext string, e.g., r'IQ: $sigma_i=15$'.

dpi
[float] The dots-per-inch setting used to render the text.

Returns

int
Offset of the baseline from the bottom of the image, in pixels.

Notes

Deprecated since version 3.4.

parse(s, dpi=72, prop=None, *, _force_standard_ps_fonts=False)
Parse the givenmath expression s at the given dpi. If prop is provided, it is a FontProperties
object specifying the "default" font to use in the math expression, used for all non-math text.

The results are cached, so multiple calls to parse with the same expression should be fast.

to_mask(texstr, dpi=120, fontsize=14)
[Deprecated] Convert a mathtext string to a grayscale array and depth.

18.33. matplotlib.mathtext 2287

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Parameters

texstr
[str] A valid mathtext string, e.g., r'IQ: $sigma_i=15$'.

dpi
[float] The dots-per-inch setting used to render the text.

fontsize
[int] The font size in points

Returns

array
[2D uint8 alpha] Mask array of rasterized tex.

depth
[int] Offset of the baseline from the bottom of the image, in pixels.

Notes

Deprecated since version 3.4.

to_png(filename, texstr, color='black', dpi=120, fontsize=14)
[Deprecated] Render a tex expression to a PNG file.

Parameters

filename
A writable filename or fileobject.

texstr
[str] A valid mathtext string, e.g., r'IQ: $sigma_i=15$'.

color
[color] The text color.

dpi
[float] The dots-per-inch setting used to render the text.

fontsize
[int] The font size in points.

Returns

2288 Chapter 18. Modules

Matplotlib, Release 3.4.3

int
Offset of the baseline from the bottom of the image, in pixels.

Notes

Deprecated since version 3.4.

to_rgba(texstr, color='black', dpi=120, fontsize=14)
[Deprecated] Convert a mathtext string to an RGBA array and depth.

Parameters

texstr
[str] A valid mathtext string, e.g., r'IQ: $sigma_i=15$'.

color
[color] The text color.

dpi
[float] The dots-per-inch setting used to render the text.

fontsize
[int] The font size in points.

Returns

array
[(M, N, 4) array] RGBA color values of rasterized tex, colorized with color.

depth
[int] Offset of the baseline from the bottom of the image, in pixels.

Notes

Deprecated since version 3.4.

exception matplotlib.mathtext.MathTextWarning
Bases: Warning

class matplotlib.mathtext.MathtextBackend
Bases: object

The base class for the mathtext backend-specific code. MathtextBackend subclasses interface
between mathtext and specific Matplotlib graphics backends.

Subclasses need to override the following:

• render_glyph()

18.33. matplotlib.mathtext 2289

https://docs.python.org/3/library/exceptions.html#Warning
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

• render_rect_filled()

• get_results()

And optionally, if you need to use a FreeType hinting style:

• get_hinting_type()

get_hinting_type()
Get the FreeType hinting type to use with this particular backend.

get_results(box)
Return a backend-specific tuple to return to the backend after all processing is done.

render_glyph(ox, oy, info)
Draw a glyph described by info to the reference point (ox, oy).

render_rect_filled(x1, y1, x2, y2)
Draw a filled black rectangle from (x1, y1) to (x2, y2).

set_canvas_size(w, h, d)
Set the dimension of the drawing canvas.

class matplotlib.mathtext.MathtextBackendAgg
Bases: matplotlib.mathtext.MathtextBackend

Render glyphs and rectangles to an FTImage buffer, which is later transferred to the Agg image by the
Agg backend.

get_hinting_type()
Get the FreeType hinting type to use with this particular backend.

get_results(box, used_characters)
Return a backend-specific tuple to return to the backend after all processing is done.

render_glyph(ox, oy, info)
Draw a glyph described by info to the reference point (ox, oy).

render_rect_filled(x1, y1, x2, y2)
Draw a filled black rectangle from (x1, y1) to (x2, y2).

set_canvas_size(w, h, d)
Set the dimension of the drawing canvas.

class matplotlib.mathtext.MathtextBackendBitmap
Bases: matplotlib.mathtext.MathtextBackendAgg

[Deprecated]

2290 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.4:

get_results(box, used_characters)
Return a backend-specific tuple to return to the backend after all processing is done.

class matplotlib.mathtext.MathtextBackendCairo
Bases: matplotlib.mathtext.MathtextBackend

[Deprecated] Store information to write a mathtext rendering to the Cairo backend.

Notes

Deprecated since version 3.4.

get_results(box, used_characters)
Return a backend-specific tuple to return to the backend after all processing is done.

render_glyph(ox, oy, info)
Draw a glyph described by info to the reference point (ox, oy).

render_rect_filled(x1, y1, x2, y2)
Draw a filled black rectangle from (x1, y1) to (x2, y2).

class matplotlib.mathtext.MathtextBackendPath
Bases: matplotlib.mathtext.MathtextBackend

Store information to write a mathtext rendering to the text path machinery.

get_results(box, used_characters)
Return a backend-specific tuple to return to the backend after all processing is done.

render_glyph(ox, oy, info)
Draw a glyph described by info to the reference point (ox, oy).

render_rect_filled(x1, y1, x2, y2)
Draw a filled black rectangle from (x1, y1) to (x2, y2).

class matplotlib.mathtext.MathtextBackendPdf
Bases: matplotlib.mathtext.MathtextBackend

[Deprecated] Store information to write a mathtext rendering to the PDF backend.

18.33. matplotlib.mathtext 2291

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.4.

get_results(box, used_characters)
Return a backend-specific tuple to return to the backend after all processing is done.

render_glyph(ox, oy, info)
Draw a glyph described by info to the reference point (ox, oy).

render_rect_filled(x1, y1, x2, y2)
Draw a filled black rectangle from (x1, y1) to (x2, y2).

class matplotlib.mathtext.MathtextBackendPs
Bases: matplotlib.mathtext.MathtextBackend

[Deprecated] Store information to write a mathtext rendering to the PostScript backend.

Notes

Deprecated since version 3.4.

get_results(box, used_characters)
Return a backend-specific tuple to return to the backend after all processing is done.

render_glyph(ox, oy, info)
Draw a glyph described by info to the reference point (ox, oy).

render_rect_filled(x1, y1, x2, y2)
Draw a filled black rectangle from (x1, y1) to (x2, y2).

class matplotlib.mathtext.MathtextBackendSvg
Bases: matplotlib.mathtext.MathtextBackend

[Deprecated] Store information to write a mathtext rendering to the SVG backend.

Notes

Deprecated since version 3.4.

get_results(box, used_characters)
Return a backend-specific tuple to return to the backend after all processing is done.

render_glyph(ox, oy, info)
Draw a glyph described by info to the reference point (ox, oy).

render_rect_filled(x1, y1, x2, y2)
Draw a filled black rectangle from (x1, y1) to (x2, y2).

matplotlib.mathtext.get_unicode_index(symbol, math=True)
Return the integer index (from the Unicode table) of symbol.

Parameters

2292 Chapter 18. Modules

Matplotlib, Release 3.4.3

symbol
[str] A single unicode character, a TeX command (e.g. r'pi') or a Type1 symbol
name (e.g. 'phi').

math
[bool, default: True] If False, always treat as a single unicode character.

matplotlib.mathtext.math_to_image(s, filename_or_obj, prop=None, dpi=None, for-
mat=None)

Given a math expression, renders it in a closely-clipped bounding box to an image file.

Parameters

s
[str] A math expression. The math portion must be enclosed in dollar signs.

filename_or_obj
[str or path-like or file-like] Where to write the image data.

prop
[FontProperties, optional] The size and style of the text.

dpi
[float, optional] The output dpi. If not set, the dpi is determined as for Figure.
savefig.

format
[str, optional] The output format, e.g., 'svg', 'pdf', 'ps' or 'png'. If not set, the format
is determined as for Figure.savefig.

matplotlib.mathtext.ship(ox, oy, box)
[Deprecated]

Notes

Deprecated since version 3.4:

18.34 matplotlib.mlab

Numerical python functions written for compatibility withMATLAB commands with the same names. Most
numerical python functions can be found in the numpy and scipy libraries. What remains here is code for
performing spectral computations.

18.34. matplotlib.mlab 2293

https://numpy.org/doc/stable/reference/index.html#module-numpy
https://docs.scipy.org/doc/scipy/reference/index.html#module-scipy

Matplotlib, Release 3.4.3

18.34.1 Spectral functions

cohere

Coherence (normalized cross spectral density)

csd

Cross spectral density using Welch's average periodogram

detrend

Remove the mean or best fit line from an array

psd

Power spectral density using Welch's average periodogram

specgram

Spectrogram (spectrum over segments of time)

complex_spectrum

Return the complex-valued frequency spectrum of a signal

magnitude_spectrum

Return the magnitude of the frequency spectrum of a signal

angle_spectrum

Return the angle (wrapped phase) of the frequency spectrum of a signal

phase_spectrum

Return the phase (unwrapped angle) of the frequency spectrum of a signal

detrend_mean

Remove the mean from a line.

detrend_linear

Remove the best fit line from a line.

detrend_none

Return the original line.

stride_windows

Get all windows in an array in a memory-efficient manner

class matplotlib.mlab.GaussianKDE(dataset, bw_method=None)
Bases: object

Representation of a kernel-density estimate using Gaussian kernels.

Parameters

2294 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

dataset
[array-like] Datapoints to estimate from. In case of univariate data this is a 1-D
array, otherwise a 2D array with shape (# of dims, # of data).

bw_method
[str, scalar or callable, optional] The method used to calculate the estimator band-
width. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar,
this will be used directly as kde.factor. If a callable, it should take a Gaus-
sianKDE instance as only parameter and return a scalar. If None (default), 'scott'
is used.

Attributes

dataset
[ndarray] The dataset with which gaussian_kde was initialized.

dim
[int] Number of dimensions.

num_dp
[int] Number of datapoints.

factor
[float] The bandwidth factor, obtained from kde.covariance_factor, with
which the covariance matrix is multiplied.

covariance
[ndarray] The covariance matrix of dataset, scaled by the calculated bandwidth
(kde.factor).

inv_cov
[ndarray] The inverse of covariance.

Methods

kde.evaluate(points) (ndarray) Evaluate the estimated pdf on a provided set of points.
kde(points) (ndarray) Same as kde.evaluate(points)

covariance_factor()

evaluate(points)
Evaluate the estimated pdf on a set of points.

Parameters

18.34. matplotlib.mlab 2295

Matplotlib, Release 3.4.3

points
[(# of dimensions, # of points)-array] Alternatively, a (# of dimensions,) vector
can be passed in and treated as a single point.

Returns

(# of points,)-array
The values at each point.

Raises

ValueError
[if the dimensionality of the input points is different] than the dimensionality of
the KDE.

scotts_factor()

silverman_factor()

matplotlib.mlab.angle_spectrum(x, Fs=None, window=None, pad_to=None,
sides=None)

Compute the angle of the frequency spectrum (wrapped phase spectrum) of x. Data is padded to a
length of pad_to and the windowing function window is applied to the signal.

Parameters

x
[1-D array or sequence] Array or sequence containing the data

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

2296 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. While not increasing the actual resolution of the spectrum
(the minimum distance between resolvable peaks), this can give more points in
the plot, allowing for more detail. This corresponds to the n parameter in the call
to fft(). The default is None, which sets pad_to equal to the length of the input
signal (i.e. no padding).

Returns

spectrum
[1-D array] The angle of the frequency spectrum (wrapped phase spectrum).

freqs
[1-D array] The frequencies corresponding to the elements in spectrum.

See also:

psd

Returns the power spectral density.

complex_spectrum

Returns the complex-valued frequency spectrum.

magnitude_spectrum

Returns the absolute value of the complex_spectrum.

angle_spectrum

Returns the angle of the complex_spectrum.

phase_spectrum

Returns the phase (unwrapped angle) of the complex_spectrum.

specgram

Can return the complex spectrum of segments within the signal.

matplotlib.mlab.cohere(x, y, NFFT=256, Fs=2, detrend=<function detrend_none>, win-
dow=<function window_hanning>, noverlap=0, pad_to=None,
sides='default', scale_by_freq=None)

The coherence between x and y. Coherence is the normalized cross spectral density:

𝐶𝑥𝑦 =
|𝑃𝑥𝑦|2

𝑃𝑥𝑥𝑃𝑦𝑦

Parameters

18.34. matplotlib.mlab 2297

Matplotlib, Release 3.4.3

x, y
Array or sequence containing the data

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. This can be different from NFFT, which specifies the number
of data points used. While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can givemore points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

NFFT
[int, default: 256] The number of data points used in each block for the FFT. A
power 2 is most efficient. This should NOT be used to get zero padding, or the
scaling of the result will be incorrect; use pad_to for this instead.

detrend
[{'none', 'mean', 'linear'} or callable, default: 'none'] The function applied to each
segment before fft-ing, designed to remove the mean or linear trend. Unlike in
MATLAB, where the detrend parameter is a vector, in Matplotlib is it a func-
tion. The mlab module defines detrend_none, detrend_mean, and de-
trend_linear, but you can use a custom function as well. You can also use a
string to choose one of the functions: 'none' calls detrend_none. 'mean' calls
detrend_mean. 'linear' calls detrend_linear.

scale_by_freq
[bool, default: True] Whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for in-
tegration over the returned frequency values. The default is True for MATLAB
compatibility.

2298 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

noverlap
[int, default: 0 (no overlap)] The number of points of overlap between segments.

Returns

Cxy
[1-D array] The coherence vector.

freqs
[1-D array] The frequencies for the elements in Cxy.

See also:

psd(), csd()
For information about the methods used to compute 𝑃𝑥𝑦, 𝑃𝑥𝑥 and 𝑃𝑦𝑦.

matplotlib.mlab.complex_spectrum(x, Fs=None, window=None, pad_to=None,
sides=None)

Compute the complex-valued frequency spectrum of x. Data is padded to a length of pad_to and the
windowing function window is applied to the signal.

Parameters

x
[1-D array or sequence] Array or sequence containing the data

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. While not increasing the actual resolution of the spectrum

18.34. matplotlib.mlab 2299

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

(the minimum distance between resolvable peaks), this can give more points in
the plot, allowing for more detail. This corresponds to the n parameter in the call
to fft(). The default is None, which sets pad_to equal to the length of the input
signal (i.e. no padding).

Returns

spectrum
[1-D array] The complex-valued frequency spectrum.

freqs
[1-D array] The frequencies corresponding to the elements in spectrum.

See also:

psd

Returns the power spectral density.

complex_spectrum

Returns the complex-valued frequency spectrum.

magnitude_spectrum

Returns the absolute value of the complex_spectrum.

angle_spectrum

Returns the angle of the complex_spectrum.

phase_spectrum

Returns the phase (unwrapped angle) of the complex_spectrum.

specgram

Can return the complex spectrum of segments within the signal.

matplotlib.mlab.csd(x, y, NFFT=None, Fs=None, detrend=None, window=None, nover-
lap=None, pad_to=None, sides=None, scale_by_freq=None)

Compute the cross-spectral density.

The cross spectral density 𝑃𝑥𝑦 by Welch's average periodogram method. The vectors x and y are
divided into NFFT length segments. Each segment is detrended by function detrend and windowed
by function window. noverlap gives the length of the overlap between segments. The product of the
direct FFTs of x and y are averaged over each segment to compute 𝑃𝑥𝑦, with a scaling to correct for
power loss due to windowing.

If len(x) < NFFT or len(y) < NFFT, they will be zero padded to NFFT.

Parameters

2300 Chapter 18. Modules

Matplotlib, Release 3.4.3

x, y
[1-D arrays or sequences] Arrays or sequences containing the data

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. This can be different from NFFT, which specifies the number
of data points used. While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can givemore points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

NFFT
[int, default: 256] The number of data points used in each block for the FFT. A
power 2 is most efficient. This should NOT be used to get zero padding, or the
scaling of the result will be incorrect; use pad_to for this instead.

detrend
[{'none', 'mean', 'linear'} or callable, default: 'none'] The function applied to each
segment before fft-ing, designed to remove the mean or linear trend. Unlike in
MATLAB, where the detrend parameter is a vector, in Matplotlib is it a func-
tion. The mlab module defines detrend_none, detrend_mean, and de-
trend_linear, but you can use a custom function as well. You can also use a
string to choose one of the functions: 'none' calls detrend_none. 'mean' calls
detrend_mean. 'linear' calls detrend_linear.

scale_by_freq
[bool, default: True] Whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for in-
tegration over the returned frequency values. The default is True for MATLAB
compatibility.

18.34. matplotlib.mlab 2301

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

noverlap
[int, default: 0 (no overlap)] The number of points of overlap between segments.

Returns

Pxy
[1-D array] The values for the cross spectrum 𝑃𝑥𝑦 before scaling (real valued)

freqs
[1-D array] The frequencies corresponding to the elements in Pxy

See also:

psd

equivalent to setting y = x.

References

Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, JohnWiley & Sons (1986)

matplotlib.mlab.detrend(x, key=None, axis=None)
Return x with its trend removed.

Parameters

x
[array or sequence] Array or sequence containing the data.

key
[{'default', 'constant', 'mean', 'linear', 'none'} or function] The detrending algorithm
to use. 'default', 'mean', and 'constant' are the same as detrend_mean. 'linear'
is the same as detrend_linear. 'none' is the same as detrend_none. The
default is 'mean'. See the corresponding functions for more details regarding the
algorithms. Can also be a function that carries out the detrend operation.

axis
[int] The axis along which to do the detrending.

See also:

detrend_mean

Implementation of the 'mean' algorithm.

detrend_linear

Implementation of the 'linear' algorithm.

2302 Chapter 18. Modules

Matplotlib, Release 3.4.3

detrend_none

Implementation of the 'none' algorithm.

matplotlib.mlab.detrend_linear(y)
Return x minus best fit line; 'linear' detrending.

Parameters

y
[0-D or 1-D array or sequence] Array or sequence containing the data

axis
[int] The axis along which to take the mean. See numpy.mean for a description of
this argument.

See also:

detrend_mean

Another detrend algorithm.

detrend_none

Another detrend algorithm.

detrend

A wrapper around all the detrend algorithms.

matplotlib.mlab.detrend_mean(x, axis=None)
Return x minus the mean(x).

Parameters

x
[array or sequence] Array or sequence containing the data Can have any dimen-
sionality

axis
[int] The axis along which to take the mean. See numpy.mean for a description of
this argument.

See also:

detrend_linear

Another detrend algorithm.

detrend_none

Another detrend algorithm.

18.34. matplotlib.mlab 2303

Matplotlib, Release 3.4.3

detrend

A wrapper around all the detrend algorithms.

matplotlib.mlab.detrend_none(x, axis=None)
Return x: no detrending.

Parameters

x
[any object] An object containing the data

axis
[int] This parameter is ignored. It is included for compatibility with detrend_mean

See also:

detrend_mean

Another detrend algorithm.

detrend_linear

Another detrend algorithm.

detrend

A wrapper around all the detrend algorithms.

matplotlib.mlab.magnitude_spectrum(x, Fs=None, window=None, pad_to=None,
sides=None)

Compute the magnitude (absolute value) of the frequency spectrum of x. Data is padded to a length
of pad_to and the windowing function window is applied to the signal.

Parameters

x
[1-D array or sequence] Array or sequence containing the data

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

2304 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. While not increasing the actual resolution of the spectrum
(the minimum distance between resolvable peaks), this can give more points in
the plot, allowing for more detail. This corresponds to the n parameter in the call
to fft(). The default is None, which sets pad_to equal to the length of the input
signal (i.e. no padding).

Returns

spectrum
[1-D array] The magnitude (absolute value) of the frequency spectrum.

freqs
[1-D array] The frequencies corresponding to the elements in spectrum.

See also:

psd

Returns the power spectral density.

complex_spectrum

Returns the complex-valued frequency spectrum.

magnitude_spectrum

Returns the absolute value of the complex_spectrum.

angle_spectrum

Returns the angle of the complex_spectrum.

phase_spectrum

Returns the phase (unwrapped angle) of the complex_spectrum.

specgram

Can return the complex spectrum of segments within the signal.

matplotlib.mlab.phase_spectrum(x, Fs=None, window=None, pad_to=None,
sides=None)

Compute the phase of the frequency spectrum (unwrapped phase spectrum) of x. Data is padded to a
length of pad_to and the windowing function window is applied to the signal.

Parameters

18.34. matplotlib.mlab 2305

Matplotlib, Release 3.4.3

x
[1-D array or sequence] Array or sequence containing the data

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. While not increasing the actual resolution of the spectrum
(the minimum distance between resolvable peaks), this can give more points in
the plot, allowing for more detail. This corresponds to the n parameter in the call
to fft(). The default is None, which sets pad_to equal to the length of the input
signal (i.e. no padding).

Returns

spectrum
[1-D array] The phase of the frequency spectrum (unwrapped phase spectrum).

freqs
[1-D array] The frequencies corresponding to the elements in spectrum.

See also:

psd

Returns the power spectral density.

complex_spectrum

Returns the complex-valued frequency spectrum.

magnitude_spectrum

Returns the absolute value of the complex_spectrum.

2306 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

angle_spectrum

Returns the angle of the complex_spectrum.

phase_spectrum

Returns the phase (unwrapped angle) of the complex_spectrum.

specgram

Can return the complex spectrum of segments within the signal.

matplotlib.mlab.psd(x, NFFT=None, Fs=None, detrend=None, window=None, nover-
lap=None, pad_to=None, sides=None, scale_by_freq=None)

Compute the power spectral density.

The power spectral density 𝑃𝑥𝑥 by Welch's average periodogram method. The vector x is divided into
NFFT length segments. Each segment is detrended by function detrend and windowed by function
window. noverlap gives the length of the overlap between segments. The |fft(𝑖)|2 of each segment 𝑖
are averaged to compute 𝑃𝑥𝑥.

If len(x) < NFFT, it will be zero padded to NFFT.

Parameters

x
[1-D array or sequence] Array or sequence containing the data

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. This can be different from NFFT, which specifies the number
of data points used. While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can givemore points in the plot,

18.34. matplotlib.mlab 2307

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

NFFT
[int, default: 256] The number of data points used in each block for the FFT. A
power 2 is most efficient. This should NOT be used to get zero padding, or the
scaling of the result will be incorrect; use pad_to for this instead.

detrend
[{'none', 'mean', 'linear'} or callable, default: 'none'] The function applied to each
segment before fft-ing, designed to remove the mean or linear trend. Unlike in
MATLAB, where the detrend parameter is a vector, in Matplotlib is it a func-
tion. The mlab module defines detrend_none, detrend_mean, and de-
trend_linear, but you can use a custom function as well. You can also use a
string to choose one of the functions: 'none' calls detrend_none. 'mean' calls
detrend_mean. 'linear' calls detrend_linear.

scale_by_freq
[bool, default: True] Whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for in-
tegration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap
[int, default: 0 (no overlap)] The number of points of overlap between segments.

Returns

Pxx
[1-D array] The values for the power spectrum 𝑃𝑥𝑥 (real valued)

freqs
[1-D array] The frequencies corresponding to the elements in Pxx

See also:

specgram

specgram differs in the default overlap; in not returning themean of the segment periodograms;
and in returning the times of the segments.

magnitude_spectrum

returns the magnitude spectrum.

csd

returns the spectral density between two signals.

2308 Chapter 18. Modules

Matplotlib, Release 3.4.3

References

Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, JohnWiley & Sons (1986)

matplotlib.mlab.specgram(x, NFFT=None, Fs=None, detrend=None, win-
dow=None, noverlap=None, pad_to=None, sides=None,
scale_by_freq=None, mode=None)

Compute a spectrogram.

Compute and plot a spectrogram of data in x. Data are split into NFFT length segments and the
spectrum of each section is computed. The windowing function window is applied to each segment,
and the amount of overlap of each segment is specified with noverlap.

Parameters

x
[array-like] 1-D array or sequence.

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. This can be different from NFFT, which specifies the number
of data points used. While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can givemore points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

NFFT
[int, default: 256] The number of data points used in each block for the FFT. A
power 2 is most efficient. This should NOT be used to get zero padding, or the
scaling of the result will be incorrect; use pad_to for this instead.

detrend

18.34. matplotlib.mlab 2309

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

[{'none', 'mean', 'linear'} or callable, default: 'none'] The function applied to each
segment before fft-ing, designed to remove the mean or linear trend. Unlike in
MATLAB, where the detrend parameter is a vector, in Matplotlib is it a func-
tion. The mlab module defines detrend_none, detrend_mean, and de-
trend_linear, but you can use a custom function as well. You can also use a
string to choose one of the functions: 'none' calls detrend_none. 'mean' calls
detrend_mean. 'linear' calls detrend_linear.

scale_by_freq
[bool, default: True] Whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for in-
tegration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap
[int, default: 128] The number of points of overlap between blocks.

mode
[str, default: 'psd']

What sort of spectrum to use:

'psd'
Returns the power spectral density.

'complex'
Returns the complex-valued frequency spectrum.

'magnitude'
Returns the magnitude spectrum.

'angle'
Returns the phase spectrum without unwrapping.

'phase'
Returns the phase spectrum with unwrapping.

Returns

spectrum
[array-like] 2D array, columns are the periodograms of successive segments.

freqs
[array-like] 1-D array, frequencies corresponding to the rows in spectrum.

t

2310 Chapter 18. Modules

Matplotlib, Release 3.4.3

[array-like] 1-D array, the times corresponding to midpoints of segments (i.e the
columns in spectrum).

See also:

psd

differs in the overlap and in the return values.

complex_spectrum

similar, but with complex valued frequencies.

magnitude_spectrum

similar single segment when mode is 'magnitude'.

angle_spectrum

similar to single segment when mode is 'angle'.

phase_spectrum

similar to single segment when mode is 'phase'.

Notes

detrend and scale_by_freq only apply when mode is set to 'psd'.

matplotlib.mlab.stride_windows(x, n, noverlap=None, axis=0)
Get all windows of x with length n as a single array, using strides to avoid data duplication.

Warning: It is not safe to write to the output array. Multiple elements may point to the same
piece of memory, so modifying one value may change others.

Parameters

x
[1D array or sequence] Array or sequence containing the data.

n
[int] The number of data points in each window.

noverlap
[int, default: 0 (no overlap)] The overlap between adjacent windows.

axis
[int] The axis along which the windows will run.

18.34. matplotlib.mlab 2311

Matplotlib, Release 3.4.3

References

stackoverflow: Rolling window for 1D arrays in Numpy? stackoverflow: Using strides for an efficient
moving average filter

matplotlib.mlab.window_hanning(x)
Return x times the hanning window of len(x).

See also:

window_none

Another window algorithm.

matplotlib.mlab.window_none(x)
No window function; simply return x.

See also:

window_hanning

Another window algorithm.

18.35 matplotlib.offsetbox

AnchoredOffsetbox AnchoredText

OffsetBox

AuxTransformBox

DrawingArea

PackerBase

OffsetImage

PaddedBox

TextArea

AnnotationBbox
Artist

DraggableAnnotation
DraggableBase

DraggableOffsetBox
HPacker

VPacker

Container classes for Artists.

OffsetBox

The base of all container artists defined in this module.

AnchoredOffsetbox, AnchoredText

2312 Chapter 18. Modules

http://stackoverflow.com/a/6811241
http://stackoverflow.com/a/4947453
http://stackoverflow.com/a/4947453

Matplotlib, Release 3.4.3

Anchor and align an arbitrary Artist or a text relative to the parent axes or a specific anchor point.

DrawingArea

A container with fixed width and height. Children have a fixed position inside the container and may
be clipped.

HPacker, VPacker
Containers for layouting their children vertically or horizontally.

PaddedBox

A container to add a padding around an Artist.

TextArea

Contains a single Text instance.

class matplotlib.offsetbox.AnchoredOffsetbox(loc, pad=0.4, border-
pad=0.5, child=None,
prop=None, frameon=True,
bbox_to_anchor=None,
bbox_transform=None,
**kwargs)

Bases: matplotlib.offsetbox.OffsetBox

An offset box placed according to location loc.

AnchoredOffsetbox has a single child. When multiple children are needed, use an extra OffsetBox to
enclose them. By default, the offset box is anchored against its parent axes. You may explicitly specify
the bbox_to_anchor.

Parameters

loc
[str] The box location. Supported values:

• 'upper right'

• 'upper left'

• 'lower left'

• 'lower right'

• 'center left'

• 'center right'

• 'lower center'

• 'upper center'

• 'center'

For backward compatibility, numeric values are accepted as well. See the param-
eter loc of Legend for details.

18.35. matplotlib.offsetbox 2313

Matplotlib, Release 3.4.3

pad
[float, default: 0.4] Padding around the child as fraction of the fontsize.

borderpad
[float, default: 0.5] Padding between the offsetbox frame and the bbox_to_anchor.

child
[OffsetBox] The box that will be anchored.

prop
[FontProperties] This is only used as a reference for paddings. If not given,
rcParams["legend.fontsize"] (default: 'medium') is used.

frameon
[bool] Whether to draw a frame around the box.

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the legend
in conjunction with loc.

bbox_transform
[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor).

**kwargs
All other parameters are passed on to OffsetBox.

Notes

See Legend for a detailed description of the anchoring mechanism.

codes = {'center': 10, 'center left': 6, 'center right': 7, 'lower center': 8, 'lower left': 3, 'lower right': 4, 'right': 5, 'upper center': 9, 'upper left': 2, 'upper right': 1}

draw(renderer)
Update the location of children if necessary and draw them to the given renderer.

get_bbox_to_anchor()
Return the bbox that the box is anchored to.

get_child()
Return the child.

get_children()
Return the list of children.

get_extent(renderer)
Return the extent of the box as (width, height, x, y).

This is the extent of the child plus the padding.

2314 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=legend.fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

get_window_extent(renderer)
Return the bounding box in display space.

set_bbox_to_anchor(bbox, transform=None)
Set the bbox that the box is anchored to.

bbox can be a Bbox instance, a list of [left, bottom, width, height], or a list of [left, bottom]
where the width and height will be assumed to be zero. The bbox will be transformed to display
coordinate by the given transform.

set_child(child)
Set the child to be anchored.

update_frame(bbox, fontsize=None)

zorder = 5

class matplotlib.offsetbox.AnchoredText(s, loc, pad=0.4, borderpad=0.5,
prop=None, **kwargs)

Bases: matplotlib.offsetbox.AnchoredOffsetbox

AnchoredOffsetbox with Text.

Parameters

s
[str] Text.

loc
[str] Location code. See AnchoredOffsetbox.

pad
[float, default: 0.4] Padding around the text as fraction of the fontsize.

borderpad
[float, default: 0.5] Spacing between the offsetbox frame and the bbox_to_anchor.

prop
[dict, optional] Dictionary of keyword parameters to be passed to the Text in-
stance contained inside AnchoredText.

**kwargs
All other parameters are passed to AnchoredOffsetbox.

class matplotlib.offsetbox.AnnotationBbox(offsetbox, xy, xybox=None, xy-
coords='data', boxcoords=None,
frameon=True, pad=0.4, annota-
tion_clip=None, box_alignment=(0.5,
0.5), bboxprops=None, arrow-
props=None, fontsize=None,
**kwargs)

18.35. matplotlib.offsetbox 2315

Matplotlib, Release 3.4.3

Bases: matplotlib.artist.Artist, matplotlib.text._AnnotationBase

Container for an OffsetBox referring to a specific position xy.

Optionally an arrow pointing from the offsetbox to xy can be drawn.

This is like Annotation, but with OffsetBox instead of Text.

Parameters

offsetbox
[OffsetBox]

xy
[(float, float)] The point (x, y) to annotate. The coordinate system is determined
by xycoords.

xybox
[(float, float), default: xy] The position (x, y) to place the text at. The coordinate
system is determined by boxcoords.

xycoords
[str or Artist or Transform or callable or (float, float), default: 'data'] The
coordinate system that xy is given in. See the parameter xycoords inAnnotation
for a detailed description.

boxcoords
[str or Artist or Transform or callable or (float, float), default: value of xyco-
ords] The coordinate system that xybox is given in. See the parameter textcoords
in Annotation for a detailed description.

frameon
[bool, default: True] Whether to draw a frame around the box.

pad
[float, default: 0.4] Padding around the offsetbox.

box_alignment
[(float, float)] A tuple of two floats for a vertical and horizontal alignment of the
offset box w.r.t. the boxcoords. The lower-left corner is (0, 0) and upper-right
corner is (1, 1).

**kwargs
Other parameters are identical to Annotation.

property anncoords

contains(mouseevent)
Test whether the artist contains the mouse event.

2316 Chapter 18. Modules

Matplotlib, Release 3.4.3

Parameters

mouseevent
[matplotlib.backend_bases.MouseEvent]

Returns

contains
[bool] Whether any values are within the radius.

details
[dict] An artist-specific dictionary of details of the event context, such as which
points are contained in the pick radius. See the individual Artist subclasses for
details.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

get_children()
Return a list of the child Artists of this Artist.

get_fontsize(s=<deprecated parameter>)
Return the fontsize in points.

get_tightbbox(renderer)
get tight bounding box in display space.

get_window_extent(renderer)
get the bounding box in display space.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

18.35. matplotlib.offsetbox 2317

Matplotlib, Release 3.4.3

set_fontsize(s=None)
Set the fontsize in points.

If s is not given, reset to rcParams["legend.fontsize"] (default: 'medium').

update_positions(renderer)
Update the pixel positions of the annotated point and the text.

property xyann

zorder = 3

class matplotlib.offsetbox.AuxTransformBox(aux_transform)
Bases: matplotlib.offsetbox.OffsetBox

Offset Box with the aux_transform. Its children will be transformed with the aux_transform first then
will be offsetted. The absolute coordinate of the aux_transform is meaning as it will be automatically
adjust so that the left-lower corner of the bounding box of children will be set to (0, 0) before the offset
transform.

It is similar to drawing area, except that the extent of the box is not predetermined but calculated from
the window extent of its children. Furthermore, the extent of the children will be calculated in the
transformed coordinate.

add_artist(a)
Add an Artist to the container box.

draw(renderer)
Update the location of children if necessary and draw them to the given renderer.

get_extent(renderer)
Return a tuple width, height, xdescent, ydescent of the box.

get_offset()
Return offset of the container.

get_transform()
Return the Transform applied to the children

get_window_extent(renderer)
Return the bounding box in display space.

set_offset(xy)
Set the offset of the container.

Parameters

xy
[(float, float)] The (x, y) coordinates of the offset in display units.

set_transform(t)
set_transform is ignored.

class matplotlib.offsetbox.DraggableAnnotation(annotation, use_blit=False)
Bases: matplotlib.offsetbox.DraggableBase

2318 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=legend.fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

save_offset()

update_offset(dx, dy)

class matplotlib.offsetbox.DraggableBase(ref_artist, use_blit=False)
Bases: object

Helper base class for a draggable artist (legend, offsetbox).

Derived classes must override the following methods:

def save_offset(self):
'''
Called when the object is picked for dragging; should save the
reference position of the artist.
'''

def update_offset(self, dx, dy):
'''
Called during the dragging; (*dx*, *dy*) is the pixel offset from
the point where the mouse drag started.
'''

Optionally, you may override the following method:

def finalize_offset(self):
'''Called when the mouse is released.'''

In the current implementation of DraggableLegend and DraggableAnnotation, up-
date_offset places the artists in display coordinates, and finalize_offset recalculates their
position in axes coordinate and set a relevant attribute.

artist_picker(artist, evt)
[Deprecated]

Notes

Deprecated since version 3.3:

disconnect()
Disconnect the callbacks.

finalize_offset()

on_motion(evt)

on_motion_blit(evt)
[Deprecated]

18.35. matplotlib.offsetbox 2319

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

on_pick(evt)

on_release(event)

save_offset()

update_offset(dx, dy)

class matplotlib.offsetbox.DraggableOffsetBox(ref_artist, offsetbox,
use_blit=False)

Bases: matplotlib.offsetbox.DraggableBase

get_loc_in_canvas()

save_offset()

update_offset(dx, dy)

class matplotlib.offsetbox.DrawingArea(width, height, xdescent=0.0, ydes-
cent=0.0, clip=False)

Bases: matplotlib.offsetbox.OffsetBox

The DrawingArea can contain any Artist as a child. The DrawingArea has a fixed width and height.
The position of children relative to the parent is fixed. The children can be clipped at the boundaries
of the parent.

Parameters

width, height
[float] Width and height of the container box.

xdescent, ydescent
[float] Descent of the box in x- and y-direction.

clip
[bool] Whether to clip the children to the box.

add_artist(a)
Add an Artist to the container box.

property clip_children
If the children of this DrawingArea should be clipped by DrawingArea bounding box.

draw(renderer)
Update the location of children if necessary and draw them to the given renderer.

get_extent(renderer)
Return width, height, xdescent, ydescent of box.

get_offset()
Return offset of the container.

2320 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_transform()
Return the Transform applied to the children.

get_window_extent(renderer)
Return the bounding box in display space.

set_offset(xy)
Set the offset of the container.

Parameters

xy
[(float, float)] The (x, y) coordinates of the offset in display units.

set_transform(t)
set_transform is ignored.

class matplotlib.offsetbox.HPacker(pad=None, sep=None, width=None,
height=None, align='baseline', mode='fixed',
children=None)

Bases: matplotlib.offsetbox.PackerBase

HPacker packs its children horizontally, automatically adjusting their relative positions at draw time.

Parameters

pad
[float, optional] The boundary padding in points.

sep
[float, optional] The spacing between items in points.

width, height
[float, optional]Width and height of the container box in pixels, calculated ifNone.

align
[{'top', 'bottom', 'left', 'right', 'center', 'baseline'}, default: 'baseline'] Alignment of
boxes.

mode
[{'fixed', 'expand', 'equal'}, default: 'fixed'] The packing mode.

• 'fixed' packs the given Artists tight with sep spacing.

• 'expand' uses the maximal available space to distribute the artists with equal
spacing in between.

• 'equal': Each artist an equal fraction of the available space and is left-aligned
(or top-aligned) therein.

18.35. matplotlib.offsetbox 2321

Matplotlib, Release 3.4.3

children
[list of Artist] The artists to pack.

Notes

pad and sep are in points and will be scaled with the renderer dpi, while width and height are in in
pixels.

get_extent_offsets(renderer)
Update offset of the children and return the extent of the box.

Parameters

renderer
[RendererBase subclass]

Returns

width
height
xdescent
ydescent
list of (xoffset, yoffset) pairs

class matplotlib.offsetbox.OffsetBox(*args, **kwargs)
Bases: matplotlib.artist.Artist

The OffsetBox is a simple container artist.

The child artists are meant to be drawn at a relative position to its parent.

Being an artist itself, all parameters are passed on to Artist.

property axes
The Axes instance the artist resides in, or None.

contains(mouseevent)
Delegate the mouse event contains-check to the children.

As a container, the OffsetBox does not respond itself to mouseevents.

Parameters

mouseevent
[matplotlib.backend_bases.MouseEvent]

Returns

2322 Chapter 18. Modules

Matplotlib, Release 3.4.3

contains
[bool] Whether any values are within the radius.

details
[dict] An artist-specific dictionary of details of the event context, such as which
points are contained in the pick radius. See the individual Artist subclasses for
details.

See also:

Artist.contains

draw(renderer)
Update the location of children if necessary and draw them to the given renderer.

get_children()
Return a list of the child Artists.

get_extent(renderer)
Return a tuple width, height, xdescent, ydescent of the box.

get_extent_offsets(renderer)
Update offset of the children and return the extent of the box.

Parameters

renderer
[RendererBase subclass]

Returns

width
height
xdescent
ydescent
list of (xoffset, yoffset) pairs

get_offset(width, height, xdescent, ydescent, renderer)
Return the offset as a tuple (x, y).

The extent parameters have to be provided to handle the case where the offset is dynamically
determined by a callable (see set_offset).

Parameters

width, height, xdescent, ydescent
Extent parameters.

18.35. matplotlib.offsetbox 2323

Matplotlib, Release 3.4.3

renderer
[RendererBase subclass]

get_visible_children()
Return a list of the visible child Artists.

get_window_extent(renderer)
Return the bounding box (Bbox) in display space.

set_figure(fig)
Set the Figure for the OffsetBox and all its children.

Parameters

fig
[Figure]

set_height(height)
Set the height of the box.

Parameters

height
[float]

set_offset(xy)
Set the offset.

Parameters

xy
[(float, float) or callable] The (x, y) coordinates of the offset in display units.
These can either be given explicitly as a tuple (x, y), or by providing a function
that converts the extent into the offset. This function must have the signature:

def offset(width, height, xdescent, ydescent, renderer) -
↪> (float, float)

set_width(width)
Set the width of the box.

Parameters

width
[float]

2324 Chapter 18. Modules

Matplotlib, Release 3.4.3

class matplotlib.offsetbox.OffsetImage(arr, zoom=1, cmap=None, norm=None,
interpolation=None, origin=None,
filternorm=True, filterrad=4.0, resam-
ple=False, dpi_cor=True, **kwargs)

Bases: matplotlib.offsetbox.OffsetBox

draw(renderer)
Update the location of children if necessary and draw them to the given renderer.

get_children()
Return a list of the child Artists.

get_data()

get_extent(renderer)
Return a tuple width, height, xdescent, ydescent of the box.

get_offset()
Return offset of the container.

get_window_extent(renderer)
Return the bounding box in display space.

get_zoom()

set_data(arr)

set_zoom(zoom)

class matplotlib.offsetbox.PackerBase(pad=None, sep=None, width=None,
height=None, align='baseline',
mode='fixed', children=None)

Bases: matplotlib.offsetbox.OffsetBox

Parameters

pad
[float, optional] The boundary padding in points.

sep
[float, optional] The spacing between items in points.

width, height
[float, optional]Width and height of the container box in pixels, calculated ifNone.

align
[{'top', 'bottom', 'left', 'right', 'center', 'baseline'}, default: 'baseline'] Alignment of
boxes.

mode
[{'fixed', 'expand', 'equal'}, default: 'fixed'] The packing mode.

• 'fixed' packs the given Artists tight with sep spacing.

18.35. matplotlib.offsetbox 2325

Matplotlib, Release 3.4.3

• 'expand' uses the maximal available space to distribute the artists with equal
spacing in between.

• 'equal': Each artist an equal fraction of the available space and is left-aligned
(or top-aligned) therein.

children
[list of Artist] The artists to pack.

Notes

pad and sep are in points and will be scaled with the renderer dpi, while width and height are in in
pixels.

class matplotlib.offsetbox.PaddedBox(child, pad=None, draw_frame=False,
patch_attrs=None)

Bases: matplotlib.offsetbox.OffsetBox

A container to add a padding around an Artist.

The PaddedBox contains a FancyBboxPatch that is used to visualize it when rendering.

Parameters

child
[Artist] The contained Artist.

pad
[float] The padding in points. This will be scaled with the renderer dpi. In contrast
width and height are in pixels and thus not scaled.

draw_frame
[bool] Whether to draw the contained FancyBboxPatch.

patch_attrs
[dict or None] Additional parameters passed to the contained FancyBbox-
Patch.

draw(renderer)
Update the location of children if necessary and draw them to the given renderer.

draw_frame(renderer)

get_extent_offsets(renderer)
Update offset of the children and return the extent of the box.

Parameters

renderer
[RendererBase subclass]

2326 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns

width
height
xdescent
ydescent
list of (xoffset, yoffset) pairs

update_frame(bbox, fontsize=None)

class matplotlib.offsetbox.TextArea(s, textprops=None, multilinebaseline=False,
minimumdescent=<deprecated parameter>)

Bases: matplotlib.offsetbox.OffsetBox

The TextArea is a container artist for a single Text instance.

The text is placed at (0, 0) with baseline+left alignment, by default. The width and height of the
TextArea instance is the width and height of its child text.

Parameters

s
[str] The text to be displayed.

textprops
[dict, default: {}] Dictionary of keyword parameters to be passed to the Text
instance in the TextArea.

multilinebaseline
[bool, default: False] Whether the baseline for multiline text is adjusted so that it
is (approximately) center-aligned with single-line text.

minimumdescent
[bool, default: True] If True, the box has a minimum descent of "p". This is now
effectively always True.

draw(renderer)
Update the location of children if necessary and draw them to the given renderer.

get_extent(renderer)
Return a tuple width, height, xdescent, ydescent of the box.

get_minimumdescent()
[Deprecated] Get minimumdescent.

18.35. matplotlib.offsetbox 2327

https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.4.

get_multilinebaseline()
Get multilinebaseline.

get_offset()
Return offset of the container.

get_text()
Return the string representation of this area's text.

get_window_extent(renderer)
Return the bounding box in display space.

set_minimumdescent(t)
[Deprecated] Set minimumdescent.

If True, extent of the single line text is adjusted so that its descent is at least the one of the glyph
"p".

Notes

Deprecated since version 3.4.

set_multilinebaseline(t)
Set multilinebaseline.

If True, the baseline for multiline text is adjusted so that it is (approximately) center-aligned with
single-line text. This is used e.g. by the legend implementation so that single-line labels are
baseline-aligned, but multiline labels are "center"-aligned with them.

set_offset(xy)
Set the offset of the container.

Parameters

xy
[(float, float)] The (x, y) coordinates of the offset in display units.

set_text(s)
Set the text of this area as a string.

set_transform(t)
set_transform is ignored.

class matplotlib.offsetbox.VPacker(pad=None, sep=None, width=None,
height=None, align='baseline', mode='fixed',
children=None)

Bases: matplotlib.offsetbox.PackerBase

VPacker packs its children vertically, automatically adjusting their relative positions at draw time.

2328 Chapter 18. Modules

Matplotlib, Release 3.4.3

Parameters

pad
[float, optional] The boundary padding in points.

sep
[float, optional] The spacing between items in points.

width, height
[float, optional]Width and height of the container box in pixels, calculated ifNone.

align
[{'top', 'bottom', 'left', 'right', 'center', 'baseline'}, default: 'baseline'] Alignment of
boxes.

mode
[{'fixed', 'expand', 'equal'}, default: 'fixed'] The packing mode.

• 'fixed' packs the given Artists tight with sep spacing.

• 'expand' uses the maximal available space to distribute the artists with equal
spacing in between.

• 'equal': Each artist an equal fraction of the available space and is left-aligned
(or top-aligned) therein.

children
[list of Artist] The artists to pack.

Notes

pad and sep are in points and will be scaled with the renderer dpi, while width and height are in in
pixels.

get_extent_offsets(renderer)
Update offset of the children and return the extent of the box.

Parameters

renderer
[RendererBase subclass]

Returns

width
height
xdescent

18.35. matplotlib.offsetbox 2329

Matplotlib, Release 3.4.3

ydescent
list of (xoffset, yoffset) pairs

matplotlib.offsetbox.bbox_artist(*args, **kwargs)

18.36 matplotlib.patches

18.36.1 Classes

Arc(xy, width, height[, angle, theta1, theta2]) An elliptical arc, i.e. a segment of an ellipse.
Arrow(x, y, dx, dy[, width]) An arrow patch.
ArrowStyle(stylename, **kw) ArrowStyle is a container class which defines

several arrowstyle classes, which is used to create
an arrow path along a given path.

BoxStyle(stylename, **kw) BoxStyle is a container class which defines sev-
eral boxstyle classes, which are used for FancyB-
boxPatch.

Circle(xy[, radius]) A circle patch.
CirclePolygon(xy[, radius, resolution]) A polygon-approximation of a circle patch.
ConnectionPatch(xyA, xyB, coordsA[, ...]) A patch that connects two points (possibly in dif-

ferent axes).
ConnectionStyle(stylename, **kw) ConnectionStyle is a container class which

defines several connectionstyle classes, which is
used to create a path between two points.

Ellipse(xy, width, height[, angle]) A scale-free ellipse.
FancyArrow(x, y, dx, dy[, width, ...]) Like Arrow, but lets you set head width and head

height independently.
FancyArrowPatch([posA, posB, path, ...]) A fancy arrow patch.
FancyBboxPatch(xy, width, height[, ...]) A fancy box around a rectangle with lower left at xy

= (x, y) with specified width and height.
Patch([edgecolor, facecolor, color, ...]) A patch is a 2D artist with a face color and an edge

color.
PathPatch(path, **kwargs) A general polycurve path patch.
StepPatch(values, edges, *[, orientation, ...]) A path patch describing a stepwise constant func-

tion.
Polygon(xy[, closed]) A general polygon patch.
Rectangle(xy, width, height[, angle]) A rectangle defined via an anchor point xy and its

width and height.
RegularPolygon(xy, numVertices[, radius, ...]) A regular polygon patch.
Shadow(patch, ox, oy[, props]) Create a shadow of the given patch.
Wedge(center, r, theta1, theta2[, width]) Wedge shaped patch.

2330 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.patches.Arc

class matplotlib.patches.Arc(xy, width, height, angle=0.0, theta1=0.0, theta2=360.0,
**kwargs)

Bases: matplotlib.patches.Ellipse

An elliptical arc, i.e. a segment of an ellipse.

Due to internal optimizations, there are certain restrictions on using Arc:

• The arc cannot be filled.

• The arc must be used in an Axes instance. It can not be added directly to a Figure because it is
optimized to only render the segments that are inside the axes bounding box with high resolution.

Parameters

xy
[(float, float)] The center of the ellipse.

width
[float] The length of the horizontal axis.

height
[float] The length of the vertical axis.

angle
[float] Rotation of the ellipse in degrees (counterclockwise).

theta1, theta2
[float, default: 0, 360] Starting and ending angles of the arc in degrees. These
values are relative to angle, e.g. if angle= 45 and theta1= 90 the absolute starting
angle is 135. Default theta1 = 0, theta2 = 360, i.e. a complete ellipse. The arc
is drawn in the counterclockwise direction. Angles greater than or equal to 360,
or smaller than 0, are represented by an equivalent angle in the range [0, 360), by
taking the input value mod 360.

Other Parameters

**kwargs
[Patch properties] Most Patch properties are supported as keyword arguments,
with the exception of fill and facecolor because filling is not supported.

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool

continues on next page

18.36. matplotlib.patches 2331

Matplotlib, Release 3.4.3

Table 154 – continued from previous page
Property Description
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(xy, width, height, angle=0.0, theta1=0.0, theta2=360.0, **kwargs)

Parameters

xy
[(float, float)] The center of the ellipse.

width
[float] The length of the horizontal axis.

height
[float] The length of the vertical axis.

angle
[float] Rotation of the ellipse in degrees (counterclockwise).

theta1, theta2

2332 Chapter 18. Modules

Matplotlib, Release 3.4.3

[float, default: 0, 360] Starting and ending angles of the arc in degrees. These
values are relative to angle, e.g. if angle = 45 and theta1 = 90 the absolute
starting angle is 135. Default theta1 = 0, theta2 = 360, i.e. a complete ellipse.
The arc is drawn in the counterclockwise direction. Angles greater than or equal
to 360, or smaller than 0, are represented by an equivalent angle in the range [0,
360), by taking the input value mod 360.

Other Parameters

**kwargs
[Patch properties] Most Patch properties are supported as keyword argu-
ments, with the exception of fill and facecolor because filling is not supported.

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

18.36. matplotlib.patches 2333

Matplotlib, Release 3.4.3

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

draw(renderer)
Draw the arc to the given renderer.

Notes

Ellipses are normally drawn using an approximation that uses eight cubic Bezier splines. The
error of this approximation is 1.89818e-6, according to this unverified source:

Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic Splines.

https://www.tinaja.com/glib/ellipse4.pdf

There is a use case where very large ellipses must be drawn with very high accuracy, and it is
too expensive to render the entire ellipse with enough segments (either splines or line segments).
Therefore, in the case where either radius of the ellipse is large enough that the error of the spline
approximation will be visible (greater than one pixel offset from the ideal), a different technique
is used.

In that case, only the visible parts of the ellipse are drawn, with each visible arc using a fixed
number of spline segments (8). The algorithm proceeds as follows:

1. The points where the ellipse intersects the axes bounding box are located. (This is done be
performing an inverse transformation on the axes bbox such that it is relative to the unit circle
-- this makes the intersection calculation much easier than doing rotated ellipse intersection
directly).

This uses the "line intersecting a circle" algorithm from:

Vince, John. Geometry for Computer Graphics: Formulae, Examples & Proofs.
London: Springer-Verlag, 2005.

2. The angles of each of the intersection points are calculated.

3. Proceeding counterclockwise starting in the positive x-direction, each of the visible arc-
segments between the pairs of vertices are drawn using the Bezier arc approximation tech-
nique implemented in Path.arc.

Examples using matplotlib.patches.Arc

• sphx_glr_gallery_text_labels_and_annotations_angle_annotation.py

• sphx_glr_gallery_units_ellipse_with_units.py

• Sample plots in Matplotlib

2334 Chapter 18. Modules

https://www.tinaja.com/glib/ellipse4.pdf

Matplotlib, Release 3.4.3

matplotlib.patches.Arrow

class matplotlib.patches.Arrow(x, y, dx, dy, width=1.0, **kwargs)
Bases: matplotlib.patches.Patch

An arrow patch.

Draws an arrow from (x, y) to (x + dx, y + dy). The width of the arrow is scaled by width.

Parameters

x
[float] x coordinate of the arrow tail.

y
[float] y coordinate of the arrow tail.

dx
[float] Arrow length in the x direction.

dy
[float] Arrow length in the y direction.

width
[float, default: 1] Scale factor for the width of the arrow. With a default value of
1, the tail width is 0.2 and head width is 0.6.

**kwargs
Keyword arguments control the Patch properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}

continues on next page

18.36. matplotlib.patches 2335

Matplotlib, Release 3.4.3

Table 156 – continued from previous page
Property Description
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

See also:

FancyArrow

Patch that allows independent control of the head and tail properties.

__init__(x, y, dx, dy, width=1.0, **kwargs)
Draws an arrow from (x, y) to (x + dx, y + dy). The width of the arrow is scaled by width.

Parameters

x
[float] x coordinate of the arrow tail.

y
[float] y coordinate of the arrow tail.

dx
[float] Arrow length in the x direction.

dy
[float] Arrow length in the y direction.

width
[float, default: 1] Scale factor for the width of the arrow. With a default value of
1, the tail width is 0.2 and head width is 0.6.

**kwargs
Keyword arguments control the Patch properties:

2336 Chapter 18. Modules

Matplotlib, Release 3.4.3

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

See also:

FancyArrow

Patch that allows independent control of the head and tail properties.

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

get_patch_transform()
Return the Transform instance mapping patch coordinates to data coordinates.

For example, one may define a patch of a circle which represents a radius of 5 by providing
coordinates for a unit circle, and a transform which scales the coordinates (the patch coordinate)

18.36. matplotlib.patches 2337

Matplotlib, Release 3.4.3

by 5.

get_path()
Return the path of this patch.

Examples using matplotlib.patches.Arrow

• sphx_glr_gallery_shapes_and_collections_arrow_guide.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

matplotlib.patches.ArrowStyle

class matplotlib.patches.ArrowStyle(stylename, **kw)
Bases: matplotlib.patches._Style

ArrowStyle is a container class which defines several arrowstyle classes, which is used to create an
arrow path along a given path. These are mainly used with FancyArrowPatch.

A arrowstyle object can be either created as:

ArrowStyle.Fancy(head_length=.4, head_width=.4, tail_width=.4)

or:

ArrowStyle("Fancy", head_length=.4, head_width=.4, tail_width=.4)

or:

ArrowStyle("Fancy, head_length=.4, head_width=.4, tail_width=.4")

The following classes are defined

2338 Chapter 18. Modules

Matplotlib, Release 3.4.3

Class Name Attrs
Curve - None
CurveB -> head_length=0.4, head_width=0.2
BracketB -[widthB=1.0, lengthB=0.2, angleB=None
Curve-
FilledB

-|> head_length=0.4, head_width=0.2

CurveA <- head_length=0.4, head_width=0.2
CurveAB <-> head_length=0.4, head_width=0.2
Curve-
FilledA

<|- head_length=0.4, head_width=0.2

Curve-
FilledAB

<|-
|>

head_length=0.4, head_width=0.2

BracketA]- widthA=1.0, lengthA=0.2, angleA=None
BracketAB]-[widthA=1.0, lengthA=0.2, angleA=None, widthB=1.0,

lengthB=0.2, angleB=None
Fancy fancy head_length=0.4, head_width=0.4, tail_width=0.4
Simple sim-

ple
head_length=0.5, head_width=0.5, tail_width=0.2

Wedge wedge tail_width=0.3, shrink_factor=0.5
BarAB |-| widthA=1.0, angleA=None, widthB=1.0, angleB=None

An instance of any arrow style class is a callable object, whose call signature is:

__call__(self, path, mutation_size, linewidth, aspect_ratio=1.)

and it returns a tuple of a Path instance and a boolean value. path is a Path instance along which
the arrow will be drawn. mutation_size and aspect_ratio have the same meaning as in BoxStyle.
linewidth is a line width to be stroked. This is meant to be used to correct the location of the head so
that it does not overshoot the destination point, but not all classes support it.

Return the instance of the subclass with the given style name.

class BarAB(widthA=1.0, angleA=None, widthB=1.0, angleB=None)
Bases: matplotlib.patches.ArrowStyle._Bracket

An arrow with vertical bars | at both ends.

Parameters

widthA
[float, default: 1.0] Width of the bracket.

angleA
[float, default: None] Angle, in degrees, between the bracket and the line. Zero
is perpendicular to the line, and positive measures counterclockwise.

widthB
[float, default: 1.0] Width of the bracket.

18.36. matplotlib.patches 2339

Matplotlib, Release 3.4.3

angleB
[float, default: None] Angle, in degrees, between the bracket and the line. Zero
is perpendicular to the line, and positive measures counterclockwise.

__init__(widthA=1.0, angleA=None, widthB=1.0, angleB=None)
Parameters
widthA

[float, default: 1.0] Width of the bracket.
angleA

[float, default: None] Angle, in degrees, between the bracket and the line. Zero
is perpendicular to the line, and positive measures counterclockwise.

widthB
[float, default: 1.0] Width of the bracket.

angleB
[float, default: None] Angle, in degrees, between the bracket and the line. Zero
is perpendicular to the line, and positive measures counterclockwise.

__module__ = 'matplotlib.patches'

class BracketA(widthA=1.0, lengthA=0.2, angleA=None)
Bases: matplotlib.patches.ArrowStyle._Bracket

An arrow with an outward square bracket at its start.

Parameters

widthA
[float, default: 1.0] Width of the bracket.

lengthA
[float, default: 0.2] Length of the bracket.

angleA
[float, default: None] Angle between the bracket and the line.

__init__(widthA=1.0, lengthA=0.2, angleA=None)
Parameters
widthA

[float, default: 1.0] Width of the bracket.
lengthA

[float, default: 0.2] Length of the bracket.
angleA

[float, default: None] Angle between the bracket and the line.

__module__ = 'matplotlib.patches'

2340 Chapter 18. Modules

Matplotlib, Release 3.4.3

class BracketAB(widthA=1.0, lengthA=0.2, angleA=None, widthB=1.0, lengthB=0.2,
angleB=None)

Bases: matplotlib.patches.ArrowStyle._Bracket

An arrow with outward square brackets at both ends.

Parameters

widthA
[float, default: 1.0] Width of the bracket.

lengthA
[float, default: 0.2] Length of the bracket.

angleA
[float, default: None] Angle, in degrees, between the bracket and the line. Zero
is perpendicular to the line, and positive measures counterclockwise.

widthB
[float, default: 1.0] Width of the bracket.

lengthB
[float, default: 0.2] Length of the bracket.

angleB
[float, default: None] Angle, in degrees, between the bracket and the line. Zero
is perpendicular to the line, and positive measures counterclockwise.

__init__(widthA=1.0, lengthA=0.2, angleA=None, widthB=1.0, lengthB=0.2, an-
gleB=None)

Parameters
widthA

[float, default: 1.0] Width of the bracket.
lengthA

[float, default: 0.2] Length of the bracket.
angleA

[float, default: None] Angle, in degrees, between the bracket and the line. Zero
is perpendicular to the line, and positive measures counterclockwise.

widthB
[float, default: 1.0] Width of the bracket.

lengthB
[float, default: 0.2] Length of the bracket.

angleB
[float, default: None] Angle, in degrees, between the bracket and the line. Zero
is perpendicular to the line, and positive measures counterclockwise.

18.36. matplotlib.patches 2341

Matplotlib, Release 3.4.3

__module__ = 'matplotlib.patches'

class BracketB(widthB=1.0, lengthB=0.2, angleB=None)
Bases: matplotlib.patches.ArrowStyle._Bracket

An arrow with an outward square bracket at its end.

Parameters

widthB
[float, default: 1.0] Width of the bracket.

lengthB
[float, default: 0.2] Length of the bracket.

angleB
[float, default: None] Angle, in degrees, between the bracket and the line. Zero
is perpendicular to the line, and positive measures counterclockwise.

__init__(widthB=1.0, lengthB=0.2, angleB=None)
Parameters
widthB

[float, default: 1.0] Width of the bracket.
lengthB

[float, default: 0.2] Length of the bracket.
angleB

[float, default: None] Angle, in degrees, between the bracket and the line. Zero
is perpendicular to the line, and positive measures counterclockwise.

__module__ = 'matplotlib.patches'

class Curve
Bases: matplotlib.patches.ArrowStyle._Curve

A simple curve without any arrow head.

The arrows are drawn if beginarrow and/or endarrow are true. head_length and head_width
determines the size of the arrow relative to the mutation scale. The arrowhead at the begin (or
end) is closed if fillbegin (or fillend) is True.

__init__()
The arrows are drawn if beginarrow and/or endarrow are true. head_length and head_width
determines the size of the arrow relative to the mutation scale. The arrowhead at the begin
(or end) is closed if fillbegin (or fillend) is True.

__module__ = 'matplotlib.patches'

class CurveA(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches.ArrowStyle._Curve

An arrow with a head at its begin point.

2342 Chapter 18. Modules

Matplotlib, Release 3.4.3

Parameters

head_length
[float, default: 0.4] Length of the arrow head.

head_width
[float, default: 0.2] Width of the arrow head.

__init__(head_length=0.4, head_width=0.2)
Parameters
head_length

[float, default: 0.4] Length of the arrow head.
head_width

[float, default: 0.2] Width of the arrow head.

__module__ = 'matplotlib.patches'

class CurveAB(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches.ArrowStyle._Curve

An arrow with heads both at the begin and the end point.

Parameters

head_length
[float, default: 0.4] Length of the arrow head.

head_width
[float, default: 0.2] Width of the arrow head.

__init__(head_length=0.4, head_width=0.2)
Parameters
head_length

[float, default: 0.4] Length of the arrow head.
head_width

[float, default: 0.2] Width of the arrow head.

__module__ = 'matplotlib.patches'

class CurveB(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches.ArrowStyle._Curve

An arrow with a head at its end point.

Parameters

18.36. matplotlib.patches 2343

Matplotlib, Release 3.4.3

head_length
[float, default: 0.4] Length of the arrow head.

head_width
[float, default: 0.2] Width of the arrow head.

__init__(head_length=0.4, head_width=0.2)
Parameters
head_length

[float, default: 0.4] Length of the arrow head.
head_width

[float, default: 0.2] Width of the arrow head.

__module__ = 'matplotlib.patches'

class CurveFilledA(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches.ArrowStyle._Curve

An arrow with filled triangle head at the begin.

Parameters

head_length
[float, default: 0.4] Length of the arrow head.

head_width
[float, default: 0.2] Width of the arrow head.

__init__(head_length=0.4, head_width=0.2)
Parameters
head_length

[float, default: 0.4] Length of the arrow head.
head_width

[float, default: 0.2] Width of the arrow head.

__module__ = 'matplotlib.patches'

class CurveFilledAB(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches.ArrowStyle._Curve

An arrow with filled triangle heads at both ends.

Parameters

head_length
[float, default: 0.4] Length of the arrow head.

2344 Chapter 18. Modules

Matplotlib, Release 3.4.3

head_width
[float, default: 0.2] Width of the arrow head.

__init__(head_length=0.4, head_width=0.2)
Parameters
head_length

[float, default: 0.4] Length of the arrow head.
head_width

[float, default: 0.2] Width of the arrow head.

__module__ = 'matplotlib.patches'

class CurveFilledB(head_length=0.4, head_width=0.2)
Bases: matplotlib.patches.ArrowStyle._Curve

An arrow with filled triangle head at the end.

Parameters

head_length
[float, default: 0.4] Length of the arrow head.

head_width
[float, default: 0.2] Width of the arrow head.

__init__(head_length=0.4, head_width=0.2)
Parameters
head_length

[float, default: 0.4] Length of the arrow head.
head_width

[float, default: 0.2] Width of the arrow head.

__module__ = 'matplotlib.patches'

class Fancy(head_length=0.4, head_width=0.4, tail_width=0.4)
Bases: matplotlib.patches.ArrowStyle._Base

A fancy arrow. Only works with a quadratic Bezier curve.

Parameters

head_length
[float, default: 0.4] Length of the arrow head.

head_width
[float, default: 0.4] Width of the arrow head.

18.36. matplotlib.patches 2345

Matplotlib, Release 3.4.3

tail_width
[float, default: 0.4] Width of the arrow tail.

__init__(head_length=0.4, head_width=0.4, tail_width=0.4)
Parameters
head_length

[float, default: 0.4] Length of the arrow head.
head_width

[float, default: 0.4] Width of the arrow head.
tail_width

[float, default: 0.4] Width of the arrow tail.

__module__ = 'matplotlib.patches'

transmute(path, mutation_size, linewidth)
The transmute method is the very core of the ArrowStyle class and must be overridden in
the subclasses. It receives the path object along which the arrow will be drawn, and the
mutation_size, with which the arrow head etc. will be scaled. The linewidth may be used to
adjust the path so that it does not pass beyond the given points. It returns a tuple of a Path
instance and a boolean. The boolean value indicate whether the path can be filled or not.
The return value can also be a list of paths and list of booleans of a same length.

class Simple(head_length=0.5, head_width=0.5, tail_width=0.2)
Bases: matplotlib.patches.ArrowStyle._Base

A simple arrow. Only works with a quadratic Bezier curve.

Parameters

head_length
[float, default: 0.5] Length of the arrow head.

head_width
[float, default: 0.5] Width of the arrow head.

tail_width
[float, default: 0.2] Width of the arrow tail.

__init__(head_length=0.5, head_width=0.5, tail_width=0.2)
Parameters
head_length

[float, default: 0.5] Length of the arrow head.
head_width

[float, default: 0.5] Width of the arrow head.

2346 Chapter 18. Modules

Matplotlib, Release 3.4.3

tail_width
[float, default: 0.2] Width of the arrow tail.

__module__ = 'matplotlib.patches'

transmute(path, mutation_size, linewidth)
The transmute method is the very core of the ArrowStyle class and must be overridden in
the subclasses. It receives the path object along which the arrow will be drawn, and the
mutation_size, with which the arrow head etc. will be scaled. The linewidth may be used to
adjust the path so that it does not pass beyond the given points. It returns a tuple of a Path
instance and a boolean. The boolean value indicate whether the path can be filled or not.
The return value can also be a list of paths and list of booleans of a same length.

class Wedge(tail_width=0.3, shrink_factor=0.5)
Bases: matplotlib.patches.ArrowStyle._Base

Wedge(?) shape. Only works with a quadratic Bezier curve. The begin point has a
width of the tail_width and the end point has a width of 0. At the middle, the width is
shrink_factor*tail_width.

Parameters

tail_width
[float, default: 0.3] Width of the tail.

shrink_factor
[float, default: 0.5] Fraction of the arrow width at the middle point.

__init__(tail_width=0.3, shrink_factor=0.5)
Parameters
tail_width

[float, default: 0.3] Width of the tail.
shrink_factor

[float, default: 0.5] Fraction of the arrow width at the middle point.

__module__ = 'matplotlib.patches'

transmute(path, mutation_size, linewidth)
The transmute method is the very core of the ArrowStyle class and must be overridden in
the subclasses. It receives the path object along which the arrow will be drawn, and the
mutation_size, with which the arrow head etc. will be scaled. The linewidth may be used to
adjust the path so that it does not pass beyond the given points. It returns a tuple of a Path
instance and a boolean. The boolean value indicate whether the path can be filled or not.
The return value can also be a list of paths and list of booleans of a same length.

__module__ = 'matplotlib.patches'

18.36. matplotlib.patches 2347

Matplotlib, Release 3.4.3

Examples using matplotlib.patches.ArrowStyle

matplotlib.patches.BoxStyle

class matplotlib.patches.BoxStyle(stylename, **kw)
Bases: matplotlib.patches._Style

BoxStyle is a container class which defines several boxstyle classes, which are used for FancyB-
boxPatch.

A style object can be created as:

BoxStyle.Round(pad=0.2)

or:

BoxStyle("Round", pad=0.2)

or:

BoxStyle("Round, pad=0.2")

The following boxstyle classes are defined.

Class Name Attrs
Circle circle pad=0.3
DArrow darrow pad=0.3
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3, rounding_size=None
Round4 round4 pad=0.3, rounding_size=None
Roundtooth roundtooth pad=0.3, tooth_size=None
Sawtooth sawtooth pad=0.3, tooth_size=None
Square square pad=0.3

An instance of any boxstyle class is an callable object, whose call signature is:

__call__(self, x0, y0, width, height, mutation_size)

and returns a Path instance. x0, y0, width and height specify the location and size of the box to be
drawn. mutation_scale determines the overall size of the mutation (by which I mean the transformation
of the rectangle to the fancy box).

Return the instance of the subclass with the given style name.

class Circle(pad=0.3)
Bases: matplotlib.patches.BoxStyle._Base

A circular box.

Parameters

2348 Chapter 18. Modules

Matplotlib, Release 3.4.3

pad
[float, default: 0.3] The amount of padding around the original box.

__call__(x0, y0, width, height, mutation_size, mutation_aspect=<deprecated parame-
ter>)

Given the location and size of the box, return the path of the box around it.
Parameters
x0, y0, width, height

[float] Location and size of the box.
mutation_size

[float] A reference scale for the mutation.
Returns
Path

__init__(pad=0.3)
Parameters
pad

[float, default: 0.3] The amount of padding around the original box.

__module__ = 'matplotlib.patches'

class DArrow(pad=0.3)
Bases: matplotlib.patches.BoxStyle._Base

A box in the shape of a two-way arrow.

Parameters

pad
[float, default: 0.3] The amount of padding around the original box.

__call__(x0, y0, width, height, mutation_size, mutation_aspect=<deprecated parame-
ter>)

Given the location and size of the box, return the path of the box around it.
Parameters
x0, y0, width, height

[float] Location and size of the box.
mutation_size

[float] A reference scale for the mutation.
Returns
Path

__init__(pad=0.3)
Parameters

18.36. matplotlib.patches 2349

Matplotlib, Release 3.4.3

pad
[float, default: 0.3] The amount of padding around the original box.

__module__ = 'matplotlib.patches'

class LArrow(pad=0.3)
Bases: matplotlib.patches.BoxStyle._Base

A box in the shape of a left-pointing arrow.

Parameters

pad
[float, default: 0.3] The amount of padding around the original box.

__call__(x0, y0, width, height, mutation_size, mutation_aspect=<deprecated parame-
ter>)

Given the location and size of the box, return the path of the box around it.
Parameters
x0, y0, width, height

[float] Location and size of the box.
mutation_size

[float] A reference scale for the mutation.
Returns
Path

__init__(pad=0.3)
Parameters
pad

[float, default: 0.3] The amount of padding around the original box.

__module__ = 'matplotlib.patches'

class RArrow(pad=0.3)
Bases: matplotlib.patches.BoxStyle.LArrow

A box in the shape of a right-pointing arrow.

Parameters

pad
[float, default: 0.3] The amount of padding around the original box.

__call__(x0, y0, width, height, mutation_size, mutation_aspect=<deprecated parame-
ter>)

Given the location and size of the box, return the path of the box around it.
Parameters

2350 Chapter 18. Modules

Matplotlib, Release 3.4.3

x0, y0, width, height
[float] Location and size of the box.

mutation_size
[float] A reference scale for the mutation.

Returns
Path

__module__ = 'matplotlib.patches'

class Round(pad=0.3, rounding_size=None)
Bases: matplotlib.patches.BoxStyle._Base

A box with round corners.

Parameters

pad
[float, default: 0.3] The amount of padding around the original box.

rounding_size
[float, default: pad] Radius of the corners.

__call__(x0, y0, width, height, mutation_size, mutation_aspect=<deprecated parame-
ter>)

Given the location and size of the box, return the path of the box around it.
Parameters
x0, y0, width, height

[float] Location and size of the box.
mutation_size

[float] A reference scale for the mutation.
Returns
Path

__init__(pad=0.3, rounding_size=None)
Parameters
pad

[float, default: 0.3] The amount of padding around the original box.
rounding_size

[float, default: pad] Radius of the corners.

__module__ = 'matplotlib.patches'

class Round4(pad=0.3, rounding_size=None)
Bases: matplotlib.patches.BoxStyle._Base

A box with rounded edges.

18.36. matplotlib.patches 2351

Matplotlib, Release 3.4.3

Parameters

pad
[float, default: 0.3] The amount of padding around the original box.

rounding_size
[float, default: pad/2] Rounding of edges.

__call__(x0, y0, width, height, mutation_size, mutation_aspect=<deprecated parame-
ter>)

Given the location and size of the box, return the path of the box around it.
Parameters
x0, y0, width, height

[float] Location and size of the box.
mutation_size

[float] A reference scale for the mutation.
Returns
Path

__init__(pad=0.3, rounding_size=None)
Parameters
pad

[float, default: 0.3] The amount of padding around the original box.
rounding_size

[float, default: pad/2] Rounding of edges.

__module__ = 'matplotlib.patches'

class Roundtooth(pad=0.3, tooth_size=None)
Bases: matplotlib.patches.BoxStyle.Sawtooth

A box with a rounded sawtooth outline.

Parameters

pad
[float, default: 0.3] The amount of padding around the original box.

tooth_size
[float, default: pad/2] Size of the sawtooth.

__call__(x0, y0, width, height, mutation_size, mutation_aspect=<deprecated parame-
ter>)

Given the location and size of the box, return the path of the box around it.
Parameters

2352 Chapter 18. Modules

Matplotlib, Release 3.4.3

x0, y0, width, height
[float] Location and size of the box.

mutation_size
[float] A reference scale for the mutation.

Returns
Path

__module__ = 'matplotlib.patches'

class Sawtooth(pad=0.3, tooth_size=None)
Bases: matplotlib.patches.BoxStyle._Base

A box with a sawtooth outline.

Parameters

pad
[float, default: 0.3] The amount of padding around the original box.

tooth_size
[float, default: pad/2] Size of the sawtooth.

__call__(x0, y0, width, height, mutation_size, mutation_aspect=<deprecated parame-
ter>)

Given the location and size of the box, return the path of the box around it.
Parameters
x0, y0, width, height

[float] Location and size of the box.
mutation_size

[float] A reference scale for the mutation.
Returns
Path

__init__(pad=0.3, tooth_size=None)
Parameters
pad

[float, default: 0.3] The amount of padding around the original box.
tooth_size

[float, default: pad/2] Size of the sawtooth.

__module__ = 'matplotlib.patches'

class Square(pad=0.3)
Bases: matplotlib.patches.BoxStyle._Base

A square box.

18.36. matplotlib.patches 2353

Matplotlib, Release 3.4.3

Parameters

pad
[float, default: 0.3] The amount of padding around the original box.

__call__(x0, y0, width, height, mutation_size, mutation_aspect=<deprecated parame-
ter>)

Given the location and size of the box, return the path of the box around it.
Parameters
x0, y0, width, height

[float] Location and size of the box.
mutation_size

[float] A reference scale for the mutation.
Returns
Path

__init__(pad=0.3)
Parameters
pad

[float, default: 0.3] The amount of padding around the original box.

__module__ = 'matplotlib.patches'

__module__ = 'matplotlib.patches'

Examples using matplotlib.patches.BoxStyle

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

matplotlib.patches.Circle

class matplotlib.patches.Circle(xy, radius=5, **kwargs)
Bases: matplotlib.patches.Ellipse

A circle patch.

Create a true circle at center xy = (x, y) with given radius.

Unlike CirclePolygon which is a polygonal approximation, this uses Bezier splines and is much
closer to a scale-free circle.

Valid keyword arguments are:

2354 Chapter 18. Modules

Matplotlib, Release 3.4.3

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(xy, radius=5, **kwargs)
Create a true circle at center xy = (x, y) with given radius.

Unlike CirclePolygon which is a polygonal approximation, this uses Bezier splines and is
much closer to a scale-free circle.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown

continues on next page

18.36. matplotlib.patches 2355

Matplotlib, Release 3.4.3

Table 159 – continued from previous page
Property Description
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

get_radius()
Return the radius of the circle.

property radius
Return the radius of the circle.

set_radius(radius)
Set the radius of the circle.

Parameters

radius
[float]

2356 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.patches.Circle

• sphx_glr_gallery_images_contours_and_fields_image_clip_path.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_box_aspect.py

• sphx_glr_gallery_text_labels_and_annotations_demo_annotation_box.py

• sphx_glr_gallery_text_labels_and_annotations_fancyarrow_demo.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_shapes_and_collections_dolphin.py

• sphx_glr_gallery_shapes_and_collections_patch_collection.py

• sphx_glr_gallery_style_sheets_ggplot.py

• sphx_glr_gallery_style_sheets_grayscale.py

• sphx_glr_gallery_style_sheets_style_sheets_reference.py

• sphx_glr_gallery_axes_grid1_simple_anchored_artists.py

• sphx_glr_gallery_showcase_anatomy.py

• sphx_glr_gallery_event_handling_looking_glass.py

• sphx_glr_gallery_misc_anchored_artists.py

• sphx_glr_gallery_misc_custom_projection.py

• sphx_glr_gallery_misc_packed_bubbles.py

• sphx_glr_gallery_mplot3d_pathpatch3d.py

• sphx_glr_gallery_specialty_plots_radar_chart.py

• sphx_glr_gallery_userdemo_anchored_box02.py

• Artist tutorial

• Legend guide

• Transformations Tutorial

matplotlib.patches.CirclePolygon

class matplotlib.patches.CirclePolygon(xy, radius=5, resolution=20, **kwargs)
Bases: matplotlib.patches.RegularPolygon

A polygon-approximation of a circle patch.

Create a circle at xy = (x, y) with given radius.

This circle is approximated by a regular polygon with resolution sides. For a smoother circle drawn
with splines, see Circle.

Valid keyword arguments are:

18.36. matplotlib.patches 2357

Matplotlib, Release 3.4.3

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(xy, radius=5, resolution=20, **kwargs)
Create a circle at xy = (x, y) with given radius.

This circle is approximated by a regular polygon with resolution sides. For a smoother circle
drawn with splines, see Circle.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool

continues on next page

2358 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 161 – continued from previous page
Property Description
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

18.36. matplotlib.patches 2359

Matplotlib, Release 3.4.3

Examples using matplotlib.patches.CirclePolygon

matplotlib.patches.ConnectionPatch

class matplotlib.patches.ConnectionPatch(xyA, xyB, coordsA, coordsB=None,
axesA=None, axesB=None,
arrowstyle='-', connectionstyle='arc3',
patchA=None, patchB=None,
shrinkA=0.0, shrinkB=0.0,
mutation_scale=10.0, muta-
tion_aspect=None, clip_on=False,
dpi_cor=<deprecated parameter>,
**kwargs)

Bases: matplotlib.patches.FancyArrowPatch

A patch that connects two points (possibly in different axes).

Connect point xyA in coordsA with point xyB in coordsB.

Valid keys are

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

coordsA and coordsB are strings that indicate the coordinates of xyA and xyB.

2360 Chapter 18. Modules

Matplotlib, Release 3.4.3

Prop-
erty

Description

'figure
points'

points from the lower left corner of the figure

'figure
pixels'

pixels from the lower left corner of the figure

'figure
frac-
tion'

0, 0 is lower left of figure and 1, 1 is upper right

'sub-
figure
points'

points from the lower left corner of the subfigure

'sub-
figure
pixels'

pixels from the lower left corner of the subfigure

'sub-
figure
frac-
tion'

fraction of the subfigure, 0, 0 is lower left.

'axes
points'

points from lower left corner of axes

'axes
pixels'

pixels from lower left corner of axes

'axes
frac-
tion'

0, 0 is lower left of axes and 1, 1 is upper right

'data' use the coordinate system of the object being annotated (default)
'offset
points'

offset (in points) from the xy value

'polar' you can specify theta, r for the annotation, even in cartesian plots. Note that if you are
using a polar axes, you do not need to specify polar for the coordinate system since that
is the native "data" coordinate system.

Alternatively they can be set to any valid Transform.

Note that 'subfigure pixels' and 'figure pixels' are the same for the parent figure, so users who want
code that is usable in a subfigure can use 'subfigure pixels'.

Note: Using ConnectionPatch across two Axes instances is not directly compatible with con-
strained layout. Add the artist directly to the Figure instead of adding it to a specific Axes, or exclude
it from the layout using con.set_in_layout(False).

fig, ax = plt.subplots(1, 2, constrained_layout=True)
con = ConnectionPatch(..., axesA=ax[0], axesB=ax[1])
fig.add_artist(con)

18.36. matplotlib.patches 2361

Matplotlib, Release 3.4.3

__init__(xyA, xyB, coordsA, coordsB=None, axesA=None, axesB=None, arrowstyle='-
', connectionstyle='arc3', patchA=None, patchB=None, shrinkA=0.0,
shrinkB=0.0, mutation_scale=10.0, mutation_aspect=None, clip_on=False,
dpi_cor=<deprecated parameter>, **kwargs)

Connect point xyA in coordsA with point xyB in coordsB.

Valid keys are

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

coordsA and coordsB are strings that indicate the coordinates of xyA and xyB.

2362 Chapter 18. Modules

Matplotlib, Release 3.4.3

Prop-
erty

Description

'figure
points'

points from the lower left corner of the figure

'figure
pixels'

pixels from the lower left corner of the figure

'figure
frac-
tion'

0, 0 is lower left of figure and 1, 1 is upper right

'sub-
figure
points'

points from the lower left corner of the subfigure

'sub-
figure
pixels'

pixels from the lower left corner of the subfigure

'sub-
figure
frac-
tion'

fraction of the subfigure, 0, 0 is lower left.

'axes
points'

points from lower left corner of axes

'axes
pixels'

pixels from lower left corner of axes

'axes
frac-
tion'

0, 0 is lower left of axes and 1, 1 is upper right

'data' use the coordinate system of the object being annotated (default)
'offset
points'

offset (in points) from the xy value

'polar' you can specify theta, r for the annotation, even in cartesian plots. Note that if you
are using a polar axes, you do not need to specify polar for the coordinate system
since that is the native "data" coordinate system.

Alternatively they can be set to any valid Transform.

Note that 'subfigure pixels' and 'figure pixels' are the same for the parent figure, so users who
want code that is usable in a subfigure can use 'subfigure pixels'.

Note: Using ConnectionPatch across two Axes instances is not directly compatible with
constrained layout. Add the artist directly to the Figure instead of adding it to a specific Axes,
or exclude it from the layout using con.set_in_layout(False).

fig, ax = plt.subplots(1, 2, constrained_layout=True)
con = ConnectionPatch(..., axesA=ax[0], axesB=ax[1])
fig.add_artist(con)

18.36. matplotlib.patches 2363

Matplotlib, Release 3.4.3

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

get_annotation_clip()
Return the clipping behavior.

See set_annotation_clip for the meaning of the return value.

get_path_in_displaycoord()
Return the mutated path of the arrow in display coordinates.

set_annotation_clip(b)
Set the clipping behavior.

Parameters

b
[bool or None]

• False: The annotation will always be drawn regardless of its position.

• True: The annotation will only be drawn if self.xy is inside the axes.

• None: The annotation will only be drawn if self.xy is inside the axes and
self.xycoords == "data".

Examples using matplotlib.patches.ConnectionPatch

• sphx_glr_gallery_pie_and_polar_charts_bar_of_pie.py

• sphx_glr_gallery_userdemo_connect_simple01.py

• Constrained Layout Guide

2364 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.patches.ConnectionStyle

class matplotlib.patches.ConnectionStyle(stylename, **kw)
Bases: matplotlib.patches._Style

ConnectionStyle is a container class which defines several connectionstyle classes, which is used
to create a path between two points. These are mainly used with FancyArrowPatch.

A connectionstyle object can be either created as:

ConnectionStyle.Arc3(rad=0.2)

or:

ConnectionStyle("Arc3", rad=0.2)

or:

ConnectionStyle("Arc3, rad=0.2")

The following classes are defined

Class Name Attrs
Angle angle angleA=90, angleB=0, rad=0.0
Angle3 angle3 angleA=90, angleB=0
Arc arc angleA=0, angleB=0, armA=None, armB=None, rad=0.0
Arc3 arc3 rad=0.0
Bar bar armA=0.0, armB=0.0, fraction=0.3, angle=None

An instance of any connection style class is an callable object, whose call signature is:

__call__(self, posA, posB,
patchA=None, patchB=None,
shrinkA=2., shrinkB=2.)

and it returns a Path instance. posA and posB are tuples of (x, y) coordinates of the two points to be
connected. patchA (or patchB) is given, the returned path is clipped so that it start (or end) from the
boundary of the patch. The path is further shrunk by shrinkA (or shrinkB) which is given in points.

Return the instance of the subclass with the given style name.

class Angle(angleA=90, angleB=0, rad=0.0)
Bases: matplotlib.patches.ConnectionStyle._Base

Creates a piecewise continuous quadratic Bezier path between two points. The path has a one
passing-through point placed at the intersecting point of two lines which cross the start and end
point, and have a slope of angleA and angleB, respectively. The connecting edges are rounded
with rad.

angleA

starting angle of the path

18.36. matplotlib.patches 2365

Matplotlib, Release 3.4.3

angleB

ending angle of the path

rad

rounding radius of the edge

__init__(angleA=90, angleB=0, rad=0.0)
angleA

starting angle of the path
angleB

ending angle of the path
rad

rounding radius of the edge

__module__ = 'matplotlib.patches'

connect(posA, posB)

class Angle3(angleA=90, angleB=0)
Bases: matplotlib.patches.ConnectionStyle._Base

Creates a simple quadratic Bezier curve between two points. The middle control points is placed
at the intersecting point of two lines which cross the start and end point, and have a slope of
angleA and angleB, respectively.

angleA

starting angle of the path

angleB

ending angle of the path

__init__(angleA=90, angleB=0)
angleA

starting angle of the path
angleB

ending angle of the path

__module__ = 'matplotlib.patches'

connect(posA, posB)

class Arc(angleA=0, angleB=0, armA=None, armB=None, rad=0.0)
Bases: matplotlib.patches.ConnectionStyle._Base

Creates a piecewise continuous quadratic Bezier path between two points. The path can have two
passing-through points, a point placed at the distance of armA and angle of angleA from point
A, another point with respect to point B. The edges are rounded with rad.

angleA :
starting angle of the path

2366 Chapter 18. Modules

Matplotlib, Release 3.4.3

angleB :
ending angle of the path

armA :
length of the starting arm

armB :
length of the ending arm

rad :
rounding radius of the edges

__init__(angleA=0, angleB=0, armA=None, armB=None, rad=0.0)
angleA :

starting angle of the path
angleB :

ending angle of the path
armA :

length of the starting arm
armB :

length of the ending arm
rad :

rounding radius of the edges

__module__ = 'matplotlib.patches'

connect(posA, posB)

class Arc3(rad=0.0)
Bases: matplotlib.patches.ConnectionStyle._Base

Creates a simple quadratic Bezier curve between two points. The curve is created so that the
middle control point (C1) is located at the same distance from the start (C0) and end points(C2)
and the distance of the C1 to the line connecting C0-C2 is rad times the distance of C0-C2.

rad

curvature of the curve.

__init__(rad=0.0)
rad

curvature of the curve.

__module__ = 'matplotlib.patches'

connect(posA, posB)

class Bar(armA=0.0, armB=0.0, fraction=0.3, angle=None)
Bases: matplotlib.patches.ConnectionStyle._Base

18.36. matplotlib.patches 2367

Matplotlib, Release 3.4.3

A line with angle between A and B with armA and armB. One of the arms is extended so that
they are connected in a right angle. The length of armA is determined by (armA + fraction x AB
distance). Same for armB.

Parameters

armA
[float] minimum length of armA

armB
[float] minimum length of armB

fraction
[float] a fraction of the distance between two points that will be added to armA
and armB.

angle
[float or None] angle of the connecting line (if None, parallel to A and B)

__init__(armA=0.0, armB=0.0, fraction=0.3, angle=None)
Parameters
armA

[float] minimum length of armA
armB

[float] minimum length of armB
fraction

[float] a fraction of the distance between two points that will be added to armA
and armB.

angle
[float or None] angle of the connecting line (if None, parallel to A and B)

__module__ = 'matplotlib.patches'

connect(posA, posB)

__module__ = 'matplotlib.patches'

Examples using matplotlib.patches.ConnectionStyle

matplotlib.patches.Ellipse

class matplotlib.patches.Ellipse(xy, width, height, angle=0, **kwargs)
Bases: matplotlib.patches.Patch

A scale-free ellipse.

Parameters

2368 Chapter 18. Modules

Matplotlib, Release 3.4.3

xy
[(float, float)] xy coordinates of ellipse centre.

width
[float] Total length (diameter) of horizontal axis.

height
[float] Total length (diameter) of vertical axis.

angle
[float, default: 0] Rotation in degrees anti-clockwise.

Notes

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

continues on next page

18.36. matplotlib.patches 2369

Matplotlib, Release 3.4.3

Table 162 – continued from previous page
Property Description
url str
visible bool
zorder float

__init__(xy, width, height, angle=0, **kwargs)

Parameters

xy
[(float, float)] xy coordinates of ellipse centre.

width
[float] Total length (diameter) of horizontal axis.

height
[float] Total length (diameter) of vertical axis.

angle
[float, default: 0] Rotation in degrees anti-clockwise.

Notes

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}

continues on next page

2370 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 163 – continued from previous page
Property Description
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

property angle
Return the angle of the ellipse.

property center
Return the center of the ellipse.

get_angle()
Return the angle of the ellipse.

get_center()
Return the center of the ellipse.

get_height()
Return the height of the ellipse.

get_patch_transform()
Return the Transform instance mapping patch coordinates to data coordinates.

For example, one may define a patch of a circle which represents a radius of 5 by providing
coordinates for a unit circle, and a transform which scales the coordinates (the patch coordinate)
by 5.

get_path()
Return the path of the ellipse.

get_width()
Return the width of the ellipse.

18.36. matplotlib.patches 2371

Matplotlib, Release 3.4.3

property height
Return the height of the ellipse.

set_angle(angle)
Set the angle of the ellipse.

Parameters

angle
[float]

set_center(xy)
Set the center of the ellipse.

Parameters

xy
[(float, float)]

set_height(height)
Set the height of the ellipse.

Parameters

height
[float]

set_width(width)
Set the width of the ellipse.

Parameters

width
[float]

property width
Return the width of the ellipse.

Examples using matplotlib.patches.Ellipse

• sphx_glr_gallery_images_contours_and_fields_image_clip_path.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_box_aspect.py

• sphx_glr_gallery_statistics_confidence_ellipse.py

• sphx_glr_gallery_text_labels_and_annotations_angle_annotation.py

• sphx_glr_gallery_text_labels_and_annotations_annotation_demo.py

2372 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_text_labels_and_annotations_demo_annotation_box.py

• sphx_glr_gallery_text_labels_and_annotations_fancyarrow_demo.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_shapes_and_collections_dolphin.py

• sphx_glr_gallery_shapes_and_collections_ellipse_demo.py

• sphx_glr_gallery_shapes_and_collections_hatch_demo.py

• sphx_glr_gallery_shapes_and_collections_patch_collection.py

• sphx_glr_gallery_style_sheets_ggplot.py

• sphx_glr_gallery_style_sheets_grayscale.py

• sphx_glr_gallery_style_sheets_style_sheets_reference.py

• sphx_glr_gallery_event_handling_looking_glass.py

• sphx_glr_gallery_misc_anchored_artists.py

• sphx_glr_gallery_misc_custom_projection.py

• sphx_glr_gallery_misc_packed_bubbles.py

• sphx_glr_gallery_mplot3d_pathpatch3d.py

• sphx_glr_gallery_specialty_plots_radar_chart.py

• sphx_glr_gallery_units_ellipse_with_units.py

• sphx_glr_gallery_userdemo_anchored_box02.py

• sphx_glr_gallery_userdemo_anchored_box03.py

• sphx_glr_gallery_userdemo_anchored_box04.py

• sphx_glr_gallery_userdemo_annotate_explain.py

• sphx_glr_gallery_userdemo_simple_annotate01.py

• Legend guide

• Transformations Tutorial

matplotlib.patches.FancyArrow

class matplotlib.patches.FancyArrow(x, y, dx, dy, width=0.001,
length_includes_head=False,
head_width=None, head_length=None,
shape='full', overhang=0,
head_starts_at_zero=False, **kwargs)

Bases: matplotlib.patches.Polygon

Like Arrow, but lets you set head width and head height independently.

Parameters

18.36. matplotlib.patches 2373

Matplotlib, Release 3.4.3

width
[float, default: 0.001] Width of full arrow tail.

length_includes_head
[bool, default: False] True if head is to be counted in calculating the length.

head_width
[float or None, default: 3*width] Total width of the full arrow head.

head_length
[float or None, default: 1.5*head_width] Length of arrow head.

shape
[{'full', 'left', 'right'}, default: 'full'] Draw the left-half, right-half, or full arrow.

overhang
[float, default: 0] Fraction that the arrow is swept back (0 overhang means trian-
gular shape). Can be negative or greater than one.

head_starts_at_zero
[bool, default: False] If True, the head starts being drawn at coordinate 0 instead
of ending at coordinate 0.

**kwargs
Patch properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}

continues on next page

2374 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 164 – continued from previous page
Property Description
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(x, y, dx, dy, width=0.001, length_includes_head=False, head_width=None,
head_length=None, shape='full', overhang=0, head_starts_at_zero=False,
**kwargs)

Parameters

width
[float, default: 0.001] Width of full arrow tail.

length_includes_head
[bool, default: False] True if head is to be counted in calculating the length.

head_width
[float or None, default: 3*width] Total width of the full arrow head.

head_length
[float or None, default: 1.5*head_width] Length of arrow head.

shape
[{'full', 'left', 'right'}, default: 'full'] Draw the left-half, right-half, or full arrow.

overhang
[float, default: 0] Fraction that the arrow is swept back (0 overhang means trian-
gular shape). Can be negative or greater than one.

head_starts_at_zero
[bool, default: False] If True, the head starts being drawn at coordinate 0 instead
of ending at coordinate 0.

**kwargs
Patch properties:

18.36. matplotlib.patches 2375

Matplotlib, Release 3.4.3

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

2376 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.patches.FancyArrow

matplotlib.patches.FancyArrowPatch

class matplotlib.patches.FancyArrowPatch(posA=None, posB=None, path=None,
arrowstyle='simple', connec-
tionstyle='arc3', patchA=None,
patchB=None, shrinkA=2, shrinkB=2,
mutation_scale=1, mutation_aspect=1,
dpi_cor=<deprecated parameter>,
**kwargs)

Bases: matplotlib.patches.Patch

A fancy arrow patch. It draws an arrow using the ArrowStyle.

The head and tail positions are fixed at the specified start and end points of the arrow, but the size and
shape (in display coordinates) of the arrow does not change when the axis is moved or zoomed.

There are two ways for defining an arrow:

• If posA and posB are given, a path connecting two points is created according to connectionstyle.
The path will be clipped with patchA and patchB and further shrunken by shrinkA and shrinkB.
An arrow is drawn along this resulting path using the arrowstyle parameter.

• Alternatively if path is provided, an arrow is drawn along this path and patchA, patchB, shrinkA,
and shrinkB are ignored.

Parameters

posA, posB
[(float, float), default: None] (x, y) coordinates of arrow tail and arrow head re-
spectively.

path
[Path, default: None] If provided, an arrow is drawn along this path and patchA,
patchB, shrinkA, and shrinkB are ignored.

arrowstyle
[str or ArrowStyle, default: 'simple']

The ArrowStylewith which the fancy arrow is drawn. If a string, it should
be one of the available arrowstyle names, with optional comma-separated
attributes. The optional attributes are meant to be scaled with the muta-
tion_scale. The following arrow styles are available:

18.36. matplotlib.patches 2377

Matplotlib, Release 3.4.3

Class Name Attrs
Curve - None
CurveB -> head_length=0.4, head_width=0.2
BracketB -[widthB=1.0, lengthB=0.2, angleB=None
Curve-
FilledB

-|> head_length=0.4, head_width=0.2

CurveA <- head_length=0.4, head_width=0.2
CurveAB <-> head_length=0.4, head_width=0.2
Curve-
FilledA

<|- head_length=0.4, head_width=0.2

Curve-
FilledAB

<|-
|>

head_length=0.4, head_width=0.2

BracketA]- widthA=1.0, lengthA=0.2, angleA=None
Brack-
etAB

]-[widthA=1.0, lengthA=0.2, angleA=None, widthB=1.0,
lengthB=0.2, angleB=None

Fancy fancy head_length=0.4, head_width=0.4, tail_width=0.4
Simple sim-

ple
head_length=0.5, head_width=0.5, tail_width=0.2

Wedge wedge tail_width=0.3, shrink_factor=0.5
BarAB |-| widthA=1.0, angleA=None, widthB=1.0, an-

gleB=None

connectionstyle
[str or ConnectionStyle or None, optional, default: 'arc3']

The ConnectionStyle with which posA and posB are connected. If a
string, it should be one of the available connectionstyle names, with optional
comma-separated attributes. The following connection styles are available:

Class Name Attrs
Angle angle angleA=90, angleB=0, rad=0.0
An-
gle3

an-
gle3

angleA=90, angleB=0

Arc arc angleA=0, angleB=0, armA=None, armB=None,
rad=0.0

Arc3 arc3 rad=0.0
Bar bar armA=0.0, armB=0.0, fraction=0.3, angle=None

patchA, patchB
[Patch, default: None] Head and tail patches, respectively.

shrinkA, shrinkB
[float, default: 2] Shrinking factor of the tail and head of the arrow respectively.

mutation_scale

2378 Chapter 18. Modules

Matplotlib, Release 3.4.3

[float, default: 1] Value with which attributes of arrowstyle (e.g., head_length)
will be scaled.

mutation_aspect
[None or float, default: None] The height of the rectangle will be squeezed by this
value before the mutation and the mutated box will be stretched by the inverse of
it.

dpi_cor
[float, default: 1] dpi_cor is currently used for linewidth-related things and shrink
factor. Mutation scale is affected by this. Deprecated.

Other Parameters

**kwargs
[Patch properties, optional] Here is a list of available Patch properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

continues on next page

18.36. matplotlib.patches 2379

Matplotlib, Release 3.4.3

Table 166 – continued from previous page
Property Description
url str
visible bool
zorder float

In contrast to other patches, the default capstyle and joinstyle for Fanc-
yArrowPatch are set to "round".

__init__(posA=None, posB=None, path=None, arrowstyle='simple', connection-
style='arc3', patchA=None, patchB=None, shrinkA=2, shrinkB=2, muta-
tion_scale=1, mutation_aspect=1, dpi_cor=<deprecated parameter>, **kwargs)

There are two ways for defining an arrow:

• If posA and posB are given, a path connecting two points is created according to connec-
tionstyle. The path will be clipped with patchA and patchB and further shrunken by shrinkA
and shrinkB. An arrow is drawn along this resulting path using the arrowstyle parameter.

• Alternatively if path is provided, an arrow is drawn along this path and patchA, patchB,
shrinkA, and shrinkB are ignored.

Parameters

posA, posB
[(float, float), default: None] (x, y) coordinates of arrow tail and arrow head
respectively.

path
[Path, default: None] If provided, an arrow is drawn along this path and patchA,
patchB, shrinkA, and shrinkB are ignored.

arrowstyle
[str or ArrowStyle, default: 'simple']

The ArrowStyle with which the fancy arrow is drawn. If a string, it
should be one of the available arrowstyle names, with optional comma-
separated attributes. The optional attributes are meant to be scaled with the
mutation_scale. The following arrow styles are available:

2380 Chapter 18. Modules

Matplotlib, Release 3.4.3

Class Name Attrs
Curve - None
CurveB -> head_length=0.4, head_width=0.2
BracketB -[widthB=1.0, lengthB=0.2, angleB=None
Curve-
FilledB

-|> head_length=0.4, head_width=0.2

CurveA <- head_length=0.4, head_width=0.2
CurveAB <-> head_length=0.4, head_width=0.2
Curve-
FilledA

<|- head_length=0.4, head_width=0.2

Curve-
FilledAB

<|-
|>

head_length=0.4, head_width=0.2

BracketA]- widthA=1.0, lengthA=0.2, angleA=None
Brack-
etAB

]-[widthA=1.0, lengthA=0.2, angleA=None,
widthB=1.0, lengthB=0.2, angleB=None

Fancy fancy head_length=0.4, head_width=0.4, tail_width=0.4
Simple sim-

ple
head_length=0.5, head_width=0.5, tail_width=0.2

Wedge wedge tail_width=0.3, shrink_factor=0.5
BarAB |-| widthA=1.0, angleA=None, widthB=1.0, an-

gleB=None

connectionstyle
[str or ConnectionStyle or None, optional, default: 'arc3']

The ConnectionStyle with which posA and posB are connected. If a
string, it should be one of the available connectionstyle names, with optional
comma-separated attributes. The following connection styles are available:

Class Name Attrs
Angle angle angleA=90, angleB=0, rad=0.0
An-
gle3

an-
gle3

angleA=90, angleB=0

Arc arc angleA=0, angleB=0, armA=None, armB=None,
rad=0.0

Arc3 arc3 rad=0.0
Bar bar armA=0.0, armB=0.0, fraction=0.3, angle=None

patchA, patchB
[Patch, default: None] Head and tail patches, respectively.

shrinkA, shrinkB
[float, default: 2] Shrinking factor of the tail and head of the arrow respectively.

mutation_scale

18.36. matplotlib.patches 2381

Matplotlib, Release 3.4.3

[float, default: 1] Value with which attributes of arrowstyle (e.g., head_length)
will be scaled.

mutation_aspect
[None or float, default: None] The height of the rectanglewill be squeezed by this
value before the mutation and the mutated box will be stretched by the inverse
of it.

dpi_cor
[float, default: 1] dpi_cor is currently used for linewidth-related things and shrink
factor. Mutation scale is affected by this. Deprecated.

Other Parameters

**kwargs
[Patch properties, optional] Here is a list of available Patch properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

continues on next page

2382 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 167 – continued from previous page
Property Description
url str
visible bool
zorder float

In contrast to other patches, the default capstyle and joinstyle for Fan-
cyArrowPatch are set to "round".

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

get_arrowstyle()
Return the arrowstyle object.

get_connectionstyle()
Return the ConnectionStyle used.

get_dpi_cor()
[Deprecated] dpi_cor is currently used for linewidth-related things and shrink factor. Mutation
scale is affected by this.

Returns

scalar

18.36. matplotlib.patches 2383

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.4.

get_mutation_aspect()
Return the aspect ratio of the bbox mutation.

get_mutation_scale()
Return the mutation scale.

Returns

scalar

get_path()
Return the path of the arrow in the data coordinates. Use get_path_in_displaycoord() method to
retrieve the arrow path in display coordinates.

get_path_in_displaycoord()
Return the mutated path of the arrow in display coordinates.

set_arrowstyle(arrowstyle=None, **kw)
Set the arrow style. Old attributes are forgotten. Without arguments (or with arrow-
style=None) returns available box styles as a list of strings.

Parameters

arrowstyle
[None or ArrowStyle or str, default: None] Can be a string with arrowstyle name
with optional comma-separated attributes, e.g.:

set_arrowstyle("Fancy,head_length=0.2")

Alternatively attributes can be provided as keywords, e.g.:

set_arrowstyle("fancy", head_length=0.2)

set_connectionstyle(connectionstyle, **kw)
Set the connection style. Old attributes are forgotten.

Parameters

connectionstyle
[str or ConnectionStyle or None, optional] Can be a string with connec-
tionstyle name with optional comma-separated attributes, e.g.:

set_connectionstyle("arc,angleA=0,armA=30,rad=10")

Alternatively, the attributes can be provided as keywords, e.g.:

2384 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_connectionstyle("arc", angleA=0,armA=30,rad=10)

Without any arguments (or with connectionstyle=None), return available
styles as a list of strings.

set_dpi_cor(dpi_cor)
[Deprecated] dpi_cor is currently used for linewidth-related things and shrink factor. Mutation
scale is affected by this.

Parameters

dpi_cor
[float]

Notes

Deprecated since version 3.4.

set_mutation_aspect(aspect)
Set the aspect ratio of the bbox mutation.

Parameters

aspect
[float]

set_mutation_scale(scale)
Set the mutation scale.

Parameters

scale
[float]

set_patchA(patchA)
Set the tail patch.

Parameters

patchA
[patches.Patch]

set_patchB(patchB)
Set the head patch.

Parameters

18.36. matplotlib.patches 2385

Matplotlib, Release 3.4.3

patchB
[patches.Patch]

set_positions(posA, posB)
Set the begin and end positions of the connecting path.

Parameters

posA, posB
[None, tuple] (x, y) coordinates of arrow tail and arrow head respectively. If
None use current value.

Examples using matplotlib.patches.FancyArrowPatch

• sphx_glr_gallery_pie_and_polar_charts_bar_of_pie.py

• sphx_glr_gallery_shapes_and_collections_arrow_guide.py

• sphx_glr_gallery_userdemo_connect_simple01.py

matplotlib.patches.FancyBboxPatch

class matplotlib.patches.FancyBboxPatch(xy, width, height, boxstyle='round',
bbox_transmuter=<deprecated pa-
rameter>, mutation_scale=1, muta-
tion_aspect=1, **kwargs)

Bases: matplotlib.patches.Patch

A fancy box around a rectangle with lower left at xy = (x, y) with specified width and height.

FancyBboxPatch is similar to Rectangle, but it draws a fancy box around the rectangle. The
transformation of the rectangle box to the fancy box is delegated to the style classes defined in
BoxStyle.

Parameters

xy
[float, float] The lower left corner of the box.

width
[float] The width of the box.

height
[float] The height of the box.

boxstyle
[str or matplotlib.patches.BoxStyle]

2386 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None

Matplotlib, Release 3.4.3

The style of the fancy box. This can either be a BoxStyle instance or
a string of the style name and optionally comma seprarated attributes (e.g.
"Round, pad=0.2"). This string is passed to BoxStyle to construct a
BoxStyle object. See there for a full documentation.

The following box styles are available:

Class Name Attrs
Circle circle pad=0.3
DArrow darrow pad=0.3
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3, rounding_size=None
Round4 round4 pad=0.3, rounding_size=None
Roundtooth roundtooth pad=0.3, tooth_size=None
Sawtooth sawtooth pad=0.3, tooth_size=None
Square square pad=0.3

mutation_scale
[float, default: 1] Scaling factor applied to the attributes of the box style (e.g. pad
or rounding_size).

mutation_aspect
[float, default: 1] The height of the rectangle will be squeezed by this value be-
fore the mutation and the mutated box will be stretched by the inverse of it. For
example, this allows different horizontal and vertical padding.

Other Parameters

**kwargs
[Patch properties]

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None

continues on next page

18.36. matplotlib.patches 2387

Matplotlib, Release 3.4.3

Table 168 – continued from previous page
Property Description
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(xy, width, height, boxstyle='round', bbox_transmuter=<deprecated parameter>,
mutation_scale=1, mutation_aspect=1, **kwargs)

Parameters

xy
[float, float] The lower left corner of the box.

width
[float] The width of the box.

height
[float] The height of the box.

boxstyle
[str or matplotlib.patches.BoxStyle]

The style of the fancy box. This can either be a BoxStyle instance or a
string of the style name and optionally comma seprarated attributes (e.g.
"Round, pad=0.2"). This string is passed to BoxStyle to construct a
BoxStyle object. See there for a full documentation.

The following box styles are available:

2388 Chapter 18. Modules

Matplotlib, Release 3.4.3

Class Name Attrs
Circle circle pad=0.3
DArrow darrow pad=0.3
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3, rounding_size=None
Round4 round4 pad=0.3, rounding_size=None
Roundtooth roundtooth pad=0.3, tooth_size=None
Sawtooth sawtooth pad=0.3, tooth_size=None
Square square pad=0.3

mutation_scale
[float, default: 1] Scaling factor applied to the attributes of the box style (e.g.
pad or rounding_size).

mutation_aspect
[float, default: 1] The height of the rectangle will be squeezed by this value
before the mutation and the mutated box will be stretched by the inverse of it.
For example, this allows different horizontal and vertical padding.

Other Parameters

**kwargs
[Patch properties]

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}

continues on next page

18.36. matplotlib.patches 2389

Matplotlib, Release 3.4.3

Table 169 – continued from previous page
Property Description
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

get_bbox()
Return the Bbox.

get_boxstyle()
Return the boxstyle object.

get_height()
Return the height of the rectangle.

get_mutation_aspect()
Return the aspect ratio of the bbox mutation.

get_mutation_scale()
Return the mutation scale.

get_path()
Return the mutated path of the rectangle.

get_width()
Return the width of the rectangle.

get_x()
Return the left coord of the rectangle.

get_y()
Return the bottom coord of the rectangle.

set_bounds(*args)
Set the bounds of the rectangle.

Call signatures:

2390 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_bounds(left, bottom, width, height)
set_bounds((left, bottom, width, height))

Parameters

left, bottom
[float] The coordinates of the bottom left corner of the rectangle.

width, height
[float] The width/height of the rectangle.

set_boxstyle(boxstyle=None, **kwargs)
Set the box style.

Most box styles can be further configured using attributes. Attributes from the previous box style
are not reused.

Without argument (or with boxstyle=None), the available box styles are returned as a human-
readable string.

Parameters

boxstyle
[str or matplotlib.patches.BoxStyle]

The style of the fancy box. This can either be a BoxStyle instance or a
string of the style name and optionally comma seprarated attributes (e.g.
"Round, pad=0.2"). This string is passed to BoxStyle to construct a
BoxStyle object. See there for a full documentation.

The following box styles are available:

Class Name Attrs
Circle circle pad=0.3
DArrow darrow pad=0.3
LArrow larrow pad=0.3
RArrow rarrow pad=0.3
Round round pad=0.3, rounding_size=None
Round4 round4 pad=0.3, rounding_size=None
Roundtooth roundtooth pad=0.3, tooth_size=None
Sawtooth sawtooth pad=0.3, tooth_size=None
Square square pad=0.3

**kwargs

18.36. matplotlib.patches 2391

Matplotlib, Release 3.4.3

Additional attributes for the box style. See the table above for supported param-
eters.

Examples

set_boxstyle("round,pad=0.2")
set_boxstyle("round", pad=0.2)

set_height(h)
Set the rectangle height.

Parameters

h
[float]

set_mutation_aspect(aspect)
Set the aspect ratio of the bbox mutation.

Parameters

aspect
[float]

set_mutation_scale(scale)
Set the mutation scale.

Parameters

scale
[float]

set_width(w)
Set the rectangle width.

Parameters

w
[float]

set_x(x)
Set the left coord of the rectangle.

Parameters

x
[float]

2392 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_y(y)
Set the bottom coord of the rectangle.

Parameters

y
[float]

Examples using matplotlib.patches.FancyBboxPatch

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_shapes_and_collections_fancybox_demo.py

• sphx_glr_gallery_userdemo_annotate_text_arrow.py

matplotlib.patches.Patch

class matplotlib.patches.Patch(edgecolor=None, facecolor=None, color=None,
linewidth=None, linestyle=None, antialiased=None,
hatch=None, fill=True, capstyle=None, join-
style=None, **kwargs)

Bases: matplotlib.artist.Artist

A patch is a 2D artist with a face color and an edge color.

If any of edgecolor, facecolor, linewidth, or antialiased are None, they default to their rc params
setting.

The following kwarg properties are supported

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str

continues on next page

18.36. matplotlib.patches 2393

Matplotlib, Release 3.4.3

Table 170 – continued from previous page
Property Description
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(edgecolor=None, facecolor=None, color=None, linewidth=None, linestyle=None,
antialiased=None, hatch=None, fill=True, capstyle=None, joinstyle=None,
**kwargs)

The following kwarg properties are supported

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None

continues on next page

2394 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 171 – continued from previous page
Property Description
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'matplotlib.patches'

contains(mouseevent, radius=None)
Test whether the mouse event occurred in the patch.

Returns

(bool, empty dict)

contains_point(point, radius=None)
Return whether the given point is inside the patch.

Parameters

point
[(float, float)] The point (x, y) to check, in target coordinates of self.
get_transform(). These are display coordinates for patches that are added
to a figure or axes.

radius
[float, optional] Add an additional margin on the patch in target coordinates of
self.get_transform(). See Path.contains_point for further de-
tails.

Returns

bool

18.36. matplotlib.patches 2395

Matplotlib, Release 3.4.3

Notes

The proper use of this method depends on the transform of the patch. Isolated patches do not
have a transform. In this case, the patch creation coordinates and the point coordinates match.
The following example checks that the center of a circle is within the circle

>>> center = 0, 0
>>> c = Circle(center, radius=1)
>>> c.contains_point(center)
True

The convention of checking against the transformed patch stems from the fact that this method
is predominantly used to check if display coordinates (e.g. from mouse events) are within the
patch. If you want to do the above check with data coordinates, you have to properly transform
them first:

>>> center = 0, 0
>>> c = Circle(center, radius=1)
>>> plt.gca().add_patch(c)
>>> transformed_center = c.get_transform().transform(center)
>>> c.contains_point(transformed_center)
True

contains_points(points, radius=None)
Return whether the given points are inside the patch.

Parameters

points
[(N, 2) array] The points to check, in target coordinates of self.
get_transform(). These are display coordinates for patches that are added
to a figure or axes. Columns contain x and y values.

radius
[float, optional] Add an additional margin on the patch in target coordinates of
self.get_transform(). See Path.contains_point for further de-
tails.

Returns

length-N bool array

2396 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

The proper use of this method depends on the transform of the patch. See the notes on Patch.
contains_point.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

property fill
Return whether the patch is filled.

get_aa()
Alias for get_antialiased.

get_antialiased()
Return whether antialiasing is used for drawing.

get_capstyle()
Return the capstyle.

get_data_transform()
Return the Transform mapping data coordinates to physical coordinates.

get_ec()
Alias for get_edgecolor.

get_edgecolor()
Return the edge color.

get_extents()
Return the Patch's axis-aligned extents as a Bbox.

get_facecolor()
Return the face color.

get_fc()
Alias for get_facecolor.

get_fill()
Return whether the patch is filled.

get_hatch()
Return the hatching pattern.

18.36. matplotlib.patches 2397

Matplotlib, Release 3.4.3

get_joinstyle()
Return the joinstyle.

get_linestyle()
Return the linestyle.

get_linewidth()
Return the line width in points.

get_ls()
Alias for get_linestyle.

get_lw()
Alias for get_linewidth.

get_patch_transform()
Return the Transform instance mapping patch coordinates to data coordinates.

For example, one may define a patch of a circle which represents a radius of 5 by providing
coordinates for a unit circle, and a transform which scales the coordinates (the patch coordinate)
by 5.

get_path()
Return the path of this patch.

get_transform()
Return the Transform applied to the Patch.

get_verts()
Return a copy of the vertices used in this patch.

If the patch contains Bezier curves, the curves will be interpolated by line segments. To access
the curves as curves, use get_path.

get_window_extent(renderer=None)
Get the axes bounding box in display space.

The bounding box' width and height are nonnegative.

Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to
return an empty bounding box at 0, 0.

Be careful when using this function, the results will not update if the artist window extent of the
artist changes. The extent can change due to any changes in the transform stack, such as changing
the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can
lead to unexpected behavior where interactive figures will look fine on the screen, but will save
incorrectly.

set_aa(aa)
Alias for set_antialiased.

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

2398 Chapter 18. Modules

Matplotlib, Release 3.4.3

alpha
[scalar or None] alpha must be within the 0-1 range, inclusive.

set_antialiased(aa)
Set whether to use antialiased rendering.

Parameters

b
[bool or None]

set_capstyle(s)
Set the CapStyle.

Parameters

s
[CapStyle or {'butt', 'projecting', 'round'}]

set_color(c)
Set both the edgecolor and the facecolor.

Parameters

c
[color]

See also:

Patch.set_facecolor, Patch.set_edgecolor
For setting the edge or face color individually.

set_ec(color)
Alias for set_edgecolor.

set_edgecolor(color)
Set the patch edge color.

Parameters

color
[color or None or 'auto']

set_facecolor(color)
Set the patch face color.

Parameters

18.36. matplotlib.patches 2399

Matplotlib, Release 3.4.3

color
[color or None]

set_fc(color)
Alias for set_facecolor.

set_fill(b)
Set whether to fill the patch.

Parameters

b
[bool]

set_hatch(hatch)
Set the hatching pattern.

hatch can be one of:

/ - diagonal hatching
\ - back diagonal
| - vertical
- - horizontal
+ - crossed
x - crossed diagonal
o - small circle
O - large circle
. - dots
* - stars

Letters can be combined, in which case all the specified hatchings are done. If same letter repeats,
it increases the density of hatching of that pattern.

Hatching is supported in the PostScript, PDF, SVG and Agg backends only.

Parameters

hatch
[{'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}]

set_joinstyle(s)
Set the JoinStyle.

Parameters

s
[JoinStyle or {'miter', 'round', 'bevel'}]

2400 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_linestyle(ls)
Set the patch linestyle.

linestyle description
'-' or 'solid' solid line
'--' or 'dashed' dashed line
'-.' or 'dashdot' dash-dotted line
':' or 'dotted' dotted line
'None' draw nothing
'none' draw nothing
' ' draw nothing
'' draw nothing

Alternatively a dash tuple of the following form can be provided:

(offset, onoffseq)

where onoffseq is an even length tuple of on and off ink in points.

Parameters

ls
[{'-', '--', '-.', ':', '', (offset, on-off-seq), ...}] The line style.

set_linewidth(w)
Set the patch linewidth in points.

Parameters

w
[float or None]

set_ls(ls)
Alias for set_linestyle.

set_lw(w)
Alias for set_linewidth.

update_from(other)
Copy properties from other to self.

validCap = ('butt', 'projecting', 'round')

validJoin = ('miter', 'round', 'bevel')

zorder = 1

18.36. matplotlib.patches 2401

Matplotlib, Release 3.4.3

Examples using matplotlib.patches.Patch

• sphx_glr_gallery_lines_bars_and_markers_curve_error_band.py

• sphx_glr_gallery_lines_bars_and_markers_stairs_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_clip_path.py

• sphx_glr_gallery_images_contours_and_fields_image_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_box_aspect.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_margins.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_zoom_effect.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_statistics_confidence_ellipse.py

• sphx_glr_gallery_statistics_errorbars_and_boxes.py

• sphx_glr_gallery_pie_and_polar_charts_bar_of_pie.py

• sphx_glr_gallery_text_labels_and_annotations_angle_annotation.py

• sphx_glr_gallery_text_labels_and_annotations_annotation_demo.py

• sphx_glr_gallery_text_labels_and_annotations_custom_legends.py

• sphx_glr_gallery_text_labels_and_annotations_demo_annotation_box.py

• sphx_glr_gallery_text_labels_and_annotations_demo_text_path.py

• sphx_glr_gallery_text_labels_and_annotations_demo_text_rotation_mode.py

• sphx_glr_gallery_text_labels_and_annotations_fancyarrow_demo.py

• sphx_glr_gallery_text_labels_and_annotations_text_alignment.py

• sphx_glr_gallery_pyplots_text_layout.py

• sphx_glr_gallery_color_named_colors.py

• sphx_glr_gallery_shapes_and_collections_arrow_guide.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_shapes_and_collections_compound_path.py

• sphx_glr_gallery_shapes_and_collections_dolphin.py

• sphx_glr_gallery_shapes_and_collections_donut.py

• sphx_glr_gallery_shapes_and_collections_ellipse_demo.py

• sphx_glr_gallery_shapes_and_collections_fancybox_demo.py

• sphx_glr_gallery_shapes_and_collections_hatch_demo.py

• sphx_glr_gallery_shapes_and_collections_hatch_style_reference.py

2402 Chapter 18. Modules

Matplotlib, Release 3.4.3

• sphx_glr_gallery_shapes_and_collections_patch_collection.py

• sphx_glr_gallery_shapes_and_collections_path_patch.py

• sphx_glr_gallery_shapes_and_collections_quad_bezier.py

• sphx_glr_gallery_style_sheets_ggplot.py

• sphx_glr_gallery_style_sheets_grayscale.py

• sphx_glr_gallery_style_sheets_style_sheets_reference.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo.py

• sphx_glr_gallery_showcase_firefox.py

• sphx_glr_gallery_showcase_integral.py

• sphx_glr_gallery_event_handling_looking_glass.py

• sphx_glr_gallery_event_handling_path_editor.py

• sphx_glr_gallery_event_handling_pick_event_demo.py

• sphx_glr_gallery_event_handling_poly_editor.py

• sphx_glr_gallery_event_handling_trifinder_event_demo.py

• sphx_glr_gallery_event_handling_viewlims.py

• sphx_glr_gallery_misc_anchored_artists.py

• sphx_glr_gallery_misc_bbox_intersect.py

• sphx_glr_gallery_misc_custom_projection.py

• sphx_glr_gallery_misc_histogram_path.py

• sphx_glr_gallery_misc_logos2.py

• sphx_glr_gallery_misc_packed_bubbles.py

• sphx_glr_gallery_misc_svg_filter_pie.py

• sphx_glr_gallery_misc_tickedstroke_demo.py

• sphx_glr_gallery_mplot3d_pathpatch3d.py

• sphx_glr_gallery_specialty_plots_hinton_demo.py

• sphx_glr_gallery_specialty_plots_radar_chart.py

• sphx_glr_gallery_specialty_plots_skewt.py

• sphx_glr_gallery_units_artist_tests.py

• sphx_glr_gallery_units_ellipse_with_units.py

• sphx_glr_gallery_userdemo_anchored_box02.py

• sphx_glr_gallery_userdemo_anchored_box03.py

• sphx_glr_gallery_userdemo_anchored_box04.py

18.36. matplotlib.patches 2403

Matplotlib, Release 3.4.3

• sphx_glr_gallery_userdemo_annotate_explain.py

• sphx_glr_gallery_userdemo_connect_simple01.py

• sphx_glr_gallery_userdemo_simple_annotate01.py

• sphx_glr_gallery_widgets_menu.py

• Artist tutorial

• Legend guide

• Path Tutorial

• Transformations Tutorial

• Specifying Colors

• Text properties and layout

matplotlib.patches.PathPatch

class matplotlib.patches.PathPatch(path, **kwargs)
Bases: matplotlib.patches.Patch

A general polycurve path patch.

path is a Path object.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object

continues on next page

2404 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 172 – continued from previous page
Property Description
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(path, **kwargs)
path is a Path object.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool

continues on next page

18.36. matplotlib.patches 2405

Matplotlib, Release 3.4.3

Table 173 – continued from previous page
Property Description
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

get_path()
Return the path of this patch.

set_path(path)

Examples using matplotlib.patches.PathPatch

• sphx_glr_gallery_lines_bars_and_markers_curve_error_band.py

• sphx_glr_gallery_lines_bars_and_markers_stairs_demo.py

• sphx_glr_gallery_images_contours_and_fields_image_demo.py

• sphx_glr_gallery_statistics_boxplot_color.py

• sphx_glr_gallery_text_labels_and_annotations_demo_text_path.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_shapes_and_collections_compound_path.py

• sphx_glr_gallery_shapes_and_collections_dolphin.py

• sphx_glr_gallery_shapes_and_collections_donut.py

• sphx_glr_gallery_shapes_and_collections_path_patch.py

• sphx_glr_gallery_shapes_and_collections_quad_bezier.py

• sphx_glr_gallery_showcase_firefox.py

• sphx_glr_gallery_event_handling_path_editor.py

• sphx_glr_gallery_misc_histogram_path.py

• sphx_glr_gallery_misc_logos2.py

• sphx_glr_gallery_misc_tickedstroke_demo.py

• sphx_glr_gallery_mplot3d_pathpatch3d.py

2406 Chapter 18. Modules

Matplotlib, Release 3.4.3

• Path Tutorial

matplotlib.patches.StepPatch

class matplotlib.patches.StepPatch(values, edges, *, orientation='vertical', base-
line=0, **kwargs)

Bases: matplotlib.patches.PathPatch

A path patch describing a stepwise constant function.

By default the path is not closed and starts and stops at baseline value.

Parameters

values
[array-like] The step heights.

edges
[array-like] The edge positions, with len(edges) == len(vals) + 1,
between which the curve takes on vals values.

orientation
[{'vertical', 'horizontal'}, default: 'vertical'] The direction of the steps. Vertical
means that values are along the y-axis, and edges are along the x-axis.

baseline
[float, array-like or None, default: 0] The bottom value of the bounding edges or
when fill=True, position of lower edge. If fill is True or an array is passed to
baseline, a closed path is drawn.

Other valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
continues on next page

18.36. matplotlib.patches 2407

Matplotlib, Release 3.4.3

Table 174 – continued from previous page
Property Description
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(values, edges, *, orientation='vertical', baseline=0, **kwargs)

Parameters

values
[array-like] The step heights.

edges
[array-like] The edge positions, with len(edges) == len(vals) + 1,
between which the curve takes on vals values.

orientation
[{'vertical', 'horizontal'}, default: 'vertical'] The direction of the steps. Vertical
means that values are along the y-axis, and edges are along the x-axis.

baseline
[float, array-like or None, default: 0] The bottom value of the bounding edges or
when fill=True, position of lower edge. If fill is True or an array is passed
to baseline, a closed path is drawn.

Other valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown

continues on next page

2408 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 175 – continued from previous page
Property Description
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'matplotlib.patches'

get_data()
Get StepPatch values, edges and baseline as namedtuple.

set_data(values=None, edges=None, baseline=None)
Set StepPatch values, edges and baseline.

Parameters

values
[1D array-like or None] Will not update values, if passing None

edges
[1D array-like, optional]

baseline
[float, 1D array-like or None]

18.36. matplotlib.patches 2409

Matplotlib, Release 3.4.3

Examples using matplotlib.patches.StepPatch

• sphx_glr_gallery_lines_bars_and_markers_stairs_demo.py

matplotlib.patches.Polygon

class matplotlib.patches.Polygon(xy, closed=True, **kwargs)
Bases: matplotlib.patches.Patch

A general polygon patch.

xy is a numpy array with shape Nx2.

If closed is True, the polygon will be closed so the starting and ending points are the same.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
continues on next page

2410 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 176 – continued from previous page
Property Description
visible bool
zorder float

__init__(xy, closed=True, **kwargs)
xy is a numpy array with shape Nx2.

If closed is True, the polygon will be closed so the starting and ending points are the same.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

18.36. matplotlib.patches 2411

Matplotlib, Release 3.4.3

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

get_closed()
Return whether the polygon is closed.

get_path()
Get the Path of the polygon.

get_xy()
Get the vertices of the path.

Returns

(N, 2) numpy array
The coordinates of the vertices.

set_closed(closed)
Set whether the polygon is closed.

Parameters

closed
[bool] True if the polygon is closed

set_xy(xy)
Set the vertices of the polygon.

Parameters

xy
[(N, 2) array-like] The coordinates of the vertices.

Notes

Unlike Path, we do not ignore the last input vertex. If the polygon is meant to be closed, and
the last point of the polygon is not equal to the first, we assume that the user has not explicitly
passed a CLOSEPOLY vertex, and add it ourselves.

property xy
The vertices of the path as (N, 2) numpy array.

2412 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.patches.Polygon

• sphx_glr_gallery_subplots_axes_and_figures_axes_margins.py

• sphx_glr_gallery_statistics_boxplot_demo.py

• sphx_glr_gallery_shapes_and_collections_hatch_demo.py

• sphx_glr_gallery_shapes_and_collections_patch_collection.py

• sphx_glr_gallery_axisartist_demo_floating_axes.py

• sphx_glr_gallery_showcase_integral.py

• sphx_glr_gallery_event_handling_poly_editor.py

• sphx_glr_gallery_event_handling_trifinder_event_demo.py

• Annotations

matplotlib.patches.Rectangle

class matplotlib.patches.Rectangle(xy, width, height, angle=0.0, **kwargs)
Bases: matplotlib.patches.Patch

A rectangle defined via an anchor point xy and its width and height.

The rectangle extends from xy[0] to xy[0] + width in x-direction and from xy[1] to xy[1]
+ height in y-direction.

: +------------------+
: | |
: height |
: | |
: (xy)---- width -----+

One may picture xy as the bottom left corner, but which corner xy is actually depends on the the
direction of the axis and the sign of width and height; e.g. xy would be the bottom right corner if the
x-axis was inverted or if width was negative.

Parameters

xy
[(float, float)] The anchor point.

width
[float] Rectangle width.

height
[float] Rectangle height.

18.36. matplotlib.patches 2413

Matplotlib, Release 3.4.3

angle
[float, default: 0] Rotation in degrees anti-clockwise about xy.

Other Parameters

**kwargs
[Patch properties]

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(xy, width, height, angle=0.0, **kwargs)

Parameters

xy

2414 Chapter 18. Modules

Matplotlib, Release 3.4.3

[(float, float)] The anchor point.

width
[float] Rectangle width.

height
[float] Rectangle height.

angle
[float, default: 0] Rotation in degrees anti-clockwise about xy.

Other Parameters

**kwargs
[Patch properties]

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
continues on next page

18.36. matplotlib.patches 2415

Matplotlib, Release 3.4.3

Table 179 – continued from previous page
Property Description
visible bool
zorder float

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

get_bbox()
Return the Bbox.

get_height()
Return the height of the rectangle.

get_patch_transform()
Return the Transform instance mapping patch coordinates to data coordinates.

For example, one may define a patch of a circle which represents a radius of 5 by providing
coordinates for a unit circle, and a transform which scales the coordinates (the patch coordinate)
by 5.

get_path()
Return the vertices of the rectangle.

get_width()
Return the width of the rectangle.

get_x()
Return the left coordinate of the rectangle.

get_xy()
Return the left and bottom coords of the rectangle as a tuple.

get_y()
Return the bottom coordinate of the rectangle.

set_bounds(*args)
Set the bounds of the rectangle as left, bottom, width, height.

The values may be passed as separate parameters or as a tuple:

set_bounds(left, bottom, width, height)
set_bounds((left, bottom, width, height))

set_height(h)
Set the height of the rectangle.

set_width(w)
Set the width of the rectangle.

set_x(x)
Set the left coordinate of the rectangle.

2416 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_xy(xy)
Set the left and bottom coordinates of the rectangle.

Parameters

xy
[(float, float)]

set_y(y)
Set the bottom coordinate of the rectangle.

property xy
Return the left and bottom coords of the rectangle as a tuple.

Examples using matplotlib.patches.Rectangle

• sphx_glr_gallery_statistics_errorbars_and_boxes.py

• sphx_glr_gallery_statistics_hist.py

• sphx_glr_gallery_text_labels_and_annotations_demo_text_rotation_mode.py

• sphx_glr_gallery_text_labels_and_annotations_text_alignment.py

• sphx_glr_gallery_pyplots_fig_axes_customize_simple.py

• sphx_glr_gallery_pyplots_text_layout.py

• sphx_glr_gallery_color_named_colors.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_shapes_and_collections_hatch_style_reference.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo.py

• sphx_glr_gallery_event_handling_pick_event_demo.py

• sphx_glr_gallery_event_handling_viewlims.py

• sphx_glr_gallery_misc_bbox_intersect.py

• sphx_glr_gallery_misc_logos2.py

• sphx_glr_gallery_specialty_plots_hinton_demo.py

• sphx_glr_gallery_units_artist_tests.py

• sphx_glr_gallery_widgets_menu.py

• Artist tutorial

• Legend guide

• Transformations Tutorial

• Specifying Colors

18.36. matplotlib.patches 2417

Matplotlib, Release 3.4.3

• Text properties and layout

matplotlib.patches.RegularPolygon

class matplotlib.patches.RegularPolygon(xy, numVertices, radius=5, orienta-
tion=0, **kwargs)

Bases: matplotlib.patches.Patch

A regular polygon patch.

Parameters

xy
[(float, float)] The center position.

numVertices
[int] The number of vertices.

radius
[float] The distance from the center to each of the vertices.

orientation
[float] The polygon rotation angle (in radians).

**kwargs
Patch properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}

continues on next page

2418 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 180 – continued from previous page
Property Description
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(xy, numVertices, radius=5, orientation=0, **kwargs)

Parameters

xy
[(float, float)] The center position.

numVertices
[int] The number of vertices.

radius
[float] The distance from the center to each of the vertices.

orientation
[float] The polygon rotation angle (in radians).

**kwargs
Patch properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown

continues on next page

18.36. matplotlib.patches 2419

Matplotlib, Release 3.4.3

Table 181 – continued from previous page
Property Description
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

get_patch_transform()
Return the Transform instance mapping patch coordinates to data coordinates.

For example, one may define a patch of a circle which represents a radius of 5 by providing
coordinates for a unit circle, and a transform which scales the coordinates (the patch coordinate)
by 5.

get_path()
Return the path of this patch.

Examples using matplotlib.patches.RegularPolygon

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_specialty_plots_radar_chart.py

2420 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.patches.Shadow

class matplotlib.patches.Shadow(patch, ox, oy, props=<deprecated parameter>,
**kwargs)

Bases: matplotlib.patches.Patch

Create a shadow of the given patch.

By default, the shadow will have the same face color as the patch, but darkened.

Parameters

patch
[Patch] The patch to create the shadow for.

ox, oy
[float] The shift of the shadow in data coordinates, scaled by a factor of dpi/72.

props
[dict] deprecated (use kwargs instead) Properties of the shadow patch.

**kwargs
Properties of the shadow patch. Supported keys are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

continues on next page

18.36. matplotlib.patches 2421

Matplotlib, Release 3.4.3

Table 182 – continued from previous page
Property Description
picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(patch, ox, oy, props=<deprecated parameter>, **kwargs)
Create a shadow of the given patch.

By default, the shadow will have the same face color as the patch, but darkened.

Parameters

patch
[Patch] The patch to create the shadow for.

ox, oy
[float] The shift of the shadow in data coordinates, scaled by a factor of dpi/72.

props
[dict] deprecated (use kwargs instead) Properties of the shadow patch.

**kwargs
Properties of the shadow patch. Supported keys are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str

continues on next page

2422 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 183 – continued from previous page
Property Description
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

get_patch_transform()
Return the Transform instance mapping patch coordinates to data coordinates.

For example, one may define a patch of a circle which represents a radius of 5 by providing
coordinates for a unit circle, and a transform which scales the coordinates (the patch coordinate)
by 5.

get_path()
Return the path of this patch.

property props

18.36. matplotlib.patches 2423

Matplotlib, Release 3.4.3

Examples using matplotlib.patches.Shadow

• sphx_glr_gallery_text_labels_and_annotations_demo_text_path.py

• sphx_glr_gallery_misc_svg_filter_pie.py

matplotlib.patches.Wedge

class matplotlib.patches.Wedge(center, r, theta1, theta2, width=None, **kwargs)
Bases: matplotlib.patches.Patch

Wedge shaped patch.

A wedge centered at x, y center with radius r that sweeps theta1 to theta2 (in degrees). If width is
given, then a partial wedge is drawn from inner radius r - width to outer radius r.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

continues on next page

2424 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 184 – continued from previous page
Property Description
url str
visible bool
zorder float

__init__(center, r, theta1, theta2, width=None, **kwargs)
A wedge centered at x, y center with radius r that sweeps theta1 to theta2 (in degrees). If width
is given, then a partial wedge is drawn from inner radius r - width to outer radius r.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

18.36. matplotlib.patches 2425

Matplotlib, Release 3.4.3

__module__ = 'matplotlib.patches'

__str__()
Return str(self).

get_path()
Return the path of this patch.

set_center(center)

set_radius(radius)

set_theta1(theta1)

set_theta2(theta2)

set_width(width)

Examples using matplotlib.patches.Wedge

• sphx_glr_gallery_pie_and_polar_charts_pie_and_donut_labels.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_shapes_and_collections_patch_collection.py

• sphx_glr_gallery_misc_svg_filter_pie.py

18.36.2 Functions

bbox_artist(artist, renderer[, props, fill]) A debug function to draw a rectangle around the
bounding box returned by an artist's Artist.
get_window_extent to test whether the artist
is returning the correct bbox.

draw_bbox(bbox, renderer[, color, trans]) A debug function to draw a rectangle around the
bounding box returned by an artist's Artist.
get_window_extent to test whether the artist
is returning the correct bbox.

matplotlib.patches.bbox_artist

matplotlib.patches.bbox_artist(artist, renderer, props=None, fill=True)
A debug function to draw a rectangle around the bounding box returned by an artist's Artist.
get_window_extent to test whether the artist is returning the correct bbox.

props is a dict of rectangle props with the additional property 'pad' that sets the padding around the
bbox in points.

2426 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.patches.bbox_artist

matplotlib.patches.draw_bbox

matplotlib.patches.draw_bbox(bbox, renderer, color='k', trans=None)
A debug function to draw a rectangle around the bounding box returned by an artist's Artist.
get_window_extent to test whether the artist is returning the correct bbox.

Examples using matplotlib.patches.draw_bbox

18.37 matplotlib.path

A module for dealing with the polylines used throughout Matplotlib.

The primary class for polyline handling in Matplotlib is Path. Almost all vector drawing makes use of
Paths somewhere in the drawing pipeline.

Whilst a Path instance itself cannot be drawn, some Artist subclasses, such as PathPatch and Path-
Collection, can be used for convenient Path visualisation.

class matplotlib.path.Path(vertices, codes=None, _interpolation_steps=1,
closed=False, readonly=False)

Bases: object

A series of possibly disconnected, possibly closed, line and curve segments.

The underlying storage is made up of two parallel numpy arrays:

• vertices: an Nx2 float array of vertices

• codes: an N-length uint8 array of vertex types, or None

These two arrays always have the same length in the first dimension. For example, to represent a cubic
curve, you must provide three vertices as well as three codes CURVE3.

The code types are:

• STOP

[1 vertex (ignored)] A marker for the end of the entire path (currently not required and
ignored)

• MOVETO

[1 vertex] Pick up the pen and move to the given vertex.

• LINETO

[1 vertex] Draw a line from the current position to the given vertex.

• CURVE3

[1 control point, 1 endpoint] Draw a quadratic Bezier curve from the current position, with
the given control point, to the given end point.

18.37. matplotlib.path 2427

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

• CURVE4

[2 control points, 1 endpoint] Draw a cubic Bezier curve from the current position, with the
given control points, to the given end point.

• CLOSEPOLY

[1 vertex (ignored)] Draw a line segment to the start point of the current polyline.

If codes is None, it is interpreted as a MOVETO followed by a series of LINETO.

Users of Path objects should not access the vertices and codes arrays directly. Instead, they should use
iter_segments or cleaned to get the vertex/code pairs. This helps, in particular, to consistently
handle the case of codes being None.

Some behavior of Path objects can be controlled by rcParams. See the rcParams whose keys start with
'path.'.

Note: The vertices and codes arrays should be treated as immutable -- there are a number of optimiza-
tions and assumptions made up front in the constructor that will not change when the data changes.

Create a new path with the given vertices and codes.

Parameters

vertices
[(N, 2) array-like] The path vertices, as an array, masked array or sequence of
pairs. Masked values, if any, will be converted to NaNs, which are then han-
dled correctly by the Agg PathIterator and other consumers of path data, such as
iter_segments().

codes
[array-like or None, optional] n-length array integers representing the codes of the
path. If not None, codes must be the same length as vertices. If None, vertices
will be treated as a series of line segments.

_interpolation_steps
[int, optional] Used as a hint to certain projections, such as Polar, that this path
should be linearly interpolated immediately before drawing. This attribute is pri-
marily an implementation detail and is not intended for public use.

closed
[bool, optional] If codes is None and closed is True, vertices will be treated as line
segments of a closed polygon. Note that the last vertex will then be ignored (as
the corresponding code will be set to CLOSEPOLY).

readonly
[bool, optional] Makes the path behave in an immutable way and sets the vertices
and codes as read-only arrays.

2428 Chapter 18. Modules

Matplotlib, Release 3.4.3

CLOSEPOLY = 79

CURVE3 = 3

CURVE4 = 4

LINETO = 2

MOVETO = 1

NUM_VERTICES_FOR_CODE = {0: 1, 1: 1, 2: 1, 3: 2, 4: 3, 79: 1}
A dictionary mapping Path codes to the number of vertices that the code expects.

STOP = 0

classmethod arc(theta1, theta2, n=None, is_wedge=False)
Return the unit circle arc from angles theta1 to theta2 (in degrees).

theta2 is unwrapped to produce the shortest arc within 360 degrees. That is, if theta2 > theta1 +
360, the arc will be from theta1 to theta2 - 360 and not a full circle plus some extra overlap.

If n is provided, it is the number of spline segments to make. If n is not provided, the number of
spline segments is determined based on the delta between theta1 and theta2.

Masionobe, L. 2003. Drawing an elliptical arc using polylines, quadratic or cubic
Bezier curves.

classmethod circle(center=(0.0, 0.0), radius=1.0, readonly=False)
Return a Path representing a circle of a given radius and center.

Parameters

center
[(float, float), default: (0, 0)] The center of the circle.

radius
[float, default: 1] The radius of the circle.

readonly
[bool] Whether the created path should have the "readonly" argument set when
creating the Path instance.

Notes

The circle is approximated using 8 cubic Bezier curves, as described in

Lancaster, Don. Approximating a Circle or an Ellipse Using Four Bezier Cubic Splines.

cleaned(transform=None, remove_nans=False, clip=None, quantize=<deprecated parame-
ter>, simplify=False, curves=False, stroke_width=1.0, snap=False, sketch=None)

Return a new Path with vertices and codes cleaned according to the parameters.

See also:

18.37. matplotlib.path 2429

http://www.spaceroots.org/documents/ellipse/index.html
http://www.spaceroots.org/documents/ellipse/index.html
https://www.tinaja.com/glib/ellipse4.pdf

Matplotlib, Release 3.4.3

Path.iter_segments

for details of the keyword arguments.

clip_to_bbox(bbox, inside=True)
Clip the path to the given bounding box.

The path must be made up of one or more closed polygons. This algorithm will not behave
correctly for unclosed paths.

If inside is True, clip to the inside of the box, otherwise to the outside of the box.

code_type
alias of numpy.uint8

property codes
The list of codes in the Path as a 1D numpy array. Each code is one of STOP, MOVETO,
LINETO,CURVE3, CURVE4 orCLOSEPOLY. For codes that correspond tomore than one vertex
(CURVE3 and CURVE4), that code will be repeated so that the length of self.vertices and
self.codes is always the same.

contains_path(path, transform=None)
Return whether this (closed) path completely contains the given path.

If transform is not None, the path will be transformed before checking for containment.

contains_point(point, transform=None, radius=0.0)
Return whether the area enclosed by the path contains the given point.

The path is always treated as closed; i.e. if the last code is not CLOSEPOLY an implicit segment
connecting the last vertex to the first vertex is assumed.

Parameters

point
[(float, float)] The point (x, y) to check.

transform
[matplotlib.transforms.Transform, optional] If not None, point
will be compared to self transformed by transform; i.e. for a correct check,
transform should transform the path into the coordinate system of point.

radius
[float, default: 0] Add an additional margin on the path in coordinates of point.
The path is extended tangentially by radius/2; i.e. if you would draw the path
with a linewidth of radius, all points on the line would still be considered to be
contained in the area. Conversely, negative values shrink the area: Points on the
imaginary line will be considered outside the area.

Returns

bool

2430 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

Notes

The current algorithm has some limitations:

• The result is undefined for points exactly at the boundary (i.e. at the path shifted by radius/2).

• The result is undefined if there is no enclosed area, i.e. all vertices are on a straight line.

• If bounding lines start to cross each other due to radius shift, the result is not guaranteed to
be correct.

contains_points(points, transform=None, radius=0.0)
Return whether the area enclosed by the path contains the given points.

The path is always treated as closed; i.e. if the last code is not CLOSEPOLY an implicit segment
connecting the last vertex to the first vertex is assumed.

Parameters

points
[(N, 2) array] The points to check. Columns contain x and y values.

transform
[matplotlib.transforms.Transform, optional] If not None, points
will be compared to self transformed by transform; i.e. for a correct check,
transform should transform the path into the coordinate system of points.

radius
[float, default: 0] Add an additional margin on the path in coordinates of points.
The path is extended tangentially by radius/2; i.e. if you would draw the path
with a linewidth of radius, all points on the line would still be considered to be
contained in the area. Conversely, negative values shrink the area: Points on the
imaginary line will be considered outside the area.

Returns

length-N bool array

Notes

The current algorithm has some limitations:

• The result is undefined for points exactly at the boundary (i.e. at the path shifted by radius/2).

• The result is undefined if there is no enclosed area, i.e. all vertices are on a straight line.

• If bounding lines start to cross each other due to radius shift, the result is not guaranteed to
be correct.

18.37. matplotlib.path 2431

Matplotlib, Release 3.4.3

copy()
Return a shallow copy of the Path, which will share the vertices and codes with the source
Path.

deepcopy(memo=None)
Return a deepcopy of the Path. The Path will not be readonly, even if the source Path is.

get_extents(transform=None, **kwargs)
Get Bbox of the path.

Parameters

transform
[matplotlib.transforms.Transform, optional] Transform to apply to path before
computing extents, if any.

**kwargs
Forwarded to iter_bezier.

Returns

matplotlib.transforms.Bbox
The extents of the path Bbox([[xmin, ymin], [xmax, ymax]])

static hatch(hatchpattern, density=6)
Given a hatch specifier, hatchpattern, generates a Path that can be used in a repeated hatching
pattern. density is the number of lines per unit square.

interpolated(steps)
Return a new path resampled to length N x steps.

Codes other than LINETO are not handled correctly.

intersects_bbox(bbox, filled=True)
Return whether this path intersects a given Bbox.

If filled is True, then this also returns True if the path completely encloses the Bbox (i.e., the
path is treated as filled).

The bounding box is always considered filled.

intersects_path(other, filled=True)
Return whether if this path intersects another given path.

If filled is True, then this also returns True if one path completely encloses the other (i.e., the
paths are treated as filled).

iter_bezier(**kwargs)
Iterate over each bezier curve (lines included) in a Path.

Parameters

2432 Chapter 18. Modules

Matplotlib, Release 3.4.3

**kwargs
Forwarded to iter_segments.

Yields

B
[matplotlib.bezier.BezierSegment] The bezier curves that make up the current
path. Note in particular that freestanding points are bezier curves of order 0, and
lines are bezier curves of order 1 (with two control points).

code
[Path.code_type] The code describing what kind of curve is being returned.
Path.MOVETO, Path.LINETO, Path.CURVE3, Path.CURVE4 correspond to
bezier curveswith 1, 2, 3, and 4 control points (respectively). Path.CLOSEPOLY
is a Path.LINETOwith the control points correctly chosen based on the start/end
points of the current stroke.

iter_segments(transform=None, remove_nans=True, clip=None, snap=False,
stroke_width=1.0, simplify=None, curves=True, sketch=None)

Iterate over all curve segments in the path.

Each iteration returns a pair (vertices, code), where vertices is a sequence of 1-3
coordinate pairs, and code is a Path code.

Additionally, this method can provide a number of standard cleanups and conversions to the path.

Parameters

transform
[None or Transform] If not None, the given affine transformation will be ap-
plied to the path.

remove_nans
[bool, optional] Whether to remove all NaNs from the path and skip over them
using MOVETO commands.

clip
[None or (float, float, float, float), optional] If not None, must be a four-tuple (x1,
y1, x2, y2) defining a rectangle in which to clip the path.

snap
[None or bool, optional] If True, snap all nodes to pixels; if False, don't snap
them. If None, snap if the path contains only segments parallel to the x or y
axes, and no more than 1024 of them.

stroke_width
[float, optional] The width of the stroke being drawn (used for path snapping).

18.37. matplotlib.path 2433

Matplotlib, Release 3.4.3

simplify
[None or bool, optional] Whether to simplify the path by removing vertices
that do not affect its appearance. If None, use the should_simplify
attribute. See also rcParams["path.simplify"] (default: True)
and rcParams["path.simplify_threshold"] (default: 0.
111111111111).

curves
[bool, optional] If True, curve segments will be returned as curve segments. If
False, all curves will be converted to line segments.

sketch
[None or sequence, optional] If not None, must be a 3-tuple of the form (scale,
length, randomness), representing the sketch parameters.

classmethod make_compound_path(*args)
Make a compound path from a list of Path objects. Blindly removes all Path.STOP control points.

classmethod make_compound_path_from_polys(XY)
Make a compound path object to draw a number of polygons with equal numbers of sides XY is
a (numpolys x numsides x 2) numpy array of vertices. Return object is a Path

3 2 1 0 1 2 3 4
0

10

20

30

40

50

60

2434 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=path.simplify#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=path.simplify_threshold#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

property readonly
True if the Path is read-only.

property should_simplify
True if the vertices array should be simplified.

property simplify_threshold
The fraction of a pixel difference below which vertices will be simplified out.

to_polygons(transform=None, width=0, height=0, closed_only=True)
Convert this path to a list of polygons or polylines. Each polygon/polyline is an Nx2 array of
vertices. In other words, each polygon has no MOVETO instructions or curves. This is useful for
displaying in backends that do not support compound paths or Bezier curves.

If width and height are both non-zero then the lines will be simplified so that vertices outside of
(0, 0), (width, height) will be clipped.

If closed_only is True (default), only closed polygons, with the last point being the same as
the first point, will be returned. Any unclosed polylines in the path will be explicitly closed. If
closed_only is False, any unclosed polygons in the path will be returned as unclosed polygons,
and the closed polygons will be returned explicitly closed by setting the last point to the same as
the first point.

transformed(transform)
Return a transformed copy of the path.

See also:

matplotlib.transforms.TransformedPath

A specialized path class that will cache the transformed result and automatically update
when the transform changes.

classmethod unit_circle()
Return the readonly Path of the unit circle.

For most cases, Path.circle() will be what you want.

classmethod unit_circle_righthalf()
Return a Path of the right half of a unit circle.

See Path.circle for the reference on the approximation used.

classmethod unit_rectangle()
Return a Path instance of the unit rectangle from (0, 0) to (1, 1).

classmethod unit_regular_asterisk(numVertices)
Return a Path for a unit regular asterisk with the given numVertices and radius of 1.0, centered
at (0, 0).

classmethod unit_regular_polygon(numVertices)
Return a Path instance for a unit regular polygon with the given numVertices such that the
circumscribing circle has radius 1.0, centered at (0, 0).

18.37. matplotlib.path 2435

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Matplotlib, Release 3.4.3

classmethod unit_regular_star(numVertices, innerCircle=0.5)
Return a Path for a unit regular star with the given numVertices and radius of 1.0, centered at
(0, 0).

property vertices
The list of vertices in the Path as an Nx2 numpy array.

classmethod wedge(theta1, theta2, n=None)
Return the unit circle wedge from angles theta1 to theta2 (in degrees).

theta2 is unwrapped to produce the shortest wedge within 360 degrees. That is, if theta2> theta1
+ 360, the wedge will be from theta1 to theta2 - 360 and not a full circle plus some extra overlap.

If n is provided, it is the number of spline segments to make. If n is not provided, the number of
spline segments is determined based on the delta between theta1 and theta2.

See Path.arc for the reference on the approximation used.

matplotlib.path.get_path_collection_extents(master_transform, paths, trans-
forms, offsets, offset_transform)

Given a sequence of Paths, Transforms objects, and offsets, as found in a PathCollection,
returns the bounding box that encapsulates all of them.

Parameters

master_transform
[Transform] Global transformation applied to all paths.

paths
[list of Path]

transforms
[list of Affine2D]

offsets
[(N, 2) array-like]

offset_transform
[Affine2D] Transform applied to the offsets before offsetting the path.

Notes

The way that paths, transforms and offsets are combined follows the same method as for collections:
Each is iterated over independently, so if you have 3 paths, 2 transforms and 1 offset, their combinations
are as follows:

(A, A, A), (B, B, A), (C, A, A)

2436 Chapter 18. Modules

Matplotlib, Release 3.4.3

18.38 matplotlib.patheffects

Defines classes for path effects. The path effects are supported in Text, Line2D and Patch.

See also:
Path effects guide

class matplotlib.patheffects.AbstractPathEffect(offset=(0.0, 0.0))
Bases: object

A base class for path effects.

Subclasses should override the draw_path method to add effect functionality.

Parameters

offset
[(float, float), default: (0, 0)] The (x, y) offset to apply to the path, measured in
points.

draw_path(renderer, gc, tpath, affine, rgbFace=None)
Derived should override this method. The arguments are the same as matplotlib.
backend_bases.RendererBase.draw_path() except the first argument is a renderer.

class matplotlib.patheffects.Normal(offset=(0.0, 0.0))
Bases: matplotlib.patheffects.AbstractPathEffect

The "identity" PathEffect.

The Normal PathEffect's sole purpose is to draw the original artist with no special path effect.

Parameters

offset
[(float, float), default: (0, 0)] The (x, y) offset to apply to the path, measured in
points.

class matplotlib.patheffects.PathEffectRenderer(path_effects, renderer)
Bases: matplotlib.backend_bases.RendererBase

Implements a Renderer which contains another renderer.

This proxy then intercepts draw calls, calling the appropriate AbstractPathEffect drawmethod.

Note: Not all methods have been overridden on this RendererBase subclass. It may be necessary to
add further methods to extend the PathEffects capabilities further.

Parameters

18.38. matplotlib.patheffects 2437

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

path_effects
[iterable of AbstractPathEffect] The path effects which this renderer rep-
resents.

renderer
[matplotlib.backend_bases.RendererBase subclass]

copy_with_path_effect(path_effects)

draw_markers(gc, marker_path, marker_trans, path, *args, **kwargs)
Draw a marker at each of path's vertices (excluding control points).

This provides a fallback implementation of draw_markers that makes multiple calls to
draw_path(). Some backends may want to override this method in order to draw the marker
only once and reuse it multiple times.

Parameters

gc
[GraphicsContextBase] The graphics context.

marker_trans
[matplotlib.transforms.Transform] An affine transform applied to
the marker.

trans
[matplotlib.transforms.Transform] An affine transform applied to
the path.

draw_path(gc, tpath, affine, rgbFace=None)
Draw a Path instance using the given affine transform.

draw_path_collection(gc, master_transform, paths, *args, **kwargs)
Draw a collection of paths selecting drawing properties from the lists facecolors, edgecolors,
linewidths, linestyles and antialiaseds. offsets is a list of offsets to apply to each of the paths. The
offsets in offsets are first transformed by offsetTrans before being applied.

offset_position may be either "screen" or "data" depending on the space that the offsets are in;
"data" is deprecated.

This provides a fallback implementation of draw_path_collection() that makes mul-
tiple calls to draw_path(). Some backends may want to override this in order to render
each set of path data only once, and then reference that path multiple times with the different
offsets, colors, styles etc. The generator methods _iter_collection_raw_paths() and
_iter_collection() are provided to helpwith (and standardize) the implementation across
backends. It is highly recommended to use those generators, so that changes to the behavior of
draw_path_collection() can be made globally.

class matplotlib.patheffects.PathPatchEffect(offset=(0, 0), **kwargs)
Bases: matplotlib.patheffects.AbstractPathEffect

2438 Chapter 18. Modules

Matplotlib, Release 3.4.3

Draws a PathPatch instance whose Path comes from the original PathEffect artist.

Parameters

offset
[(float, float), default: (0, 0)] The (x, y) offset to apply to the path, in points.

**kwargs
All keyword arguments are passed through to the PathPatch constructor. The
properties which cannot be overridden are "path", "clip_box" "transform" and
"clip_path".

draw_path(renderer, gc, tpath, affine, rgbFace)
Derived should override this method. The arguments are the same as matplotlib.
backend_bases.RendererBase.draw_path() except the first argument is a renderer.

class matplotlib.patheffects.SimpleLineShadow(offset=(2, - 2),
shadow_color='k', alpha=0.3,
rho=0.3, **kwargs)

Bases: matplotlib.patheffects.AbstractPathEffect

A simple shadow via a line.

Parameters

offset
[(float, float), default: (2, -2)] The (x, y) offset to apply to the path, in points.

shadow_color
[color, default: 'black'] The shadow color. A value of None takes the original
artist's color with a scale factor of rho.

alpha
[float, default: 0.3] The alpha transparency of the created shadow patch.

rho
[float, default: 0.3] A scale factor to apply to the rgbFace color if shadow_color is
None.

**kwargs
Extra keywords are stored and passed through to AbstractPathEffect.
_update_gc().

draw_path(renderer, gc, tpath, affine, rgbFace)
Overrides the standard draw_path to add the shadow offset and necessary color changes for the
shadow.

18.38. matplotlib.patheffects 2439

Matplotlib, Release 3.4.3

class matplotlib.patheffects.SimplePatchShadow(offset=(2, - 2),
shadow_rgbFace=None,
alpha=None, rho=0.3,
**kwargs)

Bases: matplotlib.patheffects.AbstractPathEffect

A simple shadow via a filled patch.

Parameters

offset
[(float, float), default: (2, -2)] The (x, y) offset of the shadow in points.

shadow_rgbFace
[color] The shadow color.

alpha
[float, default: 0.3] The alpha transparency of the created shadow patch. http:
//matplotlib.1069221.n5.nabble.com/path-effects-question-td27630.html

rho
[float, default: 0.3] A scale factor to apply to the rgbFace color if shadow_rgbFace
is not specified.

**kwargs
Extra keywords are stored and passed through to AbstractPathEffect.
_update_gc().

draw_path(renderer, gc, tpath, affine, rgbFace)
Overrides the standard draw_path to add the shadow offset and necessary color changes for the
shadow.

class matplotlib.patheffects.Stroke(offset=(0, 0), **kwargs)
Bases: matplotlib.patheffects.AbstractPathEffect

A line based PathEffect which re-draws a stroke.

The path will be stroked with its gc updated with the given keyword arguments, i.e., the keyword
arguments should be valid gc parameter values.

draw_path(renderer, gc, tpath, affine, rgbFace)
Draw the path with updated gc.

class matplotlib.patheffects.TickedStroke(offset=(0, 0), spac-
ing=10.0, angle=45.0,
length=1.4142135623730951,
**kwargs)

Bases: matplotlib.patheffects.AbstractPathEffect

A line-based PathEffect which draws a path with a ticked style.

2440 Chapter 18. Modules

http://matplotlib.1069221.n5.nabble.com/path-effects-question-td27630.html
http://matplotlib.1069221.n5.nabble.com/path-effects-question-td27630.html

Matplotlib, Release 3.4.3

This line style is frequently used to represent constraints in optimization. The ticks may be used to
indicate that one side of the line is invalid or to represent a closed boundary of a domain (i.e. a wall
or the edge of a pipe).

The spacing, length, and angle of ticks can be controlled.

This line style is sometimes referred to as a hatched line.

See also the contour demo example.

See also the contours in optimization example.

Parameters

offset
[(float, float), default: (0, 0)] The (x, y) offset to apply to the path, in points.

spacing
[float, default: 10.0] The spacing between ticks in points.

angle
[float, default: 45.0] The angle between the path and the tick in degrees. The
angle is measured as if you were an ant walking along the curve, with zero degrees
pointing directly ahead, 90 to your left, -90 to your right, and 180 behind you.

length
[float, default: 1.414] The length of the tick relative to spacing. Recom-
mended length = 1.414 (sqrt(2)) when angle=45, length=1.0 when angle=90 and
length=2.0 when angle=60.

**kwargs
Extra keywords are stored and passed through to AbstractPathEffect.
_update_gc().

Examples

See /gallery/misc/tickedstroke_demo.

draw_path(renderer, gc, tpath, affine, rgbFace)
Draw the path with updated gc.

class matplotlib.patheffects.withSimplePatchShadow(offset=(2, - 2),
shadow_rgbFace=None,
alpha=None, rho=0.3,
**kwargs)

Bases: matplotlib.patheffects.SimplePatchShadow

A shortcut PathEffect for applying SimplePatchShadow and then drawing the original Artist.

With this class you can use

18.38. matplotlib.patheffects 2441

Matplotlib, Release 3.4.3

artist.set_path_effects([path_effects.withSimplePatchShadow()])

as a shortcut for

artist.set_path_effects([path_effects.SimplePatchShadow(),
path_effects.Normal()])

Parameters

offset
[(float, float), default: (2, -2)] The (x, y) offset of the shadow in points.

shadow_rgbFace
[color] The shadow color.

alpha
[float, default: 0.3] The alpha transparency of the created shadow patch. http:
//matplotlib.1069221.n5.nabble.com/path-effects-question-td27630.html

rho
[float, default: 0.3] A scale factor to apply to the rgbFace color if shadow_rgbFace
is not specified.

**kwargs
Extra keywords are stored and passed through to AbstractPathEffect.
_update_gc().

draw_path(renderer, gc, tpath, affine, rgbFace)
Overrides the standard draw_path to add the shadow offset and necessary color changes for the
shadow.

class matplotlib.patheffects.withStroke(offset=(0, 0), **kwargs)
Bases: matplotlib.patheffects.Stroke

A shortcut PathEffect for applying Stroke and then drawing the original Artist.

With this class you can use

artist.set_path_effects([path_effects.withStroke()])

as a shortcut for

artist.set_path_effects([path_effects.Stroke(),
path_effects.Normal()])

The path will be stroked with its gc updated with the given keyword arguments, i.e., the keyword
arguments should be valid gc parameter values.

2442 Chapter 18. Modules

http://matplotlib.1069221.n5.nabble.com/path-effects-question-td27630.html
http://matplotlib.1069221.n5.nabble.com/path-effects-question-td27630.html

Matplotlib, Release 3.4.3

draw_path(renderer, gc, tpath, affine, rgbFace)
Draw the path with updated gc.

class matplotlib.patheffects.withTickedStroke(offset=(0, 0), spac-
ing=10.0, angle=45.0,
length=1.4142135623730951,
**kwargs)

Bases: matplotlib.patheffects.TickedStroke

A shortcut PathEffect for applying TickedStroke and then drawing the original Artist.

With this class you can use

artist.set_path_effects([path_effects.withTickedStroke()])

as a shortcut for

artist.set_path_effects([path_effects.TickedStroke(),
path_effects.Normal()])

Parameters

offset
[(float, float), default: (0, 0)] The (x, y) offset to apply to the path, in points.

spacing
[float, default: 10.0] The spacing between ticks in points.

angle
[float, default: 45.0] The angle between the path and the tick in degrees. The
angle is measured as if you were an ant walking along the curve, with zero degrees
pointing directly ahead, 90 to your left, -90 to your right, and 180 behind you.

length
[float, default: 1.414] The length of the tick relative to spacing. Recom-
mended length = 1.414 (sqrt(2)) when angle=45, length=1.0 when angle=90 and
length=2.0 when angle=60.

**kwargs
Extra keywords are stored and passed through to AbstractPathEffect.
_update_gc().

18.38. matplotlib.patheffects 2443

Matplotlib, Release 3.4.3

Examples

See /gallery/misc/tickedstroke_demo.

draw_path(renderer, gc, tpath, affine, rgbFace)
Draw the path with updated gc.

18.39 matplotlib.pyplot

18.39.1 Pyplot function overview

pyplot matplotlib.pyplot is a state-based interface
to matplotlib.

matplotlib.pyplot

matplotlib.pyplot is a state-based interface to matplotlib. It provides a MATLAB-like way of plot-
ting.

pyplot is mainly intended for interactive plots and simple cases of programmatic plot generation:

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 5, 0.1)
y = np.sin(x)
plt.plot(x, y)

The object-oriented API is recommended for more complex plots.

Functions

acorr(x, *[, data]) Plot the autocorrelation of x.
angle_spectrum(x[, Fs, Fc, window, pad_to,
...])

Plot the angle spectrum.

annotate(text, xy, *args, **kwargs) Annotate the point xy with text text.
arrow(x, y, dx, dy, **kwargs) Add an arrow to the Axes.
autoscale([enable, axis, tight]) Autoscale the axis view to the data (toggle).
autumn() Set the colormap to 'autumn'.
axes([arg]) Add an axes to the current figure and make it the

current axes.
axhline([y, xmin, xmax]) Add a horizontal line across the axis.
axhspan(ymin, ymax[, xmin, xmax]) Add a horizontal span (rectangle) across the Axes.

continues on next page

2444 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 188 – continued from previous page
axis(*args[, emit]) Convenience method to get or set some axis prop-

erties.
axline(xy1[, xy2, slope]) Add an infinitely long straight line.
axvline([x, ymin, ymax]) Add a vertical line across the Axes.
axvspan(xmin, xmax[, ymin, ymax]) Add a vertical span (rectangle) across the Axes.
bar(x, height[, width, bottom, align, data]) Make a bar plot.
bar_label(container[, labels, fmt, ...]) Label a bar plot.
barbs(*args[, data]) Plot a 2D field of barbs.
barh(y, width[, height, left, align]) Make a horizontal bar plot.
bone() Set the colormap to 'bone'.
box([on]) Turn the axes box on or off on the current axes.
boxplot(x[, notch, sym, vert, whis, ...]) Make a box and whisker plot.
broken_barh(xranges, yrange, *[, data]) Plot a horizontal sequence of rectangles.
cla() Clear the current axes.
clabel(CS[, levels]) Label a contour plot.
clf() Clear the current figure.
clim([vmin, vmax]) Set the color limits of the current image.
close([fig]) Close a figure window.
cohere(x, y[, NFFT, Fs, Fc, detrend, ...]) Plot the coherence between x and y.
colorbar([mappable, cax, ax]) Add a colorbar to a plot.
connect(s, func) Bind function func to event s.
contour(*args[, data]) Plot contour lines.
contourf(*args[, data]) Plot filled contours.
cool() Set the colormap to 'cool'.
copper() Set the colormap to 'copper'.
csd(x, y[, NFFT, Fs, Fc, detrend, window, ...]) Plot the cross-spectral density.
delaxes([ax]) Remove an Axes (defaulting to the current axes)

from its figure.
disconnect(cid) Disconnect the callback with id cid.
draw() Redraw the current figure.
draw_if_interactive() Redraw the current figure if in interactive mode.
errorbar(x, y[, yerr, xerr, fmt, ecolor, ...]) Plot y versus x as lines and/or markers with attached

errorbars.
eventplot(positions[, orientation, ...]) Plot identical parallel lines at the given positions.
figimage(X[, xo, yo, alpha, norm, cmap, ...]) Add a non-resampled image to the figure.
figlegend(*args, **kwargs) Place a legend on the figure.
fignum_exists(num) Return whether the figure with the given id exists.
figtext(x, y, s[, fontdict]) Add text to figure.
figure([num, figsize, dpi, facecolor, ...]) Create a new figure, or activate an existing figure.
fill(*args[, data]) Plot filled polygons.
fill_between(x, y1[, y2, where, ...]) Fill the area between two horizontal curves.
fill_betweenx(y, x1[, x2, where, step, ...]) Fill the area between two vertical curves.
findobj([o, match, include_self]) Find artist objects.
flag() Set the colormap to 'flag'.

continues on next page

18.39. matplotlib.pyplot 2445

Matplotlib, Release 3.4.3

Table 188 – continued from previous page
gca(**kwargs) Get the current Axes, creating one if necessary.
gcf() Get the current figure.
gci() Get the current colorable artist.
get(obj, *args, **kwargs) Return the value of an Artist's property, or print

all of them.
get_current_fig_manager() Return the figure manager of the current figure.
get_figlabels() Return a list of existing figure labels.
get_fignums() Return a list of existing figure numbers.
get_plot_commands() Get a sorted list of all of the plotting commands.
getp(obj, *args, **kwargs) Return the value of an Artist's property, or print

all of them.
ginput([n, timeout, show_clicks, mouse_add,
...])

Blocking call to interact with a figure.

gray() Set the colormap to 'gray'.
grid([b, which, axis]) Configure the grid lines.
hexbin(x, y[, C, gridsize, bins, xscale, ...]) Make a 2D hexagonal binning plot of points x, y.
hist(x[, bins, range, density, weights, ...]) Plot a histogram.
hist2d(x, y[, bins, range, density, ...]) Make a 2D histogram plot.
hlines(y, xmin, xmax[, colors, linestyles, ...]) Plot horizontal lines at each y from xmin to xmax.
hot() Set the colormap to 'hot'.
hsv() Set the colormap to 'hsv'.
imread(fname[, format]) Read an image from a file into an array.
imsave(fname, arr, **kwargs) Save an array as an image file.
imshow(X[, cmap, norm, aspect, ...]) Display data as an image, i.e., on a 2D regular raster.
inferno() Set the colormap to 'inferno'.
install_repl_displayhook() Install a repl display hook so that any stale figure

are automatically redrawn when control is returned
to the repl.

ioff() Disable interactive mode.
ion() Enable interactive mode.
isinteractive() Return whether plots are updated after every plot-

ting command.
jet() Set the colormap to 'jet'.
legend(*args, **kwargs) Place a legend on the Axes.
locator_params([axis, tight]) Control behavior of major tick locators.
loglog(*args, **kwargs) Make a plot with log scaling on both the x and y

axis.
magma() Set the colormap to 'magma'.
magnitude_spectrum(x[, Fs, Fc, window, ...]) Plot the magnitude spectrum.
margins(*margins[, x, y, tight]) Set or retrieve autoscaling margins.
matshow(A[, fignum]) Display an array as amatrix in a new figurewindow.
minorticks_off() Remove minor ticks from the axes.
minorticks_on() Display minor ticks on the axes.
new_figure_manager(num, *args, **kwargs) Create a new figure manager instance.

continues on next page

2446 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 188 – continued from previous page
nipy_spectral() Set the colormap to 'nipy_spectral'.
pause(interval) Run the GUI event loop for interval seconds.
pcolor(*args[, shading, alpha, norm, cmap, ...]) Create a pseudocolor plot with a non-regular rect-

angular grid.
pcolormesh(*args[, alpha, norm, cmap, vmin,
...])

Create a pseudocolor plot with a non-regular rect-
angular grid.

phase_spectrum(x[, Fs, Fc, window, pad_to,
...])

Plot the phase spectrum.

pie(x[, explode, labels, colors, autopct, ...]) Plot a pie chart.
pink() Set the colormap to 'pink'.
plasma() Set the colormap to 'plasma'.
plot(*args[, scalex, scaley, data]) Plot y versus x as lines and/or markers.
plot_date(x, y[, fmt, tz, xdate, ydate, data]) Plot co-ercing the axis to treat floats as dates.
polar(*args, **kwargs) Make a polar plot.
prism() Set the colormap to 'prism'.
psd(x[, NFFT, Fs, Fc, detrend, window, ...]) Plot the power spectral density.
quiver(*args[, data]) Plot a 2D field of arrows.
quiverkey(Q, X, Y, U, label, **kw) Add a key to a quiver plot.
rc(group, **kwargs) Set the current rcParams. group is the grouping

for the rc, e.g., for lines.linewidth the group
is lines, for axes.facecolor, the group is
axes, and so on. Group may also be a list or tu-
ple of group names, e.g., (xtick, ytick). kwargs is a
dictionary attribute name/value pairs, e.g.,::.

rc_context([rc, fname]) Return a context manager for temporarily changing
rcParams.

rcdefaults() Restore the rcParams from Matplotlib's internal
default style.

rgrids([radii, labels, angle, fmt]) Get or set the radial gridlines on the current polar
plot.

savefig(*args, **kwargs) Save the current figure.
sca(ax) Set the current Axes to ax and the current Figure to

the parent of ax.
scatter(x, y[, s, c, marker, cmap, norm, ...]) A scatter plot of y vs.
sci(im) Set the current image.
semilogx(*args, **kwargs) Make a plot with log scaling on the x axis.
semilogy(*args, **kwargs) Make a plot with log scaling on the y axis.
set_cmap(cmap) Set the default colormap, and applies it to the cur-

rent image if any.
setp(obj, *args, **kwargs) Set one or more properties on an Artist, or list

allowed values.
show(*[, block]) Display all open figures.
specgram(x[, NFFT, Fs, Fc, detrend, window,
...])

Plot a spectrogram.

spring() Set the colormap to 'spring'.
continues on next page

18.39. matplotlib.pyplot 2447

Matplotlib, Release 3.4.3

Table 188 – continued from previous page
spy(Z[, precision, marker, markersize, ...]) Plot the sparsity pattern of a 2D array.
stackplot(x, *args[, labels, colors, ...]) Draw a stacked area plot.
stairs(values[, edges, orientation, ...]) A stepwise constant function as a line with bound-

ing edges or a filled plot.
stem(*args[, linefmt, markerfmt, basefmt, ...]) Create a stem plot.
step(x, y, *args[, where, data]) Make a step plot.
streamplot(x, y, u, v[, density, linewidth, ...]) Draw streamlines of a vector flow.
subplot(*args, **kwargs) Add an Axes to the current figure or retrieve an ex-

isting Axes.
subplot2grid(shape, loc[, rowspan, colspan,
fig])

Create a subplot at a specific location inside a reg-
ular grid.

subplot_mosaic(mosaic, *[, subplot_kw, ...]) Build a layout of Axes based on ASCII art or nested
lists.

subplot_tool([targetfig]) Launch a subplot tool window for a figure.
subplots([nrows, ncols, sharex, sharey, ...]) Create a figure and a set of subplots.
subplots_adjust([left, bottom, right, top, ...]) Adjust the subplot layout parameters.
summer() Set the colormap to 'summer'.
suptitle(t, **kwargs) Add a centered suptitle to the figure.
switch_backend(newbackend) Close all open figures and set the Matplotlib back-

end.
table([cellText, cellColours, cellLoc, ...]) Add a table to an Axes.
text(x, y, s[, fontdict]) Add text to the Axes.
thetagrids([angles, labels, fmt]) Get or set the theta gridlines on the current polar

plot.
tick_params([axis]) Change the appearance of ticks, tick labels, and

gridlines.
ticklabel_format(*[, axis, style, ...]) Configure the ScalarFormatter used by de-

fault for linear axes.
tight_layout(*[, pad, h_pad, w_pad, rect]) Adjust the padding between and around subplots.
title(label[, fontdict, loc, pad, y]) Set a title for the Axes.
tricontour(*args, **kwargs) Draw contour lines on an unstructured triangular

grid.
tricontourf(*args, **kwargs) Draw contour regions on an unstructured triangular

grid.
tripcolor(*args[, alpha, norm, cmap, vmin,
...])

Create a pseudocolor plot of an unstructured trian-
gular grid.

triplot(*args, **kwargs) Draw a unstructured triangular grid as lines and/or
markers.

twinx([ax]) Make and return a second axes that shares the x-
axis.

twiny([ax]) Make and return a second axes that shares the y-
axis.

uninstall_repl_displayhook() Uninstall the matplotlib display hook.
violinplot(dataset[, positions, vert, ...]) Make a violin plot.
viridis() Set the colormap to 'viridis'.

continues on next page

2448 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 188 – continued from previous page
vlines(x, ymin, ymax[, colors, linestyles, ...]) Plot vertical lines at each x from ymin to ymax.
waitforbuttonpress([timeout]) Blocking call to interact with the figure.
winter() Set the colormap to 'winter'.
xcorr(x, y[, normed, detrend, usevlines, ...]) Plot the cross correlation between x and y.
xkcd([scale, length, randomness]) Turn on xkcd sketch-style drawing mode.
xlabel(xlabel[, fontdict, labelpad, loc]) Set the label for the x-axis.
xlim(*args, **kwargs) Get or set the x limits of the current axes.
xscale(value, **kwargs) Set the x-axis scale.
xticks([ticks, labels]) Get or set the current tick locations and labels of the

x-axis.
ylabel(ylabel[, fontdict, labelpad, loc]) Set the label for the y-axis.
ylim(*args, **kwargs) Get or set the y-limits of the current axes.
yscale(value, **kwargs) Set the y-axis scale.
yticks([ticks, labels]) Get or set the current tick locations and labels of the

y-axis.

matplotlib.pyplot.acorr

matplotlib.pyplot.acorr(x, *, data=None, **kwargs)
Plot the autocorrelation of x.

Parameters

x
[array-like]

detrend
[callable, default: mlab.detrend_none (no detrending)] A detrending func-
tion applied to x. It must have the signature

detrend(x: np.ndarray) -> np.ndarray

normed
[bool, default: True] If True, input vectors are normalised to unit length.

usevlines
[bool, default: True] Determines the plot style.

If True, vertical lines are plotted from 0 to the acorr value using Axes.vlines.
Additionally, a horizontal line is plotted at y=0 using Axes.axhline.

If False, markers are plotted at the acorr values using Axes.plot.

maxlags
[int, default: 10] Number of lags to show. If None, will return all 2 * len(x)
- 1 lags.

18.39. matplotlib.pyplot 2449

https://xkcd.com/

Matplotlib, Release 3.4.3

Returns

lags
[array (length 2*maxlags+1)] The lag vector.

c
[array (length 2*maxlags+1)] The auto correlation vector.

line
[LineCollection or Line2D] Artist added to the Axes of the correlation:

• LineCollection if usevlines is True.

• Line2D if usevlines is False.

b
[Line2D or None] Horizontal line at 0 if usevlines is True None usevlines is False.

Other Parameters

linestyle
[Line2D property, optional] The linestyle for plotting the data points. Only used
if usevlines is False.

marker
[str, default: 'o'] The marker for plotting the data points. Only used if usevlines is
False.

**kwargs
Additional parameters are passed to Axes.vlines and Axes.axhline if
usevlines is True; otherwise they are passed to Axes.plot.

Notes

The cross correlation is performed with numpy.correlate with mode = "full".

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x.

Objects passed as data must support item access (data[s]) and membership test (s in data).

2450 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.correlate.html#numpy.correlate

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.acorr

matplotlib.pyplot.angle_spectrum

matplotlib.pyplot.angle_spectrum(x, Fs=None, Fc=None, window=None,
pad_to=None, sides=None, *, data=None,
**kwargs)

Plot the angle spectrum.

Compute the angle spectrum (wrapped phase spectrum) of x. Data is padded to a length of pad_to and
the windowing function window is applied to the signal.

Parameters

x
[1-D array or sequence] Array or sequence containing the data.

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. While not increasing the actual resolution of the spectrum
(the minimum distance between resolvable peaks), this can give more points in
the plot, allowing for more detail. This corresponds to the n parameter in the call
to fft(). The default is None, which sets pad_to equal to the length of the input
signal (i.e. no padding).

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

Returns

18.39. matplotlib.pyplot 2451

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

spectrum
[1-D array] The values for the angle spectrum in radians (real valued).

freqs
[1-D array] The frequencies corresponding to the elements in spectrum.

line
[Line2D] The line created by this function.

Other Parameters

**kwargs
Keyword arguments control the Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

continues on next page

2452 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 189 – continued from previous page
Property Description
picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

magnitude_spectrum

Plots the magnitudes of the corresponding frequencies.

phase_spectrum

Plots the unwrapped version of this function.

specgram

Can plot the angle spectrum of segments within the signal in a colormap.

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.angle_spectrum

matplotlib.pyplot.annotate

matplotlib.pyplot.annotate(text, xy, *args, **kwargs)
Annotate the point xy with text text.

In the simplest form, the text is placed at xy.

18.39. matplotlib.pyplot 2453

Matplotlib, Release 3.4.3

Optionally, the text can be displayed in another position xytext. An arrow pointing from the text to the
annotated point xy can then be added by defining arrowprops.

Parameters

text
[str] The text of the annotation.

xy
[(float, float)] The point (x, y) to annotate. The coordinate system is determined
by xycoords.

xytext
[(float, float), default: xy] The position (x, y) to place the text at. The coordinate
system is determined by textcoords.

xycoords
[str or Artist or Transform or callable or (float, float), default: 'data'] The
coordinate system that xy is given in. The following types of values are supported:

• One of the following strings:

Value Description
'figure points' Points from the lower left of the figure
'figure pixels' Pixels from the lower left of the figure
'figure fraction' Fraction of figure from lower left
'subfigure
points'

Points from the lower left of the subfigure

'subfigure
pixels'

Pixels from the lower left of the subfigure

'subfigure frac-
tion'

Fraction of subfigure from lower left

'axes points' Points from lower left corner of axes
'axes pixels' Pixels from lower left corner of axes
'axes fraction' Fraction of axes from lower left
'data' Use the coordinate system of the object being annotated

(default)
'polar' (theta, r) if not native 'data' coordinates

Note that 'subfigure pixels' and 'figure pixels' are the same for the parent figure,
so users who want code that is usable in a subfigure can use 'subfigure pixels'.

• An Artist: xy is interpreted as a fraction of the artist's Bbox. E.g. (0, 0)
would be the lower left corner of the bounding box and (0.5, 1) would be the
center top of the bounding box.

• A Transform to transform xy to screen coordinates.

• A function with one of the following signatures:

2454 Chapter 18. Modules

Matplotlib, Release 3.4.3

def transform(renderer) -> Bbox
def transform(renderer) -> Transform

where renderer is a RendererBase subclass.

The result of the function is interpreted like the Artist and Transform
cases above.

• A tuple (xcoords, ycoords) specifying separate coordinate systems for x and y.
xcoords and ycoords must each be of one of the above described types.

See Advanced Annotations for more details.

textcoords
[str or Artist or Transform or callable or (float, float), default: value of xy-
coords] The coordinate system that xytext is given in.

All xycoords values are valid as well as the following strings:

Value Description
'offset points' Offset (in points) from the xy value
'offset pixels' Offset (in pixels) from the xy value

arrowprops
[dict, optional] The properties used to draw a FancyArrowPatch arrow be-
tween the positions xy and xytext. Note that the edge of the arrow pointing to xy-
text will be centered on the text itself and may not point directly to the coordinates
given in xytext.

If arrowprops does not contain the key 'arrowstyle' the allowed keys are:

Key Description
width The width of the arrow in points
headwidth The width of the base of the arrow head in points
headlength The length of the arrow head in points
shrink Fraction of total length to shrink from both ends
? Any key to matplotlib.patches.FancyArrowPatch

If arrowprops contains the key 'arrowstyle' the above keys are forbidden. The
allowed values of 'arrowstyle' are:

18.39. matplotlib.pyplot 2455

Matplotlib, Release 3.4.3

Name Attrs
'-' None
'->' head_length=0.4,head_width=0.2
'-[' widthB=1.0,lengthB=0.2,angleB=None
'|-|' widthA=1.0,widthB=1.0
'-|>' head_length=0.4,head_width=0.2
'<-' head_length=0.4,head_width=0.2
'<->' head_length=0.4,head_width=0.2
'<|-' head_length=0.4,head_width=0.2
'<|-|>' head_length=0.4,head_width=0.2
'fancy' head_length=0.4,head_width=0.4,tail_width=0.4
'simple' head_length=0.5,head_width=0.5,tail_width=0.2
'wedge' tail_width=0.3,shrink_factor=0.5

Valid keys for FancyArrowPatch are:

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

Defaults to None, i.e. no arrow is drawn.

annotation_clip
[bool or None, default: None]Whether to draw the annotation when the annotation
point xy is outside the axes area.

• If True, the annotation will only be drawn when xy is within the axes.

• If False, the annotation will always be drawn.

• If None, the annotation will only be drawn when xy is within the axes and xy-
coords is 'data'.

**kwargs
Additional kwargs are passed to Text.

Returns

Annotation

2456 Chapter 18. Modules

Matplotlib, Release 3.4.3

See also:

Advanced Annotations

Examples using matplotlib.pyplot.annotate

• sphx_glr_gallery_text_labels_and_annotations_mathtext_examples.py

• Pyplot tutorial

• Annotations

matplotlib.pyplot.arrow

matplotlib.pyplot.arrow(x, y, dx, dy, **kwargs)
Add an arrow to the Axes.

This draws an arrow from (x, y) to (x+dx, y+dy).

Parameters

x, y
[float] The x and y coordinates of the arrow base.

dx, dy
[float] The length of the arrow along x and y direction.

width
[float, default: 0.001] Width of full arrow tail.

length_includes_head
[bool, default: False] True if head is to be counted in calculating the length.

head_width
[float or None, default: 3*width] Total width of the full arrow head.

head_length
[float or None, default: 1.5*head_width] Length of arrow head.

shape
[{'full', 'left', 'right'}, default: 'full'] Draw the left-half, right-half, or full arrow.

overhang
[float, default: 0] Fraction that the arrow is swept back (0 overhang means trian-
gular shape). Can be negative or greater than one.

18.39. matplotlib.pyplot 2457

Matplotlib, Release 3.4.3

head_starts_at_zero
[bool, default: False] If True, the head starts being drawn at coordinate 0 instead
of ending at coordinate 0.

**kwargs
Patch properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

Returns

FancyArrow

The created FancyArrow object.

2458 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

The resulting arrow is affected by the Axes aspect ratio and limits. This may produce an arrow whose
head is not square with its stem. To create an arrow whose head is square with its stem, use anno-
tate() for example:

>>> ax.annotate("", xy=(0.5, 0.5), xytext=(0, 0),
... arrowprops=dict(arrowstyle="->"))

Examples using matplotlib.pyplot.arrow

• sphx_glr_gallery_text_labels_and_annotations_arrow_demo.py

matplotlib.pyplot.autoscale

matplotlib.pyplot.autoscale(enable=True, axis='both', tight=None)
Autoscale the axis view to the data (toggle).

Convenience method for simple axis view autoscaling. It turns autoscaling on or off, and then, if
autoscaling for either axis is on, it performs the autoscaling on the specified axis or axes.

Parameters

enable
[bool or None, default: True] True turns autoscaling on, False turns it off. None
leaves the autoscaling state unchanged.

axis
[{'both', 'x', 'y'}, default: 'both'] Which axis to operate on.

tight
[bool or None, default: None] If True, first set the margins to zero. Then, this
argument is forwarded to autoscale_view (regardless of its value); see the
description of its behavior there.

Examples using matplotlib.pyplot.autoscale

matplotlib.pyplot.autumn

matplotlib.pyplot.autumn()
Set the colormap to 'autumn'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

18.39. matplotlib.pyplot 2459

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.autumn

matplotlib.pyplot.axes

matplotlib.pyplot.axes(arg=None, **kwargs)
Add an axes to the current figure and make it the current axes.

Call signatures:

plt.axes()
plt.axes(rect, projection=None, polar=False, **kwargs)
plt.axes(ax)

Parameters

arg
[None or 4-tuple] The exact behavior of this function depends on the type:

• None: A new full window axes is added using subplot(**kwargs).

• 4-tuple of floats rect = [left, bottom, width, height]. A new axes
is added with dimensions rect in normalized (0, 1) units using add_axes on
the current figure.

projection
[{None, 'aitoff', 'hammer', 'lambert', 'mollweide', 'polar', 'rectilinear', str}, op-
tional] The projection type of the Axes. str is the name of a custom projection,
see projections. The default None results in a 'rectilinear' projection.

polar
[bool, default: False] If True, equivalent to projection='polar'.

sharex, sharey
[Axes, optional] Share the x or y axis with sharex and/or sharey. The axis will
have the same limits, ticks, and scale as the axis of the shared axes.

label
[str] A label for the returned axes.

Returns

Axes, or a subclass of Axes
The returned axes class depends on the projection used. It is Axes if rectilinear
projection is used and projections.polar.PolarAxes if polar projection
is used.

Other Parameters

2460 Chapter 18. Modules

Matplotlib, Release 3.4.3

**kwargs
This method also takes the keyword arguments for the returned axes class. The
keyword arguments for the rectilinear axes class Axes can be found in the follow-
ing table but there might also be other keyword arguments if another projection is
used, see the actual axes class.

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str

continues on next page

18.39. matplotlib.pyplot 2461

Matplotlib, Release 3.4.3

Table 191 – continued from previous page
Property Description
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

See also:

Figure.add_axes

pyplot.subplot

Figure.add_subplot

Figure.subplots

pyplot.subplots

Notes

If the figure already has a axes with key (args, kwargs) then it will simply make that axes current and
return it. This behavior is deprecated. Meanwhile, if you do not want this behavior (i.e., you want
to force the creation of a new axes), you must use a unique set of args and kwargs. The axes label
attribute has been exposed for this purpose: if you want two axes that are otherwise identical to be
added to the figure, make sure you give them unique labels.

Examples

Creating a new full window axes
plt.axes()

Creating a new axes with specified dimensions and some kwargs
plt.axes((left, bottom, width, height), facecolor='w')

2462 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.axes

• sphx_glr_gallery_subplots_axes_and_figures_subplots_adjust.py

• sphx_glr_gallery_text_labels_and_annotations_arrow_simple_demo.py

• sphx_glr_gallery_text_labels_and_annotations_mathtext_examples.py

• sphx_glr_gallery_axes_grid1_make_room_for_ylabel_using_axesgrid.py

• sphx_glr_gallery_event_handling_lasso_demo.py

• sphx_glr_gallery_widgets_buttons.py

• sphx_glr_gallery_widgets_check_buttons.py

• sphx_glr_gallery_widgets_radio_buttons.py

• sphx_glr_gallery_widgets_range_slider.py

• sphx_glr_gallery_widgets_slider_demo.py

• sphx_glr_gallery_widgets_slider_snap_demo.py

matplotlib.pyplot.axhline

matplotlib.pyplot.axhline(y=0, xmin=0, xmax=1, **kwargs)
Add a horizontal line across the axis.

Parameters

y
[float, default: 0] y position in data coordinates of the horizontal line.

xmin
[float, default: 0] Should be between 0 and 1, 0 being the far left of the plot, 1 the
far right of the plot.

xmax
[float, default: 1] Should be between 0 and 1, 0 being the far left of the plot, 1 the
far right of the plot.

Returns

Line2D

Other Parameters

**kwargs
Valid keyword arguments are Line2D properties, with the exception of 'trans-
form':

18.39. matplotlib.pyplot 2463

Matplotlib, Release 3.4.3

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

2464 Chapter 18. Modules

Matplotlib, Release 3.4.3

hlines

Add horizontal lines in data coordinates.

axhspan

Add a horizontal span (rectangle) across the axis.

axline

Add a line with an arbitrary slope.

Examples

• draw a thick red hline at 'y' = 0 that spans the xrange:

>>> axhline(linewidth=4, color='r')

• draw a default hline at 'y' = 1 that spans the xrange:

>>> axhline(y=1)

• draw a default hline at 'y' = .5 that spans the middle half of the xrange:

>>> axhline(y=.5, xmin=0.25, xmax=0.75)

Examples using matplotlib.pyplot.axhline

• sphx_glr_gallery_pyplots_axline.py

• sphx_glr_gallery_misc_zorder_demo.py

matplotlib.pyplot.axhspan

matplotlib.pyplot.axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs)
Add a horizontal span (rectangle) across the Axes.

The rectangle spans from ymin to ymax vertically, and, by default, the whole x-axis horizontally. The
x-span can be set using xmin (default: 0) and xmax (default: 1) which are in axis units; e.g. xmin =
0.5 always refers to the middle of the x-axis regardless of the limits set by set_xlim.

Parameters

ymin
[float] Lower y-coordinate of the span, in data units.

ymax
[float] Upper y-coordinate of the span, in data units.

18.39. matplotlib.pyplot 2465

Matplotlib, Release 3.4.3

xmin
[float, default: 0] Lower x-coordinate of the span, in x-axis (0-1) units.

xmax
[float, default: 1] Upper x-coordinate of the span, in x-axis (0-1) units.

Returns

Polygon

Horizontal span (rectangle) from (xmin, ymin) to (xmax, ymax).

Other Parameters

**kwargs
[Polygon properties]

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

continues on next page

2466 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 193 – continued from previous page
Property Description
url str
visible bool
zorder float

See also:

axvspan

Add a vertical span across the Axes.

Examples using matplotlib.pyplot.axhspan

matplotlib.pyplot.axis

matplotlib.pyplot.axis(*args, emit=True, **kwargs)
Convenience method to get or set some axis properties.

Call signatures:

xmin, xmax, ymin, ymax = axis()
xmin, xmax, ymin, ymax = axis([xmin, xmax, ymin, ymax])
xmin, xmax, ymin, ymax = axis(option)
xmin, xmax, ymin, ymax = axis(**kwargs)

Parameters

xmin, xmax, ymin, ymax
[float, optional] The axis limits to be set. This can also be achieved using

ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax))

option
[bool or str] If a bool, turns axis lines and labels on or off. If a string, possible
values are:

18.39. matplotlib.pyplot 2467

Matplotlib, Release 3.4.3

ValueDescription
'on' Turn on axis lines and labels. Same as True.
'off' Turn off axis lines and labels. Same as False.
'equal'Set equal scaling (i.e., make circles circular) by changing axis lim-

its. This is the same as ax.set_aspect('equal', ad-
justable='datalim'). Explicit data limits may not be respected
in this case.

'scaled'Set equal scaling (i.e., make circles circular) by changing dimensions of
the plot box. This is the same as ax.set_aspect('equal', ad-
justable='box', anchor='C'). Additionally, further autoscal-
ing will be disabled.

'tight' Set limits just large enough to show all data, then disable further au-
toscaling.

'auto' Automatic scaling (fill plot box with data).
'im-
age'

'scaled' with axis limits equal to data limits.

'square'Square plot; similar to 'scaled', but initially forcing xmax-xmin ==
ymax-ymin.

emit
[bool, default: True] Whether observers are notified of the axis limit change. This
option is passed on to set_xlim and set_ylim.

Returns

xmin, xmax, ymin, ymax
[float] The axis limits.

See also:

matplotlib.axes.Axes.set_xlim

matplotlib.axes.Axes.set_ylim

Examples using matplotlib.pyplot.axis

• sphx_glr_gallery_lines_bars_and_markers_fill.py

• sphx_glr_gallery_text_labels_and_annotations_autowrap.py

• sphx_glr_gallery_text_labels_and_annotations_text_alignment.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• Pyplot tutorial

2468 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.pyplot.axline

matplotlib.pyplot.axline(xy1, xy2=None, *, slope=None, **kwargs)
Add an infinitely long straight line.

The line can be defined either by two points xy1 and xy2, or by one point xy1 and a slope.

This draws a straight line "on the screen", regardless of the x and y scales, and is thus also suitable for
drawing exponential decays in semilog plots, power laws in loglog plots, etc. However, slope should
only be used with linear scales; It has no clear meaning for all other scales, and thus the behavior is
undefined. Please specify the line using the points xy1, xy2 for non-linear scales.

The transform keyword argument only applies to the points xy1, xy2. The slope (if given) is always
in data coordinates. This can be used e.g. with ax.transAxes for drawing grid lines with a fixed
slope.

Parameters

xy1, xy2
[(float, float)] Points for the line to pass through. Either xy2 or slope has to be
given.

slope
[float, optional] The slope of the line. Either xy2 or slope has to be given.

Returns

Line2D

Other Parameters

**kwargs
Valid kwargs are Line2D properties

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)

continues on next page

18.39. matplotlib.pyplot 2469

Matplotlib, Release 3.4.3

Table 194 – continued from previous page
Property Description
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

axhline

for horizontal lines

axvline

for vertical lines

2470 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples

Draw a thick red line passing through (0, 0) and (1, 1):

>>> axline((0, 0), (1, 1), linewidth=4, color='r')

Examples using matplotlib.pyplot.axline

• sphx_glr_gallery_pyplots_axline.py

matplotlib.pyplot.axvline

matplotlib.pyplot.axvline(x=0, ymin=0, ymax=1, **kwargs)
Add a vertical line across the Axes.

Parameters

x
[float, default: 0] x position in data coordinates of the vertical line.

ymin
[float, default: 0] Should be between 0 and 1, 0 being the bottom of the plot, 1 the
top of the plot.

ymax
[float, default: 1] Should be between 0 and 1, 0 being the bottom of the plot, 1 the
top of the plot.

Returns

Line2D

Other Parameters

**kwargs
Valid keyword arguments are Line2D properties, with the exception of 'trans-
form':

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool

continues on next page

18.39. matplotlib.pyplot 2471

Matplotlib, Release 3.4.3

Table 195 – continued from previous page
Property Description
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

vlines

Add vertical lines in data coordinates.

2472 Chapter 18. Modules

Matplotlib, Release 3.4.3

axvspan

Add a vertical span (rectangle) across the axis.

axline

Add a line with an arbitrary slope.

Examples

• draw a thick red vline at x = 0 that spans the yrange:

>>> axvline(linewidth=4, color='r')

• draw a default vline at x = 1 that spans the yrange:

>>> axvline(x=1)

• draw a default vline at x = .5 that spans the middle half of the yrange:

>>> axvline(x=.5, ymin=0.25, ymax=0.75)

Examples using matplotlib.pyplot.axvline

• sphx_glr_gallery_pyplots_axline.py

matplotlib.pyplot.axvspan

matplotlib.pyplot.axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs)
Add a vertical span (rectangle) across the Axes.

The rectangle spans from xmin to xmax horizontally, and, by default, the whole y-axis vertically. The
y-span can be set using ymin (default: 0) and ymax (default: 1) which are in axis units; e.g. ymin =
0.5 always refers to the middle of the y-axis regardless of the limits set by set_ylim.

Parameters

xmin
[float] Lower x-coordinate of the span, in data units.

xmax
[float] Upper x-coordinate of the span, in data units.

ymin
[float, default: 0] Lower y-coordinate of the span, in y-axis units (0-1).

ymax
[float, default: 1] Upper y-coordinate of the span, in y-axis units (0-1).

18.39. matplotlib.pyplot 2473

Matplotlib, Release 3.4.3

Returns

Polygon

Vertical span (rectangle) from (xmin, ymin) to (xmax, ymax).

Other Parameters

**kwargs
[Polygon properties]

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

See also:

axhspan

2474 Chapter 18. Modules

Matplotlib, Release 3.4.3

Add a horizontal span across the Axes.

Examples

Draw a vertical, green, translucent rectangle from x = 1.25 to x = 1.55 that spans the yrange of the
Axes.

>>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5)

Examples using matplotlib.pyplot.axvspan

matplotlib.pyplot.bar

matplotlib.pyplot.bar(x, height, width=0.8, bottom=None, *, align='center', data=None,
**kwargs)

Make a bar plot.

The bars are positioned at xwith the given alignment. Their dimensions are given by height and width.
The vertical baseline is bottom (default 0).

Many parameters can take either a single value applying to all bars or a sequence of values, one for
each bar.

Parameters

x
[float or array-like] The x coordinates of the bars. See also align for the alignment
of the bars to the coordinates.

height
[float or array-like] The height(s) of the bars.

width
[float or array-like, default: 0.8] The width(s) of the bars.

bottom
[float or array-like, default: 0] The y coordinate(s) of the bars bases.

align
[{'center', 'edge'}, default: 'center'] Alignment of the bars to the x coordinates:

• 'center': Center the base on the x positions.

• 'edge': Align the left edges of the bars with the x positions.

To align the bars on the right edge pass a negative width and align='edge'.

Returns

18.39. matplotlib.pyplot 2475

Matplotlib, Release 3.4.3

BarContainer

Container with all the bars and optionally errorbars.

Other Parameters

color
[color or list of color, optional] The colors of the bar faces.

edgecolor
[color or list of color, optional] The colors of the bar edges.

linewidth
[float or array-like, optional] Width of the bar edge(s). If 0, don't draw edges.

tick_label
[str or list of str, optional] The tick labels of the bars. Default: None (Use default
numeric labels.)

xerr, yerr
[float or array-like of shape(N,) or shape(2, N), optional] If not None, add hori-
zontal / vertical errorbars to the bar tips. The values are +/- sizes relative to the
data:

• scalar: symmetric +/- values for all bars

• shape(N,): symmetric +/- values for each bar

• shape(2, N): Separate - and + values for each bar. First row contains the lower
errors, the second row contains the upper errors.

• None: No errorbar. (Default)

See /gallery/statistics/errorbar_features for an example on the usage of xerr and
yerr.

ecolor
[color or list of color, default: 'black'] The line color of the errorbars.

capsize
[float, default: rcParams["errorbar.capsize"] (default: 0.0)] The
length of the error bar caps in points.

error_kw
[dict, optional] Dictionary of kwargs to be passed to the errorbarmethod. Val-
ues of ecolor or capsize defined here take precedence over the independent kwargs.

log
[bool, default: False] If True, set the y-axis to be log scale.

2476 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=errorbar.capsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

**kwargs
[Rectangle properties]

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

See also:

barh

Plot a horizontal bar plot.

18.39. matplotlib.pyplot 2477

Matplotlib, Release 3.4.3

Notes

Stacked bars can be achieved by passing individual bottom values per bar. See
/gallery/lines_bars_and_markers/bar_stacked.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.bar

• sphx_glr_gallery_misc_table_demo.py

• Pyplot tutorial

• Sample plots in Matplotlib

matplotlib.pyplot.bar_label

matplotlib.pyplot.bar_label(container, labels=None, *, fmt='%g', label_type='edge',
padding=0, **kwargs)

Label a bar plot.

Adds labels to bars in the given BarContainer. You may need to adjust the axis limits to fit the
labels.

Parameters

container
[BarContainer] Container with all the bars and optionally errorbars, likely
returned from bar or barh.

labels
[array-like, optional] A list of label texts, that should be displayed. If not given,
the label texts will be the data values formatted with fmt.

fmt
[str, default: '%g'] A format string for the label.

label_type
[{'edge', 'center'}, default: 'edge'] The label type. Possible values:

• 'edge': label placed at the end-point of the bar segment, and the value displayed
will be the position of that end-point.

2478 Chapter 18. Modules

Matplotlib, Release 3.4.3

• 'center': label placed in the center of the bar segment, and the value dis-
played will be the length of that segment. (useful for stacked bars, i.e.,
/gallery/lines_bars_and_markers/bar_label_demo)

padding
[float, default: 0] Distance of label from the end of the bar, in points.

**kwargs
Any remaining keyword arguments are passed through to Axes.annotate.

Returns

list of Text
A list of Text instances for the labels.

Examples using matplotlib.pyplot.bar_label

matplotlib.pyplot.barbs

matplotlib.pyplot.barbs(*args, data=None, **kw)
Plot a 2D field of barbs.

Call signature:

barbs([X, Y], U, V, [C], **kw)

Where X, Y define the barb locations, U, V define the barb directions, and C optionally sets the color.

All arguments may be 1D or 2D. U, V, C may be masked arrays, but masked X, Y are not supported at
present.

Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind observa-
tions, but can technically be used to plot any two dimensional vector quantity. As opposed to arrows,
which give vector magnitude by the length of the arrow, the barbs give more quantitative information
about the vector magnitude by putting slanted lines or a triangle for various increments in magnitude,
as show schematically below:

: /\ \
: / \ \
: / \ \ \
: / \ \ \
: ------------------------------

The largest increment is given by a triangle (or "flag"). After those come full lines (barbs). The
smallest increment is a half line. There is only, of course, ever at most 1 half line. If the magnitude
is small and only needs a single half-line and no full lines or triangles, the half-line is offset from the
end of the barb so that it can be easily distinguished from barbs with a single full line. The magnitude
for the barb shown above would nominally be 65, using the standard increments of 50, 10, and 5.

18.39. matplotlib.pyplot 2479

Matplotlib, Release 3.4.3

See also https://en.wikipedia.org/wiki/Wind_barb.

Parameters

X, Y
[1D or 2D array-like, optional] The x and y coordinates of the barb locations. See
pivot for how the barbs are drawn to the x, y positions.

If not given, they will be generated as a uniform integer meshgrid based on the
dimensions of U and V.

If X and Y are 1D but U, V are 2D, X, Y are expanded to 2D using X, Y = np.
meshgrid(X, Y). In this case len(X) and len(Y) must match the column
and row dimensions of U and V.

U, V
[1D or 2D array-like] The x and y components of the barb shaft.

C
[1D or 2D array-like, optional] Numeric data that defines the barb colors by col-
ormapping via norm and cmap.

This does not support explicit colors. If you want to set colors directly, use barb-
color instead.

length
[float, default: 7] Length of the barb in points; the other parts of the barb are scaled
against this.

pivot
[{'tip', 'middle'} or float, default: 'tip'] The part of the arrow that is anchored to
the X, Y grid. The barb rotates about this point. This can also be a number, which
shifts the start of the barb that many points away from grid point.

barbcolor
[color or color sequence] The color of all parts of the barb except for the flags.
This parameter is analogous to the edgecolor parameter for polygons, which can
be used instead. However this parameter will override facecolor.

flagcolor
[color or color sequence] The color of any flags on the barb. This parameter is
analogous to the facecolor parameter for polygons, which can be used instead.
However, this parameter will override facecolor. If this is not set (and C has not
either) then flagcolor will be set to match barbcolor so that the barb has a uniform
color. If C has been set, flagcolor has no effect.

sizes

2480 Chapter 18. Modules

https://en.wikipedia.org/wiki/Wind_barb

Matplotlib, Release 3.4.3

[dict, optional] A dictionary of coefficients specifying the ratio of a given feature
to the length of the barb. Only those values one wishes to override need to be
included. These features include:

• 'spacing' - space between features (flags, full/half barbs)

• 'height' - height (distance from shaft to top) of a flag or full barb

• 'width' - width of a flag, twice the width of a full barb

• 'emptybarb' - radius of the circle used for low magnitudes

fill_empty
[bool, default: False] Whether the empty barbs (circles) that are drawn should be
filled with the flag color. If they are not filled, the center is transparent.

rounding
[bool, default: True] Whether the vector magnitude should be rounded when allo-
cating barb components. If True, the magnitude is rounded to the nearest multiple
of the half-barb increment. If False, the magnitude is simply truncated to the next
lowest multiple.

barb_increments
[dict, optional] A dictionary of increments specifying values to associate with dif-
ferent parts of the barb. Only those values one wishes to override need to be in-
cluded.

• 'half' - half barbs (Default is 5)

• 'full' - full barbs (Default is 10)

• 'flag' - flags (default is 50)

flip_barb
[bool or array-like of bool, default: False]Whether the lines and flags should point
opposite to normal. Normal behavior is for the barbs and lines to point right (comes
from wind barbs having these features point towards low pressure in the Northern
Hemisphere).

A single value is applied to all barbs. Individual barbs can be flipped by passing a
bool array of the same size as U and V.

Returns

barbs
[Barbs]

Other Parameters

**kwargs

18.39. matplotlib.pyplot 2481

Matplotlib, Release 3.4.3

The barbs can further be customized using PolyCollection keyword argu-
ments:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

2482 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.barbs

matplotlib.pyplot.barh

matplotlib.pyplot.barh(y, width, height=0.8, left=None, *, align='center', **kwargs)
Make a horizontal bar plot.

The bars are positioned at ywith the given alignment. Their dimensions are given by width and height.
The horizontal baseline is left (default 0).

Many parameters can take either a single value applying to all bars or a sequence of values, one for
each bar.

Parameters

y
[float or array-like] The y coordinates of the bars. See also align for the alignment
of the bars to the coordinates.

width
[float or array-like] The width(s) of the bars.

height
[float or array-like, default: 0.8] The heights of the bars.

left
[float or array-like, default: 0] The x coordinates of the left sides of the bars.

align
[{'center', 'edge'}, default: 'center'] Alignment of the base to the y coordinates*:

• 'center': Center the bars on the y positions.

• 'edge': Align the bottom edges of the bars with the y positions.

To align the bars on the top edge pass a negative height and align='edge'.

Returns

18.39. matplotlib.pyplot 2483

Matplotlib, Release 3.4.3

BarContainer

Container with all the bars and optionally errorbars.

Other Parameters

color
[color or list of color, optional] The colors of the bar faces.

edgecolor
[color or list of color, optional] The colors of the bar edges.

linewidth
[float or array-like, optional] Width of the bar edge(s). If 0, don't draw edges.

tick_label
[str or list of str, optional] The tick labels of the bars. Default: None (Use default
numeric labels.)

xerr, yerr
[float or array-like of shape(N,) or shape(2, N), optional] If not None, add hori-
zontal / vertical errorbars to the bar tips. The values are +/- sizes relative to the
data:

• scalar: symmetric +/- values for all bars

• shape(N,): symmetric +/- values for each bar

• shape(2, N): Separate - and + values for each bar. First row contains the lower
errors, the second row contains the upper errors.

• None: No errorbar. (default)

See /gallery/statistics/errorbar_features for an example on the usage of xerr and
yerr.

ecolor
[color or list of color, default: 'black'] The line color of the errorbars.

capsize
[float, default: rcParams["errorbar.capsize"] (default: 0.0)] The
length of the error bar caps in points.

error_kw
[dict, optional] Dictionary of kwargs to be passed to the errorbarmethod. Val-
ues of ecolor or capsize defined here take precedence over the independent kwargs.

log
[bool, default: False] If True, set the x-axis to be log scale.

2484 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=errorbar.capsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

**kwargs
[Rectangle properties]

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

See also:

bar

Plot a vertical bar plot.

18.39. matplotlib.pyplot 2485

Matplotlib, Release 3.4.3

Notes

Stacked bars can be achieved by passing individual left values per bar. See
/gallery/lines_bars_and_markers/horizontal_barchart_distribution .

Examples using matplotlib.pyplot.barh

matplotlib.pyplot.bone

matplotlib.pyplot.bone()
Set the colormap to 'bone'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.bone

matplotlib.pyplot.box

matplotlib.pyplot.box(on=None)
Turn the axes box on or off on the current axes.

Parameters

on
[bool or None] The new Axes box state. If None, toggle the state.

See also:

matplotlib.axes.Axes.set_frame_on()

matplotlib.axes.Axes.get_frame_on()

Examples using matplotlib.pyplot.box

2486 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.pyplot.boxplot

matplotlib.pyplot.boxplot(x, notch=None, sym=None, vert=None, whis=None, po-
sitions=None, widths=None, patch_artist=None, boot-
strap=None, usermedians=None, conf_intervals=None,
meanline=None, showmeans=None, showcaps=None, show-
box=None, showfliers=None, boxprops=None, labels=None,
flierprops=None, medianprops=None, meanprops=None,
capprops=None, whiskerprops=None, manage_ticks=True,
autorange=False, zorder=None, *, data=None)

Make a box and whisker plot.

Make a box and whisker plot for each column of x or each vector in sequence x. The box extends from
the lower to upper quartile values of the data, with a line at the median. The whiskers extend from the
box to show the range of the data. Flier points are those past the end of the whiskers.

Parameters

x
[Array or a sequence of vectors.] The input data.

notch
[bool, default: False] Whether to draw a notched box plot (True), or a rectangu-
lar box plot (False). The notches represent the confidence interval (CI) around
the median. The documentation for bootstrap describes how the locations of the
notches are computed by default, but their locations may also be overridden by
setting the conf_intervals parameter.

Note: In cases where the values of the CI are less than the lower quartile or
greater than the upper quartile, the notches will extend beyond the box, giving it
a distinctive "flipped" appearance. This is expected behavior and consistent with
other statistical visualization packages.

sym
[str, optional] The default symbol for flier points. An empty string ('') hides the
fliers. If None, then the fliers default to 'b+'. More control is provided by the
flierprops parameter.

vert
[bool, default: True] If True, draws vertical boxes. If False, draw horizontal
boxes.

whis
[float or (float, float), default: 1.5] The position of the whiskers.

If a float, the lower whisker is at the lowest datum above Q1 - whis*(Q3-Q1),
and the upper whisker at the highest datum below Q3 + whis*(Q3-Q1), where

18.39. matplotlib.pyplot 2487

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Matplotlib, Release 3.4.3

Q1 and Q3 are the first and third quartiles. The default value of whis = 1.5
corresponds to Tukey's original definition of boxplots.

If a pair of floats, they indicate the percentiles at which to draw the whiskers (e.g.,
(5, 95)). In particular, setting this to (0, 100) results in whiskers covering the whole
range of the data.

In the edge case where Q1 == Q3, whis is automatically set to (0, 100) (cover
the whole range of the data) if autorange is True.

Beyond the whiskers, data are considered outliers and are plotted as individual
points.

bootstrap
[int, optional] Specifies whether to bootstrap the confidence intervals around the
median for notched boxplots. If bootstrap is None, no bootstrapping is performed,
and notches are calculated using a Gaussian-based asymptotic approximation (see
McGill, R., Tukey, J.W., and Larsen, W.A., 1978, and Kendall and Stuart, 1967).
Otherwise, bootstrap specifies the number of times to bootstrap the median to de-
termine its 95% confidence intervals. Values between 1000 and 10000 are recom-
mended.

usermedians
[1D array-like, optional] A 1D array-like of length len(x). Each entry that is
not None forces the value of the median for the corresponding dataset. For entries
that are None, the medians are computed by Matplotlib as normal.

conf_intervals
[array-like, optional] A 2D array-like of shape (len(x), 2). Each entry that
is not None forces the location of the corresponding notch (which is only drawn
if notch is True). For entries that are None, the notches are computed by the
method specified by the other parameters (e.g., bootstrap).

positions
[array-like, optional] The positions of the boxes. The ticks and limits are automat-
ically set to match the positions. Defaults to range(1, N+1) where N is the
number of boxes to be drawn.

widths
[float or array-like] The widths of the boxes. The default is 0.5, or 0.
15*(distance between extreme positions), if that is smaller.

patch_artist
[bool, default: False] If False produces boxes with the Line2D artist. Otherwise,
boxes and drawn with Patch artists.

labels
[sequence, optional] Labels for each dataset (one per dataset).

2488 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False

Matplotlib, Release 3.4.3

manage_ticks
[bool, default: True] If True, the tick locations and labels will be adjusted to match
the boxplot positions.

autorange
[bool, default: False] When True and the data are distributed such that the 25th
and 75th percentiles are equal, whis is set to (0, 100) such that the whisker ends
are at the minimum and maximum of the data.

meanline
[bool, default: False] If True (and showmeans is True), will try to render the
mean as a line spanning the full width of the box according to meanprops (see
below). Not recommended if shownotches is also True. Otherwise, means will be
shown as points.

zorder
[float, default: Line2D.zorder = 2] The zorder of the boxplot.

Returns

dict
A dictionary mapping each component of the boxplot to a list of the Line2D
instances created. That dictionary has the following keys (assuming vertical box-
plots):

• boxes: the main body of the boxplot showing the quartiles and the median's
confidence intervals if enabled.

• medians: horizontal lines at the median of each box.

• whiskers: the vertical lines extending to the most extreme, non-outlier data
points.

• caps: the horizontal lines at the ends of the whiskers.

• fliers: points representing data that extend beyond the whiskers (fliers).

• means: points or lines representing the means.

Other Parameters

showcaps
[bool, default: True] Show the caps on the ends of whiskers.

showbox
[bool, default: True] Show the central box.

showfliers
[bool, default: True] Show the outliers beyond the caps.

18.39. matplotlib.pyplot 2489

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

showmeans
[bool, default: False] Show the arithmetic means.

capprops
[dict, default: None] The style of the caps.

boxprops
[dict, default: None] The style of the box.

whiskerprops
[dict, default: None] The style of the whiskers.

flierprops
[dict, default: None] The style of the fliers.

medianprops
[dict, default: None] The style of the median.

meanprops
[dict, default: None] The style of the mean.

Notes

Box plots provide insight into distribution properties of the data. However, they can be challenging
to interpret for the unfamiliar reader. The figure below illustrates the different visual features of a box
plot.

The whiskers mark the range of the non-outlier data. The most common definition of non-outlier is
[Q1 - 1.5xIQR, Q3 + 1.5xIQR], which is also the default in this function. Other whisker
meanings can be applied via the whis parameter.

See Box plot on Wikipedia for further information.

Violin plots (violinplot) add even more detail about the statistical distribution by plotting the
kernel density estimation (KDE) as an estimation of the probability density function.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

2490 Chapter 18. Modules

https://en.wikipedia.org/wiki/Box_plot

Matplotlib, Release 3.4.3

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.boxplot

matplotlib.pyplot.broken_barh

matplotlib.pyplot.broken_barh(xranges, yrange, *, data=None, **kwargs)
Plot a horizontal sequence of rectangles.

A rectangle is drawn for each element of xranges. All rectangles have the same vertical position and
size defined by yrange.

This is a convenience function for instantiating a BrokenBarHCollection, adding it to the Axes
and autoscaling the view.

Parameters

xranges
[sequence of tuples (xmin, xwidth)] The x-positions and extends of the rectangles.
For each tuple (xmin, xwidth) a rectangle is drawn from xmin to xmin + xwidth.

yrange
[(ymin, yheight)] The y-position and extend for all the rectangles.

Returns

BrokenBarHCollection

Other Parameters

**kwargs
[BrokenBarHCollection properties] Each kwarg can be either a single ar-
gument applying to all rectangles, e.g.:

facecolors='black'

or a sequence of arguments over which is cycled, e.g.:

facecolors=('black', 'blue')

would create interleaving black and blue rectangles.

Supported keywords:

18.39. matplotlib.pyplot 2491

Matplotlib, Release 3.4.3

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

2492 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.broken_barh

matplotlib.pyplot.cla

matplotlib.pyplot.cla()
Clear the current axes.

Examples using matplotlib.pyplot.cla

matplotlib.pyplot.clabel

matplotlib.pyplot.clabel(CS, levels=None, **kwargs)
Label a contour plot.

Adds labels to line contours in given ContourSet.

Parameters

CS
[ContourSet instance] Line contours to label.

levels
[array-like, optional] A list of level values, that should be labeled. The list must
be a subset of CS.levels. If not given, all levels are labeled.

**kwargs
All other parameters are documented in clabel.

18.39. matplotlib.pyplot 2493

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.clabel

• sphx_glr_gallery_event_handling_ginput_manual_clabel_sgskip.py

matplotlib.pyplot.clf

matplotlib.pyplot.clf()
Clear the current figure.

Examples using matplotlib.pyplot.clf

• sphx_glr_gallery_event_handling_ginput_manual_clabel_sgskip.py

matplotlib.pyplot.clim

matplotlib.pyplot.clim(vmin=None, vmax=None)
Set the color limits of the current image.

If either vmin or vmax is None, the image min/max respectively will be used for color scaling.

If you want to set the clim of multiple images, use set_clim on every image, for example:

for im in gca().get_images():
im.set_clim(0, 0.5)

Examples using matplotlib.pyplot.clim

matplotlib.pyplot.close

matplotlib.pyplot.close(fig=None)
Close a figure window.

Parameters

fig
[None or int or str or Figure] The figure to close. There are a number of ways
to specify this:

• None: the current figure

• Figure: the given Figure instance

• int: a figure number

• str: a figure name

• 'all': all figures

2494 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.close

• sphx_glr_gallery_misc_multiprocess_sgskip.py

matplotlib.pyplot.cohere

matplotlib.pyplot.cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=<function de-
trend_none>, window=<function window_hanning>, nover-
lap=0, pad_to=None, sides='default', scale_by_freq=None, *,
data=None, **kwargs)

Plot the coherence between x and y.

Plot the coherence between x and y. Coherence is the normalized cross spectral density:

𝐶𝑥𝑦 =
|𝑃𝑥𝑦|2

𝑃𝑥𝑥𝑃𝑦𝑦

Parameters

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. This can be different from NFFT, which specifies the number
of data points used. While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can givemore points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

NFFT
[int, default: 256] The number of data points used in each block for the FFT. A
power 2 is most efficient. This should NOT be used to get zero padding, or the
scaling of the result will be incorrect; use pad_to for this instead.

18.39. matplotlib.pyplot 2495

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

detrend
[{'none', 'mean', 'linear'} or callable, default: 'none'] The function applied to each
segment before fft-ing, designed to remove the mean or linear trend. Unlike in
MATLAB, where the detrend parameter is a vector, in Matplotlib is it a func-
tion. The mlab module defines detrend_none, detrend_mean, and de-
trend_linear, but you can use a custom function as well. You can also use a
string to choose one of the functions: 'none' calls detrend_none. 'mean' calls
detrend_mean. 'linear' calls detrend_linear.

scale_by_freq
[bool, default: True] Whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for in-
tegration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap
[int, default: 0 (no overlap)] The number of points of overlap between blocks.

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

Returns

Cxy
[1-D array] The coherence vector.

freqs
[1-D array] The frequencies for the elements in Cxy.

Other Parameters

**kwargs
Keyword arguments control the Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None

continues on next page

2496 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 201 – continued from previous page
Property Description
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

18.39. matplotlib.pyplot 2497

Matplotlib, Release 3.4.3

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y.

Objects passed as data must support item access (data[s]) and membership test (s in data).

References

Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, JohnWiley & Sons (1986)

Examples using matplotlib.pyplot.cohere

matplotlib.pyplot.colorbar

matplotlib.pyplot.colorbar(mappable=None, cax=None, ax=None, **kw)
Add a colorbar to a plot.

Parameters

mappable
The matplotlib.cm.ScalarMappable (i.e., AxesImage, Con-
tourSet, etc.) described by this colorbar. This argument is mandatory for
the Figure.colorbar method but optional for the pyplot.colorbar
function, which sets the default to the current image.

Note that one can create a ScalarMappable "on-the-fly" to generate colorbars
not attached to a previously drawn artist, e.g.

fig.colorbar(cm.ScalarMappable(norm=norm, cmap=cmap),␣
↪ax=ax)

cax
[Axes, optional] Axes into which the colorbar will be drawn.

ax
[Axes, list of Axes, optional] One or more parent axes from which space for a
new colorbar axes will be stolen, if cax is None. This has no effect if cax is set.

use_gridspec
[bool, optional] If cax is None, a new cax is created as an instance of Axes. If ax
is an instance of Subplot and use_gridspec is True, cax is created as an instance
of Subplot using the gridspec module.

2498 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns

colorbar
[Colorbar] See also its base class, ColorbarBase.

Notes

Additional keyword arguments are of two kinds:

axes properties:

location
[None or {'left', 'right', 'top', 'bottom'}] The location, relative to the parent
axes, where the colorbar axes is created. It also determines the orientation
of the colorbar (colorbars on the left and right are vertical, colorbars at the
top and bottom are horizontal). If None, the location will come from the
orientation if it is set (vertical colorbars on the right, horizontal ones at the
bottom), or default to 'right' if orientation is unset.

orientation
[None or {'vertical', 'horizontal'}] The orientation of the colorbar. It is prefer-
able to set the location of the colorbar, as that also determines the orientation;
passing incompatible values for location and orientation raises an exception.

fraction
[float, default: 0.15] Fraction of original axes to use for colorbar.

shrink
[float, default: 1.0] Fraction by which to multiply the size of the colorbar.

aspect
[float, default: 20] Ratio of long to short dimensions.

pad
[float, default: 0.05 if vertical, 0.15 if horizontal] Fraction of original axes
between colorbar and new image axes.

anchor
[(float, float), optional] The anchor point of the colorbar axes. Defaults to
(0.0, 0.5) if vertical; (0.5, 1.0) if horizontal.

panchor
[(float, float), or False, optional] The anchor point of the colorbar parent axes.
If False, the parent axes' anchor will be unchanged. Defaults to (1.0, 0.5) if
vertical; (0.5, 0.0) if horizontal.

colorbar properties:

18.39. matplotlib.pyplot 2499

Matplotlib, Release 3.4.3

Prop-
erty

Description

ex-
tend

{'neither', 'both', 'min', 'max'} If not 'neither', make pointed end(s) for
out-of- range values. These are set for a given colormap using the col-
ormap set_under and set_over methods.

ex-
tend-
frac

{None, 'auto', length, lengths} If set to None, both the minimum and
maximum triangular colorbar extensions with have a length of 5% of
the interior colorbar length (this is the default setting). If set to 'auto',
makes the triangular colorbar extensions the same lengths as the interior
boxes (when spacing is set to 'uniform') or the same lengths as the re-
spective adjacent interior boxes (when spacing is set to 'proportional').
If a scalar, indicates the length of both the minimum and maximum tri-
angular colorbar extensions as a fraction of the interior colorbar length.
A two-element sequence of fractions may also be given, indicating the
lengths of the minimum and maximum colorbar extensions respectively
as a fraction of the interior colorbar length.

ex-
ten-
drect

bool If False the minimum and maximum colorbar extensions will be
triangular (the default). If True the extensions will be rectangular.

spac-
ing

{'uniform', 'proportional'} Uniform spacing gives each discrete color the
same space; proportional makes the space proportional to the data inter-
val.

ticks None or list of ticks or Locator If None, ticks are determined automati-
cally from the input.

for-
mat

None or str or Formatter If None, ScalarFormatter is used. If a for-
mat string is given, e.g., '%.3f', that is used. An alternative Formatter
may be given instead.

drawedgesbool Whether to draw lines at color boundaries.
la-
bel

str The label on the colorbar's long axis.

The following will probably be useful only in the context of indexed colors (that
is, when the mappable has norm=NoNorm()), or other unusual circumstances.

Prop-
erty

Description

bound-
aries

None or a sequence

val-
ues

None or a sequence which must be of length 1 less than the sequence
of boundaries. For each region delimited by adjacent entries in bound-
aries, the colormapped to the corresponding value in values will be used.

If mappable is a ContourSet, its extend kwarg is included automatically.

The shrink kwarg provides a simple way to scale the colorbar with respect to the axes. Note that if cax
is specified, it determines the size of the colorbar and shrink and aspect kwargs are ignored.

2500 Chapter 18. Modules

Matplotlib, Release 3.4.3

For more precise control, you can manually specify the positions of the axes objects in which the
mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs.

It is known that some vector graphics viewers (svg and pdf) renders white gaps between segments of
the colorbar. This is due to bugs in the viewers, not Matplotlib. As a workaround, the colorbar can be
rendered with overlapping segments:

cbar = colorbar()
cbar.solids.set_edgecolor("face")
draw()

However this has negative consequences in other circumstances, e.g. with semi-transparent images
(alpha < 1) and colorbar extensions; therefore, this workaround is not used by default (see issue #1188).

Examples using matplotlib.pyplot.colorbar

• sphx_glr_gallery_subplots_axes_and_figures_subplots_adjust.py

• sphx_glr_gallery_shapes_and_collections_ellipse_collection.py

• sphx_glr_gallery_axes_grid1_demo_axes_divider.py

• sphx_glr_gallery_axes_grid1_simple_colorbar.py

• Image tutorial

• Tight Layout guide

matplotlib.pyplot.connect

matplotlib.pyplot.connect(s, func)
Bind function func to event s.

Parameters

s
[str] One of the following events ids:

• 'button_press_event'

• 'button_release_event'

• 'draw_event'

• 'key_press_event'

• 'key_release_event'

• 'motion_notify_event'

• 'pick_event'

• 'resize_event'

18.39. matplotlib.pyplot 2501

Matplotlib, Release 3.4.3

• 'scroll_event'

• 'figure_enter_event',

• 'figure_leave_event',

• 'axes_enter_event',

• 'axes_leave_event'

• 'close_event'.

func
[callable] The callback function to be executed, which must have the signature:

def func(event: Event) -> Any

For the location events (button and key press/release), if the mouse is over the
axes, the inaxes attribute of the event will be set to the Axes the event occurs
is over, and additionally, the variables xdata and ydata attributes will be set to
the mouse location in data coordinates. See KeyEvent and MouseEvent for
more info.

Returns

cid
A connection id that can be used with FigureCanvasBase.
mpl_disconnect.

Examples

def on_press(event):
print('you pressed', event.button, event.xdata, event.ydata)

cid = canvas.mpl_connect('button_press_event', on_press)

Examples using matplotlib.pyplot.connect

• sphx_glr_gallery_event_handling_coords_demo.py

2502 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.pyplot.contour

matplotlib.pyplot.contour(*args, data=None, **kwargs)
Plot contour lines.

Call signature:

contour([X, Y,] Z, [levels], **kwargs)

contour and contourf draw contour lines and filled contours, respectively. Except as noted,
function signatures and return values are the same for both versions.

Parameters

X, Y
[array-like, optional] The coordinates of the values in Z.

X and Y must both be 2D with the same shape as Z (e.g. created via numpy.
meshgrid), or they must both be 1-D such that len(X) == M is the number
of columns in Z and len(Y) == N is the number of rows in Z.

If not given, they are assumed to be integer indices, i.e. X = range(M), Y =
range(N).

Z
[(M, N) array-like] The height values over which the contour is drawn.

levels
[int or array-like, optional] Determines the number and positions of the contour
lines / regions.

If an int n, use MaxNLocator, which tries to automatically choose no more than
n+1 "nice" contour levels between vmin and vmax.

If array-like, draw contour lines at the specified levels. The values must be in
increasing order.

Returns

QuadContourSet

Other Parameters

corner_mask
[bool, default: rcParams["contour.corner_mask"] (default: True)]
Enable/disable corner masking, which only has an effect if Z is a masked array. If
False, any quad touching a masked point is masked out. If True, only the trian-
gular corners of quads nearest those points are always masked out, other triangular
corners comprising three unmasked points are contoured as usual.

18.39. matplotlib.pyplot 2503

https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid
https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid
../../tutorials/introductory/customizing.html?highlight=contour.corner_mask#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

colors
[color string or sequence of colors, optional] The colors of the levels, i.e. the lines
for contour and the areas for contourf.

The sequence is cycled for the levels in ascending order. If the sequence is shorter
than the number of levels, it's repeated.

As a shortcut, single color strings may be used in place of one-element lists, i.e.
'red' instead of ['red'] to color all levels with the same color. This shortcut
does only work for color strings, not for other ways of specifying colors.

By default (value None), the colormap specified by cmap will be used.

alpha
[float, default: 1] The alpha blending value, between 0 (transparent) and 1
(opaque).

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps the level values to colors.

If both colors and cmap are given, an error is raised.

norm
[Normalize, optional] If a colormap is used, the Normalize instance scales
the level values to the canonical colormap range [0, 1] for mapping to colors. If
not given, the default linear scaling is used.

vmin, vmax
[float, optional] If not None, either or both of these values will be supplied to the
Normalize instance, overriding the default color scaling based on levels.

origin
[{None, 'upper', 'lower', 'image'}, default: None] Determines the orientation and
exact position of Z by specifying the position of Z[0, 0]. This is only relevant,
if X, Y are not given.

• None: Z[0, 0] is at X=0, Y=0 in the lower left corner.

• 'lower': Z[0, 0] is at X=0.5, Y=0.5 in the lower left corner.

• 'upper': Z[0, 0] is at X=N+0.5, Y=0.5 in the upper left corner.

• 'image': Use the value from rcParams["image.origin"] (default:
'upper').

extent
[(x0, x1, y0, y1), optional] If origin is not None, then extent is interpreted as in
imshow: it gives the outer pixel boundaries. In this case, the position of Z[0, 0] is

2504 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

the center of the pixel, not a corner. If origin is None, then (x0, y0) is the position
of Z[0, 0], and (x1, y1) is the position of Z[-1, -1].

This argument is ignored if X and Y are specified in the call to contour.

locator
[ticker.Locator subclass, optional] The locator is used to determine the contour
levels if they are not given explicitly via levels. Defaults to MaxNLocator.

extend
[{'neither', 'both', 'min', 'max'}, default: 'neither'] Determines the contourf-
coloring of values that are outside the levels range.

If 'neither', values outside the levels range are not colored. If 'min', 'max' or 'both',
color the values below, above or below and above the levels range.

Values below min(levels) and above max(levels) are mapped to the
under/over values of the Colormap. Note that most colormaps do not have
dedicated colors for these by default, so that the over and under values are the
edge values of the colormap. You may want to set these values explicitly using
Colormap.set_under and Colormap.set_over.

Note: An existing QuadContourSet does not get notified if properties of
its colormap are changed. Therefore, an explicit call QuadContourSet.
changed() is needed after modifying the colormap. The explicit call can be
left out, if a colorbar is assigned to the QuadContourSet because it internally
calls QuadContourSet.changed().

Example:

x = np.arange(1, 10)
y = x.reshape(-1, 1)
h = x * y

cs = plt.contourf(h, levels=[10, 30, 50],
colors=['#808080', '#A0A0A0', '#C0C0C0'], extend='both

↪')
cs.cmap.set_over('red')
cs.cmap.set_under('blue')
cs.changed()

xunits, yunits
[registered units, optional] Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface.

antialiased
[bool, optional] Enable antialiasing, overriding the defaults. For filled contours,
the default is True. For line contours, it is taken from rcParams["lines.
antialiased"] (default: True).

18.39. matplotlib.pyplot 2505

../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

nchunk
[int >= 0, optional] If 0, no subdivision of the domain. Specify a positive inte-
ger to divide the domain into subdomains of nchunk by nchunk quads. Chunking
reduces the maximum length of polygons generated by the contouring algorithm
which reduces the rendering workload passed on to the backend and also requires
slightly less RAM. It can however introduce rendering artifacts at chunk bound-
aries depending on the backend, the antialiased flag and value of alpha.

linewidths
[float or array-like, default: rcParams["contour.linewidth"] (default:
None)] Only applies to contour.

The line width of the contour lines.

If a number, all levels will be plotted with this linewidth.

If a sequence, the levels in ascending order will be plotted with the linewidths in
the order specified.

If None, this falls back to rcParams["lines.linewidth"] (default: 1.5).

linestyles
[{None, 'solid', 'dashed', 'dashdot', 'dotted'}, optional] Only applies to contour.

If linestyles is None, the default is 'solid' unless the lines are monochrome. In that
case, negative contours will take their linestyle from rcParams["contour.
negative_linestyle"] (default: 'dashed') setting.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

hatches
[list[str], optional] Only applies to contourf.

A list of cross hatch patterns to use on the filled areas. If None, no hatching will
be added to the contour. Hatching is supported in the PostScript, PDF, SVG and
Agg backends only.

Notes

1. contourf differs from the MATLAB version in that it does not draw the polygon edges. To
draw edges, add line contours with calls to contour.

2. contourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < Z <= z2

except for the lowest interval, which is closed on both sides (i.e. it includes the lowest value).

2506 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=contour.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.negative_linestyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.negative_linestyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.contour

• sphx_glr_gallery_event_handling_ginput_manual_clabel_sgskip.py

matplotlib.pyplot.contourf

matplotlib.pyplot.contourf(*args, data=None, **kwargs)
Plot filled contours.

Call signature:

contourf([X, Y,] Z, [levels], **kwargs)

contour and contourf draw contour lines and filled contours, respectively. Except as noted,
function signatures and return values are the same for both versions.

Parameters

X, Y
[array-like, optional] The coordinates of the values in Z.

X and Y must both be 2D with the same shape as Z (e.g. created via numpy.
meshgrid), or they must both be 1-D such that len(X) == M is the number
of columns in Z and len(Y) == N is the number of rows in Z.

If not given, they are assumed to be integer indices, i.e. X = range(M), Y =
range(N).

Z
[(M, N) array-like] The height values over which the contour is drawn.

levels
[int or array-like, optional] Determines the number and positions of the contour
lines / regions.

If an int n, use MaxNLocator, which tries to automatically choose no more than
n+1 "nice" contour levels between vmin and vmax.

If array-like, draw contour lines at the specified levels. The values must be in
increasing order.

Returns

QuadContourSet

Other Parameters

corner_mask

18.39. matplotlib.pyplot 2507

https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid
https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid

Matplotlib, Release 3.4.3

[bool, default: rcParams["contour.corner_mask"] (default: True)]
Enable/disable corner masking, which only has an effect if Z is a masked array. If
False, any quad touching a masked point is masked out. If True, only the trian-
gular corners of quads nearest those points are always masked out, other triangular
corners comprising three unmasked points are contoured as usual.

colors
[color string or sequence of colors, optional] The colors of the levels, i.e. the lines
for contour and the areas for contourf.

The sequence is cycled for the levels in ascending order. If the sequence is shorter
than the number of levels, it's repeated.

As a shortcut, single color strings may be used in place of one-element lists, i.e.
'red' instead of ['red'] to color all levels with the same color. This shortcut
does only work for color strings, not for other ways of specifying colors.

By default (value None), the colormap specified by cmap will be used.

alpha
[float, default: 1] The alpha blending value, between 0 (transparent) and 1
(opaque).

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps the level values to colors.

If both colors and cmap are given, an error is raised.

norm
[Normalize, optional] If a colormap is used, the Normalize instance scales
the level values to the canonical colormap range [0, 1] for mapping to colors. If
not given, the default linear scaling is used.

vmin, vmax
[float, optional] If not None, either or both of these values will be supplied to the
Normalize instance, overriding the default color scaling based on levels.

origin
[{None, 'upper', 'lower', 'image'}, default: None] Determines the orientation and
exact position of Z by specifying the position of Z[0, 0]. This is only relevant,
if X, Y are not given.

• None: Z[0, 0] is at X=0, Y=0 in the lower left corner.

• 'lower': Z[0, 0] is at X=0.5, Y=0.5 in the lower left corner.

• 'upper': Z[0, 0] is at X=N+0.5, Y=0.5 in the upper left corner.

• 'image': Use the value from rcParams["image.origin"] (default:
'upper').

2508 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=contour.corner_mask#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

extent
[(x0, x1, y0, y1), optional] If origin is not None, then extent is interpreted as in
imshow: it gives the outer pixel boundaries. In this case, the position of Z[0, 0] is
the center of the pixel, not a corner. If origin is None, then (x0, y0) is the position
of Z[0, 0], and (x1, y1) is the position of Z[-1, -1].

This argument is ignored if X and Y are specified in the call to contour.

locator
[ticker.Locator subclass, optional] The locator is used to determine the contour
levels if they are not given explicitly via levels. Defaults to MaxNLocator.

extend
[{'neither', 'both', 'min', 'max'}, default: 'neither'] Determines the contourf-
coloring of values that are outside the levels range.

If 'neither', values outside the levels range are not colored. If 'min', 'max' or 'both',
color the values below, above or below and above the levels range.

Values below min(levels) and above max(levels) are mapped to the
under/over values of the Colormap. Note that most colormaps do not have
dedicated colors for these by default, so that the over and under values are the
edge values of the colormap. You may want to set these values explicitly using
Colormap.set_under and Colormap.set_over.

Note: An existing QuadContourSet does not get notified if properties of
its colormap are changed. Therefore, an explicit call QuadContourSet.
changed() is needed after modifying the colormap. The explicit call can be
left out, if a colorbar is assigned to the QuadContourSet because it internally
calls QuadContourSet.changed().

Example:

x = np.arange(1, 10)
y = x.reshape(-1, 1)
h = x * y

cs = plt.contourf(h, levels=[10, 30, 50],
colors=['#808080', '#A0A0A0', '#C0C0C0'], extend='both

↪')
cs.cmap.set_over('red')
cs.cmap.set_under('blue')
cs.changed()

xunits, yunits
[registered units, optional] Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface.

antialiased

18.39. matplotlib.pyplot 2509

Matplotlib, Release 3.4.3

[bool, optional] Enable antialiasing, overriding the defaults. For filled contours,
the default is True. For line contours, it is taken from rcParams["lines.
antialiased"] (default: True).

nchunk
[int >= 0, optional] If 0, no subdivision of the domain. Specify a positive inte-
ger to divide the domain into subdomains of nchunk by nchunk quads. Chunking
reduces the maximum length of polygons generated by the contouring algorithm
which reduces the rendering workload passed on to the backend and also requires
slightly less RAM. It can however introduce rendering artifacts at chunk bound-
aries depending on the backend, the antialiased flag and value of alpha.

linewidths
[float or array-like, default: rcParams["contour.linewidth"] (default:
None)] Only applies to contour.

The line width of the contour lines.

If a number, all levels will be plotted with this linewidth.

If a sequence, the levels in ascending order will be plotted with the linewidths in
the order specified.

If None, this falls back to rcParams["lines.linewidth"] (default: 1.5).

linestyles
[{None, 'solid', 'dashed', 'dashdot', 'dotted'}, optional] Only applies to contour.

If linestyles is None, the default is 'solid' unless the lines are monochrome. In that
case, negative contours will take their linestyle from rcParams["contour.
negative_linestyle"] (default: 'dashed') setting.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

hatches
[list[str], optional] Only applies to contourf.

A list of cross hatch patterns to use on the filled areas. If None, no hatching will
be added to the contour. Hatching is supported in the PostScript, PDF, SVG and
Agg backends only.

2510 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.negative_linestyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.negative_linestyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

1. contourf differs from the MATLAB version in that it does not draw the polygon edges. To
draw edges, add line contours with calls to contour.

2. contourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < Z <= z2

except for the lowest interval, which is closed on both sides (i.e. it includes the lowest value).

Examples using matplotlib.pyplot.contourf

matplotlib.pyplot.cool

matplotlib.pyplot.cool()
Set the colormap to 'cool'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.cool

matplotlib.pyplot.copper

matplotlib.pyplot.copper()
Set the colormap to 'copper'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.copper

matplotlib.pyplot.csd

matplotlib.pyplot.csd(x, y, NFFT=None, Fs=None, Fc=None, detrend=None, win-
dow=None, noverlap=None, pad_to=None, sides=None,
scale_by_freq=None, return_line=None, *, data=None, **kwargs)

Plot the cross-spectral density.

The cross spectral density 𝑃𝑥𝑦 by Welch's average periodogram method. The vectors x and y are
divided into NFFT length segments. Each segment is detrended by function detrend and windowed
by function window. noverlap gives the length of the overlap between segments. The product of the
direct FFTs of x and y are averaged over each segment to compute 𝑃𝑥𝑦, with a scaling to correct for
power loss due to windowing.

18.39. matplotlib.pyplot 2511

Matplotlib, Release 3.4.3

If len(x) < NFFT or len(y) < NFFT, they will be zero padded to NFFT.

Parameters

x, y
[1-D arrays or sequences] Arrays or sequences containing the data.

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. This can be different from NFFT, which specifies the number
of data points used. While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can givemore points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

NFFT
[int, default: 256] The number of data points used in each block for the FFT. A
power 2 is most efficient. This should NOT be used to get zero padding, or the
scaling of the result will be incorrect; use pad_to for this instead.

detrend
[{'none', 'mean', 'linear'} or callable, default: 'none'] The function applied to each
segment before fft-ing, designed to remove the mean or linear trend. Unlike in
MATLAB, where the detrend parameter is a vector, in Matplotlib is it a func-
tion. The mlab module defines detrend_none, detrend_mean, and de-
trend_linear, but you can use a custom function as well. You can also use a
string to choose one of the functions: 'none' calls detrend_none. 'mean' calls
detrend_mean. 'linear' calls detrend_linear.

scale_by_freq

2512 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

[bool, default: True] Whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for in-
tegration over the returned frequency values. The default is True for MATLAB
compatibility.

noverlap
[int, default: 0 (no overlap)] The number of points of overlap between segments.

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

return_line
[bool, default: False] Whether to include the line object plotted in the returned
values.

Returns

Pxy
[1-D array] The values for the cross spectrum 𝑃𝑥𝑦 before scaling (complex valued).

freqs
[1-D array] The frequencies corresponding to the elements in Pxy.

line
[Line2D] The line created by this function. Only returned if return_line is True.

Other Parameters

**kwargs
Keyword arguments control the Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}

continues on next page

18.39. matplotlib.pyplot 2513

Matplotlib, Release 3.4.3

Table 202 – continued from previous page
Property Description
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

psd

is equivalent to setting y = x.

2514 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

For plotting, the power is plotted as 10 log10(𝑃𝑥𝑦) for decibels, though 𝑃𝑥𝑦 itself is returned.

References

Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, JohnWiley & Sons (1986)

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.csd

matplotlib.pyplot.delaxes

matplotlib.pyplot.delaxes(ax=None)
Remove an Axes (defaulting to the current axes) from its figure.

Examples using matplotlib.pyplot.delaxes

matplotlib.pyplot.disconnect

matplotlib.pyplot.disconnect(cid)
Disconnect the callback with id cid.

Examples

cid = canvas.mpl_connect('button_press_event', on_press)
... later
canvas.mpl_disconnect(cid)

18.39. matplotlib.pyplot 2515

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.disconnect

• sphx_glr_gallery_event_handling_coords_demo.py

matplotlib.pyplot.draw

matplotlib.pyplot.draw()
Redraw the current figure.

This is used to update a figure that has been altered, but not automatically re-drawn. If interactive
mode is on (via ion()), this should be only rarely needed, but there may be ways to modify the state
of a figure without marking it as "stale". Please report these cases as bugs.

This is equivalent to calling fig.canvas.draw_idle(), where fig is the current figure.

Examples using matplotlib.pyplot.draw

• sphx_glr_gallery_event_handling_ginput_manual_clabel_sgskip.py

• sphx_glr_gallery_mplot3d_rotate_axes3d_sgskip.py

matplotlib.pyplot.draw_if_interactive

matplotlib.pyplot.draw_if_interactive()
Redraw the current figure if in interactive mode.

Warning: End users will typically not have to call this function because the the interactive mode
takes care of this.

Examples using matplotlib.pyplot.draw_if_interactive

matplotlib.pyplot.errorbar

matplotlib.pyplot.errorbar(x, y, yerr=None, xerr=None, fmt='', ecolor=None,
elinewidth=None, capsize=None, barsabove=False,
lolims=False, uplims=False, xlolims=False, xuplims=False,
errorevery=1, capthick=None, *, data=None, **kwargs)

Plot y versus x as lines and/or markers with attached errorbars.

x, y define the data locations, xerr, yerr define the errorbar sizes. By default, this draws the data
markers/lines as well the errorbars. Use fmt='none' to draw errorbars without any data markers.

Parameters

2516 Chapter 18. Modules

Matplotlib, Release 3.4.3

x, y
[float or array-like] The data positions.

xerr, yerr
[float or array-like, shape(N,) or shape(2, N), optional] The errorbar sizes:

• scalar: Symmetric +/- values for all data points.

• shape(N,): Symmetric +/-values for each data point.

• shape(2, N): Separate - and + values for each bar. First row contains the lower
errors, the second row contains the upper errors.

• None: No errorbar.

Note that all error arrays should have positive values.

See /gallery/statistics/errorbar_features for an example on the usage of xerr and
yerr.

fmt
[str, default: ''] The format for the data points / data lines. See plot for details.

Use 'none' (case insensitive) to plot errorbars without any data markers.

ecolor
[color, default: None] The color of the errorbar lines. If None, use the color of the
line connecting the markers.

elinewidth
[float, default: None] The linewidth of the errorbar lines. If None, the linewidth
of the current style is used.

capsize
[float, default: rcParams["errorbar.capsize"] (default: 0.0)] The
length of the error bar caps in points.

capthick
[float, default: None] An alias to the keyword argument markeredgewidth (a.k.a.
mew). This setting is a more sensible name for the property that controls the thick-
ness of the error bar cap in points. For backwards compatibility, if mew or mark-
eredgewidth are given, then theywill over-ride capthick. This may change in future
releases.

barsabove
[bool, default: False] If True, will plot the errorbars above the plot symbols. De-
fault is below.

lolims, uplims, xlolims, xuplims

18.39. matplotlib.pyplot 2517

../../tutorials/introductory/customizing.html?highlight=errorbar.capsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[bool, default: False] These arguments can be used to indicate that a value gives
only upper/lower limits. In that case a caret symbol is used to indicate this. lims-
argumentsmay be scalars, or array-likes of the same length as xerr and yerr. To use
limits with inverted axes, set_xlim or set_ylim must be called before er-
rorbar(). Note the tricky parameter names: setting e.g. lolims to True means
that the y-value is a lower limit of the True value, so, only an upward-pointing
arrow will be drawn!

errorevery
[int or (int, int), default: 1] draws error bars on a subset of the data. errorevery =N
draws error bars on the points (x[::N], y[::N]). errorevery =(start, N) draws error
bars on the points (x[start::N], y[start::N]). e.g. errorevery=(6, 3) adds error bars
to the data at (x[6], x[9], x[12], x[15], ...). Used to avoid overlapping error bars
when two series share x-axis values.

Returns

ErrorbarContainer

The container contains:

• plotline: Line2D instance of x, y plot markers and/or line.

• caplines: A tuple of Line2D instances of the error bar caps.

• barlinecols: A tuple of LineCollection with the horizontal and vertical
error ranges.

Other Parameters

**kwargs
All other keyword arguments are passed on to the plot call drawing the markers.
For example, this code makes big red squares with thick green edges:

x, y, yerr = rand(3, 10)
errorbar(x, y, yerr, marker='s', mfc='red',

mec='green', ms=20, mew=4)

where mfc, mec, ms and mew are aliases for the longer property names, marker-
facecolor, markeredgecolor, markersize and markeredgewidth.

Valid kwargs for the marker properties are Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

continues on next page

2518 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 203 – continued from previous page
Property Description
clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

18.39. matplotlib.pyplot 2519

Matplotlib, Release 3.4.3

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y, xerr, yerr.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.errorbar

• sphx_glr_gallery_lines_bars_and_markers_errorbar_limits_simple.py

matplotlib.pyplot.eventplot

matplotlib.pyplot.eventplot(positions, orientation='horizontal', lineoffsets=1,
linelengths=1, linewidths=None, colors=None,
linestyles='solid', *, data=None, **kwargs)

Plot identical parallel lines at the given positions.

This type of plot is commonly used in neuroscience for representing neural events, where it is usually
called a spike raster, dot raster, or raster plot.

However, it is useful in any situation where you wish to show the timing or position of multiple sets of
discrete events, such as the arrival times of people to a business on each day of the month or the date
of hurricanes each year of the last century.

Parameters

positions
[array-like or list of array-like] A 1D array-like defines the positions of one se-
quence of events.

Multiple groups of events may be passed as a list of array-likes. Each group
can be styled independently by passing lists of values to lineoffsets, linelengths,
linewidths, colors and linestyles.

Note that positions can be a 2D array, but in practice different event groups usually
have different counts so that one will use a list of different-length arrays rather than
a 2D array.

orientation
[{'horizontal', 'vertical'}, default: 'horizontal'] The direction of the event sequence:

• 'horizontal': the events are arranged horizontally. The indicator lines are verti-
cal.

• 'vertical': the events are arranged vertically. The indicator lines are horizontal.

2520 Chapter 18. Modules

Matplotlib, Release 3.4.3

lineoffsets
[float or array-like, default: 1] The offset of the center of the lines from the origin,
in the direction orthogonal to orientation.

If positions is 2D, this can be a sequence with length matching the length of posi-
tions.

linelengths
[float or array-like, default: 1] The total height of the lines (i.e. the lines stretches
from lineoffset - linelength/2 to lineoffset + linelength/
2).

If positions is 2D, this can be a sequence with length matching the length of posi-
tions.

linewidths
[float or array-like, default: rcParams["lines.linewidth"] (default: 1.
5)] The line width(s) of the event lines, in points.

If positions is 2D, this can be a sequence with length matching the length of posi-
tions.

colors
[color or list of colors, default: rcParams["lines.color"] (default:
'C0')] The color(s) of the event lines.

If positions is 2D, this can be a sequence with length matching the length of posi-
tions.

linestyles
[str or tuple or list of such values, default: 'solid'] Default is 'solid'. Valid strings
are ['solid', 'dashed', 'dashdot', 'dotted', '-', '--', '-.', ':']. Dash tuples should be of the
form:

(offset, onoffseq),

where onoffseq is an even length tuple of on and off ink in points.

If positions is 2D, this can be a sequence with length matching the length of posi-
tions.

**kwargs
Other keyword arguments are line collection properties. See LineCollection
for a list of the valid properties.

Returns

list of EventCollection
The EventCollection that were added.

18.39. matplotlib.pyplot 2521

../../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

For linelengths, linewidths, colors, and linestyles, if only a single value is given, that value is applied
to all lines. If an array-like is given, it must have the same length as positions, and each value will be
applied to the corresponding row of the array.

Examples

0.00 0.25 0.50 0.75 1.00
20
15
10

5
0
5

10

0 5 10 15
0

10
20
30
40
50
60

20 10 0 10
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60
0

5

10

15

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted
as data[s] (unless this raises an exception): positions, lineoffsets, linelengths, linewidths, colors,
linestyles.

Objects passed as data must support item access (data[s]) and membership test (s in data).

2522 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.eventplot

matplotlib.pyplot.figimage

matplotlib.pyplot.figimage(X, xo=0, yo=0, alpha=None, norm=None, cmap=None,
vmin=None, vmax=None, origin=None, resize=False,
**kwargs)

Add a non-resampled image to the figure.

The image is attached to the lower or upper left corner depending on origin.

Parameters

X
The image data. This is an array of one of the following shapes:

• MxN: luminance (grayscale) values

• MxNx3: RGB values

• MxNx4: RGBA values

xo, yo
[int] The x/y image offset in pixels.

alpha
[None or float] The alpha blending value.

norm
[matplotlib.colors.Normalize] A Normalize instance to map the lu-
minance to the interval [0, 1].

cmap
[str or matplotlib.colors.Colormap, default: rcParams["image.
cmap"] (default: 'viridis')] The colormap to use.

vmin, vmax
[float] If norm is not given, these values set the data limits for the colormap.

origin
[{'upper', 'lower'}, default: rcParams["image.origin"] (default: 'up-
per')] Indicates where the [0, 0] index of the array is in the upper left or lower
left corner of the axes.

resize
[bool] If True, resize the figure to match the given image size.

Returns

18.39. matplotlib.pyplot 2523

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

matplotlib.image.FigureImage

Other Parameters

**kwargs
Additional kwargs are Artist kwargs passed on to FigureImage.

Notes

figimage complements the Axes image (imshow) which will be resampled to fit the current Axes. If
you want a resampled image to fill the entire figure, you can define an Axes with extent [0, 0, 1, 1].

Examples

f = plt.figure()
nx = int(f.get_figwidth() * f.dpi)
ny = int(f.get_figheight() * f.dpi)
data = np.random.random((ny, nx))
f.figimage(data)
plt.show()

Examples using matplotlib.pyplot.figimage

matplotlib.pyplot.figlegend

matplotlib.pyplot.figlegend(*args, **kwargs)
Place a legend on the figure.

Call signatures:

figlegend()
figlegend(labels)
figlegend(handles, labels)

The call signatures correspond to these three different ways to use this method:

1. Automatic detection of elements to be shown in the legend
The elements to be added to the legend are automatically determined, when you do not pass in any
extra arguments.

In this case, the labels are taken from the artist. You can specify them either at artist creation or by
calling the set_label() method on the artist:

ax.plot([1, 2, 3], label='Inline label')
fig.figlegend()

2524 Chapter 18. Modules

Matplotlib, Release 3.4.3

or:

line, = ax.plot([1, 2, 3])
line.set_label('Label via method')
fig.figlegend()

Specific lines can be excluded from the automatic legend element selection by defining a label starting
with an underscore. This is default for all artists, so calling Figure.legend without any arguments
and without setting the labels manually will result in no legend being drawn.

2. Labeling existing plot elements
To make a legend for all artists on all Axes, call this function with an iterable of strings, one for each
legend item. For example:

fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.plot([1, 3, 5], color='blue')
ax2.plot([2, 4, 6], color='red')
fig.figlegend(['the blues', 'the reds'])

Note: This call signature is discouraged, because the relation between plot elements and labels is only
implicit by their order and can easily be mixed up.

3. Explicitly defining the elements in the legend
For full control of which artists have a legend entry, it is possible to pass an iterable of legend artists
followed by an iterable of legend labels respectively:

fig.figlegend([line1, line2, line3], ['label1', 'label2', 'label3'])

Parameters

handles
[list of Artist, optional] A list of Artists (lines, patches) to be added to the
legend. Use this together with labels, if you need full control on what is shown in
the legend and the automatic mechanism described above is not sufficient.

The length of handles and labels should be the same in this case. If they are not,
they are truncated to the smaller length.

labels
[list of str, optional] A list of labels to show next to the artists. Use this together
with handles, if you need full control on what is shown in the legend and the
automatic mechanism described above is not sufficient.

Returns

Legend

Other Parameters

18.39. matplotlib.pyplot 2525

Matplotlib, Release 3.4.3

loc
[str or pair of floats, default: rcParams["legend.loc"] (default: 'best')
('best' for axes, 'upper right' for figures)] The location of the legend.

The strings 'upper left', 'upper right', 'lower left',
'lower right' place the legend at the corresponding corner of the axes/figure.

The strings 'upper center', 'lower center', 'center left',
'center right' place the legend at the center of the corresponding edge of
the axes/figure.

The string 'center' places the legend at the center of the axes/figure.

The string 'best' places the legend at the location, among the nine locations
defined so far, with the minimum overlap with other drawn artists. This option
can be quite slow for plots with large amounts of data; your plotting speed may
benefit from providing a specific location.

The location can also be a 2-tuple giving the coordinates of the lower-left corner
of the legend in axes coordinates (in which case bbox_to_anchor will be ignored).

For back-compatibility, 'center right' (but no other location) can also be
spelled 'right', and each "string" locations can also be given as a numeric
value:

Location String Location Code
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the leg-
end in conjunction with loc. Defaults to axes.bbox (if called as a method to
Axes.legend) or figure.bbox (if Figure.legend). This argument al-
lows arbitrary placement of the legend.

Bbox coordinates are interpreted in the coordinate system given by
bbox_transform, with the default transform Axes or Figure coordinates, de-
pending on which legend is called.

If a 4-tuple or BboxBase is given, then it specifies the bbox (x, y, width,
height) that the legend is placed in. To put the legend in the best location in

2526 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=legend.loc#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

the bottom right quadrant of the axes (or figure):

loc='best', bbox_to_anchor=(0.5, 0., 0.5, 0.5)

A 2-tuple (x, y) places the corner of the legend specified by loc at x, y. For
example, to put the legend's upper right-hand corner in the center of the axes (or
figure) the following keywords can be used:

loc='upper right', bbox_to_anchor=(0.5, 0.5)

ncol
[int, default: 1] The number of columns that the legend has.

prop
[None or matplotlib.font_manager.FontProperties or dict] The
font properties of the legend. If None (default), the current matplotlib.
rcParams will be used.

fontsize
[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}] The
font size of the legend. If the value is numeric the size will be the absolute font
size in points. String values are relative to the current default font size. This
argument is only used if prop is not specified.

labelcolor
[str or list] The color of the text in the legend. Either a valid color string (for
example, 'red'), or a list of color strings. The labelcolor can also be made to match
the color of the line or marker using 'linecolor', 'markerfacecolor' (or 'mfc'), or
'markeredgecolor' (or 'mec').

numpoints
[int, default: rcParams["legend.numpoints"] (default: 1)] The number
of marker points in the legend when creating a legend entry for a Line2D (line).

scatterpoints
[int, default: rcParams["legend.scatterpoints"] (default: 1)] The
number of marker points in the legend when creating a legend entry for a Path-
Collection (scatter plot).

scatteryoffsets
[iterable of floats, default: [0.375, 0.5, 0.3125]] The vertical offset (rel-
ative to the font size) for the markers created for a scatter plot legend entry. 0.0 is
at the base the legend text, and 1.0 is at the top. To draw all markers at the same
height, set to [0.5].

markerscale
[float, default: rcParams["legend.markerscale"] (default: 1.0)] The
relative size of legend markers compared with the originally drawn ones.

18.39. matplotlib.pyplot 2527

../../tutorials/introductory/customizing.html?highlight=legend.numpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.scatterpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.markerscale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

markerfirst
[bool, default: True] If True, legend marker is placed to the left of the legend label.
If False, legend marker is placed to the right of the legend label.

frameon
[bool, default: rcParams["legend.frameon"] (default: True)] Whether
the legend should be drawn on a patch (frame).

fancybox
[bool, default: rcParams["legend.fancybox"] (default: True)]
Whether round edges should be enabled around the FancyBboxPatch which
makes up the legend's background.

shadow
[bool, default: rcParams["legend.shadow"] (default: False)] Whether
to draw a shadow behind the legend.

framealpha
[float, default: rcParams["legend.framealpha"] (default: 0.8)] The
alpha transparency of the legend's background. If shadow is activated and frameal-
pha is None, the default value is ignored.

facecolor
["inherit" or color, default: rcParams["legend.facecolor"] (de-
fault: 'inherit')] The legend's background color. If "inherit", use
rcParams["axes.facecolor"] (default: 'white').

edgecolor
["inherit" or color, default: rcParams["legend.edgecolor"] (default:
'0.8')] The legend's background patch edge color. If "inherit", use take
rcParams["axes.edgecolor"] (default: 'black').

mode
[{"expand", None}] If mode is set to "expand" the legend will be horizontally
expanded to fill the axes area (or bbox_to_anchor if defines the legend's size).

bbox_transform
[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor). For a value of None (default) the Axes'
transAxes transform will be used.

title
[str or None] The legend's title. Default is no title (None).

title_fontsize

2528 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=legend.frameon#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.fancybox#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.shadow#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.framealpha#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, default:
rcParams["legend.title_fontsize"] (default: None)] The font size
of the legend's title.

borderpad
[float, default: rcParams["legend.borderpad"] (default: 0.4)] The
fractional whitespace inside the legend border, in font-size units.

labelspacing
[float, default: rcParams["legend.labelspacing"] (default: 0.5)]
The vertical space between the legend entries, in font-size units.

handlelength
[float, default: rcParams["legend.handlelength"] (default: 2.0)]
The length of the legend handles, in font-size units.

handletextpad
[float, default: rcParams["legend.handletextpad"] (default: 0.8)]
The pad between the legend handle and text, in font-size units.

borderaxespad
[float, default: rcParams["legend.borderaxespad"] (default: 0.5)]
The pad between the axes and legend border, in font-size units.

columnspacing
[float, default: rcParams["legend.columnspacing"] (default: 2.0)]
The spacing between columns, in font-size units.

handler_map
[dict or None] The custom dictionary mapping instances or types to a legend han-
dler. This handler_map updates the default handler map found at matplotlib.
legend.Legend.get_legend_handler_map.

See also:

Axes.legend

Notes

Some artists are not supported by this function. See Legend guide for details.

18.39. matplotlib.pyplot 2529

../../tutorials/introductory/customizing.html?highlight=legend.title_fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.borderpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.labelspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.handlelength#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.handletextpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.borderaxespad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.columnspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.figlegend

matplotlib.pyplot.fignum_exists

matplotlib.pyplot.fignum_exists(num)
Return whether the figure with the given id exists.

Examples using matplotlib.pyplot.fignum_exists

matplotlib.pyplot.figtext

matplotlib.pyplot.figtext(x, y, s, fontdict=None, **kwargs)
Add text to figure.

Parameters

x, y
[float] The position to place the text. By default, this is in figure coordinates, floats
in [0, 1]. The coordinate system can be changed using the transform keyword.

s
[str] The text string.

fontdict
[dict, optional] A dictionary to override the default text properties. If not given,
the defaults are determined by rcParams["font.*"]. Properties passed as
kwargs override the corresponding ones given in fontdict.

Returns

Text

Other Parameters

**kwargs
[Text properties] Other miscellaneous text parameters.

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch
clip_box Bbox

continues on next page

2530 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=font.*#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Table 204 – continued from previous page
Property Description
clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
visible bool
wrap bool
x float
y float
zorder float

See also:

Axes.text

pyplot.text

18.39. matplotlib.pyplot 2531

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.figtext

• sphx_glr_gallery_text_labels_and_annotations_fonts_demo.py

• sphx_glr_gallery_text_labels_and_annotations_fonts_demo_kw.py

matplotlib.pyplot.figure

matplotlib.pyplot.figure(num=None, figsize=None, dpi=None, facecolor=None,
edgecolor=None, frameon=True, FigureClass=<class 'mat-
plotlib.figure.Figure'>, clear=False, **kwargs)

Create a new figure, or activate an existing figure.

Parameters

num
[int or str or Figure, optional] A unique identifier for the figure.

If a figure with that identifier already exists, this figure is made active and returned.
An integer refers to the Figure.number attribute, a string refers to the figure
label.

If there is no figure with the identifier or num is not given, a new figure is cre-
ated, made active and returned. If num is an int, it will be used for the Figure.
number attribute, otherwise, an auto-generated integer value is used (starting at
1 and incremented for each new figure). If num is a string, the figure label and the
window title is set to this value.

figsize
[(float, float), default: rcParams["figure.figsize"] (default: [6.4,
4.8])] Width, height in inches.

dpi
[float, default: rcParams["figure.dpi"] (default: 100.0)] The resolu-
tion of the figure in dots-per-inch.

facecolor
[color, default: rcParams["figure.facecolor"] (default: 'white')]
The background color.

edgecolor
[color, default: rcParams["figure.edgecolor"] (default: 'white')]
The border color.

frameon
[bool, default: True] If False, suppress drawing the figure frame.

2532 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=figure.figsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=figure.dpi#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=figure.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=figure.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

FigureClass
[subclass of Figure] Optionally use a custom Figure instance.

clear
[bool, default: False] If True and the figure already exists, then it is cleared.

tight_layout
[bool or dict, default: rcParams["figure.autolayout"] (default:
False)] If False use subplotpars. If True adjust subplot parameters using
tight_layout with default padding. When providing a dict containing the
keys pad, w_pad, h_pad, and rect, the default tight_layout paddings
will be overridden.

constrained_layout
[bool, default: rcParams["figure.constrained_layout.use"] (de-
fault: False)] If True use constrained layout to adjust positioning of plot ele-
ments. Like tight_layout, but designed to be more flexible. See Constrained
Layout Guide for examples. (Note: does not work with add_subplot or sub-
plot2grid.)

**kwargs : optional
See Figure for other possible arguments.

Returns

Figure

The Figure instance returned will also be passed to new_figure_manager in the
backends, which allows to hook custom Figure classes into the pyplot interface.
Additional kwargs will be passed to the Figure init function.

Notes

If you are creating many figures, make sure you explicitly call pyplot.close on the figures you
are not using, because this will enable pyplot to properly clean up the memory.

rcParams defines the default values, which can be modified in the matplotlibrc file.

Examples using matplotlib.pyplot.figure

• Frame grabbing

• sphx_glr_gallery_misc_hyperlinks_sgskip.py

• sphx_glr_gallery_mplot3d_rotate_axes3d_sgskip.py

• sphx_glr_gallery_mplot3d_wire3d_animation_sgskip.py

18.39. matplotlib.pyplot 2533

../../tutorials/introductory/customizing.html?highlight=figure.autolayout#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=figure.constrained_layout.use#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

• sphx_glr_gallery_user_interfaces_svg_histogram_sgskip.py

• sphx_glr_gallery_user_interfaces_toolmanager_sgskip.py

matplotlib.pyplot.fill

matplotlib.pyplot.fill(*args, data=None, **kwargs)
Plot filled polygons.

Parameters

*args
[sequence of x, y, [color]] Each polygon is defined by the lists of x and y posi-
tions of its nodes, optionally followed by a color specifier. See matplotlib.
colors for supported color specifiers. The standard color cycle is used for poly-
gons without a color specifier.

You can plot multiple polygons by providing multiple x, y, [color] groups.

For example, each of the following is legal:

ax.fill(x, y) # a polygon with default␣
↪color

ax.fill(x, y, "b") # a blue polygon
ax.fill(x, y, x2, y2) # two polygons
ax.fill(x, y, "b", x2, y2, "r") # a blue and a red polygon

data
[indexable object, optional] An object with labelled data. If given, provide the
label names to plot in x and y, e.g.:

ax.fill("time", "signal",
data={"time": [0, 1, 2], "signal": [0, 1, 0]})

Returns

list of Polygon

Other Parameters

**kwargs
[Polygon properties]

2534 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Use fill_between() if you would like to fill the region between two curves.

Examples using matplotlib.pyplot.fill

• sphx_glr_gallery_event_handling_ginput_manual_clabel_sgskip.py

matplotlib.pyplot.fill_between

matplotlib.pyplot.fill_between(x, y1, y2=0, where=None, interpolate=False,
step=None, *, data=None, **kwargs)

Fill the area between two horizontal curves.

The curves are defined by the points (x, y1) and (x, y2). This creates one or multiple polygons describ-
ing the filled area.

You may exclude some horizontal sections from filling using where.

By default, the edges connect the given points directly. Use step if the filling should be a step function,
i.e. constant in between x.

Parameters

x
[array (length N)] The x coordinates of the nodes defining the curves.

y1
[array (length N) or scalar] The y coordinates of the nodes defining the first curve.

y2
[array (length N) or scalar, default: 0] The y coordinates of the nodes defining the
second curve.

where
[array of bool (length N), optional] Define where to exclude some horizontal
regions from being filled. The filled regions are defined by the coordinates
x[where]. More precisely, fill between x[i] and x[i+1] if where[i] and
where[i+1]. Note that this definition implies that an isolated True value be-
tween two False values in where will not result in filling. Both sides of the True
position remain unfilled due to the adjacent False values.

interpolate
[bool, default: False] This option is only relevant if where is used and the two
curves are crossing each other.

Semantically, where is often used for y1 > y2 or similar. By default, the nodes of
the polygon defining the filled region will only be placed at the positions in the x

18.39. matplotlib.pyplot 2535

Matplotlib, Release 3.4.3

array. Such a polygon cannot describe the above semantics close to the intersec-
tion. The x-sections containing the intersection are simply clipped.

Setting interpolate to True will calculate the actual intersection point and extend
the filled region up to this point.

step
[{'pre', 'post', 'mid'}, optional] Define step if the filling should be a step function,
i.e. constant in between x. The value determines where the step will occur:

• 'pre': The y value is continued constantly to the left from every x position, i.e.
the interval (x[i-1], x[i]] has the value y[i].

• 'post': The y value is continued constantly to the right from every x position, i.e.
the interval [x[i], x[i+1]) has the value y[i].

• 'mid': Steps occur half-way between the x positions.

Returns

PolyCollection

A PolyCollection containing the plotted polygons.

Other Parameters

**kwargs
All other keyword arguments are passed on to PolyCollection. They control
the Polygon properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
continues on next page

2536 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 205 – continued from previous page
Property Description
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

See also:

fill_between

Fill between two sets of y-values.

fill_betweenx

Fill between two sets of x-values.

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y1, y2, where.

Objects passed as data must support item access (data[s]) and membership test (s in data).

18.39. matplotlib.pyplot 2537

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.fill_between

• sphx_glr_gallery_text_labels_and_annotations_mathtext_examples.py

matplotlib.pyplot.fill_betweenx

matplotlib.pyplot.fill_betweenx(y, x1, x2=0, where=None, step=None, interpo-
late=False, *, data=None, **kwargs)

Fill the area between two vertical curves.

The curves are defined by the points (y, x1) and (y, x2). This creates one or multiple polygons describ-
ing the filled area.

You may exclude some vertical sections from filling using where.

By default, the edges connect the given points directly. Use step if the filling should be a step function,
i.e. constant in between y.

Parameters

y
[array (length N)] The y coordinates of the nodes defining the curves.

x1
[array (length N) or scalar] The x coordinates of the nodes defining the first curve.

x2
[array (length N) or scalar, default: 0] The x coordinates of the nodes defining the
second curve.

where
[array of bool (length N), optional] Define where to exclude some vertical re-
gions from being filled. The filled regions are defined by the coordinates
y[where]. More precisely, fill between y[i] and y[i+1] if where[i] and
where[i+1]. Note that this definition implies that an isolated True value be-
tween two False values in where will not result in filling. Both sides of the True
position remain unfilled due to the adjacent False values.

interpolate
[bool, default: False] This option is only relevant if where is used and the two
curves are crossing each other.

Semantically, where is often used for x1 > x2 or similar. By default, the nodes of
the polygon defining the filled region will only be placed at the positions in the y
array. Such a polygon cannot describe the above semantics close to the intersec-
tion. The y-sections containing the intersection are simply clipped.

Setting interpolate to True will calculate the actual intersection point and extend
the filled region up to this point.

2538 Chapter 18. Modules

Matplotlib, Release 3.4.3

step
[{'pre', 'post', 'mid'}, optional] Define step if the filling should be a step function,
i.e. constant in between y. The value determines where the step will occur:

• 'pre': The y value is continued constantly to the left from every x position, i.e.
the interval (x[i-1], x[i]] has the value y[i].

• 'post': The y value is continued constantly to the right from every x position, i.e.
the interval [x[i], x[i+1]) has the value y[i].

• 'mid': Steps occur half-way between the x positions.

Returns

PolyCollection

A PolyCollection containing the plotted polygons.

Other Parameters

**kwargs
All other keyword arguments are passed on to PolyCollection. They control
the Polygon properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof

continues on next page

18.39. matplotlib.pyplot 2539

Matplotlib, Release 3.4.3

Table 206 – continued from previous page
Property Description
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

See also:

fill_between

Fill between two sets of y-values.

fill_betweenx

Fill between two sets of x-values.

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): y, x1, x2, where.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.fill_betweenx

matplotlib.pyplot.findobj

matplotlib.pyplot.findobj(o=None, match=None, include_self=True)
Find artist objects.

Recursively find all Artist instances contained in the artist.

Parameters

2540 Chapter 18. Modules

Matplotlib, Release 3.4.3

match
A filter criterion for the matches. This can be

• None: Return all objects contained in artist.

• A function with signature def match(artist: Artist) -> bool.
The result will only contain artists for which the function returns True.

• A class instance: e.g., Line2D. The result will only contain artists of this class
or its subclasses (isinstance check).

include_self
[bool] Include self in the list to be checked for a match.

Returns

list of Artist

Examples using matplotlib.pyplot.findobj

matplotlib.pyplot.flag

matplotlib.pyplot.flag()
Set the colormap to 'flag'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.flag

matplotlib.pyplot.gca

matplotlib.pyplot.gca(**kwargs)
Get the current Axes, creating one if necessary.

The following kwargs are supported for ensuring the returned Axes adheres to the given projection
etc., and for Axes creation if the active Axes does not exist:

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float

continues on next page

18.39. matplotlib.pyplot 2541

Matplotlib, Release 3.4.3

Table 207 – continued from previous page
Property Description
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown

continues on next page

2542 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 207 – continued from previous page
Property Description
yticks unknown
zorder float

Examples using matplotlib.pyplot.gca

• sphx_glr_gallery_event_handling_ginput_manual_clabel_sgskip.py

matplotlib.pyplot.gcf

matplotlib.pyplot.gcf()
Get the current figure.

If no current figure exists, a new one is created using figure().

Examples using matplotlib.pyplot.gcf

• sphx_glr_gallery_text_labels_and_annotations_arrow_demo.py

• sphx_glr_gallery_misc_agg_buffer.py

matplotlib.pyplot.gci

matplotlib.pyplot.gci()
Get the current colorable artist.

Specifically, returns the current ScalarMappable instance (Image created by imshow or
figimage, Collection created by pcolor or scatter, etc.), or None if no such instance has
been defined.

The current image is an attribute of the current Axes, or the nearest earlier Axes in the current figure
that contains an image.

Notes

Historically, the only colorable artists were images; hence the name gci (get current image).

18.39. matplotlib.pyplot 2543

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.gci

matplotlib.pyplot.get

matplotlib.pyplot.get(obj, *args, **kwargs)
Return the value of an Artist's property, or print all of them.

Parameters

obj
[Artist] The queried artist; e.g., a Line2D, a Text, or an Axes.

property
[str or None, default: None] If property is 'somename', this function returns obj.
get_somename().

If is is None (or unset), it prints all gettable properties from obj. Many properties
have aliases for shorter typing, e.g. 'lw' is an alias for 'linewidth'. In the output,
aliases and full property names will be listed as:

property or alias = value

e.g.:

linewidth or lw = 2

See also:

setp

Examples using matplotlib.pyplot.get

matplotlib.pyplot.get_current_fig_manager

matplotlib.pyplot.get_current_fig_manager()
Return the figure manager of the current figure.

The figure manager is a container for the actual backend-depended window that displays the figure on
screen.

If no current figure exists, a new one is created, and its figure manager is returned.

Returns

FigureManagerBase or backend-dependent subclass thereof

2544 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.get_current_fig_manager

matplotlib.pyplot.get_figlabels

matplotlib.pyplot.get_figlabels()
Return a list of existing figure labels.

Examples using matplotlib.pyplot.get_figlabels

matplotlib.pyplot.get_fignums

matplotlib.pyplot.get_fignums()
Return a list of existing figure numbers.

Examples using matplotlib.pyplot.get_fignums

matplotlib.pyplot.get_plot_commands

matplotlib.pyplot.get_plot_commands()
Get a sorted list of all of the plotting commands.

Examples using matplotlib.pyplot.get_plot_commands

matplotlib.pyplot.getp

matplotlib.pyplot.getp(obj, *args, **kwargs)
Return the value of an Artist's property, or print all of them.

Parameters

obj
[Artist] The queried artist; e.g., a Line2D, a Text, or an Axes.

property
[str or None, default: None] If property is 'somename', this function returns obj.
get_somename().

If is is None (or unset), it prints all gettable properties from obj. Many properties
have aliases for shorter typing, e.g. 'lw' is an alias for 'linewidth'. In the output,
aliases and full property names will be listed as:

property or alias = value

e.g.:

18.39. matplotlib.pyplot 2545

Matplotlib, Release 3.4.3

linewidth or lw = 2

See also:

setp

Examples using matplotlib.pyplot.getp

• sphx_glr_gallery_misc_set_and_get.py

• Artist tutorial

matplotlib.pyplot.ginput

matplotlib.pyplot.ginput(n=1, timeout=30, show_clicks=True,
mouse_add=<MouseButton.LEFT: 1>,
mouse_pop=<MouseButton.RIGHT: 3>,
mouse_stop=<MouseButton.MIDDLE: 2>)

Blocking call to interact with a figure.

Wait until the user clicks n times on the figure, and return the coordinates of each click in a list.

There are three possible interactions:

• Add a point.

• Remove the most recently added point.

• Stop the interaction and return the points added so far.

The actions are assigned to mouse buttons via the argumentsmouse_add,mouse_pop andmouse_stop.

Parameters

n
[int, default: 1] Number of mouse clicks to accumulate. If negative, accumulate
clicks until the input is terminated manually.

timeout
[float, default: 30 seconds] Number of seconds to wait before timing out. If zero
or negative will never timeout.

show_clicks
[bool, default: True] If True, show a red cross at the location of each click.

mouse_add
[MouseButton or None, default: MouseButton.LEFT] Mouse button used
to add points.

2546 Chapter 18. Modules

Matplotlib, Release 3.4.3

mouse_pop
[MouseButton or None, default: MouseButton.RIGHT] Mouse button used
to remove the most recently added point.

mouse_stop
[MouseButton or None, default: MouseButton.MIDDLE] Mouse button
used to stop input.

Returns

list of tuples
A list of the clicked (x, y) coordinates.

Notes

The keyboard can also be used to select points in case your mouse does not have one or more of the
buttons. The delete and backspace keys act like right clicking (i.e., remove last point), the enter key
terminates input and any other key (not already used by the window manager) selects a point.

Examples using matplotlib.pyplot.ginput

• sphx_glr_gallery_event_handling_ginput_manual_clabel_sgskip.py

matplotlib.pyplot.gray

matplotlib.pyplot.gray()
Set the colormap to 'gray'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.gray

matplotlib.pyplot.grid

matplotlib.pyplot.grid(b=None, which='major', axis='both', **kwargs)
Configure the grid lines.

Parameters

b
[bool or None, optional] Whether to show the grid lines. If any kwargs are sup-
plied, it is assumed you want the grid on and b will be set to True.

18.39. matplotlib.pyplot 2547

Matplotlib, Release 3.4.3

If b is None and there are no kwargs, this toggles the visibility of the lines.

which
[{'major', 'minor', 'both'}, optional] The grid lines to apply the changes on.

axis
[{'both', 'x', 'y'}, optional] The axis to apply the changes on.

**kwargs
[Line2D properties] Define the line properties of the grid, e.g.:

grid(color='r', linestyle='-', linewidth=2)

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
continues on next page

2548 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 208 – continued from previous page
Property Description
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

Notes

The axis is drawn as a unit, so the effective zorder for drawing the grid is determined by the zorder of
each axis, not by the zorder of the Line2D objects comprising the grid. Therefore, to set grid zorder,
use set_axisbelow or, for more control, call the set_zorder method of each axis.

Examples using matplotlib.pyplot.grid

• sphx_glr_gallery_lines_bars_and_markers_step_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_geo_demo.py

• sphx_glr_gallery_pyplots_pyplot_text.py

• sphx_glr_gallery_misc_customize_rc.py

• sphx_glr_gallery_misc_findobj_demo.py

• sphx_glr_gallery_scales_custom_scale.py

• sphx_glr_gallery_specialty_plots_skewt.py

• Pyplot tutorial

matplotlib.pyplot.hexbin

matplotlib.pyplot.hexbin(x, y, C=None, gridsize=100, bins=None, xscale='linear',
yscale='linear', extent=None, cmap=None, norm=None,
vmin=None, vmax=None, alpha=None, linewidths=None,
edgecolors='face', reduce_C_function=<function mean>,
mincnt=None, marginals=False, *, data=None, **kwargs)

Make a 2D hexagonal binning plot of points x, y.

18.39. matplotlib.pyplot 2549

Matplotlib, Release 3.4.3

IfC isNone, the value of the hexagon is determined by the number of points in the hexagon. Otherwise,
C specifies values at the coordinate (x[i], y[i]). For each hexagon, these values are reduced using
reduce_C_function.

Parameters

x, y
[array-like] The data positions. x and y must be of the same length.

C
[array-like, optional] If given, these values are accumulated in the bins. Otherwise,
every point has a value of 1. Must be of the same length as x and y.

gridsize
[int or (int, int), default: 100] If a single int, the number of hexagons in the x-
direction. The number of hexagons in the y-direction is chosen such that the
hexagons are approximately regular.

Alternatively, if a tuple (nx, ny), the number of hexagons in the x-direction and the
y-direction.

bins
['log' or int or sequence, default: None] Discretization of the hexagon values.

• If None, no binning is applied; the color of each hexagon directly corresponds
to its count value.

• If 'log', use a logarithmic scale for the colormap. Internally, 𝑙𝑜𝑔10(𝑖 + 1) is used
to determine the hexagon color. This is equivalent to norm=LogNorm().

• If an integer, divide the counts in the specified number of bins, and color the
hexagons accordingly.

• If a sequence of values, the values of the lower bound of the bins to be used.

xscale
[{'linear', 'log'}, default: 'linear'] Use a linear or log10 scale on the horizontal axis.

yscale
[{'linear', 'log'}, default: 'linear'] Use a linear or log10 scale on the vertical axis.

mincnt
[int > 0, default: None] If not None, only display cells with more than mincnt
number of points in the cell.

marginals
[bool, default: False] If marginals is True, plot the marginal density as col-
ormapped rectangles along the bottom of the x-axis and left of the y-axis.

2550 Chapter 18. Modules

Matplotlib, Release 3.4.3

extent
[float, default: None] The limits of the bins. The default assigns the limits based
on gridsize, x, y, xscale and yscale.

If xscale or yscale is set to 'log', the limits are expected to be the exponent for a
power of 10. E.g. for x-limits of 1 and 50 in 'linear' scale and y-limits of 10 and
1000 in 'log' scale, enter (1, 50, 1, 3).

Order of scalars is (left, right, bottom, top).

Returns

PolyCollection

A PolyCollection defining the hexagonal bins.

• PolyCollection.get_offsets contains a Mx2 array containing the x,
y positions of the M hexagon centers.

• PolyCollection.get_array contains the values of the M hexagons.

If marginals is True, horizontal bar and vertical bar (both PolyCollections) will be
attached to the return collection as attributes hbar and vbar.

Other Parameters

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] The Colormap instance or registered colormap name used
to map the bin values to colors.

norm
[Normalize, optional] The Normalize instance scales the bin values to the
canonical colormap range [0, 1] for mapping to colors. By default, the data range
is mapped to the colorbar range using linear scaling.

vmin, vmax
[float, default: None] The colorbar range. If None, suitable min/max values
are automatically chosen by the Normalize instance (defaults to the respective
min/max values of the bins in case of the default linear scaling). It is deprecated
to use vmin/vmax when norm is given.

alpha
[float between 0 and 1, optional] The alpha blending value, between 0 (transparent)
and 1 (opaque).

linewidths
[float, default: None] If None, defaults to 1.0.

18.39. matplotlib.pyplot 2551

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

edgecolors
[{'face', 'none', None} or color, default: 'face'] The color of the hexagon edges.
Possible values are:

• 'face': Draw the edges in the same color as the fill color.

• 'none': No edges are drawn. This can sometimes lead to unsightly unpainted
pixels between the hexagons.

• None: Draw outlines in the default color.

• An explicit color.

reduce_C_function
[callable, default: numpy.mean] The function to aggregate C within the bins. It
is ignored if C is not given. This must have the signature:

def reduce_C_function(C: array) -> float

Commonly used functions are:

• numpy.mean: average of the points

• numpy.sum: integral of the point values

• numpy.amax: value taken from the largest point

**kwargs
[PolyCollection properties] All other keyword arguments are passed on to
PolyCollection:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
continues on next page

2552 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean
https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean
https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum
https://numpy.org/doc/stable/reference/generated/numpy.amax.html#numpy.amax

Matplotlib, Release 3.4.3

Table 209 – continued from previous page
Property Description
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y, C.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.hexbin

matplotlib.pyplot.hist

matplotlib.pyplot.hist(x, bins=None, range=None, density=False, weights=None, cu-
mulative=False, bottom=None, histtype='bar', align='mid', ori-
entation='vertical', rwidth=None, log=False, color=None, la-
bel=None, stacked=False, *, data=None, **kwargs)

Plot a histogram.

Compute and draw the histogram of x. The return value is a tuple (n, bins, patches) or ([n0, n1, ...],
bins, [patches0, patches1, ...]) if the input containsmultiple data. See the documentation of theweights
parameter to draw a histogram of already-binned data.

18.39. matplotlib.pyplot 2553

Matplotlib, Release 3.4.3

Multiple data can be provided via x as a list of datasets of potentially different length ([x0, x1, ...]), or
as a 2D ndarray in which each column is a dataset. Note that the ndarray form is transposed relative
to the list form.

Masked arrays are not supported.

The bins, range, weights, and density parameters behave as in numpy.histogram.

Parameters

x
[(n,) array or sequence of (n,) arrays] Input values, this takes either a single array
or a sequence of arrays which are not required to be of the same length.

bins
[int or sequence or str, default: rcParams["hist.bins"] (default: 10)] If
bins is an integer, it defines the number of equal-width bins in the range.

If bins is a sequence, it defines the bin edges, including the left edge of the first
bin and the right edge of the last bin; in this case, bins may be unequally spaced.
All but the last (righthand-most) bin is half-open. In other words, if bins is:

[1, 2, 3, 4]

then the first bin is [1, 2) (including 1, but excluding 2) and the second [2,
3). The last bin, however, is [3, 4], which includes 4.

If bins is a string, it is one of the binning strategies supported by numpy.
histogram_bin_edges: 'auto', 'fd', 'doane', 'scott', 'stone', 'rice', 'sturges', or
'sqrt'.

range
[tuple or None, default: None] The lower and upper range of the bins. Lower and
upper outliers are ignored. If not provided, range is (x.min(), x.max()).
Range has no effect if bins is a sequence.

If bins is a sequence or range is specified, autoscaling is based on the specified bin
range instead of the range of x.

density
[bool, default: False] If True, draw and return a probability density: each bin
will display the bin's raw count divided by the total number of counts and the bin
width (density = counts / (sum(counts) * np.diff(bins))),
so that the area under the histogram integrates to 1 (np.sum(density * np.
diff(bins)) == 1).

If stacked is also True, the sum of the histograms is normalized to 1.

weights
[(n,) array-like or None, default: None] An array of weights, of the same shape
as x. Each value in x only contributes its associated weight towards the bin count

2554 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram
../../tutorials/introductory/customizing.html?highlight=hist.bins#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges

Matplotlib, Release 3.4.3

(instead of 1). If density is True, the weights are normalized, so that the integral
of the density over the range remains 1.

This parameter can be used to draw a histogram of data that has already been
binned, e.g. using numpy.histogram (by treating each bin as a single point
with a weight equal to its count)

counts, bins = np.histogram(data)
plt.hist(bins[:-1], bins, weights=counts)

(or you may alternatively use bar()).

cumulative
[bool or -1, default: False] If True, then a histogram is computed where each bin
gives the counts in that bin plus all bins for smaller values. The last bin gives the
total number of datapoints.

If density is also True then the histogram is normalized such that the last bin
equals 1.

If cumulative is a number less than 0 (e.g., -1), the direction of accumulation is
reversed. In this case, if density is also True, then the histogram is normalized
such that the first bin equals 1.

bottom
[array-like, scalar, or None, default: None] Location of the bottom of each bin, ie.
bins are drawn from bottom to bottom + hist(x, bins) If a scalar, the
bottom of each bin is shifted by the same amount. If an array, each bin is shifted
independently and the length of bottom must match the number of bins. If None,
defaults to 0.

histtype
[{'bar', 'barstacked', 'step', 'stepfilled'}, default: 'bar'] The type of histogram to
draw.

• 'bar' is a traditional bar-type histogram. If multiple data are given the bars are
arranged side by side.

• 'barstacked' is a bar-type histogram where multiple data are stacked on top of
each other.

• 'step' generates a lineplot that is by default unfilled.

• 'stepfilled' generates a lineplot that is by default filled.

align
[{'left', 'mid', 'right'}, default: 'mid'] The horizontal alignment of the histogram
bars.

• 'left': bars are centered on the left bin edges.

• 'mid': bars are centered between the bin edges.

18.39. matplotlib.pyplot 2555

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram

Matplotlib, Release 3.4.3

• 'right': bars are centered on the right bin edges.

orientation
[{'vertical', 'horizontal'}, default: 'vertical'] If 'horizontal', barh will be used for
bar-type histograms and the bottom kwarg will be the left edges.

rwidth
[float or None, default: None] The relative width of the bars as a fraction of the
bin width. If None, automatically compute the width.

Ignored if histtype is 'step' or 'stepfilled'.

log
[bool, default: False] If True, the histogram axis will be set to a log scale.

color
[color or array-like of colors or None, default: None] Color or sequence of colors,
one per dataset. Default (None) uses the standard line color sequence.

label
[str or None, default: None] String, or sequence of strings to match multiple
datasets. Bar charts yield multiple patches per dataset, but only the first gets the
label, so that legend will work as expected.

stacked
[bool, default: False] If True, multiple data are stacked on top of each other If
Falsemultiple data are arranged side by side if histtype is 'bar' or on top of each
other if histtype is 'step'

Returns

n
[array or list of arrays] The values of the histogram bins. See density and weights
for a description of the possible semantics. If input x is an array, then this is an
array of length nbins. If input is a sequence of arrays [data1, data2, ...],
then this is a list of arrays with the values of the histograms for each of the arrays
in the same order. The dtype of the array n (or of its element arrays) will always
be float even if no weighting or normalization is used.

bins
[array] The edges of the bins. Length nbins + 1 (nbins left edges and right edge
of last bin). Always a single array even when multiple data sets are passed in.

patches
[BarContainer or list of a single Polygon or list of such objects] Container
of individual artists used to create the histogram or list of such containers if there
are multiple input datasets.

2556 Chapter 18. Modules

Matplotlib, Release 3.4.3

Other Parameters

**kwargs
Patch properties

See also:

hist2d

2D histograms

Notes

For large numbers of bins (>1000), 'step' and 'stepfilled' can be significantly faster than 'bar' and
'barstacked'.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, weights.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.hist

• sphx_glr_gallery_user_interfaces_svg_histogram_sgskip.py

matplotlib.pyplot.hist2d

matplotlib.pyplot.hist2d(x, y, bins=10, range=None, density=False, weights=None,
cmin=None, cmax=None, *, data=None, **kwargs)

Make a 2D histogram plot.

Parameters

x, y
[array-like, shape (n,)] Input values

bins
[None or int or [int, int] or array-like or [array, array]] The bin specification:

• If int, the number of bins for the two dimensions (nx=ny=bins).

• If [int, int], the number of bins in each dimension (nx, ny = bins).

• If array-like, the bin edges for the two dimensions (x_edges=y_edges=bins).

18.39. matplotlib.pyplot 2557

Matplotlib, Release 3.4.3

• If [array, array], the bin edges in each dimension (x_edges, y_edges =
bins).

The default value is 10.

range
[array-like shape(2, 2), optional] The leftmost and rightmost edges of the
bins along each dimension (if not specified explicitly in the bins parameters):
[[xmin, xmax], [ymin, ymax]]. All values outside of this range will be
considered outliers and not tallied in the histogram.

density
[bool, default: False] Normalize histogram. See the documentation for the density
parameter of hist for more details.

weights
[array-like, shape (n,), optional] An array of values w_i weighing each sample
(x_i, y_i).

cmin, cmax
[float, default: None] All bins that has count less than cmin or more than cmaxwill
not be displayed (set to NaN before passing to imshow) and these count values in
the return value count histogram will also be set to nan upon return.

Returns

h
[2D array] The bi-dimensional histogram of samples x and y. Values in x are
histogrammed along the first dimension and values in y are histogrammed along
the second dimension.

xedges
[1D array] The bin edges along the x axis.

yedges
[1D array] The bin edges along the y axis.

image
[QuadMesh]

Other Parameters

cmap
[Colormap or str, optional] A colors.Colormap instance. If not set, use rc
settings.

2558 Chapter 18. Modules

Matplotlib, Release 3.4.3

norm
[Normalize, optional] A colors.Normalize instance is used to scale lumi-
nance data to [0, 1]. If not set, defaults to colors.Normalize().

vmin/vmax
[None or scalar, optional] Arguments passed to the Normalize instance.

alpha
[0 <= scalar <= 1 or None, optional] The alpha blending value.

**kwargs
Additional parameters are passed along to the pcolormesh method and
QuadMesh constructor.

See also:

hist

1D histogram plotting

Notes

• Currently hist2d calculates its own axis limits, and any limits previously set are ignored.

• Rendering the histogram with a logarithmic color scale is accomplished by passing a colors.
LogNorm instance to the norm keyword argument. Likewise, power-law normalization (similar
in effect to gamma correction) can be accomplished with colors.PowerNorm.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y, weights.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.hist2d

matplotlib.pyplot.hlines

matplotlib.pyplot.hlines(y, xmin, xmax, colors=None, linestyles='solid', label='', *,
data=None, **kwargs)

Plot horizontal lines at each y from xmin to xmax.

Parameters

18.39. matplotlib.pyplot 2559

Matplotlib, Release 3.4.3

y
[float or array-like] y-indexes where to plot the lines.

xmin, xmax
[float or array-like] Respective beginning and end of each line. If scalars are pro-
vided, all lines will have same length.

colors
[list of colors, default: rcParams["lines.color"] (default: 'C0')]

linestyles
[{'solid', 'dashed', 'dashdot', 'dotted'}, optional]

label
[str, default: '']

Returns

LineCollection

Other Parameters

**kwargs
[LineCollection properties.]

See also:

vlines

vertical lines

axhline

horizontal line across the Axes

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): y, xmin, xmax, colors.

Objects passed as data must support item access (data[s]) and membership test (s in data).

2560 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=lines.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.hlines

matplotlib.pyplot.hot

matplotlib.pyplot.hot()
Set the colormap to 'hot'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.hot

matplotlib.pyplot.hsv

matplotlib.pyplot.hsv()
Set the colormap to 'hsv'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.hsv

matplotlib.pyplot.imread

matplotlib.pyplot.imread(fname, format=None)
Read an image from a file into an array.

Parameters

fname
[str or file-like] The image file to read: a filename, a URL or a file-like object
opened in read-binary mode.

Passing a URL is deprecated. Please open the URL for reading and pass
the result to Pillow, e.g. with PIL.Image.open(urllib.request.
urlopen(url)).

format
[str, optional] The image file format assumed for reading the data. If not given,
the format is deduced from the filename. If nothing can be deduced, PNG is tried.

Returns

numpy.array

The image data. The returned array has shape

18.39. matplotlib.pyplot 2561

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array

Matplotlib, Release 3.4.3

• (M, N) for grayscale images.

• (M, N, 3) for RGB images.

• (M, N, 4) for RGBA images.

Examples using matplotlib.pyplot.imread

• sphx_glr_gallery_images_contours_and_fields_image_clip_path.py

• sphx_glr_gallery_images_contours_and_fields_image_demo.py

• sphx_glr_gallery_text_labels_and_annotations_demo_annotation_box.py

• sphx_glr_gallery_text_labels_and_annotations_demo_text_path.py

• sphx_glr_gallery_text_labels_and_annotations_mathtext_asarray.py

• sphx_glr_gallery_misc_demo_ribbon_box.py

matplotlib.pyplot.imsave

matplotlib.pyplot.imsave(fname, arr, **kwargs)
Save an array as an image file.

Parameters

fname
[str or path-like or file-like] A path or a file-like object to store the image in. If
format is not set, then the output format is inferred from the extension of fname,
if any, and from rcParams["savefig.format"] (default: 'png') other-
wise. If format is set, it determines the output format.

arr
[array-like] The image data. The shape can be one of MxN (luminance), MxNx3
(RGB) or MxNx4 (RGBA).

vmin, vmax
[float, optional] vmin and vmax set the color scaling for the image by fixing the
values that map to the colormap color limits. If either vmin or vmax is None, that
limit is determined from the arr min/max value.

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps scalar data to colors. It is ignored for RGB(A) data.

format

2562 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[str, optional] The file format, e.g. 'png', 'pdf', 'svg', ... The behavior when this is
unset is documented under fname.

origin
[{'upper', 'lower'}, default: rcParams["image.origin"] (default: 'up-
per')] Indicates whether the (0, 0) index of the array is in the upper left or
lower left corner of the axes.

dpi
[float] The DPI to store in the metadata of the file. This does not affect the reso-
lution of the output image. Depending on file format, this may be rounded to the
nearest integer.

metadata
[dict, optional] Metadata in the image file. The supported keys depend on the
output format, see the documentation of the respective backends for more infor-
mation.

pil_kwargs
[dict, optional] Keyword arguments passed to PIL.Image.Image.save. If
the 'pnginfo' key is present, it completely overridesmetadata, including the default
'Software' key.

Examples using matplotlib.pyplot.imsave

matplotlib.pyplot.imshow

matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None, interpola-
tion=None, alpha=None, vmin=None, vmax=None, ori-
gin=None, extent=None, *, filternorm=True, filterrad=4.0,
resample=None, url=None, data=None, **kwargs)

Display data as an image, i.e., on a 2D regular raster.

The input may either be actual RGB(A) data, or 2D scalar data, which will be rendered as a pseu-
docolor image. For displaying a grayscale image set up the colormapping using the parameters
cmap='gray', vmin=0, vmax=255.

The number of pixels used to render an image is set by the Axes size and the dpi of the figure.
This can lead to aliasing artifacts when the image is resampled because the displayed image size
will usually not match the size of X (see /gallery/images_contours_and_fields/image_antialiasing).
The resampling can be controlled via the interpolation parameter and/or rcParams["image.
interpolation"] (default: 'antialiased').

Parameters

X
[array-like or PIL image] The image data. Supported array shapes are:

18.39. matplotlib.pyplot 2563

../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save
../../tutorials/introductory/customizing.html?highlight=image.interpolation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.interpolation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

• (M, N): an image with scalar data. The values are mapped to colors using nor-
malization and a colormap. See parameters norm, cmap, vmin, vmax.

• (M, N, 3): an image with RGB values (0-1 float or 0-255 int).

• (M, N, 4): an image with RGBA values (0-1 float or 0-255 int), i.e. including
transparency.

The first two dimensions (M, N) define the rows and columns of the image.

Out-of-range RGB(A) values are clipped.

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] The Colormap instance or registered colormap name used
to map scalar data to colors. This parameter is ignored for RGB(A) data.

norm
[Normalize, optional] The Normalize instance used to scale scalar data to
the [0, 1] range before mapping to colors using cmap. By default, a linear scaling
mapping the lowest value to 0 and the highest to 1 is used. This parameter is
ignored for RGB(A) data.

aspect
[{'equal', 'auto'} or float, default: rcParams["image.aspect"] (default:
'equal')] The aspect ratio of the Axes. This parameter is particularly relevant
for images since it determines whether data pixels are square.

This parameter is a shortcut for explicitly calling Axes.set_aspect. See there
for further details.

• 'equal': Ensures an aspect ratio of 1. Pixels will be square (unless pixel sizes
are explicitly made non-square in data coordinates using extent).

• 'auto': The Axes is kept fixed and the aspect is adjusted so that the data fit in the
Axes. In general, this will result in non-square pixels.

interpolation
[str, default: rcParams["image.interpolation"] (default: 'an-
tialiased')] The interpolation method used.

Supported values are 'none', 'antialiased', 'nearest', 'bilinear', 'bicubic', 'spline16',
'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian',
'bessel', 'mitchell', 'sinc', 'lanczos', 'blackman'.

If interpolation is 'none', then no interpolation is performed on the Agg, ps, pdf and
svg backends. Other backends will fall back to 'nearest'. Note that most SVG ren-
derers perform interpolation at rendering and that the default interpolation method
they implement may differ.

If interpolation is the default 'antialiased', then 'nearest' interpolation is used if the
image is upsampled bymore than a factor of three (i.e. the number of display pixels
is at least three times the size of the data array). If the upsampling rate is smaller

2564 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.aspect#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.interpolation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

than 3, or the image is downsampled, then 'hanning' interpolation is used to act
as an anti-aliasing filter, unless the image happens to be upsampled by exactly a
factor of two or one.

See /gallery/images_contours_and_fields/interpolation_methods
for an overview of the supported interpolation methods, and
/gallery/images_contours_and_fields/image_antialiasing for a discussion of
image antialiasing.

Some interpolation methods require an additional radius parameter, which can be
set by filterrad. Additionally, the antigrain image resize filter is controlled by the
parameter filternorm.

alpha
[float or array-like, optional] The alpha blending value, between 0 (transparent)
and 1 (opaque). If alpha is an array, the alpha blending values are applied pixel
by pixel, and alpha must have the same shape as X.

vmin, vmax
[float, optional] When using scalar data and no explicit norm, vmin and vmax de-
fine the data range that the colormap covers. By default, the colormap covers the
complete value range of the supplied data. It is deprecated to use vmin/vmaxwhen
norm is given. When using RGB(A) data, parameters vmin/vmax are ignored.

origin
[{'upper', 'lower'}, default: rcParams["image.origin"] (default: 'up-
per')] Place the [0, 0] index of the array in the upper left or lower left corner of
the Axes. The convention (the default) 'upper' is typically used for matrices and
images.

Note that the vertical axis points upward for 'lower' but downward for 'upper'.

See the origin and extent in imshow tutorial for examples and a more detailed
description.

extent
[floats (left, right, bottom, top), optional] The bounding box in data coordinates
that the image will fill. The image is stretched individually along x and y to fill
the box.

The default extent is determined by the following conditions. Pixels have unit
size in data coordinates. Their centers are on integer coordinates, and their center
coordinates range from 0 to columns-1 horizontally and from 0 to rows-1 vertically.

Note that the direction of the vertical axis and thus the default values for top and
bottom depend on origin:

• For origin == 'upper' the default is (-0.5, numcols-0.5,
numrows-0.5, -0.5).

• Fororigin == 'lower' the default is(-0.5, numcols-0.5, -0.5,
numrows-0.5).

18.39. matplotlib.pyplot 2565

../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

See the origin and extent in imshow tutorial for examples and a more detailed
description.

filternorm
[bool, default: True] A parameter for the antigrain image resize filter (see the
antigrain documentation). If filternorm is set, the filter normalizes integer values
and corrects the rounding errors. It doesn't do anything with the source floating
point values, it corrects only integers according to the rule of 1.0 which means that
any sum of pixel weights must be equal to 1.0. So, the filter function must produce
a graph of the proper shape.

filterrad
[float > 0, default: 4.0] The filter radius for filters that have a radius parameter, i.e.
when interpolation is one of: 'sinc', 'lanczos' or 'blackman'.

resample
[bool, default: rcParams["image.resample"] (default: True)] When
True, use a full resampling method. When False, only resample when the out-
put image is larger than the input image.

url
[str, optional] Set the url of the created AxesImage. See Artist.set_url.

Returns

AxesImage

Other Parameters

**kwargs
[Artist properties] These parameters are passed on to the constructor of the
AxesImage artist.

See also:

matshow

Plot a matrix or an array as an image.

2566 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=image.resample#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

Unless extent is used, pixel centers will be located at integer coordinates. In other words: the origin
will coincide with the center of pixel (0, 0).

There are two common representations for RGB images with an alpha channel:

• Straight (unassociated) alpha: R, G, and B channels represent the color of the pixel, disregarding
its opacity.

• Premultiplied (associated) alpha: R, G, and B channels represent the color of the pixel, adjusted
for its opacity by multiplication.

imshow expects RGB images adopting the straight (unassociated) alpha representation.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.imshow

• sphx_glr_gallery_misc_hyperlinks_sgskip.py

matplotlib.pyplot.inferno

matplotlib.pyplot.inferno()
Set the colormap to 'inferno'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.inferno

matplotlib.pyplot.install_repl_displayhook

matplotlib.pyplot.install_repl_displayhook()
Install a repl display hook so that any stale figure are automatically redrawn when control is returned
to the repl.

This works both with IPython and with vanilla python shells.

18.39. matplotlib.pyplot 2567

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.install_repl_displayhook

matplotlib.pyplot.ioff

matplotlib.pyplot.ioff()
Disable interactive mode.

See pyplot.isinteractive for more details.

See also:

ion

Enable interactive mode.

isinteractive

Whether interactive mode is enabled.

show

Show all figures (and maybe block).

pause

Show all figures, and block for a time.

Notes

For a temporary change, this can be used as a context manager:

if interactive mode is on
then figures will be shown on creation
plt.ion()
This figure will be shown immediately
fig = plt.figure()

with plt.ioff():
interactive mode will be off
figures will not automatically be shown
fig2 = plt.figure()
...

To enable usage as a context manager, this function returns an _IoffContext object. The return
value is not intended to be stored or accessed by the user.

2568 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.ioff

• Usage Guide

matplotlib.pyplot.ion

matplotlib.pyplot.ion()
Enable interactive mode.

See pyplot.isinteractive for more details.

See also:

ioff

Disable interactive mode.

isinteractive

Whether interactive mode is enabled.

show

Show all figures (and maybe block).

pause

Show all figures, and block for a time.

Notes

For a temporary change, this can be used as a context manager:

if interactive mode is off
then figures will not be shown on creation
plt.ioff()
This figure will not be shown immediately
fig = plt.figure()

with plt.ion():
interactive mode will be on
figures will automatically be shown
fig2 = plt.figure()
...

To enable usage as a context manager, this function returns an _IonContext object. The return
value is not intended to be stored or accessed by the user.

18.39. matplotlib.pyplot 2569

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.ion

• Usage Guide

matplotlib.pyplot.isinteractive

matplotlib.pyplot.isinteractive()
Return whether plots are updated after every plotting command.

The interactive mode is mainly useful if you build plots from the command line and want to see the
effect of each command while you are building the figure.

In interactive mode:

• newly created figures will be shown immediately;

• figures will automatically redraw on change;

• pyplot.show will not block by default.

In non-interactive mode:

• newly created figures and changes to figures will not be reflected until explicitly asked to be;

• pyplot.show will block by default.

See also:

ion

Enable interactive mode.

ioff

Disable interactive mode.

show

Show all figures (and maybe block).

pause

Show all figures, and block for a time.

Examples using matplotlib.pyplot.isinteractive

matplotlib.pyplot.jet

matplotlib.pyplot.jet()
Set the colormap to 'jet'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

2570 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.jet

matplotlib.pyplot.legend

matplotlib.pyplot.legend(*args, **kwargs)
Place a legend on the Axes.

Call signatures:

legend()
legend(labels)
legend(handles, labels)

The call signatures correspond to these three different ways to use this method:

1. Automatic detection of elements to be shown in the legend
The elements to be added to the legend are automatically determined, when you do not pass in any
extra arguments.

In this case, the labels are taken from the artist. You can specify them either at artist creation or by
calling the set_label() method on the artist:

ax.plot([1, 2, 3], label='Inline label')
ax.legend()

or:

line, = ax.plot([1, 2, 3])
line.set_label('Label via method')
ax.legend()

Specific lines can be excluded from the automatic legend element selection by defining a label starting
with an underscore. This is default for all artists, so calling Axes.legend without any arguments
and without setting the labels manually will result in no legend being drawn.

2. Labeling existing plot elements
To make a legend for lines which already exist on the Axes (via plot for instance), simply call this
function with an iterable of strings, one for each legend item. For example:

ax.plot([1, 2, 3])
ax.legend(['A simple line'])

Note: This call signature is discouraged, because the relation between plot elements and labels is only
implicit by their order and can easily be mixed up.

3. Explicitly defining the elements in the legend
For full control of which artists have a legend entry, it is possible to pass an iterable of legend artists
followed by an iterable of legend labels respectively:

18.39. matplotlib.pyplot 2571

Matplotlib, Release 3.4.3

ax.legend([line1, line2, line3], ['label1', 'label2', 'label3'])

Parameters

handles
[sequence of Artist, optional] A list of Artists (lines, patches) to be added to
the legend. Use this together with labels, if you need full control on what is shown
in the legend and the automatic mechanism described above is not sufficient.

The length of handles and labels should be the same in this case. If they are not,
they are truncated to the smaller length.

labels
[list of str, optional] A list of labels to show next to the artists. Use this together
with handles, if you need full control on what is shown in the legend and the
automatic mechanism described above is not sufficient.

Returns

Legend

Other Parameters

loc
[str or pair of floats, default: rcParams["legend.loc"] (default: 'best')
('best' for axes, 'upper right' for figures)] The location of the legend.

The strings 'upper left', 'upper right', 'lower left',
'lower right' place the legend at the corresponding corner of the axes/figure.

The strings 'upper center', 'lower center', 'center left',
'center right' place the legend at the center of the corresponding edge of
the axes/figure.

The string 'center' places the legend at the center of the axes/figure.

The string 'best' places the legend at the location, among the nine locations
defined so far, with the minimum overlap with other drawn artists. This option
can be quite slow for plots with large amounts of data; your plotting speed may
benefit from providing a specific location.

The location can also be a 2-tuple giving the coordinates of the lower-left corner
of the legend in axes coordinates (in which case bbox_to_anchor will be ignored).

For back-compatibility, 'center right' (but no other location) can also be
spelled 'right', and each "string" locations can also be given as a numeric
value:

2572 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=legend.loc#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Location String Location Code
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the leg-
end in conjunction with loc. Defaults to axes.bbox (if called as a method to
Axes.legend) or figure.bbox (if Figure.legend). This argument al-
lows arbitrary placement of the legend.

Bbox coordinates are interpreted in the coordinate system given by
bbox_transform, with the default transform Axes or Figure coordinates, de-
pending on which legend is called.

If a 4-tuple or BboxBase is given, then it specifies the bbox (x, y, width,
height) that the legend is placed in. To put the legend in the best location in
the bottom right quadrant of the axes (or figure):

loc='best', bbox_to_anchor=(0.5, 0., 0.5, 0.5)

A 2-tuple (x, y) places the corner of the legend specified by loc at x, y. For
example, to put the legend's upper right-hand corner in the center of the axes (or
figure) the following keywords can be used:

loc='upper right', bbox_to_anchor=(0.5, 0.5)

ncol
[int, default: 1] The number of columns that the legend has.

prop
[None or matplotlib.font_manager.FontProperties or dict] The
font properties of the legend. If None (default), the current matplotlib.
rcParams will be used.

fontsize
[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}] The
font size of the legend. If the value is numeric the size will be the absolute font

18.39. matplotlib.pyplot 2573

Matplotlib, Release 3.4.3

size in points. String values are relative to the current default font size. This
argument is only used if prop is not specified.

labelcolor
[str or list] The color of the text in the legend. Either a valid color string (for
example, 'red'), or a list of color strings. The labelcolor can also be made to match
the color of the line or marker using 'linecolor', 'markerfacecolor' (or 'mfc'), or
'markeredgecolor' (or 'mec').

numpoints
[int, default: rcParams["legend.numpoints"] (default: 1)] The number
of marker points in the legend when creating a legend entry for a Line2D (line).

scatterpoints
[int, default: rcParams["legend.scatterpoints"] (default: 1)] The
number of marker points in the legend when creating a legend entry for a Path-
Collection (scatter plot).

scatteryoffsets
[iterable of floats, default: [0.375, 0.5, 0.3125]] The vertical offset (rel-
ative to the font size) for the markers created for a scatter plot legend entry. 0.0 is
at the base the legend text, and 1.0 is at the top. To draw all markers at the same
height, set to [0.5].

markerscale
[float, default: rcParams["legend.markerscale"] (default: 1.0)] The
relative size of legend markers compared with the originally drawn ones.

markerfirst
[bool, default: True] If True, legend marker is placed to the left of the legend label.
If False, legend marker is placed to the right of the legend label.

frameon
[bool, default: rcParams["legend.frameon"] (default: True)] Whether
the legend should be drawn on a patch (frame).

fancybox
[bool, default: rcParams["legend.fancybox"] (default: True)]
Whether round edges should be enabled around the FancyBboxPatch which
makes up the legend's background.

shadow
[bool, default: rcParams["legend.shadow"] (default: False)] Whether
to draw a shadow behind the legend.

framealpha

2574 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=legend.numpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.scatterpoints#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.markerscale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.frameon#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.fancybox#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.shadow#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[float, default: rcParams["legend.framealpha"] (default: 0.8)] The
alpha transparency of the legend's background. If shadow is activated and frameal-
pha is None, the default value is ignored.

facecolor
["inherit" or color, default: rcParams["legend.facecolor"] (de-
fault: 'inherit')] The legend's background color. If "inherit", use
rcParams["axes.facecolor"] (default: 'white').

edgecolor
["inherit" or color, default: rcParams["legend.edgecolor"] (default:
'0.8')] The legend's background patch edge color. If "inherit", use take
rcParams["axes.edgecolor"] (default: 'black').

mode
[{"expand", None}] If mode is set to "expand" the legend will be horizontally
expanded to fill the axes area (or bbox_to_anchor if defines the legend's size).

bbox_transform
[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor). For a value of None (default) the Axes'
transAxes transform will be used.

title
[str or None] The legend's title. Default is no title (None).

title_fontsize
[int or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}, default:
rcParams["legend.title_fontsize"] (default: None)] The font size
of the legend's title.

borderpad
[float, default: rcParams["legend.borderpad"] (default: 0.4)] The
fractional whitespace inside the legend border, in font-size units.

labelspacing
[float, default: rcParams["legend.labelspacing"] (default: 0.5)]
The vertical space between the legend entries, in font-size units.

handlelength
[float, default: rcParams["legend.handlelength"] (default: 2.0)]
The length of the legend handles, in font-size units.

handletextpad
[float, default: rcParams["legend.handletextpad"] (default: 0.8)]
The pad between the legend handle and text, in font-size units.

18.39. matplotlib.pyplot 2575

../../tutorials/introductory/customizing.html?highlight=legend.framealpha#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.title_fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.borderpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.labelspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.handlelength#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.handletextpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

borderaxespad
[float, default: rcParams["legend.borderaxespad"] (default: 0.5)]
The pad between the axes and legend border, in font-size units.

columnspacing
[float, default: rcParams["legend.columnspacing"] (default: 2.0)]
The spacing between columns, in font-size units.

handler_map
[dict or None] The custom dictionary mapping instances or types to a legend han-
dler. This handler_map updates the default handler map found at matplotlib.
legend.Legend.get_legend_handler_map.

See also:

Figure.legend

Notes

Some artists are not supported by this function. See Legend guide for details.

Examples

Examples using matplotlib.pyplot.legend

• sphx_glr_gallery_user_interfaces_svg_histogram_sgskip.py

matplotlib.pyplot.locator_params

matplotlib.pyplot.locator_params(axis='both', tight=None, **kwargs)
Control behavior of major tick locators.

Because the locator is involved in autoscaling, autoscale_view is called automatically after the
parameters are changed.

Parameters

axis
[{'both', 'x', 'y'}, default: 'both'] The axis on which to operate.

tight
[bool or None, optional] Parameter passed to autoscale_view. Default is
None, for no change.

Other Parameters

2576 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=legend.borderaxespad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=legend.columnspacing#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 Model length
Data length
Total message length

**kwargs
Remaining keyword arguments are passed to directly to the set_params()
method of the locator. Supported keywords depend on the type of the locator. See
for example set_params for the ticker.MaxNLocator used by default for
linear axes.

Examples

When plotting small subplots, one might want to reduce the maximum number of ticks and use tight
bounds, for example:

ax.locator_params(tight=True, nbins=4)

18.39. matplotlib.pyplot 2577

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.locator_params

matplotlib.pyplot.loglog

matplotlib.pyplot.loglog(*args, **kwargs)
Make a plot with log scaling on both the x and y axis.

Call signatures:

loglog([x], y, [fmt], data=None, **kwargs)
loglog([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

This is just a thin wrapper around plot which additionally changes both the x-axis and the y-axis to
log scaling. All of the concepts and parameters of plot can be used here as well.

The additional parameters base, subs and nonpositive control the x/y-axis properties. They are just for-
warded to Axes.set_xscale and Axes.set_yscale. To use different properties on the x-axis
and the y-axis, use e.g. ax.set_xscale("log", base=10); ax.set_yscale("log",
base=2).

Parameters

base
[float, default: 10] Base of the logarithm.

subs
[sequence, optional] The location of the minor ticks. If None, reasonable locations
are automatically chosen depending on the number of decades in the plot. See
Axes.set_xscale/Axes.set_yscale for details.

nonpositive
[{'mask', 'clip'}, default: 'mask'] Non-positive values can be masked as invalid, or
clipped to a very small positive number.

Returns

list of Line2D
Objects representing the plotted data.

Other Parameters

**kwargs
All parameters supported by plot.

2578 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.loglog

• Sample plots in Matplotlib

matplotlib.pyplot.magma

matplotlib.pyplot.magma()
Set the colormap to 'magma'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.magma

matplotlib.pyplot.magnitude_spectrum

matplotlib.pyplot.magnitude_spectrum(x, Fs=None, Fc=None, window=None,
pad_to=None, sides=None, scale=None, *,
data=None, **kwargs)

Plot the magnitude spectrum.

Compute the magnitude spectrum of x. Data is padded to a length of pad_to and the windowing
function window is applied to the signal.

Parameters

x
[1-D array or sequence] Array or sequence containing the data.

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

18.39. matplotlib.pyplot 2579

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. While not increasing the actual resolution of the spectrum
(the minimum distance between resolvable peaks), this can give more points in
the plot, allowing for more detail. This corresponds to the n parameter in the call
to fft(). The default is None, which sets pad_to equal to the length of the input
signal (i.e. no padding).

scale
[{'default', 'linear', 'dB'}] The scaling of the values in the spec. 'linear' is no scaling.
'dB' returns the values in dB scale, i.e., the dB amplitude (20 * log10). 'default' is
'linear'.

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

Returns

spectrum
[1-D array] The values for the magnitude spectrum before scaling (real valued).

freqs
[1-D array] The frequencies corresponding to the elements in spectrum.

line
[Line2D] The line created by this function.

Other Parameters

**kwargs
Keyword arguments control the Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown

continues on next page

2580 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 210 – continued from previous page
Property Description
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

psd

Plots the power spectral density.

angle_spectrum

Plots the angles of the corresponding frequencies.

phase_spectrum

Plots the phase (unwrapped angle) of the corresponding frequencies.

18.39. matplotlib.pyplot 2581

Matplotlib, Release 3.4.3

specgram

Can plot the magnitude spectrum of segments within the signal in a colormap.

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.magnitude_spectrum

matplotlib.pyplot.margins

matplotlib.pyplot.margins(*margins, x=None, y=None, tight=True)
Set or retrieve autoscaling margins.

The padding added to each limit of the axes is the margin times the data interval. All input parameters
must be floats within the range [0, 1]. Passing both positional and keyword arguments is invalid and
will raise a TypeError. If no arguments (positional or otherwise) are provided, the current margins
will remain in place and simply be returned.

Specifying anymargin changes only the autoscaling; for example, if xmargin is not None, then xmargin
times the X data interval will be added to each end of that interval before it is used in autoscaling.

Parameters

*margins
[float, optional] If a single positional argument is provided, it specifies both mar-
gins of the x-axis and y-axis limits. If two positional arguments are provided, they
will be interpreted as xmargin, ymargin. If setting the margin on a single axis is
desired, use the keyword arguments described below.

x, y
[float, optional] Specific margin values for the x-axis and y-axis, respectively.
These cannot be used with positional arguments, but can be used individually to
alter on e.g., only the y-axis.

tight
[bool or None, default: True] The tight parameter is passed to au-
toscale_view(), which is executed after a margin is changed; the default here
is True, on the assumption that when margins are specified, no additional padding
to match tick marks is usually desired. Set tight to Nonewill preserve the previous
setting.

2582 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns

xmargin, ymargin
[float]

Notes

If a previously used Axes method such as pcolor() has set use_sticky_edges to True, only
the limits not set by the "sticky artists" will be modified. To force all of the margins to be set, set
use_sticky_edges to False before calling margins().

Examples using matplotlib.pyplot.margins

• sphx_glr_gallery_ticks_and_spines_ticklabels_rotation.py

matplotlib.pyplot.matshow

matplotlib.pyplot.matshow(A, fignum=None, **kwargs)
Display an array as a matrix in a new figure window.

The origin is set at the upper left hand corner and rows (first dimension of the array) are displayed
horizontally. The aspect ratio of the figure window is that of the array, unless this would make an
excessively short or narrow figure.

Tick labels for the xaxis are placed on top.

Parameters

A
[2D array-like] The matrix to be displayed.

fignum
[None or int or False] If None, create a new figure window with automatic num-
bering.

If a nonzero integer, draw into the figure with the given number (create it if it does
not exist).

If 0, use the current axes (or create one if it does not exist).

Note: Because of how Axes.matshow tries to set the figure aspect ratio to be
the one of the array, strange things may happen if you reuse an existing figure.

Returns

18.39. matplotlib.pyplot 2583

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Matplotlib, Release 3.4.3

AxesImage

Other Parameters

**kwargs
[imshow arguments]

Examples using matplotlib.pyplot.matshow

• sphx_glr_gallery_images_contours_and_fields_matshow.py

matplotlib.pyplot.minorticks_off

matplotlib.pyplot.minorticks_off()
Remove minor ticks from the axes.

Examples using matplotlib.pyplot.minorticks_off

matplotlib.pyplot.minorticks_on

matplotlib.pyplot.minorticks_on()
Display minor ticks on the axes.

Displaying minor ticks may reduce performance; you may turn them off using minorticks_off()
if drawing speed is a problem.

Examples using matplotlib.pyplot.minorticks_on

matplotlib.pyplot.new_figure_manager

matplotlib.pyplot.new_figure_manager(num, *args, **kwargs)
Create a new figure manager instance.

Examples using matplotlib.pyplot.new_figure_manager

matplotlib.pyplot.nipy_spectral

matplotlib.pyplot.nipy_spectral()
Set the colormap to 'nipy_spectral'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

2584 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.nipy_spectral

matplotlib.pyplot.pause

matplotlib.pyplot.pause(interval)
Run the GUI event loop for interval seconds.

If there is an active figure, it will be updated and displayed before the pause, and the GUI event loop
(if any) will run during the pause.

This can be used for crude animation. For more complex animation use matplotlib.animation.

If there is no active figure, sleep for interval seconds instead.

See also:

matplotlib.animation

Proper animations

show

Show all figures and optional block until all figures are closed.

Examples using matplotlib.pyplot.pause

• sphx_glr_gallery_mplot3d_rotate_axes3d_sgskip.py

• sphx_glr_gallery_mplot3d_wire3d_animation_sgskip.py

matplotlib.pyplot.pcolor

matplotlib.pyplot.pcolor(*args, shading=None, alpha=None, norm=None, cmap=None,
vmin=None, vmax=None, data=None, **kwargs)

Create a pseudocolor plot with a non-regular rectangular grid.

Call signature:

pcolor([X, Y,] C, **kwargs)

X and Y can be used to specify the corners of the quadrilaterals.

Hint: pcolor() can be very slow for large arrays. Inmost cases you should use the similar but much
faster pcolormesh instead. See Differences between pcolor() and pcolormesh() for a discussion of
the differences.

Parameters

18.39. matplotlib.pyplot 2585

Matplotlib, Release 3.4.3

C
[2D array-like] The color-mapped values.

X, Y
[array-like, optional] The coordinates of the corners of quadrilaterals of a pcol-
ormesh:

(X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1])
+-----+
| |
+-----+

(X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1])

Note that the column index corresponds to the x-coordinate, and the row index
corresponds to y. For details, see the Notes section below.

If shading='flat' the dimensions ofX and Y should be one greater than those
of C, and the quadrilateral is colored due to the value at C[i, j]. If X, Y and C
have equal dimensions, a warning will be raised and the last row and column of C
will be ignored.

If shading='nearest', the dimensions of X and Y should be the same as
those of C (if not, a ValueError will be raised). The color C[i, j] will be
centered on (X[i, j], Y[i, j]).

If X and/or Y are 1-D arrays or column vectors they will be expanded as needed
into the appropriate 2D arrays, making a rectangular grid.

shading
[{'flat', 'nearest', 'auto'}, optional] The fill style for the quadrilateral; defaults to 'flat'
or rcParams["pcolor.shading"] (default: 'flat'). Possible values:

• 'flat': A solid color is used for each quad. The color of the quad (i, j), (i+1, j),
(i, j+1), (i+1, j+1) is given by C[i, j]. The dimensions of X and Y should
be one greater than those of C; if they are the same as C, then a deprecation
warning is raised, and the last row and column of C are dropped.

• 'nearest': Each grid point will have a color centered on it, extending halfway
between the adjacent grid centers. The dimensions of X and Y must be the
same as C.

• 'auto': Choose 'flat' if dimensions of X and Y are one larger than C. Choose
'nearest' if dimensions are the same.

See /gallery/images_contours_and_fields/pcolormesh_grids for more description.

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps the C values to colors.

norm

2586 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=pcolor.shading#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[Normalize, optional] The Normalize instance scales the data values to the
canonical colormap range [0, 1] for mapping to colors. By default, the data range
is mapped to the colorbar range using linear scaling.

vmin, vmax
[float, default: None] The colorbar range. If None, suitable min/max values
are automatically chosen by the Normalize instance (defaults to the respective
min/max values of C in case of the default linear scaling). It is deprecated to use
vmin/vmax when norm is given.

edgecolors
[{'none', None, 'face', color, color sequence}, optional] The color of the edges.
Defaults to 'none'. Possible values:

• 'none' or '': No edge.

• None: rcParams["patch.edgecolor"] (default: 'black') will be
used. Note that currently rcParams["patch.force_edgecolor"]
(default: False) has to be True for this to work.

• 'face': Use the adjacent face color.

• A color or sequence of colors will set the edge color.

The singular form edgecolor works as an alias.

alpha
[float, default: None] The alpha blending value of the face color, between 0 (trans-
parent) and 1 (opaque). Note: The edgecolor is currently not affected by this.

snap
[bool, default: False] Whether to snap the mesh to pixel boundaries.

Returns

matplotlib.collections.Collection

Other Parameters

antialiaseds
[bool, default: False] The default antialiaseds is False if the default edgecol-
ors="none" is used. This eliminates artificial lines at patch boundaries, and works
regardless of the value of alpha. If edgecolors is not "none", then the default
antialiaseds is taken from rcParams["patch.antialiased"] (default:
True). Stroking the edges may be preferred if alpha is 1, but will cause artifacts
otherwise.

**kwargs
Additionally, the following arguments are allowed. They are passed along to the
PolyCollection constructor:

18.39. matplotlib.pyplot 2587

../../tutorials/introductory/customizing.html?highlight=patch.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=patch.force_edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=patch.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

See also:

pcolormesh

for an explanation of the differences between pcolor and pcolormesh.

imshow

2588 Chapter 18. Modules

Matplotlib, Release 3.4.3

If X and Y are each equidistant, imshow can be a faster alternative.

Notes

Masked arrays
X, Y and C may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i, j]
(X or Y at [i, j], [i+1, j], [i, j+1], [i+1, j+1]) is masked, nothing is plotted.

Grid orientation
The grid orientation follows the standard matrix convention: An arrayCwith shape (nrows, ncolumns)
is plotted with the column number as X and the row number as Y.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.pcolor

matplotlib.pyplot.pcolormesh

matplotlib.pyplot.pcolormesh(*args, alpha=None, norm=None, cmap=None,
vmin=None, vmax=None, shading=None, an-
tialiased=False, data=None, **kwargs)

Create a pseudocolor plot with a non-regular rectangular grid.

Call signature:

pcolormesh([X, Y,] C, **kwargs)

X and Y can be used to specify the corners of the quadrilaterals.

Hint: pcolormesh is similar to pcolor. It is much faster and preferred in most cases. For a
detailed discussion on the differences see Differences between pcolor() and pcolormesh().

Parameters

C
[2D array-like] The color-mapped values.

X, Y

18.39. matplotlib.pyplot 2589

Matplotlib, Release 3.4.3

[array-like, optional] The coordinates of the corners of quadrilaterals of a pcol-
ormesh:

(X[i+1, j], Y[i+1, j]) (X[i+1, j+1], Y[i+1, j+1])
+-----+
| |
+-----+

(X[i, j], Y[i, j]) (X[i, j+1], Y[i, j+1])

Note that the column index corresponds to the x-coordinate, and the row index
corresponds to y. For details, see the Notes section below.

If shading='flat' the dimensions ofX and Y should be one greater than those
of C, and the quadrilateral is colored due to the value at C[i, j]. If X, Y and C
have equal dimensions, a warning will be raised and the last row and column of C
will be ignored.

If shading='nearest' or 'gouraud', the dimensions of X and Y should
be the same as those of C (if not, a ValueError will be raised). For 'nearest'
the color C[i, j] is centered on (X[i, j], Y[i, j]). For 'gouraud',
a smooth interpolation is caried out between the quadrilateral corners.

If X and/or Y are 1-D arrays or column vectors they will be expanded as needed
into the appropriate 2D arrays, making a rectangular grid.

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps the C values to colors.

norm
[Normalize, optional] The Normalize instance scales the data values to the
canonical colormap range [0, 1] for mapping to colors. By default, the data range
is mapped to the colorbar range using linear scaling.

vmin, vmax
[float, default: None] The colorbar range. If None, suitable min/max values
are automatically chosen by the Normalize instance (defaults to the respective
min/max values of C in case of the default linear scaling). It is deprecated to use
vmin/vmax when norm is given.

edgecolors
[{'none', None, 'face', color, color sequence}, optional] The color of the edges.
Defaults to 'none'. Possible values:

• 'none' or '': No edge.

• None: rcParams["patch.edgecolor"] (default: 'black') will be
used. Note that currently rcParams["patch.force_edgecolor"]
(default: False) has to be True for this to work.

2590 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=patch.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=patch.force_edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

• 'face': Use the adjacent face color.

• A color or sequence of colors will set the edge color.

The singular form edgecolor works as an alias.

alpha
[float, default: None] The alpha blending value, between 0 (transparent) and 1
(opaque).

shading
[{'flat', 'nearest', 'gouraud', 'auto'}, optional] The fill style for the quadrilateral; de-
faults to 'flat' or rcParams["pcolor.shading"] (default: 'flat'). Pos-
sible values:

• 'flat': A solid color is used for each quad. The color of the quad (i, j), (i+1, j),
(i, j+1), (i+1, j+1) is given by C[i, j]. The dimensions of X and Y should
be one greater than those of C; if they are the same as C, then a deprecation
warning is raised, and the last row and column of C are dropped.

• 'nearest': Each grid point will have a color centered on it, extending halfway
between the adjacent grid centers. The dimensions of X and Y must be the
same as C.

• 'gouraud': Each quad will be Gouraud shaded: The color of the corners (i', j') are
given by C[i', j']. The color values of the area in between is interpolated
from the corner values. The dimensions of X and Y must be the same as C.
When Gouraud shading is used, edgecolors is ignored.

• 'auto': Choose 'flat' if dimensions of X and Y are one larger than C. Choose
'nearest' if dimensions are the same.

See /gallery/images_contours_and_fields/pcolormesh_grids for more description.

snap
[bool, default: False] Whether to snap the mesh to pixel boundaries.

rasterized: bool, optional
Rasterize the pcolormesh when drawing vector graphics. This can speed
up rendering and produce smaller files for large data sets. See also
/gallery/misc/rasterization_demo.

Returns

matplotlib.collections.QuadMesh

Other Parameters

**kwargs
Additionally, the following arguments are allowed. They are passed along to the
QuadMesh constructor:

18.39. matplotlib.pyplot 2591

../../tutorials/introductory/customizing.html?highlight=pcolor.shading#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

See also:

pcolor

An alternative implementation with slightly different features. For a detailed discussion on the
differences see Differences between pcolor() and pcolormesh().

2592 Chapter 18. Modules

Matplotlib, Release 3.4.3

imshow

If X and Y are each equidistant, imshow can be a faster alternative.

Notes

Masked arrays
C may be a masked array. If C[i, j] is masked, the corresponding quadrilateral will be transparent.
Masking of X and Y is not supported. Use pcolor if you need this functionality.

Grid orientation
The grid orientation follows the standard matrix convention: An arrayCwith shape (nrows, ncolumns)
is plotted with the column number as X and the row number as Y.

Differences between pcolor() and pcolormesh()
Both methods are used to create a pseudocolor plot of a 2D array using quadrilaterals.

The main difference lies in the created object and internal data handling: While pcolor returns a
PolyCollection, pcolormesh returns a QuadMesh. The latter is more specialized for the
given purpose and thus is faster. It should almost always be preferred.

There is also a slight difference in the handling of masked arrays. Both pcolor and pcolormesh
support masked arrays for C. However, only pcolor supports masked arrays for X and Y. The reason
lies in the internal handling of the masked values. pcolor leaves out the respective polygons from
the PolyCollection. pcolormesh sets the facecolor of the masked elements to transparent. You
can see the difference when using edgecolors. While all edges are drawn irrespective of masking in
a QuadMesh, the edge between two adjacent masked quadrilaterals in pcolor is not drawn as the
corresponding polygons do not exist in the PolyCollection.

Another difference is the support of Gouraud shading in pcolormesh, which is not available with
pcolor.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.pcolormesh

• Sample plots in Matplotlib

18.39. matplotlib.pyplot 2593

Matplotlib, Release 3.4.3

matplotlib.pyplot.phase_spectrum

matplotlib.pyplot.phase_spectrum(x, Fs=None, Fc=None, window=None,
pad_to=None, sides=None, *, data=None,
**kwargs)

Plot the phase spectrum.

Compute the phase spectrum (unwrapped angle spectrum) of x. Data is padded to a length of pad_to
and the windowing function window is applied to the signal.

Parameters

x
[1-D array or sequence] Array or sequence containing the data

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. While not increasing the actual resolution of the spectrum
(the minimum distance between resolvable peaks), this can give more points in
the plot, allowing for more detail. This corresponds to the n parameter in the call
to fft(). The default is None, which sets pad_to equal to the length of the input
signal (i.e. no padding).

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

Returns

spectrum

2594 Chapter 18. Modules

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

[1-D array] The values for the phase spectrum in radians (real valued).

freqs
[1-D array] The frequencies corresponding to the elements in spectrum.

line
[Line2D] The line created by this function.

Other Parameters

**kwargs
Keyword arguments control the Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float

continues on next page

18.39. matplotlib.pyplot 2595

Matplotlib, Release 3.4.3

Table 213 – continued from previous page
Property Description
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

magnitude_spectrum

Plots the magnitudes of the corresponding frequencies.

angle_spectrum

Plots the wrapped version of this function.

specgram

Can plot the phase spectrum of segments within the signal in a colormap.

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.phase_spectrum

matplotlib.pyplot.pie

matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None,
pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0,
radius=1, counterclock=True, wedgeprops=None, textprops=None,
center=(0, 0), frame=False, rotatelabels=False, *, normal-
ize=None, data=None)

Plot a pie chart.

2596 Chapter 18. Modules

Matplotlib, Release 3.4.3

Make a pie chart of array x. The fractional area of each wedge is given by x/sum(x). If sum(x)
< 1, then the values of x give the fractional area directly and the array will not be normalized. The
resulting pie will have an empty wedge of size 1 - sum(x).

The wedges are plotted counterclockwise, by default starting from the x-axis.

Parameters

x
[1D array-like] The wedge sizes.

explode
[array-like, default: None] If not None, is a len(x) array which specifies the
fraction of the radius with which to offset each wedge.

labels
[list, default: None] A sequence of strings providing the labels for each wedge

colors
[array-like, default: None] A sequence of colors through which the pie chart will
cycle. If None, will use the colors in the currently active cycle.

autopct
[None or str or callable, default: None] If not None, is a string or function used
to label the wedges with their numeric value. The label will be placed inside the
wedge. If it is a format string, the label will be fmt % pct. If it is a function, it
will be called.

pctdistance
[float, default: 0.6] The ratio between the center of each pie slice and the start of
the text generated by autopct. Ignored if autopct is None.

shadow
[bool, default: False] Draw a shadow beneath the pie.

normalize
[None or bool, default: None] When True, always make a full pie by normalizing
x so that sum(x) == 1. False makes a partial pie if sum(x) <= 1 and raises
a ValueError for sum(x) > 1.

When None, defaults to True if sum(x) >= 1 and False if sum(x) < 1.

Please note that the previous default value of None is now deprecated, and the
default will change to True in the next release. Please pass normalize=False
explicitly if you want to draw a partial pie.

labeldistance
[float or None, default: 1.1] The radial distance at which the pie labels are drawn.
If set to None, label are not drawn, but are stored for use in legend()

18.39. matplotlib.pyplot 2597

https://docs.python.org/3/library/exceptions.html#ValueError

Matplotlib, Release 3.4.3

startangle
[float, default: 0 degrees] The angle by which the start of the pie is rotated, coun-
terclockwise from the x-axis.

radius
[float, default: 1] The radius of the pie.

counterclock
[bool, default: True] Specify fractions direction, clockwise or counterclockwise.

wedgeprops
[dict, default: None] Dict of arguments passed to the wedge objects making the
pie. For example, you can pass in wedgeprops = {'linewidth': 3} to
set the width of the wedge border lines equal to 3. For more details, look at the
doc/arguments of the wedge object. By default clip_on=False.

textprops
[dict, default: None] Dict of arguments to pass to the text objects.

center
[(float, float), default: (0, 0)] The coordinates of the center of the chart.

frame
[bool, default: False] Plot Axes frame with the chart if true.

rotatelabels
[bool, default: False] Rotate each label to the angle of the corresponding slice if
true.

Returns

patches
[list] A sequence of matplotlib.patches.Wedge instances

texts
[list] A list of the label Text instances.

autotexts
[list] A list of Text instances for the numeric labels. This will only be returned
if the parameter autopct is not None.

2598 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

The pie chart will probably look best if the figure and Axes are square, or the Axes aspect is equal.
This method sets the aspect ratio of the axis to "equal". The Axes aspect ratio can be controlled with
Axes.set_aspect.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, explode, labels, colors.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.pie

• Sample plots in Matplotlib

matplotlib.pyplot.pink

matplotlib.pyplot.pink()
Set the colormap to 'pink'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.pink

matplotlib.pyplot.plasma

matplotlib.pyplot.plasma()
Set the colormap to 'plasma'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.plasma

matplotlib.pyplot.plot

matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs)
Plot y versus x as lines and/or markers.

Call signatures:

18.39. matplotlib.pyplot 2599

Matplotlib, Release 3.4.3

plot([x], y, [fmt], *, data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

The coordinates of the points or line nodes are given by x, y.

The optional parameter fmt is a convenient way for defining basic formatting like color, marker and
linestyle. It's a shortcut string notation described in the Notes section below.

>>> plot(x, y) # plot x and y using default line style and color
>>> plot(x, y, 'bo') # plot x and y using blue circle markers
>>> plot(y) # plot y using x as index array 0..N-1
>>> plot(y, 'r+') # ditto, but with red plusses

You can use Line2D properties as keyword arguments for more control on the appearance. Line
properties and fmt can be mixed. The following two calls yield identical results:

>>> plot(x, y, 'go--', linewidth=2, markersize=12)
>>> plot(x, y, color='green', marker='o', linestyle='dashed',
... linewidth=2, markersize=12)

When conflicting with fmt, keyword arguments take precedence.

Plotting labelled data
There's a convenient way for plotting objects with labelled data (i.e. data that can be accessed by index
obj['y']). Instead of giving the data in x and y, you can provide the object in the data parameter
and just give the labels for x and y:

>>> plot('xlabel', 'ylabel', data=obj)

All indexable objects are supported. This could e.g. be a dict, a pandas.DataFrame or a struc-
tured numpy array.

Plotting multiple sets of data
There are various ways to plot multiple sets of data.

• The most straight forward way is just to call plot multiple times. Example:

>>> plot(x1, y1, 'bo')
>>> plot(x2, y2, 'go')

• If x and/or y are 2D arrays a separate data set will be drawn for every column. If both x and y are
2D, they must have the same shape. If only one of them is 2D with shape (N, m) the other must
have length N and will be used for every data set m.

Example:

>>> x = [1, 2, 3]
>>> y = np.array([[1, 2], [3, 4], [5, 6]])
>>> plot(x, y)

is equivalent to:

2600 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Matplotlib, Release 3.4.3

>>> for col in range(y.shape[1]):
... plot(x, y[:, col])

• The third way is to specify multiple sets of [x], y, [fmt] groups:

>>> plot(x1, y1, 'g^', x2, y2, 'g-')

In this case, any additional keyword argument applies to all datasets. Also this syntax cannot be
combined with the data parameter.

By default, each line is assigned a different style specified by a 'style cycle'. The fmt and line prop-
erty parameters are only necessary if you want explicit deviations from these defaults. Alternatively,
you can also change the style cycle using rcParams["axes.prop_cycle"] (default: cy-
cler('color', ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd',
'#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'])).

Parameters

x, y
[array-like or scalar] The horizontal / vertical coordinates of the data points. x
values are optional and default to range(len(y)).

Commonly, these parameters are 1D arrays.

They can also be scalars, or two-dimensional (in that case, the columns represent
separate data sets).

These arguments cannot be passed as keywords.

fmt
[str, optional] A format string, e.g. 'ro' for red circles. See the Notes section for a
full description of the format strings.

Format strings are just an abbreviation for quickly setting basic line properties. All
of these and more can also be controlled by keyword arguments.

This argument cannot be passed as keyword.

data
[indexable object, optional] An object with labelled data. If given, provide the
label names to plot in x and y.

Note: Technically there's a slight ambiguity in calls where the second label is a
valid fmt. plot('n', 'o', data=obj) could be plt(x, y) or plt(y,
fmt). In such cases, the former interpretation is chosen, but a warning is issued.
You may suppress the warning by adding an empty format string plot('n',
'o', '', data=obj).

Returns

18.39. matplotlib.pyplot 2601

../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

list of Line2D
A list of lines representing the plotted data.

Other Parameters

scalex, scaley
[bool, default: True] These parameters determine if the view limits are adapted to
the data limits. The values are passed on to autoscale_view.

**kwargs
[Line2D properties, optional] kwargs are used to specify properties like a line
label (for auto legends), linewidth, antialiasing, marker face color. Example:

>>> plot([1, 2, 3], [1, 2, 3], 'go-', label='line 1',␣
↪linewidth=2)

>>> plot([1, 2, 3], [1, 4, 9], 'rs', label='line 2')

If you specify multiple lines with one plot call, the kwargs apply to all those lines.
In case the label object is iterable, each element is used as labels for each set of
data.

Here is a list of available Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle

continues on next page

2602 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 214 – continued from previous page
Property Description
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

scatter

XY scatter plot with markers of varying size and/or color (sometimes also called bubble chart).

Notes

Format Strings
A format string consists of a part for color, marker and line:

fmt = '[marker][line][color]'

Each of them is optional. If not provided, the value from the style cycle is used. Exception: If line
is given, but no marker, the data will be a line without markers.

Other combinations such as [color][marker][line] are also supported, but note that their
parsing may be ambiguous.

Markers

18.39. matplotlib.pyplot 2603

Matplotlib, Release 3.4.3

character description
'.' point marker
',' pixel marker
'o' circle marker
'v' triangle_down marker
'^' triangle_up marker
'<' triangle_left marker
'>' triangle_right marker
'1' tri_down marker
'2' tri_up marker
'3' tri_left marker
'4' tri_right marker
'8' octagon marker
's' square marker
'p' pentagon marker
'P' plus (filled) marker
'*' star marker
'h' hexagon1 marker
'H' hexagon2 marker
'+' plus marker
'x' x marker
'X' x (filled) marker
'D' diamond marker
'd' thin_diamond marker
'|' vline marker
'_' hline marker

Line Styles

character description
'-' solid line style
'--' dashed line style
'-.' dash-dot line style
':' dotted line style

Example format strings:

'b' # blue markers with default shape
'or' # red circles
'-g' # green solid line
'--' # dashed line with default color
'^k:' # black triangle_up markers connected by a dotted line

Colors
The supported color abbreviations are the single letter codes

2604 Chapter 18. Modules

Matplotlib, Release 3.4.3

character color
'b' blue
'g' green
'r' red
'c' cyan
'm' magenta
'y' yellow
'k' black
'w' white

and the 'CN' colors that index into the default property cycle.

If the color is the only part of the format string, you can additionally use any matplotlib.colors
spec, e.g. full names ('green') or hex strings ('#008000').

Examples using matplotlib.pyplot.plot

• Frame grabbing

• sphx_glr_gallery_misc_print_stdout_sgskip.py

• sphx_glr_gallery_user_interfaces_toolmanager_sgskip.py

matplotlib.pyplot.plot_date

matplotlib.pyplot.plot_date(x, y, fmt='o', tz=None, xdate=True, ydate=False, *,
data=None, **kwargs)

Plot co-ercing the axis to treat floats as dates.

Similar to plot, this plots y vs. x as lines or markers. However, the axis labels are formatted
as dates depending on xdate and ydate. Note that plot will work with datetime and numpy.
datetime64 objects without resorting to this method.

Parameters

x, y
[array-like] The coordinates of the data points. If xdate or ydate is True, the re-
spective values x or y are interpreted as Matplotlib dates.

fmt
[str, optional] The plot format string. For details, see the corresponding parameter
in plot.

tz
[timezone string ordatetime.tzinfo, default: rcParams["timezone"]
(default: 'UTC')] The time zone to use in labeling dates.

18.39. matplotlib.pyplot 2605

https://docs.python.org/3/library/datetime.html#module-datetime
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
../../tutorials/introductory/customizing.html?highlight=timezone#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

xdate
[bool, default: True] If True, the x-axis will be interpreted as Matplotlib dates.

ydate
[bool, default: False] If True, the y-axis will be interpreted as Matplotlib dates.

Returns

list of Line2D
Objects representing the plotted data.

Other Parameters

**kwargs
Keyword arguments control the Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float

continues on next page

2606 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 215 – continued from previous page
Property Description
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

matplotlib.dates

Helper functions on dates.

matplotlib.dates.date2num

Convert dates to num.

matplotlib.dates.num2date

Convert num to dates.

matplotlib.dates.drange

Create an equally spaced sequence of dates.

Notes

If you are using custom date tickers and formatters, it may be necessary to set the formatters/locators
after the call to plot_date. plot_date will set the default tick locator to AutoDateLocator
(if the tick locator is not already set to a DateLocator instance) and the default tick formatter to
AutoDateFormatter (if the tick formatter is not already set to a DateFormatter instance).

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y.

Objects passed as data must support item access (data[s]) and membership test (s in data).

18.39. matplotlib.pyplot 2607

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.plot_date

• sphx_glr_gallery_ticks_and_spines_date_demo_rrule.py

matplotlib.pyplot.polar

matplotlib.pyplot.polar(*args, **kwargs)
Make a polar plot.

call signature:

polar(theta, r, **kwargs)

Multiple theta, r arguments are supported, with format strings, as in plot.

Examples using matplotlib.pyplot.polar

• sphx_glr_gallery_misc_transoffset.py

• Sample plots in Matplotlib

matplotlib.pyplot.prism

matplotlib.pyplot.prism()
Set the colormap to 'prism'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.prism

matplotlib.pyplot.psd

matplotlib.pyplot.psd(x, NFFT=None, Fs=None, Fc=None, detrend=None, win-
dow=None, noverlap=None, pad_to=None, sides=None,
scale_by_freq=None, return_line=None, *, data=None, **kwargs)

Plot the power spectral density.

The power spectral density 𝑃𝑥𝑥 by Welch's average periodogram method. The vector x is divided into
NFFT length segments. Each segment is detrended by function detrend and windowed by function
window. noverlap gives the length of the overlap between segments. The |fft(𝑖)|2 of each segment 𝑖
are averaged to compute 𝑃𝑥𝑥, with a scaling to correct for power loss due to windowing.

If len(x) < NFFT, it will be zero padded to NFFT.

Parameters

2608 Chapter 18. Modules

Matplotlib, Release 3.4.3

x
[1-D array or sequence] Array or sequence containing the data

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed
as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. This can be different from NFFT, which specifies the number
of data points used. While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can givemore points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

NFFT
[int, default: 256] The number of data points used in each block for the FFT. A
power 2 is most efficient. This should NOT be used to get zero padding, or the
scaling of the result will be incorrect; use pad_to for this instead.

detrend
[{'none', 'mean', 'linear'} or callable, default: 'none'] The function applied to each
segment before fft-ing, designed to remove the mean or linear trend. Unlike in
MATLAB, where the detrend parameter is a vector, in Matplotlib is it a func-
tion. The mlab module defines detrend_none, detrend_mean, and de-
trend_linear, but you can use a custom function as well. You can also use a
string to choose one of the functions: 'none' calls detrend_none. 'mean' calls
detrend_mean. 'linear' calls detrend_linear.

scale_by_freq
[bool, default: True] Whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for in-
tegration over the returned frequency values. The default is True for MATLAB
compatibility.

18.39. matplotlib.pyplot 2609

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

noverlap
[int, default: 0 (no overlap)] The number of points of overlap between segments.

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

return_line
[bool, default: False] Whether to include the line object plotted in the returned
values.

Returns

Pxx
[1-D array] The values for the power spectrum 𝑃𝑥𝑥 before scaling (real valued).

freqs
[1-D array] The frequencies corresponding to the elements in Pxx.

line
[Line2D] The line created by this function. Only returned if return_line is True.

Other Parameters

**kwargs
Keyword arguments control the Line2D properties:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

continues on next page

2610 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 216 – continued from previous page
Property Description
fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

See also:

specgram

Differs in the default overlap; in not returning themean of the segment periodograms; in returning
the times of the segments; and in plotting a colormap instead of a line.

magnitude_spectrum

Plots the magnitude spectrum.

csd

Plots the spectral density between two signals.

18.39. matplotlib.pyplot 2611

Matplotlib, Release 3.4.3

Notes

For plotting, the power is plotted as 10 log10(𝑃𝑥𝑥) for decibels, though Pxx itself is returned.

References

Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, JohnWiley & Sons (1986)

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.psd

matplotlib.pyplot.quiver

matplotlib.pyplot.quiver(*args, data=None, **kw)
Plot a 2D field of arrows.

Call signature:

quiver([X, Y], U, V, [C], **kw)

X, Y define the arrow locations, U, V define the arrow directions, and C optionally sets the color.

Arrow size
The default settings auto-scales the length of the arrows to a reasonable size. To change this behavior
see the scale and scale_units parameters.

Arrow shape
The defaults give a slightly swept-back arrow; to make the head a triangle, make headaxislength the
same as headlength. To make the arrow more pointed, reduce headwidth or increase headlength and
headaxislength. To make the head smaller relative to the shaft, scale down all the head parameters.
You will probably do best to leave minshaft alone.

Arrow outline
linewidths and edgecolors can be used to customize the arrow outlines.

Parameters

X, Y
[1D or 2D array-like, optional] The x and y coordinates of the arrow locations.

2612 Chapter 18. Modules

Matplotlib, Release 3.4.3

If not given, they will be generated as a uniform integer meshgrid based on the
dimensions of U and V.

If X and Y are 1D but U, V are 2D, X, Y are expanded to 2D using X, Y = np.
meshgrid(X, Y). In this case len(X) and len(Y) must match the column
and row dimensions of U and V.

U, V
[1D or 2D array-like] The x and y direction components of the arrow vectors.

They must have the same number of elements, matching the number of arrow
locations. U and V may be masked. Only locations unmasked in U, V, and C will
be drawn.

C
[1D or 2D array-like, optional] Numeric data that defines the arrow colors by col-
ormapping via norm and cmap.

This does not support explicit colors. If you want to set colors directly, use color
instead. The size of C must match the number of arrow locations.

units
[{'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, default: 'width'] The arrow dimen-
sions (except for length) are measured in multiples of this unit.

The following values are supported:

• 'width', 'height': The width or height of the axis.

• 'dots', 'inches': Pixels or inches based on the figure dpi.

• 'x', 'y', 'xy': X, Y or √𝑋2 + 𝑌 2 in data units.

The arrows scale differently depending on the units. For 'x' or 'y', the arrows get
larger as one zooms in; for other units, the arrow size is independent of the zoom
state. For 'width or 'height', the arrow size increases with the width and height of
the axes, respectively, when the window is resized; for 'dots' or 'inches', resizing
does not change the arrows.

angles
[{'uv', 'xy'} or array-like, default: 'uv'] Method for determining the angle of the
arrows.

• 'uv': The arrow axis aspect ratio is 1 so that if U == V the orientation of the
arrow on the plot is 45 degrees counter-clockwise from the horizontal axis (pos-
itive to the right).

Use this if the arrows symbolize a quantity that is not based on X, Y data coor-
dinates.

• 'xy': Arrows point from (x, y) to (x+u, y+v). Use this for plotting a gradient
field, for example.

18.39. matplotlib.pyplot 2613

Matplotlib, Release 3.4.3

• Alternatively, arbitrary angles may be specified explicitly as an array of values
in degrees, counter-clockwise from the horizontal axis.

In this case U, V is only used to determine the length of the arrows.

Note: inverting a data axis will correspondingly invert the arrows only with an-
gles='xy'.

scale
[float, optional] Number of data units per arrow length unit, e.g., m/s per plot
width; a smaller scale parameter makes the arrow longer. Default is None.

IfNone, a simple autoscaling algorithm is used, based on the average vector length
and the number of vectors. The arrow length unit is given by the scale_units pa-
rameter.

scale_units
[{'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, optional] If the scale kwarg is None,
the arrow length unit. Default is None.

e.g. scale_units is 'inches', scale is 2.0, and (u, v) = (1, 0), then the vector
will be 0.5 inches long.

If scale_units is 'width' or 'height', then the vector will be half the width/height of
the axes.

If scale_units is 'x' then the vector will be 0.5 x-axis units. To plot vectors in the
x-y plane, with u and v having the same units as x and y, use angles='xy',
scale_units='xy', scale=1.

width
[float, optional] Shaft width in arrow units; default depends on choice of units,
above, and number of vectors; a typical starting value is about 0.005 times the
width of the plot.

headwidth
[float, default: 3] Head width as multiple of shaft width.

headlength
[float, default: 5] Head length as multiple of shaft width.

headaxislength
[float, default: 4.5] Head length at shaft intersection.

minshaft
[float, default: 1] Length below which arrow scales, in units of head length. Do
not set this to less than 1, or small arrows will look terrible!

minlength
[float, default: 1] Minimum length as a multiple of shaft width; if an arrow length
is less than this, plot a dot (hexagon) of this diameter instead.

2614 Chapter 18. Modules

Matplotlib, Release 3.4.3

pivot
[{'tail', 'mid', 'middle', 'tip'}, default: 'tail'] The part of the arrow that is anchored
to the X, Y grid. The arrow rotates about this point.

'mid' is a synonym for 'middle'.

color
[color or color sequence, optional] Explicit color(s) for the arrows. If C has been
set, color has no effect.

This is a synonym for the PolyCollection facecolor parameter.

Other Parameters

**kwargs
[PolyCollection properties, optional] All other keyword arguments are
passed on to PolyCollection:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like

continues on next page

18.39. matplotlib.pyplot 2615

Matplotlib, Release 3.4.3

Table 217 – continued from previous page
Property Description
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

See also:

Axes.quiverkey

Add a key to a quiver plot.

Examples using matplotlib.pyplot.quiver

• Sample plots in Matplotlib

matplotlib.pyplot.quiverkey

matplotlib.pyplot.quiverkey(Q, X, Y, U, label, **kw)
Add a key to a quiver plot.

The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is 'N' or 'S', X,
Y give the position of the middle of the key arrow. If labelpos is 'E', X, Y positions the head, and if
labelpos is 'W', X, Y positions the tail; in either of these two cases, X, Y is somewhere in the middle
of the arrow+label key object.

Parameters

Q
[matplotlib.quiver.Quiver] A Quiver object as returned by a call to
quiver().

X, Y
[float] The location of the key.

U
[float] The length of the key.

2616 Chapter 18. Modules

Matplotlib, Release 3.4.3

label
[str] The key label (e.g., length and units of the key).

angle
[float, default: 0] The angle of the key arrow, in degrees anti-clockwise from the
x-axis.

coordinates
[{'axes', 'figure', 'data', 'inches'}, default: 'axes'] Coordinate system and units for
X, Y: 'axes' and 'figure' are normalized coordinate systems with (0, 0) in the lower
left and (1, 1) in the upper right; 'data' are the axes data coordinates (used for the
locations of the vectors in the quiver plot itself); 'inches' is position in the figure
in inches, with (0, 0) at the lower left corner.

color
[color] Overrides face and edge colors from Q.

labelpos
[{'N', 'S', 'E', 'W'}] Position the label above, below, to the right, to the left of the
arrow, respectively.

labelsep
[float, default: 0.1] Distance in inches between the arrow and the label.

labelcolor
[color, default: rcParams["text.color"] (default: 'black')] Label
color.

fontproperties
[dict, optional] A dictionary with keyword arguments accepted by the Font-
Properties initializer: family, style, variant, size, weight.

**kwargs
Any additional keyword arguments are used to override vector properties taken
from Q.

Examples using matplotlib.pyplot.quiverkey

matplotlib.pyplot.rc

matplotlib.pyplot.rc(group, **kwargs)
Set the current rcParams. group is the grouping for the rc, e.g., for lines.linewidth the group
is lines, for axes.facecolor, the group is axes, and so on. Group may also be a list or tuple
of group names, e.g., (xtick, ytick). kwargs is a dictionary attribute name/value pairs, e.g.,:

18.39. matplotlib.pyplot 2617

../../tutorials/introductory/customizing.html?highlight=text.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

rc('lines', linewidth=2, color='r')

sets the current rcParams and is equivalent to:

rcParams['lines.linewidth'] = 2
rcParams['lines.color'] = 'r'

The following aliases are available to save typing for interactive users:

Alias Property
'lw' 'linewidth'
'ls' 'linestyle'
'c' 'color'
'fc' 'facecolor'
'ec' 'edgecolor'
'mew' 'markeredgewidth'
'aa' 'antialiased'

Thus you could abbreviate the above call as:

rc('lines', lw=2, c='r')

Note you can use python's kwargs dictionary facility to store dictionaries of default parameters. e.g.,
you can customize the font rc as follows:

font = {'family' : 'monospace',
'weight' : 'bold',
'size' : 'larger'}

rc('font', **font) # pass in the font dict as kwargs

This enables you to easily switch between several configurations. Use matplotlib.style.
use('default') or rcdefaults() to restore the default rcParams after changes.

2618 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Similar functionality is available by using the normal dict interface, i.e. rcParams.
update({"lines.linewidth": 2, ...}) (but rcParams.update does not support
abbreviations or grouping).

Examples using matplotlib.pyplot.rc

• Styling with cycler

matplotlib.pyplot.rc_context

matplotlib.pyplot.rc_context(rc=None, fname=None)
Return a context manager for temporarily changing rcParams.

Parameters

rc
[dict] The rcParams to temporarily set.

fname
[str or path-like] A file with Matplotlib rc settings. If both fname and rc are given,
settings from rc take precedence.

See also:

The matplotlibrc file

Examples

Passing explicit values via a dict:

with mpl.rc_context({'interactive': False}):
fig, ax = plt.subplots()
ax.plot(range(3), range(3))
fig.savefig('example.png')
plt.close(fig)

Loading settings from a file:

with mpl.rc_context(fname='print.rc'):
plt.plot(x, y) # uses 'print.rc'

18.39. matplotlib.pyplot 2619

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.rc_context

• sphx_glr_gallery_text_labels_and_annotations_usetex_baseline_test.py

• sphx_glr_gallery_style_sheets_style_sheets_reference.py

• sphx_glr_gallery_misc_logos2.py

• sphx_glr_gallery_ticks_and_spines_auto_ticks.py

matplotlib.pyplot.rcdefaults

matplotlib.pyplot.rcdefaults()
Restore the rcParams from Matplotlib's internal default style.

Style-blacklisted rcParams (defined in matplotlib.style.core.STYLE_BLACKLIST) are
not updated.

See also:

matplotlib.rc_file_defaults

Restore the rcParams from the rc file originally loaded by Matplotlib.

matplotlib.style.use

Use a specific style file. Call style.use('default') to restore the default style.

Examples using matplotlib.pyplot.rcdefaults

• sphx_glr_gallery_lines_bars_and_markers_barh.py

• sphx_glr_gallery_misc_customize_rc.py

matplotlib.pyplot.rgrids

matplotlib.pyplot.rgrids(radii=None, labels=None, angle=None, fmt=None, **kwargs)
Get or set the radial gridlines on the current polar plot.

Call signatures:

lines, labels = rgrids()
lines, labels = rgrids(radii, labels=None, angle=22.5, fmt=None,␣

↪**kwargs)

When called with no arguments, rgrids simply returns the tuple (lines, labels). When called with
arguments, the labels will appear at the specified radial distances and angle.

Parameters

2620 Chapter 18. Modules

Matplotlib, Release 3.4.3

radii
[tuple with floats] The radii for the radial gridlines

labels
[tuple with strings or None] The labels to use at each radial gridline. The
matplotlib.ticker.ScalarFormatter will be used if None.

angle
[float] The angular position of the radius labels in degrees.

fmt
[str or None] Format string used in matplotlib.ticker.
FormatStrFormatter. For example '%f'.

Returns

lines
[list of lines.Line2D] The radial gridlines.

labels
[list of text.Text] The tick labels.

Other Parameters

**kwargs
kwargs are optional Text properties for the labels.

See also:

pyplot.thetagrids

projections.polar.PolarAxes.set_rgrids

Axis.get_gridlines

Axis.get_ticklabels

Examples

set the locations of the radial gridlines
lines, labels = rgrids((0.25, 0.5, 1.0))

set the locations and labels of the radial gridlines
lines, labels = rgrids((0.25, 0.5, 1.0), ('Tom', 'Dick', 'Harry'))

18.39. matplotlib.pyplot 2621

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.rgrids

matplotlib.pyplot.savefig

matplotlib.pyplot.savefig(*args, **kwargs)
Save the current figure.

Call signature:

savefig(fname, dpi=None, facecolor='w', edgecolor='w',
orientation='portrait', papertype=None, format=None,
transparent=False, bbox_inches=None, pad_inches=0.1,
frameon=None, metadata=None)

The available output formats depend on the backend being used.

Parameters

fname
[str or path-like or binary file-like] A path, or a Python file-like object, or
possibly some backend-dependent object such as matplotlib.backends.
backend_pdf.PdfPages.

If format is set, it determines the output format, and the file is saved as fname.
Note that fname is used verbatim, and there is no attempt to make the extension,
if any, of fname match format, and no extension is appended.

If format is not set, then the format is inferred from the extension of fname, if there
is one. If format is not set and fname has no extension, then the file is saved with
rcParams["savefig.format"] (default: 'png') and the appropriate ex-
tension is appended to fname.

Other Parameters

dpi
[float or 'figure', default: rcParams["savefig.dpi"] (default: 'fig-
ure')] The resolution in dots per inch. If 'figure', use the figure's dpi value.

quality
[int, default: rcParams["savefig.jpeg_quality"] (default: 95)] Ap-
plicable only if format is 'jpg' or 'jpeg', ignored otherwise.

The image quality, on a scale from 1 (worst) to 95 (best). Values above 95 should
be avoided; 100 disables portions of the JPEG compression algorithm, and results
in large files with hardly any gain in image quality.

This parameter is deprecated.

optimize
[bool, default: False] Applicable only if format is 'jpg' or 'jpeg', ignored otherwise.

2622 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=savefig.format#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=savefig.dpi#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=savefig.jpeg_quality#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Whether the encoder should make an extra pass over the image in order to select
optimal encoder settings.

This parameter is deprecated.

progressive
[bool, default: False] Applicable only if format is 'jpg' or 'jpeg', ignored otherwise.

Whether the image should be stored as a progressive JPEG file.

This parameter is deprecated.

facecolor
[color or 'auto', default: rcParams["savefig.facecolor"] (default:
'auto')] The facecolor of the figure. If 'auto', use the current figure facecolor.

edgecolor
[color or 'auto', default: rcParams["savefig.edgecolor"] (default:
'auto')] The edgecolor of the figure. If 'auto', use the current figure edgecolor.

orientation
[{'landscape', 'portrait'}] Currently only supported by the postscript backend.

papertype
[str] One of 'letter', 'legal', 'executive', 'ledger', 'a0' through 'a10', 'b0' through 'b10'.
Only supported for postscript output.

format
[str] The file format, e.g. 'png', 'pdf', 'svg', ... The behavior when this is unset is
documented under fname.

transparent
[bool] If True, the Axes patches will all be transparent; the figure patch will also
be transparent unless facecolor and/or edgecolor are specified via kwargs. This is
useful, for example, for displaying a plot on top of a colored background on a web
page. The transparency of these patches will be restored to their original values
upon exit of this function.

bbox_inches
[str or Bbox, default: rcParams["savefig.bbox"] (default: None)]
Bounding box in inches: only the given portion of the figure is saved. If 'tight', try
to figure out the tight bbox of the figure.

pad_inches
[float, default: rcParams["savefig.pad_inches"] (default: 0.1)]
Amount of padding around the figure when bbox_inches is 'tight'.

bbox_extra_artists

18.39. matplotlib.pyplot 2623

../../tutorials/introductory/customizing.html?highlight=savefig.facecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=savefig.edgecolor#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=savefig.bbox#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=savefig.pad_inches#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[list of Artist, optional] A list of extra artists that will be considered when the
tight bbox is calculated.

backend
[str, optional] Use a non-default backend to render the file, e.g. to render a png file
with the "cairo" backend rather than the default "agg", or a pdf file with the "pgf"
backend rather than the default "pdf". Note that the default backend is normally
sufficient. See The builtin backends for a list of valid backends for each file format.
Custom backends can be referenced as "module://...".

metadata
[dict, optional] Key/value pairs to store in the image metadata. The supported keys
and defaults depend on the image format and backend:

• 'png' with Agg backend: See the parameter metadata of print_png.

• 'pdf' with pdf backend: See the parameter metadata of PdfPages.

• 'svg' with svg backend: See the parameter metadata of print_svg.

• 'eps' and 'ps' with PS backend: Only 'Creator' is supported.

pil_kwargs
[dict, optional] Additional keyword arguments that are passed to PIL.Image.
Image.save when saving the figure.

Examples using matplotlib.pyplot.savefig

• sphx_glr_gallery_misc_print_stdout_sgskip.py

• sphx_glr_gallery_user_interfaces_svg_histogram_sgskip.py

• sphx_glr_gallery_user_interfaces_svg_tooltip_sgskip.py

matplotlib.pyplot.sca

matplotlib.pyplot.sca(ax)
Set the current Axes to ax and the current Figure to the parent of ax.

Examples using matplotlib.pyplot.sca

matplotlib.pyplot.scatter

matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None,
norm=None, vmin=None, vmax=None, alpha=None,
linewidths=None, *, edgecolors=None, plotnonfinite=False,
data=None, **kwargs)

A scatter plot of y vs. x with varying marker size and/or color.

2624 Chapter 18. Modules

https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save
https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.save

Matplotlib, Release 3.4.3

Parameters

x, y
[float or array-like, shape (n,)] The data positions.

s
[float or array-like, shape (n,), optional] The marker size in points**2. Default is
rcParams['lines.markersize'] ** 2.

c
[array-like or list of colors or color, optional] The marker colors. Possible values:

• A scalar or sequence of n numbers to be mapped to colors using cmap and norm.

• A 2D array in which the rows are RGB or RGBA.

• A sequence of colors of length n.

• A single color format string.

Note that c should not be a single numeric RGB or RGBA sequence because that
is indistinguishable from an array of values to be colormapped. If you want to
specify the same RGB or RGBA value for all points, use a 2D array with a single
row. Otherwise, value- matching will have precedence in case of a size matching
with x and y.

If you wish to specify a single color for all points prefer the color keyword argu-
ment.

Defaults to None. In that case the marker color is determined by the value
of color, facecolor or facecolors. In case those are not specified or None, the
marker color is determined by the next color of the Axes' current "shape and fill"
color cycle. This cycle defaults to rcParams["axes.prop_cycle"] (de-
fault: cycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c',
'#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
'#bcbd22', '#17becf'])).

marker
[MarkerStyle, default: rcParams["scatter.marker"] (default:
'o')] The marker style. marker can be either an instance of the class or the
text shorthand for a particular marker. See matplotlib.markers for more
information about marker styles.

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. cmap
is only used if c is an array of floats.

norm

18.39. matplotlib.pyplot 2625

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=scatter.marker#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[Normalize, default: None] If c is an array of floats, norm is used to scale the
color data, c, in the range 0 to 1, in order to map into the colormap cmap. If None,
use the default colors.Normalize.

vmin, vmax
[float, default: None] vmin and vmax are used in conjunction with the default norm
to map the color array c to the colormap cmap. If None, the respective min and
max of the color array is used. It is deprecated to use vmin/vmax when norm is
given.

alpha
[float, default: None] The alpha blending value, between 0 (transparent) and 1
(opaque).

linewidths
[float or array-like, default: rcParams["lines.linewidth"] (default: 1.
5)] The linewidth of the marker edges. Note: The default edgecolors is 'face'. You
may want to change this as well.

edgecolors
[{'face', 'none', None} or color or sequence of color, default:
rcParams["scatter.edgecolors"] (default: 'face')] The edge
color of the marker. Possible values:

• 'face': The edge color will always be the same as the face color.

• 'none': No patch boundary will be drawn.

• A color or sequence of colors.

For non-filled markers, edgecolors is ignored. Instead, the color is determined like
with 'face', i.e. from c, colors, or facecolors.

plotnonfinite
[bool, default: False] Whether to plot points with nonfinite c (i.e. inf, -
inf or nan). If True the points are drawn with the bad colormap color (see
Colormap.set_bad).

Returns

PathCollection

Other Parameters

**kwargs
[Collection properties]

See also:

2626 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=scatter.edgecolors#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

plot

To plot scatter plots when markers are identical in size and color.

Notes

• The plot function will be faster for scatterplots where markers don't vary in size or color.

• Any or all of x, y, s, and c may be masked arrays, in which case all masks will be combined and
only unmasked points will be plotted.

• Fundamentally, scatter works with 1D arrays; x, y, s, and cmay be input as N-D arrays, but within
scatter they will be flattened. The exception is c, which will be flattened only if its size matches
the size of x and y.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted
as data[s] (unless this raises an exception): x, y, s, linewidths, edgecolors, c, facecolor, facecolors,
color.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.scatter

• sphx_glr_gallery_misc_hyperlinks_sgskip.py

matplotlib.pyplot.sci

matplotlib.pyplot.sci(im)
Set the current image.

This image will be the target of colormap functions like viridis, and other functions such as clim.
The current image is an attribute of the current axes.

Examples using matplotlib.pyplot.sci

• sphx_glr_gallery_shapes_and_collections_line_collection.py

18.39. matplotlib.pyplot 2627

Matplotlib, Release 3.4.3

matplotlib.pyplot.semilogx

matplotlib.pyplot.semilogx(*args, **kwargs)
Make a plot with log scaling on the x axis.

Call signatures:

semilogx([x], y, [fmt], data=None, **kwargs)
semilogx([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

This is just a thin wrapper around plot which additionally changes the x-axis to log scaling. All of
the concepts and parameters of plot can be used here as well.

The additional parameters base, subs, and nonpositive control the x-axis properties. They are just
forwarded to Axes.set_xscale.

Parameters

base
[float, default: 10] Base of the x logarithm.

subs
[array-like, optional] The location of the minor xticks. If None, reasonable loca-
tions are automatically chosen depending on the number of decades in the plot.
See Axes.set_xscale for details.

nonpositive
[{'mask', 'clip'}, default: 'mask'] Non-positive values in x can bemasked as invalid,
or clipped to a very small positive number.

Returns

list of Line2D
Objects representing the plotted data.

Other Parameters

**kwargs
All parameters supported by plot.

2628 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.semilogx

• Sample plots in Matplotlib

matplotlib.pyplot.semilogy

matplotlib.pyplot.semilogy(*args, **kwargs)
Make a plot with log scaling on the y axis.

Call signatures:

semilogy([x], y, [fmt], data=None, **kwargs)
semilogy([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)

This is just a thin wrapper around plot which additionally changes the y-axis to log scaling. All of
the concepts and parameters of plot can be used here as well.

The additional parameters base, subs, and nonpositive control the y-axis properties. They are just
forwarded to Axes.set_yscale.

Parameters

base
[float, default: 10] Base of the y logarithm.

subs
[array-like, optional] The location of the minor yticks. If None, reasonable loca-
tions are automatically chosen depending on the number of decades in the plot.
See Axes.set_yscale for details.

nonpositive
[{'mask', 'clip'}, default: 'mask'] Non-positive values in y can bemasked as invalid,
or clipped to a very small positive number.

Returns

list of Line2D
Objects representing the plotted data.

Other Parameters

**kwargs
All parameters supported by plot.

18.39. matplotlib.pyplot 2629

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.semilogy

• Sample plots in Matplotlib

matplotlib.pyplot.set_cmap

matplotlib.pyplot.set_cmap(cmap)
Set the default colormap, and applies it to the current image if any.

Parameters

cmap
[Colormap or str] A colormap instance or the name of a registered colormap.

See also:

colormaps

matplotlib.cm.register_cmap

matplotlib.cm.get_cmap

Examples using matplotlib.pyplot.set_cmap

matplotlib.pyplot.setp

matplotlib.pyplot.setp(obj, *args, **kwargs)
Set one or more properties on an Artist, or list allowed values.

Parameters

obj
[Artist or list of Artist] The artist(s) whose properties are being set or
queried. When setting properties, all artists are affected; when querying the al-
lowed values, only the first instance in the sequence is queried.

For example, two lines can be made thicker and red with a single call:

>>> x = arange(0, 1, 0.01)
>>> lines = plot(x, sin(2*pi*x), x, sin(4*pi*x))
>>> setp(lines, linewidth=2, color='r')

file
[file-like, default: sys.stdout] Where setp writes its output when asked to
list allowed values.

2630 Chapter 18. Modules

https://docs.python.org/3/library/sys.html#sys.stdout

Matplotlib, Release 3.4.3

>>> with open('output.log') as file:
... setp(line, file=file)

The default, None, means sys.stdout.

*args, **kwargs
The properties to set. The following combinations are supported:

• Set the linestyle of a line to be dashed:

>>> line, = plot([1, 2, 3])
>>> setp(line, linestyle='--')

• Set multiple properties at once:

>>> setp(line, linewidth=2, color='r')

• List allowed values for a line's linestyle:

>>> setp(line, 'linestyle')
linestyle: {'-', '--', '-.', ':', '', (offset, on-off-

↪seq), ...}

• List all properties that can be set, and their allowed values:

>>> setp(line)
agg_filter: a filter function, ...
[long output listing omitted]

setp also supportsMATLAB style string/value pairs. For example, the following
are equivalent:

>>> setp(lines, 'linewidth', 2, 'color', 'r') # MATLAB␣
↪style

>>> setp(lines, linewidth=2, color='r') # Python␣
↪style

See also:

getp

18.39. matplotlib.pyplot 2631

https://docs.python.org/3/library/sys.html#sys.stdout

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.setp

• sphx_glr_gallery_event_handling_ginput_manual_clabel_sgskip.py

matplotlib.pyplot.show

matplotlib.pyplot.show(*, block=None)
Display all open figures.

Parameters

block
[bool, optional] Whether to wait for all figures to be closed before returning.

If True block and run the GUI main loop until all figure windows are closed.

If False ensure that all figure windows are displayed and return immediately. In
this case, you are responsible for ensuring that the event loop is running to have
responsive figures.

Defaults to True in non-interactive mode and to False in interactive mode (see
pyplot.isinteractive).

See also:

ion

Enable interactive mode, which shows / updates the figure after every plotting command, so that
calling show() is not necessary.

ioff

Disable interactive mode.

savefig

Save the figure to an image file instead of showing it on screen.

Notes

Saving figures to file and showing a window at the same time
If youwant an image file as well as a user interface window, usepyplot.savefig beforepyplot.
show. At the end of (a blocking) show() the figure is closed and thus unregistered from pyplot.
Calling pyplot.savefig afterwards would save a new and thus empty figure. This limitation of
command order does not apply if the show is non-blocking or if you keep a reference to the figure and
use Figure.savefig.

Auto-show in jupyter notebooks

2632 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Matplotlib, Release 3.4.3

The jupyter backends (activated via %matplotlib inline, %matplotlib notebook, or
%matplotlib widget), call show() at the end of every cell by default. Thus, you usually don't
have to call it explicitly there.

Examples using matplotlib.pyplot.show

• sphx_glr_gallery_text_labels_and_annotations_font_family_rc_sgskip.py

• sphx_glr_gallery_event_handling_ginput_manual_clabel_sgskip.py

• sphx_glr_gallery_event_handling_pong_sgskip.py

• sphx_glr_gallery_misc_multiprocess_sgskip.py

• sphx_glr_gallery_user_interfaces_pylab_with_gtk_sgskip.py

• sphx_glr_gallery_user_interfaces_toolmanager_sgskip.py

• sphx_glr_gallery_widgets_lasso_selector_demo_sgskip.py

matplotlib.pyplot.specgram

matplotlib.pyplot.specgram(x, NFFT=None, Fs=None, Fc=None, detrend=None, win-
dow=None, noverlap=None, cmap=None, xextent=None,
pad_to=None, sides=None, scale_by_freq=None,
mode=None, scale=None, vmin=None, vmax=None, *,
data=None, **kwargs)

Plot a spectrogram.

Compute and plot a spectrogram of data in x. Data are split into NFFT length segments and the
spectrum of each section is computed. The windowing function window is applied to each segment,
and the amount of overlap of each segment is specified with noverlap. The spectrogram is plotted as
a colormap (using imshow).

Parameters

x
[1-D array or sequence] Array or sequence containing the data.

Fs
[float, default: 2] The sampling frequency (samples per time unit). It is used to
calculate the Fourier frequencies, freqs, in cycles per time unit.

window
[callable or ndarray, default: window_hanning] A function or a vector
of length NFFT. To create window vectors see window_hanning, win-
dow_none, numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window, etc. If a function is passed

18.39. matplotlib.pyplot 2633

https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.scipy.org/doc/scipy/reference/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window

Matplotlib, Release 3.4.3

as the argument, it must take a data segment as an argument and return the win-
dowed version of the segment.

sides
[{'default', 'onesided', 'twosided'}, optional]Which sides of the spectrum to return.
'default' is one-sided for real data and two-sided for complex data. 'onesided' forces
the return of a one-sided spectrum, while 'twosided' forces two-sided.

pad_to
[int, optional] The number of points to which the data segment is padded when
performing the FFT. This can be different from NFFT, which specifies the number
of data points used. While not increasing the actual resolution of the spectrum (the
minimum distance between resolvable peaks), this can givemore points in the plot,
allowing for more detail. This corresponds to the n parameter in the call to fft().
The default is None, which sets pad_to equal to NFFT

NFFT
[int, default: 256] The number of data points used in each block for the FFT. A
power 2 is most efficient. This should NOT be used to get zero padding, or the
scaling of the result will be incorrect; use pad_to for this instead.

detrend
[{'none', 'mean', 'linear'} or callable, default: 'none'] The function applied to each
segment before fft-ing, designed to remove the mean or linear trend. Unlike in
MATLAB, where the detrend parameter is a vector, in Matplotlib is it a func-
tion. The mlab module defines detrend_none, detrend_mean, and de-
trend_linear, but you can use a custom function as well. You can also use a
string to choose one of the functions: 'none' calls detrend_none. 'mean' calls
detrend_mean. 'linear' calls detrend_linear.

scale_by_freq
[bool, default: True] Whether the resulting density values should be scaled by
the scaling frequency, which gives density in units of Hz^-1. This allows for in-
tegration over the returned frequency values. The default is True for MATLAB
compatibility.

mode
[{'default', 'psd', 'magnitude', 'angle', 'phase'}] What sort of spectrum to use. De-
fault is 'psd', which takes the power spectral density. 'magnitude' returns the mag-
nitude spectrum. 'angle' returns the phase spectrum without unwrapping. 'phase'
returns the phase spectrum with unwrapping.

noverlap
[int, default: 128] The number of points of overlap between blocks.

scale
[{'default', 'linear', 'dB'}] The scaling of the values in the spec. 'linear' is no scaling.
'dB' returns the values in dB scale. When mode is 'psd', this is dB power (10 *

2634 Chapter 18. Modules

Matplotlib, Release 3.4.3

log10). Otherwise this is dB amplitude (20 * log10). 'default' is 'dB' if mode is
'psd' or 'magnitude' and 'linear' otherwise. This must be 'linear' if mode is 'angle'
or 'phase'.

Fc
[int, default: 0] The center frequency of x, which offsets the x extents of the plot
to reflect the frequency range used when a signal is acquired and then filtered and
downsampled to baseband.

cmap
[Colormap, default: rcParams["image.cmap"] (default: 'viridis')]

xextent
[None or (xmin, xmax)] The image extent along the x-axis. The default sets xmin
to the left border of the first bin (spectrum column) and xmax to the right border
of the last bin. Note that for noverlap>0 the width of the bins is smaller than those
of the segments.

**kwargs
Additional keyword arguments are passed on to imshow which makes the spec-
gram image. The origin keyword argument is not supported.

Returns

spectrum
[2D array] Columns are the periodograms of successive segments.

freqs
[1-D array] The frequencies corresponding to the rows in spectrum.

t
[1-D array] The times corresponding to midpoints of segments (i.e., the columns
in spectrum).

im
[AxesImage] The image created by imshow containing the spectrogram.

See also:

psd

Differs in the default overlap; in returning themean of the segment periodograms; in not returning
times; and in generating a line plot instead of colormap.

magnitude_spectrum

A single spectrum, similar to having a single segment when mode is 'magnitude'. Plots a line
instead of a colormap.

18.39. matplotlib.pyplot 2635

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

angle_spectrum

A single spectrum, similar to having a single segment when mode is 'angle'. Plots a line instead
of a colormap.

phase_spectrum

A single spectrum, similar to having a single segment when mode is 'phase'. Plots a line instead
of a colormap.

Notes

The parameters detrend and scale_by_freq do only apply when mode is set to 'psd'.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.specgram

• Sample plots in Matplotlib

matplotlib.pyplot.spring

matplotlib.pyplot.spring()
Set the colormap to 'spring'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.spring

matplotlib.pyplot.spy

matplotlib.pyplot.spy(Z, precision=0, marker=None, markersize=None, aspect='equal',
origin='upper', **kwargs)

Plot the sparsity pattern of a 2D array.

This visualizes the non-zero values of the array.

Two plotting styles are available: image and marker. Both are available for full arrays, but only the
marker style works for scipy.sparse.spmatrix instances.

Image style

2636 Chapter 18. Modules

https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix

Matplotlib, Release 3.4.3

If marker and markersize are None, imshow is used. Any extra remaining keyword arguments are
passed to this method.

Marker style
If Z is a scipy.sparse.spmatrix or marker or markersize are None, a Line2D object will be
returned with the value of marker determining the marker type, and any remaining keyword arguments
passed to plot.

Parameters

Z
[(M, N) array-like] The array to be plotted.

precision
[float or 'present', default: 0] If precision is 0, any non-zero value will be plotted.
Otherwise, values of |𝑍| > 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 will be plotted.

For scipy.sparse.spmatrix instances, you can also pass 'present'. In this
case any value present in the array will be plotted, even if it is identically zero.

aspect
[{'equal', 'auto', None} or float, default: 'equal'] The aspect ratio of the Axes. This
parameter is particularly relevant for images since it determines whether data pix-
els are square.

This parameter is a shortcut for explicitly calling Axes.set_aspect. See there
for further details.

• 'equal': Ensures an aspect ratio of 1. Pixels will be square.

• 'auto': The Axes is kept fixed and the aspect is adjusted so that the data fit in the
Axes. In general, this will result in non-square pixels.

• None: Use rcParams["image.aspect"] (default: 'equal').

origin
[{'upper', 'lower'}, default: rcParams["image.origin"] (default: 'up-
per')] Place the [0, 0] index of the array in the upper left or lower left corner of
the Axes. The convention 'upper' is typically used for matrices and images.

Returns

AxesImage or Line2D
The return type depends on the plotting style (see above).

Other Parameters

**kwargs
The supported additional parameters depend on the plotting style.

18.39. matplotlib.pyplot 2637

https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix
../../tutorials/introductory/customizing.html?highlight=image.aspect#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

For the image style, you can pass the following additional parameters of imshow:

• cmap

• alpha

• url

• any Artist properties (passed on to the AxesImage)

For the marker style, you can pass any Line2D property except for linestyle:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
dash_capstyle CapStyle or {'butt', 'projecting', 'round'}
dash_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
dashes sequence of floats (on/off ink in points) or (None, None)
data (2, N) array or two 1D arrays
drawstyle or ds {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure Figure

fillstyle {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid str
in_layout bool
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float
marker marker style string, Path or MarkerStyle
markeredgecolor or mec color
markeredgewidth or mew float
markerfacecolor or mfc color
markerfacecoloralt or mfcalt color
markersize or ms float
markevery None or int or (int, int) or slice or list[int] or float or (float, float) or list[bool]
path_effects AbstractPathEffect

picker float or callable[[Artist, Event], tuple[bool, dict]]
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
solid_capstyle CapStyle or {'butt', 'projecting', 'round'}

continues on next page

2638 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 218 – continued from previous page
Property Description
solid_joinstyle JoinStyle or {'miter', 'round', 'bevel'}
transform matplotlib.transforms.Transform

url str
visible bool
xdata 1D array
ydata 1D array
zorder float

Examples using matplotlib.pyplot.spy

matplotlib.pyplot.stackplot

matplotlib.pyplot.stackplot(x, *args, labels=(), colors=None, baseline='zero',
data=None, **kwargs)

Draw a stacked area plot.

Parameters

x
[(N,) array-like]

y
[(M, N) array-like] The data is assumed to be unstacked. Each of the following
calls is legal:

stackplot(x, y) # where y has shape (M, N)
stackplot(x, y1, y2, y3) # where y1, y2, y3, y4 have␣

↪length N

baseline
[{'zero', 'sym', 'wiggle', 'weighted_wiggle'}]Method used to calculate the baseline:

• 'zero': Constant zero baseline, i.e. a simple stacked plot.

• 'sym': Symmetric around zero and is sometimes called 'ThemeRiver'.

• 'wiggle': Minimizes the sum of the squared slopes.

• 'weighted_wiggle': Does the same but weights to account for size of
each layer. It is also called 'Streamgraph'-layout. More details can be found at
http://leebyron.com/streamgraph/.

labels
[list of str, optional] A sequence of labels to assign to each data series. If unspec-
ified, then no labels will be applied to artists.

18.39. matplotlib.pyplot 2639

http://leebyron.com/streamgraph/

Matplotlib, Release 3.4.3

colors
[list of color, optional] A sequence of colors to be cycled through and used to color
the stacked areas. The sequence need not be exactly the same length as the number
of provided y, in which case the colors will repeat from the beginning.

If not specified, the colors from the Axes property cycle will be used.

**kwargs
All other keyword arguments are passed to Axes.fill_between.

Returns

list of PolyCollection
A list of PolyCollection instances, one for each element in the stacked area
plot.

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.stackplot

matplotlib.pyplot.stairs

matplotlib.pyplot.stairs(values, edges=None, *, orientation='vertical', baseline=0,
fill=False, data=None, **kwargs)

A stepwise constant function as a line with bounding edges or a filled plot.

Parameters

values
[array-like] The step heights.

edges
[array-like] The edge positions, with len(edges) == len(vals) + 1,
between which the curve takes on vals values.

orientation
[{'vertical', 'horizontal'}, default: 'vertical'] The direction of the steps. Vertical
means that values are along the y-axis, and edges are along the x-axis.

2640 Chapter 18. Modules

Matplotlib, Release 3.4.3

baseline
[float, array-like or None, default: 0] The bottom value of the bounding edges or
when fill=True, position of lower edge. If fill is True or an array is passed to
baseline, a closed path is drawn.

fill
[bool, default: False] Whether the area under the step curve should be filled.

Returns

StepPatch
[matplotlib.patches.StepPatch]

Other Parameters

**kwargs
StepPatch properties

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.stairs

• sphx_glr_gallery_lines_bars_and_markers_stairs_demo.py

matplotlib.pyplot.stem

matplotlib.pyplot.stem(*args, linefmt=None,markerfmt=None, basefmt=None, bottom=0,
label=None, use_line_collection=True, orientation='vertical',
data=None)

Create a stem plot.

A stem plot draws lines perpendicular to a baseline at each location locs from the baseline to heads,
and places a marker there. For vertical stem plots (the default), the locs are x positions, and the heads
are y values. For horizontal stem plots, the locs are y positions, and the heads are x values.

Call signature:

18.39. matplotlib.pyplot 2641

Matplotlib, Release 3.4.3

stem([locs,] heads, linefmt=None, markerfmt=None, basefmt=None)

The locs-positions are optional. The formats may be provided either as positional or as keyword-
arguments.

Parameters

locs
[array-like, default: (0, 1, ..., len(heads) - 1)] For vertical stem plots, the x-
positions of the stems. For horizontal stem plots, the y-positions of the stems.

heads
[array-like] For vertical stem plots, the y-values of the stem heads. For horizontal
stem plots, the x-values of the stem heads.

linefmt
[str, optional] A string defining the color and/or linestyle of the vertical lines:

Character Line Style
'-' solid line
'--' dashed line
'-.' dash-dot line
':' dotted line

Default: 'C0-', i.e. solid line with the first color of the color cycle.

Note: Markers specified through this parameter (e.g. 'x') will be silently ignored
(unless using use_line_collection=False). Instead, markers should be
specified using markerfmt.

markerfmt
[str, optional] A string defining the color and/or shape of the markers at the stem
heads. Default: 'C0o', i.e. filled circles with the first color of the color cycle.

basefmt
[str, default: 'C3-' ('C2-' in classic mode)] A format string defining the properties
of the baseline.

orientation
[str, default: 'vertical'] If 'vertical', will produce a plot with stems oriented verti-
cally, otherwise the stems will be oriented horizontally.

bottom
[float, default: 0] The y/x-position of the baseline (depending on orientation).

label
[str, default: None] The label to use for the stems in legends.

2642 Chapter 18. Modules

Matplotlib, Release 3.4.3

use_line_collection
[bool, default: True] If True, store and plot the stem lines as a LineCollec-
tion instead of individual lines, which significantly increases performance. If
False, defaults to the old behavior of using a list of Line2D objects. This pa-
rameter may be deprecated in the future.

Returns

StemContainer

The container may be treated like a tuple (markerline, stemlines, baseline)

Notes

See also:
The MATLAB function stem which inspired this method.

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, every other argument can also be string s, which is interpreted as
data[s] (unless this raises an exception).

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.stem

• sphx_glr_gallery_lines_bars_and_markers_stem_plot.py

matplotlib.pyplot.step

matplotlib.pyplot.step(x, y, *args, where='pre', data=None, **kwargs)
Make a step plot.

Call signatures:

step(x, y, [fmt], *, data=None, where='pre', **kwargs)
step(x, y, [fmt], x2, y2, [fmt2], ..., *, where='pre', **kwargs)

This is just a thin wrapper around plotwhich changes some formatting options. Most of the concepts
and parameters of plot can be used here as well.

Note: This method uses a standard plot with a step drawstyle: The x values are the reference positions
and steps extend left/right/both directions depending on where.

For the common case where you know the values and edges of the steps, use stairs instead.

18.39. matplotlib.pyplot 2643

https://www.mathworks.com/help/matlab/ref/stem.html

Matplotlib, Release 3.4.3

Parameters

x
[array-like] 1D sequence of x positions. It is assumed, but not checked, that it is
uniformly increasing.

y
[array-like] 1D sequence of y levels.

fmt
[str, optional] A format string, e.g. 'g' for a green line. See plot for a more
detailed description.

Note: While full format strings are accepted, it is recommended to only specify
the color. Line styles are currently ignored (use the keyword argument linestyle
instead). Markers are accepted and plotted on the given positions, however, this is
a rarely needed feature for step plots.

data
[indexable object, optional] An object with labelled data. If given, provide the
label names to plot in x and y.

where
[{'pre', 'post', 'mid'}, default: 'pre'] Define where the steps should be placed:

• 'pre': The y value is continued constantly to the left from every x position, i.e.
the interval (x[i-1], x[i]] has the value y[i].

• 'post': The y value is continued constantly to the right from every x position, i.e.
the interval [x[i], x[i+1]) has the value y[i].

• 'mid': Steps occur half-way between the x positions.

Returns

list of Line2D
Objects representing the plotted data.

Other Parameters

**kwargs
Additional parameters are the same as those for plot.

2644 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Examples using matplotlib.pyplot.step

• sphx_glr_gallery_lines_bars_and_markers_stairs_demo.py

• sphx_glr_gallery_lines_bars_and_markers_step_demo.py

matplotlib.pyplot.streamplot

matplotlib.pyplot.streamplot(x, y, u, v, density=1, linewidth=None, color=None,
cmap=None, norm=None, arrowsize=1, arrowstyle='-
|>', minlength=0.1, transform=None, zorder=None,
start_points=None, maxlength=4.0, integra-
tion_direction='both', *, data=None)

Draw streamlines of a vector flow.

Parameters

x, y
[1D/2D arrays] Evenly spaced strictly increasing arrays to make a grid.

u, v
[2D arrays] x and y-velocities. The number of rows and columns must match the
length of y and x, respectively.

density
[float or (float, float)] Controls the closeness of streamlines. When density =
1, the domain is divided into a 30x30 grid. density linearly scales this grid. Each
cell in the grid can have, at most, one traversing streamline. For different densities
in each direction, use a tuple (density_x, density_y).

linewidth
[float or 2D array] The width of the stream lines. With a 2D array the line width
can be varied across the grid. The array must have the same shape as u and v.

color
[color or 2D array] The streamline color. If given an array, its values are converted
to colors using cmap and norm. The array must have the same shape as u and v.

cmap
[Colormap] Colormap used to plot streamlines and arrows. This is only used if
color is an array.

norm
[Normalize] Normalize object used to scale luminance data to 0, 1. If None,
stretch (min, max) to (0, 1). This is only used if color is an array.

18.39. matplotlib.pyplot 2645

Matplotlib, Release 3.4.3

arrowsize
[float] Scaling factor for the arrow size.

arrowstyle
[str] Arrow style specification. See FancyArrowPatch.

minlength
[float] Minimum length of streamline in axes coordinates.

start_points
[Nx2 array] Coordinates of starting points for the streamlines in data coordinates
(the same coordinates as the x and y arrays).

zorder
[int] The zorder of the stream lines and arrows. Artists with lower zorder values
are drawn first.

maxlength
[float] Maximum length of streamline in axes coordinates.

integration_direction
[{'forward', 'backward', 'both'}, default: 'both'] Integrate the streamline in forward,
backward or both directions.

Returns

StreamplotSet
Container object with attributes

• lines: LineCollection of streamlines

• arrows: PatchCollection containing FancyArrowPatch objects
representing the arrows half-way along stream lines.

This container will probably change in the future to allow changes to the colormap,
alpha, etc. for both lines and arrows, but these changes should be backward com-
patible.

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y, u, v, start_points.

Objects passed as data must support item access (data[s]) and membership test (s in data).

2646 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.streamplot

• Sample plots in Matplotlib

matplotlib.pyplot.subplot

matplotlib.pyplot.subplot(*args, **kwargs)
Add an Axes to the current figure or retrieve an existing Axes.

This is a wrapper of Figure.add_subplot which provides additional behavior when working
with the implicit API (see the notes section).

Call signatures:

subplot(nrows, ncols, index, **kwargs)
subplot(pos, **kwargs)
subplot(**kwargs)
subplot(ax)

Parameters

*args
[int, (int, int, index), or SubplotSpec, default: (1, 1, 1)] The position of the
subplot described by one of

• Three integers (nrows, ncols, index). The subplot will take the index position
on a grid with nrows rows and ncols columns. index starts at 1 in the upper
left corner and increases to the right. index can also be a two-tuple specifying
the (first, last) indices (1-based, and including last) of the subplot, e.g., fig.
add_subplot(3, 1, (1, 2)) makes a subplot that spans the upper 2/3
of the figure.

• A 3-digit integer. The digits are interpreted as if given separately as three
single-digit integers, i.e. fig.add_subplot(235) is the same as fig.
add_subplot(2, 3, 5). Note that this can only be used if there are no
more than 9 subplots.

• A SubplotSpec.

projection
[{None, 'aitoff', 'hammer', 'lambert', 'mollweide', 'polar', 'rectilinear', str}, op-
tional] The projection type of the subplot (Axes). str is the name of a custom
projection, see projections. The default None results in a 'rectilinear' projec-
tion.

polar
[bool, default: False] If True, equivalent to projection='polar'.

18.39. matplotlib.pyplot 2647

Matplotlib, Release 3.4.3

sharex, sharey
[Axes, optional] Share the x or y axis with sharex and/or sharey. The axis will
have the same limits, ticks, and scale as the axis of the shared axes.

label
[str] A label for the returned axes.

Returns

axes.SubplotBase, or another subclass of Axes
The axes of the subplot. The returned axes base class depends on the projection
used. It is Axes if rectilinear projection is used and projections.polar.
PolarAxes if polar projection is used. The returned axes is then a subplot sub-
class of the base class.

Other Parameters

**kwargs
This method also takes the keyword arguments for the returned axes base class; ex-
cept for the figure argument. The keyword arguments for the rectilinear base class
Axes can be found in the following table but there might also be other keyword
arguments if another projection is used.

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str

continues on next page

2648 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 219 – continued from previous page
Property Description
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

See also:

Figure.add_subplot

pyplot.subplots

pyplot.axes

Figure.subplots

18.39. matplotlib.pyplot 2649

Matplotlib, Release 3.4.3

Notes

Creating a newAxes will delete any pre-existing Axes that overlaps with it beyond sharing a boundary:

import matplotlib.pyplot as plt
plot a line, implicitly creating a subplot(111)
plt.plot([1, 2, 3])
now create a subplot which represents the top plot of a grid
with 2 rows and 1 column. Since this subplot will overlap the
first, the plot (and its axes) previously created, will be removed
plt.subplot(211)

If you do not want this behavior, use the Figure.add_subplot method or the pyplot.axes
function instead.

If no kwargs are passed and there exists an Axes in the location specified by args then that Axes will
be returned rather than a new Axes being created.

If kwargs are passed and there exists an Axes in the location specified by args, the projection type is
the same, and the kwargs match with the existing Axes, then the existing Axes is returned. Otherwise
a new Axes is created with the specified parameters. We save a reference to the kwargs which we use
for this comparison. If any of the values in kwargs are mutable we will not detect the case where they
are mutated. In these cases we suggest using Figure.add_subplot and the explicit Axes API
rather than the implicit pyplot API.

Examples

plt.subplot(221)

equivalent but more general
ax1 = plt.subplot(2, 2, 1)

add a subplot with no frame
ax2 = plt.subplot(222, frameon=False)

add a polar subplot
plt.subplot(223, projection='polar')

add a red subplot that shares the x-axis with ax1
plt.subplot(224, sharex=ax1, facecolor='red')

delete ax2 from the figure
plt.delaxes(ax2)

add ax2 to the figure again
plt.subplot(ax2)

make the first axes "current" again
plt.subplot(221)

2650 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.subplot

• sphx_glr_gallery_subplots_axes_and_figures_axes_margins.py

• sphx_glr_gallery_subplots_axes_and_figures_axes_zoom_effect.py

• sphx_glr_gallery_subplots_axes_and_figures_demo_tight_layout.py

• sphx_glr_gallery_subplots_axes_and_figures_geo_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_multiple_figs_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_share_axis_lims_views.py

• sphx_glr_gallery_subplots_axes_and_figures_shared_axis_demo.py

• sphx_glr_gallery_subplots_axes_and_figures_subplot.py

• sphx_glr_gallery_subplots_axes_and_figures_subplots_adjust.py

• sphx_glr_gallery_pie_and_polar_charts_polar_bar.py

• sphx_glr_gallery_pyplots_pyplot_two_subplots.py

• sphx_glr_gallery_pyplots_whats_new_98_4_legend.py

• sphx_glr_gallery_axes_grid1_simple_colorbar.py

• MATPLOTLIB UNCHAINED

• sphx_glr_gallery_misc_customize_rc.py

• sphx_glr_gallery_misc_transoffset.py

• Pyplot tutorial

• Sample plots in Matplotlib

• Legend guide

• Customizing Figure Layouts Using GridSpec and Other Functions

• Constrained Layout Guide

• Tight Layout guide

matplotlib.pyplot.subplot2grid

matplotlib.pyplot.subplot2grid(shape, loc, rowspan=1, colspan=1, fig=None,
**kwargs)

Create a subplot at a specific location inside a regular grid.

Parameters

shape
[(int, int)] Number of rows and of columns of the grid in which to place axis.

18.39. matplotlib.pyplot 2651

Matplotlib, Release 3.4.3

loc
[(int, int)] Row number and column number of the axis location within the grid.

rowspan
[int, default: 1] Number of rows for the axis to span downwards.

colspan
[int, default: 1] Number of columns for the axis to span to the right.

fig
[Figure, optional] Figure to place the subplot in. Defaults to the current figure.

**kwargs
Additional keyword arguments are handed to add_subplot.

Returns

axes.SubplotBase, or another subclass of Axes
The axes of the subplot. The returned axes base class depends on the projection
used. It is Axes if rectilinear projection is used and projections.polar.
PolarAxes if polar projection is used. The returned axes is then a subplot sub-
class of the base class.

Notes

The following call

ax = subplot2grid((nrows, ncols), (row, col), rowspan, colspan)

is identical to

fig = gcf()
gs = fig.add_gridspec(nrows, ncols)
ax = fig.add_subplot(gs[row:row+rowspan, col:col+colspan])

Examples using matplotlib.pyplot.subplot2grid

• sphx_glr_gallery_subplots_axes_and_figures_demo_tight_layout.py

• sphx_glr_gallery_userdemo_demo_gridspec01.py

• Customizing Figure Layouts Using GridSpec and Other Functions

• Constrained Layout Guide

• Tight Layout guide

2652 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.pyplot.subplot_mosaic

matplotlib.pyplot.subplot_mosaic(mosaic, *, subplot_kw=None, gridspec_kw=None,
empty_sentinel='.', **fig_kw)

Build a layout of Axes based on ASCII art or nested lists.

This is a helper function to build complex GridSpec layouts visually.

Note: This API is provisional and may be revised in the future based on early user feedback.

Parameters

mosaic
[list of list of {hashable or nested} or str] A visual layout of how you want your
Axes to be arranged labeled as strings. For example

x = [['A panel', 'A panel', 'edge'],
['C panel', '.', 'edge']]

Produces 4 axes:

• 'A panel' which is 1 row high and spans the first two columns

• 'edge' which is 2 rows high and is on the right edge

• 'C panel' which in 1 row and 1 column wide in the bottom left

• a blank space 1 row and 1 column wide in the bottom center

Any of the entries in the layout can be a list of lists of the same form to create
nested layouts.

If input is a str, then it must be of the form

'''
AAE
C.E
'''

where each character is a column and each line is a row. This only allows only
single character Axes labels and does not allow nesting but is very terse.

subplot_kw
[dict, optional] Dictionarywith keywords passed to theFigure.add_subplot
call used to create each subplot.

gridspec_kw
[dict, optional] Dictionary with keywords passed to the GridSpec constructor
used to create the grid the subplots are placed on.

18.39. matplotlib.pyplot 2653

Matplotlib, Release 3.4.3

empty_sentinel
[object, optional] Entry in the layout to mean "leave this space empty". Defaults
to '.'. Note, if layout is a string, it is processed via inspect.cleandoc to
remove leading white space, which may interfere with using white-space as the
empty sentinel.

**fig_kw
All additional keyword arguments are passed to the pyplot.figure call.

Returns

fig
[Figure] The new figure

dict[label, Axes]
A dictionary mapping the labels to the Axes objects. The order of the axes is
left-to-right and top-to-bottom of their position in the total layout.

Examples using matplotlib.pyplot.subplot_mosaic

• sphx_glr_gallery_text_labels_and_annotations_label_subplots.py

matplotlib.pyplot.subplot_tool

matplotlib.pyplot.subplot_tool(targetfig=None)
Launch a subplot tool window for a figure.

A matplotlib.widgets.SubplotTool instance is returned. You must maintain a reference
to the instance to keep the associated callbacks alive.

Examples using matplotlib.pyplot.subplot_tool

• sphx_glr_gallery_subplots_axes_and_figures_subplot_toolbar.py

matplotlib.pyplot.subplots

matplotlib.pyplot.subplots(nrows=1, ncols=1, *, sharex=False, sharey=False,
squeeze=True, subplot_kw=None, gridspec_kw=None,
**fig_kw)

Create a figure and a set of subplots.

This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing
figure object, in a single call.

2654 Chapter 18. Modules

https://docs.python.org/3/library/inspect.html#inspect.cleandoc

Matplotlib, Release 3.4.3

Parameters

nrows, ncols
[int, default: 1] Number of rows/columns of the subplot grid.

sharex, sharey
[bool or {'none', 'all', 'row', 'col'}, default: False] Controls sharing of properties
among x (sharex) or y (sharey) axes:

• True or 'all': x- or y-axis will be shared among all subplots.

• False or 'none': each subplot x- or y-axis will be independent.

• 'row': each subplot row will share an x- or y-axis.

• 'col': each subplot column will share an x- or y-axis.

When subplots have a shared x-axis along a column, only the x tick labels of the
bottom subplot are created. Similarly, when subplots have a shared y-axis along
a row, only the y tick labels of the first column subplot are created. To later turn
other subplots' ticklabels on, use tick_params.

When subplots have a shared axis that has units, calling set_units will update
each axis with the new units.

squeeze
[bool, default: True]

• If True, extra dimensions are squeezed out from the returned array of Axes:

– if only one subplot is constructed (nrows=ncols=1), the resulting single Axes
object is returned as a scalar.

– for Nx1 or 1xM subplots, the returned object is a 1D numpy object array of
Axes objects.

– for NxM, subplots with N>1 and M>1 are returned as a 2D array.

• If False, no squeezing at all is done: the returned Axes object is always a 2D
array containing Axes instances, even if it ends up being 1x1.

subplot_kw
[dict, optional] Dict with keywords passed to the add_subplot call used to
create each subplot.

gridspec_kw
[dict, optional] Dict with keywords passed to the GridSpec constructor used to
create the grid the subplots are placed on.

**fig_kw
All additional keyword arguments are passed to the pyplot.figure call.

Returns

18.39. matplotlib.pyplot 2655

Matplotlib, Release 3.4.3

fig
[Figure]

ax
[axes.Axes or array of Axes] ax can be either a single Axes object or an array
of Axes objects if more than one subplot was created. The dimensions of the
resulting array can be controlled with the squeeze keyword, see above.

Typical idioms for handling the return value are:

using the variable ax for single a Axes
fig, ax = plt.subplots()

using the variable axs for multiple Axes
fig, axs = plt.subplots(2, 2)

using tuple unpacking for multiple Axes
fig, (ax1, ax2) = plt.subplots(1, 2)
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)

The names ax and pluralized axs are preferred over axes because for the latter
it's not clear if it refers to a single Axes instance or a collection of these.

See also:

pyplot.figure

pyplot.subplot

pyplot.axes

Figure.subplots

Figure.add_subplot

Examples

First create some toy data:
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)

Create just a figure and only one subplot
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')

Create two subplots and unpack the output array immediately
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.plot(x, y)
ax1.set_title('Sharing Y axis')
ax2.scatter(x, y)

(continues on next page)

2656 Chapter 18. Modules

Matplotlib, Release 3.4.3

(continued from previous page)

Create four polar axes and access them through the returned array
fig, axs = plt.subplots(2, 2, subplot_kw=dict(projection="polar"))
axs[0, 0].plot(x, y)
axs[1, 1].scatter(x, y)

Share a X axis with each column of subplots
plt.subplots(2, 2, sharex='col')

Share a Y axis with each row of subplots
plt.subplots(2, 2, sharey='row')

Share both X and Y axes with all subplots
plt.subplots(2, 2, sharex='all', sharey='all')

Note that this is the same as
plt.subplots(2, 2, sharex=True, sharey=True)

Create figure number 10 with a single subplot
and clears it if it already exists.
fig, ax = plt.subplots(num=10, clear=True)

Examples using matplotlib.pyplot.subplots

• sphx_glr_gallery_text_labels_and_annotations_font_family_rc_sgskip.py

• sphx_glr_gallery_event_handling_pong_sgskip.py

• sphx_glr_gallery_misc_multiprocess_sgskip.py

• sphx_glr_gallery_user_interfaces_pylab_with_gtk_sgskip.py

• sphx_glr_gallery_user_interfaces_svg_tooltip_sgskip.py

• sphx_glr_gallery_userdemo_pgf_preamble_sgskip.py

• sphx_glr_gallery_widgets_lasso_selector_demo_sgskip.py

matplotlib.pyplot.subplots_adjust

matplotlib.pyplot.subplots_adjust(left=None, bottom=None, right=None, top=None,
wspace=None, hspace=None)

Adjust the subplot layout parameters.

Unset parameters are left unmodified; initial values are given by rcParams["figure.subplot.
[name]"].

Parameters

left

18.39. matplotlib.pyplot 2657

../../tutorials/introductory/customizing.html?highlight=figure.subplot.{[}name{]}#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=figure.subplot.{[}name{]}#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[float, optional] The position of the left edge of the subplots, as a fraction of the
figure width.

right
[float, optional] The position of the right edge of the subplots, as a fraction of the
figure width.

bottom
[float, optional] The position of the bottom edge of the subplots, as a fraction of
the figure height.

top
[float, optional] The position of the top edge of the subplots, as a fraction of the
figure height.

wspace
[float, optional] The width of the padding between subplots, as a fraction of the
average Axes width.

hspace
[float, optional] The height of the padding between subplots, as a fraction of the
average Axes height.

Examples using matplotlib.pyplot.subplots_adjust

• sphx_glr_gallery_images_contours_and_fields_irregulardatagrid.py

• sphx_glr_gallery_subplots_axes_and_figures_subplots_adjust.py

• sphx_glr_gallery_statistics_customized_violin.py

• sphx_glr_gallery_text_labels_and_annotations_text_fontdict.py

• sphx_glr_gallery_axisartist_demo_parasite_axes2.py

• sphx_glr_gallery_misc_table_demo.py

• sphx_glr_gallery_ticks_and_spines_ticklabels_rotation.py

• sphx_glr_gallery_widgets_buttons.py

• sphx_glr_gallery_widgets_check_buttons.py

• sphx_glr_gallery_widgets_radio_buttons.py

• sphx_glr_gallery_widgets_range_slider.py

• sphx_glr_gallery_widgets_slider_demo.py

• sphx_glr_gallery_widgets_slider_snap_demo.py

• Pyplot tutorial

• Customizing Figure Layouts Using GridSpec and Other Functions

2658 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.pyplot.summer

matplotlib.pyplot.summer()
Set the colormap to 'summer'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.summer

matplotlib.pyplot.suptitle

matplotlib.pyplot.suptitle(t, **kwargs)
Add a centered suptitle to the figure.

Parameters

t
[str] The suptitle text.

x
[float, default: 0.5] The x location of the text in figure coordinates.

y
[float, default: 0.98] The y location of the text in figure coordinates.

horizontalalignment, ha
[{'center', 'left', 'right'}, default: center] The horizontal alignment of the text rela-
tive to (x, y).

verticalalignment, va
[{'top', 'center', 'bottom', 'baseline'}, default: top] The vertical alignment of the
text relative to (x, y).

fontsize, size
[default: rcParams["figure.titlesize"] (default: 'large')] The
font size of the text. See Text.set_size for possible values.

fontweight, weight
[default: rcParams["figure.titleweight"] (default: 'normal')]
The font weight of the text. See Text.set_weight for possible values.

Returns

text
The Text instance of the suptitle.

18.39. matplotlib.pyplot 2659

../../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Other Parameters

fontproperties
[None or dict, optional] A dict of font properties. If fontproperties is given
the default values for font size and weight are taken from the FontProper-
ties defaults. rcParams["figure.titlesize"] (default: 'large')
and rcParams["figure.titleweight"] (default: 'normal') are ig-
nored in this case.

**kwargs
Additional kwargs are matplotlib.text.Text properties.

Examples using matplotlib.pyplot.suptitle

• sphx_glr_gallery_subplots_axes_and_figures_gridspec_nested.py

• Pyplot tutorial

• Constrained Layout Guide

matplotlib.pyplot.switch_backend

matplotlib.pyplot.switch_backend(newbackend)
Close all open figures and set the Matplotlib backend.

The argument is case-insensitive. Switching to an interactive backend is possible only if no event loop
for another interactive backend has started. Switching to and from non-interactive backends is always
possible.

Parameters

newbackend
[str] The name of the backend to use.

Examples using matplotlib.pyplot.switch_backend

matplotlib.pyplot.table

matplotlib.pyplot.table(cellText=None, cellColours=None, cellLoc='right', col-
Widths=None, rowLabels=None, rowColours=None,
rowLoc='left', colLabels=None, colColours=None, col-
Loc='center', loc='bottom', bbox=None, edges='closed',
**kwargs)

Add a table to an Axes.

2660 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=figure.titlesize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=figure.titleweight#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

At least one of cellText or cellColours must be specified. These parameters must be 2D lists, in which
the outer lists define the rows and the inner list define the column values per row. Each row must have
the same number of elements.

The table can optionally have row and column headers, which are configured using rowLabels, row-
Colours, rowLoc and colLabels, colColours, colLoc respectively.

For finer grained control over tables, use the Table class and add it to the axes with Axes.
add_table.

Parameters

cellText
[2D list of str, optional] The texts to place into the table cells.

Note: Line breaks in the strings are currently not accounted for and will result in
the text exceeding the cell boundaries.

cellColours
[2D list of colors, optional] The background colors of the cells.

cellLoc
[{'left', 'center', 'right'}, default: 'right'] The alignment of the text within the cells.

colWidths
[list of float, optional] The column widths in units of the axes. If not given, all
columns will have a width of 1 / ncols.

rowLabels
[list of str, optional] The text of the row header cells.

rowColours
[list of colors, optional] The colors of the row header cells.

rowLoc
[{'left', 'center', 'right'}, default: 'left'] The text alignment of the row header cells.

colLabels
[list of str, optional] The text of the column header cells.

colColours
[list of colors, optional] The colors of the column header cells.

colLoc
[{'left', 'center', 'right'}, default: 'left'] The text alignment of the column header
cells.

loc

18.39. matplotlib.pyplot 2661

Matplotlib, Release 3.4.3

[str, optional] The position of the cell with respect to ax. This must be one of the
codes.

bbox
[Bbox, optional] A bounding box to draw the table into. If this is not None, this
overrides loc.

edges
[substring of 'BRTL' or {'open', 'closed', 'horizontal', 'vertical'}] The cell edges to
be drawn with a line. See also visible_edges.

Returns

Table

The created table.

Other Parameters

**kwargs
Table properties.

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi

value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
figure Figure

fontsize float
gid str
in_layout bool
label object
path_effectsAbstractPathEffect

picker None or bool or float or callable
raster-
ized

bool

sketch_params(scale: float, length: float, randomness: float)
snap bool or None
trans-
form

Transform

url str
visible bool
zorder float

2662 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.table

• sphx_glr_gallery_misc_table_demo.py

• Sample plots in Matplotlib

matplotlib.pyplot.text

matplotlib.pyplot.text(x, y, s, fontdict=None, **kwargs)
Add text to the Axes.

Add the text s to the Axes at location x, y in data coordinates.

Parameters

x, y
[float] The position to place the text. By default, this is in data coordinates. The
coordinate system can be changed using the transform parameter.

s
[str] The text.

fontdict
[dict, default: None] A dictionary to override the default text properties. If fontdict
is None, the defaults are determined by rcParams.

Returns

Text

The created Text instance.

Other Parameters

**kwargs
[Text properties.] Other miscellaneous text parameters.

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None

continues on next page

18.39. matplotlib.pyplot 2663

Matplotlib, Release 3.4.3

Table 220 – continued from previous page
Property Description
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
visible bool
wrap bool
x float
y float
zorder float

2664 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Examples

Individual keyword arguments can be used to override any given parameter:

>>> text(x, y, s, fontsize=12)

The default transform specifies that text is in data coords, alternatively, you can specify text in axis
coords ((0, 0) is lower-left and (1, 1) is upper-right). The example below places text in the center of
the Axes:

>>> text(0.5, 0.5, 'matplotlib', horizontalalignment='center',
... verticalalignment='center', transform=ax.transAxes)

You can put a rectangular box around the text instance (e.g., to set a background color) by using the
keyword bbox. bbox is a dictionary of Rectangle properties. For example:

>>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))

Examples using matplotlib.pyplot.text

• sphx_glr_gallery_subplots_axes_and_figures_figure_size_units.py

• sphx_glr_gallery_text_labels_and_annotations_arrow_demo.py

• sphx_glr_gallery_text_labels_and_annotations_autowrap.py

• sphx_glr_gallery_text_labels_and_annotations_fancytextbox_demo.py

• sphx_glr_gallery_text_labels_and_annotations_mathtext_fontfamily_example.py

• sphx_glr_gallery_text_labels_and_annotations_text_fontdict.py

• sphx_glr_gallery_pyplots_pyplot_mathtext.py

• sphx_glr_gallery_pyplots_pyplot_text.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_event_handling_close_event.py

• sphx_glr_gallery_misc_transoffset.py

• Pyplot tutorial

• Path effects guide

• Text properties and layout

• Annotations

18.39. matplotlib.pyplot 2665

Matplotlib, Release 3.4.3

matplotlib.pyplot.thetagrids

matplotlib.pyplot.thetagrids(angles=None, labels=None, fmt=None, **kwargs)
Get or set the theta gridlines on the current polar plot.

Call signatures:

lines, labels = thetagrids()
lines, labels = thetagrids(angles, labels=None, fmt=None, **kwargs)

When called with no arguments, thetagrids simply returns the tuple (lines, labels). When called
with arguments, the labels will appear at the specified angles.

Parameters

angles
[tuple with floats, degrees] The angles of the theta gridlines.

labels
[tuple with strings or None] The labels to use at each radial gridline. The
projections.polar.ThetaFormatter will be used if None.

fmt
[str or None] Format string used in matplotlib.ticker.
FormatStrFormatter. For example '%f'. Note that the angle in radians will
be used.

Returns

lines
[list of lines.Line2D] The theta gridlines.

labels
[list of text.Text] The tick labels.

Other Parameters

**kwargs
kwargs are optional Text properties for the labels.

See also:

pyplot.rgrids

projections.polar.PolarAxes.set_thetagrids

Axis.get_gridlines

Axis.get_ticklabels

2666 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples

set the locations of the angular gridlines
lines, labels = thetagrids(range(45, 360, 90))

set the locations and labels of the angular gridlines
lines, labels = thetagrids(range(45, 360, 90), ('NE', 'NW', 'SW', 'SE'))

Examples using matplotlib.pyplot.thetagrids

matplotlib.pyplot.tick_params

matplotlib.pyplot.tick_params(axis='both', **kwargs)
Change the appearance of ticks, tick labels, and gridlines.

Tick properties that are not explicitly set using the keyword arguments remain unchanged unless reset
is True.

Parameters

axis
[{'x', 'y', 'both'}, default: 'both'] The axis to which the parameters are applied.

which
[{'major', 'minor', 'both'}, default: 'major'] The group of ticks to which the param-
eters are applied.

reset
[bool, default: False] Whether to reset the ticks to defaults before updating them.

Other Parameters

direction
[{'in', 'out', 'inout'}] Puts ticks inside the axes, outside the axes, or both.

length
[float] Tick length in points.

width
[float] Tick width in points.

color
[color] Tick color.

pad
[float] Distance in points between tick and label.

18.39. matplotlib.pyplot 2667

Matplotlib, Release 3.4.3

labelsize
[float or str] Tick label font size in points or as a string (e.g., 'large').

labelcolor
[color] Tick label color.

colors
[color] Tick color and label color.

zorder
[float] Tick and label zorder.

bottom, top, left, right
[bool] Whether to draw the respective ticks.

labelbottom, labeltop, labelleft, labelright
[bool] Whether to draw the respective tick labels.

labelrotation
[float] Tick label rotation

grid_color
[color] Gridline color.

grid_alpha
[float] Transparency of gridlines: 0 (transparent) to 1 (opaque).

grid_linewidth
[float] Width of gridlines in points.

grid_linestyle
[str] Any valid Line2D line style spec.

Examples

ax.tick_params(direction='out', length=6, width=2, colors='r',
grid_color='r', grid_alpha=0.5)

This will make all major ticks be red, pointing out of the box, and with dimensions 6 points by 2 points.
Tick labels will also be red. Gridlines will be red and translucent.

2668 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.tick_params

matplotlib.pyplot.ticklabel_format

matplotlib.pyplot.ticklabel_format(*, axis='both', style='', scilimits=None, use-
Offset=None, useLocale=None, useMath-
Text=None)

Configure the ScalarFormatter used by default for linear axes.

If a parameter is not set, the corresponding property of the formatter is left unchanged.

Parameters

axis
[{'x', 'y', 'both'}, default: 'both'] The axes to configure. Only major ticks are af-
fected.

style
[{'sci', 'scientific', 'plain'}] Whether to use scientific notation. The formatter de-
fault is to use scientific notation.

scilimits
[pair of ints (m, n)] Scientific notation is used only for numbers outside the range
10m to 10n (and only if the formatter is configured to use scientific notation at all).
Use (0, 0) to include all numbers. Use (m, m) where m != 0 to fix the order of
magnitude to 10m. The formatter default is rcParams["axes.formatter.
limits"] (default: [-5, 6]).

useOffset
[bool or float] If True, the offset is calculated as needed. If False, no offset is used.
If a numeric value, it sets the offset. The formatter default isrcParams["axes.
formatter.useoffset"] (default: True).

useLocale
[bool] Whether to format the number using the current locale or using the C (En-
glish) locale. This affects e.g. the decimal separator. The formatter default is
rcParams["axes.formatter.use_locale"] (default: False).

useMathText
[bool] Render the offset and scientific notation in mathtext. The formatter default
is rcParams["axes.formatter.use_mathtext"] (default: False).

Raises

AttributeError
If the current formatter is not a ScalarFormatter.

18.39. matplotlib.pyplot 2669

../../tutorials/introductory/customizing.html?highlight=axes.formatter.limits#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.limits#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.useoffset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.useoffset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.use_locale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.formatter.use_mathtext#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.ticklabel_format

matplotlib.pyplot.tight_layout

matplotlib.pyplot.tight_layout(*, pad=1.08, h_pad=None,w_pad=None, rect=None)
Adjust the padding between and around subplots.

Parameters

pad
[float, default: 1.08] Padding between the figure edge and the edges of subplots,
as a fraction of the font size.

h_pad, w_pad
[float, default: pad] Padding (height/width) between edges of adjacent subplots,
as a fraction of the font size.

rect
[tuple (left, bottom, right, top), default: (0, 0, 1, 1)] A rectangle in normalized
figure coordinates into which the whole subplots area (including labels) will fit.

Examples using matplotlib.pyplot.tight_layout

• sphx_glr_gallery_lines_bars_and_markers_linestyles.py

• sphx_glr_gallery_lines_bars_and_markers_scatter_star_poly.py

• sphx_glr_gallery_images_contours_and_fields_image_annotated_heatmap.py

• sphx_glr_gallery_images_contours_and_fields_interpolation_methods.py

• sphx_glr_gallery_images_contours_and_fields_plot_streamplot.py

• sphx_glr_gallery_subplots_axes_and_figures_demo_tight_layout.py

• sphx_glr_gallery_text_labels_and_annotations_engineering_formatter.py

• sphx_glr_gallery_text_labels_and_annotations_figlegend_demo.py

• sphx_glr_gallery_shapes_and_collections_artist_reference.py

• sphx_glr_gallery_misc_zorder_demo.py

• sphx_glr_gallery_mplot3d_wire3d_zero_stride.py

• sphx_glr_gallery_specialty_plots_mri_with_eeg.py

• sphx_glr_gallery_ticks_and_spines_tick-locators.py

• Tight Layout guide

2670 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.pyplot.title

matplotlib.pyplot.title(label, fontdict=None, loc=None, pad=None, *, y=None,
**kwargs)

Set a title for the Axes.

Set one of the three available Axes titles. The available titles are positioned above the Axes in the
center, flush with the left edge, and flush with the right edge.

Parameters

label
[str] Text to use for the title

fontdict
[dict] A dictionary controlling the appearance of the title text, the default fontdict
is:

{'fontsize': rcParams['axes.titlesize'],
'fontweight': rcParams['axes.titleweight'],
'color': rcParams['axes.titlecolor'],
'verticalalignment': 'baseline',
'horizontalalignment': loc}

loc
[{'center', 'left', 'right'}, default: rcParams["axes.titlelocation"]
(default: 'center')] Which title to set.

y
[float, default: rcParams["axes.titley"] (default: None)] Vertical Axes
loation for the title (1.0 is the top). If None (the default), y is determined automat-
ically to avoid decorators on the Axes.

pad
[float, default: rcParams["axes.titlepad"] (default: 6.0)] The offset of
the title from the top of the Axes, in points.

Returns

Text

The matplotlib text instance representing the title

Other Parameters

**kwargs
[Text properties] Other keyword arguments are text properties, see Text for a
list of valid text properties.

18.39. matplotlib.pyplot 2671

../../tutorials/introductory/customizing.html?highlight=axes.titlelocation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.titley#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.titlepad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.title

• sphx_glr_gallery_event_handling_ginput_manual_clabel_sgskip.py

• sphx_glr_gallery_user_interfaces_svg_histogram_sgskip.py

matplotlib.pyplot.tricontour

matplotlib.pyplot.tricontour(*args, **kwargs)
Draw contour lines on an unstructured triangular grid.

The triangulation can be specified in one of two ways; either

tricontour(triangulation, ...)

where triangulation is a Triangulation object, or

tricontour(x, y, ...)
tricontour(x, y, triangles, ...)
tricontour(x, y, triangles=triangles, ...)
tricontour(x, y, mask=mask, ...)
tricontour(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See that class' docstring for an explanation
of these cases.

The remaining arguments may be:

tricontour(..., Z)

where Z is the array of values to contour, one per point in the triangulation. The level values are chosen
automatically.

tricontour(..., Z, levels)

contour up to levels+1 automatically chosen contour levels (levels intervals).

tricontour(..., Z, levels)

draw contour lines at the values specified in sequence levels, which must be in increasing order.

tricontour(Z, **kwargs)

Use keyword arguments to control colors, linewidth, origin, cmap ... see below for more details.

Parameters

triangulation
[Triangulation, optional] The unstructured triangular grid.

If specified, then x, y, triangles, and mask are not accepted.

2672 Chapter 18. Modules

Matplotlib, Release 3.4.3

x, y
[array-like, optional] The coordinates of the values in Z.

triangles
[(ntri, 3) array-like of int, optional] For each triangle, the indices of the three points
that make up the triangle, ordered in an anticlockwise manner. If not specified, the
Delaunay triangulation is calculated.

mask
[(ntri,) array-like of bool, optional] Which triangles are masked out.

Z
[2D array-like] The height values over which the contour is drawn.

levels
[int or array-like, optional] Determines the number and positions of the contour
lines / regions.

If an int n, use MaxNLocator, which tries to automatically choose no more than
n+1 "nice" contour levels between vmin and vmax.

If array-like, draw contour lines at the specified levels. The values must be in
increasing order.

Returns

TriContourSet

Other Parameters

colors
[color string or sequence of colors, optional] The colors of the levels, i.e., the
contour lines.

The sequence is cycled for the levels in ascending order. If the sequence is shorter
than the number of levels, it's repeated.

As a shortcut, single color strings may be used in place of one-element lists, i.e.
'red' instead of ['red'] to color all levels with the same color. This shortcut
does only work for color strings, not for other ways of specifying colors.

By default (value None), the colormap specified by cmap will be used.

alpha
[float, default: 1] The alpha blending value, between 0 (transparent) and 1
(opaque).

cmap

18.39. matplotlib.pyplot 2673

Matplotlib, Release 3.4.3

[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps the level values to colors.

If both colors and cmap are given, an error is raised.

norm
[Normalize, optional] If a colormap is used, the Normalize instance scales
the level values to the canonical colormap range [0, 1] for mapping to colors. If
not given, the default linear scaling is used.

vmin, vmax
[float, optional] If not None, either or both of these values will be supplied to the
Normalize instance, overriding the default color scaling based on levels.

origin
[{None, 'upper', 'lower', 'image'}, default: None] Determines the orientation and
exact position of Z by specifying the position of Z[0, 0]. This is only relevant,
if X, Y are not given.

• None: Z[0, 0] is at X=0, Y=0 in the lower left corner.

• 'lower': Z[0, 0] is at X=0.5, Y=0.5 in the lower left corner.

• 'upper': Z[0, 0] is at X=N+0.5, Y=0.5 in the upper left corner.

• 'image': Use the value from rcParams["image.origin"] (default:
'upper').

extent
[(x0, x1, y0, y1), optional] If origin is not None, then extent is interpreted as in
imshow: it gives the outer pixel boundaries. In this case, the position of Z[0, 0] is
the center of the pixel, not a corner. If origin is None, then (x0, y0) is the position
of Z[0, 0], and (x1, y1) is the position of Z[-1, -1].

This argument is ignored if X and Y are specified in the call to contour.

locator
[ticker.Locator subclass, optional] The locator is used to determine the contour
levels if they are not given explicitly via levels. Defaults to MaxNLocator.

extend
[{'neither', 'both', 'min', 'max'}, default: 'neither'] Determines the tricontour-
coloring of values that are outside the levels range.

If 'neither', values outside the levels range are not colored. If 'min', 'max' or 'both',
color the values below, above or below and above the levels range.

Values below min(levels) and above max(levels) are mapped to the
under/over values of the Colormap. Note that most colormaps do not have
dedicated colors for these by default, so that the over and under values are the

2674 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

edge values of the colormap. You may want to set these values explicitly using
Colormap.set_under and Colormap.set_over.

Note: An existing TriContourSet does not get notified if properties of its col-
ormap are changed. Therefore, an explicit call to ContourSet.changed() is
needed after modifying the colormap. The explicit call can be left out, if a colorbar
is assigned to the TriContourSet because it internally calls ContourSet.
changed().

xunits, yunits
[registered units, optional] Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface.

antialiased
[bool, optional] Enable antialiasing, overriding the defaults. For filled contours,
the default is True. For line contours, it is taken from rcParams["lines.
antialiased"] (default: True).

linewidths
[float or array-like, default: rcParams["contour.linewidth"] (default:
None)] The line width of the contour lines.

If a number, all levels will be plotted with this linewidth.

If a sequence, the levels in ascending order will be plotted with the linewidths in
the order specified.

If None, this falls back to rcParams["lines.linewidth"] (default: 1.5).

linestyles
[{None, 'solid', 'dashed', 'dashdot', 'dotted'}, optional] If linestyles is None, the de-
fault is 'solid' unless the lines are monochrome. In that case, negative contours will
take their linestyle from rcParams["contour.negative_linestyle"]
(default: 'dashed') setting.

linestyles can also be an iterable of the above strings specifying a set of linestyles
to be used. If this iterable is shorter than the number of contour levels it will be
repeated as necessary.

18.39. matplotlib.pyplot 2675

../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=contour.negative_linestyle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.tricontour

matplotlib.pyplot.tricontourf

matplotlib.pyplot.tricontourf(*args, **kwargs)
Draw contour regions on an unstructured triangular grid.

The triangulation can be specified in one of two ways; either

tricontourf(triangulation, ...)

where triangulation is a Triangulation object, or

tricontourf(x, y, ...)
tricontourf(x, y, triangles, ...)
tricontourf(x, y, triangles=triangles, ...)
tricontourf(x, y, mask=mask, ...)
tricontourf(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See that class' docstring for an explanation
of these cases.

The remaining arguments may be:

tricontourf(..., Z)

where Z is the array of values to contour, one per point in the triangulation. The level values are chosen
automatically.

tricontourf(..., Z, levels)

contour up to levels+1 automatically chosen contour levels (levels intervals).

tricontourf(..., Z, levels)

draw contour regions at the values specified in sequence levels, which must be in increasing order.

tricontourf(Z, **kwargs)

Use keyword arguments to control colors, linewidth, origin, cmap ... see below for more details.

Parameters

triangulation
[Triangulation, optional] The unstructured triangular grid.

If specified, then x, y, triangles, and mask are not accepted.

x, y
[array-like, optional] The coordinates of the values in Z.

2676 Chapter 18. Modules

Matplotlib, Release 3.4.3

triangles
[(ntri, 3) array-like of int, optional] For each triangle, the indices of the three points
that make up the triangle, ordered in an anticlockwise manner. If not specified, the
Delaunay triangulation is calculated.

mask
[(ntri,) array-like of bool, optional] Which triangles are masked out.

Z
[2D array-like] The height values over which the contour is drawn.

levels
[int or array-like, optional] Determines the number and positions of the contour
lines / regions.

If an int n, use MaxNLocator, which tries to automatically choose no more than
n+1 "nice" contour levels between vmin and vmax.

If array-like, draw contour lines at the specified levels. The values must be in
increasing order.

Returns

TriContourSet

Other Parameters

colors
[color string or sequence of colors, optional] The colors of the levels, i.e., the
contour regions.

The sequence is cycled for the levels in ascending order. If the sequence is shorter
than the number of levels, it's repeated.

As a shortcut, single color strings may be used in place of one-element lists, i.e.
'red' instead of ['red'] to color all levels with the same color. This shortcut
does only work for color strings, not for other ways of specifying colors.

By default (value None), the colormap specified by cmap will be used.

alpha
[float, default: 1] The alpha blending value, between 0 (transparent) and 1
(opaque).

cmap
[str or Colormap, default: rcParams["image.cmap"] (default:
'viridis')] A Colormap instance or registered colormap name. The
colormap maps the level values to colors.

If both colors and cmap are given, an error is raised.

18.39. matplotlib.pyplot 2677

../../tutorials/introductory/customizing.html?highlight=image.cmap#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

norm
[Normalize, optional] If a colormap is used, the Normalize instance scales
the level values to the canonical colormap range [0, 1] for mapping to colors. If
not given, the default linear scaling is used.

vmin, vmax
[float, optional] If not None, either or both of these values will be supplied to the
Normalize instance, overriding the default color scaling based on levels.

origin
[{None, 'upper', 'lower', 'image'}, default: None] Determines the orientation and
exact position of Z by specifying the position of Z[0, 0]. This is only relevant,
if X, Y are not given.

• None: Z[0, 0] is at X=0, Y=0 in the lower left corner.

• 'lower': Z[0, 0] is at X=0.5, Y=0.5 in the lower left corner.

• 'upper': Z[0, 0] is at X=N+0.5, Y=0.5 in the upper left corner.

• 'image': Use the value from rcParams["image.origin"] (default:
'upper').

extent
[(x0, x1, y0, y1), optional] If origin is not None, then extent is interpreted as in
imshow: it gives the outer pixel boundaries. In this case, the position of Z[0, 0] is
the center of the pixel, not a corner. If origin is None, then (x0, y0) is the position
of Z[0, 0], and (x1, y1) is the position of Z[-1, -1].

This argument is ignored if X and Y are specified in the call to contour.

locator
[ticker.Locator subclass, optional] The locator is used to determine the contour
levels if they are not given explicitly via levels. Defaults to MaxNLocator.

extend
[{'neither', 'both', 'min', 'max'}, default: 'neither'] Determines thetricontourf-
coloring of values that are outside the levels range.

If 'neither', values outside the levels range are not colored. If 'min', 'max' or 'both',
color the values below, above or below and above the levels range.

Values below min(levels) and above max(levels) are mapped to the
under/over values of the Colormap. Note that most colormaps do not have
dedicated colors for these by default, so that the over and under values are the
edge values of the colormap. You may want to set these values explicitly using
Colormap.set_under and Colormap.set_over.

Note: An existing TriContourSet does not get notified if properties of its col-
ormap are changed. Therefore, an explicit call to ContourSet.changed() is

2678 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

needed after modifying the colormap. The explicit call can be left out, if a colorbar
is assigned to the TriContourSet because it internally calls ContourSet.
changed().

xunits, yunits
[registered units, optional] Override axis units by specifying an instance of a
matplotlib.units.ConversionInterface.

antialiased
[bool, optional] Enable antialiasing, overriding the defaults. For filled contours,
the default is True. For line contours, it is taken from rcParams["lines.
antialiased"] (default: True).

hatches
[list[str], optional] A list of cross hatch patterns to use on the filled areas. If None,
no hatching will be added to the contour. Hatching is supported in the PostScript,
PDF, SVG and Agg backends only.

Notes

tricontourf fills intervals that are closed at the top; that is, for boundaries z1 and z2, the filled
region is:

z1 < Z <= z2

except for the lowest interval, which is closed on both sides (i.e. it includes the lowest value).

Examples using matplotlib.pyplot.tricontourf

matplotlib.pyplot.tripcolor

matplotlib.pyplot.tripcolor(*args, alpha=1.0, norm=None, cmap=None, vmin=None,
vmax=None, shading='flat', facecolors=None, **kwargs)

Create a pseudocolor plot of an unstructured triangular grid.

The triangulation can be specified in one of two ways; either:

tripcolor(triangulation, ...)

where triangulation is a Triangulation object, or

tripcolor(x, y, ...)
tripcolor(x, y, triangles, ...)
tripcolor(x, y, triangles=triangles, ...)
tripcolor(x, y, mask=mask, ...)
tripcolor(x, y, triangles, mask=mask, ...)

18.39. matplotlib.pyplot 2679

../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

The next argument must be C, the array of color values, either one per point in the triangulation if
color values are defined at points, or one per triangle in the triangulation if color values are defined
at triangles. If there are the same number of points and triangles in the triangulation it is assumed
that color values are defined at points; to force the use of color values at triangles use the kwarg
facecolors=C instead of just C.

shading may be 'flat' (the default) or 'gouraud'. If shading is 'flat' and C values are defined at points,
the color values used for each triangle are from the mean C of the triangle's three points. If shading is
'gouraud' then color values must be defined at points.

The remaining kwargs are the same as for pcolor.

Examples using matplotlib.pyplot.tripcolor

matplotlib.pyplot.triplot

matplotlib.pyplot.triplot(*args, **kwargs)
Draw a unstructured triangular grid as lines and/or markers.

The triangulation to plot can be specified in one of two ways; either:

triplot(triangulation, ...)

where triangulation is a Triangulation object, or

triplot(x, y, ...)
triplot(x, y, triangles, ...)
triplot(x, y, triangles=triangles, ...)
triplot(x, y, mask=mask, ...)
triplot(x, y, triangles, mask=mask, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation of these
possibilities.

The remaining args and kwargs are the same as for plot.

Returns

lines
[Line2D] The drawn triangles edges.

markers
[Line2D] The drawn marker nodes.

2680 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.triplot

matplotlib.pyplot.twinx

matplotlib.pyplot.twinx(ax=None)
Make and return a second axes that shares the x-axis. The new axes will overlay ax (or the current
axes if ax is None), and its ticks will be on the right.

Examples

/gallery/subplots_axes_and_figures/two_scales

Examples using matplotlib.pyplot.twinx

matplotlib.pyplot.twiny

matplotlib.pyplot.twiny(ax=None)
Make and return a second axes that shares the y-axis. The new axes will overlay ax (or the current
axes if ax is None), and its ticks will be on the top.

Examples

/gallery/subplots_axes_and_figures/two_scales

Examples using matplotlib.pyplot.twiny

matplotlib.pyplot.uninstall_repl_displayhook

matplotlib.pyplot.uninstall_repl_displayhook()
Uninstall the matplotlib display hook.

Warning: Need IPython >= 2 for this to work. For IPython < 2 will raise a NotImplement-
edError

Warning: If you are using vanilla python and have installed another display hook this will reset
sys.displayhook to what ever function was there when matplotlib installed it's displayhook,
possibly discarding your changes.

18.39. matplotlib.pyplot 2681

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.uninstall_repl_displayhook

matplotlib.pyplot.violinplot

matplotlib.pyplot.violinplot(dataset, positions=None, vert=True, widths=0.5,
showmeans=False, showextrema=True, show-
medians=False, quantiles=None, points=100,
bw_method=None, *, data=None)

Make a violin plot.

Make a violin plot for each column of dataset or each vector in sequence dataset. Each filled area
extends to represent the entire data range, with optional lines at the mean, the median, the minimum,
the maximum, and user-specified quantiles.

Parameters

dataset
[Array or a sequence of vectors.] The input data.

positions
[array-like, default: [1, 2, ..., n]] The positions of the violins. The ticks and limits
are automatically set to match the positions.

vert
[bool, default: True.] If true, creates a vertical violin plot. Otherwise, creates a
horizontal violin plot.

widths
[array-like, default: 0.5] Either a scalar or a vector that sets the maximal width of
each violin. The default is 0.5, which uses about half of the available horizontal
space.

showmeans
[bool, default: False] If True, will toggle rendering of the means.

showextrema
[bool, default: True] If True, will toggle rendering of the extrema.

showmedians
[bool, default: False] If True, will toggle rendering of the medians.

quantiles
[array-like, default: None] If not None, set a list of floats in interval [0, 1] for each
violin, which stands for the quantiles that will be rendered for that violin.

points
[int, default: 100] Defines the number of points to evaluate each of the gaussian
kernel density estimations at.

2682 Chapter 18. Modules

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

Matplotlib, Release 3.4.3

bw_method
[str, scalar or callable, optional] The method used to calculate the estimator band-
width. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar,
this will be used directly as kde.factor. If a callable, it should take a Gaus-
sianKDE instance as its only parameter and return a scalar. If None (default),
'scott' is used.

Returns

dict
A dictionary mapping each component of the violinplot to a list of the correspond-
ing collection instances created. The dictionary has the following keys:

• bodies: A list of the PolyCollection instances containing the filled area
of each violin.

• cmeans: A LineCollection instance that marks the mean values of each
of the violin's distribution.

• cmins: A LineCollection instance that marks the bottom of each violin's
distribution.

• cmaxes: A LineCollection instance that marks the top of each violin's
distribution.

• cbars: A LineCollection instance that marks the centers of each violin's
distribution.

• cmedians: A LineCollection instance that marks the median values of
each of the violin's distribution.

• cquantiles: ALineCollection instance created to identify the quantile
values of each of the violin's distribution.

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): dataset.

Objects passed as data must support item access (data[s]) and membership test (s in data).

18.39. matplotlib.pyplot 2683

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.violinplot

matplotlib.pyplot.viridis

matplotlib.pyplot.viridis()
Set the colormap to 'viridis'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

Examples using matplotlib.pyplot.viridis

matplotlib.pyplot.vlines

matplotlib.pyplot.vlines(x, ymin, ymax, colors=None, linestyles='solid', label='', *,
data=None, **kwargs)

Plot vertical lines at each x from ymin to ymax.

Parameters

x
[float or array-like] x-indexes where to plot the lines.

ymin, ymax
[float or array-like] Respective beginning and end of each line. If scalars are pro-
vided, all lines will have same length.

colors
[list of colors, default: rcParams["lines.color"] (default: 'C0')]

linestyles
[{'solid', 'dashed', 'dashdot', 'dotted'}, optional]

label
[str, default: '']

Returns

LineCollection

Other Parameters

**kwargs
[LineCollection properties.]

See also:

2684 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=lines.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

hlines

horizontal lines

axvline

vertical line across the Axes

Notes

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, ymin, ymax, colors.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.vlines

matplotlib.pyplot.waitforbuttonpress

matplotlib.pyplot.waitforbuttonpress(timeout=- 1)
Blocking call to interact with the figure.

Wait for user input and return True if a key was pressed, False if a mouse button was pressed and None
if no input was given within timeout seconds. Negative values deactivate timeout.

Examples using matplotlib.pyplot.waitforbuttonpress

• sphx_glr_gallery_event_handling_ginput_manual_clabel_sgskip.py

matplotlib.pyplot.winter

matplotlib.pyplot.winter()
Set the colormap to 'winter'.

This changes the default colormap as well as the colormap of the current image if there is one. See
help(colormaps) for more information.

18.39. matplotlib.pyplot 2685

Matplotlib, Release 3.4.3

Examples using matplotlib.pyplot.winter

matplotlib.pyplot.xcorr

matplotlib.pyplot.xcorr(x, y, normed=True, detrend=<function detrend_none>, usev-
lines=True, maxlags=10, *, data=None, **kwargs)

Plot the cross correlation between x and y.

The correlation with lag k is defined as ∑𝑛 𝑥[𝑛 + 𝑘] ⋅ 𝑦∗[𝑛], where 𝑦∗ is the complex conjugate of 𝑦.
Parameters

x, y
[array-like of length n]

detrend
[callable, default: mlab.detrend_none (no detrending)] A detrending func-
tion applied to x and y. It must have the signature

detrend(x: np.ndarray) -> np.ndarray

normed
[bool, default: True] If True, input vectors are normalised to unit length.

usevlines
[bool, default: True] Determines the plot style.

If True, vertical lines are plotted from 0 to the xcorr value using Axes.vlines.
Additionally, a horizontal line is plotted at y=0 using Axes.axhline.

If False, markers are plotted at the xcorr values using Axes.plot.

maxlags
[int, default: 10] Number of lags to show. If None, will return all 2 * len(x)
- 1 lags.

Returns

lags
[array (length 2*maxlags+1)] The lag vector.

c
[array (length 2*maxlags+1)] The auto correlation vector.

line
[LineCollection or Line2D] Artist added to the Axes of the correlation:

• LineCollection if usevlines is True.

2686 Chapter 18. Modules

Matplotlib, Release 3.4.3

• Line2D if usevlines is False.

b
[Line2D or None] Horizontal line at 0 if usevlines is True None usevlines is False.

Other Parameters

linestyle
[Line2D property, optional] The linestyle for plotting the data points. Only used
if usevlines is False.

marker
[str, default: 'o'] The marker for plotting the data points. Only used if usevlines is
False.

**kwargs
Additional parameters are passed to Axes.vlines and Axes.axhline if
usevlines is True; otherwise they are passed to Axes.plot.

Notes

The cross correlation is performed with numpy.correlate with mode = "full".

Note: In addition to the above described arguments, this function can take a data keyword argument.
If such a data argument is given, the following arguments can also be string s, which is interpreted as
data[s] (unless this raises an exception): x, y.

Objects passed as data must support item access (data[s]) and membership test (s in data).

Examples using matplotlib.pyplot.xcorr

matplotlib.pyplot.xkcd

matplotlib.pyplot.xkcd(scale=1, length=100, randomness=2)
Turn on xkcd sketch-style drawing mode. This will only have effect on things drawn after this function
is called.

For best results, the "Humor Sans" font should be installed: it is not included with Matplotlib.

Parameters

scale
[float, optional] The amplitude of the wiggle perpendicular to the source line.

18.39. matplotlib.pyplot 2687

https://numpy.org/doc/stable/reference/generated/numpy.correlate.html#numpy.correlate
https://xkcd.com/

Matplotlib, Release 3.4.3

length
[float, optional] The length of the wiggle along the line.

randomness
[float, optional] The scale factor by which the length is shrunken or expanded.

Notes

This function works by a number of rcParams, so it will probably override others you have set before.

If youwant the effects of this function to be temporary, it can be used as a context manager, for example:

with plt.xkcd():
This figure will be in XKCD-style
fig1 = plt.figure()
...

This figure will be in regular style
fig2 = plt.figure()

Examples using matplotlib.pyplot.xkcd

• sphx_glr_gallery_showcase_xkcd.py

matplotlib.pyplot.xlabel

matplotlib.pyplot.xlabel(xlabel, fontdict=None, labelpad=None, *, loc=None,
**kwargs)

Set the label for the x-axis.

Parameters

xlabel
[str] The label text.

labelpad
[float, default: rcParams["axes.labelpad"] (default: 4.0)] Spacing in
points from the axes bounding box including ticks and tick labels. If None, the
previous value is left as is.

loc
[{'left', 'center', 'right'}, default: rcParams["xaxis.labellocation"]
(default: 'center')] The label position. This is a high-level alternative for pass-
ing parameters x and horizontalalignment.

Other Parameters

2688 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=axes.labelpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=xaxis.labellocation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

**kwargs
[Text properties] Text properties control the appearance of the label.

See also:

text

Documents the properties supported by Text.

Examples using matplotlib.pyplot.xlabel

• sphx_glr_gallery_lines_bars_and_markers_scatter_symbol.py

• sphx_glr_gallery_subplots_axes_and_figures_subplot.py

• sphx_glr_gallery_text_labels_and_annotations_text_fontdict.py

• sphx_glr_gallery_pyplots_axline.py

• sphx_glr_gallery_pyplots_pyplot_mathtext.py

• sphx_glr_gallery_pyplots_pyplot_text.py

• sphx_glr_gallery_style_sheets_plot_solarizedlight2.py

• sphx_glr_gallery_misc_findobj_demo.py

• sphx_glr_gallery_scales_custom_scale.py

• Usage Guide

• Pyplot tutorial

matplotlib.pyplot.xlim

matplotlib.pyplot.xlim(*args, **kwargs)
Get or set the x limits of the current axes.

Call signatures:

left, right = xlim() # return the current xlim
xlim((left, right)) # set the xlim to left, right
xlim(left, right) # set the xlim to left, right

If you do not specify args, you can pass left or right as kwargs, i.e.:

xlim(right=3) # adjust the right leaving left unchanged
xlim(left=1) # adjust the left leaving right unchanged

Setting limits turns autoscaling off for the x-axis.

Returns

18.39. matplotlib.pyplot 2689

Matplotlib, Release 3.4.3

left, right
A tuple of the new x-axis limits.

Notes

Calling this function with no arguments (e.g. xlim()) is the pyplot equivalent of calling get_xlim
on the current axes. Calling this functionwith arguments is the pyplot equivalent of callingset_xlim
on the current axes. All arguments are passed though.

Examples using matplotlib.pyplot.xlim

• Frame grabbing

• sphx_glr_gallery_event_handling_ginput_manual_clabel_sgskip.py

matplotlib.pyplot.xscale

matplotlib.pyplot.xscale(value, **kwargs)
Set the x-axis scale.

Parameters

value
[{"linear", "log", "symlog", "logit", ...} or ScaleBase] The axis scale type to
apply.

**kwargs
Different keyword arguments are accepted, depending on the scale. See the re-
spective class keyword arguments:

• matplotlib.scale.LinearScale

• matplotlib.scale.LogScale

• matplotlib.scale.SymmetricalLogScale

• matplotlib.scale.LogitScale

• matplotlib.scale.FuncScale

2690 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

By default, Matplotlib supports the above mentioned scales. Additionally, custom scales may be reg-
istered using matplotlib.scale.register_scale. These scales can then also be used here.

Examples using matplotlib.pyplot.xscale

matplotlib.pyplot.xticks

matplotlib.pyplot.xticks(ticks=None, labels=None, **kwargs)
Get or set the current tick locations and labels of the x-axis.

Pass no arguments to return the current values without modifying them.

Parameters

ticks
[array-like, optional] The list of xtick locations. Passing an empty list removes all
xticks.

labels
[array-like, optional] The labels to place at the given ticks locations. This argument
can only be passed if ticks is passed as well.

**kwargs
Text properties can be used to control the appearance of the labels.

Returns

locs
The list of xtick locations.

labels
The list of xlabel Text objects.

Notes

Calling this function with no arguments (e.g. xticks()) is the pyplot equivalent of calling
get_xticks and get_xticklabels on the current axes. Calling this function with arguments
is the pyplot equivalent of calling set_xticks and set_xticklabels on the current axes.

18.39. matplotlib.pyplot 2691

Matplotlib, Release 3.4.3

Examples

>>> locs, labels = xticks() # Get the current locations and labels.
>>> xticks(np.arange(0, 1, step=0.2)) # Set label locations.
>>> xticks(np.arange(3), ['Tom', 'Dick', 'Sue']) # Set text labels.
>>> xticks([0, 1, 2], ['January', 'February', 'March'],
... rotation=20) # Set text labels and properties.
>>> xticks([]) # Disable xticks.

Examples using matplotlib.pyplot.xticks

• sphx_glr_gallery_subplots_axes_and_figures_secondary_axis.py

• sphx_glr_gallery_text_labels_and_annotations_arrow_demo.py

• sphx_glr_gallery_axes_grid1_demo_colorbar_of_inset_axes.py

• sphx_glr_gallery_misc_table_demo.py

• sphx_glr_gallery_ticks_and_spines_ticklabels_rotation.py

matplotlib.pyplot.ylabel

matplotlib.pyplot.ylabel(ylabel, fontdict=None, labelpad=None, *, loc=None,
**kwargs)

Set the label for the y-axis.

Parameters

ylabel
[str] The label text.

labelpad
[float, default: rcParams["axes.labelpad"] (default: 4.0)] Spacing in
points from the axes bounding box including ticks and tick labels. If None, the
previous value is left as is.

loc
[{'bottom', 'center', 'top'}, default: rcParams["yaxis.labellocation"]
(default: 'center')] The label position. This is a high-level alternative for pass-
ing parameters y and horizontalalignment.

Other Parameters

**kwargs
[Text properties] Text properties control the appearance of the label.

2692 Chapter 18. Modules

../../tutorials/introductory/customizing.html?highlight=axes.labelpad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=yaxis.labellocation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

See also:

text

Documents the properties supported by Text.

Examples using matplotlib.pyplot.ylabel

• sphx_glr_gallery_lines_bars_and_markers_scatter_symbol.py

• sphx_glr_gallery_subplots_axes_and_figures_subplot.py

• sphx_glr_gallery_text_labels_and_annotations_text_fontdict.py

• sphx_glr_gallery_pyplots_pyplot_mathtext.py

• sphx_glr_gallery_pyplots_pyplot_simple.py

• sphx_glr_gallery_pyplots_pyplot_text.py

• sphx_glr_gallery_style_sheets_plot_solarizedlight2.py

• sphx_glr_gallery_misc_findobj_demo.py

• sphx_glr_gallery_misc_table_demo.py

• sphx_glr_gallery_scales_custom_scale.py

• Usage Guide

• Pyplot tutorial

matplotlib.pyplot.ylim

matplotlib.pyplot.ylim(*args, **kwargs)
Get or set the y-limits of the current axes.

Call signatures:

bottom, top = ylim() # return the current ylim
ylim((bottom, top)) # set the ylim to bottom, top
ylim(bottom, top) # set the ylim to bottom, top

If you do not specify args, you can alternatively pass bottom or top as kwargs, i.e.:

ylim(top=3) # adjust the top leaving bottom unchanged
ylim(bottom=1) # adjust the bottom leaving top unchanged

Setting limits turns autoscaling off for the y-axis.

Returns

18.39. matplotlib.pyplot 2693

Matplotlib, Release 3.4.3

bottom, top
A tuple of the new y-axis limits.

Notes

Calling this function with no arguments (e.g. ylim()) is the pyplot equivalent of calling get_ylim
on the current axes. Calling this functionwith arguments is the pyplot equivalent of callingset_ylim
on the current axes. All arguments are passed though.

Examples using matplotlib.pyplot.ylim

• Frame grabbing

• sphx_glr_gallery_event_handling_ginput_manual_clabel_sgskip.py

matplotlib.pyplot.yscale

matplotlib.pyplot.yscale(value, **kwargs)
Set the y-axis scale.

Parameters

value
[{"linear", "log", "symlog", "logit", ...} or ScaleBase] The axis scale type to
apply.

**kwargs
Different keyword arguments are accepted, depending on the scale. See the re-
spective class keyword arguments:

• matplotlib.scale.LinearScale

• matplotlib.scale.LogScale

• matplotlib.scale.SymmetricalLogScale

• matplotlib.scale.LogitScale

• matplotlib.scale.FuncScale

2694 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

By default, Matplotlib supports the above mentioned scales. Additionally, custom scales may be reg-
istered using matplotlib.scale.register_scale. These scales can then also be used here.

Examples using matplotlib.pyplot.yscale

• Pyplot tutorial

matplotlib.pyplot.yticks

matplotlib.pyplot.yticks(ticks=None, labels=None, **kwargs)
Get or set the current tick locations and labels of the y-axis.

Pass no arguments to return the current values without modifying them.

Parameters

ticks
[array-like, optional] The list of ytick locations. Passing an empty list removes all
yticks.

labels
[array-like, optional] The labels to place at the given ticks locations. This argument
can only be passed if ticks is passed as well.

**kwargs
Text properties can be used to control the appearance of the labels.

Returns

locs
The list of ytick locations.

labels
The list of ylabel Text objects.

18.39. matplotlib.pyplot 2695

Matplotlib, Release 3.4.3

Notes

Calling this function with no arguments (e.g. yticks()) is the pyplot equivalent of calling
get_yticks and get_yticklabels on the current axes. Calling this function with arguments
is the pyplot equivalent of calling set_yticks and set_yticklabels on the current axes.

Examples

>>> locs, labels = yticks() # Get the current locations and labels.
>>> yticks(np.arange(0, 1, step=0.2)) # Set label locations.
>>> yticks(np.arange(3), ['Tom', 'Dick', 'Sue']) # Set text labels.
>>> yticks([0, 1, 2], ['January', 'February', 'March'],
... rotation=45) # Set text labels and properties.
>>> yticks([]) # Disable yticks.

Examples using matplotlib.pyplot.yticks

• sphx_glr_gallery_text_labels_and_annotations_arrow_demo.py

• sphx_glr_gallery_axes_grid1_demo_colorbar_of_inset_axes.py

• sphx_glr_gallery_misc_table_demo.py

matplotlib.pyplot.plotting()

Function Description
acorr Plot the autocorrelation of x.
angle_spectrum Plot the angle spectrum.
annotate Annotate the point xy with text text.
arrow Add an arrow to the Axes.
autoscale Autoscale the axis view to the data (toggle).
axes Add an axes to the current figure and make it the current axes.
axhline Add a horizontal line across the axis.
axhspan Add a horizontal span (rectangle) across the Axes.
axis Convenience method to get or set some axis properties.
axline Add an infinitely long straight line.
axvline Add a vertical line across the Axes.
axvspan Add a vertical span (rectangle) across the Axes.
bar Make a bar plot.
bar_label Label a bar plot.
barbs Plot a 2D field of barbs.
barh Make a horizontal bar plot.
box Turn the axes box on or off on the current axes.
boxplot Make a box and whisker plot.

continues on next page

2696 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 221 – continued from previous page
Function Description
broken_barh Plot a horizontal sequence of rectangles.
cla Clear the current axes.
clabel Label a contour plot.
clf Clear the current figure.
clim Set the color limits of the current image.
close Close a figure window.
cohere Plot the coherence between x and y.
colorbar Add a colorbar to a plot.
contour Plot contour lines.
contourf Plot filled contours.
csd Plot the cross-spectral density.
delaxes Remove an Axes (defaulting to the current axes) from its figure.
draw Redraw the current figure.
draw_if_interactive Redraw the current figure if in interactive mode.
errorbar Plot y versus x as lines and/or markers with attached errorbars.
eventplot Plot identical parallel lines at the given positions.
figimage Add a non-resampled image to the figure.
figlegend Place a legend on the figure.
fignum_exists Return whether the figure with the given id exists.
figtext Add text to figure.
figure Create a new figure, or activate an existing figure.
fill Plot filled polygons.
fill_between Fill the area between two horizontal curves.
fill_betweenx Fill the area between two vertical curves.
findobj Find artist objects.
gca Get the current Axes, creating one if necessary.
gcf Get the current figure.
gci Get the current colorable artist.
get Return the value of an Artist's property, or print all of them.
get_figlabels Return a list of existing figure labels.
get_fignums Return a list of existing figure numbers.
getp Return the value of an Artist's property, or print all of them.
grid Configure the grid lines.
hexbin Make a 2D hexagonal binning plot of points x, y.
hist Plot a histogram.
hist2d Make a 2D histogram plot.
hlines Plot horizontal lines at each y from xmin to xmax.
imread Read an image from a file into an array.
imsave Save an array as an image file.
imshow Display data as an image, i.e., on a 2D regular raster.
install_repl_displayhook Install a repl display hook so that any stale figure are automatically redrawn when control is returned to the repl.
ioff Disable interactive mode.
ion Enable interactive mode.

continues on next page

18.39. matplotlib.pyplot 2697

Matplotlib, Release 3.4.3

Table 221 – continued from previous page
Function Description
isinteractive Return whether plots are updated after every plotting command.
legend Place a legend on the Axes.
locator_params Control behavior of major tick locators.
loglog Make a plot with log scaling on both the x and y axis.
magnitude_spectrum Plot the magnitude spectrum.
margins Set or retrieve autoscaling margins.
matshow Display an array as a matrix in a new figure window.
minorticks_off Remove minor ticks from the axes.
minorticks_on Display minor ticks on the axes.
new_figure_manager Create a new figure manager instance.
pause Run the GUI event loop for interval seconds.
pcolor Create a pseudocolor plot with a non-regular rectangular grid.
pcolormesh Create a pseudocolor plot with a non-regular rectangular grid.
phase_spectrum Plot the phase spectrum.
pie Plot a pie chart.
plot Plot y versus x as lines and/or markers.
plot_date Plot co-ercing the axis to treat floats as dates.
polar Make a polar plot.
psd Plot the power spectral density.
quiver Plot a 2D field of arrows.
quiverkey Add a key to a quiver plot.
rc Set the current rcParams.
rc_context Return a context manager for temporarily changing rcParams.
rcdefaults Restore the rcParams from Matplotlib's internal default style.
rgrids Get or set the radial gridlines on the current polar plot.
savefig Save the current figure.
sca Set the current Axes to ax and the current Figure to the parent of ax.
scatter A scatter plot of y vs.
sci Set the current image.
semilogx Make a plot with log scaling on the x axis.
semilogy Make a plot with log scaling on the y axis.
set_cmap Set the default colormap, and applies it to the current image if any.
setp Set one or more properties on an Artist, or list allowed values.
show Display all open figures.
specgram Plot a spectrogram.
spy Plot the sparsity pattern of a 2D array.
stackplot Draw a stacked area plot.
stairs A stepwise constant function as a line with bounding edges or a filled plot.
stem Create a stem plot.
step Make a step plot.
streamplot Draw streamlines of a vector flow.
subplot Add an Axes to the current figure or retrieve an existing Axes.
subplot2grid Create a subplot at a specific location inside a regular grid.

continues on next page

2698 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 221 – continued from previous page
Function Description
subplot_mosaic Build a layout of Axes based on ASCII art or nested lists.
subplot_tool Launch a subplot tool window for a figure.
subplots Create a figure and a set of subplots.
subplots_adjust Adjust the subplot layout parameters.
suptitle Add a centered suptitle to the figure.
switch_backend Close all open figures and set the Matplotlib backend.
table Add a table to an Axes.
text Add text to the Axes.
thetagrids Get or set the theta gridlines on the current polar plot.
tick_params Change the appearance of ticks, tick labels, and gridlines.
ticklabel_format Configure the ScalarFormatter used by default for linear axes.
tight_layout Adjust the padding between and around subplots.
title Set a title for the Axes.
tricontour Draw contour lines on an unstructured triangular grid.
tricontourf Draw contour regions on an unstructured triangular grid.
tripcolor Create a pseudocolor plot of an unstructured triangular grid.
triplot Draw a unstructured triangular grid as lines and/or markers.
twinx Make and return a second axes that shares the x-axis.
twiny Make and return a second axes that shares the y-axis.
uninstall_repl_displayhook Uninstall the matplotlib display hook.
violinplot Make a violin plot.
vlines Plot vertical lines at each x from ymin to ymax.
xcorr Plot the cross correlation between x and y.
xkcd Turn on xkcd sketch-style drawing mode.
xlabel Set the label for the x-axis.
xlim Get or set the x limits of the current axes.
xscale Set the x-axis scale.
xticks Get or set the current tick locations and labels of the x-axis.
ylabel Set the label for the y-axis.
ylim Get or set the y-limits of the current axes.
yscale Set the y-axis scale.
yticks Get or set the current tick locations and labels of the y-axis.

18.39.2 Colors in Matplotlib

There are many colormaps you can use to map data onto color values. Below we list several ways in which
color can be utilized in Matplotlib.

For a more in-depth look at colormaps, see the Choosing Colormaps in Matplotlib tutorial.

matplotlib.pyplot.colormaps()
Matplotlib provides a number of colormaps, and others can be added using register_cmap().
This function documents the built-in colormaps, and will also return a list of all registered colormaps
if called.

18.39. matplotlib.pyplot 2699

https://xkcd.com/

Matplotlib, Release 3.4.3

You can set the colormap for an image, pcolor, scatter, etc, using a keyword argument:

imshow(X, cmap=cm.hot)

or using the set_cmap() function:

imshow(X)
pyplot.set_cmap('hot')
pyplot.set_cmap('jet')

In interactive mode, set_cmap() will update the colormap post-hoc, allowing you to see which one
works best for your data.

All built-in colormaps can be reversed by appending _r: For instance, gray_r is the reverse of
gray.

There are several common color schemes used in visualization:

Sequential schemes
for unipolar data that progresses from low to high

Diverging schemes
for bipolar data that emphasizes positive or negative deviations from a central value

Cyclic schemes
for plotting values that wrap around at the endpoints, such as phase angle, wind direction, or time
of day

Qualitative schemes
for nominal data that has no inherent ordering, where color is used only to distinguish categories

Matplotlib ships with 4 perceptually uniform colormaps which are the recommended colormaps for
sequential data:

Colormap Description
inferno perceptually uniform shades of black-red-yellow
magma perceptually uniform shades of black-red-white
plasma perceptually uniform shades of blue-red-yellow
viridis perceptually uniform shades of blue-green-yellow

The following colormaps are based on the ColorBrewer color specifications and designs developed by
Cynthia Brewer:

ColorBrewer Diverging (luminance is highest at the midpoint, and decreases towards differently-
colored endpoints):

2700 Chapter 18. Modules

https://colorbrewer2.org

Matplotlib, Release 3.4.3

Colormap Description
BrBG brown, white, blue-green
PiYG pink, white, yellow-green
PRGn purple, white, green
PuOr orange, white, purple
RdBu red, white, blue
RdGy red, white, gray
RdYlBu red, yellow, blue
RdYlGn red, yellow, green
Spectral red, orange, yellow, green, blue

ColorBrewer Sequential (luminance decreases monotonically):

Colormap Description
Blues white to dark blue
BuGn white, light blue, dark green
BuPu white, light blue, dark purple
GnBu white, light green, dark blue
Greens white to dark green
Greys white to black (not linear)
Oranges white, orange, dark brown
OrRd white, orange, dark red
PuBu white, light purple, dark blue
PuBuGn white, light purple, dark green
PuRd white, light purple, dark red
Purples white to dark purple
RdPu white, pink, dark purple
Reds white to dark red
YlGn light yellow, dark green
YlGnBu light yellow, light green, dark blue
YlOrBr light yellow, orange, dark brown
YlOrRd light yellow, orange, dark red

ColorBrewer Qualitative:

(For plotting nominal data, ListedColormap is used, not LinearSegmentedColormap. Dif-
ferent sets of colors are recommended for different numbers of categories.)

• Accent

• Dark2

• Paired

• Pastel1

• Pastel2

• Set1

18.39. matplotlib.pyplot 2701

Matplotlib, Release 3.4.3

• Set2

• Set3

A set of colormaps derived from those of the same name provided with Matlab are also included:

Col-
ormap

Description

autumn sequential linearly-increasing shades of red-orange-yellow
bone sequential increasing black-white colormap with a tinge of blue, to emulate

X-ray film
cool linearly-decreasing shades of cyan-magenta
copper sequential increasing shades of black-copper
flag repetitive red-white-blue-black pattern (not cyclic at endpoints)
gray sequential linearly-increasing black-to-white grayscale
hot sequential black-red-yellow-white, to emulate blackbody radiation from an

object at increasing temperatures
jet a spectral map with dark endpoints, blue-cyan-yellow-red; based on a fluid-jet

simulation by NCSA1

pink sequential increasing pastel black-pink-white, meant for sepia tone coloriza-
tion of photographs

prism repetitive red-yellow-green-blue-purple-...-green pattern (not cyclic at end-
points)

spring linearly-increasing shades of magenta-yellow
sum-
mer

sequential linearly-increasing shades of green-yellow

winter linearly-increasing shades of blue-green

A set of palettes from the Yorick scientific visualisation package, an evolution of the GIST package,
both by David H. Munro are included:

Col-
ormap

Description

gist_earth mapmaker's colors from dark blue deep ocean to green lowlands to brown
highlands to white mountains

gist_heat sequential increasing black-red-orange-white, to emulate blackbody radia-
tion from an iron bar as it grows hotter

gist_ncar pseudo-spectral black-blue-green-yellow-red-purple-white colormap from
National Center for Atmospheric Research2

gist_rainbowruns through the colors in spectral order from red to violet at full saturation
(like hsv but not cyclic)

gist_stern "Stern special" color table from Interactive Data Language software

1 Rainbow colormaps, jet in particular, are considered a poor choice for scientific visualization by many researchers: Rainbow
Color Map (Still) Considered Harmful

2 Resembles "BkBlAqGrYeOrReViWh200" from NCAR Command Language. See Color Table Gallery

2702 Chapter 18. Modules

https://dhmunro.github.io/yorick-doc/
https://ieeexplore.ieee.org/document/4118486/?arnumber=4118486
https://ieeexplore.ieee.org/document/4118486/?arnumber=4118486
https://www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml

Matplotlib, Release 3.4.3

A set of cyclic colormaps:

Colormap Description
hsv red-yellow-green-cyan-blue-magenta-red, formed by changing the hue

component in the HSV color space
twilight perceptually uniform shades of white-blue-black-red-white
twi-
light_shifted

perceptually uniform shades of black-blue-white-red-black

Other miscellaneous schemes:

Col-
ormap

Description

afmhotsequential black-orange-yellow-white blackbody spectrum, commonly used in
atomic force microscopy

brg blue-red-green
bwr diverging blue-white-red
cool-
warm

diverging blue-gray-red, meant to avoid issues with 3D shading, color blindness,
and ordering of colors3

CM-
Rmap

"Default colormaps on color images often reproduce to confusing grayscale im-
ages. The proposed colormapmaintains an aesthetically pleasing color image that
automatically reproduces to a monotonic grayscale with discrete, quantifiable sat-
uration levels."4

cube-
he-
lix

Unlike most other color schemes cubehelix was designed by D.A. Green to be
monotonically increasing in terms of perceived brightness. Also, when printed
on a black and white postscript printer, the scheme results in a greyscale with
monotonically increasing brightness. This color scheme is named cubehelix be-
cause the (r, g, b) values produced can be visualised as a squashed helix around
the diagonal in the (r, g, b) color cube.

gnu-
plot

gnuplot's traditional pm3d scheme (black-blue-red-yellow)

gnu-
plot2

sequential color printable as gray (black-blue-violet-yellow-white)

ocean green-blue-white
rain-
bow

spectral purple-blue-green-yellow-orange-red colormap with diverging lumi-
nance

seis-
mic

diverging blue-white-red

nipy_spectralblack-purple-blue-green-yellow-red-white spectrum, originally from the Neu-
roimaging in Python project

ter-
rain

mapmaker's colors, blue-green-yellow-brown-white, originally from IGOR Pro

turbo Spectral map (purple-blue-green-yellow-orange-red) with a bright center and
darker endpoints. A smoother alternative to jet.

3 See Diverging Color Maps for Scientific Visualization by Kenneth Moreland.
4 See A Color Map for Effective Black-and-White Rendering of Color-Scale Images by Carey Rappaport

18.39. matplotlib.pyplot 2703

http://www.kennethmoreland.com/color-maps/
https://www.mathworks.com/matlabcentral/fileexchange/2662-cmrmap-m

Matplotlib, Release 3.4.3

The following colormaps are redundant and may be removed in future versions. It's recommended to
use the names in the descriptions instead, which produce identical output:

Colormap Description
gist_gray identical to gray
gist_yarg identical to gray_r
binary identical to gray_r

18.40 matplotlib.projections

class matplotlib.projections.ProjectionRegistry
Bases: object

A mapping of registered projection names to projection classes.

get_projection_class(name)
Get a projection class from its name.

get_projection_names()
Return the names of all projections currently registered.

register(*projections)
Register a new set of projections.

matplotlib.projections.get_projection_class(projection=None)
Get a projection class from its name.

If projection is None, a standard rectilinear projection is returned.

matplotlib.projections.get_projection_names()
Return the names of all projections currently registered.

matplotlib.projections.register_projection(cls)

18.41 matplotlib.projections.polar

class matplotlib.projections.polar.InvertedPolarTransform(axis=None,
use_rmin=True,
_ap-
ply_theta_transforms=True)

Bases: matplotlib.transforms.Transform

The inverse of the polar transform, mapping Cartesian coordinate space x and y back to theta and r.

Parameters

shorthand_name

2704 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

has_inverse = True

input_dims = 2

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

output_dims = 2

transform_non_affine(xy)
Apply only the non-affine part of this transformation.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

class matplotlib.projections.polar.PolarAffine(scale_transform, limits)
Bases: matplotlib.transforms.Affine2DBase

The affine part of the polar projection. Scales the output so that maximum radius rests on the edge of
the axes circle.

limits is the view limit of the data. The only part of its bounds that is used is the y limits (for the radius
limits). The theta range is handled by the non-affine transform.

get_matrix()
Get the matrix for the affine part of this transform.

18.41. matplotlib.projections.polar 2705

Matplotlib, Release 3.4.3

class matplotlib.projections.polar.PolarAxes(*args, theta_offset=0,
theta_direction=1, rla-
bel_position=22.5, **kwargs)

Bases: matplotlib.axes._axes.Axes

A polar graph projection, where the input dimensions are theta, r.

Theta starts pointing east and goes anti-clockwise.

Build an axes in a figure.

Parameters

fig
[Figure] The axes is build in the Figure fig.

rect
[[left, bottom, width, height]] The axes is build in the rectangle rect. rect is in
Figure coordinates.

sharex, sharey
[Axes, optional] The x or y axis is shared with the x or y axis in the input Axes.

frameon
[bool, default: True] Whether the axes frame is visible.

box_aspect
[float, optional] Set a fixed aspect for the axes box, i.e. the ratio of height to width.
See set_box_aspect for details.

**kwargs
Other optional keyword arguments:

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
continues on next page

2706 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 222 – continued from previous page
Property Description
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

Returns

Axes

The new Axes object.

18.41. matplotlib.projections.polar 2707

Matplotlib, Release 3.4.3

class InvertedPolarTransform(axis=None, use_rmin=True, _ap-
ply_theta_transforms=True)

Bases: matplotlib.transforms.Transform

The inverse of the polar transform, mapping Cartesian coordinate space x and y back to theta and
r.

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no
significance other than to improve the readability of str(transform) when
DEBUG=True.

has_inverse = True

input_dims = 2

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not
cause a corresponding update to its inverted copy.

output_dims = 2

transform_non_affine(xy)
Apply only the non-affine part of this transformation.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In
affine transformations, this is always a no-op.

Parameters
values

[array] The input values as NumPy array of length input_dims or shape (N
x input_dims).

Returns
array

The output values as NumPy array of length input_dims or shape (N x
output_dims), depending on the input.

class PolarAffine(scale_transform, limits)
Bases: matplotlib.transforms.Affine2DBase

The affine part of the polar projection. Scales the output so that maximum radius rests on the
edge of the axes circle.

2708 Chapter 18. Modules

Matplotlib, Release 3.4.3

limits is the view limit of the data. The only part of its bounds that is used is the y limits (for the
radius limits). The theta range is handled by the non-affine transform.

get_matrix()
Get the matrix for the affine part of this transform.

class PolarTransform(axis=None, use_rmin=True, _apply_theta_transforms=True)
Bases: matplotlib.transforms.Transform

The base polar transform. This handles projection theta and r into Cartesian coordinate space x
and y, but does not perform the ultimate affine transformation into the correct position.

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no
significance other than to improve the readability of str(transform) when
DEBUG=True.

has_inverse = True

input_dims = 2

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not
cause a corresponding update to its inverted copy.

output_dims = 2

transform_non_affine(tr)
Apply only the non-affine part of this transformation.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In
affine transformations, this is always a no-op.

Parameters
values

[array] The input values as NumPy array of length input_dims or shape (N
x input_dims).

Returns
array

The output values as NumPy array of length input_dims or shape (N x
output_dims), depending on the input.

18.41. matplotlib.projections.polar 2709

Matplotlib, Release 3.4.3

transform_path_non_affine(path)
Apply the non-affine part of this transform to Path path, returning a new Path.

transform_path(path) is equivalent to trans-
form_path_affine(transform_path_non_affine(values)).

class RadialLocator(base, axes=None)
Bases: matplotlib.ticker.Locator

Used to locate radius ticks.

Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base Locator
(which may be different depending on the scale of the r-axis).

nonsingular(vmin, vmax)
Adjust a range as needed to avoid singularities.

This method gets called during autoscaling, with (v0, v1) set to the data limits on the
axes if the axes contains any data, or (-inf, +inf) if not.
• If v0 == v1 (possibly up to some floating point slop), this method returns an expanded

interval around this value.
• If (v0, v1) == (-inf, +inf), this method returns appropriate default view

limits.
• Otherwise, (v0, v1) is returned without modification.

pan(numsteps)
[Deprecated]

Notes

Deprecated since version 3.3:

refresh()
[Deprecated]

Notes

Deprecated since version 3.3:

view_limits(vmin, vmax)
Select a scale for the range from vmin to vmax.

Subclasses should override this method to change locator behaviour.

zoom(direction)
[Deprecated]

2710 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

class ThetaFormatter
Bases: matplotlib.ticker.Formatter

Used to format the theta tick labels. Converts the native unit of radians into degrees and adds a
degree symbol.

class ThetaLocator(base)
Bases: matplotlib.ticker.Locator

Used to locate theta ticks.

This will work the same as the base locator except in the case that the view spans the entire circle.
In such cases, the previously used default locations of every 45 degrees are returned.

pan(numsteps)
[Deprecated]

Notes

Deprecated since version 3.3:

refresh()
[Deprecated] Refresh internal information based on current limits.

Notes

Deprecated since version 3.3.

set_axis(axis)

view_limits(vmin, vmax)
Select a scale for the range from vmin to vmax.

Subclasses should override this method to change locator behaviour.

zoom(direction)
[Deprecated]

Notes

Deprecated since version 3.3:

can_pan()
Return whether this axes supports the pan/zoom button functionality.

For polar axes, this is slightly misleading. Both panning and zooming are performed by the same
button. Panning is performed in azimuth while zooming is done along the radial.

18.41. matplotlib.projections.polar 2711

Matplotlib, Release 3.4.3

can_zoom()
Return whether this axes supports the zoom box button functionality.

Polar axes do not support zoom boxes.

cla()
Clear the axes.

drag_pan(button, key, x, y)
Called when the mouse moves during a pan operation.

Parameters

button
[MouseButton] The pressed mouse button.

key
[str or None] The pressed key, if any.

x, y
[float] The mouse coordinates in display coords.

Notes

This is intended to be overridden by new projection types.

draw(renderer, *args, **kwargs)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

end_pan()
Called when a pan operation completes (when the mouse button is up.)

2712 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

This is intended to be overridden by new projection types.

format_coord(theta, r)
Return a format string formatting the x, y coordinates.

get_data_ratio()
Return the aspect ratio of the data itself. For a polar plot, this should always be 1.0

get_rlabel_position()

Returns

float
The theta position of the radius labels in degrees.

get_rmax()

Returns

float
Outer radial limit.

get_rmin()

Returns

float
The inner radial limit.

get_rorigin()

Returns

float

get_rsign()

get_theta_direction()
Get the direction in which theta increases.

-1:
Theta increases in the clockwise direction

1:
Theta increases in the counterclockwise direction

get_theta_offset()
Get the offset for the location of 0 in radians.

18.41. matplotlib.projections.polar 2713

Matplotlib, Release 3.4.3

get_thetamax()
Return the maximum theta limit in degrees.

get_thetamin()
Get the minimum theta limit in degrees.

get_xaxis_text1_transform(pad)

Returns

transform
[Transform] The transform used for drawing x-axis labels, which will add
pad_points of padding (in points) between the axes and the label. The x-direction
is in data coordinates and the y-direction is in axis coordinates

valign
[{'center', 'top', 'bottom', 'baseline', 'center_baseline'}] The text vertical align-
ment.

halign
[{'center', 'left', 'right'}] The text horizontal alignment.

Notes

This transformation is primarily used by the Axis class, and is meant to be overridden by new
kinds of projections that may need to place axis elements in different locations.

get_xaxis_text2_transform(pad)

Returns

transform
[Transform] The transform used for drawing secondary x-axis labels, which will
add pad_points of padding (in points) between the axes and the label. The x-
direction is in data coordinates and the y-direction is in axis coordinates

valign
[{'center', 'top', 'bottom', 'baseline', 'center_baseline'}] The text vertical align-
ment.

halign
[{'center', 'left', 'right'}] The text horizontal alignment.

2714 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

This transformation is primarily used by the Axis class, and is meant to be overridden by new
kinds of projections that may need to place axis elements in different locations.

get_xaxis_transform(which='grid')
Get the transformation used for drawing x-axis labels, ticks and gridlines. The x-direction is in
data coordinates and the y-direction is in axis coordinates.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

get_yaxis_text1_transform(pad)

Returns

transform
[Transform] The transform used for drawing y-axis labels, which will add
pad_points of padding (in points) between the axes and the label. The x-direction
is in axis coordinates and the y-direction is in data coordinates

valign
[{'center', 'top', 'bottom', 'baseline', 'center_baseline'}] The text vertical align-
ment.

halign
[{'center', 'left', 'right'}] The text horizontal alignment.

Notes

This transformation is primarily used by the Axis class, and is meant to be overridden by new
kinds of projections that may need to place axis elements in different locations.

get_yaxis_text2_transform(pad)

Returns

transform
[Transform] The transform used for drawing secondart y-axis labels, which will
add pad_points of padding (in points) between the axes and the label. The x-
direction is in axis coordinates and the y-direction is in data coordinates

valign
[{'center', 'top', 'bottom', 'baseline', 'center_baseline'}] The text vertical align-
ment.

18.41. matplotlib.projections.polar 2715

Matplotlib, Release 3.4.3

halign
[{'center', 'left', 'right'}] The text horizontal alignment.

Notes

This transformation is primarily used by the Axis class, and is meant to be overridden by new
kinds of projections that may need to place axis elements in different locations.

get_yaxis_transform(which='grid')
Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in
axis coordinates and the y-direction is in data coordinates.

Note: This transformation is primarily used by the Axis class, and is meant to be overridden
by new kinds of projections that may need to place axis elements in different locations.

name = 'polar'

set_rgrids(radii, labels=None, angle=None, fmt=None, **kwargs)
Set the radial gridlines on a polar plot.

Parameters

radii
[tuple with floats] The radii for the radial gridlines

labels
[tuple with strings or None] The labels to use at each radial gridline. The
matplotlib.ticker.ScalarFormatter will be used if None.

angle
[float] The angular position of the radius labels in degrees.

fmt
[str or None] Format string used in matplotlib.ticker.
FormatStrFormatter. For example '%f'.

Returns

lines
[list of lines.Line2D] The radial gridlines.

labels
[list of text.Text] The tick labels.

Other Parameters

2716 Chapter 18. Modules

Matplotlib, Release 3.4.3

**kwargs
kwargs are optional Text properties for the labels.

See also:

PolarAxes.set_thetagrids

Axis.get_gridlines

Axis.get_ticklabels

set_rlabel_position(value)
Update the theta position of the radius labels.

Parameters

value
[number] The angular position of the radius labels in degrees.

set_rlim(bottom=None, top=None, emit=True, auto=False, **kwargs)
See set_ylim.

set_rmax(rmax)
Set the outer radial limit.

Parameters

rmax
[float]

set_rmin(rmin)
Set the inner radial limit.

Parameters

rmin
[float]

set_rorigin(rorigin)
Update the radial origin.

Parameters

rorigin
[float]

set_rscale(*args, **kwargs)

set_rticks(*args, **kwargs)

18.41. matplotlib.projections.polar 2717

Matplotlib, Release 3.4.3

set_theta_direction(direction)
Set the direction in which theta increases.

clockwise, -1:
Theta increases in the clockwise direction

counterclockwise, anticlockwise, 1:
Theta increases in the counterclockwise direction

set_theta_offset(offset)
Set the offset for the location of 0 in radians.

set_theta_zero_location(loc, offset=0.0)
Set the location of theta's zero.

This simply calls set_theta_offset with the correct value in radians.

Parameters

loc
[str] May be one of "N", "NW", "W", "SW", "S", "SE", "E", or "NE".

offset
[float, default: 0] An offset in degrees to apply from the specified loc. Note: this
offset is always applied counter-clockwise regardless of the direction setting.

set_thetagrids(angles, labels=None, fmt=None, **kwargs)
Set the theta gridlines in a polar plot.

Parameters

angles
[tuple with floats, degrees] The angles of the theta gridlines.

labels
[tuple with strings or None] The labels to use at each theta gridline. The
projections.polar.ThetaFormatter will be used if None.

fmt
[str or None] Format string used in matplotlib.ticker.
FormatStrFormatter. For example '%f'. Note that the angle that is
used is in radians.

Returns

lines
[list of lines.Line2D] The theta gridlines.

2718 Chapter 18. Modules

Matplotlib, Release 3.4.3

labels
[list of text.Text] The tick labels.

Other Parameters

**kwargs
kwargs are optional Text properties for the labels.

See also:

PolarAxes.set_rgrids

Axis.get_gridlines

Axis.get_ticklabels

set_thetalim(*args, **kwargs)
Set the minimum and maximum theta values.

Can take the following signatures:

• set_thetalim(minval, maxval): Set the limits in radians.

• set_thetalim(thetamin=minval, thetamax=maxval): Set the limits in de-
grees.

where minval and maxval are the minimum and maximum limits. Values are wrapped in to the
range [0, 2𝜋] (in radians), so for example it is possible to do set_thetalim(-np.pi / 2,
np.pi / 2) to have an axes symmetric around 0. A ValueError is raised if the absolute angle
difference is larger than a full circle.

set_thetamax(thetamax)
Set the maximum theta limit in degrees.

set_thetamin(thetamin)
Set the minimum theta limit in degrees.

set_xscale(scale, *args, **kwargs)
Set the x-axis scale.

Parameters

value
[{"linear", "log", "symlog", "logit", ...} or ScaleBase] The axis scale type to
apply.

**kwargs
Different keyword arguments are accepted, depending on the scale. See the re-
spective class keyword arguments:

• matplotlib.scale.LinearScale

18.41. matplotlib.projections.polar 2719

Matplotlib, Release 3.4.3

• matplotlib.scale.LogScale

• matplotlib.scale.SymmetricalLogScale

• matplotlib.scale.LogitScale

• matplotlib.scale.FuncScale

Notes

By default, Matplotlib supports the above mentioned scales. Additionally, custom scales may be
registered using matplotlib.scale.register_scale. These scales can then also be
used here.

set_ylim(bottom=None, top=None, emit=True, auto=False, *, ymin=None, ymax=None)
Set the data limits for the radial axis.

Parameters

bottom
[float, optional] The bottom limit (default: None, which leaves the bottom limit
unchanged). The bottom and top ylims may be passed as the tuple (bottom, top)
as the first positional argument (or as the bottom keyword argument).

top
[float, optional] The top limit (default: None, which leaves the top limit un-
changed).

emit
[bool, default: True] Whether to notify observers of limit change.

auto
[bool or None, default: False] Whether to turn on autoscaling of the y-axis. True
turns on, False turns off, None leaves unchanged.

ymin, ymax
[float, optional] These arguments are deprecated and will be removed in a future
version. They are equivalent to bottom and top respectively, and it is an error to
pass both ymin and bottom or ymax and top.

Returns

bottom, top
[(float, float)] The new y-axis limits in data coordinates.

set_yscale(*args, **kwargs)
Set the y-axis scale.

Parameters

2720 Chapter 18. Modules

Matplotlib, Release 3.4.3

value
[{"linear", "log", "symlog", "logit", ...} or ScaleBase] The axis scale type to
apply.

**kwargs
Different keyword arguments are accepted, depending on the scale. See the re-
spective class keyword arguments:

• matplotlib.scale.LinearScale

• matplotlib.scale.LogScale

• matplotlib.scale.SymmetricalLogScale

• matplotlib.scale.LogitScale

• matplotlib.scale.FuncScale

Notes

By default, Matplotlib supports the above mentioned scales. Additionally, custom scales may be
registered using matplotlib.scale.register_scale. These scales can then also be
used here.

start_pan(x, y, button)
Called when a pan operation has started.

Parameters

x, y
[float] The mouse coordinates in display coords.

button
[MouseButton] The pressed mouse button.

Notes

This is intended to be overridden by new projection types.

class matplotlib.projections.polar.PolarTransform(axis=None,
use_rmin=True, _ap-
ply_theta_transforms=True)

Bases: matplotlib.transforms.Transform

The base polar transform. This handles projection theta and r into Cartesian coordinate space x and y,
but does not perform the ultimate affine transformation into the correct position.

Parameters

18.41. matplotlib.projections.polar 2721

Matplotlib, Release 3.4.3

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

has_inverse = True

input_dims = 2

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

output_dims = 2

transform_non_affine(tr)
Apply only the non-affine part of this transformation.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

transform_path_non_affine(path)
Apply the non-affine part of this transform to Path path, returning a new Path.

transform_path(path) is equivalent totransform_path_affine(transform_path_non_affine(values)).

class matplotlib.projections.polar.RadialAxis(*args, **kwargs)
Bases: matplotlib.axis.YAxis

A radial Axis.

This overrides certain properties of a YAxis to provide special-casing for a radial axis.

Parameters

2722 Chapter 18. Modules

Matplotlib, Release 3.4.3

axes
[matplotlib.axes.Axes] The Axes to which the created Axis belongs.

pickradius
[float] The acceptance radius for containment tests. See also Axis.contains.

axis_name = 'radius'
Read-only name identifying the axis.

cla()
[Deprecated]

Notes

Deprecated since version 3.4:

clear()
Clear the axis.

This resets axis properties to their default values:

• the label

• the scale

• locators, formatters and ticks

• major and minor grid

• units

• registered callbacks

class matplotlib.projections.polar.RadialLocator(base, axes=None)
Bases: matplotlib.ticker.Locator

Used to locate radius ticks.

Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base Locator (which
may be different depending on the scale of the r-axis).

nonsingular(vmin, vmax)
Adjust a range as needed to avoid singularities.

This method gets called during autoscaling, with (v0, v1) set to the data limits on the axes if
the axes contains any data, or (-inf, +inf) if not.

• If v0 == v1 (possibly up to some floating point slop), this method returns an expanded
interval around this value.

• If (v0, v1) == (-inf, +inf), this method returns appropriate default view limits.

• Otherwise, (v0, v1) is returned without modification.

18.41. matplotlib.projections.polar 2723

Matplotlib, Release 3.4.3

pan(numsteps)
[Deprecated]

Notes

Deprecated since version 3.3:

refresh()
[Deprecated]

Notes

Deprecated since version 3.3:

view_limits(vmin, vmax)
Select a scale for the range from vmin to vmax.

Subclasses should override this method to change locator behaviour.

zoom(direction)
[Deprecated]

Notes

Deprecated since version 3.3:

class matplotlib.projections.polar.RadialTick(*args, **kwargs)
Bases: matplotlib.axis.YTick

A radial-axis tick.

This subclass of YTick provides radial ticks with some small modification to their re-positioning such
that ticks are rotated based on axes limits. This results in ticks that are correctly perpendicular to the
spine. Labels are also rotated to be perpendicular to the spine, when 'auto' rotation is enabled.

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in points

update_position(loc)
Set the location of tick in data coords with scalar loc.

class matplotlib.projections.polar.ThetaAxis(*args, **kwargs)
Bases: matplotlib.axis.XAxis

A theta Axis.

This overrides certain properties of an XAxis to provide special-casing for an angular axis.

Parameters

axes
[matplotlib.axes.Axes] The Axes to which the created Axis belongs.

2724 Chapter 18. Modules

Matplotlib, Release 3.4.3

pickradius
[float] The acceptance radius for containment tests. See also Axis.contains.

axis_name = 'theta'
Read-only name identifying the axis.

cla()
[Deprecated]

Notes

Deprecated since version 3.4:

clear()
Clear the axis.

This resets axis properties to their default values:

• the label

• the scale

• locators, formatters and ticks

• major and minor grid

• units

• registered callbacks

class matplotlib.projections.polar.ThetaFormatter
Bases: matplotlib.ticker.Formatter

Used to format the theta tick labels. Converts the native unit of radians into degrees and adds a degree
symbol.

class matplotlib.projections.polar.ThetaLocator(base)
Bases: matplotlib.ticker.Locator

Used to locate theta ticks.

This will work the same as the base locator except in the case that the view spans the entire circle. In
such cases, the previously used default locations of every 45 degrees are returned.

pan(numsteps)
[Deprecated]

18.41. matplotlib.projections.polar 2725

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

refresh()
[Deprecated] Refresh internal information based on current limits.

Notes

Deprecated since version 3.3.

set_axis(axis)

view_limits(vmin, vmax)
Select a scale for the range from vmin to vmax.

Subclasses should override this method to change locator behaviour.

zoom(direction)
[Deprecated]

Notes

Deprecated since version 3.3:

class matplotlib.projections.polar.ThetaTick(axes, *args, **kwargs)
Bases: matplotlib.axis.XTick

A theta-axis tick.

This subclass of XTick provides angular ticks with some small modification to their re-positioning
such that ticks are rotated based on tick location. This results in ticks that are correctly perpendicular
to the arc spine.

When 'auto' rotation is enabled, labels are also rotated to be parallel to the spine. The label padding is
also applied here since it's not possible to use a generic axes transform to produce tick-specific padding.

bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords
size is the tick size in points

update_position(loc)
Set the location of tick in data coords with scalar loc.

2726 Chapter 18. Modules

Matplotlib, Release 3.4.3

18.42 matplotlib.quiver

Support for plotting vector fields.

Presently this contains Quiver and Barb. Quiver plots an arrow in the direction of the vector, with the size
of the arrow related to the magnitude of the vector.

Barbs are like quiver in that they point along a vector, but the magnitude of the vector is given schematically
by the presence of barbs or flags on the barb.

This will also become a home for things such as standard deviation ellipses, which can and will be derived
very easily from the Quiver code.

18.42.1 Classes

Quiver(ax, *args[, scale, headwidth, ...]) Specialized PolyCollection for arrows.
QuiverKey(Q, X, Y, U, label, *[, angle, ...]) Labelled arrow for use as a quiver plot scale key.
Barbs(ax, *args[, pivot, length, barbcolor, ...]) Specialized PolyCollection for barbs.

matplotlib.quiver.Quiver

class matplotlib.quiver.Quiver(ax, *args, scale=None, headwidth=3, headlength=5,
headaxislength=4.5, minshaft=1, minlength=1,
units='width', scale_units=None, angles='uv',
width=None, color='k', pivot='tail', **kw)

Bases: matplotlib.collections.PolyCollection

Specialized PolyCollection for arrows.

The only API method is set_UVC(), which can be used to change the size, orientation, and color of
the arrows; their locations are fixed when the class is instantiated. Possibly this method will be useful
in animations.

Much of the work in this class is done in the draw() method so that as much information as possible
is available about the plot. In subsequent draw() calls, recalculation is limited to things that might
have changed, so there should be no performance penalty from putting the calculations in the draw()
method.

The constructor takes one required argument, an Axes instance, followed by the args and kwargs de-
scribed by the following pyplot interface documentation:

Plot a 2D field of arrows.

Call signature:

quiver([X, Y], U, V, [C], **kw)

X, Y define the arrow locations, U, V define the arrow directions, and C optionally sets the color.

Arrow size

18.42. matplotlib.quiver 2727

Matplotlib, Release 3.4.3

The default settings auto-scales the length of the arrows to a reasonable size. To change this behavior
see the scale and scale_units parameters.

Arrow shape
The defaults give a slightly swept-back arrow; to make the head a triangle, make headaxislength the
same as headlength. To make the arrow more pointed, reduce headwidth or increase headlength and
headaxislength. To make the head smaller relative to the shaft, scale down all the head parameters.
You will probably do best to leave minshaft alone.

Arrow outline
linewidths and edgecolors can be used to customize the arrow outlines.

Parameters

X, Y
[1D or 2D array-like, optional] The x and y coordinates of the arrow locations.

If not given, they will be generated as a uniform integer meshgrid based on the
dimensions of U and V.

If X and Y are 1D but U, V are 2D, X, Y are expanded to 2D using X, Y = np.
meshgrid(X, Y). In this case len(X) and len(Y) must match the column
and row dimensions of U and V.

U, V
[1D or 2D array-like] The x and y direction components of the arrow vectors.

They must have the same number of elements, matching the number of arrow
locations. U and V may be masked. Only locations unmasked in U, V, and C will
be drawn.

C
[1D or 2D array-like, optional] Numeric data that defines the arrow colors by col-
ormapping via norm and cmap.

This does not support explicit colors. If you want to set colors directly, use color
instead. The size of C must match the number of arrow locations.

units
[{'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, default: 'width'] The arrow dimen-
sions (except for length) are measured in multiples of this unit.

The following values are supported:

• 'width', 'height': The width or height of the axis.

• 'dots', 'inches': Pixels or inches based on the figure dpi.

• 'x', 'y', 'xy': X, Y or √𝑋2 + 𝑌 2 in data units.

The arrows scale differently depending on the units. For 'x' or 'y', the arrows get
larger as one zooms in; for other units, the arrow size is independent of the zoom

2728 Chapter 18. Modules

Matplotlib, Release 3.4.3

state. For 'width or 'height', the arrow size increases with the width and height of
the axes, respectively, when the window is resized; for 'dots' or 'inches', resizing
does not change the arrows.

angles
[{'uv', 'xy'} or array-like, default: 'uv'] Method for determining the angle of the
arrows.

• 'uv': The arrow axis aspect ratio is 1 so that if U == V the orientation of the
arrow on the plot is 45 degrees counter-clockwise from the horizontal axis (pos-
itive to the right).

Use this if the arrows symbolize a quantity that is not based on X, Y data coor-
dinates.

• 'xy': Arrows point from (x, y) to (x+u, y+v). Use this for plotting a gradient
field, for example.

• Alternatively, arbitrary angles may be specified explicitly as an array of values
in degrees, counter-clockwise from the horizontal axis.

In this case U, V is only used to determine the length of the arrows.

Note: inverting a data axis will correspondingly invert the arrows only with an-
gles='xy'.

scale
[float, optional] Number of data units per arrow length unit, e.g., m/s per plot
width; a smaller scale parameter makes the arrow longer. Default is None.

IfNone, a simple autoscaling algorithm is used, based on the average vector length
and the number of vectors. The arrow length unit is given by the scale_units pa-
rameter.

scale_units
[{'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, optional] If the scale kwarg is None,
the arrow length unit. Default is None.

e.g. scale_units is 'inches', scale is 2.0, and (u, v) = (1, 0), then the vector
will be 0.5 inches long.

If scale_units is 'width' or 'height', then the vector will be half the width/height of
the axes.

If scale_units is 'x' then the vector will be 0.5 x-axis units. To plot vectors in the
x-y plane, with u and v having the same units as x and y, use angles='xy',
scale_units='xy', scale=1.

width
[float, optional] Shaft width in arrow units; default depends on choice of units,
above, and number of vectors; a typical starting value is about 0.005 times the
width of the plot.

18.42. matplotlib.quiver 2729

Matplotlib, Release 3.4.3

headwidth
[float, default: 3] Head width as multiple of shaft width.

headlength
[float, default: 5] Head length as multiple of shaft width.

headaxislength
[float, default: 4.5] Head length at shaft intersection.

minshaft
[float, default: 1] Length below which arrow scales, in units of head length. Do
not set this to less than 1, or small arrows will look terrible!

minlength
[float, default: 1] Minimum length as a multiple of shaft width; if an arrow length
is less than this, plot a dot (hexagon) of this diameter instead.

pivot
[{'tail', 'mid', 'middle', 'tip'}, default: 'tail'] The part of the arrow that is anchored
to the X, Y grid. The arrow rotates about this point.

'mid' is a synonym for 'middle'.

color
[color or color sequence, optional] Explicit color(s) for the arrows. If C has been
set, color has no effect.

This is a synonym for the PolyCollection facecolor parameter.

Other Parameters

**kwargs
[PolyCollection properties, optional] All other keyword arguments are
passed on to PolyCollection:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None

continues on next page

2730 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 224 – continued from previous page
Property Description
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

See also:

Axes.quiverkey

Add a key to a quiver plot.

__init__(ax, *args, scale=None, headwidth=3, headlength=5, headaxislength=4.5,
minshaft=1, minlength=1, units='width', scale_units=None, angles='uv',
width=None, color='k', pivot='tail', **kw)

The constructor takes one required argument, an Axes instance, followed by the args and kwargs
described by the following pyplot interface documentation:

Plot a 2D field of arrows.

Call signature:

quiver([X, Y], U, V, [C], **kw)

X, Y define the arrow locations, U, V define the arrow directions, and C optionally sets the color.

18.42. matplotlib.quiver 2731

Matplotlib, Release 3.4.3

Arrow size
The default settings auto-scales the length of the arrows to a reasonable size. To change this
behavior see the scale and scale_units parameters.

Arrow shape
The defaults give a slightly swept-back arrow; to make the head a triangle, make headax-
islength the same as headlength. To make the arrow more pointed, reduce headwidth or increase
headlength and headaxislength. To make the head smaller relative to the shaft, scale down all
the head parameters. You will probably do best to leave minshaft alone.

Arrow outline
linewidths and edgecolors can be used to customize the arrow outlines.

Parameters

X, Y
[1D or 2D array-like, optional] The x and y coordinates of the arrow locations.

If not given, they will be generated as a uniform integer meshgrid based on the
dimensions of U and V.

If X and Y are 1D but U, V are 2D, X, Y are expanded to 2D using X, Y =
np.meshgrid(X, Y). In this case len(X) and len(Y) must match the
column and row dimensions of U and V.

U, V
[1D or 2D array-like] The x and y direction components of the arrow vectors.

They must have the same number of elements, matching the number of arrow
locations. U and V may be masked. Only locations unmasked in U, V, and C
will be drawn.

C
[1D or 2D array-like, optional] Numeric data that defines the arrow colors by
colormapping via norm and cmap.

This does not support explicit colors. If you want to set colors directly, use color
instead. The size of C must match the number of arrow locations.

units
[{'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, default: 'width'] The arrow dimen-
sions (except for length) are measured in multiples of this unit.

The following values are supported:

• 'width', 'height': The width or height of the axis.

• 'dots', 'inches': Pixels or inches based on the figure dpi.

• 'x', 'y', 'xy': X, Y or √𝑋2 + 𝑌 2 in data units.

2732 Chapter 18. Modules

Matplotlib, Release 3.4.3

The arrows scale differently depending on the units. For 'x' or 'y', the arrows get
larger as one zooms in; for other units, the arrow size is independent of the zoom
state. For 'width or 'height', the arrow size increases with the width and height of
the axes, respectively, when the window is resized; for 'dots' or 'inches', resizing
does not change the arrows.

angles
[{'uv', 'xy'} or array-like, default: 'uv'] Method for determining the angle of the
arrows.

• 'uv': The arrow axis aspect ratio is 1 so that if U == V the orientation of the
arrow on the plot is 45 degrees counter-clockwise from the horizontal axis
(positive to the right).

Use this if the arrows symbolize a quantity that is not based on X, Y data
coordinates.

• 'xy': Arrows point from (x, y) to (x+u, y+v). Use this for plotting a gradient
field, for example.

• Alternatively, arbitrary angles may be specified explicitly as an array of values
in degrees, counter-clockwise from the horizontal axis.

In this case U, V is only used to determine the length of the arrows.

Note: inverting a data axis will correspondingly invert the arrows only with an-
gles='xy'.

scale
[float, optional] Number of data units per arrow length unit, e.g., m/s per plot
width; a smaller scale parameter makes the arrow longer. Default is None.

If None, a simple autoscaling algorithm is used, based on the average vec-
tor length and the number of vectors. The arrow length unit is given by the
scale_units parameter.

scale_units
[{'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, optional] If the scale kwarg is
None, the arrow length unit. Default is None.

e.g. scale_units is 'inches', scale is 2.0, and (u, v) = (1, 0), then the
vector will be 0.5 inches long.

If scale_units is 'width' or 'height', then the vector will be half the width/height
of the axes.

If scale_units is 'x' then the vector will be 0.5 x-axis units. To plot vectors in the
x-y plane, with u and v having the same units as x and y, use angles='xy',
scale_units='xy', scale=1.

width

18.42. matplotlib.quiver 2733

Matplotlib, Release 3.4.3

[float, optional] Shaft width in arrow units; default depends on choice of units,
above, and number of vectors; a typical starting value is about 0.005 times the
width of the plot.

headwidth
[float, default: 3] Head width as multiple of shaft width.

headlength
[float, default: 5] Head length as multiple of shaft width.

headaxislength
[float, default: 4.5] Head length at shaft intersection.

minshaft
[float, default: 1] Length below which arrow scales, in units of head length. Do
not set this to less than 1, or small arrows will look terrible!

minlength
[float, default: 1]Minimum length as amultiple of shaft width; if an arrow length
is less than this, plot a dot (hexagon) of this diameter instead.

pivot
[{'tail', 'mid', 'middle', 'tip'}, default: 'tail'] The part of the arrow that is anchored
to the X, Y grid. The arrow rotates about this point.

'mid' is a synonym for 'middle'.

color
[color or color sequence, optional] Explicit color(s) for the arrows. If C has been
set, color has no effect.

This is a synonym for the PolyCollection facecolor parameter.

Other Parameters

**kwargs
[PolyCollection properties, optional] All other keyword arguments are
passed on to PolyCollection:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)

continues on next page

2734 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 225 – continued from previous page
Property Description
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

See also:

Axes.quiverkey

Add a key to a quiver plot.

__module__ = 'matplotlib.quiver'

ax()
[Deprecated]

18.42. matplotlib.quiver 2735

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

get_datalim(transData)

quiver_doc = "\nPlot a 2D field of arrows.\n\nCall signature::\n\n quiver([X, Y], U, V, [C], **kw)\n\n*X*, *Y* define the arrow locations, *U*, *V* define the arrow directions, and\n*C* optionally sets the color.\n\n**Arrow size**\n\nThe default settings auto-scales the length of the arrows to a reasonable size.\nTo change this behavior see the *scale* and *scale_units* parameters.\n\n**Arrow shape**\n\nThe defaults give a slightly swept-back arrow; to make the head a\ntriangle, make *headaxislength* the same as *headlength*. To make the\narrow more pointed, reduce *headwidth* or increase *headlength* and\n*headaxislength*. To make the head smaller relative to the shaft,\nscale down all the head parameters. You will probably do best to leave\nminshaft alone.\n\n**Arrow outline**\n\n*linewidths* and *edgecolors* can be used to customize the arrow\noutlines.\n\nParameters\n----------\nX, Y : 1D or 2D array-like, optional\n The x and y coordinates of the arrow locations.\n\n If not given, they will be generated as a uniform integer meshgrid based\n on the dimensions of *U* and *V*.\n\n If *X* and *Y* are 1D but *U*, *V* are 2D, *X*, *Y* are expanded to 2D\n using ``X, Y = np.meshgrid(X, Y)``. In this case ``len(X)`` and ``len(Y)``\n must match the column and row dimensions of *U* and *V*.\n\nU, V : 1D or 2D array-like\n The x and y direction components of the arrow vectors.\n\n They must have the same number of elements, matching the number of arrow\n locations. *U* and *V* may be masked. Only locations unmasked in\n *U*, *V*, and *C* will be drawn.\n\nC : 1D or 2D array-like, optional\n Numeric data that defines the arrow colors by colormapping via *norm* and\n *cmap*.\n\n This does not support explicit colors. If you want to set colors directly,\n use *color* instead. The size of *C* must match the number of arrow\n locations.\n\nunits : {'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, default: 'width'\n The arrow dimensions (except for *length*) are measured in multiples of\n this unit.\n\n The following values are supported:\n\n - 'width', 'height': The width or height of the axis.\n - 'dots', 'inches': Pixels or inches based on the figure dpi.\n - 'x', 'y', 'xy': *X*, *Y* or :math:`\\sqrt{X^2 + Y^2}` in data units.\n\n The arrows scale differently depending on the units. For\n 'x' or 'y', the arrows get larger as one zooms in; for other\n units, the arrow size is independent of the zoom state. For\n 'width or 'height', the arrow size increases with the width and\n height of the axes, respectively, when the window is resized;\n for 'dots' or 'inches', resizing does not change the arrows.\n\nangles : {'uv', 'xy'} or array-like, default: 'uv'\n Method for determining the angle of the arrows.\n\n - 'uv': The arrow axis aspect ratio is 1 so that\n if *U* == *V* the orientation of the arrow on the plot is 45 degrees\n counter-clockwise from the horizontal axis (positive to the right).\n\n Use this if the arrows symbolize a quantity that is not based on\n *X*, *Y* data coordinates.\n\n - 'xy': Arrows point from (x, y) to (x+u, y+v).\n Use this for plotting a gradient field, for example.\n\n - Alternatively, arbitrary angles may be specified explicitly as an array\n of values in degrees, counter-clockwise from the horizontal axis.\n\n In this case *U*, *V* is only used to determine the length of the\n arrows.\n\n Note: inverting a data axis will correspondingly invert the\n arrows only with ``angles='xy'``.\n\nscale : float, optional\n Number of data units per arrow length unit, e.g., m/s per plot width; a\n smaller scale parameter makes the arrow longer. Default is *None*.\n\n If *None*, a simple autoscaling algorithm is used, based on the average\n vector length and the number of vectors. The arrow length unit is given by\n the *scale_units* parameter.\n\nscale_units : {'width', 'height', 'dots', 'inches', 'x', 'y', 'xy'}, optional\n If the *scale* kwarg is *None*, the arrow length unit. Default is *None*.\n\n e.g. *scale_units* is 'inches', *scale* is 2.0, and ``(u, v) = (1, 0)``,\n then the vector will be 0.5 inches long.\n\n If *scale_units* is 'width' or 'height', then the vector will be half the\n width/height of the axes.\n\n If *scale_units* is 'x' then the vector will be 0.5 x-axis\n units. To plot vectors in the x-y plane, with u and v having\n the same units as x and y, use\n ``angles='xy', scale_units='xy', scale=1``.\n\nwidth : float, optional\n Shaft width in arrow units; default depends on choice of units,\n above, and number of vectors; a typical starting value is about\n 0.005 times the width of the plot.\n\nheadwidth : float, default: 3\n Head width as multiple of shaft width.\n\nheadlength : float, default: 5\n Head length as multiple of shaft width.\n\nheadaxislength : float, default: 4.5\n Head length at shaft intersection.\n\nminshaft : float, default: 1\n Length below which arrow scales, in units of head length. Do not\n set this to less than 1, or small arrows will look terrible!\n\nminlength : float, default: 1\n Minimum length as a multiple of shaft width; if an arrow length\n is less than this, plot a dot (hexagon) of this diameter instead.\n\npivot : {'tail', 'mid', 'middle', 'tip'}, default: 'tail'\n The part of the arrow that is anchored to the *X*, *Y* grid. The arrow\n rotates about this point.\n\n 'mid' is a synonym for 'middle'.\n\ncolor : color or color sequence, optional\n Explicit color(s) for the arrows. If *C* has been set, *color* has no\n effect.\n\n This is a synonym for the `~.PolyCollection` *facecolor* parameter.\n\nOther Parameters\n----------------\n**kwargs : `~matplotlib.collections.PolyCollection` properties, optional\n All other keyword arguments are passed on to `.PolyCollection`:\n\n \n .. table::\n :class: property-table\n\n === ===\n Property Description \n === ===\n :meth:`agg_filter <matplotlib.artist.Artist.set_agg_filter>` a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array\n :meth:`alpha <matplotlib.collections.Collection.set_alpha>` array-like or scalar or None \n :meth:`animated <matplotlib.artist.Artist.set_animated>` bool \n :meth:`antialiased <matplotlib.collections.Collection.set_antialiased>` or aa or antialiaseds bool or list of bools \n :meth:`array <matplotlib.cm.ScalarMappable.set_array>` ndarray or None \n :meth:`capstyle <matplotlib.collections.Collection.set_capstyle>` `.CapStyle` or {'butt', 'projecting', 'round'} \n :meth:`clim <matplotlib.cm.ScalarMappable.set_clim>` (vmin: float, vmax: float) \n :meth:`clip_box <matplotlib.artist.Artist.set_clip_box>` `.Bbox` \n :meth:`clip_on <matplotlib.artist.Artist.set_clip_on>` bool \n :meth:`clip_path <matplotlib.artist.Artist.set_clip_path>` Patch or (Path, Transform) or None \n :meth:`cmap <matplotlib.cm.ScalarMappable.set_cmap>` `.Colormap` or str or None \n :meth:`color <matplotlib.collections.Collection.set_color>` color or list of rgba tuples \n :meth:`contains <matplotlib.artist.Artist.set_contains>` unknown \n :meth:`edgecolor <matplotlib.collections.Collection.set_edgecolor>` or ec or edgecolors color or list of colors or 'face' \n :meth:`facecolor <matplotlib.collections.Collection.set_facecolor>` or facecolors or fc color or list of colors \n :meth:`figure <matplotlib.artist.Artist.set_figure>` `.Figure` \n :meth:`gid <matplotlib.artist.Artist.set_gid>` str \n :meth:`hatch <matplotlib.collections.Collection.set_hatch>` {'/', '\\\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'} \n :meth:`in_layout <matplotlib.artist.Artist.set_in_layout>` bool \n :meth:`joinstyle <matplotlib.collections.Collection.set_joinstyle>` `.JoinStyle` or {'miter', 'round', 'bevel'} \n :meth:`label <matplotlib.artist.Artist.set_label>` object \n :meth:`linestyle <matplotlib.collections.Collection.set_linestyle>` or dashes or linestyles or ls str or tuple or list thereof \n :meth:`linewidth <matplotlib.collections.Collection.set_linewidth>` or linewidths or lw float or list of floats \n :meth:`norm <matplotlib.cm.ScalarMappable.set_norm>` `.Normalize` or None \n :meth:`offset_position <matplotlib.collections.Collection.set_offset_position>` unknown \n :meth:`offsets <matplotlib.collections.Collection.set_offsets>` (N, 2) or (2,) array-like \n :meth:`path_effects <matplotlib.artist.Artist.set_path_effects>` `.AbstractPathEffect` \n :meth:`picker <matplotlib.artist.Artist.set_picker>` None or bool or float or callable \n :meth:`pickradius <matplotlib.collections.Collection.set_pickradius>` float \n :meth:`rasterized <matplotlib.artist.Artist.set_rasterized>` bool \n :meth:`sketch_params <matplotlib.artist.Artist.set_sketch_params>` (scale: float, length: float, randomness: float) \n :meth:`snap <matplotlib.artist.Artist.set_snap>` bool or None \n :meth:`transform <matplotlib.artist.Artist.set_transform>` `.Transform` \n :meth:`url <matplotlib.artist.Artist.set_url>` str \n :meth:`urls <matplotlib.collections.Collection.set_urls>` list of str or None \n :meth:`visible <matplotlib.artist.Artist.set_visible>` bool \n :meth:`zorder <matplotlib.artist.Artist.set_zorder>` float \n === ===\n\n\nSee Also\n--------\n.Axes.quiverkey : Add a key to a quiver plot.\n"

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

set_UVC(U, V, C=None)

Examples using matplotlib.quiver.Quiver

• sphx_glr_gallery_images_contours_and_fields_quiver_demo.py

• sphx_glr_gallery_images_contours_and_fields_quiver_simple_demo.py

matplotlib.quiver.QuiverKey

class matplotlib.quiver.QuiverKey(Q, X, Y, U, label, *, angle=0, coordinates='axes',
color=None, labelsep=0.1, labelpos='N', label-
color=None, fontproperties=None, **kw)

Bases: matplotlib.artist.Artist

Labelled arrow for use as a quiver plot scale key.

Add a key to a quiver plot.

2736 Chapter 18. Modules

Matplotlib, Release 3.4.3

The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is 'N' or 'S', X,
Y give the position of the middle of the key arrow. If labelpos is 'E', X, Y positions the head, and if
labelpos is 'W', X, Y positions the tail; in either of these two cases, X, Y is somewhere in the middle
of the arrow+label key object.

Parameters

Q
[matplotlib.quiver.Quiver] A Quiver object as returned by a call to
quiver().

X, Y
[float] The location of the key.

U
[float] The length of the key.

label
[str] The key label (e.g., length and units of the key).

angle
[float, default: 0] The angle of the key arrow, in degrees anti-clockwise from the
x-axis.

coordinates
[{'axes', 'figure', 'data', 'inches'}, default: 'axes'] Coordinate system and units for
X, Y: 'axes' and 'figure' are normalized coordinate systems with (0, 0) in the lower
left and (1, 1) in the upper right; 'data' are the axes data coordinates (used for the
locations of the vectors in the quiver plot itself); 'inches' is position in the figure
in inches, with (0, 0) at the lower left corner.

color
[color] Overrides face and edge colors from Q.

labelpos
[{'N', 'S', 'E', 'W'}] Position the label above, below, to the right, to the left of the
arrow, respectively.

labelsep
[float, default: 0.1] Distance in inches between the arrow and the label.

labelcolor
[color, default: rcParams["text.color"] (default: 'black')] Label
color.

fontproperties
[dict, optional] A dictionary with keyword arguments accepted by the Font-
Properties initializer: family, style, variant, size, weight.

18.42. matplotlib.quiver 2737

../../tutorials/introductory/customizing.html?highlight=text.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

**kwargs
Any additional keyword arguments are used to override vector properties taken
from Q.

__init__(Q, X, Y, U, label, *, angle=0, coordinates='axes', color=None, labelsep=0.1, la-
belpos='N', labelcolor=None, fontproperties=None, **kw)

Add a key to a quiver plot.

The positioning of the key depends on X, Y, coordinates, and labelpos. If labelpos is 'N' or 'S',
X, Y give the position of the middle of the key arrow. If labelpos is 'E', X, Y positions the head,
and if labelpos is 'W', X, Y positions the tail; in either of these two cases, X, Y is somewhere in
the middle of the arrow+label key object.

Parameters

Q
[matplotlib.quiver.Quiver] A Quiver object as returned by a call to
quiver().

X, Y
[float] The location of the key.

U
[float] The length of the key.

label
[str] The key label (e.g., length and units of the key).

angle
[float, default: 0] The angle of the key arrow, in degrees anti-clockwise from the
x-axis.

coordinates
[{'axes', 'figure', 'data', 'inches'}, default: 'axes'] Coordinate system and units for
X, Y: 'axes' and 'figure' are normalized coordinate systems with (0, 0) in the lower
left and (1, 1) in the upper right; 'data' are the axes data coordinates (used for the
locations of the vectors in the quiver plot itself); 'inches' is position in the figure
in inches, with (0, 0) at the lower left corner.

color
[color] Overrides face and edge colors from Q.

labelpos
[{'N', 'S', 'E', 'W'}] Position the label above, below, to the right, to the left of the
arrow, respectively.

labelsep
[float, default: 0.1] Distance in inches between the arrow and the label.

2738 Chapter 18. Modules

Matplotlib, Release 3.4.3

labelcolor
[color, default: rcParams["text.color"] (default: 'black')] Label
color.

fontproperties
[dict, optional] A dictionary with keyword arguments accepted by the Font-
Properties initializer: family, style, variant, size, weight.

**kwargs
Any additional keyword arguments are used to override vector properties taken
from Q.

__module__ = 'matplotlib.quiver'

contains(mouseevent)
Test whether the artist contains the mouse event.

Parameters

mouseevent
[matplotlib.backend_bases.MouseEvent]

Returns

contains
[bool] Whether any values are within the radius.

details
[dict] An artist-specific dictionary of details of the event context, such as which
points are contained in the pick radius. See the individual Artist subclasses for
details.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

18.42. matplotlib.quiver 2739

../../tutorials/introductory/customizing.html?highlight=text.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

halign = {'E': 'left', 'N': 'center', 'S': 'center', 'W': 'right'}

pivot = {'E': 'tip', 'N': 'middle', 'S': 'middle', 'W': 'tail'}

remove()
Remove the artist from the figure if possible.

The effect will not be visible until the figure is redrawn, e.g., with FigureCanvasBase.
draw_idle. Call relim to update the axes limits if desired.

Note: relim will not see collections even if the collection was added to the axes with autolim
= True.

Note: there is no support for removing the artist's legend entry.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

valign = {'E': 'center', 'N': 'bottom', 'S': 'top', 'W': 'center'}

Examples using matplotlib.quiver.QuiverKey

• sphx_glr_gallery_images_contours_and_fields_quiver_demo.py

matplotlib.quiver.Barbs

class matplotlib.quiver.Barbs(ax, *args, pivot='tip', length=7, barbcolor=None,
flagcolor=None, sizes=None, fill_empty=False,
barb_increments=None, rounding=True,
flip_barb=False, **kw)

Bases: matplotlib.collections.PolyCollection

Specialized PolyCollection for barbs.

The only API method is set_UVC(), which can be used to change the size, orientation, and color
of the arrows. Locations are changed using the set_offsets() collection method. Possibly this
method will be useful in animations.

There is one internal function _find_tails() which finds exactly what should be put on the barb
given the vector magnitude. From there _make_barbs() is used to find the vertices of the polygon
to represent the barb based on this information.

2740 Chapter 18. Modules

Matplotlib, Release 3.4.3

The constructor takes one required argument, an Axes instance, followed by the args and kwargs de-
scribed by the following pyplot interface documentation:

Plot a 2D field of barbs.

Call signature:

barbs([X, Y], U, V, [C], **kw)

Where X, Y define the barb locations, U, V define the barb directions, and C optionally sets the color.

All arguments may be 1D or 2D. U, V, C may be masked arrays, but masked X, Y are not supported at
present.

Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind observa-
tions, but can technically be used to plot any two dimensional vector quantity. As opposed to arrows,
which give vector magnitude by the length of the arrow, the barbs give more quantitative information
about the vector magnitude by putting slanted lines or a triangle for various increments in magnitude,
as show schematically below:

: /\ \
: / \ \
: / \ \ \
: / \ \ \
: ------------------------------

The largest increment is given by a triangle (or "flag"). After those come full lines (barbs). The
smallest increment is a half line. There is only, of course, ever at most 1 half line. If the magnitude
is small and only needs a single half-line and no full lines or triangles, the half-line is offset from the
end of the barb so that it can be easily distinguished from barbs with a single full line. The magnitude
for the barb shown above would nominally be 65, using the standard increments of 50, 10, and 5.

See also https://en.wikipedia.org/wiki/Wind_barb.

Parameters

X, Y
[1D or 2D array-like, optional] The x and y coordinates of the barb locations. See
pivot for how the barbs are drawn to the x, y positions.

If not given, they will be generated as a uniform integer meshgrid based on the
dimensions of U and V.

If X and Y are 1D but U, V are 2D, X, Y are expanded to 2D using X, Y = np.
meshgrid(X, Y). In this case len(X) and len(Y) must match the column
and row dimensions of U and V.

U, V
[1D or 2D array-like] The x and y components of the barb shaft.

C

18.42. matplotlib.quiver 2741

https://en.wikipedia.org/wiki/Wind_barb

Matplotlib, Release 3.4.3

[1D or 2D array-like, optional] Numeric data that defines the barb colors by col-
ormapping via norm and cmap.

This does not support explicit colors. If you want to set colors directly, use barb-
color instead.

length
[float, default: 7] Length of the barb in points; the other parts of the barb are scaled
against this.

pivot
[{'tip', 'middle'} or float, default: 'tip'] The part of the arrow that is anchored to
the X, Y grid. The barb rotates about this point. This can also be a number, which
shifts the start of the barb that many points away from grid point.

barbcolor
[color or color sequence] The color of all parts of the barb except for the flags.
This parameter is analogous to the edgecolor parameter for polygons, which can
be used instead. However this parameter will override facecolor.

flagcolor
[color or color sequence] The color of any flags on the barb. This parameter is
analogous to the facecolor parameter for polygons, which can be used instead.
However, this parameter will override facecolor. If this is not set (and C has not
either) then flagcolor will be set to match barbcolor so that the barb has a uniform
color. If C has been set, flagcolor has no effect.

sizes
[dict, optional] A dictionary of coefficients specifying the ratio of a given feature
to the length of the barb. Only those values one wishes to override need to be
included. These features include:

• 'spacing' - space between features (flags, full/half barbs)

• 'height' - height (distance from shaft to top) of a flag or full barb

• 'width' - width of a flag, twice the width of a full barb

• 'emptybarb' - radius of the circle used for low magnitudes

fill_empty
[bool, default: False] Whether the empty barbs (circles) that are drawn should be
filled with the flag color. If they are not filled, the center is transparent.

rounding
[bool, default: True] Whether the vector magnitude should be rounded when allo-
cating barb components. If True, the magnitude is rounded to the nearest multiple
of the half-barb increment. If False, the magnitude is simply truncated to the next
lowest multiple.

2742 Chapter 18. Modules

Matplotlib, Release 3.4.3

barb_increments
[dict, optional] A dictionary of increments specifying values to associate with dif-
ferent parts of the barb. Only those values one wishes to override need to be in-
cluded.

• 'half' - half barbs (Default is 5)

• 'full' - full barbs (Default is 10)

• 'flag' - flags (default is 50)

flip_barb
[bool or array-like of bool, default: False]Whether the lines and flags should point
opposite to normal. Normal behavior is for the barbs and lines to point right (comes
from wind barbs having these features point towards low pressure in the Northern
Hemisphere).

A single value is applied to all barbs. Individual barbs can be flipped by passing a
bool array of the same size as U and V.

Returns

barbs
[Barbs]

Other Parameters

**kwargs
The barbs can further be customized using PolyCollection keyword argu-
ments:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'

continues on next page

18.42. matplotlib.quiver 2743

Matplotlib, Release 3.4.3

Table 226 – continued from previous page
Property Description
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

__init__(ax, *args, pivot='tip', length=7, barbcolor=None, flagcolor=None, sizes=None,
fill_empty=False, barb_increments=None, rounding=True, flip_barb=False,
**kw)

The constructor takes one required argument, an Axes instance, followed by the args and kwargs
described by the following pyplot interface documentation:

Plot a 2D field of barbs.

Call signature:

barbs([X, Y], U, V, [C], **kw)

Where X, Y define the barb locations, U, V define the barb directions, and C optionally sets the
color.

All argumentsmay be 1D or 2D.U,V,Cmay bemasked arrays, but maskedX, Y are not supported
at present.

Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind ob-
servations, but can technically be used to plot any two dimensional vector quantity. As opposed
to arrows, which give vector magnitude by the length of the arrow, the barbs give more quanti-
tative information about the vector magnitude by putting slanted lines or a triangle for various
increments in magnitude, as show schematically below:

2744 Chapter 18. Modules

Matplotlib, Release 3.4.3

: /\ \
: / \ \
: / \ \ \
: / \ \ \
: ------------------------------

The largest increment is given by a triangle (or "flag"). After those come full lines (barbs). The
smallest increment is a half line. There is only, of course, ever at most 1 half line. If themagnitude
is small and only needs a single half-line and no full lines or triangles, the half-line is offset from
the end of the barb so that it can be easily distinguished from barbs with a single full line. The
magnitude for the barb shown above would nominally be 65, using the standard increments of
50, 10, and 5.

See also https://en.wikipedia.org/wiki/Wind_barb.

Parameters

X, Y
[1D or 2D array-like, optional] The x and y coordinates of the barb locations.
See pivot for how the barbs are drawn to the x, y positions.

If not given, they will be generated as a uniform integer meshgrid based on the
dimensions of U and V.

If X and Y are 1D but U, V are 2D, X, Y are expanded to 2D using X, Y =
np.meshgrid(X, Y). In this case len(X) and len(Y) must match the
column and row dimensions of U and V.

U, V
[1D or 2D array-like] The x and y components of the barb shaft.

C
[1D or 2D array-like, optional] Numeric data that defines the barb colors by
colormapping via norm and cmap.

This does not support explicit colors. If you want to set colors directly, use
barbcolor instead.

length
[float, default: 7] Length of the barb in points; the other parts of the barb are
scaled against this.

pivot
[{'tip', 'middle'} or float, default: 'tip'] The part of the arrow that is anchored to
the X, Y grid. The barb rotates about this point. This can also be a number, which
shifts the start of the barb that many points away from grid point.

barbcolor

18.42. matplotlib.quiver 2745

https://en.wikipedia.org/wiki/Wind_barb

Matplotlib, Release 3.4.3

[color or color sequence] The color of all parts of the barb except for the flags.
This parameter is analogous to the edgecolor parameter for polygons, which can
be used instead. However this parameter will override facecolor.

flagcolor
[color or color sequence] The color of any flags on the barb. This parameter is
analogous to the facecolor parameter for polygons, which can be used instead.
However, this parameter will override facecolor. If this is not set (and C has
not either) then flagcolor will be set to match barbcolor so that the barb has a
uniform color. If C has been set, flagcolor has no effect.

sizes
[dict, optional] A dictionary of coefficients specifying the ratio of a given feature
to the length of the barb. Only those values one wishes to override need to be
included. These features include:

• 'spacing' - space between features (flags, full/half barbs)

• 'height' - height (distance from shaft to top) of a flag or full barb

• 'width' - width of a flag, twice the width of a full barb

• 'emptybarb' - radius of the circle used for low magnitudes

fill_empty
[bool, default: False] Whether the empty barbs (circles) that are drawn should
be filled with the flag color. If they are not filled, the center is transparent.

rounding
[bool, default: True] Whether the vector magnitude should be rounded when
allocating barb components. If True, the magnitude is rounded to the nearest
multiple of the half-barb increment. If False, the magnitude is simply truncated
to the next lowest multiple.

barb_increments
[dict, optional] A dictionary of increments specifying values to associate with
different parts of the barb. Only those values one wishes to override need to be
included.

• 'half' - half barbs (Default is 5)

• 'full' - full barbs (Default is 10)

• 'flag' - flags (default is 50)

flip_barb
[bool or array-like of bool, default: False] Whether the lines and flags should
point opposite to normal. Normal behavior is for the barbs and lines to point
right (comes from wind barbs having these features point towards low pressure
in the Northern Hemisphere).

2746 Chapter 18. Modules

Matplotlib, Release 3.4.3

A single value is applied to all barbs. Individual barbs can be flipped by passing
a bool array of the same size as U and V.

Returns

barbs
[Barbs]

Other Parameters

**kwargs
The barbs can further be customized using PolyCollection keyword argu-
ments:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha array-like or scalar or None
animated bool
antialiased or aa or antialiaseds bool or list of bools
array ndarray or None
capstyle CapStyle or {'butt', 'projecting', 'round'}
clim (vmin: float, vmax: float)
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
cmap Colormap or str or None
color color or list of rgba tuples
contains unknown
edgecolor or ec or edgecolors color or list of colors or 'face'
facecolor or facecolors or fc color or list of colors
figure Figure

gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or dashes or linestyles or ls str or tuple or list thereof
linewidth or linewidths or lw float or list of floats
norm Normalize or None
offset_position unknown
offsets (N, 2) or (2,) array-like
path_effects AbstractPathEffect

picker None or bool or float or callable
pickradius float

continues on next page

18.42. matplotlib.quiver 2747

Matplotlib, Release 3.4.3

Table 227 – continued from previous page
Property Description
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
urls list of str or None
visible bool
zorder float

__module__ = 'matplotlib.quiver'

barbs_doc = '\nPlot a 2D field of barbs.\n\nCall signature::\n\n barbs([X, Y], U, V, [C], **kw)\n\nWhere *X*, *Y* define the barb locations, *U*, *V* define the barb\ndirections, and *C* optionally sets the color.\n\nAll arguments may be 1D or 2D. *U*, *V*, *C* may be masked arrays, but masked\n*X*, *Y* are not supported at present.\n\nBarbs are traditionally used in meteorology as a way to plot the speed\nand direction of wind observations, but can technically be used to\nplot any two dimensional vector quantity. As opposed to arrows, which\ngive vector magnitude by the length of the arrow, the barbs give more\nquantitative information about the vector magnitude by putting slanted\nlines or a triangle for various increments in magnitude, as show\nschematically below::\n\n : /\\ \\\n : / \\ \\\n : / \\ \\ \\\n : / \\ \\ \\\n : ------------------------------\n\nThe largest increment is given by a triangle (or "flag"). After those\ncome full lines (barbs). The smallest increment is a half line. There\nis only, of course, ever at most 1 half line. If the magnitude is\nsmall and only needs a single half-line and no full lines or\ntriangles, the half-line is offset from the end of the barb so that it\ncan be easily distinguished from barbs with a single full line. The\nmagnitude for the barb shown above would nominally be 65, using the\nstandard increments of 50, 10, and 5.\n\nSee also https://en.wikipedia.org/wiki/Wind_barb.\n\nParameters\n----------\nX, Y : 1D or 2D array-like, optional\n The x and y coordinates of the barb locations. See *pivot* for how the\n barbs are drawn to the x, y positions.\n\n If not given, they will be generated as a uniform integer meshgrid based\n on the dimensions of *U* and *V*.\n\n If *X* and *Y* are 1D but *U*, *V* are 2D, *X*, *Y* are expanded to 2D\n using ``X, Y = np.meshgrid(X, Y)``. In this case ``len(X)`` and ``len(Y)``\n must match the column and row dimensions of *U* and *V*.\n\nU, V : 1D or 2D array-like\n The x and y components of the barb shaft.\n\nC : 1D or 2D array-like, optional\n Numeric data that defines the barb colors by colormapping via *norm* and\n *cmap*.\n\n This does not support explicit colors. If you want to set colors directly,\n use *barbcolor* instead.\n\nlength : float, default: 7\n Length of the barb in points; the other parts of the barb\n are scaled against this.\n\npivot : {\'tip\', \'middle\'} or float, default: \'tip\'\n The part of the arrow that is anchored to the *X*, *Y* grid. The barb\n rotates about this point. This can also be a number, which shifts the\n start of the barb that many points away from grid point.\n\nbarbcolor : color or color sequence\n The color of all parts of the barb except for the flags. This parameter\n is analogous to the *edgecolor* parameter for polygons, which can be used\n instead. However this parameter will override facecolor.\n\nflagcolor : color or color sequence\n The color of any flags on the barb. This parameter is analogous to the\n *facecolor* parameter for polygons, which can be used instead. However,\n this parameter will override facecolor. If this is not set (and *C* has\n not either) then *flagcolor* will be set to match *barbcolor* so that the\n barb has a uniform color. If *C* has been set, *flagcolor* has no effect.\n\nsizes : dict, optional\n A dictionary of coefficients specifying the ratio of a given\n feature to the length of the barb. Only those values one wishes to\n override need to be included. These features include:\n\n - \'spacing\' - space between features (flags, full/half barbs)\n - \'height\' - height (distance from shaft to top) of a flag or full barb\n - \'width\' - width of a flag, twice the width of a full barb\n - \'emptybarb\' - radius of the circle used for low magnitudes\n\nfill_empty : bool, default: False\n Whether the empty barbs (circles) that are drawn should be filled with\n the flag color. If they are not filled, the center is transparent.\n\nrounding : bool, default: True\n Whether the vector magnitude should be rounded when allocating barb\n components. If True, the magnitude is rounded to the nearest multiple\n of the half-barb increment. If False, the magnitude is simply truncated\n to the next lowest multiple.\n\nbarb_increments : dict, optional\n A dictionary of increments specifying values to associate with\n different parts of the barb. Only those values one wishes to\n override need to be included.\n\n - \'half\' - half barbs (Default is 5)\n - \'full\' - full barbs (Default is 10)\n - \'flag\' - flags (default is 50)\n\nflip_barb : bool or array-like of bool, default: False\n Whether the lines and flags should point opposite to normal.\n Normal behavior is for the barbs and lines to point right (comes from wind\n barbs having these features point towards low pressure in the Northern\n Hemisphere).\n\n A single value is applied to all barbs. Individual barbs can be flipped by\n passing a bool array of the same size as *U* and *V*.\n\nReturns\n-------\nbarbs : `~matplotlib.quiver.Barbs`\n\nOther Parameters\n----------------\n**kwargs\n The barbs can further be customized using `.PolyCollection` keyword\n arguments:\n\n \n .. table::\n :class: property-table\n\n === ===\n Property Description \n === ===\n :meth:`agg_filter <matplotlib.artist.Artist.set_agg_filter>` a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array\n :meth:`alpha <matplotlib.collections.Collection.set_alpha>` array-like or scalar or None \n :meth:`animated <matplotlib.artist.Artist.set_animated>` bool \n :meth:`antialiased <matplotlib.collections.Collection.set_antialiased>` or aa or antialiaseds bool or list of bools \n :meth:`array <matplotlib.cm.ScalarMappable.set_array>` ndarray or None \n :meth:`capstyle <matplotlib.collections.Collection.set_capstyle>` `.CapStyle` or {\'butt\', \'projecting\', \'round\'} \n :meth:`clim <matplotlib.cm.ScalarMappable.set_clim>` (vmin: float, vmax: float) \n :meth:`clip_box <matplotlib.artist.Artist.set_clip_box>` `.Bbox` \n :meth:`clip_on <matplotlib.artist.Artist.set_clip_on>` bool \n :meth:`clip_path <matplotlib.artist.Artist.set_clip_path>` Patch or (Path, Transform) or None \n :meth:`cmap <matplotlib.cm.ScalarMappable.set_cmap>` `.Colormap` or str or None \n :meth:`color <matplotlib.collections.Collection.set_color>` color or list of rgba tuples \n :meth:`contains <matplotlib.artist.Artist.set_contains>` unknown \n :meth:`edgecolor <matplotlib.collections.Collection.set_edgecolor>` or ec or edgecolors color or list of colors or \'face\' \n :meth:`facecolor <matplotlib.collections.Collection.set_facecolor>` or facecolors or fc color or list of colors \n :meth:`figure <matplotlib.artist.Artist.set_figure>` `.Figure` \n :meth:`gid <matplotlib.artist.Artist.set_gid>` str \n :meth:`hatch <matplotlib.collections.Collection.set_hatch>` {\'/\', \'\\\\\', \'|\', \'-\', \'+\', \'x\', \'o\', \'O\', \'.\', \'*\'} \n :meth:`in_layout <matplotlib.artist.Artist.set_in_layout>` bool \n :meth:`joinstyle <matplotlib.collections.Collection.set_joinstyle>` `.JoinStyle` or {\'miter\', \'round\', \'bevel\'} \n :meth:`label <matplotlib.artist.Artist.set_label>` object \n :meth:`linestyle <matplotlib.collections.Collection.set_linestyle>` or dashes or linestyles or ls str or tuple or list thereof \n :meth:`linewidth <matplotlib.collections.Collection.set_linewidth>` or linewidths or lw float or list of floats \n :meth:`norm <matplotlib.cm.ScalarMappable.set_norm>` `.Normalize` or None \n :meth:`offset_position <matplotlib.collections.Collection.set_offset_position>` unknown \n :meth:`offsets <matplotlib.collections.Collection.set_offsets>` (N, 2) or (2,) array-like \n :meth:`path_effects <matplotlib.artist.Artist.set_path_effects>` `.AbstractPathEffect` \n :meth:`picker <matplotlib.artist.Artist.set_picker>` None or bool or float or callable \n :meth:`pickradius <matplotlib.collections.Collection.set_pickradius>` float \n :meth:`rasterized <matplotlib.artist.Artist.set_rasterized>` bool \n :meth:`sketch_params <matplotlib.artist.Artist.set_sketch_params>` (scale: float, length: float, randomness: float) \n :meth:`snap <matplotlib.artist.Artist.set_snap>` bool or None \n :meth:`transform <matplotlib.artist.Artist.set_transform>` `.Transform` \n :meth:`url <matplotlib.artist.Artist.set_url>` str \n :meth:`urls <matplotlib.collections.Collection.set_urls>` list of str or None \n :meth:`visible <matplotlib.artist.Artist.set_visible>` bool \n :meth:`zorder <matplotlib.artist.Artist.set_zorder>` float \n === ===\n\n'

set_UVC(U, V, C=None)

set_offsets(xy)
Set the offsets for the barb polygons. This saves the offsets passed in and masks them as appro-
priate for the existing U/V data.

Parameters

xy
[sequence of pairs of floats]

Examples using matplotlib.quiver.Barbs

18.43 matplotlib.rcsetup

The rcsetup module contains the validation code for customization using Matplotlib's rc settings.

Each rc setting is assigned a function used to validate any attempted changes to that setting. The validation
functions are defined in the rcsetup module, and are used to construct the rcParams global object which stores
the settings and is referenced throughout Matplotlib.

The default values of the rc settings are set in the default matplotlibrc file. Any additions or deletions to
the parameter set listed here should also be propagated to the matplotlibrc.template in Matplotlib's
root source directory.

class matplotlib.rcsetup.ValidateInStrings(key, valid, ignorecase=False, *,
_deprecated_since=None)

Bases: object

valid is a list of legal strings.

matplotlib.rcsetup.cycler(*args, **kwargs)
Create a Cycler object much like cycler.cycler(), but includes input validation.

Call signatures:

2748 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object
https://matplotlib.org/cycler/generated/cycler.Cycler.html#cycler.Cycler
https://matplotlib.org/cycler/generated/cycler.cycler.html#cycler.cycler

Matplotlib, Release 3.4.3

cycler(cycler)
cycler(label=values[, label2=values2[, ...]])
cycler(label, values)

Form 1 copies a given Cycler object.

Form 2 creates a Cycler which cycles over one or more properties simultaneously. If multiple prop-
erties are given, their value lists must have the same length.

Form 3 creates a Cycler for a single property. This form exists for compatibility with the original
cycler. Its use is discouraged in favor of the kwarg form, i.e. cycler(label=values).

Parameters

cycler
[Cycler] Copy constructor for Cycler.

label
[str] The property key. Must be a valid Artist property. For example, 'color' or
'linestyle'. Aliases are allowed, such as 'c' for 'color' and 'lw' for 'linewidth'.

values
[iterable] Finite-length iterable of the property values. These values are validated
and will raise a ValueError if invalid.

Returns

Cycler
A new Cycler for the given properties.

Examples

Creating a cycler for a single property:

>>> c = cycler(color=['red', 'green', 'blue'])

Creating a cycler for simultaneously cycling over multiple properties (e.g. red circle, green plus, blue
cross):

>>> c = cycler(color=['red', 'green', 'blue'],
... marker=['o', '+', 'x'])

matplotlib.rcsetup.validate_any(s)

matplotlib.rcsetup.validate_anylist(s)

matplotlib.rcsetup.validate_aspect(s)

matplotlib.rcsetup.validate_axisbelow(s)

18.43. matplotlib.rcsetup 2749

https://matplotlib.org/cycler/generated/cycler.Cycler.html#cycler.Cycler
https://matplotlib.org/cycler/generated/cycler.Cycler.html#cycler.Cycler
https://matplotlib.org/cycler/generated/cycler.Cycler.html#cycler.Cycler
https://matplotlib.org/cycler/generated/cycler.Cycler.html#cycler.Cycler

Matplotlib, Release 3.4.3

matplotlib.rcsetup.validate_backend(s)

matplotlib.rcsetup.validate_bbox(s)

matplotlib.rcsetup.validate_bool(b)
Convert b to bool or raise.

matplotlib.rcsetup.validate_bool_maybe_none(b)
[Deprecated] Convert b to bool or raise, passing through None.

Notes

Deprecated since version 3.3.

matplotlib.rcsetup.validate_color(s)
Return a valid color arg.

matplotlib.rcsetup.validate_color_for_prop_cycle(s)

matplotlib.rcsetup.validate_color_or_auto(s)

matplotlib.rcsetup.validate_color_or_inherit(s)
Return a valid color arg.

matplotlib.rcsetup.validate_colorlist(s)
return a list of colorspecs

matplotlib.rcsetup.validate_cycler(s)
Return a Cycler object from a string repr or the object itself.

matplotlib.rcsetup.validate_dashlist(s)
return a list of floats

matplotlib.rcsetup.validate_dpi(s)
Confirm s is string 'figure' or convert s to float or raise.

matplotlib.rcsetup.validate_fillstylelist(s)

matplotlib.rcsetup.validate_float(s)

matplotlib.rcsetup.validate_float_or_None(s)

matplotlib.rcsetup.validate_floatlist(s)
return a list of floats

matplotlib.rcsetup.validate_font_properties(s)

matplotlib.rcsetup.validate_fontsize(s)

matplotlib.rcsetup.validate_fontsize_None(s)

matplotlib.rcsetup.validate_fontsizelist(s)

matplotlib.rcsetup.validate_fonttype(s)
Confirm that this is a Postscript or PDF font type that we know how to convert to.

matplotlib.rcsetup.validate_fontweight(s)

2750 Chapter 18. Modules

Matplotlib, Release 3.4.3

matplotlib.rcsetup.validate_hatch(s)
Validate a hatch pattern. A hatch pattern string can have any sequence of the following characters: \
/ | - + * . x o O.

matplotlib.rcsetup.validate_hatchlist(s)
Validate a hatch pattern. A hatch pattern string can have any sequence of the following characters: \
/ | - + * . x o O.

matplotlib.rcsetup.validate_hinting(s)
[Deprecated]

Notes

Deprecated since version 3.3:

matplotlib.rcsetup.validate_hist_bins(s)

matplotlib.rcsetup.validate_int(s)

matplotlib.rcsetup.validate_int_or_None(s)

matplotlib.rcsetup.validate_markevery(s)
Validate the markevery property of a Line2D object.

Parameters

s
[None, int, float, slice, length-2 tuple of ints,] length-2 tuple of floats, list of ints

Returns

None, int, float, slice, length-2 tuple of ints,
length-2 tuple of floats, list of ints

matplotlib.rcsetup.validate_markeverylist(s)
Validate the markevery property of a Line2D object.

Parameters

s
[None, int, float, slice, length-2 tuple of ints,] length-2 tuple of floats, list of ints

Returns

None, int, float, slice, length-2 tuple of ints,
length-2 tuple of floats, list of ints

matplotlib.rcsetup.validate_movie_writer(s)
[Deprecated]

18.43. matplotlib.rcsetup 2751

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

matplotlib.rcsetup.validate_nseq_float(n)
[Deprecated]

Notes

Deprecated since version 3.3:

matplotlib.rcsetup.validate_nseq_int(n)
[Deprecated]

Notes

Deprecated since version 3.3:

matplotlib.rcsetup.validate_ps_distiller(s)

matplotlib.rcsetup.validate_sketch(s)

matplotlib.rcsetup.validate_string(s)

matplotlib.rcsetup.validate_string_or_None(s)

matplotlib.rcsetup.validate_stringlist(s)
return a list of strings

matplotlib.rcsetup.validate_webagg_address(s)
[Deprecated]

Notes

Deprecated since version 3.3:

matplotlib.rcsetup.validate_whiskers(s)

18.44 matplotlib.sankey

Module for creating Sankey diagrams using Matplotlib.

class matplotlib.sankey.Sankey(ax=None, scale=1.0, unit='', format='%G',
gap=0.25, radius=0.1, shoulder=0.03, offset=0.15,
head_angle=100, margin=0.4, tolerance=1e-06,
**kwargs)

Bases: object

Sankey diagram.

2752 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Sankey diagrams are a specific type of flow diagram, in which the width of the arrows is
shown proportionally to the flow quantity. They are typically used to visualize energy or
material or cost transfers between processes. Wikipedia (6/1/2011)

Create a new Sankey instance.

The optional arguments listed below are applied to all subdiagrams so that there is consistent alignment
and formatting.

In order to draw a complex Sankey diagram, create an instance of Sankey by calling it without any
kwargs:

sankey = Sankey()

Then add simple Sankey sub-diagrams:

sankey.add() # 1
sankey.add() # 2
#...
sankey.add() # n

Finally, create the full diagram:

sankey.finish()

Or, instead, simply daisy-chain those calls:

Sankey().add().add... .add().finish()

Other Parameters

ax
[Axes] Axes onto which the data should be plotted. If ax isn't provided, new Axes
will be created.

scale
[float] Scaling factor for the flows. scale sizes the width of the paths in order to
maintain proper layout. The same scale is applied to all subdiagrams. The value
should be chosen such that the product of the scale and the sum of the inputs
is approximately 1.0 (and the product of the scale and the sum of the outputs is
approximately -1.0).

unit
[str] The physical unit associated with the flow quantities. If unit is None, then
none of the quantities are labeled.

format
[str or callable] A Python number formatting string or callable used to label the
flows with their quantities (i.e., a number times a unit, where the unit is given). If

18.44. matplotlib.sankey 2753

https://en.wikipedia.org/wiki/Sankey_diagram

Matplotlib, Release 3.4.3

a format string is given, the label will be format % quantity. If a callable
is given, it will be called with quantity as an argument.

gap
[float] Space between paths that break in/break away to/from the top or bottom.

radius
[float] Inner radius of the vertical paths.

shoulder
[float] Size of the shoulders of output arrows.

offset
[float] Text offset (from the dip or tip of the arrow).

head_angle
[float] Angle, in degrees, of the arrow heads (and negative of the angle of the tails).

margin
[float] Minimum space between Sankey outlines and the edge of the plot area.

tolerance
[float] Acceptable maximum of the magnitude of the sum of flows. The magnitude
of the sum of connected flows cannot be greater than tolerance.

**kwargs
Any additional keyword arguments will be passed to add(), which will create
the first subdiagram.

See also:

Sankey.add

Sankey.finish

Examples

add(patchlabel='', flows=None, orientations=None, labels='', trunklength=1.0, path-
lengths=0.25, prior=None, connect=(0, 0), rotation=0, **kwargs)
Add a simple Sankey diagram with flows at the same hierarchical level.

Parameters

patchlabel
[str] Label to be placed at the center of the diagram. Note that label (not patch-
label) can be passed as keyword argument to create an entry in the legend.

2754 Chapter 18. Modules

Matplotlib, Release 3.4.3

0.25

0.15

0.6

First
0.2

Second
0.15 Third

0.05

Fourth
0.5

Fifth
0.1

The default settings produce a diagram like this.

flows
[list of float] Array of flow values. By convention, inputs are positive and outputs
are negative.

Flows are placed along the top of the diagram from the inside out in order of
their index within flows. They are placed along the sides of the diagram from the
top down and along the bottom from the outside in.

If the sum of the inputs and outputs is nonzero, the discrepancy will appear as a
cubic Bezier curve along the top and bottom edges of the trunk.

orientations
[list of {-1, 0, 1}] List of orientations of the flows (or a single orientation to be
used for all flows). Valid values are 0 (inputs from the left, outputs to the right),
1 (from and to the top) or -1 (from and to the bottom).

labels
[list of (str or None)] List of labels for the flows (or a single label to be used for
all flows). Each label may be None (no label), or a labeling string. If an entry
is a (possibly empty) string, then the quantity for the corresponding flow will be
shown below the string. However, if the unit of the main diagram is None, then
quantities are never shown, regardless of the value of this argument.

18.44. matplotlib.sankey 2755

Matplotlib, Release 3.4.3

Widget
A

25%

0%

60%

First
10% Second

20%

Third
5%

Fourth
15%Fifth

10%

Hurray!
40%

Flow Diagram of a Widget

trunklength
[float] Length between the bases of the input and output groups (in data-space
units).

pathlengths
[list of float] List of lengths of the vertical arrows before break-in or after break-
away. If a single value is given, then it will be applied to the first (inside) paths on
the top and bottom, and the length of all other arrowswill be justified accordingly.
The pathlengths are not applied to the horizontal inputs and outputs.

prior
[int] Index of the prior diagram to which this diagram should be connected.

connect
[(int, int)] A (prior, this) tuple indexing the flow of the prior diagram and the
flow of this diagram which should be connected. If this is the first diagram or
prior is None, connect will be ignored.

rotation
[float] Angle of rotation of the diagram in degrees. The interpretation of the
orientations argument will be rotated accordingly (e.g., if rotation == 90, an

2756 Chapter 18. Modules

Matplotlib, Release 3.4.3

Two Systems

one
two

orientations entry of 1 means to/from the left). rotation is ignored if this diagram
is connected to an existing one (using prior and connect).

Returns

Sankey
The current Sankey instance.

Other Parameters

**kwargs
Additional keyword arguments set matplotlib.patches.PathPatch
properties, listed below. For example, one may want to use fill=False or
label="A legend entry".

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown

continues on next page

18.44. matplotlib.sankey 2757

Matplotlib, Release 3.4.3

Table 228 – continued from previous page
Property Description
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

See also:

Sankey.finish

finish()
Adjust the axes and return a list of information about the Sankey subdiagram(s).

Return value is a list of subdiagrams represented with the following fields:

2758 Chapter 18. Modules

Matplotlib, Release 3.4.3

Field Description
patch Sankey outline (an instance of PathPatch)
flows values of the flows (positive for input, negative for output)
an-
gles

list of angles of the arrows [deg/90] For example, if the diagram has not been
rotated, an input to the top side will have an angle of 3 (DOWN), and an output
from the top side will have an angle of 1 (UP). If a flow has been skipped
(because its magnitude is less than tolerance), then its angle will be None.

tips array in which each row is an [x, y] pair indicating the positions of the tips (or
"dips") of the flow paths If the magnitude of a flow is less the tolerance for
the instance of Sankey, the flow is skipped and its tip will be at the center
of the diagram.

text Text instance for the label of the diagram
texts list of Text instances for the labels of flows

See also:

Sankey.add

18.45 matplotlib.scale

Scales define the distribution of data values on an axis, e.g. a log scaling.

They are attached to an Axis and hold a Transform, which is responsible for the actual data transforma-
tion.

See also axes.Axes.set_xscale and the scales examples in the documentation.

class matplotlib.scale.FuncScale(axis, functions)
Bases: matplotlib.scale.ScaleBase

Provide an arbitrary scale with user-supplied function for the axis.

Parameters

axis
[Axis] The axis for the scale.

functions
[(callable, callable)] two-tuple of the forward and inverse functions for the scale.
The forward function must be monotonic.

Both functions must have the signature:

def forward(values: array-like) -> array-like

get_transform()
Return the FuncTransform associated with this scale.

18.45. matplotlib.scale 2759

Matplotlib, Release 3.4.3

name = 'function'

set_default_locators_and_formatters(axis)
Set the locators and formatters of axis to instances suitable for this scale.

class matplotlib.scale.FuncScaleLog(axis, functions, base=10)
Bases: matplotlib.scale.LogScale

Provide an arbitrary scale with user-supplied function for the axis and then put on a logarithmic axes.

Parameters

axis
[matplotlib.axis.Axis] The axis for the scale.

functions
[(callable, callable)] two-tuple of the forward and inverse functions for the scale.
The forward function must be monotonic.

Both functions must have the signature:

def forward(values: array-like) -> array-like

base
[float, default: 10] Logarithmic base of the scale.

property base

get_transform()
Return the Transform associated with this scale.

name = 'functionlog'

class matplotlib.scale.FuncTransform(forward, inverse)
Bases: matplotlib.transforms.Transform

A simple transform that takes and arbitrary function for the forward and inverse transform.

Parameters

forward
[callable] The forward function for the transform. This function must have an
inverse and, for best behavior, be monotonic. It must have the signature:

def forward(values: array-like) -> array-like

inverse
[callable] The inverse of the forward function. Signature as forward.

has_inverse = True

input_dims = 1

2760 Chapter 18. Modules

Matplotlib, Release 3.4.3

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

is_separable = True

output_dims = 1

transform_non_affine(values)
Apply only the non-affine part of this transformation.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

class matplotlib.scale.InvertedLogTransform(base)
Bases: matplotlib.transforms.Transform

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

has_inverse = True

input_dims = 1

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

18.45. matplotlib.scale 2761

Matplotlib, Release 3.4.3

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

is_separable = True

output_dims = 1

transform_non_affine(a)
Apply only the non-affine part of this transformation.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

class matplotlib.scale.InvertedSymmetricalLogTransform(base, linthresh,
linscale)

Bases: matplotlib.transforms.Transform

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

has_inverse = True

input_dims = 1

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

is_separable = True

2762 Chapter 18. Modules

Matplotlib, Release 3.4.3

output_dims = 1

transform_non_affine(a)
Apply only the non-affine part of this transformation.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

class matplotlib.scale.LinearScale(axis)
Bases: matplotlib.scale.ScaleBase

The default linear scale.

get_transform()
Return the transform for linear scaling, which is just the IdentityTransform.

name = 'linear'

set_default_locators_and_formatters(axis)
Set the locators and formatters of axis to instances suitable for this scale.

class matplotlib.scale.LogScale(axis, **kwargs)
Bases: matplotlib.scale.ScaleBase

A standard logarithmic scale. Care is taken to only plot positive values.

Parameters

axis
[Axis] The axis for the scale.

base
[float, default: 10] The base of the logarithm.

nonpositive
[{'clip', 'mask'}, default: 'clip'] Determines the behavior for non-positive values.
They can either be masked as invalid, or clipped to a very small positive number.

18.45. matplotlib.scale 2763

Matplotlib, Release 3.4.3

subs
[sequence of int, default: None] Where to place the subticks between each major
tick. For example, in a log10 scale, [2, 3, 4, 5, 6, 7, 8, 9] will place
8 logarithmically spaced minor ticks between each major tick.

property InvertedLogTransform

property LogTransform

property base

get_transform()
Return the LogTransform associated with this scale.

limit_range_for_scale(vmin, vmax, minpos)
Limit the domain to positive values.

name = 'log'

set_default_locators_and_formatters(axis)
Set the locators and formatters of axis to instances suitable for this scale.

class matplotlib.scale.LogTransform(base, nonpositive='clip')
Bases: matplotlib.transforms.Transform

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

has_inverse = True

input_dims = 1

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

is_separable = True

output_dims = 1

transform_non_affine(a)
Apply only the non-affine part of this transformation.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

2764 Chapter 18. Modules

Matplotlib, Release 3.4.3

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

class matplotlib.scale.LogisticTransform(nonpositive='mask')
Bases: matplotlib.transforms.Transform

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

has_inverse = True

input_dims = 1

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

is_separable = True

output_dims = 1

transform_non_affine(a)
logistic transform (base 10)

class matplotlib.scale.LogitScale(axis, nonpositive='mask', *,
one_half='\x0crac{1}{2}', use_overline=False)

Bases: matplotlib.scale.ScaleBase

Logit scale for data between zero and one, both excluded.

This scale is similar to a log scale close to zero and to one, and almost linear around 0.5. It maps the
interval]0, 1[onto]-infty, +infty[.

18.45. matplotlib.scale 2765

Matplotlib, Release 3.4.3

Parameters

axis
[matplotlib.axis.Axis] Currently unused.

nonpositive
[{'mask', 'clip'}] Determines the behavior for values beyond the open interval]0,
1[. They can either be masked as invalid, or clipped to a number very close to 0
or 1.

use_overline
[bool, default: False] Indicate the usage of survival notation (overline{x}) in place
of standard notation (1-x) for probability close to one.

one_half
[str, default: r"frac{1}{2}"] The string used for ticks formatter to represent 1/2.

get_transform()
Return the LogitTransform associated with this scale.

limit_range_for_scale(vmin, vmax, minpos)
Limit the domain to values between 0 and 1 (excluded).

name = 'logit'

set_default_locators_and_formatters(axis)
Set the locators and formatters of axis to instances suitable for this scale.

class matplotlib.scale.LogitTransform(nonpositive='mask')
Bases: matplotlib.transforms.Transform

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

has_inverse = True

input_dims = 1

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

is_separable = True

2766 Chapter 18. Modules

Matplotlib, Release 3.4.3

output_dims = 1

transform_non_affine(a)
logit transform (base 10), masked or clipped

class matplotlib.scale.ScaleBase(axis)
Bases: object

The base class for all scales.

Scales are separable transformations, working on a single dimension.

Any subclasses will want to override:

• name

• get_transform()

• set_default_locators_and_formatters()

And optionally:

• limit_range_for_scale()

Construct a new scale.

Notes

The following note is for scale implementors.

For back-compatibility reasons, scales take an Axis object as first argument. However, this argument
should not be used: a single scale object should be usable by multiple Axises at the same time.

get_transform()
Return the Transform object associated with this scale.

limit_range_for_scale(vmin, vmax, minpos)
Return the range vmin, vmax, restricted to the domain supported by this scale (if any).

minpos should be the minimum positive value in the data. This is used by log scales to determine
a minimum value.

set_default_locators_and_formatters(axis)
Set the locators and formatters of axis to instances suitable for this scale.

class matplotlib.scale.SymmetricalLogScale(axis, **kwargs)
Bases: matplotlib.scale.ScaleBase

The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the
origin.

Since the values close to zero tend toward infinity, there is a need to have a range around zero that is
linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).

Parameters

18.45. matplotlib.scale 2767

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

base
[float, default: 10] The base of the logarithm.

linthresh
[float, default: 2] Defines the range (-x, x), within which the plot is linear.
This avoids having the plot go to infinity around zero.

subs
[sequence of int] Where to place the subticks between each major tick. For exam-
ple, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]will place 8 logarithmically
spaced minor ticks between each major tick.

linscale
[float, optional] This allows the linear range (-linthresh, linthresh) to
be stretched relative to the logarithmic range. Its value is the number of decades
to use for each half of the linear range. For example, when linscale == 1.0 (the
default), the space used for the positive and negative halves of the linear range will
be equal to one decade in the logarithmic range.

Construct a new scale.

Notes

The following note is for scale implementors.

For back-compatibility reasons, scales take an Axis object as first argument. However, this argument
should not be used: a single scale object should be usable by multiple Axises at the same time.

property InvertedSymmetricalLogTransform

property SymmetricalLogTransform

property base

get_transform()
Return the SymmetricalLogTransform associated with this scale.

property linscale

property linthresh

name = 'symlog'

set_default_locators_and_formatters(axis)
Set the locators and formatters of axis to instances suitable for this scale.

class matplotlib.scale.SymmetricalLogTransform(base, linthresh, linscale)
Bases: matplotlib.transforms.Transform

Parameters

2768 Chapter 18. Modules

Matplotlib, Release 3.4.3

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

has_inverse = True

input_dims = 1

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

is_separable = True

output_dims = 1

transform_non_affine(a)
Apply only the non-affine part of this transformation.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

matplotlib.scale.get_scale_names()
Return the names of the available scales.

matplotlib.scale.register_scale(scale_class)
Register a new kind of scale.

Parameters

scale_class
[subclass of ScaleBase] The scale to register.

18.45. matplotlib.scale 2769

Matplotlib, Release 3.4.3

matplotlib.scale.scale_factory(scale, axis, **kwargs)
Return a scale class by name.

Parameters

scale
[{'function', 'functionlog', 'linear', 'log', 'logit', 'symlog'}]

axis
[matplotlib.axis.Axis]

18.46 matplotlib.sphinxext.plot_directive

18.46.1 A directive for including a Matplotlib plot in a Sphinx document

By default, in HTML output, plot will include a .png file with a link to a high-res .png and .pdf. In LaTeX
output, it will include a .pdf.

The source code for the plot may be included in one of three ways:

1. A path to a source file as the argument to the directive:

.. plot:: path/to/plot.py

When a path to a source file is given, the content of the directive may optionally contain a caption for
the plot:

.. plot:: path/to/plot.py

The plot's caption.

Additionally, one may specify the name of a function to call (with no arguments) immediately after
importing the module:

.. plot:: path/to/plot.py plot_function1

2. Included as inline content to the directive:

.. plot::

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
img = mpimg.imread('_static/stinkbug.png')
imgplot = plt.imshow(img)

3. Using doctest syntax:

2770 Chapter 18. Modules

Matplotlib, Release 3.4.3

.. plot::

A plotting example:
>>> import matplotlib.pyplot as plt
>>> plt.plot([1, 2, 3], [4, 5, 6])

Options

The plot directive supports the following options:

format
[{'python', 'doctest'}] The format of the input.

include-source
[bool] Whether to display the source code. The default can be changed using the
plot_include_source variable in conf.py.

encoding
[str] If this source file is in a non-UTF8 or non-ASCII encoding, the encoding must be
specified using the :encoding: option. The encoding will not be inferred using the
-*- coding -*- metacomment.

context
[bool or str] If provided, the code will be run in the context of all previous plot directives
for which the :context: option was specified. This only applies to inline code plot
directives, not those run from files. If the :context: reset option is specified, the
context is reset for this and future plots, and previous figures are closed prior to running the
code. :context: close-figs keeps the context but closes previous figures before
running the code.

nofigs
[bool] If specified, the code block will be run, but no figures will be inserted. This is
usually useful with the :context: option.

caption
[str] If specified, the option's argument will be used as a caption for the figure. This over-
writes the caption given in the content, when the plot is generated from a file.

Additionally, this directive supports all of the options of the image directive, except for target (since plot
will add its own target). These include alt, height, width, scale, align and class.

18.46. matplotlib.sphinxext.plot_directive 2771

Matplotlib, Release 3.4.3

Configuration options

The plot directive has the following configuration options:

plot_include_source
Default value for the include-source option

plot_html_show_source_link
Whether to show a link to the source in HTML.

plot_pre_code
Code that should be executed before each plot. If not specified or None it will default to a
string containing:

import numpy as np
from matplotlib import pyplot as plt

plot_basedir
Base directory, to which plot:: file names are relative to. (If None or empty, file names
are relative to the directory where the file containing the directive is.)

plot_formats
File formats to generate. List of tuples or strings:

[(suffix, dpi), suffix, ...]

that determine the file format and the DPI. For entries whose DPI was omitted, sensible
defaults are chosen. When passing from the command line through sphinx_build the list
should be passed as suffix:dpi,suffix:dpi, ...

plot_html_show_formats
Whether to show links to the files in HTML.

plot_rcparams
A dictionary containing any non-standard rcParams that should be applied before each
plot.

plot_apply_rcparams
By default, rcParams are applied when :context: option is not used in a plot directive.
This configuration option overrides this behavior and applies rcParams before each plot.

plot_working_directory
By default, the working directory will be changed to the directory of the example, so the
code can get at its data files, if any. Also its path will be added to sys.path so it can im-
port any helper modules sitting beside it. This configuration option can be used to specify
a central directory (also added to sys.path) where data files and helper modules for all
code are located.

2772 Chapter 18. Modules

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path

Matplotlib, Release 3.4.3

plot_template
Provide a customized template for preparing restructured text.

class matplotlib.sphinxext.plot_directive.PlotDirective(name, argu-
ments, options,
content, lineno,
content_offset,
block_text, state,
state_machine)

The .. plot:: directive, as documented in the module's docstring.

run()
Run the plot directive.

exception matplotlib.sphinxext.plot_directive.PlotError

matplotlib.sphinxext.plot_directive.mark_plot_labels(app, document)
To make plots referenceable, we need to move the reference from the "htmlonly" (or "latexonly") node
to the actual figure node itself.

matplotlib.sphinxext.plot_directive.out_of_date(original, derived)
Return whether derived is out-of-date relative to original, both of which are full file paths.

matplotlib.sphinxext.plot_directive.render_figures(code, code_path,
output_dir, out-
put_base, context,
function_name, config,
context_reset=False,
close_figs=False)

Run a pyplot script and save the images in output_dir.

Save the images under output_dir with file names derived from output_base

matplotlib.sphinxext.plot_directive.run_code(code, code_path, ns=None, func-
tion_name=None)

Import a Python module from a path, and run the function given by name, if function_name is not
None.

matplotlib.sphinxext.plot_directive.split_code_at_show(text)
Split code at plt.show().

matplotlib.sphinxext.plot_directive.unescape_doctest(text)
Extract code from a piece of text, which contains either Python code or doctests.

18.46. matplotlib.sphinxext.plot_directive 2773

Matplotlib, Release 3.4.3

18.47 matplotlib.spines

class matplotlib.spines.Spine(axes, spine_type, path, **kwargs)
Bases: matplotlib.patches.Patch

An axis spine -- the line noting the data area boundaries.

Spines are the lines connecting the axis tick marks and noting the boundaries of the data area. They
can be placed at arbitrary positions. See set_position for more information.

The default position is ('outward', 0).

Spines are subclasses of Patch, and inherit much of their behavior.

Spines draw a line, a circle, or an arc depending if set_patch_line, set_patch_circle, or
set_patch_arc has been called. Line-like is the default.

Parameters

axes
[Axes] The Axes instance containing the spine.

spine_type
[str] The spine type.

path
[Path] The Path instance used to draw the spine.

Other Parameters

**kwargs
Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

continues on next page

2774 Chapter 18. Modules

Matplotlib, Release 3.4.3

Table 229 – continued from previous page
Property Description
fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

classmethod arc_spine(axes, spine_type, center, radius, theta1, theta2, **kwargs)
Create and return an arc Spine.

classmethod circular_spine(axes, center, radius, **kwargs)
Create and return a circular Spine.

cla()
[Deprecated]

Notes

Deprecated since version 3.4:

clear()
Clear the current spine.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

18.47. matplotlib.spines 2775

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

get_bounds()
Get the bounds of the spine.

get_patch_transform()
Return the Transform instance mapping patch coordinates to data coordinates.

For example, one may define a patch of a circle which represents a radius of 5 by providing
coordinates for a unit circle, and a transform which scales the coordinates (the patch coordinate)
by 5.

get_path()
Return the path of this patch.

get_position()
Return the spine position.

get_spine_transform()
Return the spine transform.

get_window_extent(renderer=None)
Return the window extent of the spines in display space, including padding for ticks (but not their
labels)

See also:

matplotlib.axes.Axes.get_tightbbox

matplotlib.axes.Axes.get_window_extent

classmethod linear_spine(axes, spine_type, **kwargs)
Create and return a linear Spine.

register_axis(axis)
Register an axis.

An axis should be registered with its corresponding spine from the Axes instance. This allows
the spine to clear any axis properties when needed.

set_bounds(low=None, high=None)
Set the spine bounds.

Parameters

low
[float or None, optional] The lower spine bound. Passing None leaves the limit
unchanged.

The bounds may also be passed as the tuple (low, high) as the first positional
argument.

2776 Chapter 18. Modules

Matplotlib, Release 3.4.3

high
[float or None, optional] The higher spine bound. Passing None leaves the limit
unchanged.

set_color(c)
Set the edgecolor.

Parameters

c
[color]

Notes

This method does not modify the facecolor (which defaults to "none"), unlike the Patch.
set_color method defined in the parent class. Use Patch.set_facecolor to set the
facecolor.

set_patch_arc(center, radius, theta1, theta2)
Set the spine to be arc-like.

set_patch_circle(center, radius)
Set the spine to be circular.

set_patch_line()
Set the spine to be linear.

set_position(position)
Set the position of the spine.

Spine position is specified by a 2 tuple of (position type, amount). The position types are:

• 'outward': place the spine out from the data area by the specified number of points. (Negative
values place the spine inwards.)

• 'axes': place the spine at the specified Axes coordinate (0 to 1).

• 'data': place the spine at the specified data coordinate.

Additionally, shorthand notations define a special positions:

• 'center' -> ('axes', 0.5)

• 'zero' -> ('data', 0.0)

class matplotlib.spines.Spines(**kwargs)
Bases: collections.abc.MutableMapping

The container of all Spines in an Axes.

The interface is dict-like mapping names (e.g. 'left') to Spine objects. Additionally it implements
some pandas.Series-like features like accessing elements by attribute:

18.47. matplotlib.spines 2777

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping

Matplotlib, Release 3.4.3

spines['top'].set_visible(False)
spines.top.set_visible(False)

Multiple spines can be addressed simultaneously by passing a list:

spines[['top', 'right']].set_visible(False)

Use an open slice to address all spines:

spines[:].set_visible(False)

The latter two indexing methods will return a SpinesProxy that broadcasts all set_* calls to its
members, but cannot be used for any other operation.

classmethod from_dict(d)

class matplotlib.spines.SpinesProxy(spine_dict)
Bases: object

A proxy to broadcast set_* method calls to all contained Spines.

The proxy cannot be used for any other operations on its members.

The supported methods are determined dynamically based on the contained spines. If not all spines
support a given method, it's executed only on the subset of spines that support it.

18.48 matplotlib.style

Styles are predefined sets of rcParams that define the visual appearance of a plot.

Customizing Matplotlib with style sheets and rcParams describes the mechanism and usage of styles.

The /gallery/style_sheets/style_sheets_reference gives an overview of the builtin styles.

matplotlib.style.context(style, after_reset=False)
Context manager for using style settings temporarily.

Parameters

style
[str, dict, Path or list] A style specification. Valid options are:

str The name of a style or a path/URL to a style file. For a list of available
style names, see style.available.

dict Dictionary with valid key/value pairs for matplotlib.rcParams.
Path A path-like object which is a path to a style file.
list A list of style specifiers (str, Path or dict) applied from first to last in the

list.

2778 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

after_reset
[bool] If True, apply style after resetting settings to their defaults; otherwise, apply
style on top of the current settings.

matplotlib.style.reload_library()
Reload the style library.

matplotlib.style.use(style)
Use Matplotlib style settings from a style specification.

The style name of 'default' is reserved for reverting back to the default style settings.

Note: This updates the rcParams with the settings from the style. rcParams not defined in the
style are kept.

Parameters

style
[str, dict, Path or list] A style specification. Valid options are:

str The name of a style or a path/URL to a style file. For a list of available
style names, see style.available.

dict Dictionary with valid key/value pairs for matplotlib.rcParams.
Path A path-like object which is a path to a style file.
list A list of style specifiers (str, Path or dict) applied from first to last in the

list.

matplotlib.style.library
A dict mapping from style name to RcParams defining that style.

This is meant to be read-only. Use reload_library to update.

matplotlib.style.available
List of the names of the available styles.

This is meant to be read-only. Use reload_library to update.

18.49 matplotlib.table

Tables drawing.

Use the factory function table to create a ready-made table from texts. If you need more control, use the
Table class and its methods.

The table consists of a grid of cells, which are indexed by (row, column). The cell (0, 0) is positioned at the
top left.

18.49. matplotlib.table 2779

Matplotlib, Release 3.4.3

Thanks to John Gill for providing the class and table.

class matplotlib.table.Cell(xy, width, height, edgecolor='k', facecolor='w',
fill=True, text='', loc=None, fontproperties=None, *,
visible_edges='closed')

Bases: matplotlib.patches.Rectangle

A cell is a Rectangle with some associated Text.

As a user, you'll most likely not creates cells yourself. Instead, you should use either thetable factory
function or Table.add_cell.

Parameters

xy
[2-tuple] The position of the bottom left corner of the cell.

width
[float] The cell width.

height
[float] The cell height.

edgecolor
[color] The color of the cell border.

facecolor
[color] The cell facecolor.

fill
[bool] Whether the cell background is filled.

text
[str] The cell text.

loc
[{'left', 'center', 'right'}, default: 'right'] The alignment of the text within the cell.

fontproperties
[dict] A dict defining the font properties of the text. Supported keys and values
are the keyword arguments accepted by FontProperties.

visible_edges
[str, default: 'closed'] The cell edges to be drawn with a line: a substring of 'BRTL'
(bottom, right, top, left), or one of 'open' (no edges drawn), 'closed' (all edges
drawn), 'horizontal' (bottom and top), 'vertical' (right and left).

PAD = 0.1
Padding between text and rectangle.

2780 Chapter 18. Modules

Matplotlib, Release 3.4.3

auto_set_font_size(renderer)
Shrink font size until the text fits into the cell width.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

get_fontsize()
Return the cell fontsize.

get_path()
Return a Path for the visible_edges.

get_required_width(renderer)
Return the minimal required width for the cell.

get_text()
Return the cell Text instance.

get_text_bounds(renderer)
Return the text bounds as (x, y, width, height) in table coordinates.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

fig
[Figure]

set_fontsize(size)
Set the text fontsize.

set_text_props(**kwargs)
Update the text properties.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array

continues on next page

18.49. matplotlib.table 2781

Matplotlib, Release 3.4.3

Table 230 – continued from previous page
Property Description
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
visible bool
wrap bool
x float
y float
zorder float

2782 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

set_transform(trans)
Set the artist transform.

Parameters

t
[Transform]

property visible_edges
The cell edges to be drawn with a line.

Reading this property returns a substring of 'BRTL' (bottom, right, top, left').

When setting this property, you can use a substring of 'BRTL' or one of {'open', 'closed', 'hori-
zontal', 'vertical'}.

matplotlib.table.CustomCell
alias of matplotlib.table.Cell

class matplotlib.table.Table(ax, loc=None, bbox=None, **kwargs)
Bases: matplotlib.artist.Artist

A table of cells.

The table consists of a grid of cells, which are indexed by (row, column).

For a simple table, you'll have a full grid of cells with indices from (0, 0) to (num_rows-1, num_cols-
1), in which the cell (0, 0) is positioned at the top left. However, you can also add cells with negative
indices. You don't have to add a cell to every grid position, so you can create tables that have holes.

Note: You'll usually not create an empty table from scratch. Instead use table to create a table from
data.

Parameters

ax
[matplotlib.axes.Axes] The Axes to plot the table into.

loc
[str] The position of the cell with respect to ax. This must be one of the codes.

bbox
[Bbox or None] A bounding box to draw the table into. If this is not None, this
overrides loc.

Other Parameters

**kwargs
Artist properties.

18.49. matplotlib.table 2783

Matplotlib, Release 3.4.3

AXESPAD = 0.02
The border between the Axes and the table edge in Axes units.

FONTSIZE = 10

add_cell(row, col, *args, **kwargs)
Create a cell and add it to the table.

Parameters

row
[int] Row index.

col
[int] Column index.

*args, **kwargs
All other parameters are passed on to Cell.

Returns

Cell

The created cell.

auto_set_column_width(col)
Automatically set the widths of given columns to optimal sizes.

Parameters

col
[int or sequence of ints] The indices of the columns to auto-scale.

auto_set_font_size(value=True)
Automatically set font size.

codes = {'best': 0, 'bottom': 17, 'bottom left': 12, 'bottom right': 13, 'center': 9, 'center left': 5, 'center right': 6, 'left': 15, 'lower center': 7, 'lower left': 3, 'lower right': 4, 'right': 14, 'top': 16, 'top left': 11, 'top right': 10, 'upper center': 8, 'upper left': 2, 'upper right': 1}
Possible values where to place the table relative to the Axes.

contains(mouseevent)
Test whether the artist contains the mouse event.

Parameters

mouseevent
[matplotlib.backend_bases.MouseEvent]

Returns

2784 Chapter 18. Modules

Matplotlib, Release 3.4.3

contains
[bool] Whether any values are within the radius.

details
[dict] An artist-specific dictionary of details of the event context, such as which
points are contained in the pick radius. See the individual Artist subclasses for
details.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

property edges
The default value of visible_edges for newly added cells using add_cell.

Notes

This setting does currently only affect newly created cells using add_cell.

To change existing cells, you have to set their edges explicitly:

for c in tab.get_celld().values():
c.visible_edges = 'horizontal'

get_celld()
Return a dict of cells in the table mapping (row, column) to Cells.

Notes

You can also directly index into the Table object to access individual cells:

cell = table[row, col]

get_children()
Return the Artists contained by the table.

get_window_extent(renderer)
Return the bounding box of the table in window coords.

18.49. matplotlib.table 2785

Matplotlib, Release 3.4.3

scale(xscale, yscale)
Scale column widths by xscale and row heights by yscale.

set_fontsize(size)
Set the font size, in points, of the cell text.

Parameters

size
[float]

Notes

As long as auto font size has not been disabled, the value will be clipped such that the text fits
horizontally into the cell.

You can disable this behavior using auto_set_font_size.

>>> the_table.auto_set_font_size(False)
>>> the_table.set_fontsize(20)

However, there is no automatic scaling of the row height so that the text may exceed the cell
boundary.

matplotlib.table.table(ax, cellText=None, cellColours=None, cellLoc='right',
colWidths=None, rowLabels=None, rowColours=None,
rowLoc='left', colLabels=None, colColours=None, col-
Loc='center', loc='bottom', bbox=None, edges='closed',
**kwargs)

Add a table to an Axes.

At least one of cellText or cellColours must be specified. These parameters must be 2D lists, in which
the outer lists define the rows and the inner list define the column values per row. Each row must have
the same number of elements.

The table can optionally have row and column headers, which are configured using rowLabels, row-
Colours, rowLoc and colLabels, colColours, colLoc respectively.

For finer grained control over tables, use the Table class and add it to the axes with Axes.
add_table.

Parameters

cellText
[2D list of str, optional] The texts to place into the table cells.

Note: Line breaks in the strings are currently not accounted for and will result in
the text exceeding the cell boundaries.

cellColours
[2D list of colors, optional] The background colors of the cells.

2786 Chapter 18. Modules

Matplotlib, Release 3.4.3

cellLoc
[{'left', 'center', 'right'}, default: 'right'] The alignment of the text within the cells.

colWidths
[list of float, optional] The column widths in units of the axes. If not given, all
columns will have a width of 1 / ncols.

rowLabels
[list of str, optional] The text of the row header cells.

rowColours
[list of colors, optional] The colors of the row header cells.

rowLoc
[{'left', 'center', 'right'}, default: 'left'] The text alignment of the row header cells.

colLabels
[list of str, optional] The text of the column header cells.

colColours
[list of colors, optional] The colors of the column header cells.

colLoc
[{'left', 'center', 'right'}, default: 'left'] The text alignment of the column header
cells.

loc
[str, optional] The position of the cell with respect to ax. This must be one of the
codes.

bbox
[Bbox, optional] A bounding box to draw the table into. If this is not None, this
overrides loc.

edges
[substring of 'BRTL' or {'open', 'closed', 'horizontal', 'vertical'}] The cell edges to
be drawn with a line. See also visible_edges.

Returns

Table

The created table.

Other Parameters

18.49. matplotlib.table 2787

Matplotlib, Release 3.4.3

**kwargs
Table properties.

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi

value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
figure Figure

fontsize float
gid str
in_layout bool
label object
path_effectsAbstractPathEffect

picker None or bool or float or callable
raster-
ized

bool

sketch_params(scale: float, length: float, randomness: float)
snap bool or None
trans-
form

Transform

url str
visible bool
zorder float

18.50 matplotlib.testing

18.50.1 matplotlib.test()

matplotlib.test(verbosity=None, coverage=False, *, recursionlimit=<deprecated parame-
ter>, **kwargs)

Run the matplotlib test suite.

2788 Chapter 18. Modules

Matplotlib, Release 3.4.3

18.50.2 matplotlib.testing

Helper functions for testing.

matplotlib.testing.set_font_settings_for_testing()

matplotlib.testing.set_reproducibility_for_testing()

matplotlib.testing.setup()

18.50.3 matplotlib.testing.compare

Utilities for comparing image results.

matplotlib.testing.compare.calculate_rms(expected_image, actual_image)
Calculate the per-pixel errors, then compute the root mean square error.

matplotlib.testing.compare.comparable_formats()
Return the list of file formats that compare_images can compare on this system.

Returns

list of str
E.g. ['png', 'pdf', 'svg', 'eps'].

matplotlib.testing.compare.compare_images(expected, actual, tol,
in_decorator=False)

Compare two "image" files checking differences within a tolerance.

The two given filenames may point to files which are convertible to PNG via the converter dictio-
nary. The underlying RMS is calculated with the calculate_rms function.

Parameters

expected
[str] The filename of the expected image.

actual
[str] The filename of the actual image.

tol
[float] The tolerance (a color value difference, where 255 is the maximal differ-
ence). The test fails if the average pixel difference is greater than this value.

in_decorator
[bool] Determines the output format. If called from image_comparison decorator,
this should be True. (default=False)

Returns

18.50. matplotlib.testing 2789

Matplotlib, Release 3.4.3

None or dict or str
Return None if the images are equal within the given tolerance.

If the images differ, the return value depends on in_decorator. If in_decorator is
true, a dict with the following entries is returned:

• rms: The RMS of the image difference.

• expected: The filename of the expected image.

• actual: The filename of the actual image.

• diff_image: The filename of the difference image.

• tol: The comparison tolerance.

Otherwise, a human-readable multi-line string representation of this information
is returned.

Examples

img1 = "./baseline/plot.png"
img2 = "./output/plot.png"
compare_images(img1, img2, 0.001)

18.50.4 matplotlib.testing.decorators

class matplotlib.testing.decorators.CleanupTestCase(methodName='runTest')
Bases: unittest.case.TestCase

A wrapper for unittest.TestCase that includes cleanup operations.

Create an instance of the class that will use the named test method when executed. Raises a ValueError
if the instance does not have a method with the specified name.

classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.

classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.

matplotlib.testing.decorators.check_figures_equal(*, extensions=('png',
'pdf', 'svg'), tol=0)

Decorator for test cases that generate and compare two figures.

The decorated function must take two keyword arguments, fig_test and fig_ref, and draw the test and
reference images on them. After the function returns, the figures are saved and compared.

This decorator should be preferred over image_comparison when possible in order to keep the
size of the test suite from ballooning.

Parameters

2790 Chapter 18. Modules

Matplotlib, Release 3.4.3

extensions
[list, default: ["png", "pdf", "svg"]] The extensions to test.

tol
[float] The RMS threshold above which the test is considered failed.

Raises

RuntimeError
If any new figures are created (and not subsequently closed) inside the test func-
tion.

Examples

Check that calling Axes.plot with a single argument plots it against [0, 1, 2, ...]:

@check_figures_equal()
def test_plot(fig_test, fig_ref):

fig_test.subplots().plot([1, 3, 5])
fig_ref.subplots().plot([0, 1, 2], [1, 3, 5])

matplotlib.testing.decorators.check_freetype_version(ver)

matplotlib.testing.decorators.cleanup(style=None)
A decorator to ensure that any global state is reset before running a test.

Parameters

style
[str, dict, or list, optional] The style(s) to apply. Defaults to ["classic",
"_classic_test_patch"].

matplotlib.testing.decorators.image_comparison(baseline_images, ex-
tensions=None, tol=0,
freetype_version=None,
remove_text=False,
savefig_kwarg=None,
style=('classic', '_clas-
sic_test_patch'))

Compare images generated by the test with those specified in baseline_images, whichmust correspond,
else an ImageComparisonFailure exception will be raised.

Parameters

baseline_images
[list or None] A list of strings specifying the names of the images generated by
calls to Figure.savefig.

18.50. matplotlib.testing 2791

Matplotlib, Release 3.4.3

If None, the test function must use the baseline_images fixture, either as a
parameter or with pytest.mark.usefixtures. This value is only allowed
when using pytest.

extensions
[None or list of str] The list of extensions to test, e.g. ['png', 'pdf'].

If None, defaults to all supported extensions: png, pdf, and svg.

When testing a single extension, it can be directly included in the names passed to
baseline_images. In that case, extensions must not be set.

In order to keep the size of the test suite from ballooning, we only include the
svg or pdf outputs if the test is explicitly exercising a feature dependent on that
backend (see also the check_figures_equal decorator for that purpose).

tol
[float, default: 0] The RMS threshold above which the test is considered failed.

Due to expected small differences in floating-point calculations, on 32-bit systems
an additional 0.06 is added to this threshold.

freetype_version
[str or tuple] The expected freetype version or range of versions for this test to
pass.

remove_text
[bool] Remove the title and tick text from the figure before comparison. This is
useful to make the baseline images independent of variations in text rendering
between different versions of FreeType.

This does not remove other, more deliberate, text, such as legends and annotations.

savefig_kwarg
[dict] Optional arguments that are passed to the savefig method.

style
[str, dict, or list] The optional style(s) to apply to the image test. The test itself can
also apply additional styles if desired. Defaults to ["classic", "_clas-
sic_test_patch"].

matplotlib.testing.decorators.remove_ticks_and_titles(figure)

2792 Chapter 18. Modules

https://pytest.org/en/stable/reference.html#pytest.mark.usefixtures

Matplotlib, Release 3.4.3

18.50.5 matplotlib.testing.exceptions

exception matplotlib.testing.exceptions.ImageComparisonFailure
Bases: AssertionError

Raise this exception to mark a test as a comparison between two images.

18.51 matplotlib.text

Classes for including text in a figure.

class matplotlib.text.Annotation(text, xy, xytext=None, xycoords='data', textco-
ords=None, arrowprops=None, annota-
tion_clip=None, **kwargs)

Bases: matplotlib.text.Text, matplotlib.text._AnnotationBase

An Annotation is a Text that can refer to a specific position xy. Optionally an arrow pointing
from the text to xy can be drawn.

Attributes

xy
The annotated position.

xycoords
The coordinate system for xy.

arrow_patch
A FancyArrowPatch to point from xytext to xy.

Annotate the point xy with text text.

In the simplest form, the text is placed at xy.

Optionally, the text can be displayed in another position xytext. An arrow pointing from the text to the
annotated point xy can then be added by defining arrowprops.

Parameters

text
[str] The text of the annotation.

xy
[(float, float)] The point (x, y) to annotate. The coordinate system is determined
by xycoords.

xytext
[(float, float), default: xy] The position (x, y) to place the text at. The coordinate
system is determined by textcoords.

18.51. matplotlib.text 2793

https://docs.python.org/3/library/exceptions.html#AssertionError

Matplotlib, Release 3.4.3

xycoords
[str or Artist or Transform or callable or (float, float), default: 'data'] The
coordinate system that xy is given in. The following types of values are supported:

• One of the following strings:

Value Description
'figure points' Points from the lower left of the figure
'figure pixels' Pixels from the lower left of the figure
'figure fraction' Fraction of figure from lower left
'subfigure
points'

Points from the lower left of the subfigure

'subfigure
pixels'

Pixels from the lower left of the subfigure

'subfigure frac-
tion'

Fraction of subfigure from lower left

'axes points' Points from lower left corner of axes
'axes pixels' Pixels from lower left corner of axes
'axes fraction' Fraction of axes from lower left
'data' Use the coordinate system of the object being annotated

(default)
'polar' (theta, r) if not native 'data' coordinates

Note that 'subfigure pixels' and 'figure pixels' are the same for the parent figure,
so users who want code that is usable in a subfigure can use 'subfigure pixels'.

• An Artist: xy is interpreted as a fraction of the artist's Bbox. E.g. (0, 0)
would be the lower left corner of the bounding box and (0.5, 1) would be the
center top of the bounding box.

• A Transform to transform xy to screen coordinates.

• A function with one of the following signatures:

def transform(renderer) -> Bbox
def transform(renderer) -> Transform

where renderer is a RendererBase subclass.

The result of the function is interpreted like the Artist and Transform
cases above.

• A tuple (xcoords, ycoords) specifying separate coordinate systems for x and y.
xcoords and ycoords must each be of one of the above described types.

See Advanced Annotations for more details.

textcoords
[str or Artist or Transform or callable or (float, float), default: value of xy-
coords] The coordinate system that xytext is given in.

2794 Chapter 18. Modules

Matplotlib, Release 3.4.3

All xycoords values are valid as well as the following strings:

Value Description
'offset points' Offset (in points) from the xy value
'offset pixels' Offset (in pixels) from the xy value

arrowprops
[dict, optional] The properties used to draw a FancyArrowPatch arrow be-
tween the positions xy and xytext. Note that the edge of the arrow pointing to xy-
text will be centered on the text itself and may not point directly to the coordinates
given in xytext.

If arrowprops does not contain the key 'arrowstyle' the allowed keys are:

Key Description
width The width of the arrow in points
headwidth The width of the base of the arrow head in points
headlength The length of the arrow head in points
shrink Fraction of total length to shrink from both ends
? Any key to matplotlib.patches.FancyArrowPatch

If arrowprops contains the key 'arrowstyle' the above keys are forbidden. The
allowed values of 'arrowstyle' are:

Name Attrs
'-' None
'->' head_length=0.4,head_width=0.2
'-[' widthB=1.0,lengthB=0.2,angleB=None
'|-|' widthA=1.0,widthB=1.0
'-|>' head_length=0.4,head_width=0.2
'<-' head_length=0.4,head_width=0.2
'<->' head_length=0.4,head_width=0.2
'<|-' head_length=0.4,head_width=0.2
'<|-|>' head_length=0.4,head_width=0.2
'fancy' head_length=0.4,head_width=0.4,tail_width=0.4
'simple' head_length=0.5,head_width=0.5,tail_width=0.2
'wedge' tail_width=0.3,shrink_factor=0.5

Valid keys for FancyArrowPatch are:

18.51. matplotlib.text 2795

Matplotlib, Release 3.4.3

Key Description
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch

Defaults to None, i.e. no arrow is drawn.

annotation_clip
[bool or None, default: None]Whether to draw the annotation when the annotation
point xy is outside the axes area.

• If True, the annotation will only be drawn when xy is within the axes.

• If False, the annotation will always be drawn.

• If None, the annotation will only be drawn when xy is within the axes and xy-
coords is 'data'.

**kwargs
Additional kwargs are passed to Text.

Returns

Annotation

See also:

Advanced Annotations

property anncoords
The coordinate system to use for Annotation.xyann.

contains(event)
Return whether the mouse event occurred inside the axis-aligned bounding-box of the text.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

2796 Chapter 18. Modules

Matplotlib, Release 3.4.3

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

get_anncoords()
Return the coordinate system to use for Annotation.xyann.

See also xycoords in Annotation.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_window_extent(renderer=None)
Return the Bbox bounding the text and arrow, in display units.

Parameters

renderer
[Renderer, optional] A renderer is needed to compute the bounding box. If the
artist has already been drawn, the renderer is cached; thus, it is only necessary to
pass this argument when calling get_window_extent before the first draw.
In practice, it is usually easier to trigger a draw first (e.g. by saving the figure).

set_anncoords(coords)
Set the coordinate system to use for Annotation.xyann.

See also xycoords in Annotation.

set_figure(fig)
Set the Figure instance the artist belongs to.

Parameters

18.51. matplotlib.text 2797

Matplotlib, Release 3.4.3

fig
[Figure]

update_positions(renderer)
Update the pixel positions of the annotation text and the arrow patch.

property xyann
The text position.

See also xytext in Annotation.

property xycoords

class matplotlib.text.OffsetFrom(artist, ref_coord, unit='points')
Bases: object

Callable helper class for working with Annotation.

Parameters

artist
[Artist or BboxBase or Transform] The object to compute the offset from.

ref_coord
[(float, float)] If artist is an Artist or BboxBase, this values is the location to
of the offset origin in fractions of the artist bounding box.

If artist is a transform, the offset origin is the transform applied to this value.

unit
[{'points, 'pixels'}, default: 'points'] The screen units to use (pixels or points) for
the offset input.

get_unit()
Return the unit for input to the transform used by __call__.

set_unit(unit)
Set the unit for input to the transform used by __call__.

Parameters

unit
[{'points', 'pixels'}]

class matplotlib.text.Text(x=0, y=0, text='', color=None, verticalalignment='baseline',
horizontalalignment='left', multialignment=None, font-
properties=None, rotation=None, linespacing=None,
rotation_mode=None, usetex=None, wrap=False, trans-
form_rotates_text=False, **kwargs)

Bases: matplotlib.artist.Artist

2798 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Handle storing and drawing of text in window or data coordinates.

Create a Text instance at x, y with string text.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}

continues on next page

18.51. matplotlib.text 2799

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Table 231 – continued from previous page
Property Description
visible bool
wrap bool
x float
y float
zorder float

contains(mouseevent)
Return whether the mouse event occurred inside the axis-aligned bounding-box of the text.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

get_bbox_patch()
Return the bbox Patch, or None if the patches.FancyBboxPatch is not made.

get_c()
Alias for get_color.

get_color()
Return the color of the text.

get_family()
Alias for get_fontfamily.

get_font()
Alias for get_fontproperties.

get_font_properties()
Alias for get_fontproperties.

get_fontfamily()
Return the list of font families used for font lookup.

See also:

font_manager.FontProperties.get_family

2800 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_fontname()
Return the font name as a string.

See also:

font_manager.FontProperties.get_name

get_fontproperties()
Return the font_manager.FontProperties.

get_fontsize()
Return the font size as an integer.

See also:

font_manager.FontProperties.get_size_in_points

get_fontstyle()
Return the font style as a string.

See also:

font_manager.FontProperties.get_style

get_fontvariant()
Return the font variant as a string.

See also:

font_manager.FontProperties.get_variant

get_fontweight()
Return the font weight as a string or a number.

See also:

font_manager.FontProperties.get_weight

get_ha()
Alias for get_horizontalalignment.

get_horizontalalignment()
Return the horizontal alignment as a string. Will be one of 'left', 'center' or 'right'.

get_math_fontfamily()
Return the font family name for math text rendered by Matplotlib.

The default value is rcParams["mathtext.fontset"] (default: 'dejavusans').

See also:

set_math_fontfamily

18.51. matplotlib.text 2801

../tutorials/introductory/customizing.html?highlight=mathtext.fontset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

get_name()
Alias for get_fontname.

get_position()
Return the (x, y) position of the text.

get_prop_tup(renderer=None)
Return a hashable tuple of properties.

Not intended to be human readable, but useful for backends who want to cache derived informa-
tion about text (e.g., layouts) and need to know if the text has changed.

get_rotation()
Return the text angle in degrees between 0 and 360.

get_rotation_mode()
Return the text rotation mode.

get_size()
Alias for get_fontsize.

get_stretch()
Return the font stretch as a string or a number.

See also:

font_manager.FontProperties.get_stretch

get_style()
Alias for get_fontstyle.

get_text()
Return the text string.

get_transform_rotates_text()
Return whether rotations of the transform affect the text direction.

get_unitless_position()
Return the (x, y) unitless position of the text.

get_usetex()
Return whether this Text object uses TeX for rendering.

get_va()
Alias for get_verticalalignment.

get_variant()
Alias for get_fontvariant.

get_verticalalignment()
Return the vertical alignment as a string. Will be one of 'top', 'center', 'bottom', 'baseline' or
'center_baseline'.

get_weight()
Alias for get_fontweight.

2802 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_window_extent(renderer=None, dpi=None)
Return the Bbox bounding the text, in display units.

In addition to being used internally, this is useful for specifying clickable regions in a png file on
a web page.

Parameters

renderer
[Renderer, optional] A renderer is needed to compute the bounding box. If the
artist has already been drawn, the renderer is cached; thus, it is only necessary to
pass this argument when calling get_window_extent before the first draw.
In practice, it is usually easier to trigger a draw first (e.g. by saving the figure).

dpi
[float, optional] The dpi value for computing the bbox, defaults to self.
figure.dpi (not the renderer dpi); should be set e.g. if to match regions
with a figure saved with a custom dpi value.

get_wrap()
Return whether the text can be wrapped.

set_backgroundcolor(color)
Set the background color of the text by updating the bbox.

Parameters

color
[color]

See also:

set_bbox

To change the position of the bounding box

set_bbox(rectprops)
Draw a bounding box around self.

Parameters

rectprops
[dict with properties for patches.FancyBboxPatch] The default boxstyle
is 'square'. The mutation scale of the patches.FancyBboxPatch is set to
the fontsize.

18.51. matplotlib.text 2803

Matplotlib, Release 3.4.3

Examples

t.set_bbox(dict(facecolor='red', alpha=0.5))

set_c(color)
Alias for set_color.

set_clip_box(clipbox)
Set the artist's clip Bbox.

Parameters

clipbox
[Bbox]

set_clip_on(b)
Set whether the artist uses clipping.

When False artists will be visible outside of the axes which can lead to unexpected results.

Parameters

b
[bool]

set_clip_path(path, transform=None)
Set the artist's clip path.

Parameters

path
[Patch or Path or TransformedPath or None] The clip path. If given a
Path, transformmust be provided as well. If None, a previously set clip path is
removed.

transform
[Transform, optional] Only used if path is a Path, in which case the given
Path is converted to a TransformedPath using transform.

Notes

For efficiency, if path is a Rectangle this method will set the clipping box to the corresponding
rectangle and set the clipping path to None.

For technical reasons (support of set), a tuple (path, transform) is also accepted as a single
positional parameter.

set_color(color)
Set the foreground color of the text

2804 Chapter 18. Modules

Matplotlib, Release 3.4.3

Parameters

color
[color]

set_family(fontname)
Alias for set_fontfamily.

set_font(fp)
Alias for set_fontproperties.

set_font_properties(fp)
Alias for set_fontproperties.

set_fontfamily(fontname)
Set the font family. May be either a single string, or a list of strings in decreasing priority. Each
string may be either a real font name or a generic font class name. If the latter, the specific font
names will be looked up in the corresponding rcParams.

If a Text instance is constructed with fontfamily=None, then the font is set to
rcParams["font.family"] (default: ['sans-serif']), and the same is done when
set_fontfamily() is called on an existing Text instance.

Parameters

fontname
[{FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}]

See also:

font_manager.FontProperties.set_family

set_fontname(fontname)
Alias for set_family.

One-way alias only: the getter differs.

Parameters

fontname
[{FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}]

See also:

font_manager.FontProperties.set_family

set_fontproperties(fp)
Set the font properties that control the text.

Parameters

18.51. matplotlib.text 2805

../tutorials/introductory/customizing.html?highlight=font.family#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

fp
[font_manager.FontProperties or str or pathlib.Path] If a
str, it is interpreted as a fontconfig pattern parsed by FontProperties. If
a pathlib.Path, it is interpreted as the absolute path to a font file.

set_fontsize(fontsize)
Set the font size.

Parameters

fontsize
[float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}] If
float, the fontsize in points. The string values denote sizes relative to the default
font size.

See also:

font_manager.FontProperties.set_size

set_fontstretch(stretch)
Set the font stretch (horizontal condensation or expansion).

Parameters

stretch
[{a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed',
'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-
expanded', 'ultra-expanded'}]

See also:

font_manager.FontProperties.set_stretch

set_fontstyle(fontstyle)
Set the font style.

Parameters

fontstyle
[{'normal', 'italic', 'oblique'}]

See also:

font_manager.FontProperties.set_style

set_fontvariant(variant)
Set the font variant.

2806 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Parameters

variant
[{'normal', 'small-caps'}]

See also:

font_manager.FontProperties.set_variant

set_fontweight(weight)
Set the font weight.

Parameters

weight
[{a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book',
'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold',
'black'}]

See also:

font_manager.FontProperties.set_weight

set_ha(align)
Alias for set_horizontalalignment.

set_horizontalalignment(align)
Set the horizontal alignment to one of

Parameters

align
[{'center', 'right', 'left'}]

set_linespacing(spacing)
Set the line spacing as a multiple of the font size.

The default line spacing is 1.2.

Parameters

spacing
[float (multiple of font size)]

set_ma(align)
Alias for set_multialignment.

18.51. matplotlib.text 2807

Matplotlib, Release 3.4.3

set_math_fontfamily(fontfamily)
Set the font family for math text rendered by Matplotlib.

This does only affect Matplotlib's own math renderer. It has no effect when rendering with TeX
(usetex=True).

Parameters

fontfamily
[str] The name of the font family.

Available font families are defined in the matplotlibrc.template file.

See also:

get_math_fontfamily

set_multialignment(align)
Set the text alignment for multiline texts.

The layout of the bounding box of all the lines is determined by the horizontalalignment and
verticalalignment properties. This property controls the alignment of the text lines within that
box.

Parameters

align
[{'left', 'right', 'center'}]

set_name(fontname)
Alias for set_fontname.

set_position(xy)
Set the (x, y) position of the text.

Parameters

xy
[(float, float)]

set_rotation(s)
Set the rotation of the text.

Parameters

s
[float or {'vertical', 'horizontal'}] The rotation angle in degrees in mathematically
positive direction (counterclockwise). 'horizontal' equals 0, 'vertical' equals 90.

2808 Chapter 18. Modules

Matplotlib, Release 3.4.3

set_rotation_mode(m)
Set text rotation mode.

Parameters

m
[{None, 'default', 'anchor'}] If None or "default", the text will be first ro-
tated, then aligned according to their horizontal and vertical alignments. If "an-
chor", then alignment occurs before rotation.

set_size(fontsize)
Alias for set_fontsize.

set_stretch(stretch)
Alias for set_fontstretch.

set_style(fontstyle)
Alias for set_fontstyle.

set_text(s)
Set the text string s.

It may contain newlines (\n) or math in LaTeX syntax.

Parameters

s
[object] Any object gets converted to its str representation, except for None
which is converted to an empty string.

set_transform_rotates_text(t)
Whether rotations of the transform affect the text direction.

Parameters

t
[bool]

set_usetex(usetex)

Parameters

usetex
[bool or None] Whether to render using TeX, None means to use
rcParams["text.usetex"] (default: False).

set_va(align)
Alias for set_verticalalignment.

18.51. matplotlib.text 2809

https://docs.python.org/3/library/stdtypes.html#str
../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

set_variant(variant)
Alias for set_fontvariant.

set_verticalalignment(align)
Set the vertical alignment.

Parameters

align
[{'center', 'top', 'bottom', 'baseline', 'center_baseline'}]

set_weight(weight)
Alias for set_fontweight.

set_wrap(wrap)
Set whether the text can be wrapped.

Parameters

wrap
[bool]

Notes

Wrapping does not work together with savefig(..., bbox_inches='tight') (which
is also used internally by %matplotlib inline in IPython/Jupyter). The 'tight' setting
rescales the canvas to accommodate all content and happens before wrapping.

set_x(x)
Set the x position of the text.

Parameters

x
[float]

set_y(y)
Set the y position of the text.

Parameters

y
[float]

update(kwargs)
Update this artist's properties from the dict props.

Parameters

2810 Chapter 18. Modules

Matplotlib, Release 3.4.3

props
[dict]

update_bbox_position_size(renderer)
Update the location and the size of the bbox.

This method should be used when the position and size of the bbox needs to be updated before
actually drawing the bbox.

update_from(other)
Copy properties from other to self.

zorder = 3

matplotlib.text.get_rotation(rotation)
Return rotation normalized to an angle between 0 and 360 degrees.

Parameters

rotation
[float or {None, 'horizontal', 'vertical'}] Rotation angle in degrees. None and 'hor-
izontal' equal 0, 'vertical' equals 90.

Returns

float

18.52 matplotlib.texmanager

Support for embedded TeX expressions in Matplotlib via dvipng and dvips for the raster and PostScript back-
ends. The tex and dvipng/dvips information is cached in ~/.matplotlib/tex.cache for reuse between sessions.

Requirements:

• LaTeX

• *Agg backends: dvipng>=1.6

• PS backend: psfrag, dvips, and Ghostscript>=9.0

For raster output, you can get RGBA numpy arrays from TeX expressions as follows:

texmanager = TexManager()
s = "\TeX\ is Number $\displaystyle\sum_{n=1}^\infty\frac{-e^{i\pi}}{2^n}$!"
Z = texmanager.get_rgba(s, fontsize=12, dpi=80, rgb=(1, 0, 0))

To enable TeX rendering of all text in your Matplotlib figure, set rcParams["text.usetex"] (default:
False) to True.

class matplotlib.texmanager.TexManager
Bases: object

18.52. matplotlib.texmanager 2811

../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Convert strings to dvi files using TeX, caching the results to a directory.

Repeated calls to this constructor always return the same instance.

property cachedir

property cursive

font_families = ('serif', 'sans-serif', 'cursive', 'monospace')

font_family = 'serif'

font_info = {'avant garde': ('pag', '\\usepackage{avant}'), 'bookman': ('pbk', '\\renewcommand{\\rmdefault}{pbk}'), 'charter': ('pch', '\\usepackage{charter}'), 'computer modern roman': ('cmr', '\\usepackage{type1ec}'), 'computer modern sans serif': ('cmss', '\\usepackage{type1ec}'), 'computer modern typewriter': ('cmtt', '\\usepackage{type1ec}'), 'courier': ('pcr', '\\usepackage{courier}'), 'cursive': ('pzc', '\\usepackage{chancery}'), 'helvetica': ('phv', '\\usepackage{helvet}'), 'monospace': ('cmtt', '\\usepackage{type1ec}'), 'new century schoolbook': ('pnc', '\\renewcommand{\\rmdefault}{pnc}'), 'palatino': ('ppl', '\\usepackage{mathpazo}'), 'sans-serif': ('cmss', ''), 'serif': ('cmr', ''), 'times': ('ptm', '\\usepackage{mathptmx}'), 'zapf chancery': ('pzc', '\\usepackage{chancery}')}

get_basefile(tex, fontsize, dpi=None)
Return a filename based on a hash of the string, fontsize, and dpi.

get_custom_preamble()
Return a string containing user additions to the tex preamble.

get_font_config()

get_font_preamble()
Return a string containing font configuration for the tex preamble.

get_grey(tex, fontsize=None, dpi=None)
Return the alpha channel.

get_rgba(tex, fontsize=None, dpi=None, rgb=(0, 0, 0))
Return latex's rendering of the tex string as an rgba array.

get_text_width_height_descent(tex, fontsize, renderer=None)
Return width, height and descent of the text.

grey_arrayd = {('$+1$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 20.0, 100.0): array([[0. , 0.6 , 0.26666668, 0. , 0. , 0.], [0. , 0.13333334, 0.4 , 0.8039216 , 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4 , 0.67058825, 0.4 , 0.26666668, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0.5372549 , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.32941177, 1. , 0.32941177, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.32941177, 0.73333335, 0.73333335, 0.9372549 , 1. , 0.9372549 , 0.73333335, 0.73333335, 0.4], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.32941177, 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.26666668, 0.0627451 , 0.]], dtype=float32), ('-1', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 20.0, 100.0): array([[0. , 0.6 , 0.26666668, 0. , 0. , 0.], [0. , 0.13333334, 0.4 , 0.8039216 , 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.4 , 0.67058825, 0.4 , 0.26666668, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0.5372549 , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.19607843, 1. , 0.26666668, 0. , 0. , 0.], [0. , 0.32941177, 1. , 0.32941177, 0. , 0. , 0.], [0. , 0.32941177, 0.73333335, 0.73333335, 0.9372549 , 1. , 0.9372549 , 0.73333335, 0.73333335, 0.4]], dtype=float32), ('$\\delta$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 24.0, 100.0): array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.5372549 , 0.8666667 , 1. , 0.9372549 , 0.8039216 , 0.5372549 , 0.13333334], [0. , 0. , 0. , 0. , 0. , 0. , 0.67058825, 0.19607843, 0. , 0.19607843, 0.67058825, 1. , 1. , 0.6], [0. , 0. , 0. , 0. , 0. , 0.19607843, 0.6 , 0. , 0. , 0. , 0. , 0.19607843, 0.4627451 , 0.0627451], [0. , 0. , 0. , 0. , 0. , 0.26666668, 0.73333335, 0. , 0. , 0. , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.13333334, 0. , 0. , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0.9372549 , 0.73333335, 0. , 0. , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 1. , 0.32941177, 0. , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 1. , 1. , 0.13333334, 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.67058825, 1. , 0.8666667 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.4627451 , 0.8039216 , 1. , 1. , 0.5372549 , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.32941177, 0.9372549 , 0.4 , 0. , 0.67058825, 1. , 1. , 0.0627451 , 0. , 0.], [0. , 0. , 0. , 0.32941177, 1. , 0.19607843, 0. , 0. , 0.19607843, 1. , 1. , 0.4627451 , 0. , 0.], [0. , 0. , 0.4 , 1. , 0.5372549 , 0. , 0. , 0. , 0. , 0.8039216 , 1. , 0.73333335, 0. , 0.], [0. , 0.0627451 , 1. , 0.8666667 , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 1. , 0.8666667 , 0. , 0.], [0. , 0.6 , 1. , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0.32941177, 1. , 0.9372549 , 0. , 0.], [0.0627451 , 1. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0.26666668, 1. , 0.8039216 , 0. , 0.], [0.4 , 1. , 0.73333335, 0. , 0. , 0. , 0. , 0. , 0. , 0.32941177, 1. , 0.6 , 0. , 0.], [0.6 , 1. , 0.4627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 1. , 0.4627451 , 0. , 0.], [0.67058825, 1. , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0.73333335, 1. , 0.0627451 , 0. , 0.], [0.4627451 , 1. , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 1. , 0.67058825, 0. , 0. , 0.], [0.26666668, 1. , 0.4 , 0. , 0. , 0. , 0. , 0. , 0.4 , 1. , 0.19607843, 0. , 0. , 0.], [0. , 0.8039216 , 0.73333335, 0. , 0. , 0. , 0. , 0.0627451 , 0.9372549 , 0.6 , 0. , 0. , 0. , 0.], [0. , 0.19607843, 0.9372549 , 0.4 , 0. , 0. , 0. , 0.73333335, 0.67058825, 0. , 0. , 0. , 0. , 0.], [0. , 0. , 0.0627451 , 0.6 , 0.67058825, 0.67058825, 0.73333335, 0.4 , 0. , 0. , 0. , 0. , 0. , 0.]], dtype=float32), ('$\\frac{1}{2}\\pi$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 50.0, 100.0): array([[0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], ..., [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0.67058825, ..., 0. , 0. , 0.], [0. , 0. , 1. , ..., 0. , 0. , 0.]], dtype=float32), ('$\\mathdefault{0.0}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0.], [0. , 0.8039216 , 0. ,
0. , 0.13333334, 0.67058825, 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0.], [0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0. , 0. , 0. , 0. , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.], [0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843, 0. , 0. , 0. , 0. , 0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843], [0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668, 0. , 0. , 0. , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668], [0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177, 0. , 0. , 0. , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177], [0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668, 0. , 0. , 0. , 0. , 0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668], [0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451 , 0. , 0. , 0. , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451], [0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0. , 0. , 0.19607843, 0.13333334, 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0.], [0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0. , 0. , 0.67058825, 0.4627451 , 0. , 0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0.]], dtype=float32), ('$\\mathdefault{0.2}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 0.4627451 , 0.4627451 , 0.67058825, 0.0627451 , 0.], [0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0. , 0. , 0.4627451 , 0.8039216 , 0.], [0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0. , 0. , 0. , 0. , 0. , 0.19607843, 0.9372549 , 0. , 0. , 0.13333334, 1. , 0.13333334], [0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843, 0. , 0. , 0. , 0. , 0. , 0.32941177, 0. , 0. , 0.19607843, 1. , 0.0627451], [0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.5372549 , 0.73333335, 0.], [0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.8666667 , 0.0627451 , 0.], [0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.13333334, 0. , 0.], [0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.13333334, 0. , 0.0627451 , 0.0627451], [0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0. , 0. , 0.19607843, 0.13333334, 0. , 0. , 0.32941177, 0.26666668, 0. , 0.0627451 , 0.4 , 0.], [0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0. , 0. , 0.67058825, 0.4627451 , 0. , 0.13333334, 1. , 1. , 1. , 1. , 0.9372549 , 0.]], dtype=float32), ('$\\mathdefault{0.4}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.5372549 , 0.0627451 , 0.], [0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.0627451 , 0.], [0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.32941177, 0.8666667 , 0.0627451 , 0.], [0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843, 0. , 0. , 0. , 0. , 0. , 0. , 0.32941177, 0. , 0.8666667 , 0.0627451 , 0.], [0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.26666668, 0. , 0.8666667 , 0.0627451 , 0.], [0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0.4 , 0. , 0. , 0.8666667 , 0.0627451 , 0.], [0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668, 0. , 0. , 0. , 0. , 0.26666668, 0.0627451 , 0. , 0. , 0.8666667 , 0.0627451 , 0.], [0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451 , 0. , 0. , 0. , 0. , 0.26666668, 0.4 , 0.4 , 0.4 , 1. , 0.5372549 , 0.19607843], [0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0. , 0. , 0.19607843, 0.13333334, 0. , 0. , 0. , 0. , 0. , 1. , 0.13333334, 0.], [0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0. , 0. , 0.67058825, 0.4627451 , 0. , 0. , 0. , 0.0627451 , 0.4627451 , 1. , 0.6 , 0.19607843]], dtype=float32), ('$\\mathdefault{0.6}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.26666668, 0.4 , 0.26666668, 0.26666668, 0.], [0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0. , 0. , 0. , 0. , 0. , 0. , 0.26666668, 0.6 , 0. , 0.13333334, 0.8666667 , 0.], [0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0. , 0. , 0. , 0. , 0. , 0. , 0.8666667 , 0.0627451 , 0. , 0. , 0.13333334, 0.], [0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843, 0. , 0. , 0. , 0. , 0.13333334, 0.9372549 , 0. , 0.19607843, 0.0627451 , 0. , 0.], [0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668, 0. , 0. , 0. , 0. , 0.32941177, 0.8666667 , 0.32941177, 0.0627451 , 0.4627451 , 0.32941177, 0.], [0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177, 0. , 0. , 0. , 0. , 0.4 , 1. , 0.0627451 , 0. , 0.0627451 , 1. , 0.], [0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668, 0. , 0. , 0. , 0. , 0.26666668, 0.9372549 , 0. , 0. , 0. , 1. , 0.19607843], [0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451 , 0. , 0. , 0. , 0. , 0.13333334, 0.9372549 , 0. , 0. , 0. , 1. , 0.19607843], [0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0. , 0. , 0.19607843, 0.13333334, 0. , 0. , 0.73333335, 0.0627451 , 0. , 0.13333334, 0.8666667 , 0.], [0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0. , 0. , 0.67058825, 0.4627451 , 0. , 0. , 0.0627451 , 0.6 , 0.4 , 0.6 , 0.13333334, 0.]], dtype=float32), ('$\\mathdefault{0.8}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 0.4 , 0.32941177, 0.4627451 , 0.13333334, 0.], [0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0. , 0. , 0. , 0.6 , 0.], [0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0. , 0. , 0. , 0.6 , 0.], [0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843, 0. , 0. , 0. , 0. , 0. , 0.73333335, 0.8039216 , 0.13333334, 0.26666668, 0.32941177, 0.], [0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.8039216 , 1. , 0.6 , 0. , 0.], [0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0.32941177, 0.26666668, 0.4 , 1. , 0.6 , 0.], [0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668, 0. , 0. , 0. , 0. , 0.13333334, 0.5372549 , 0. , 0. , 0.13333334, 0.9372549 , 0.13333334], [0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451 , 0. , 0. , 0. , 0. , 0.32941177, 0.32941177, 0. , 0. , 0. , 0.4627451 , 0.19607843], [0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0. , 0. , 0.19607843, 0.13333334, 0. , 0.13333334, 0.5372549 , 0. , 0. , 0. , 0.5372549 , 0.], [0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0. , 0. , 0.67058825, 0.4627451 , 0. , 0. , 0.26666668, 0.4627451 , 0.4 , 0.4 , 0.13333334, 0.]], dtype=float32), ('$\\mathdefault{1.00}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.19607843, 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0. , 0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0.], [0.32941177, 0.19607843, 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843, 0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668, 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177, 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668, 0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451 , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451], [0. , 0. , 1. , 0.0627451 , 0. , 0. , 0. , 0.19607843, 0.13333334, 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0.], [0.26666668, 0.5372549 , 1. , 0.5372549 , 0.32941177, 0. , 0. , 0.67058825, 0.4627451 , 0. , 0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0. , 0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0.]], dtype=float32), ('$\\mathdefault{1.0}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.19607843, 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0.], [0.32941177, 0.19607843, 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4 , 0.73333335, 0. , 0. ,
0. , 0.8666667 , 0.19607843], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451], [0. , 0. , 1. , 0.0627451 , 0. , 0. , 0. , 0.19607843, 0.13333334, 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0.], [0.26666668, 0.5372549 , 1. , 0.5372549 , 0.32941177, 0. , 0. , 0.67058825, 0.4627451 , 0. , 0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0.]], dtype=float32), ('$\\mathdefault{1.25}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.19607843, 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 0.4627451 , 0.4627451 , 0.67058825, 0.0627451 , 0. , 0. , 0.19607843, 0.19607843, 0. , 0.13333334, 0.19607843, 0.], [0.32941177, 0.19607843, 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0. , 0. , 0.4627451 , 0.8039216 , 0. , 0. , 0.6 , 1. , 1. , 0.73333335, 0.0627451 , 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 0.9372549 , 0. , 0. , 0.13333334, 1. , 0.13333334, 0. , 0.4 , 0.0627451 , 0.0627451 , 0. , 0. , 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.32941177, 0. , 0. , 0.19607843, 1. , 0.0627451 , 0. , 0.4 , 0. , 0. , 0. , 0. , 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.5372549 , 0.73333335, 0. , 0. , 0.4627451 , 0.32941177, 0.32941177, 0.5372549 , 0.13333334, 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.8666667 , 0.0627451 , 0. , 0. , 0.0627451 , 0. , 0. , 0.19607843, 0.8666667 , 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.13333334, 0. , 0. , 0. , 0.19607843, 0. , 0. , 0.0627451 , 1. , 0.13333334], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.13333334, 0. , 0.0627451 , 0.0627451 , 0.19607843, 0.9372549 , 0. , 0. , 0.0627451 , 1. , 0.0627451], [0. , 0. , 1. , 0.0627451 , 0. , 0. , 0. , 0.19607843, 0.13333334, 0. , 0. , 0.32941177, 0.26666668, 0. , 0.0627451 , 0.4 , 0. , 0.0627451 , 0.4 , 0. , 0. , 0.32941177, 0.67058825, 0.], [0.26666668, 0.5372549 , 1. , 0.5372549 , 0.32941177, 0. , 0. , 0.67058825, 0.4627451 , 0. , 0.13333334, 1. , 1. , 1. , 1. , 0.9372549 , 0. , 0. , 0.19607843, 0.4627451 , 0.4 , 0.5372549 , 0. , 0.]], dtype=float32), ('$\\mathdefault{1.50}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.19607843, 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 0.19607843, 0. , 0.13333334, 0.19607843, 0. , 0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0.], [0.32941177, 0.19607843, 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.73333335, 0.0627451 , 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4 , 0.0627451 , 0.0627451 , 0. , 0. , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4 , 0. , 0. , 0. , 0. , 0. , 0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.32941177, 0.32941177, 0.5372549 , 0.13333334, 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0. , 0. , 0.19607843, 0.8666667 , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 0. , 0. , 0.0627451 , 1. , 0.13333334, 0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 0.9372549 , 0. , 0. , 0.0627451 , 1. , 0.0627451 , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451], [0. , 0. , 1. , 0.0627451 , 0. , 0. , 0. , 0.19607843, 0.13333334, 0. , 0.0627451 , 0.4 , 0. , 0. , 0.32941177, 0.67058825, 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0.], [0.26666668, 0.5372549 , 1. , 0.5372549 , 0.32941177, 0. , 0. , 0.67058825, 0.4627451 , 0. , 0. , 0.19607843, 0.4627451 , 0.4 , 0.5372549 , 0. , 0. , 0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0.]], dtype=float32), ('$\\mathdefault{1.75}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.19607843, 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.32941177, 0.0627451 , 0.0627451 , 0. , 0. , 0. , 0. , 0.19607843, 0.19607843, 0. , 0.13333334, 0.19607843, 0.], [0.32941177, 0.19607843, 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. , 1. , 1. , 1. , 1. , 0.4627451 , 0. , 0.6 , 1. , 1. , 0.73333335, 0.0627451 , 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.32941177, 0. , 0. , 0. , 0.4627451 , 0. , 0. , 0.4 , 0.0627451 , 0.0627451 , 0. , 0. , 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0. , 0. , 0. , 0.32941177, 0.13333334, 0. , 0. , 0.4 , 0. , 0. , 0. , 0. , 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.4 , 0. , 0. , 0. , 0.4627451 , 0.32941177, 0.32941177, 0.5372549 , 0.13333334, 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.0627451 , 0. , 0. , 0. , 0.0627451 , 0. , 0. , 0.19607843, 0.8666667 , 0.], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.8666667 , 0. , 0. , 0. , 0. , 0.19607843, 0. , 0. , 0.0627451 , 1. , 0.13333334], [0. , 0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.26666668, 0.8039216 , 0. , 0. , 0. , 0.19607843, 0.9372549 , 0. , 0. , 0.0627451 , 1. , 0.0627451], [0. , 0. , 1. , 0.0627451 , 0. , 0. , 0. , 0.19607843, 0.13333334, 0. , 0. , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.0627451 , 0.4 , 0. , 0. , 0.32941177, 0.67058825, 0.], [0.26666668, 0.5372549 , 1. , 0.5372549 , 0.32941177, 0. , 0. , 0.67058825, 0.4627451 , 0. , 0. , 0. , 0.4627451 , 0.6 , 0. , 0. , 0. , 0. , 0.19607843, 0.4627451 , 0.4 , 0.5372549 , 0. , 0.]], dtype=float32), ('$\\mathdefault{2.00}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.19607843, 0.4627451 , 0.4627451 , 0.67058825, 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0. , 0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0.], [0. , 0.4627451 , 0. , 0. , 0.4627451 , 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0.], [0.19607843, 0.9372549 , 0. , 0. , 0.13333334, 1. , 0.13333334, 0. , 0. , 0. , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.], [0. , 0.32941177, 0. , 0. , 0.19607843, 1. , 0.0627451 , 0. , 0. , 0. , 0. , 0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843, 0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843], [0. , 0. , 0. , 0. , 0.5372549 , 0.73333335, 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668, 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668], [0. , 0. , 0. , 0.0627451 , 0.8666667 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177, 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177], [0. , 0. , 0. , 0.6 , 0.13333334, 0. , 0. , 0. , 0. , 0. , 0. , 0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668, 0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668], [0. , 0. , 0.4627451 , 0.13333334, 0. , 0.0627451 , 0.0627451 , 0. , 0. , 0. , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451 , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451], [0. , 0.32941177, 0.26666668, 0. , 0.0627451 , 0.4 , 0. , 0. , 0.19607843, 0.13333334, 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0.], [0.13333334, 1. , 1. , 1. , 1. , 0.9372549 , 0. , 0. , 0.67058825, 0.4627451 , 0. , 0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0. , 0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0.]], dtype=float32), ('$\\mathdefault{2.25}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.19607843, 0.4627451 , 0.4627451 , 0.67058825, 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 0.4627451 , 0.4627451 , 0.67058825, 0.0627451 , 0. , 0. , 0.19607843, 0.19607843, 0. , 0.13333334, 0.19607843, 0.], [0. , 0.4627451 , 0. , 0. , 0.4627451 , 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0. , 0. , 0.4627451 , 0.8039216 , 0. , 0. , 0.6 , 1. , 1. , 0.73333335, 0.0627451 , 0.], [0.19607843, 0.9372549 , 0. , 0. , 0.13333334, 1. , 0.13333334, 0. , 0. , 0. , 0. , 0.19607843, 0.9372549 , 0. , 0. , 0.13333334, 1. , 0.13333334, 0. , 0.4 , 0.0627451 , 0.0627451 , 0. , 0. , 0.], [0. , 0.32941177, 0. , 0. , 0.19607843, 1. , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0.32941177, 0. , 0. , 0.19607843, 1. , 0.0627451 , 0. , 0.4 , 0. , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.5372549 , 0.73333335, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.5372549 , 0.73333335, 0. , 0. , 0.4627451 , 0.32941177, 0.32941177, 0.5372549 , 0.13333334, 0.], [0. , 0. , 0. , 0.0627451 , 0.8666667 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.8666667 , 0.0627451 , 0. , 0. , 0.0627451 , 0. , 0. , 0.19607843, 0.8666667 , 0.], [0. , 0. , 0. , 0.6 , 0.13333334, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.13333334, 0. , 0. , 0. , 0.19607843, 0. , 0. , 0.0627451 , 1. , 0.13333334], [0. , 0. , 0.4627451 , 0.13333334, 0. , 0.0627451 , 0.0627451 , 0. , 0. , 0. , 0. ,
0. , 0. , 0.4627451 , 0.13333334, 0. , 0.0627451 , 0.0627451 , 0.19607843, 0.9372549 , 0. , 0. , 0.0627451 , 1. , 0.0627451], [0. , 0.32941177, 0.26666668, 0. , 0.0627451 , 0.4 , 0. , 0. , 0.19607843, 0.13333334, 0. , 0. , 0.32941177, 0.26666668, 0. , 0.0627451 , 0.4 , 0. , 0.0627451 , 0.4 , 0. , 0. , 0.32941177, 0.67058825, 0.], [0.13333334, 1. , 1. , 1. , 1. , 0.9372549 , 0. , 0. , 0.67058825, 0.4627451 , 0. , 0.13333334, 1. , 1. , 1. , 1. , 0.9372549 , 0. , 0. , 0.19607843, 0.4627451 , 0.4 , 0.5372549 , 0. , 0.]], dtype=float32), ('$\\mathdefault{2.50}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.19607843, 0.4627451 , 0.4627451 , 0.67058825, 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 0.19607843, 0. , 0.13333334, 0.19607843, 0. , 0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0.], [0. , 0.4627451 , 0. , 0. , 0.4627451 , 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.73333335, 0.0627451 , 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0.], [0.19607843, 0.9372549 , 0. , 0. , 0.13333334, 1. , 0.13333334, 0. , 0. , 0. , 0. , 0. , 0.4 , 0.0627451 , 0.0627451 , 0. , 0. , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.], [0. , 0.32941177, 0. , 0. , 0.19607843, 1. , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0.4 , 0. , 0. , 0. , 0. , 0. , 0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843], [0. , 0. , 0. , 0. , 0.5372549 , 0.73333335, 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.32941177, 0.32941177, 0.5372549 , 0.13333334, 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668], [0. , 0. , 0. , 0.0627451 , 0.8666667 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0. , 0. , 0.19607843, 0.8666667 , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177], [0. , 0. , 0. , 0.6 , 0.13333334, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 0. , 0. , 0.0627451 , 1. , 0.13333334, 0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668], [0. , 0. , 0.4627451 , 0.13333334, 0. , 0.0627451 , 0.0627451 , 0. , 0. , 0. , 0. , 0.19607843, 0.9372549 , 0. , 0. , 0.0627451 , 1. , 0.0627451 , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451], [0. , 0.32941177, 0.26666668, 0. , 0.0627451 , 0.4 , 0. , 0. , 0.19607843, 0.13333334, 0. , 0.0627451 , 0.4 , 0. , 0. , 0.32941177, 0.67058825, 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0.], [0.13333334, 1. , 1. , 1. , 1. , 0.9372549 , 0. , 0. , 0.67058825, 0.4627451 , 0. , 0. , 0.19607843, 0.4627451 , 0.4 , 0.5372549 , 0. , 0. , 0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0.]], dtype=float32), ('$\\mathdefault{2.75}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.19607843, 0.4627451 , 0.4627451 , 0.67058825, 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0.32941177, 0.0627451 , 0.0627451 , 0. , 0. , 0. , 0. , 0.19607843, 0.19607843, 0. , 0.13333334, 0.19607843, 0.], [0. , 0.4627451 , 0. , 0. , 0.4627451 , 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0. , 1. , 1. , 1. , 1. , 1. , 0.4627451 , 0. , 0.6 , 1. , 1. , 0.73333335, 0.0627451 , 0.], [0.19607843, 0.9372549 , 0. , 0. , 0.13333334, 1. , 0.13333334, 0. , 0. , 0. , 0. , 0.0627451 , 0.32941177, 0. , 0. , 0. , 0.4627451 , 0. , 0. , 0.4 , 0.0627451 , 0.0627451 , 0. , 0. , 0.], [0. , 0.32941177, 0. , 0. , 0.19607843, 1. , 0.0627451 , 0. , 0. , 0. , 0. , 0.0627451 , 0. , 0. , 0. , 0.32941177, 0.13333334, 0. , 0. , 0.4 , 0. , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.5372549 , 0.73333335, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.4 , 0. , 0. , 0. , 0.4627451 , 0.32941177, 0.32941177, 0.5372549 , 0.13333334, 0.], [0. , 0. , 0. , 0.0627451 , 0.8666667 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.6 , 0.0627451 , 0. , 0. , 0. , 0.0627451 , 0. , 0. , 0.19607843, 0.8666667 , 0.], [0. , 0. , 0. , 0.6 , 0.13333334, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.8666667 , 0. , 0. , 0. , 0. , 0.19607843, 0. , 0. , 0.0627451 , 1. , 0.13333334], [0. , 0. , 0.4627451 , 0.13333334, 0. , 0.0627451 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0.26666668, 0.8039216 , 0. , 0. , 0. , 0.19607843, 0.9372549 , 0. , 0. , 0.0627451 , 1. , 0.0627451], [0. , 0.32941177, 0.26666668, 0. , 0.0627451 , 0.4 , 0. , 0. , 0.19607843, 0.13333334, 0. , 0. , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.0627451 , 0.4 , 0. , 0. , 0.32941177, 0.67058825, 0.], [0.13333334, 1. , 1. , 1. , 1. , 0.9372549 , 0. , 0. , 0.67058825, 0.4627451 , 0. , 0. , 0. , 0.4627451 , 0.6 , 0. , 0. , 0. , 0. , 0.19607843, 0.4627451 , 0.4 , 0.5372549 , 0. , 0.]], dtype=float32), ('$\\mathdefault{3.00}$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.26666668, 0.26666668, 0.32941177, 0.5372549 , 0.19607843, 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0. , 0. , 0.13333334, 0.4627451 , 0.32941177, 0.4627451 , 0.0627451 , 0.], [0. , 0.9372549 , 0.19607843, 0. , 0.4 , 0.8666667 , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.67058825, 0.], [0. , 0.26666668, 0. , 0. , 0.4 , 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.], [0. , 0. , 0. , 0. , 0.73333335, 0.4 , 0. , 0. , 0. , 0. , 0. , 0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843, 0.4 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.19607843], [0. , 0. , 0.19607843, 0.5372549 , 0.4627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668, 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.26666668], [0. , 0. , 0. , 0.0627451 , 0.6 , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177, 0.4627451 , 0.73333335, 0. , 0. , 0. , 0.8666667 , 0.32941177], [0. , 0. , 0. , 0. , 0.26666668, 1. , 0.0627451 , 0. , 0. , 0. , 0. , 0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668, 0.4 , 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.26666668], [0.26666668, 0.9372549 , 0. , 0. , 0.13333334, 1. , 0.19607843, 0. , 0. , 0. , 0. , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451 , 0.13333334, 0.8039216 , 0. , 0. , 0. , 0.9372549 , 0.0627451], [0.19607843, 0.67058825, 0. , 0. , 0.32941177, 0.9372549 , 0. , 0. , 0.19607843, 0.13333334, 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0. , 0. , 0.8039216 , 0. , 0. , 0.13333334, 0.73333335, 0.], [0. , 0.32941177, 0.4 , 0.4 , 0.67058825, 0.13333334, 0. , 0. , 0.67058825, 0.4627451 , 0. , 0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0. , 0. , 0.13333334, 0.5372549 , 0.32941177, 0.5372549 , 0.0627451 , 0.]], dtype=float32), ('$\\pm 0$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 20.0, 100.0): array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.32941177, 0.0627451 , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.5372549 , 0.5372549 , 0.4627451 , 0.6 , 0.32941177, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.8666667 , 0.19607843, 0. , 0. , 0. , 0.6 , 0.5372549 , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.73333335, 0.5372549 , 0. , 0. , 0. , 0. , 0. , 0.9372549 , 0.26666668, 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 1. , 0.13333334, 0. , 0. , 0. , 0. , 0. , 0.6 , 0.73333335, 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.5372549 , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 1. , 0.0627451], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.73333335, 0.9372549 , 0. , 0. , 0. , 0. , 0. , 0. , 0.32941177, 1. , 0.26666668], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8666667 , 0.8666667 , 0. , 0. , 0. , 0. , 0. , 0. , 0.26666668, 1. , 0.4], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.9372549 , 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.4627451], [0.32941177, 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 0.8039216 , 0. , 0. , 0. , 1. , 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.5372549], [0. , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.8666667 , 0.32941177, 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0. , 0. , 0. , 0. , 1. , 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.5372549], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.9372549 , 0.8666667 , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.4627451], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8666667 , 0.8666667 , 0. , 0. , 0. , 0. , 0. , 0. , 0.26666668, 1. , 0.4], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.73333335, 0.9372549 , 0. , 0. , 0. , 0. , 0. , 0. , 0.32941177, 1. , 0.26666668], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.5372549 , 1. , 0. , 0. , 0. ,
0. , 0. , 0. , 0.4627451 , 1. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.19607843, 0. , 0. , 0. , 0. , 0. , 0.67058825, 0.73333335, 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.73333335, 0.5372549 , 0. , 0. , 0. , 0. , 0. , 1. , 0.26666668, 0.], [0. , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.8666667 , 0.32941177, 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.8666667 , 0.19607843, 0. , 0. , 0. , 0.6 , 0.5372549 , 0. , 0.], [0.32941177, 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 0.8039216 , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 0.6 , 0.5372549 , 0.4627451 , 0.6 , 0.32941177, 0. , 0. , 0.]], dtype=float32), ('p^{3^A}', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 50.0, 100.0): array([[0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], ..., [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0.8666667, 1. , ..., 0. , 0. , 0.], [0.0627451, 0.9372549, 1. , ..., 0. , 0. , 0.]], dtype=float32), ('p_{3_2}', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 50.0, 100.0): array([[0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], ..., [0. , 0. , 0. , ..., 0.13333334, 0.8039216 , 0.], [0. , 0. , 0. , ..., 1. , 0.73333335, 0.], [0. , 0. , 0. , ..., 1. , 0.6 , 0.]], dtype=float32), ('Omega: $\\Omega$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 20.0, 100.0): array([[0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0.0627451 , ..., 0.19607843, 0. , 0.], ..., [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.]], dtype=float32), ('\\TeX\\ is Number $\\displaystyle\\sum_{n=1}^\\infty\\frac{-e^{i\\pi}}{2^n}$!', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 16.0, 100.0): array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], dtype=float32), ('\\begin{eqnarray*}\\mathcal{F} &=& \\int f\\left(\\phi, c \\right) dV, \\\\ \\frac{ \\partial \\phi } { \\partial t } &=& -M_{ \\phi } \\frac{ \\delta \\mathcal{F} } { \\delta \\phi }\\end{eqnarray*}', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 16.0, 100.0): array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], dtype=float32), ('\\begin{eqnarray*}|\\nabla\\phi| &=& 1,\\\\\\frac{\\partial \\phi}{\\partial t} + U|\\nabla \\phi| &=& 0 \\end{eqnarray*}', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 18.0, 100.0): array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], dtype=float32), ('\\bf{.5}', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 20.0, 100.0): array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.9372549 , 0.67058825, 0.32941177, 0.19607843, 0.13333334, 0.13333334, 0.26666668, 0.4627451 , 0.73333335, 0.6 , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 0.9372549 , 0.13333334, 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 0.8039216 , 0.0627451 , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. , 0.9372549 , 1. , 1. , 0.9372549 , 0.73333335, 0.32941177, 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. , 0.19607843, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. , 0.19607843, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. , 0.19607843, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. , 0.32941177, 0.5372549 , 0.8666667 , 0.9372549 , 0.9372549 , 0.73333335, 0.5372549 , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 1. , 0.8666667 , 0.32941177, 0.0627451 , 0. , 0.0627451 , 0.67058825, 1. , 0.9372549 , 0.26666668, 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 1. , 1. , 0.9372549 , 0.0627451], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8666667 , 1. , 1. , 0.5372549], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 1. , 1. , 0.8039216], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 1. , 0.67058825, 0. , 0. , 0. , 0. , 0. , 0.73333335, 1. , 1. , 0.8666667], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4 , 1. , 1. , 0.9372549 , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 1. , 1. , 0.67058825], [0.0627451 , 0.73333335, 0.9372549 , 0.4627451 , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.9372549 , 0.4 , 0. , 0. , 0. , 0. , 0. , 1. , 1. , 1. , 0.32941177], [0.6 , 1. , 1. , 1. , 0.13333334, 0. , 0. , 0. , 0. , 0.8039216 , 0.6 , 0. , 0. , 0. , 0. , 0. , 0.4 , 1. , 1. , 0.73333335, 0.], [0.6 , 1. , 1. , 1. , 0.13333334, 0. , 0. , 0. , 0. , 0.0627451 , 0.8666667 , 0.8039216 , 0.32941177, 0.13333334, 0.13333334, 0.4 , 1. , 1. , 0.67058825, 0.0627451 , 0.], [0.0627451 , 0.8039216 , 1. , 0.5372549 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.4627451 , 0.73333335, 0.9372549 , 0.9372549 , 0.8039216 , 0.6 , 0.19607843, 0. , 0. , 0.]], dtype=float32), ('\\bf{0}', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 20.0, 100.0): array([[0. , 0. , 0. , 0.19607843, 0.67058825, 0.8666667 , 0.9372549 , 0.9372549 , 0.8039216 , 0.4 , 0. , 0. , 0. , 0.], [0. , 0. , 0.4627451 , 1. , 0.8666667 , 0.19607843, 0. , 0.0627451 , 0.6 , 1. , 0.8666667 , 0.0627451 , 0. , 0.], [0. , 0.32941177, 1. , 1. , 0.13333334, 0. , 0. , 0. , 0. , 0.73333335, 1. , 0.8039216 , 0. , 0.], [0. , 0.9372549 , 1. , 0.8666667 , 0. , 0. , 0. , 0. , 0. , 0.32941177, 1. , 1. , 0.32941177, 0.], [0.26666668, 1. , 1. , 0.67058825, 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 1. , 0.73333335, 0.], [0.5372549 , 1. , 1. , 0.6 , 0. , 0. , 0. , 0. , 0. , 0.13333334, 1. , 1. , 1. , 0.], [0.67058825, 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 1. , 1. , 1. , 0.0627451], [0.8039216 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 1. , 1. , 1. , 0.19607843], [0.8039216 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 1. , 1. , 1. , 0.19607843], [0.8039216 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 1. , 1. , 1. , 0.19607843], [0.8039216 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 1. , 1. , 1. , 0.19607843], [0.73333335, 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0. , 0. , 0.0627451 , 1. , 1. , 1. , 0.13333334], [0.5372549 , 1. , 1. , 0.6 , 0. , 0. , 0. , 0. , 0. , 0.13333334, 1. , 1. , 1. , 0.], [0.26666668, 1. , 1. , 0.67058825, 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 1. , 0.73333335, 0.], [0. , 0.9372549 , 1. , 0.8666667 , 0. , 0. , 0. , 0. , 0. , 0.4 , 1. , 1. , 0.4 , 0.], [0. , 0.4 , 1. , 1. , 0.13333334, 0. , 0. , 0. , 0. , 0.73333335, 1. , 0.8666667 , 0. , 0.], [0. , 0. , 0.5372549 , 1. , 0.8666667 , 0.19607843, 0. , 0.0627451 , 0.6 , 1. , 0.8666667 , 0.0627451 , 0. , 0.], [0. , 0. , 0. , 0.19607843, 0.67058825, 0.8666667 , 0.9372549 , 0.9372549 , 0.8039216 , 0.4 , 0. , 0. , 0. , 0.]], dtype=float32), ('\\bf{1}', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 20.0, 100.0): array([[0. , 0. , 0. , 0. , 0. , 0.26666668, 0.9372549 , 0.4627451 , 0. , 0. , 0. , 0.], [0.0627451 , 0.19607843, 0.26666668, 0.4627451 , 0.8039216 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0.67058825, 1. , 0.8666667 , 0.67058825, 0.8039216 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0.6 , 1. , 1. , 0.5372549 , 0. , 0. , 0. , 0.], [0.0627451 , 0.13333334, 0.13333334, 0.13333334, 0.67058825, 1. , 1. , 0.6 , 0.13333334, 0.13333334, 0.13333334, 0.], [0.4 , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 1. , 0.26666668]], dtype=float32), ('\\bf{level set} $\\phi$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 20.0, 100.0): array([[0.67058825, 0.8666667 , 0.9372549 , ..., 0. , 0. , 0.], [0.32941177, 0.5372549 , 1. , ..., 0. , 0. , 0.], [0. , 0. , 0.9372549 , ..., 0. , 0. , 0.], ..., [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.]], dtype=float32), ('\\bf{phase field} $\\phi$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 20.0, 100.0): array([[0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], ..., [0. , 0.
, 0.13333334, ..., 0. , 0. , 0.], [0. , 0.13333334, 0.26666668, ..., 0. , 0. , 0.], [0. , 1. , 1. , ..., 0. , 0. , 0.]], dtype=float32), ('\\font\\a ptmr8r at 14pt\\a Nimbus Roman No9 L ', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0. , 0. , ..., 0. , 0. , 0.], [0.32941177, 0.8666667 , 1. , ..., 0. , 0. , 0.], [0. , 0. , 0.9372549 , ..., 0. , 0. , 0.], ..., [0. , 0. , 1. , ..., 0.4 , 1. , 0.0627451], [0.32941177, 0.73333335, 1. , ..., 1. , 0.8039216 , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.]], dtype=float32), ('\\font\\a ptmr8rn at 14pt\\a Nimbus Roman No9 L (condensed)', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0. , 0. , ..., 0. , 0. , 0.], [0.4 , 0.9372549 , 1. , ..., 0. , 0. , 0.], [0. , 0.32941177, 1. , ..., 0.13333334, 0. , 0.], ..., [0. , 0. , 0. , ..., 0.6 , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.]], dtype=float32), ('\\font\\a ptmri8r at 14pt\\a Nimbus Roman No9 L Italics (real italics for comparison)', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0.4627451 , 0. , 0.], [0. , 0. , 0. , ..., 0.26666668, 0.4 , 0.], ..., [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.]], dtype=float32), ('\\font\\a ptmro8r at 14pt\\a Nimbus Roman No9 L (slanted)', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0.26666668, ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0.5372549 , 0. , 0.], ..., [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.]], dtype=float32), ('\\font\\a ptmrr8re at 14pt\\a Nimbus Roman No9 L (extended)', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0. , 0. , ..., 0. , 0. , 0.], [0.32941177, 0.67058825, 1. , ..., 0. , 0. , 0.], [0. , 0. , 0.6 , ..., 0. , 0. , 0.], ..., [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.]], dtype=float32), ('\\textbf{time (s)}', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 10.0, 100.0): array([[0. , 0.19607843, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 0. , 0. , 0.], [0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.67058825, 0. , 0.6 , 0.67058825, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 0.4627451 , 0. , 0.], [0. , 0.67058825, 0.9372549 , 0. , 0. , 0. , 0.13333334, 0.9372549 , 0.6 , 0.4 , 1. , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 1. , 0.26666668, 0.], [0. , 0.73333335, 1. , 0.9372549 , 0.67058825, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.73333335, 0.8666667 , 0.], [0.5372549 , 1. , 1. , 1. , 0.73333335, 0. , 0.0627451 , 1. , 0.6 , 0. , 0.0627451 , 1. , 0.5372549 , 0.5372549 , 1. , 1. , 0.4 , 0.32941177, 0.9372549 , 1. , 0.6 , 0. , 0. , 0.26666668, 0.8039216 , 1. , 0.8666667 , 0.4627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0.32941177, 1. , 0.32941177, 0. , 0. , 0. , 0.67058825, 1. , 0.9372549 , 0.73333335, 0.0627451 , 0. , 0. , 0.4627451 , 1. , 0.19607843], [0. , 0.8039216 , 1. , 0. , 0. , 0. , 0.13333334, 1. , 0.67058825, 0. , 0.13333334, 1. , 0.9372549 , 0.26666668, 0.0627451 , 1. , 1. , 0.4627451 , 0. , 0.8666667 , 1. , 0.0627451 , 0.0627451 , 1. , 0.73333335, 0.0627451 , 0.4 , 1. , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0.6 , 1. , 0.19607843, 0. , 0. , 0.32941177, 1. , 0.0627451 , 0.0627451 , 0.5372549 , 0.0627451 , 0. , 0. , 0.32941177, 1. , 0.4627451], [0. , 0.8039216 , 1. , 0. , 0. , 0. , 0.13333334, 1. , 0.67058825, 0. , 0.13333334, 1. , 0.8039216 , 0. , 0. , 1. , 1. , 0. , 0. , 0.8039216 , 1. , 0.13333334, 0.4627451 , 1. , 0.32941177, 0. , 0. , 1. , 0.5372549 , 0. , 0. , 0. , 0. , 0. , 0.73333335, 1. , 0.13333334, 0. , 0. , 0.4 , 1. , 0.67058825, 0.32941177, 0. , 0. , 0. , 0. , 0.19607843, 1. , 0.67058825], [0. , 0.8039216 , 1. , 0. , 0. , 0. , 0.13333334, 1. , 0.67058825, 0. , 0.13333334, 1. , 0.73333335, 0. , 0. , 1. , 0.9372549 , 0. , 0. , 0.73333335, 1. , 0.13333334, 0.5372549 , 1. , 0.8039216 , 0.73333335, 0.73333335, 0.73333335, 0.32941177, 0. , 0. , 0. , 0. , 0. , 0.8039216 , 1. , 0.0627451 , 0. , 0. , 0. , 0.73333335, 1. , 1. , 0.8666667 , 0.0627451 , 0. , 0. , 0.19607843, 1. , 0.67058825], [0. , 0.8039216 , 1. , 0. , 0. , 0. , 0.13333334, 1. , 0.67058825, 0. , 0.13333334, 1. , 0.73333335, 0. , 0. , 1. , 0.9372549 , 0. , 0. , 0.73333335, 1. , 0.13333334, 0.4 , 1. , 0.32941177, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8039216 , 1. , 0.13333334, 0. , 0. , 0. , 0. , 0.13333334, 0.5372549 , 1. , 0.4 , 0. , 0. , 0.19607843, 1. , 0.6], [0. , 0.73333335, 1. , 0.19607843, 0.4 , 0. , 0.13333334, 1. , 0.67058825, 0. , 0.13333334, 1. , 0.73333335, 0. , 0. , 1. , 0.9372549 , 0. , 0. , 0.73333335, 1. , 0.13333334, 0.0627451 , 1. , 0.73333335, 0.0627451 , 0.0627451 , 0.5372549 , 0.4 , 0. , 0. , 0. , 0. , 0. , 0.6 , 1. , 0.19607843, 0. , 0. , 0.4627451 , 0.67058825, 0.13333334, 0.19607843, 1. , 0.32941177, 0. , 0. , 0.32941177, 1. , 0.4627451], [0. , 0.32941177, 1. , 0.9372549 , 0.67058825, 0. , 0.0627451 , 1. , 0.6 , 0. , 0.0627451 , 1. , 0.6 , 0. , 0. , 0.8666667 , 0.8666667 , 0. , 0. , 0.67058825, 1. , 0.0627451 , 0. , 0.19607843, 0.8039216 , 1. , 1. , 0.73333335, 0.19607843, 0. , 0. , 0. , 0. , 0. , 0.32941177, 1. , 0.32941177, 0. , 0. , 0.26666668, 0.8039216 , 1. , 1. , 0.67058825, 0. , 0. , 0. , 0.4627451 , 1. , 0.19607843], [0. , 0.9372549 , 0.6 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.73333335, 0.8666667 , 0.], [0. , 0.4 , 1. , 0.0627451 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.13333334, 1. , 0.32941177, 0.], [0. , 0.6 , 0.6 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.73333335, 0.5372549 , 0. , 0.], [0. , 0.26666668, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.19607843, 0. , 0. , 0.]], dtype=float32), ('\\textit{Velocity (°/sec)}', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 16.0, 100.0): array([[0. , 0. , 0. , ..., 0.0627451 , 0. , 0.], [0.32941177, 1. , 0.6 , ..., 0.67058825, 0. , 0.], [0.19607843, 1. , 0.8039216 , ..., 1. , 0.26666668, 0.], ..., [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.]], dtype=float32), ('gamma: $\\gamma$', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 20.0, 100.0): array([[0. , 0. , 0. , ..., 0. , 0.0627451 , 0.4627451], [0. , 0. , 0.4 , ..., 0. , 0.5372549 , 0.0627451], [0. , 0.0627451 , 1. , ..., 0.0627451 , 0.6 , 0.], ..., [0. , 0.8666667 , 1. , ..., 0. , 0. , 0.], [0. , 0.13333334, 0.9372549 , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.]], dtype=float32), ('level set', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 16.0, 100.0): array([[0.26666668, 1. , 0.32941177, ..., 0. , 0. , 0.], [0.26666668, 1. , 0.32941177, ..., 0. , 0. , 0.], [0.26666668, 1. , 0.32941177, ..., 0. , 0. , 0.], ..., [0.26666668, 1. , 0.32941177, ..., 0. , 0. , 0.], [0.26666668, 1. , 0.32941177, ..., 0.4627451 , 0.8666667 , 0.], [0.26666668, 1. , 0.32941177, ..., 0.8039216 , 0.4627451 , 0.]], dtype=float32), ('lg', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 50.0, 100.0): array([[0.9372549, 1. , 1. , ..., 0. , 0. , 0.], [0.9372549, 1. , 1. , ..., 0. , 0. , 0.], [0.9372549, 1. , 1. , ..., 0. , 0. , 0.], ..., [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0. , 0. , 0.]], dtype=float32), ('phase field', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 16.0, 100.0): array([[0. , 0. , 0. , ..., 0. , 0. , 0.], [0. , 0. , 0. , ..., 0.26666668, 1. , 0.32941177], [0. , 0. , 0. , ..., 0.26666668, 1. , 0.32941177], ..., [0.26666668, 1. , 0.4 , ..., 0. , 0. , 0.], [0.26666668, 1. , 0.4 , ..., 0. , 0. , 0.], [0.26666668, 1. , 0.4 , ..., 0. , 0. , 0.]], dtype=float32), ('sharp interface', 'sans-serifcmrcmsspzccmttd41d8cd98f00b204e9800998ecf8427e', 16.0, 100.0): array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], dtype=float32)}

make_dvi(tex, fontsize)
Generate a dvi file containing latex's layout of tex string.

Return the file name.

make_dvi_preview(tex, fontsize)
[Deprecated] Generate a dvi file containing latex's layout of tex string.

It calls make_tex_preview() method and store the size information (width, height, descent) in a
separate file.

Return the file name.

2812 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

make_png(tex, fontsize, dpi)
Generate a png file containing latex's rendering of tex string.

Return the file name.

make_tex(tex, fontsize)
Generate a tex file to render the tex string at a specific font size.

Return the file name.

make_tex_preview(tex, fontsize)
[Deprecated] Generate a tex file to render the tex string at a specific font size.

It uses the preview.sty to determine the dimension (width, height, descent) of the output.

Return the file name.

Notes

Deprecated since version 3.3.

property monospace

property rgba_arrayd

property sans_serif

property serif

texcache = '/home/elliott/.cache/matplotlib/tex.cache'

18.53 matplotlib.textpath

class matplotlib.textpath.TextPath(xy, s, size=None, prop=None, _interpola-
tion_steps=1, usetex=False)

Bases: matplotlib.path.Path

Create a path from the text.

Create a path from the text. Note that it simply is a path, not an artist. You need to use the PathPatch
(or other artists) to draw this path onto the canvas.

Parameters

xy
[tuple or array of two float values] Position of the text. For no offset, use xy=(0,
0).

18.53. matplotlib.textpath 2813

Matplotlib, Release 3.4.3

s
[str] The text to convert to a path.

size
[float, optional] Font size in points. Defaults to the size specified via the font
properties prop.

prop
[matplotlib.font_manager.FontProperties, optional] Font prop-
erty. If not provided, will use a default FontPropertieswith parameters from
the rcParams.

_interpolation_steps
[int, optional] (Currently ignored)

usetex
[bool, default: False] Whether to use tex rendering.

Examples

The following creates a path from the string "ABC" with Helvetica font face; and another path from
the latex fraction 1/2:

from matplotlib.textpath import TextPath
from matplotlib.font_manager import FontProperties

fp = FontProperties(family="Helvetica", style="italic")
path1 = TextPath((12, 12), "ABC", size=12, prop=fp)
path2 = TextPath((0, 0), r"$\frac{1}{2}$", size=12, usetex=True)

Also see /gallery/text_labels_and_annotations/demo_text_path.

property codes
Return the codes

get_size()
Get the text size.

set_size(size)
Set the text size.

property vertices
Return the cached path after updating it if necessary.

class matplotlib.textpath.TextToPath
Bases: object

A class that converts strings to paths.

DPI = 72

2814 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

FONT_SCALE = 100.0

get_glyphs_mathtext(prop, s, glyph_map=None, return_new_glyphs_only=False)
Parse mathtext string s and convert it to a (vertices, codes) pair.

get_glyphs_tex(prop, s, glyph_map=None, return_new_glyphs_only=False)
Convert the string s to vertices and codes using usetex mode.

get_glyphs_with_font(font, s, glyph_map=None, return_new_glyphs_only=False)
Convert string s to vertices and codes using the provided ttf font.

get_texmanager()
Return the cached TexManager instance.

get_text_path(prop, s, ismath=False)
Convert text s to path (a tuple of vertices and codes for matplotlib.path.Path).

Parameters

prop
[FontProperties] The font properties for the text.

s
[str] The text to be converted.

ismath
[{False, True, "TeX"}] If True, use mathtext parser. If "TeX", use tex for ren-
dering.

Returns

verts
[list] A list of numpy arrays containing the x and y coordinates of the vertices.

codes
[list] A list of path codes.

Examples

Create a list of vertices and codes from a text, and create a Path from those:

from matplotlib.path import Path
from matplotlib.textpath import TextToPath
from matplotlib.font_manager import FontProperties

fp = FontProperties(family="Humor Sans", style="italic")
verts, codes = TextToPath().get_text_path(fp, "ABC")
path = Path(verts, codes, closed=False)

Also see TextPath for a more direct way to create a path from a text.

18.53. matplotlib.textpath 2815

Matplotlib, Release 3.4.3

get_text_width_height_descent(s, prop, ismath)

18.54 matplotlib.ticker

18.54.1 Tick locating and formatting

This module contains classes for configuring tick locating and formatting. Generic tick locators and format-
ters are provided, as well as domain specific custom ones.

Although the locators know nothing about major or minor ticks, they are used by the Axis class to support
major and minor tick locating and formatting.

Tick locating

The Locator class is the base class for all tick locators. The locators handle autoscaling of the view limits
based on the data limits, and the choosing of tick locations. A useful semi-automatic tick locator is Mul-
tipleLocator. It is initialized with a base, e.g., 10, and it picks axis limits and ticks that are multiples
of that base.

The Locator subclasses defined here are

AutoLocator

MaxNLocator with simple defaults. This is the default tick locator for most plotting.

MaxNLocator

Finds up to a max number of intervals with ticks at nice locations.

LinearLocator

Space ticks evenly from min to max.

LogLocator

Space ticks logarithmically from min to max.

MultipleLocator

Ticks and range are a multiple of base; either integer or float.

FixedLocator

Tick locations are fixed.

IndexLocator

Locator for index plots (e.g., where x = range(len(y))).

NullLocator

No ticks.

2816 Chapter 18. Modules

Matplotlib, Release 3.4.3

SymmetricalLogLocator

Locator for use with with the symlog norm; works like LogLocator for the part outside of the
threshold and adds 0 if inside the limits.

LogitLocator

Locator for logit scaling.

OldAutoLocator

Choose a MultipleLocator and dynamically reassign it for intelligent ticking during navigation.

AutoMinorLocator

Locator for minor ticks when the axis is linear and the major ticks are uniformly spaced. Subdivides
the major tick interval into a specified number of minor intervals, defaulting to 4 or 5 depending on
the major interval.

There are a number of locators specialized for date locations - see the dates module.

You can define your own locator by deriving from Locator. You must override the __call__ method,
which returns a sequence of locations, and you will probably want to override the autoscale method to set
the view limits from the data limits.

If you want to override the default locator, use one of the above or a custom locator and pass it to the x or y
axis instance. The relevant methods are:

ax.xaxis.set_major_locator(xmajor_locator)
ax.xaxis.set_minor_locator(xminor_locator)
ax.yaxis.set_major_locator(ymajor_locator)
ax.yaxis.set_minor_locator(yminor_locator)

The default minor locator is NullLocator, i.e., no minor ticks on by default.

Note: Locator instances should not be used with more than one Axis or Axes. So instead of:

locator = MultipleLocator(5)
ax.xaxis.set_major_locator(locator)
ax2.xaxis.set_major_locator(locator)

do the following instead:

ax.xaxis.set_major_locator(MultipleLocator(5))
ax2.xaxis.set_major_locator(MultipleLocator(5))

18.54. matplotlib.ticker 2817

Matplotlib, Release 3.4.3

Tick formatting

Tick formatting is controlled by classes derived from Formatter. The formatter operates on a single tick value
and returns a string to the axis.

NullFormatter

No labels on the ticks.

IndexFormatter

Set the strings from a list of labels.

FixedFormatter

Set the strings manually for the labels.

FuncFormatter

User defined function sets the labels.

StrMethodFormatter

Use string format method.

FormatStrFormatter

Use an old-style sprintf format string.

ScalarFormatter

Default formatter for scalars: autopick the format string.

LogFormatter

Formatter for log axes.

LogFormatterExponent

Format values for log axis using exponent = log_base(value).

LogFormatterMathtext

Format values for log axis using exponent = log_base(value) using Math text.

LogFormatterSciNotation

Format values for log axis using scientific notation.

LogitFormatter

Probability formatter.

EngFormatter

Format labels in engineering notation.

PercentFormatter

Format labels as a percentage.

2818 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#format

Matplotlib, Release 3.4.3

You can derive your own formatter from the Formatter base class by simply overriding the __call__
method. The formatter class has access to the axis view and data limits.

To control the major and minor tick label formats, use one of the following methods:

ax.xaxis.set_major_formatter(xmajor_formatter)
ax.xaxis.set_minor_formatter(xminor_formatter)
ax.yaxis.set_major_formatter(ymajor_formatter)
ax.yaxis.set_minor_formatter(yminor_formatter)

In addition to a Formatter instance, set_major_formatter and set_minor_formatter also
accept a str or function. str input will be internally replaced with an autogenerated StrMethodFor-
matter with the input str. For function input, a FuncFormatter with the input function will be
generated and used.

See /gallery/ticks_and_spines/major_minor_demo for an example of setting major and minor ticks. See the
matplotlib.dates module for more information and examples of using date locators and formatters.

class matplotlib.ticker.AutoLocator
Bases: matplotlib.ticker.MaxNLocator

Dynamically find major tick positions. This is actually a subclass of MaxNLocator, with parameters
nbins = 'auto' and steps = [1, 2, 2.5, 5, 10].

To know the values of the non-public parameters, please have a look to the defaults of MaxNLocator.

class matplotlib.ticker.AutoMinorLocator(n=None)
Bases: matplotlib.ticker.Locator

Dynamically find minor tick positions based on the positions of major ticks. The scale must be linear
with major ticks evenly spaced.

n is the number of subdivisions of the interval between major ticks; e.g., n=2 will place a single minor
tick midway between major ticks.

If n is omitted or None, it will be set to 5 or 4.

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

class matplotlib.ticker.EngFormatter(unit='', places=None, sep=' ', *, use-
tex=None, useMathText=None)

Bases: matplotlib.ticker.Formatter

18.54. matplotlib.ticker 2819

Matplotlib, Release 3.4.3

Format axis values using engineering prefixes to represent powers of 1000, plus a specified unit, e.g.,
10 MHz instead of 1e7.

Parameters

unit
[str, default: ""] Unit symbol to use, suitable for use with single-letter representa-
tions of powers of 1000. For example, 'Hz' or 'm'.

places
[int, default: None] Precision with which to display the number, specified in dig-
its after the decimal point (there will be between one and three digits before the
decimal point). If it is None, the formatting falls back to the floating point format
'%g', which displays up to 6 significant digits, i.e. the equivalent value for places
varies between 0 and 5 (inclusive).

sep
[str, default: " "] Separator used between the value and the prefix/unit. For exam-
ple, one get '3.14 mV' if sep is " " (default) and '3.14mV' if sep is "". Besides
the default behavior, some other useful options may be:

• sep="" to append directly the prefix/unit to the value;

• sep="\N{THIN SPACE}" (U+2009);

• sep="\N{NARROW NO-BREAK SPACE}" (U+202F);

• sep="\N{NO-BREAK SPACE}" (U+00A0).

usetex
[bool, default: rcParams["text.usetex"] (default: False)] To en-
able/disable the use of TeX's math mode for rendering the numbers in the for-
matter.

useMathText
[bool, default: rcParams["axes.formatter.use_mathtext"] (de-
fault: False)] To enable/disable the use mathtext for rendering the numbers in
the formatter.

ENG_PREFIXES = {-24: 'y', -21: 'z', -18: 'a', -15: 'f', -12: 'p', -9: 'n', -6: 'µ', -3: 'm', 0: '', 3: 'k', 6: 'M', 9: 'G', 12: 'T', 15: 'P', 18: 'E', 21: 'Z', 24: 'Y'}

format_eng(num)
Format a number in engineering notation, appending a letter representing the power of 1000 of
the original number. Some examples:

>>> format_eng(0) # for self.places = 0
'0'

>>> format_eng(1000000) # for self.places = 1
'1.0 M'

2820 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.formatter.use_mathtext#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

>>> format_eng("-1e-6") # for self.places = 2
'-1.00 µ'

get_useMathText()

get_usetex()

set_useMathText(val)

set_usetex(val)

property useMathText

property usetex

class matplotlib.ticker.FixedFormatter(seq)
Bases: matplotlib.ticker.Formatter

Return fixed strings for tick labels based only on position, not value.

Note: FixedFormatter should only be used together with FixedLocator. Otherwise, the
labels may end up in unexpected positions.

Set the sequence seq of strings that will be used for labels.

get_offset()

set_offset_string(ofs)

class matplotlib.ticker.FixedLocator(locs, nbins=None)
Bases: matplotlib.ticker.Locator

Tick locations are fixed. If nbins is not None, the array of possible positions will be subsampled to
keep the number of ticks <= nbins +1. The subsampling will be done so as to include the smallest
absolute value; for example, if zero is included in the array of possibilities, then it is guaranteed to be
one of the chosen ticks.

set_params(nbins=None)
Set parameters within this locator.

tick_values(vmin, vmax)
Return the locations of the ticks.

Note: Because the values are fixed, vmin and vmax are not used in this method.

class matplotlib.ticker.FormatStrFormatter(fmt)
Bases: matplotlib.ticker.Formatter

Use an old-style ('%' operator) format string to format the tick.

The format string should have a single variable format (%) in it. It will be applied to the value (not the
position) of the tick.

18.54. matplotlib.ticker 2821

Matplotlib, Release 3.4.3

Negative numeric values will use a dash not a unicode minus, use mathtext to get a unicode minus by
wrappping the format specifier with $ (e.g. "$%g$").

class matplotlib.ticker.Formatter
Bases: matplotlib.ticker.TickHelper

Create a string based on a tick value and location.

static fix_minus(s)
Some classes may want to replace a hyphen for minus with the proper unicode symbol (U+2212)
for typographical correctness. This is a helper method to perform such a replacement when it is
enabled via rcParams["axes.unicode_minus"] (default: True).

format_data(value)
Return the full string representation of the value with the position unspecified.

format_data_short(value)
Return a short string version of the tick value.

Defaults to the position-independent long value.

format_ticks(values)
Return the tick labels for all the ticks at once.

get_offset()

locs = []

set_locs(locs)
Set the locations of the ticks.

This method is called before computing the tick labels because some formatters need to know all
tick locations to do so.

class matplotlib.ticker.FuncFormatter(func)
Bases: matplotlib.ticker.Formatter

Use a user-defined function for formatting.

The function should take in two inputs (a tick valuex and a positionpos), and return a string containing
the corresponding tick label.

get_offset()

set_offset_string(ofs)

class matplotlib.ticker.IndexFormatter(labels)
Bases: matplotlib.ticker.Formatter

[Deprecated] Format the position x to the nearest i-th label where i = int(x + 0.5). Positions
where i < 0 or i > len(list) have no tick labels.

Parameters

labels
[list] List of labels.

2822 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=axes.unicode_minus#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

class matplotlib.ticker.IndexLocator(base, offset)
Bases: matplotlib.ticker.Locator

Place a tick on every multiple of some base number of points plotted, e.g., on every 5th point. It is
assumed that you are doing index plotting; i.e., the axis is 0, len(data). This is mainly useful for x
ticks.

Place ticks every base data point, starting at offset.

set_params(base=None, offset=None)
Set parameters within this locator

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

class matplotlib.ticker.LinearLocator(numticks=None, presets=None)
Bases: matplotlib.ticker.Locator

Determine the tick locations

The first time this function is called it will try to set the number of ticks to make a nice tick partitioning.
Thereafter the number of ticks will be fixed so that interactive navigation will be nice

Use presets to set locs based on lom. A dict mapping vmin, vmax->locs

property numticks

set_params(numticks=None, presets=None)
Set parameters within this locator.

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

18.54. matplotlib.ticker 2823

Matplotlib, Release 3.4.3

view_limits(vmin, vmax)
Try to choose the view limits intelligently.

class matplotlib.ticker.Locator
Bases: matplotlib.ticker.TickHelper

Determine the tick locations;

Note that the same locator should not be used across multiple Axis because the locator stores refer-
ences to the Axis data and view limits.

MAXTICKS = 1000

nonsingular(v0, v1)
Adjust a range as needed to avoid singularities.

This method gets called during autoscaling, with (v0, v1) set to the data limits on the axes if
the axes contains any data, or (-inf, +inf) if not.

• If v0 == v1 (possibly up to some floating point slop), this method returns an expanded
interval around this value.

• If (v0, v1) == (-inf, +inf), this method returns appropriate default view limits.

• Otherwise, (v0, v1) is returned without modification.

pan(numsteps)
[Deprecated] Pan numticks (can be positive or negative)

Notes

Deprecated since version 3.3.

raise_if_exceeds(locs)
Log at WARNING level if locs is longer than Locator.MAXTICKS.

This is intended to be called immediately before returning locs from __call__ to inform users
in case their Locator returns a huge number of ticks, causing Matplotlib to run out of memory.

The "strange" name of this method dates back to when it would raise an exception instead of
emitting a log.

refresh()
[Deprecated] Refresh internal information based on current limits.

2824 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3.

set_params(**kwargs)
Do nothing, and raise a warning. Any locator class not supporting the set_params() function will
call this.

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

view_limits(vmin, vmax)
Select a scale for the range from vmin to vmax.

Subclasses should override this method to change locator behaviour.

zoom(direction)
[Deprecated] Zoom in/out on axis; if direction is >0 zoom in, else zoom out.

Notes

Deprecated since version 3.3.

class matplotlib.ticker.LogFormatter(base=10.0, labelOnlyBase=False, mi-
nor_thresholds=None, linthresh=None)

Bases: matplotlib.ticker.Formatter

Base class for formatting ticks on a log or symlog scale.

It may be instantiated directly, or subclassed.

Parameters

base
[float, default: 10.] Base of the logarithm used in all calculations.

labelOnlyBase
[bool, default: False] If True, label ticks only at integer powers of base. This is
normally True for major ticks and False for minor ticks.

minor_thresholds

18.54. matplotlib.ticker 2825

Matplotlib, Release 3.4.3

[(subset, all), default: (1, 0.4)] If labelOnlyBase is False, these two numbers con-
trol the labeling of ticks that are not at integer powers of base; normally these are
the minor ticks. The controlling parameter is the log of the axis data range. In the
typical case where base is 10 it is the number of decades spanned by the axis, so
we can call it 'numdec'. If numdec <= all, all minor ticks will be labeled. If
all < numdec <= subset, then only a subset of minor ticks will be labeled,
so as to avoid crowding. If numdec > subset then no minor ticks will be
labeled.

linthresh
[None or float, default: None] If a symmetric log scale is in use, its linthresh
parameter must be supplied here.

Notes

The set_locs method must be called to enable the subsetting logic controlled by the mi-
nor_thresholds parameter.

In some cases such as the colorbar, there is no distinction between major and minor ticks; the
tick locations might be set manually, or by a locator that puts ticks at integer powers of base
and at intermediate locations. For this situation, disable the minor_thresholds logic by using
minor_thresholds=(np.inf, np.inf), so that all ticks will be labeled.

To disable labeling of minor ticks when 'labelOnlyBase' is False, use minor_thresholds=(0,
0). This is the default for the "classic" style.

Examples

To label a subset of minor ticks when the view limits span up to 2 decades, and all of the ticks when
zoomed in to 0.5 decades or less, use minor_thresholds=(2, 0.5).

To label all minor ticks when the view limits span up to 1.5 decades, use minor_thresholds=(1.
5, 1.5).

base(base)
Change the base for labeling.

Warning: Should always match the base used for LogLocator

format_data(value)
Return the full string representation of the value with the position unspecified.

format_data_short(value)
Return a short string version of the tick value.

Defaults to the position-independent long value.

2826 Chapter 18. Modules

Matplotlib, Release 3.4.3

label_minor(labelOnlyBase)
Switch minor tick labeling on or off.

Parameters

labelOnlyBase
[bool] If True, label ticks only at integer powers of base.

set_locs(locs=None)
Use axis view limits to control which ticks are labeled.

The locs parameter is ignored in the present algorithm.

class matplotlib.ticker.LogFormatterExponent(base=10.0, labe-
lOnlyBase=False, mi-
nor_thresholds=None,
linthresh=None)

Bases: matplotlib.ticker.LogFormatter

Format values for log axis using exponent = log_base(value).

class matplotlib.ticker.LogFormatterMathtext(base=10.0, labe-
lOnlyBase=False, mi-
nor_thresholds=None,
linthresh=None)

Bases: matplotlib.ticker.LogFormatter

Format values for log axis using exponent = log_base(value).

class matplotlib.ticker.LogFormatterSciNotation(base=10.0, labe-
lOnlyBase=False, mi-
nor_thresholds=None,
linthresh=None)

Bases: matplotlib.ticker.LogFormatterMathtext

Format values following scientific notation in a logarithmic axis.

class matplotlib.ticker.LogLocator(base=10.0, subs=(1.0), numdecs=4,
numticks=None)

Bases: matplotlib.ticker.Locator

Determine the tick locations for log axes

Place ticks on the locations : subs[j] * base**i

Parameters

base
[float, default: 10.0] The base of the log used, so ticks are placed at base**n.

subs
[None or str or sequence of float, default: (1.0,)] Gives the multiples of integer
powers of the base at which to place ticks. The default places ticks only at integer
powers of the base. The permitted string values are 'auto' and 'all', both

18.54. matplotlib.ticker 2827

Matplotlib, Release 3.4.3

of which use an algorithm based on the axis view limits to determine whether
and how to put ticks between integer powers of the base. With 'auto', ticks are
placed only between integer powers; with 'all', the integer powers are included.
A value of None is equivalent to 'auto'.

numticks
[None or int, default: None] The maximum number of ticks to allow on a given
axis. The default of None will try to choose intelligently as long as this Locator
has already been assigned to an axis using get_tick_space, but otherwise
falls back to 9.

base(base)
Set the log base (major tick every base**i, i integer).

nonsingular(vmin, vmax)
Adjust a range as needed to avoid singularities.

This method gets called during autoscaling, with (v0, v1) set to the data limits on the axes if
the axes contains any data, or (-inf, +inf) if not.

• If v0 == v1 (possibly up to some floating point slop), this method returns an expanded
interval around this value.

• If (v0, v1) == (-inf, +inf), this method returns appropriate default view limits.

• Otherwise, (v0, v1) is returned without modification.

set_params(base=None, subs=None, numdecs=None, numticks=None)
Set parameters within this locator.

subs(subs)
Set the minor ticks for the log scaling every base**i*subs[j].

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

view_limits(vmin, vmax)
Try to choose the view limits intelligently.

class matplotlib.ticker.LogitFormatter(*, use_overline=False,
one_half='\x0crac{1}{2}', minor=False,
minor_threshold=25, minor_number=6)

Bases: matplotlib.ticker.Formatter

2828 Chapter 18. Modules

Matplotlib, Release 3.4.3

Probability formatter (using Math text).

Parameters

use_overline
[bool, default: False] If x > 1/2, with x = 1-v, indicate if x should be displayed as
$overline{v}$. The default is to display $1-v$.

one_half
[str, default: r"frac{1}{2}"] The string used to represent 1/2.

minor
[bool, default: False] Indicate if the formatter is formatting minor ticks or not.
Basically minor ticks are not labelled, except when only few ticks are provided,
ticks with most space with neighbor ticks are labelled. See other parameters to
change the default behavior.

minor_threshold
[int, default: 25] Maximum number of locs for labelling some minor ticks. This
parameter have no effect if minor is False.

minor_number
[int, default: 6] Number of ticks which are labelled when the number of ticks is
below the threshold.

format_data_short(value)
Return a short string version of the tick value.

Defaults to the position-independent long value.

set_locs(locs)
Set the locations of the ticks.

This method is called before computing the tick labels because some formatters need to know all
tick locations to do so.

set_minor_number(minor_number)
Set the number of minor ticks to label when some minor ticks are labelled.

Parameters

minor_number
[int] Number of ticks which are labelled when the number of ticks is below the
threshold.

set_minor_threshold(minor_threshold)
Set the threshold for labelling minors ticks.

Parameters

18.54. matplotlib.ticker 2829

Matplotlib, Release 3.4.3

minor_threshold
[int] Maximum number of locations for labelling some minor ticks. This param-
eter have no effect if minor is False.

set_one_half(one_half)
Set the way one half is displayed.

one_half
[str, default: r"frac{1}{2}"] The string used to represent 1/2.

use_overline(use_overline)
Switch display mode with overline for labelling p>1/2.

Parameters

use_overline
[bool, default: False] If x > 1/2, with x = 1-v, indicate if x should be displayed
as $overline{v}$. The default is to display $1-v$.

class matplotlib.ticker.LogitLocator(minor=False, *, nbins='auto')
Bases: matplotlib.ticker.MaxNLocator

Determine the tick locations for logit axes

Place ticks on the logit locations

Parameters

nbins
[int or 'auto', optional] Number of ticks. Only used if minor is False.

minor
[bool, default: False] Indicate if this locator is for minor ticks or not.

property minor

nonsingular(vmin, vmax)
Adjust a range as needed to avoid singularities.

This method gets called during autoscaling, with (v0, v1) set to the data limits on the axes if
the axes contains any data, or (-inf, +inf) if not.

• If v0 == v1 (possibly up to some floating point slop), this method returns an expanded
interval around this value.

• If (v0, v1) == (-inf, +inf), this method returns appropriate default view limits.

• Otherwise, (v0, v1) is returned without modification.

set_params(minor=None, **kwargs)
Set parameters within this locator.

2830 Chapter 18. Modules

Matplotlib, Release 3.4.3

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

class matplotlib.ticker.MaxNLocator(*args, **kwargs)
Bases: matplotlib.ticker.Locator

Find nice tick locations with no more than N being within the view limits. Locations beyond the limits
are added to support autoscaling.

Parameters

nbins
[int or 'auto', default: 10] Maximum number of intervals; one less than max num-
ber of ticks. If the string 'auto', the number of bins will be automatically deter-
mined based on the length of the axis.

steps
[array-like, optional] Sequence of nice numbers starting with 1 and ending with
10; e.g., [1, 2, 4, 5, 10], where the values are acceptable tick multiples. i.e. for
the example, 20, 40, 60 would be an acceptable set of ticks, as would 0.4, 0.6,
0.8, because they are multiples of 2. However, 30, 60, 90 would not be allowed
because 3 does not appear in the list of steps.

integer
[bool, default: False] If True, ticks will take only integer values, provided at least
min_n_ticks integers are found within the view limits.

symmetric
[bool, default: False] If True, autoscaling will result in a range symmetric about
zero.

prune
[{'lower', 'upper', 'both', None}, default: None] Remove edge ticks -- use-
ful for stacked or ganged plots where the upper tick of one axes overlaps
with the lower tick of the axes above it, primarily when rcParams["axes.
autolimit_mode"] (default: 'data') is 'round_numbers'. If
prune=='lower', the smallest tick will be removed. If prune == 'up-
per', the largest tick will be removed. If prune == 'both', the largest and
smallest ticks will be removed. If prune is None, no ticks will be removed.

18.54. matplotlib.ticker 2831

../tutorials/introductory/customizing.html?highlight=axes.autolimit_mode#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.autolimit_mode#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

min_n_ticks
[int, default: 2] Relax nbins and integer constraints if necessary to obtain this
minimum number of ticks.

default_params = {'integer': False, 'min_n_ticks': 2, 'nbins': 10, 'prune': None, 'steps': None, 'symmetric': False}

set_params(**kwargs)
Set parameters for this locator.

Parameters

nbins
[int or 'auto', optional] see MaxNLocator

steps
[array-like, optional] see MaxNLocator

integer
[bool, optional] see MaxNLocator

symmetric
[bool, optional] see MaxNLocator

prune
[{'lower', 'upper', 'both', None}, optional] see MaxNLocator

min_n_ticks
[int, optional] see MaxNLocator

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

view_limits(dmin, dmax)
Select a scale for the range from vmin to vmax.

Subclasses should override this method to change locator behaviour.

class matplotlib.ticker.MultipleLocator(base=1.0)
Bases: matplotlib.ticker.Locator

2832 Chapter 18. Modules

Matplotlib, Release 3.4.3

Set a tick on each integer multiple of a base within the view interval.

set_params(base)
Set parameters within this locator.

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

view_limits(dmin, dmax)
Set the view limits to the nearest multiples of base that contain the data.

class matplotlib.ticker.NullFormatter
Bases: matplotlib.ticker.Formatter

Always return the empty string.

class matplotlib.ticker.NullLocator
Bases: matplotlib.ticker.Locator

No ticks

tick_values(vmin, vmax)
Return the locations of the ticks.

Note: Because the values are Null, vmin and vmax are not used in this method.

class matplotlib.ticker.OldAutoLocator(*args, **kwargs)
Bases: matplotlib.ticker.Locator

[Deprecated] On autoscale this class picks the best MultipleLocator to set the view limits and the tick
locs.

Notes

Deprecated since version 3.3.

get_locator(d)
Pick the best locator based on a distance d.

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

18.54. matplotlib.ticker 2833

Matplotlib, Release 3.4.3

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

view_limits(vmin, vmax)
Select a scale for the range from vmin to vmax.

Subclasses should override this method to change locator behaviour.

class matplotlib.ticker.OldScalarFormatter(*args, **kwargs)
Bases: matplotlib.ticker.Formatter

[Deprecated] Tick location is a plain old number.

Notes

Deprecated since version 3.3.

class matplotlib.ticker.PercentFormatter(xmax=100, decimals=None, sym-
bol='%', is_latex=False)

Bases: matplotlib.ticker.Formatter

Format numbers as a percentage.

Parameters

xmax
[float] Determines how the number is converted into a percentage. xmax is the
data value that corresponds to 100%. Percentages are computed as x / xmax *
100. So if the data is already scaled to be percentages, xmaxwill be 100. Another
common situation is where xmax is 1.0.

decimals
[None or int] The number of decimal places to place after the point. If None (the
default), the number will be computed automatically.

symbol
[str or None] A string that will be appended to the label. It may be None or empty
to indicate that no symbol should be used. LaTeX special characters are escaped
in symbol whenever latex mode is enabled, unless is_latex is True.

is_latex
[bool] If False, reserved LaTeX characters in symbol will be escaped.

2834 Chapter 18. Modules

Matplotlib, Release 3.4.3

convert_to_pct(x)

format_pct(x, display_range)
Format the number as a percentage number with the correct number of decimals and adds the
percent symbol, if any.

If self.decimals is None, the number of digits after the decimal point is set based on the
display_range of the axis as follows:

display_range decimals sample
>50 0 x = 34.5 => 35%
>5 1 x = 34.5 => 34.5%
>0.5 2 x = 34.5 => 34.50%
...

This method will not be very good for tiny axis ranges or extremely large ones. It assumes that
the values on the chart are percentages displayed on a reasonable scale.

property symbol
The configured percent symbol as a string.

If LaTeX is enabled via rcParams["text.usetex"] (default: False), the special charac-
ters {'#', '$', '%', '&', '~', '_', '^', '\', '{', '}'} are automatically
escaped in the string.

class matplotlib.ticker.ScalarFormatter(useOffset=None, useMathText=None,
useLocale=None)

Bases: matplotlib.ticker.Formatter

Format tick values as a number.

Parameters

useOffset
[bool or float, default: rcParams["axes.formatter.useoffset"] (de-
fault: True)] Whether to use offset notation. See set_useOffset.

useMathText
[bool, default: rcParams["axes.formatter.use_mathtext"] (de-
fault: False)]Whether to use fancymath formatting. Seeset_useMathText.

useLocale
[bool, default: rcParams["axes.formatter.use_locale"] (default:
False).] Whether to use locale settings for decimal sign and positive sign. See
set_useLocale.

18.54. matplotlib.ticker 2835

https://docs.python.org/3/library/constants.html#None
../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.formatter.useoffset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.formatter.use_mathtext#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.formatter.use_locale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

In addition to the parameters above, the formatting of scientific vs. floating point representation can
be configured via set_scientific and set_powerlimits).

Offset notation and scientific notation
Offset notation and scientific notation look quite similar at first sight. Both split some information
from the formatted tick values and display it at the end of the axis.

• The scientific notation splits up the order of magnitude, i.e. a multiplicative scaling factor, e.g.
1e6.

• The offset notation separates an additive constant, e.g. +1e6. The offset notation label is always
prefixed with a + or - sign and is thus distinguishable from the order of magnitude label.

The following plot with x limits1_000_000 to1_000_010 illustrates the different formatting. Note
the labels at the right edge of the x axis.

0 2 4 6 8 10
+1e6

0

1
offset_notation

1.000000 1.000002 1.000004 1.000006 1.000008 1.000010
1e6

0

1
scientific notation

1000000 1000002 1000004 1000006 1000008 1000010
0

1
floating point notation

format_data(value)
Return the full string representation of the value with the position unspecified.

format_data_short(value)
Return a short string version of the tick value.

Defaults to the position-independent long value.

2836 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_offset()
Return scientific notation, plus offset.

get_useLocale()
Return whether locale settings are used for formatting.

See also:

ScalarFormatter.set_useLocale

get_useMathText()
Return whether to use fancy math formatting.

See also:

ScalarFormatter.set_useMathText

get_useOffset()
Return whether automatic mode for offset notation is active.

This returns True if set_useOffset(True); it returns False if an explicit offset was set, e.g.
set_useOffset(1000).

See also:

ScalarFormatter.set_useOffset

set_locs(locs)
Set the locations of the ticks.

This method is called before computing the tick labels because some formatters need to know all
tick locations to do so.

set_powerlimits(lims)
Set size thresholds for scientific notation.

Parameters

lims
[(int, int)] A tuple (min_exp, max_exp) containing the powers of 10 that deter-
mine the switchover threshold. For a number representable as 𝑎 × 10exp with
1 <= |𝑎| < 10, scientific notation will be used if exp <= min_exp or exp
>= max_exp.

The default limits are controlled by rcParams["axes.formatter.
limits"] (default: [-5, 6]).

In particular numbers with exp equal to the thresholds are written in scientific
notation.

Typically, min_exp will be negative and max_exp will be positive.

18.54. matplotlib.ticker 2837

../tutorials/introductory/customizing.html?highlight=axes.formatter.limits#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.formatter.limits#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

For example, formatter.set_powerlimits((-3, 4)) will provide
the following formatting: 1 × 10−3, 9.9 × 10−3, 0.01, 9999, 1 × 104.

See also:

ScalarFormatter.set_scientific

set_scientific(b)
Turn scientific notation on or off.

See also:

ScalarFormatter.set_powerlimits

set_useLocale(val)
Set whether to use locale settings for decimal sign and positive sign.

Parameters

val
[bool or None] None resets to rcParams["axes.formatter.
use_locale"] (default: False).

set_useMathText(val)
Set whether to use fancy math formatting.

If active, scientific notation is formatted as 1.2 × 103.

Parameters

val
[bool or None] None resets to rcParams["axes.formatter.
use_mathtext"] (default: False).

set_useOffset(val)
Set whether to use offset notation.

When formatting a set numbers whose value is large compared to their range, the formatter can
separate an additive constant. This can shorten the formatted numbers so that they are less likely
to overlap when drawn on an axis.

Parameters

val
[bool or float]

• If False, do not use offset notation.

2838 Chapter 18. Modules

../tutorials/introductory/customizing.html?highlight=axes.formatter.use_locale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.formatter.use_locale#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.formatter.use_mathtext#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../tutorials/introductory/customizing.html?highlight=axes.formatter.use_mathtext#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

• If True (=automatic mode), use offset notation if it can make the resid-
ual numbers significantly shorter. The exact behavior is controlled
by rcParams["axes.formatter.offset_threshold"] (default:
4).

• If a number, force an offset of the given value.

Examples

With active offset notation, the values

100_000, 100_002, 100_004, 100_006, 100_008

will be formatted as 0, 2, 4, 6, 8 plus an offset +1e5, which is written to the edge of the
axis.

property useLocale
Return whether locale settings are used for formatting.

See also:

ScalarFormatter.set_useLocale

property useMathText
Return whether to use fancy math formatting.

See also:

ScalarFormatter.set_useMathText

property useOffset
Return whether automatic mode for offset notation is active.

This returns True if set_useOffset(True); it returns False if an explicit offset was set, e.g.
set_useOffset(1000).

See also:

ScalarFormatter.set_useOffset

class matplotlib.ticker.StrMethodFormatter(fmt)
Bases: matplotlib.ticker.Formatter

Use a new-style format string (as used by str.format) to format the tick.

The field used for the tick value must be labeled x and the field used for the tick position must be
labeled pos.

class matplotlib.ticker.SymmetricalLogLocator(transform=None, subs=None,
linthresh=None, base=None)

Bases: matplotlib.ticker.Locator

Determine the tick locations for symmetric log axes.

18.54. matplotlib.ticker 2839

../tutorials/introductory/customizing.html?highlight=axes.formatter.offset_threshold#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://docs.python.org/3/library/stdtypes.html#str.format

Matplotlib, Release 3.4.3

Parameters

transform
[SymmetricalLogTransform, optional] If set, defines the base and linthresh
of the symlog transform.

base, linthresh
[float, optional] The base and linthresh of the symlog transform, as documented
for SymmetricalLogScale. These parameters are only used if transform is
not set.

subs
[sequence of float, default: [1]] The multiples of integer powers of the base where
ticks are placed, i.e., ticks are placed at [sub * base**i for i in ...
for sub in subs].

Notes

Either transform, or both base and linthresh, must be given.

set_params(subs=None, numticks=None)
Set parameters within this locator.

tick_values(vmin, vmax)
Return the values of the located ticks given vmin and vmax.

Note: To get tick locations with the vmin and vmax values defined automatically for the asso-
ciated axis simply call the Locator instance:

>>> print(type(loc))
<type 'Locator'>
>>> print(loc())
[1, 2, 3, 4]

view_limits(vmin, vmax)
Try to choose the view limits intelligently.

class matplotlib.ticker.TickHelper
Bases: object

axis = None

create_dummy_axis(**kwargs)

set_axis(axis)

set_bounds(vmin, vmax)

set_data_interval(vmin, vmax)

2840 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

set_view_interval(vmin, vmax)

AutoLocator
MaxNLocator

LogitLocator
AutoMinorLocator

Locator

FixedLocator

IndexLocator

LinearLocator

LogLocator

MultipleLocator

NullLocator

OldAutoLocator

SymmetricalLogLocator

EngFormatter

Formatter

FixedFormatter

FormatStrFormatter

FuncFormatter

IndexFormatter

LogFormatter

LogitFormatter

NullFormatter

OldScalarFormatter

PercentFormatter

ScalarFormatter

StrMethodFormatter

TickHelper

LogFormatterExponent

LogFormatterMathtext LogFormatterSciNotation

18.55 matplotlib.tight_bbox

Helper module for the bbox_inches parameter in Figure.savefig.

matplotlib.tight_bbox.adjust_bbox(fig, bbox_inches, fixed_dpi=None)
Temporarily adjust the figure so that only the specified area (bbox_inches) is saved.

It modifies fig.bbox, fig.bbox_inches, fig.transFigure._boxout, and fig.patch. While the figure size
changes, the scale of the original figure is conserved. A function which restores the original values are
returned.

18.55. matplotlib.tight_bbox 2841

Matplotlib, Release 3.4.3

matplotlib.tight_bbox.process_figure_for_rasterizing(fig,
bbox_inches_restore,
fixed_dpi=None)

A function that needs to be called when figure dpi changes during the drawing (e.g., rasterizing). It
recovers the bbox and re-adjust it with the new dpi.

18.56 matplotlib.tight_layout

Routines to adjust subplot params so that subplots are nicely fit in the figure. In doing so, only axis labels,
tick labels, axes titles and offsetboxes that are anchored to axes are currently considered.

Internally, this module assumes that the margins (left_margin, etc.) which are differences between
ax.get_tightbbox and ax.bbox are independent of axes position. This may fail if Axes.adjustable is datalim.
Also, This will fail for some cases (for example, left or right margin is affected by xlabel).

matplotlib.tight_layout.auto_adjust_subplotpars(fig, renderer, nrows_ncols,
num1num2_list, subplot_list,
ax_bbox_list=None,
pad=1.08, h_pad=None,
w_pad=None, rect=None)

Return a dict of subplot parameters to adjust spacing between subplots or None if resulting axes would
have zero height or width.

Note that this function ignores geometry information of subplot itself, but uses what is given by the
nrows_ncols and num1num2_list parameters. Also, the results could be incorrect if some subplots
have adjustable=datalim.

Parameters

nrows_ncols
[tuple[int, int]] Number of rows and number of columns of the grid.

num1num2_list
[list[int]] List of numbers specifying the area occupied by the subplot

subplot_list
[list of subplots] List of subplots that will be used to calculate optimal sub-
plot_params.

pad
[float] Padding between the figure edge and the edges of subplots, as a fraction of
the font size.

h_pad, w_pad
[float] Padding (height/width) between edges of adjacent subplots, as a fraction of
the font size. Defaults to pad.

rect

2842 Chapter 18. Modules

Matplotlib, Release 3.4.3

[tuple[float, float, float, float]] [left, bottom, right, top] in normalized (0, 1) figure
coordinates.

matplotlib.tight_layout.get_renderer(fig)

matplotlib.tight_layout.get_subplotspec_list(axes_list, grid_spec=None)
Return a list of subplotspec from the given list of axes.

For an instance of axes that does not support subplotspec, None is inserted in the list.

If grid_spec is given, None is inserted for those not from the given grid_spec.

matplotlib.tight_layout.get_tight_layout_figure(fig, axes_list, subplot-
spec_list, renderer,
pad=1.08, h_pad=None,
w_pad=None, rect=None)

Return subplot parameters for tight-layouted-figure with specified padding.

Parameters

fig
[Figure]

axes_list
[list of Axes]

subplotspec_list
[list of SubplotSpec] The subplotspecs of each axes.

renderer
[renderer]

pad
[float] Padding between the figure edge and the edges of subplots, as a fraction of
the font size.

h_pad, w_pad
[float] Padding (height/width) between edges of adjacent subplots. Defaults to
pad.

rect
[tuple[float, float, float, float], optional] (left, bottom, right, top) rectangle in nor-
malized figure coordinates that the whole subplots area (including labels) will fit
into. Defaults to using the entire figure.

Returns

subplotspec or None

18.56. matplotlib.tight_layout 2843

Matplotlib, Release 3.4.3

subplotspec kwargs to be passed to Figure.subplots_adjust or None if
tight_layout could not be accomplished.

18.57 matplotlib.transforms

Affine2D

Affine2DBase

AffineDeltaTransform

BboxTransform

BboxTransformFrom

BboxTransformTo

BlendedAffine2D

CompositeAffine2D

IdentityTransform

ScaledTranslation

AffineBase

Transform

BlendedGenericTransform

CompositeGenericTransform

TransformWrapper

Bbox

BboxBase LockableBbox

TransformedBbox

TransformNode

TransformedPath

BboxTransformToMaxOnly

Path

TransformedPatchPath

Matplotlib includes a framework for arbitrary geometric transformations that is used determine the final
position of all elements drawn on the canvas.

Transforms are composed into trees of TransformNode objects whose actual value depends on their chil-
dren. When the contents of children change, their parents are automatically invalidated. The next time an
invalidated transform is accessed, it is recomputed to reflect those changes. This invalidation/caching ap-
proach prevents unnecessary recomputations of transforms, and contributes to better interactive performance.

For example, here is a graph of the transform tree used to plot data to the graph:

2844 Chapter 18. Modules

Matplotlib, Release 3.4.3

The framework can be used for both affine and non-affine transformations. However, for speed, we want
use the backend renderers to perform affine transformations whenever possible. Therefore, it is possible to
perform just the affine or non-affine part of a transformation on a set of data. The affine is always assumed
to occur after the non-affine. For any transform:

full transform == non-affine part + affine part

The backends are not expected to handle non-affine transformations themselves.

18.57. matplotlib.transforms 2845

Matplotlib, Release 3.4.3

class matplotlib.transforms.Affine2D(matrix=None, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

A mutable 2D affine transformation.

Initialize an Affine transform from a 3x3 numpy float array:

a c e
b d f
0 0 1

If matrix is None, initialize with the identity transform.

__init__(matrix=None, **kwargs)
Initialize an Affine transform from a 3x3 numpy float array:

a c e
b d f
0 0 1

If matrix is None, initialize with the identity transform.

__module__ = 'matplotlib.transforms'

__str__()
Return str(self).

clear()
Reset the underlying matrix to the identity transform.

static from_values(a, b, c, d, e, f)
Create a new Affine2D instance from the given values:

a c e
b d f
0 0 1

.

get_matrix()
Get the underlying transformation matrix as a 3x3 numpy array:

a c e
b d f
0 0 1

.

static identity()
Return a new Affine2D object that is the identity transform.

Unless this transformwill be mutated later on, consider using the faster IdentityTransform
class instead.

rotate(theta)
Add a rotation (in radians) to this transform in place.

2846 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns self, so this method can easily be chained with more calls to rotate(), ro-
tate_deg(), translate() and scale().

rotate_around(x, y, theta)
Add a rotation (in radians) around the point (x, y) in place.

Returns self, so this method can easily be chained with more calls to rotate(), ro-
tate_deg(), translate() and scale().

rotate_deg(degrees)
Add a rotation (in degrees) to this transform in place.

Returns self, so this method can easily be chained with more calls to rotate(), ro-
tate_deg(), translate() and scale().

rotate_deg_around(x, y, degrees)
Add a rotation (in degrees) around the point (x, y) in place.

Returns self, so this method can easily be chained with more calls to rotate(), ro-
tate_deg(), translate() and scale().

scale(sx, sy=None)
Add a scale in place.

If sy is None, the same scale is applied in both the x- and y-directions.

Returns self, so this method can easily be chained with more calls to rotate(), ro-
tate_deg(), translate() and scale().

set(other)
Set this transformation from the frozen copy of another Affine2DBase object.

set_matrix(mtx)
Set the underlying transformation matrix from a 3x3 numpy array:

a c e
b d f
0 0 1

.

skew(xShear, yShear)
Add a skew in place.

xShear and yShear are the shear angles along the x- and y-axes, respectively, in radians.

Returns self, so this method can easily be chained with more calls to rotate(), ro-
tate_deg(), translate() and scale().

skew_deg(xShear, yShear)
Add a skew in place.

xShear and yShear are the shear angles along the x- and y-axes, respectively, in degrees.

Returns self, so this method can easily be chained with more calls to rotate(), ro-
tate_deg(), translate() and scale().

18.57. matplotlib.transforms 2847

Matplotlib, Release 3.4.3

translate(tx, ty)
Add a translation in place.

Returns self, so this method can easily be chained with more calls to rotate(), ro-
tate_deg(), translate() and scale().

class matplotlib.transforms.Affine2DBase(*args, **kwargs)
Bases: matplotlib.transforms.AffineBase

The base class of all 2D affine transformations.

2D affine transformations are performed using a 3x3 numpy array:

a c e
b d f
0 0 1

This class provides the read-only interface. For a mutable 2D affine transformation, use Affine2D.

Subclasses of this class will generally only need to override a constructor and get_matrix() that
generates a custom 3x3 matrix.

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

__module__ = 'matplotlib.transforms'

frozen()
Return a frozen copy of this transform node. The frozen copy will not be updated when its
children change. Useful for storing a previously known state of a transform where copy.
deepcopy() might normally be used.

has_inverse = True

input_dims = 2

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

property is_separable
bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the
only two instances of the class bool. The class bool is a subclass of the class int, and cannot be
subclassed.

2848 Chapter 18. Modules

Matplotlib, Release 3.4.3

output_dims = 2

to_values()
Return the values of the matrix as an (a, b, c, d, e, f) tuple.

transform_affine(points)
Apply only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

class matplotlib.transforms.AffineBase(*args, **kwargs)
Bases: matplotlib.transforms.Transform

The base class of all affine transformations of any number of dimensions.

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

__array__(*args, **kwargs)
Array interface to get at this Transform's affine matrix.

__eq__(other)
Return self==value.

__hash__ = None

__init__(*args, **kwargs)

Parameters

18.57. matplotlib.transforms 2849

Matplotlib, Release 3.4.3

shorthand_name
[str] A string representing the "name" of the transform. The name carries no
significance other than to improve the readability of str(transform) when
DEBUG=True.

__module__ = 'matplotlib.transforms'

get_affine()
Get the affine part of this transform.

is_affine = True

transform(values)
Apply this transformation on the given array of values.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

transform_affine(values)
Apply only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

2850 Chapter 18. Modules

Matplotlib, Release 3.4.3

transform_non_affine(points)
Apply only the non-affine part of this transformation.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

transform_path(path)
Apply the transform to Path path, returning a new Path.

In some cases, this transform may insert curves into the path that began as line segments.

transform_path_affine(path)
Apply the affine part of this transform to Path path, returning a new Path.

transform_path(path) is equivalent totransform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Apply the non-affine part of this transform to Path path, returning a new Path.

transform_path(path) is equivalent totransform_path_affine(transform_path_non_affine(values)).

class matplotlib.transforms.AffineDeltaTransform(transform, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

A transform wrapper for transforming displacements between pairs of points.

This class is intended to be used to transform displacements ("position deltas") between pairs of
points (e.g., as the offset_transform of Collections): given a transform t such that
t = AffineDeltaTransform(t) + offset, AffineDeltaTransform satisfies
AffineDeltaTransform(a - b) == AffineDeltaTransform(a) - AffineDelta-
Transform(b).

This is implemented by forcing the offset components of the transform matrix to zero.

This class is experimental as of 3.3, and the API may change.

Parameters

18.57. matplotlib.transforms 2851

Matplotlib, Release 3.4.3

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

__init__(transform, **kwargs)

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no
significance other than to improve the readability of str(transform) when
DEBUG=True.

__module__ = 'matplotlib.transforms'

__str__()
Return str(self).

get_matrix()
Get the matrix for the affine part of this transform.

class matplotlib.transforms.Bbox(points, **kwargs)
Bases: matplotlib.transforms.BboxBase

A mutable bounding box.

Examples

Create from known bounds
The default constructor takes the boundary "points" [[xmin, ymin], [xmax, ymax]].

>>> Bbox([[1, 1], [3, 7]])
Bbox([[1.0, 1.0], [3.0, 7.0]])

Alternatively, a Bbox can be created from the flattened points array, the so-called "extents" (xmin,
ymin, xmax, ymax)

>>> Bbox.from_extents(1, 1, 3, 7)
Bbox([[1.0, 1.0], [3.0, 7.0]])

or from the "bounds" (xmin, ymin, width, height).

>>> Bbox.from_bounds(1, 1, 2, 6)
Bbox([[1.0, 1.0], [3.0, 7.0]])

Create from collections of points
The "empty" object for accumulating Bboxs is the null bbox, which is a stand-in for the empty set.

2852 Chapter 18. Modules

Matplotlib, Release 3.4.3

>>> Bbox.null()
Bbox([[inf, inf], [-inf, -inf]])

Adding points to the null bbox will give you the bbox of those points.

>>> box = Bbox.null()
>>> box.update_from_data_xy([[1, 1]])
>>> box
Bbox([[1.0, 1.0], [1.0, 1.0]])
>>> box.update_from_data_xy([[2, 3], [3, 2]], ignore=False)
>>> box
Bbox([[1.0, 1.0], [3.0, 3.0]])

Setting ignore=True is equivalent to starting over from a null bbox.

>>> box.update_from_data_xy([[1, 1]], ignore=True)
>>> box
Bbox([[1.0, 1.0], [1.0, 1.0]])

Warning: It is recommended to always specify ignore explicitly. If not, the default value of
ignore can be changed at any time by code with access to your Bbox, for example using the
method ignore.

Properties of the ``null`` bbox

Note: The current behavior of Bbox.null() may be surprising as it does not have all of the
properties of the "empty set", and as such does not behave like a "zero" object in the mathematical
sense. We may change that in the future (with a deprecation period).

The null bbox is the identity for intersections

>>> Bbox.intersection(Bbox([[1, 1], [3, 7]]), Bbox.null())
Bbox([[1.0, 1.0], [3.0, 7.0]])

except with itself, where it returns the full space.

>>> Bbox.intersection(Bbox.null(), Bbox.null())
Bbox([[-inf, -inf], [inf, inf]])

A union containing null will always return the full space (not the other set!)

>>> Bbox.union([Bbox([[0, 0], [0, 0]]), Bbox.null()])
Bbox([[-inf, -inf], [inf, inf]])

Parameters

points

18.57. matplotlib.transforms 2853

Matplotlib, Release 3.4.3

[ndarray] A 2x2 numpy array of the form [[x0, y0], [x1, y1]].

__format__(fmt)
Default object formatter.

__init__(points, **kwargs)

Parameters

points
[ndarray] A 2x2 numpy array of the form [[x0, y0], [x1, y1]].

__module__ = 'matplotlib.transforms'

__repr__()
Return repr(self).

__str__()
Return str(self).

property bounds
Return (x0, y0, width, height).

static from_bounds(x0, y0, width, height)
Create a new Bbox from x0, y0, width and height.

width and height may be negative.

static from_extents(*args, minpos=None)
Create a new Bbox from left, bottom, right and top.

The y-axis increases upwards.

Parameters

left, bottom, right, top
[float] The four extents of the bounding box.

minpos
[float or None] If this is supplied, the Bbox will have a minimum positive value
set. This is useful when dealing with logarithmic scales and other scales where
negative bounds result in floating point errors.

get_points()
Get the points of the bounding box directly as a numpy array of the form: [[x0, y0], [x1,
y1]].

ignore(value)
Set whether the existing bounds of the box should be ignored by subsequent calls to up-
date_from_data_xy().

2854 Chapter 18. Modules

Matplotlib, Release 3.4.3

value
[bool]

• When True, subsequent calls to update_from_data_xy() will ignore the exist-
ing bounds of the Bbox.

• When False, subsequent calls to update_from_data_xy() will include the ex-
isting bounds of the Bbox.

property intervalx
The pair of x coordinates that define the bounding box.

This is not guaranteed to be sorted from left to right.

property intervaly
The pair of y coordinates that define the bounding box.

This is not guaranteed to be sorted from bottom to top.

property minpos
The minimum positive value in both directions within the Bbox.

This is useful when dealing with logarithmic scales and other scales where negative bounds result
in floating point errors, and will be used as the minimum extent instead of p0.

property minposx
The minimum positive value in the x-direction within the Bbox.

This is useful when dealing with logarithmic scales and other scales where negative bounds result
in floating point errors, and will be used as the minimum x-extent instead of x0.

property minposy
The minimum positive value in the y-direction within the Bbox.

This is useful when dealing with logarithmic scales and other scales where negative bounds result
in floating point errors, and will be used as the minimum y-extent instead of y0.

mutated()
Return whether the bbox has changed since init.

mutatedx()
Return whether the x-limits have changed since init.

mutatedy()
Return whether the y-limits have changed since init.

static null()
Create a new null Bbox from (inf, inf) to (-inf, -inf).

property p0
The first pair of (x, y) coordinates that define the bounding box.

This is not guaranteed to be the bottom-left corner (for that, use min).

property p1
The second pair of (x, y) coordinates that define the bounding box.

18.57. matplotlib.transforms 2855

Matplotlib, Release 3.4.3

This is not guaranteed to be the top-right corner (for that, use max).

set(other)
Set this bounding box from the "frozen" bounds of another Bbox.

set_points(points)
Set the points of the bounding box directly from a numpy array of the form: [[x0, y0],
[x1, y1]]. No error checking is performed, as this method is mainly for internal use.

static unit()
Create a new unit Bbox from (0, 0) to (1, 1).

update_from_data_xy(xy, ignore=None, updatex=True, updatey=True)
Update the bounds of the Bbox based on the passed in data. After updating, the bounds will
have positive width and height; x0 and y0 will be the minimal values.

Parameters

xy
[ndarray] A numpy array of 2D points.

ignore
[bool, optional]

• When True, ignore the existing bounds of the Bbox.

• When False, include the existing bounds of the Bbox.

• When None, use the last value passed to ignore().

updatex, updatey
[bool, default: True] When True, update the x/y values.

update_from_path(path, ignore=None, updatex=True, updatey=True)
Update the bounds of the Bbox to contain the vertices of the provided path. After updating, the
bounds will have positive width and height; x0 and y0 will be the minimal values.

Parameters

path
[Path]

ignore
[bool, optional]

• when True, ignore the existing bounds of the Bbox.

• when False, include the existing bounds of the Bbox.

• when None, use the last value passed to ignore().

updatex, updatey
[bool, default: True] When True, update the x/y values.

2856 Chapter 18. Modules

Matplotlib, Release 3.4.3

property x0
The first of the pair of x coordinates that define the bounding box.

This is not guaranteed to be less than x1 (for that, use xmin).

property x1
The second of the pair of x coordinates that define the bounding box.

This is not guaranteed to be greater than x0 (for that, use xmax).

property y0
The first of the pair of y coordinates that define the bounding box.

This is not guaranteed to be less than y1 (for that, use ymin).

property y1
The second of the pair of y coordinates that define the bounding box.

This is not guaranteed to be greater than y0 (for that, use ymax).

class matplotlib.transforms.BboxBase(shorthand_name=None)
Bases: matplotlib.transforms.TransformNode

The base class of all bounding boxes.

This class is immutable; Bbox is a mutable subclass.

The canonical representation is as two points, with no restrictions on their ordering. Convenience
properties are provided to get the left, bottom, right and top edges and width and height, but these are
not stored explicitly.

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

__array__(*args, **kwargs)

__module__ = 'matplotlib.transforms'

anchored(c, container=None)
Return a copy of the Bbox shifted to position c within container.

Parameters

c
[(float, float) or str] May be either:

• A sequence (cx, cy) where cx and cy range from 0 to 1, where 0 is left or
bottom and 1 is right or top

• a string: - 'C' for centered - 'S' for bottom-center - 'SE' for bottom-left - 'E' for
left - etc.

18.57. matplotlib.transforms 2857

Matplotlib, Release 3.4.3

container
[Bbox, optional] The box within which the Bbox is positioned; it defaults to the
initial Bbox.

property bounds
Return (x0, y0, width, height).

coefs = {'C': (0.5, 0.5), 'E': (1.0, 0.5), 'N': (0.5, 1.0), 'NE': (1.0, 1.0), 'NW': (0, 1.0), 'S': (0.5, 0), 'SE': (1.0, 0), 'SW': (0, 0), 'W': (0, 0.5)}

contains(x, y)
Return whether (x, y) is in the bounding box or on its edge.

containsx(x)
Return whether x is in the closed (x0, x1) interval.

containsy(y)
Return whether y is in the closed (y0, y1) interval.

corners()
Return the corners of this rectangle as an array of points.

Specifically, this returns the array [[x0, y0], [x0, y1], [x1, y0], [x1, y1]].

count_contains(vertices)
Count the number of vertices contained in the Bbox. Any vertices with a non-finite x or y value
are ignored.

Parameters

vertices
[Nx2 Numpy array.]

count_overlaps(bboxes)
Count the number of bounding boxes that overlap this one.

Parameters

bboxes
[sequence of BboxBase]

expanded(sw, sh)
Construct a Bbox by expanding this one around its center by the factors sw and sh.

property extents
Return (x0, y0, x1, y1).

frozen()
The base class for anything that participates in the transform tree and needs to invalidate its
parents or be invalidated. This includes classes that are not really transforms, such as bounding
boxes, since some transforms depend on bounding boxes to compute their values.

2858 Chapter 18. Modules

Matplotlib, Release 3.4.3

fully_contains(x, y)
Return whether x, y is in the bounding box, but not on its edge.

fully_containsx(x)
Return whether x is in the open (x0, x1) interval.

fully_containsy(y)
Return whether y is in the open (y0, y1) interval.

fully_overlaps(other)
Return whether this bounding box overlaps with the other bounding box, not including the edges.

Parameters

other
[BboxBase]

get_points()

property height
The (signed) height of the bounding box.

static intersection(bbox1, bbox2)
Return the intersection of bbox1 and bbox2 if they intersect, or None if they don't.

property intervalx
The pair of x coordinates that define the bounding box.

This is not guaranteed to be sorted from left to right.

property intervaly
The pair of y coordinates that define the bounding box.

This is not guaranteed to be sorted from bottom to top.

inverse_transformed(transform)
[Deprecated] Construct a Bbox by statically transforming this one by the inverse of transform.

Notes

Deprecated since version 3.3.

is_affine = True

is_bbox = True

property max
The top-right corner of the bounding box.

property min
The bottom-left corner of the bounding box.

overlaps(other)
Return whether this bounding box overlaps with the other bounding box.

18.57. matplotlib.transforms 2859

Matplotlib, Release 3.4.3

Parameters

other
[BboxBase]

property p0
The first pair of (x, y) coordinates that define the bounding box.

This is not guaranteed to be the bottom-left corner (for that, use min).

property p1
The second pair of (x, y) coordinates that define the bounding box.

This is not guaranteed to be the top-right corner (for that, use max).

padded(p)
Construct a Bbox by padding this one on all four sides by p.

rotated(radians)
Return the axes-aligned bounding box that bounds the result of rotating this Bbox by an angle
of radians.

shrunk(mx, my)
Return a copy of the Bbox, shrunk by the factor mx in the x direction and the factor my in the y
direction. The lower left corner of the box remains unchanged. Normally mx and my will be less
than 1, but this is not enforced.

shrunk_to_aspect(box_aspect, container=None, fig_aspect=1.0)
Return a copy of the Bbox, shrunk so that it is as large as it can be while having the desired aspect
ratio, box_aspect. If the box coordinates are relative (i.e. fractions of a larger box such as a figure)
then the physical aspect ratio of that figure is specified with fig_aspect, so that box_aspect can
also be given as a ratio of the absolute dimensions, not the relative dimensions.

property size
The (signed) width and height of the bounding box.

splitx(*args)
Return a list of new Bbox objects formed by splitting the original one with vertical lines at
fractional positions given by args.

splity(*args)
Return a list of new Bbox objects formed by splitting the original one with horizontal lines at
fractional positions given by args.

transformed(transform)
Construct a Bbox by statically transforming this one by transform.

translated(tx, ty)
Construct a Bbox by translating this one by tx and ty.

static union(bboxes)
Return a Bbox that contains all of the given bboxes.

2860 Chapter 18. Modules

Matplotlib, Release 3.4.3

property width
The (signed) width of the bounding box.

property x0
The first of the pair of x coordinates that define the bounding box.

This is not guaranteed to be less than x1 (for that, use xmin).

property x1
The second of the pair of x coordinates that define the bounding box.

This is not guaranteed to be greater than x0 (for that, use xmax).

property xmax
The right edge of the bounding box.

property xmin
The left edge of the bounding box.

property y0
The first of the pair of y coordinates that define the bounding box.

This is not guaranteed to be less than y1 (for that, use ymin).

property y1
The second of the pair of y coordinates that define the bounding box.

This is not guaranteed to be greater than y0 (for that, use ymax).

property ymax
The top edge of the bounding box.

property ymin
The bottom edge of the bounding box.

class matplotlib.transforms.BboxTransform(boxin, boxout, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

BboxTransform linearly transforms points from one Bbox to another.

Create a new BboxTransform that linearly transforms points from boxin to boxout.

__init__(boxin, boxout, **kwargs)
Create a new BboxTransform that linearly transforms points from boxin to boxout.

__module__ = 'matplotlib.transforms'

__str__()
Return str(self).

get_matrix()
Get the matrix for the affine part of this transform.

is_separable = True

class matplotlib.transforms.BboxTransformFrom(boxin, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

BboxTransformFrom linearly transforms points from a given Bbox to the unit bounding box.

18.57. matplotlib.transforms 2861

Matplotlib, Release 3.4.3

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

__init__(boxin, **kwargs)

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no
significance other than to improve the readability of str(transform) when
DEBUG=True.

__module__ = 'matplotlib.transforms'

__str__()
Return str(self).

get_matrix()
Get the matrix for the affine part of this transform.

is_separable = True

class matplotlib.transforms.BboxTransformTo(boxout, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

BboxTransformTo is a transformation that linearly transforms points from the unit bounding box
to a given Bbox.

Create a new BboxTransformTo that linearly transforms points from the unit bounding box to
boxout.

__init__(boxout, **kwargs)
Create a new BboxTransformTo that linearly transforms points from the unit bounding box
to boxout.

__module__ = 'matplotlib.transforms'

__str__()
Return str(self).

get_matrix()
Get the matrix for the affine part of this transform.

is_separable = True

class matplotlib.transforms.BboxTransformToMaxOnly(boxout, **kwargs)
Bases: matplotlib.transforms.BboxTransformTo

BboxTransformTo is a transformation that linearly transforms points from the unit bounding box
to a given Bbox with a fixed upper left of (0, 0).

2862 Chapter 18. Modules

Matplotlib, Release 3.4.3

Create a new BboxTransformTo that linearly transforms points from the unit bounding box to
boxout.

__module__ = 'matplotlib.transforms'

get_matrix()
Get the matrix for the affine part of this transform.

class matplotlib.transforms.BlendedAffine2D(x_transform, y_transform,
**kwargs)

Bases: matplotlib.transforms._BlendedMixin, matplotlib.transforms.
Affine2DBase

A "blended" transform uses one transform for the x-direction, and another transform for the y-direction.

This version is an optimization for the case where both child transforms are of type Affine2DBase.

Create a new "blended" transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

Both x_transform and y_transform must be 2D affine transforms.

You will generally not call this constructor directly but use the blended_transform_factory
function instead, which can determine automatically which kind of blended transform to create.

__init__(x_transform, y_transform, **kwargs)
Create a new "blended" transform using x_transform to transform the x-axis and y_transform to
transform the y-axis.

Both x_transform and y_transform must be 2D affine transforms.

You will generally not call this constructor directly but use the
blended_transform_factory function instead, which can determine automatically
which kind of blended transform to create.

__module__ = 'matplotlib.transforms'

get_matrix()
Get the matrix for the affine part of this transform.

is_separable = True

class matplotlib.transforms.BlendedGenericTransform(x_transform,
y_transform,
**kwargs)

Bases: matplotlib.transforms._BlendedMixin, matplotlib.transforms.
Transform

A "blended" transform uses one transform for the x-direction, and another transform for the y-direction.

This "generic" version can handle any given child transform in the x- and y-directions.

Create a new "blended" transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

You will generally not call this constructor directly but use the blended_transform_factory
function instead, which can determine automatically which kind of blended transform to create.

18.57. matplotlib.transforms 2863

Matplotlib, Release 3.4.3

__init__(x_transform, y_transform, **kwargs)
Create a new "blended" transform using x_transform to transform the x-axis and y_transform to
transform the y-axis.

You will generally not call this constructor directly but use the
blended_transform_factory function instead, which can determine automatically
which kind of blended transform to create.

__module__ = 'matplotlib.transforms'

contains_branch(other)
Return whether the given transform is a sub-tree of this transform.

This routine uses transform equality to identify sub-trees, therefore in many situations it is object
id which will be used.

For the case where the given transform represents the whole of this transform, returns True.

property depth
Return the number of transforms which have been chained together to form this Transform in-
stance.

Note: For the special case of a Composite transform, the maximum depth of the two is returned.

frozen()
Return a frozen copy of this transform node. The frozen copy will not be updated when its
children change. Useful for storing a previously known state of a transform where copy.
deepcopy() might normally be used.

get_affine()
Get the affine part of this transform.

property has_inverse
bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the
only two instances of the class bool. The class bool is a subclass of the class int, and cannot be
subclassed.

input_dims = 2

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

property is_affine
bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the
only two instances of the class bool. The class bool is a subclass of the class int, and cannot be

2864 Chapter 18. Modules

Matplotlib, Release 3.4.3

subclassed.

is_separable = True

output_dims = 2

pass_through = True

transform_non_affine(points)
Apply only the non-affine part of this transformation.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

class matplotlib.transforms.CompositeAffine2D(a, b, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

A composite transform formed by applying transform a then transform b.

This version is an optimization that handles the case where both a and b are 2D affines.

Create a new composite transform that is the result of applying Affine2DBase a then
Affine2DBase b.

You will generally not call this constructor directly but write a + b instead, which will automatically
choose the best kind of composite transform instance to create.

__init__(a, b, **kwargs)
Create a new composite transform that is the result of applying Affine2DBase a then
Affine2DBase b.

You will generally not call this constructor directly but write a + b instead, which will auto-
matically choose the best kind of composite transform instance to create.

__module__ = 'matplotlib.transforms'

__str__()
Return str(self).

18.57. matplotlib.transforms 2865

Matplotlib, Release 3.4.3

property depth
Return the number of transforms which have been chained together to form this Transform in-
stance.

Note: For the special case of a Composite transform, the maximum depth of the two is returned.

get_matrix()
Get the matrix for the affine part of this transform.

class matplotlib.transforms.CompositeGenericTransform(a, b, **kwargs)
Bases: matplotlib.transforms.Transform

A composite transform formed by applying transform a then transform b.

This "generic" version can handle any two arbitrary transformations.

Create a new composite transform that is the result of applying transform a then transform b.

You will generally not call this constructor directly but write a + b instead, which will automatically
choose the best kind of composite transform instance to create.

__eq__(other)
Return self==value.

__hash__ = None

__init__(a, b, **kwargs)
Create a new composite transform that is the result of applying transform a then transform b.

You will generally not call this constructor directly but write a + b instead, which will auto-
matically choose the best kind of composite transform instance to create.

__module__ = 'matplotlib.transforms'

__str__()
Return str(self).

property depth
Return the number of transforms which have been chained together to form this Transform in-
stance.

Note: For the special case of a Composite transform, the maximum depth of the two is returned.

frozen()
Return a frozen copy of this transform node. The frozen copy will not be updated when its
children change. Useful for storing a previously known state of a transform where copy.
deepcopy() might normally be used.

get_affine()
Get the affine part of this transform.

property has_inverse
bool(x) -> bool

2866 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns True when the argument x is true, False otherwise. The builtins True and False are the
only two instances of the class bool. The class bool is a subclass of the class int, and cannot be
subclassed.

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

property is_affine
bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the
only two instances of the class bool. The class bool is a subclass of the class int, and cannot be
subclassed.

property is_separable
bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the
only two instances of the class bool. The class bool is a subclass of the class int, and cannot be
subclassed.

pass_through = True

transform_affine(points)
Apply only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

transform_non_affine(points)
Apply only the non-affine part of this transformation.

18.57. matplotlib.transforms 2867

Matplotlib, Release 3.4.3

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

transform_path_non_affine(path)
Apply the non-affine part of this transform to Path path, returning a new Path.

transform_path(path) is equivalent totransform_path_affine(transform_path_non_affine(values)).

class matplotlib.transforms.IdentityTransform(*args, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

A special class that does one thing, the identity transform, in a fast way.

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

__module__ = 'matplotlib.transforms'

__str__()
Return str(self).

frozen()
Return a frozen copy of this transform node. The frozen copy will not be updated when its
children change. Useful for storing a previously known state of a transform where copy.
deepcopy() might normally be used.

get_affine()
Get the affine part of this transform.

get_matrix()
Get the matrix for the affine part of this transform.

2868 Chapter 18. Modules

Matplotlib, Release 3.4.3

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

transform(points)
Apply this transformation on the given array of values.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

transform_affine(points)
Apply only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

transform_non_affine(points)
Apply only the non-affine part of this transformation.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

18.57. matplotlib.transforms 2869

Matplotlib, Release 3.4.3

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

transform_path(path)
Apply the transform to Path path, returning a new Path.

In some cases, this transform may insert curves into the path that began as line segments.

transform_path_affine(path)
Apply the affine part of this transform to Path path, returning a new Path.

transform_path(path) is equivalent totransform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Apply the non-affine part of this transform to Path path, returning a new Path.

transform_path(path) is equivalent totransform_path_affine(transform_path_non_affine(values)).

class matplotlib.transforms.LockableBbox(bbox, x0=None, y0=None, x1=None,
y1=None, **kwargs)

Bases: matplotlib.transforms.BboxBase

A Bbox where some elements may be locked at certain values.

When the child bounding box changes, the bounds of this bbox will update accordingly with the ex-
ception of the locked elements.

Parameters

bbox
[Bbox] The child bounding box to wrap.

x0
[float or None] The locked value for x0, or None to leave unlocked.

y0
[float or None] The locked value for y0, or None to leave unlocked.

2870 Chapter 18. Modules

Matplotlib, Release 3.4.3

x1
[float or None] The locked value for x1, or None to leave unlocked.

y1
[float or None] The locked value for y1, or None to leave unlocked.

__init__(bbox, x0=None, y0=None, x1=None, y1=None, **kwargs)

Parameters

bbox
[Bbox] The child bounding box to wrap.

x0
[float or None] The locked value for x0, or None to leave unlocked.

y0
[float or None] The locked value for y0, or None to leave unlocked.

x1
[float or None] The locked value for x1, or None to leave unlocked.

y1
[float or None] The locked value for y1, or None to leave unlocked.

__module__ = 'matplotlib.transforms'

__str__()
Return str(self).

get_points()

property locked_x0
float or None: The value used for the locked x0.

property locked_x1
float or None: The value used for the locked x1.

property locked_y0
float or None: The value used for the locked y0.

property locked_y1
float or None: The value used for the locked y1.

class matplotlib.transforms.ScaledTranslation(xt, yt, scale_trans, **kwargs)
Bases: matplotlib.transforms.Affine2DBase

A transformation that translates by xt and yt, after xt and yt have been transformed by scale_trans.

Parameters

18.57. matplotlib.transforms 2871

Matplotlib, Release 3.4.3

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

__init__(xt, yt, scale_trans, **kwargs)

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no
significance other than to improve the readability of str(transform) when
DEBUG=True.

__module__ = 'matplotlib.transforms'

__str__()
Return str(self).

get_matrix()
Get the matrix for the affine part of this transform.

class matplotlib.transforms.Transform(shorthand_name=None)
Bases: matplotlib.transforms.TransformNode

The base class of all TransformNode instances that actually perform a transformation.

All non-affine transformations should be subclasses of this class. New affine transformations should
be subclasses of Affine2D.

Subclasses of this class should override the following members (at minimum):

• input_dims

• output_dims

• transform()

• inverted() (if an inverse exists)

The following attributes may be overridden if the default is unsuitable:

• is_separable (defaults to True for 1D -> 1D transforms, False otherwise)

• has_inverse (defaults to True if inverted() is overridden, False otherwise)

If the transform needs to do something non-standard with matplotlib.path.Path objects, such
as adding curves where there were once line segments, it should override:

• transform_path()

Parameters

2872 Chapter 18. Modules

Matplotlib, Release 3.4.3

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

__add__(other)
Compose two transforms together so that self is followed by other.

A + B returns a transform C so that C.transform(x) == B.transform(A.
transform(x)).

__array__(*args, **kwargs)
Array interface to get at this Transform's affine matrix.

classmethod __init_subclass__()
This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__module__ = 'matplotlib.transforms'

__sub__(other)
Compose self with the inverse of other, cancelling identical terms if any:

In general:
A - B == A + B.inverted()
(but see note regarding frozen transforms below).

If A "ends with" B (i.e. A == A' + B for some A') we can cancel
out B:
(A' + B) - B == A'

Likewise, if B "starts with" A (B = A + B'), we can cancel out A:
A - (A + B') == B'.inverted() == B'^-1

Cancellation (rather than naively returning A + B.inverted()) is important for multiple
reasons:

• It avoids floating-point inaccuracies when computing the inverse of B: B - B is guaranteed
to cancel out exactly (resulting in the identity transform), whereas B + B.inverted()
may differ by a small epsilon.

• B.inverted() always returns a frozen transform: if one computes A + B + B.
inverted() and later mutates B, then B.inverted() won't be updated and the last
two terms won't cancel out anymore; on the other hand, A + B - B will always be equal
to A even if B is mutated.

contains_branch(other)
Return whether the given transform is a sub-tree of this transform.

This routine uses transform equality to identify sub-trees, therefore in many situations it is object
id which will be used.

For the case where the given transform represents the whole of this transform, returns True.

18.57. matplotlib.transforms 2873

Matplotlib, Release 3.4.3

contains_branch_seperately(other_transform)
Return whether the given branch is a sub-tree of this transform on each separate dimension.

A common use for this method is to identify if a transform is a blended transform containing an
axes' data transform. e.g.:

x_isdata, y_isdata = trans.contains_branch_seperately(ax.transData)

property depth
Return the number of transforms which have been chained together to form this Transform in-
stance.

Note: For the special case of a Composite transform, the maximum depth of the two is returned.

get_affine()
Get the affine part of this transform.

get_matrix()
Get the matrix for the affine part of this transform.

has_inverse = False
True if this transform has a corresponding inverse transform.

input_dims = None
The number of input dimensions of this transform. Must be overridden (with integers) in the
subclass.

inverted()
Return the corresponding inverse transformation.

It holds x == self.inverted().transform(self.transform(x)).

The return value of this method should be treated as temporary. An update to self does not cause
a corresponding update to its inverted copy.

is_separable = False
True if this transform is separable in the x- and y- dimensions.

output_dims = None
The number of output dimensions of this transform. Must be overridden (with integers) in the
subclass.

transform(values)
Apply this transformation on the given array of values.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

2874 Chapter 18. Modules

Matplotlib, Release 3.4.3

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

transform_affine(values)
Apply only the affine part of this transformation on the given array of values.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally a no-op. In affine transformations, this is equiva-
lent to transform(values).

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

transform_angles(angles, pts, radians=False, pushoff=1e-05)
Transform a set of angles anchored at specific locations.

Parameters

angles
[(N,) array-like] The angles to transform.

pts
[(N, 2) array-like] The points where the angles are anchored.

radians
[bool, default: False] Whether angles are radians or degrees.

pushoff
[float] For each point in pts and angle in angles, the transformed angle is com-
puted by transforming a segment of length pushoff starting at that point and mak-
ing that angle relative to the horizontal axis, and measuring the angle between
the horizontal axis and the transformed segment.

Returns

(N,) array

18.57. matplotlib.transforms 2875

Matplotlib, Release 3.4.3

transform_bbox(bbox)
Transform the given bounding box.

For smarter transforms including caching (a common requirement in Matplotlib), see Trans-
formedBbox.

transform_non_affine(values)
Apply only the non-affine part of this transformation.

transform(values) is always equivalent to trans-
form_affine(transform_non_affine(values)).

In non-affine transformations, this is generally equivalent to transform(values). In affine
transformations, this is always a no-op.

Parameters

values
[array] The input values as NumPy array of length input_dims or shape (N x
input_dims).

Returns

array
The output values as NumPy array of length input_dims or shape (N x out-
put_dims), depending on the input.

transform_path(path)
Apply the transform to Path path, returning a new Path.

In some cases, this transform may insert curves into the path that began as line segments.

transform_path_affine(path)
Apply the affine part of this transform to Path path, returning a new Path.

transform_path(path) is equivalent totransform_path_affine(transform_path_non_affine(values)).

transform_path_non_affine(path)
Apply the non-affine part of this transform to Path path, returning a new Path.

transform_path(path) is equivalent totransform_path_affine(transform_path_non_affine(values)).

transform_point(point)
Return a transformed point.

This function is only kept for backcompatibility; the more general transformmethod is capa-
ble of transforming both a list of points and a single point.

The point is given as a sequence of length input_dims. The transformed point is returned as
a sequence of length output_dims.

class matplotlib.transforms.TransformNode(shorthand_name=None)
Bases: object

2876 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

The base class for anything that participates in the transform tree and needs to invalidate its parents
or be invalidated. This includes classes that are not really transforms, such as bounding boxes, since
some transforms depend on bounding boxes to compute their values.

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no sig-
nificance other than to improve the readability of str(transform) when DE-
BUG=True.

INVALID = 3

INVALID_AFFINE = 2

INVALID_NON_AFFINE = 1

__copy__()

__deepcopy__(memo)

__dict__ = mappingproxy({'__module__': 'matplotlib.transforms', '__doc__': '\n The base class for anything that participates in the transform tree\n and needs to invalidate its parents or be invalidated. This includes\n classes that are not really transforms, such as bounding boxes, since some\n transforms depend on bounding boxes to compute their values.\n ', 'INVALID_NON_AFFINE': 1, 'INVALID_AFFINE': 2, 'INVALID': 3, 'is_affine': False, 'is_bbox': False, 'pass_through': False, '__init__': <function TransformNode.__init__>, '__getstate__': <function TransformNode.__getstate__>, '__setstate__': <function TransformNode.__setstate__>, '__copy__': <function TransformNode.__copy__>, '__deepcopy__': <function TransformNode.__deepcopy__>, 'invalidate': <function TransformNode.invalidate>, '_invalidate_internal': <function TransformNode._invalidate_internal>, 'set_children': <function TransformNode.set_children>, 'frozen': <function TransformNode.frozen>, '__dict__': <attribute '__dict__' of 'TransformNode' objects>, '__weakref__': <attribute '__weakref__' of 'TransformNode' objects>, '__annotations__': {}})

__getstate__()

__init__(shorthand_name=None)

Parameters

shorthand_name
[str] A string representing the "name" of the transform. The name carries no
significance other than to improve the readability of str(transform) when
DEBUG=True.

__module__ = 'matplotlib.transforms'

__setstate__(data_dict)

__weakref__
list of weak references to the object (if defined)

frozen()
Return a frozen copy of this transform node. The frozen copy will not be updated when its
children change. Useful for storing a previously known state of a transform where copy.
deepcopy() might normally be used.

invalidate()
Invalidate this TransformNode and triggers an invalidation of its ancestors. Should be called
any time the transform changes.

is_affine = False

is_bbox = False

18.57. matplotlib.transforms 2877

Matplotlib, Release 3.4.3

pass_through = False
If pass_through is True, all ancestors will always be invalidated, even if 'self' is already invalid.

set_children(*children)
Set the children of the transform, to let the invalidation system know which transforms can in-
validate this transform. Should be called from the constructor of any transforms that depend on
other transforms.

class matplotlib.transforms.TransformWrapper(child)
Bases: matplotlib.transforms.Transform

A helper class that holds a single child transform and acts equivalently to it.

This is useful if a node of the transform tree must be replaced at run time with a transform of a different
type. This class allows that replacement to correctly trigger invalidation.

TransformWrapper instances must have the same input and output dimensions during their en-
tire lifetime, so the child transform may only be replaced with another child transform of the same
dimensions.

child: A Transform instance. This child may later be replaced with set().

__eq__(other)
Return self==value.

__hash__ = None

__init__(child)
child: A Transform instance. This child may later be replaced with set().

__module__ = 'matplotlib.transforms'

__str__()
Return str(self).

frozen()
Return a frozen copy of this transform node. The frozen copy will not be updated when its
children change. Useful for storing a previously known state of a transform where copy.
deepcopy() might normally be used.

property has_inverse
bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the
only two instances of the class bool. The class bool is a subclass of the class int, and cannot be
subclassed.

property is_affine
bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the
only two instances of the class bool. The class bool is a subclass of the class int, and cannot be
subclassed.

property is_separable
bool(x) -> bool

2878 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns True when the argument x is true, False otherwise. The builtins True and False are the
only two instances of the class bool. The class bool is a subclass of the class int, and cannot be
subclassed.

pass_through = True

set(child)
Replace the current child of this transform with another one.

The new child must have the same number of input and output dimensions as the current child.

class matplotlib.transforms.TransformedBbox(bbox, transform, **kwargs)
Bases: matplotlib.transforms.BboxBase

A Bbox that is automatically transformed by a given transform. When either the child bounding box
or transform changes, the bounds of this bbox will update accordingly.

Parameters

bbox
[Bbox]

transform
[Transform]

__init__(bbox, transform, **kwargs)

Parameters

bbox
[Bbox]

transform
[Transform]

__module__ = 'matplotlib.transforms'

__str__()
Return str(self).

get_points()

class matplotlib.transforms.TransformedPatchPath(patch)
Bases: matplotlib.transforms.TransformedPath

A TransformedPatchPath caches a non-affine transformed copy of the Patch. This cached
copy is automatically updated when the non-affine part of the transform or the patch changes.

Parameters

patch
[Patch]

18.57. matplotlib.transforms 2879

Matplotlib, Release 3.4.3

__init__(patch)

Parameters

patch
[Patch]

__module__ = 'matplotlib.transforms'

class matplotlib.transforms.TransformedPath(path, transform)
Bases: matplotlib.transforms.TransformNode

A TransformedPath caches a non-affine transformed copy of the Path. This cached copy is
automatically updated when the non-affine part of the transform changes.

Note: Paths are considered immutable by this class. Any update to the path's vertices/codes will not
trigger a transform recomputation.

Parameters

path
[Path]

transform
[Transform]

__init__(path, transform)

Parameters

path
[Path]

transform
[Transform]

__module__ = 'matplotlib.transforms'

get_affine()

get_fully_transformed_path()
Return a fully-transformed copy of the child path.

get_transformed_path_and_affine()
Return a copy of the child path, with the non-affine part of the transform already applied, along
with the affine part of the path necessary to complete the transformation.

2880 Chapter 18. Modules

Matplotlib, Release 3.4.3

get_transformed_points_and_affine()
Return a copy of the child path, with the non-affine part of the transform already applied,
along with the affine part of the path necessary to complete the transformation. Unlike
get_transformed_path_and_affine(), no interpolation will be performed.

matplotlib.transforms.blended_transform_factory(x_transform, y_transform)
Create a new "blended" transform using x_transform to transform the x-axis and y_transform to trans-
form the y-axis.

A faster version of the blended transform is returned for the case where both child transforms are affine.

matplotlib.transforms.composite_transform_factory(a, b)
Create a new composite transform that is the result of applying transform a then transform b.

Shortcut versions of the blended transform are provided for the case where both child transforms are
affine, or one or the other is the identity transform.

Composite transforms may also be created using the '+' operator, e.g.:

c = a + b

matplotlib.transforms.interval_contains(interval, val)
Check, inclusively, whether an interval includes a given value.

Parameters

interval
[(float, float)] The endpoints of the interval.

val
[float] Value to check is within interval.

Returns

bool
Whether val is within the interval.

matplotlib.transforms.interval_contains_open(interval, val)
Check, excluding endpoints, whether an interval includes a given value.

Parameters

interval
[(float, float)] The endpoints of the interval.

val
[float] Value to check is within interval.

Returns

18.57. matplotlib.transforms 2881

Matplotlib, Release 3.4.3

bool
Whether val is within the interval.

matplotlib.transforms.nonsingular(vmin, vmax, expander=0.001, tiny=1e-15, in-
creasing=True)

Modify the endpoints of a range as needed to avoid singularities.

Parameters

vmin, vmax
[float] The initial endpoints.

expander
[float, default: 0.001] Fractional amount by which vmin and vmax are expanded if
the original interval is too small, based on tiny.

tiny
[float, default: 1e-15] Threshold for the ratio of the interval to the maximum abso-
lute value of its endpoints. If the interval is smaller than this, it will be expanded.
This value should be around 1e-15 or larger; otherwise the interval will be ap-
proaching the double precision resolution limit.

increasing
[bool, default: True] If True, swap vmin, vmax if vmin > vmax.

Returns

vmin, vmax
[float] Endpoints, expanded and/or swapped if necessary. If either input is inf or
NaN, or if both inputs are 0 or very close to zero, it returns -expander, expander.

matplotlib.transforms.offset_copy(trans, fig=None, x=0.0, y=0.0, units='inches')
Return a new transform with an added offset.

Parameters

trans
[Transform subclass] Any transform, to which offset will be applied.

fig
[Figure, default: None] Current figure. It can be None if units are 'dots'.

x, y
[float, default: 0.0] The offset to apply.

units
[{'inches', 'points', 'dots'}, default: 'inches'] Units of the offset.

2882 Chapter 18. Modules

Matplotlib, Release 3.4.3

Returns

Transform subclass
Transform with applied offset.

18.58 matplotlib.tri

Unstructured triangular grid functions.

class matplotlib.tri.Triangulation(x, y, triangles=None, mask=None)
An unstructured triangular grid consisting of npoints points and ntri triangles. The triangles can either
be specified by the user or automatically generated using a Delaunay triangulation.

Parameters

x, y
[(npoints,) array-like] Coordinates of grid points.

triangles
[(ntri, 3) array-like of int, optional] For each triangle, the indices of the three points
that make up the triangle, ordered in an anticlockwise manner. If not specified, the
Delaunay triangulation is calculated.

mask
[(ntri,) array-like of bool, optional] Which triangles are masked out.

Notes

For a Triangulation to be valid it must not have duplicate points, triangles formed from colinear points,
or overlapping triangles.

Attributes

triangles
[(ntri, 3) array of int] For each triangle, the indices of the three points that make
up the triangle, ordered in an anticlockwise manner. If you want to take the mask
into account, use get_masked_triangles instead.

mask
[(ntri, 3) array of bool] Masked out triangles.

is_delaunay
[bool] Whether the Triangulation is a calculated Delaunay triangulation (where
triangles was not specified) or not.

18.58. matplotlib.tri 2883

Matplotlib, Release 3.4.3

calculate_plane_coefficients(z)
Calculate plane equation coefficients for all unmasked triangles from the point (x, y) coordinates
and specified z-array of shape (npoints). The returned array has shape (npoints, 3) and allows
z-value at (x, y) position in triangle tri to be calculated using z = array[tri, 0] * x +
array[tri, 1] * y + array[tri, 2].

property edges
Return integer array of shape (nedges, 2) containing all edges of non-masked triangles.

Each row defines an edge by it's start point index and end point index. Each edge appears only
once, i.e. for an edge between points i and j, there will only be either (i, j) or (j, i).

get_cpp_triangulation()
Return the underlying C++ Triangulation object, creating it if necessary.

static get_from_args_and_kwargs(*args, **kwargs)
Return a Triangulation object from the args and kwargs, and the remaining args and kwargs with
the consumed values removed.

There are two alternatives: either the first argument is a Triangulation object, in which case it
is returned, or the args and kwargs are sufficient to create a new Triangulation to return. In the
latter case, see Triangulation.__init__ for the possible args and kwargs.

get_masked_triangles()
Return an array of triangles that are not masked.

get_trifinder()
Return the default matplotlib.tri.TriFinder of this triangulation, creating it if neces-
sary. This allows the same TriFinder object to be easily shared.

property neighbors
Return integer array of shape (ntri, 3) containing neighbor triangles.

For each triangle, the indices of the three triangles that share the same edges, or -1 if there is no
such neighboring triangle. neighbors[i, j] is the triangle that is the neighbor to the edge
from point index triangles[i, j] to point index triangles[i, (j+1)%3].

set_mask(mask)
Set or clear the mask array.

Parameters

mask
[None or bool array of length ntri]

class matplotlib.tri.TriContourSet(ax, *args, **kwargs)
Bases: matplotlib.contour.ContourSet

Create and store a set of contour lines or filled regions for a triangular grid.

This class is typically not instantiated directly by the user but by tricontour and tricontourf.

Attributes

2884 Chapter 18. Modules

Matplotlib, Release 3.4.3

ax
[Axes] The Axes object in which the contours are drawn.

collections
[silent_list of LineCollections or PathCollections] The
Artists representing the contour. This is a list of LineCollections for line
contours and a list of PathCollections for filled contours.

levels
[array] The values of the contour levels.

layers
[array] Same as levels for line contours; half-way between levels for filled contours.
See ContourSet._process_colors.

Draw triangular grid contour lines or filled regions, depending on whether keyword arg 'filled' is False
(default) or True.

The first argument of the initializer must be an axes object. The remaining arguments and keyword
arguments are described in the docstring of tricontour.

class matplotlib.tri.TriFinder(triangulation)
Abstract base class for classes used to find the triangles of a Triangulation in which (x, y) points lie.

Rather than instantiate an object of a class derived fromTriFinder, it is usually better to use the function
Triangulation.get_trifinder.

Derived classes implement __call__(x, y) where x and y are array-like point coordinates of the same
shape.

class matplotlib.tri.TrapezoidMapTriFinder(triangulation)
Bases: matplotlib.tri.trifinder.TriFinder

TriFinder class implemented using the trapezoid map algorithm from the book "Computational
Geometry, Algorithms and Applications", second edition, by M. de Berg, M. van Kreveld, M. Over-
mars and O. Schwarzkopf.

The triangulation must be valid, i.e. it must not have duplicate points, triangles formed from colinear
points, or overlapping triangles. The algorithm has some tolerance to triangles formed from colinear
points, but this should not be relied upon.

class matplotlib.tri.TriInterpolator(triangulation, z, trifinder=None)
Abstract base class for classes used to interpolate on a triangular grid.

Derived classes implement the following methods:

• __call__(x, y), where x, y are array-like point coordinates of the same shape, and that
returns a masked array of the same shape containing the interpolated z-values.

• gradient(x, y), where x, y are array-like point coordinates of the same shape, and that
returns a list of 2 masked arrays of the same shape containing the 2 derivatives of the interpolator
(derivatives of interpolated z values with respect to x and y).

18.58. matplotlib.tri 2885

Matplotlib, Release 3.4.3

class matplotlib.tri.LinearTriInterpolator(triangulation, z, trifinder=None)
Bases: matplotlib.tri.triinterpolate.TriInterpolator

Linear interpolator on a triangular grid.

Each triangle is represented by a plane so that an interpolated value at point (x, y) lies on the plane
of the triangle containing (x, y). Interpolated values are therefore continuous across the triangulation,
but their first derivatives are discontinuous at edges between triangles.

Parameters

triangulation
[Triangulation] The triangulation to interpolate over.

z
[(npoints,) array-like] Array of values, defined at grid points, to interpolate be-
tween.

trifinder
[TriFinder, optional] If this is not specified, the Triangulation's default
TriFinder will be used by calling Triangulation.get_trifinder.

Methods

`__call__` (x, y) (Returns interpolated values at (x, y) points.)
`gradient` (x, y) (Returns interpolated derivatives at (x, y) points.)

gradient(x, y)
Returns a list of 2 masked arrays containing interpolated derivatives at the specified (x, y) points.

Parameters

x, y
[array-like] x and y coordinates of the same shape and any number of dimensions.

Returns

dzdx, dzdy
[np.ma.array] 2masked arrays of the same shape as x and y; values corresponding
to (x, y) points outside of the triangulation are masked out. The first returned
array contains the values of 𝜕𝑧

𝜕𝑥 and the second those of 𝜕𝑧
𝜕𝑦 .

class matplotlib.tri.CubicTriInterpolator(triangulation, z, kind='min_E',
trifinder=None, dz=None)

Bases: matplotlib.tri.triinterpolate.TriInterpolator

Cubic interpolator on a triangular grid.

2886 Chapter 18. Modules

Matplotlib, Release 3.4.3

In one-dimension - on a segment - a cubic interpolating function is defined by the values of the function
and its derivative at both ends. This is almost the same in 2D inside a triangle, except that the values
of the function and its 2 derivatives have to be defined at each triangle node.

The CubicTriInterpolator takes the value of the function at each node - provided by the user - and
internally computes the value of the derivatives, resulting in a smooth interpolation. (As a special
feature, the user can also impose the value of the derivatives at each node, but this is not supposed to
be the common usage.)

Parameters

triangulation
[Triangulation] The triangulation to interpolate over.

z
[(npoints,) array-like] Array of values, defined at grid points, to interpolate be-
tween.

kind
[{'min_E', 'geom', 'user'}, optional] Choice of the smoothing algorithm, in order
to compute the interpolant derivatives (defaults to 'min_E'):

• if 'min_E': (default) The derivatives at each node is computed to minimize a
bending energy.

• if 'geom': The derivatives at each node is computed as a weighted average of
relevant triangle normals. To be used for speed optimization (large grids).

• if 'user': The user provides the argument dz, no computation is hence needed.

trifinder
[TriFinder, optional] If not specified, the Triangulation's default TriFinder will
be used by calling Triangulation.get_trifinder.

dz
[tuple of array-likes (dzdx, dzdy), optional] Used only if kind ='user'. In this case
dzmust be provided as (dzdx, dzdy) where dzdx, dzdy are arrays of the same shape
as z and are the interpolant first derivatives at the triangulation points.

Notes

This note is a bit technical and details how the cubic interpolation is computed.

The interpolation is based on a Clough-Tocher subdivision scheme of the triangulationmesh (to make
it clearer, each triangle of the grid will be divided in 3 child-triangles, and on each child triangle the
interpolated function is a cubic polynomial of the 2 coordinates). This technique originates from FEM
(Finite ElementMethod) analysis; the element used is a reducedHsieh-Clough-Tocher (HCT) element.
Its shape functions are described in [1]. The assembled function is guaranteed to be C1-smooth, i.e. it

18.58. matplotlib.tri 2887

Matplotlib, Release 3.4.3

is continuous and its first derivatives are also continuous (this is easy to show inside the triangles but
is also true when crossing the edges).

In the default case (kind ='min_E'), the interpolant minimizes a curvature energy on the functional
space generated by the HCT element shape functions - with imposed values but arbitrary derivatives
at each node. The minimized functional is the integral of the so-called total curvature (implementation
based on an algorithm from [2] - PCG sparse solver):

𝐸(𝑧) = 1
2 ∫Ω ((

𝜕2𝑧
𝜕𝑥2)

2
+ (

𝜕2𝑧
𝜕𝑦2)

2
+ 2 (

𝜕2𝑧
𝜕𝑦𝜕𝑥)

2

)
𝑑𝑥 𝑑𝑦

If the case kind ='geom' is chosen by the user, a simple geometric approximation is used (weighted
average of the triangle normal vectors), which could improve speed on very large grids.

References

[1], [2]

Methods

`__call__` (x, y) (Returns interpolated values at (x, y) points.)
`gradient` (x, y) (Returns interpolated derivatives at (x, y) points.)

gradient(x, y)
Returns a list of 2 masked arrays containing interpolated derivatives at the specified (x, y) points.

Parameters

x, y
[array-like] x and y coordinates of the same shape and any number of dimensions.

Returns

dzdx, dzdy
[np.ma.array] 2masked arrays of the same shape as x and y; values corresponding
to (x, y) points outside of the triangulation are masked out. The first returned
array contains the values of 𝜕𝑧

𝜕𝑥 and the second those of 𝜕𝑧
𝜕𝑦 .

class matplotlib.tri.TriRefiner(triangulation)
Abstract base class for classes implementing mesh refinement.

A TriRefiner encapsulates a Triangulation object and provides tools for mesh refinement and interpo-
lation.

Derived classes must implement:

2888 Chapter 18. Modules

Matplotlib, Release 3.4.3

• refine_triangulation(return_tri_index=False, **kwargs) , where the op-
tional keyword arguments kwargs are defined in each TriRefiner concrete implementation, and
which returns:

– a refined triangulation,

– optionally (depending on return_tri_index), for each point of the refined triangulation: the
index of the initial triangulation triangle to which it belongs.

• refine_field(z, triinterpolator=None, **kwargs), where:

– z array of field values (to refine) defined at the base triangulation nodes,

– triinterpolator is an optional TriInterpolator,

– the other optional keyword arguments kwargs are defined in each TriRefiner concrete im-
plementation;

and which returns (as a tuple) a refined triangular mesh and the interpolated values of the field
at the refined triangulation nodes.

class matplotlib.tri.UniformTriRefiner(triangulation)
Bases: matplotlib.tri.trirefine.TriRefiner

Uniform mesh refinement by recursive subdivisions.

Parameters

triangulation
[Triangulation] The encapsulated triangulation (to be refined)

refine_field(z, triinterpolator=None, subdiv=3)
Refine a field defined on the encapsulated triangulation.

Parameters

z
[(npoints,) array-like] Values of the field to refine, defined at the nodes of the
encapsulated triangulation. (n_points is the number of points in the initial
triangulation)

triinterpolator
[TriInterpolator, optional] Interpolator used for field interpolation. If not
specified, a CubicTriInterpolator will be used.

subdiv
[int, default: 3] Recursion level for the subdivision. Each triangle is divided into
4**subdiv child triangles.

Returns

18.58. matplotlib.tri 2889

Matplotlib, Release 3.4.3

refi_tri
[Triangulation] The returned refined triangulation.

refi_z
[1D array of length: refi_tri node count.] The returned interpolated field (at
refi_tri nodes).

refine_triangulation(return_tri_index=False, subdiv=3)
Compute an uniformly refined triangulation refi_triangulation of the encapsulated triangu-
lation.

This function refines the encapsulated triangulation by splitting each father triangle into 4 child
sub-triangles built on the edges midside nodes, recursing subdiv times. In the end, each triangle
is hence divided into 4**subdiv child triangles.

Parameters

return_tri_index
[bool, default: False] Whether an index table indicating the father triangle index
of each point is returned.

subdiv
[int, default: 3] Recursion level for the subdivision. Each triangle is divided into
4**subdiv child triangles; hence, the default results in 64 refined subtriangles
for each triangle of the initial triangulation.

Returns

refi_triangulation
[Triangulation] The refined triangulation.

found_index
[int array] Index of the initial triangulation containing triangle, for each point of
refi_triangulation. Returned only if return_tri_index is set to True.

class matplotlib.tri.TriAnalyzer(triangulation)
Define basic tools for triangular mesh analysis and improvement.

A TriAnalyzer encapsulates a Triangulation object and provides basic tools for mesh analysis
and mesh improvement.

Parameters

triangulation
[Triangulation] The encapsulated triangulation to analyze.

Attributes

2890 Chapter 18. Modules

Matplotlib, Release 3.4.3

scale_factors

Factors to rescale the triangulation into a unit square.

circle_ratios(rescale=True)
Return a measure of the triangulation triangles flatness.

The ratio of the incircle radius over the circumcircle radius is a widely used indicator of a triangle
flatness. It is always <= 0.5 and == 0.5 only for equilateral triangles. Circle ratios below
0.01 denote very flat triangles.

To avoid unduly low values due to a difference of scale between the 2 axis, the triangular mesh
can first be rescaled to fit inside a unit square with scale_factors (Only if rescale is True,
which is its default value).

Parameters

rescale
[bool, default: True] If True, internally rescale (based on scale_factors),
so that the (unmasked) triangles fit exactly inside a unit square mesh.

Returns

masked array
Ratio of the incircle radius over the circumcircle radius, for each 'rescaled' trian-
gle of the encapsulated triangulation. Values corresponding to masked triangles
are masked out.

get_flat_tri_mask(min_circle_ratio=0.01, rescale=True)
Eliminate excessively flat border triangles from the triangulation.

Returns a mask new_mask which allows to clean the encapsulated triangulation from its border-
located flat triangles (according to their circle_ratios()). This mask is meant to be sub-
sequently applied to the triangulation using Triangulation.set_mask. new_mask is an
extension of the initial triangulation mask in the sense that an initially masked triangle will re-
main masked.

The new_mask array is computed recursively; at each step flat triangles are removed only if they
share a side with the current mesh border. Thus no new holes in the triangulated domain will be
created.

Parameters

min_circle_ratio
[float, default: 0.01] Border triangles with incircle/circumcircle radii ratio r/R
will be removed if r/R < min_circle_ratio.

rescale
[bool, default: True] If True, first, internally rescale (based on
scale_factors) so that the (unmasked) triangles fit exactly inside a

18.58. matplotlib.tri 2891

Matplotlib, Release 3.4.3

unit square mesh. This rescaling accounts for the difference of scale which
might exist between the 2 axis.

Returns

array of bool
Mask to apply to encapsulated triangulation. All the initially masked triangles
remain masked in the new_mask.

Notes

The rationale behind this function is that a Delaunay triangulation - of an unstructured set
of points - sometimes contains almost flat triangles at its border, leading to artifacts in plots
(especially for high-resolution contouring). Masked with computed new_mask, the encapsu-
lated triangulation would contain no more unmasked border triangles with a circle ratio below
min_circle_ratio, thus improving the mesh quality for subsequent plots or interpolation.

property scale_factors
Factors to rescale the triangulation into a unit square.

Returns

(float, float)
Scaling factors (kx, ky) so that the triangulation [triangulation.x * kx,
triangulation.y * ky] fits exactly inside a unit square.

18.59 matplotlib.type1font

A class representing a Type 1 font.

This version reads pfa and pfb files and splits them for embedding in pdf files. It also supports SlantFont and
ExtendFont transformations, similarly to pdfTeX and friends. There is no support yet for subsetting.

Usage:

>>> font = Type1Font(filename)
>>> clear_part, encrypted_part, finale = font.parts
>>> slanted_font = font.transform({'slant': 0.167})
>>> extended_font = font.transform({'extend': 1.2})

Sources:

• Adobe Technical Note #5040, Supporting Downloadable PostScript Language Fonts.

• Adobe Type 1 Font Format, Adobe Systems Incorporated, third printing, v1.1, 1993. ISBN 0-201-
57044-0.

2892 Chapter 18. Modules

Matplotlib, Release 3.4.3

class matplotlib.type1font.Type1Font(input)
Bases: object

A class representing a Type-1 font, for use by backends.

Attributes

parts
[tuple] A 3-tuple of the cleartext part, the encrypted part, and the finale of zeros.

prop
[dict[str, Any]] A dictionary of font properties.

Initialize a Type-1 font.

Parameters

input
[str or 3-tuple] Either a pfb file name, or a 3-tuple of already-decoded Type-1 font
parts.

parts

prop

transform(effects)
Return a new font that is slanted and/or extended.

Parameters

effects
[dict] A dict with optional entries:

• 'slant'
[float, default: 0] Tangent of the angle that the font is to be slanted to the
right. Negative values slant to the left.

• 'extend'
[float, default: 1] Scaling factor for the font width. Values less than 1 con-
dense the glyphs.

Returns

Type1Font

18.59. matplotlib.type1font 2893

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

18.60 matplotlib.units

The classes here provide support for using custom classes with Matplotlib, e.g., those that do not expose the
array interface but know how to convert themselves to arrays. It also supports classes with units and units
conversion. Use cases include converters for custom objects, e.g., a list of datetime objects, as well as for
objects that are unit aware. We don't assume any particular units implementation; rather a units implemen-
tation must provide the register with the Registry converter dictionary and a ConversionInterface.
For example, here is a complete implementation which supports plotting with native datetime objects:

import matplotlib.units as units
import matplotlib.dates as dates
import matplotlib.ticker as ticker
import datetime

class DateConverter(units.ConversionInterface):

@staticmethod
def convert(value, unit, axis):

'Convert a datetime value to a scalar or array'
return dates.date2num(value)

@staticmethod
def axisinfo(unit, axis):

'Return major and minor tick locators and formatters'
if unit!='date': return None
majloc = dates.AutoDateLocator()
majfmt = dates.AutoDateFormatter(majloc)
return AxisInfo(majloc=majloc,

majfmt=majfmt,
label='date')

@staticmethod
def default_units(x, axis):

'Return the default unit for x or None'
return 'date'

Finally we register our object type with the Matplotlib units registry.
units.registry[datetime.date] = DateConverter()

class matplotlib.units.AxisInfo(majloc=None, minloc=None, majfmt=None,
minfmt=None, label=None, default_limits=None)

Bases: object

Information to support default axis labeling, tick labeling, and limits.

An instance of this class must be returned by ConversionInterface.axisinfo.

Parameters

majloc, minloc
[Locator, optional] Tick locators for the major and minor ticks.

2894 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

majfmt, minfmt
[Formatter, optional] Tick formatters for the major and minor ticks.

label
[str, optional] The default axis label.

default_limits
[optional] The default min and max limits of the axis if no data has been plotted.

Notes

If any of the above are None, the axis will simply use the default value.

exception matplotlib.units.ConversionError
Bases: TypeError

class matplotlib.units.ConversionInterface
Bases: object

The minimal interface for a converter to take custom data types (or sequences) and convert them to
values Matplotlib can use.

static axisinfo(unit, axis)
Return an AxisInfo for the axis with the specified units.

static convert(obj, unit, axis)
Convert obj using unit for the specified axis.

If obj is a sequence, return the converted sequence. The output must be a sequence of scalars
that can be used by the numpy array layer.

static default_units(x, axis)
Return the default unit for x or None for the given axis.

static is_numlike(x)
The Matplotlib datalim, autoscaling, locators etc work with scalars which are the units converted
to floats given the current unit. The converter may be passed these floats, or arrays of them, even
when units are set.

class matplotlib.units.DecimalConverter
Bases: matplotlib.units.ConversionInterface

Converter for decimal.Decimal data to float.

static axisinfo(unit, axis)
Return an AxisInfo for the axis with the specified units.

static convert(value, unit, axis)
Convert Decimals to floats.

The unit and axis arguments are not used.

Parameters

18.60. matplotlib.units 2895

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

value
[decimal.Decimal or iterable] Decimal or list of Decimal need to be converted

static default_units(x, axis)
Return the default unit for x or None for the given axis.

class matplotlib.units.Registry
Bases: dict

Register types with conversion interface.

get_converter(x)
Get the converter interface instance for x, or None.

18.61 matplotlib.widgets

AxesWidget

Button

CheckButtons

Cursor

Lasso

RadioButtons

SliderBase

TextBox

Widget MultiCursor

SubplotTool

EllipseSelectorRectangleSelector

LassoSelector

LockDraw

PolygonSelector

RangeSlider

Slider

SpanSelector

ToolHandles

2896 Chapter 18. Modules

https://docs.python.org/3/library/stdtypes.html#dict

Matplotlib, Release 3.4.3

18.61.1 GUI neutral widgets

Widgets that are designed to work for any of the GUI backends. All of these widgets require you to predefine
a matplotlib.axes.Axes instance and pass that as the first parameter. Matplotlib doesn't try to be too
smart with respect to layout -- you will have to figure out how wide and tall you want your Axes to be to
accommodate your widget.

class matplotlib.widgets.AxesWidget(ax)
Bases: matplotlib.widgets.Widget

Widget connected to a single Axes.

To guarantee that the widget remains responsive and not garbage-collected, a reference to the object
should be maintained by the user.

This is necessary because the callback registry maintains only weak-refs to the functions, which are
member functions of the widget. If there are no references to the widget object it may be garbage
collected which will disconnect the callbacks.

Attributes

ax
[Axes] The parent axes for the widget.

canvas
[FigureCanvasBase] The parent figure canvas for the widget.

active

[bool] Is the widget active?

property cids

connect_event(event, callback)
Connect a callback function with an event.

This should be used in lieu of figure.canvas.mpl_connect since this function stores
callback ids for later clean up.

disconnect_events()
Disconnect all events created by this widget.

class matplotlib.widgets.Button(ax, label, image=None, color='0.85', hover-
color='0.95')

Bases: matplotlib.widgets.AxesWidget

A GUI neutral button.

For the button to remain responsive you must keep a reference to it. Call on_clicked to connect to
the button.

Attributes

ax

18.61. matplotlib.widgets 2897

Matplotlib, Release 3.4.3

The matplotlib.axes.Axes the button renders into.

label
A matplotlib.text.Text instance.

color
The color of the button when not hovering.

hovercolor
The color of the button when hovering.

Parameters

ax
[Axes] The Axes instance the button will be placed into.

label
[str] The button text.

image
[array-like or PIL Image] The image to place in the button, if not None. The pa-
rameter is directly forwarded to imshow.

color
[color] The color of the button when not activated.

hovercolor
[color] The color of the button when the mouse is over it.

property cnt

disconnect(cid)
Remove the callback function with connection id cid.

property observers

on_clicked(func)
Connect the callback function func to button click events.

Returns a connection id, which can be used to disconnect the callback.

class matplotlib.widgets.CheckButtons(ax, labels, actives=None)
Bases: matplotlib.widgets.AxesWidget

A GUI neutral set of check buttons.

For the check buttons to remain responsive you must keep a reference to this object.

Connect to the CheckButtons with the on_clicked method.

Attributes

2898 Chapter 18. Modules

Matplotlib, Release 3.4.3

ax
[Axes] The parent axes for the widget.

labels
[list of Text]

rectangles
[list of Rectangle]

lines
[list of (Line2D, Line2D) pairs] List of lines for the x's in the check boxes.
These lines exist for each box, but have set_visible(False) when its box
is not checked.

Add check buttons to matplotlib.axes.Axes instance ax.

Parameters

ax
[Axes] The parent axes for the widget.

labels
[list of str] The labels of the check buttons.

actives
[list of bool, optional] The initial check states of the buttons. The list must have
the same length as labels. If not given, all buttons are unchecked.

property cnt

disconnect(cid)
Remove the observer with connection id cid.

get_status()
Return a tuple of the status (True/False) of all of the check buttons.

property observers

on_clicked(func)
Connect the callback function func to button click events.

Returns a connection id, which can be used to disconnect the callback.

set_active(index)
Toggle (activate or deactivate) a check button by index.

Callbacks will be triggered if eventson is True.

Parameters

18.61. matplotlib.widgets 2899

Matplotlib, Release 3.4.3

index
[int] Index of the check button to toggle.

Raises

ValueError
If index is invalid.

class matplotlib.widgets.Cursor(ax, horizOn=True, vertOn=True, useblit=False,
**lineprops)

Bases: matplotlib.widgets.AxesWidget

A crosshair cursor that spans the axes and moves with mouse cursor.

For the cursor to remain responsive you must keep a reference to it.

Parameters

ax
[matplotlib.axes.Axes] The Axes to attach the cursor to.

horizOn
[bool, default: True] Whether to draw the horizontal line.

vertOn
[bool, default: True] Whether to draw the vertical line.

useblit
[bool, default: False] Use blitting for faster drawing if supported by the backend.

Other Parameters

**lineprops
Line2D properties that control the appearance of the lines. See also axhline.

Examples

See /gallery/widgets/cursor.

clear(event)
Internal event handler to clear the cursor.

onmove(event)
Internal event handler to draw the cursor when the mouse moves.

2900 Chapter 18. Modules

Matplotlib, Release 3.4.3

class matplotlib.widgets.EllipseSelector(ax, onselect, drawtype='box',
minspanx=0, minspany=0, use-
blit=False, lineprops=None,
rectprops=None, spanco-
ords='data', button=None,
maxdist=10, marker_props=None,
interactive=False,
state_modifier_keys=None)

Bases: matplotlib.widgets.RectangleSelector

Select an elliptical region of an axes.

For the cursor to remain responsive you must keep a reference to it.

Example usage:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import EllipseSelector

def onselect(eclick, erelease):
"eclick and erelease are matplotlib events at press and release."
print('startposition: (%f, %f)' % (eclick.xdata, eclick.ydata))
print('endposition : (%f, %f)' % (erelease.xdata, erelease.ydata))
print('used button : ', eclick.button)

def toggle_selector(event):
print(' Key pressed.')
if event.key in ['Q', 'q'] and toggle_selector.ES.active:

print('EllipseSelector deactivated.')
toggle_selector.RS.set_active(False)

if event.key in ['A', 'a'] and not toggle_selector.ES.active:
print('EllipseSelector activated.')
toggle_selector.ES.set_active(True)

x = np.arange(100.) / 99
y = np.sin(x)
fig, ax = plt.subplots()
ax.plot(x, y)

toggle_selector.ES = EllipseSelector(ax, onselect, drawtype='line')
fig.canvas.mpl_connect('key_press_event', toggle_selector)
plt.show()

Parameters

ax
[Axes] The parent axes for the widget.

onselect
[function] A callback function that is called after a selection is completed. It must
have the signature:

18.61. matplotlib.widgets 2901

Matplotlib, Release 3.4.3

def onselect(eclick: MouseEvent, erelease: MouseEvent)

where eclick and erelease are the mouse click and release MouseEvents that
start and complete the selection.

drawtype
[{"box", "line", "none"}, default: "box"] Whether to draw the full rectangle box,
the diagonal line of the rectangle, or nothing at all.

minspanx
[float, default: 0] Selections with an x-span less than minspanx are ignored.

minspany
[float, default: 0] Selections with an y-span less than minspany are ignored.

useblit
[bool, default: False] Whether to use blitting for faster drawing (if supported by
the backend).

lineprops
[dict, optional] Properties with which the line is drawn, if drawtype ==
"line". Default:

dict(color="black", linestyle="-", linewidth=2, alpha=0.5)

rectprops
[dict, optional] Properties with which the rectangle is drawn, if drawtype ==
"box". Default:

dict(facecolor="red", edgecolor="black", alpha=0.2,␣
↪fill=True)

spancoords
[{"data", "pixels"}, default: "data"] Whether to interpret minspanx and minspany
in data or in pixel coordinates.

button
[MouseButton, list of MouseButton, default: all buttons] Button(s) that trig-
ger rectangle selection.

maxdist
[float, default: 10] Distance in pixels within which the interactive tool handles can
be activated.

marker_props
[dict] Properties with which the interactive handles are drawn. Currently not im-
plemented and ignored.

2902 Chapter 18. Modules

Matplotlib, Release 3.4.3

interactive
[bool, default: False] Whether to draw a set of handles that allow interaction with
the widget after it is drawn.

state_modifier_keys
[dict, optional] Keyboard modifiers which affect the widget's behavior. Values
amend the defaults.

• "move": Move the existing shape, default: no modifier.

• "clear": Clear the current shape, default: "escape".

• "square": Makes the shape square, default: "shift".

• "center": Make the initial point the center of the shape, default: "ctrl".

"square" and "center" can be combined.

draw_shape(extents)

class matplotlib.widgets.Lasso(ax, xy, callback=None, useblit=True)
Bases: matplotlib.widgets.AxesWidget

Selection curve of an arbitrary shape.

The selected path can be used in conjunction with contains_point to select data points from an
image.

Unlike LassoSelector, this must be initialized with a starting point xy, and the Lasso events are
destroyed upon release.

Parameters

ax
[Axes] The parent axes for the widget.

xy
[(float, float)] Coordinates of the start of the lasso.

callback
[callable]Whenever the lasso is released, the callback function is called and passed
the vertices of the selected path.

onmove(event)

onrelease(event)

class matplotlib.widgets.LassoSelector(ax, onselect=None, useblit=True, line-
props=None, button=None)

Bases: matplotlib.widgets._SelectorWidget

Selection curve of an arbitrary shape.

For the selector to remain responsive you must keep a reference to it.

18.61. matplotlib.widgets 2903

Matplotlib, Release 3.4.3

The selected path can be used in conjunction with contains_point to select data points from an
image.

In contrast to Lasso, LassoSelector is written with an interface similar to RectangleSe-
lector and SpanSelector, and will continue to interact with the axes until disconnected.

Example usage:

ax = plt.subplot()
ax.plot(x, y)

def onselect(verts):
print(verts)

lasso = LassoSelector(ax, onselect)

Parameters

ax
[Axes] The parent axes for the widget.

onselect
[function] Whenever the lasso is released, the onselect function is called and
passed the vertices of the selected path.

button
[MouseButton or list of MouseButton, optional] The mouse buttons used for
rectangle selection. Default is None, which corresponds to all buttons.

onpress(event)

onrelease(event)

class matplotlib.widgets.LockDraw
Bases: object

Some widgets, like the cursor, draw onto the canvas, and this is not desirable under all circumstances,
like when the toolbar is in zoom-to-rect mode and drawing a rectangle. To avoid this, a widget can
acquire a canvas' lock with canvas.widgetlock(widget) before drawing on the canvas; this
will prevent other widgets from doing so at the same time (if they also try to acquire the lock first).

available(o)
Return whether drawing is available to o.

isowner(o)
Return whether o owns this lock.

locked()
Return whether the lock is currently held by an owner.

release(o)
Release the lock from o.

2904 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

class matplotlib.widgets.MultiCursor(canvas, axes, useblit=True, horizOn=False,
vertOn=True, **lineprops)

Bases: matplotlib.widgets.Widget

Provide a vertical (default) and/or horizontal line cursor shared between multiple axes.

For the cursor to remain responsive you must keep a reference to it.

Example usage:

from matplotlib.widgets import MultiCursor
import matplotlib.pyplot as plt
import numpy as np

fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)
t = np.arange(0.0, 2.0, 0.01)
ax1.plot(t, np.sin(2*np.pi*t))
ax2.plot(t, np.sin(4*np.pi*t))

multi = MultiCursor(fig.canvas, (ax1, ax2), color='r', lw=1,
horizOn=False, vertOn=True)

plt.show()

clear(event)
Clear the cursor.

connect()
Connect events.

disconnect()
Disconnect events.

onmove(event)

class matplotlib.widgets.PolygonSelector(ax, onselect, useblit=False, line-
props=None, markerprops=None,
vertex_select_radius=15)

Bases: matplotlib.widgets._SelectorWidget

Select a polygon region of an axes.

Place vertices with each mouse click, and make the selection by completing the polygon (clicking
on the first vertex). Hold the ctrl key and click and drag a vertex to reposition it (the ctrl key is not
necessary if the polygon has already been completed). Hold the shift key and click and drag anywhere
in the axes to move all vertices. Press the esc key to start a new polygon.

For the selector to remain responsive you must keep a reference to it.

Parameters

ax
[Axes] The parent axes for the widget.

onselect

18.61. matplotlib.widgets 2905

Matplotlib, Release 3.4.3

[function]When a polygon is completed or modified after completion, the onselect
function is called and passed a list of the vertices as (xdata, ydata) tuples.

useblit
[bool, default: False]

lineprops
[dict, default: dict(color='k', linestyle='-', linewidth=2,
alpha=0.5).] Artist properties for the line representing the edges of the poly-
gon.

markerprops
[dict, default: dict(marker='o', markersize=7, mec='k',
mfc='k', alpha=0.5).] Artist properties for the markers drawn at the ver-
tices of the polygon.

vertex_select_radius
[float, default: 15px] A vertex is selected (to complete the polygon or to move a
vertex) if the mouse click is within vertex_select_radius pixels of the vertex.

Examples

/gallery/widgets/polygon_selector_demo

onmove(event)
Cursor move event handler and validator.

property verts
The polygon vertices, as a list of (x, y) pairs.

class matplotlib.widgets.RadioButtons(ax, labels, active=0, activecolor='blue')
Bases: matplotlib.widgets.AxesWidget

A GUI neutral radio button.

For the buttons to remain responsive you must keep a reference to this object.

Connect to the RadioButtons with the on_clicked method.

Attributes

ax
[Axes] The parent axes for the widget.

activecolor
[color] The color of the selected button.

labels
[list of Text] The button labels.

2906 Chapter 18. Modules

Matplotlib, Release 3.4.3

circles
[list of Circle] The buttons.

value_selected
[str] The label text of the currently selected button.

Add radio buttons to an Axes.

Parameters

ax
[Axes] The axes to add the buttons to.

labels
[list of str] The button labels.

active
[int] The index of the initially selected button.

activecolor
[color] The color of the selected button.

property cnt

disconnect(cid)
Remove the observer with connection id cid.

property observers

on_clicked(func)
Connect the callback function func to button click events.

Returns a connection id, which can be used to disconnect the callback.

set_active(index)
Select button with number index.

Callbacks will be triggered if eventson is True.

class matplotlib.widgets.RangeSlider(ax, label, valmin, valmax, valinit=None,
valfmt=None, closedmin=True, closed-
max=True, dragging=True, valstep=None,
orientation='horizontal', **kwargs)

Bases: matplotlib.widgets.SliderBase

A slider representing a range of floating point values. Defines the min and max of the range via the
val attribute as a tuple of (min, max).

Create a slider that defines a range contained within [valmin, valmax] in axes ax. For the slider to
remain responsive you must maintain a reference to it. Call on_changed() to connect to the slider
event.

18.61. matplotlib.widgets 2907

Matplotlib, Release 3.4.3

Attributes

val
[tuple of float] Slider value.

Parameters

ax
[Axes] The Axes to put the slider in.

label
[str] Slider label.

valmin
[float] The minimum value of the slider.

valmax
[float] The maximum value of the slider.

valinit
[tuple of float or None, default: None] The initial positions of the slider. If None
the initial positions will be at the 25th and 75th percentiles of the range.

valfmt
[str, default: None] %-format string used to format the slider values. If None, a
ScalarFormatter is used instead.

closedmin
[bool, default: True] Whether the slider interval is closed on the bottom.

closedmax
[bool, default: True] Whether the slider interval is closed on the top.

dragging
[bool, default: True] If True the slider can be dragged by the mouse.

valstep
[float, default: None] If given, the slider will snap to multiples of valstep.

orientation
[{'horizontal', 'vertical'}, default: 'horizontal'] The orientation of the slider.

2908 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Additional kwargs are passed on to self.polywhich is the Rectangle that draws the slider knob.
See the Rectangle documentation for valid property names (facecolor, edgecolor, alpha,
etc.).

on_changed(func)
Connect func as callback function to changes of the slider value.

Parameters

func
[callable] Function to call when slider is changed. The function must accept a
numpy array with shape (2,) as its argument.

Returns

int
Connection id (which can be used to disconnect func).

set_max(max)
Set the lower value of the slider to max.

Parameters

max
[float]

set_min(min)
Set the lower value of the slider to min.

Parameters

min
[float]

set_val(val)
Set slider value to val.

Parameters

val
[tuple or array-like of float]

18.61. matplotlib.widgets 2909

Matplotlib, Release 3.4.3

class matplotlib.widgets.RectangleSelector(ax, onselect, drawtype='box',
minspanx=0, minspany=0, use-
blit=False, lineprops=None,
rectprops=None, spanco-
ords='data', button=None,
maxdist=10, marker_props=None,
interactive=False,
state_modifier_keys=None)

Bases: matplotlib.widgets._SelectorWidget

Select a rectangular region of an axes.

For the cursor to remain responsive you must keep a reference to it.

Examples

/gallery/widgets/rectangle_selector

Parameters

ax
[Axes] The parent axes for the widget.

onselect
[function] A callback function that is called after a selection is completed. It must
have the signature:

def onselect(eclick: MouseEvent, erelease: MouseEvent)

where eclick and erelease are the mouse click and release MouseEvents that
start and complete the selection.

drawtype
[{"box", "line", "none"}, default: "box"] Whether to draw the full rectangle box,
the diagonal line of the rectangle, or nothing at all.

minspanx
[float, default: 0] Selections with an x-span less than minspanx are ignored.

minspany
[float, default: 0] Selections with an y-span less than minspany are ignored.

useblit
[bool, default: False] Whether to use blitting for faster drawing (if supported by
the backend).

lineprops

2910 Chapter 18. Modules

Matplotlib, Release 3.4.3

[dict, optional] Properties with which the line is drawn, if drawtype ==
"line". Default:

dict(color="black", linestyle="-", linewidth=2, alpha=0.5)

rectprops
[dict, optional] Properties with which the rectangle is drawn, if drawtype ==
"box". Default:

dict(facecolor="red", edgecolor="black", alpha=0.2,␣
↪fill=True)

spancoords
[{"data", "pixels"}, default: "data"] Whether to interpret minspanx and minspany
in data or in pixel coordinates.

button
[MouseButton, list of MouseButton, default: all buttons] Button(s) that trig-
ger rectangle selection.

maxdist
[float, default: 10] Distance in pixels within which the interactive tool handles can
be activated.

marker_props
[dict] Properties with which the interactive handles are drawn. Currently not im-
plemented and ignored.

interactive
[bool, default: False] Whether to draw a set of handles that allow interaction with
the widget after it is drawn.

state_modifier_keys
[dict, optional] Keyboard modifiers which affect the widget's behavior. Values
amend the defaults.

• "move": Move the existing shape, default: no modifier.

• "clear": Clear the current shape, default: "escape".

• "square": Makes the shape square, default: "shift".

• "center": Make the initial point the center of the shape, default: "ctrl".

"square" and "center" can be combined.

property center
Center of rectangle.

18.61. matplotlib.widgets 2911

Matplotlib, Release 3.4.3

property corners
Corners of rectangle from lower left, moving clockwise.

draw_shape(extents)

property edge_centers
Midpoint of rectangle edges from left, moving anti-clockwise.

property extents
Return (xmin, xmax, ymin, ymax).

property geometry
Return an array of shape (2, 5) containing the x (RectangleSelector.geometry[1, :])
and y (RectangleSelector.geometry[0, :]) coordinates of the four corners of the
rectangle starting and ending in the top left corner.

class matplotlib.widgets.Slider(ax, label, valmin, valmax, valinit=0.5, valfmt=None,
closedmin=True, closedmax=True, slidermin=None,
slidermax=None, dragging=True, valstep=None,
orientation='horizontal', *, initcolor='r', **kwargs)

Bases: matplotlib.widgets.SliderBase

A slider representing a floating point range.

Create a slider from valmin to valmax in axes ax. For the slider to remain responsive youmust maintain
a reference to it. Call on_changed() to connect to the slider event.

Attributes

val
[float] Slider value.

Parameters

ax
[Axes] The Axes to put the slider in.

label
[str] Slider label.

valmin
[float] The minimum value of the slider.

valmax
[float] The maximum value of the slider.

valinit
[float, default: 0.5] The slider initial position.

valfmt

2912 Chapter 18. Modules

Matplotlib, Release 3.4.3

[str, default: None] %-format string used to format the slider value. If None, a
ScalarFormatter is used instead.

closedmin
[bool, default: True] Whether the slider interval is closed on the bottom.

closedmax
[bool, default: True] Whether the slider interval is closed on the top.

slidermin
[Slider, default: None] Do not allow the current slider to have a value less than the
value of the Slider slidermin.

slidermax
[Slider, default: None] Do not allow the current slider to have a value greater than
the value of the Slider slidermax.

dragging
[bool, default: True] If True the slider can be dragged by the mouse.

valstep
[float or array-like, default: None] If a float, the slider will snap to multiples of
valstep. If an array the slider will snap to the values in the array.

orientation
[{'horizontal', 'vertical'}, default: 'horizontal'] The orientation of the slider.

initcolor
[color, default: 'r'] The color of the line at the valinit position. Set to 'none' for
no line.

Notes

Additional kwargs are passed on to self.polywhich is the Rectangle that draws the slider knob.
See the Rectangle documentation for valid property names (facecolor, edgecolor, alpha,
etc.).

property cnt

property observers

on_changed(func)
Connect func as callback function to changes of the slider value.

Parameters

func

18.61. matplotlib.widgets 2913

Matplotlib, Release 3.4.3

[callable] Function to call when slider is changed. The function must accept a
single float as its arguments.

Returns

int
Connection id (which can be used to disconnect func).

set_val(val)
Set slider value to val.

Parameters

val
[float]

class matplotlib.widgets.SliderBase(ax, orientation, closedmin, closedmax, valmin,
valmax, valfmt, dragging, valstep)

Bases: matplotlib.widgets.AxesWidget

The base class for constructing Slider widgets. Not intended for direct usage.

For the slider to remain responsive you must maintain a reference to it.

disconnect(cid)
Remove the observer with connection id cid.

Parameters

cid
[int] Connection id of the observer to be removed.

reset()
Reset the slider to the initial value.

class matplotlib.widgets.SpanSelector(ax, onselect, direction, minspan=None,
useblit=False, rectprops=None, on-
move_callback=None, span_stays=False,
button=None)

Bases: matplotlib.widgets._SelectorWidget

Visually select a min/max range on a single axis and call a function with those values.

To guarantee that the selector remains responsive, keep a reference to it.

In order to turn off the SpanSelector, set span_selector.active to False. To turn it back on,
set it to True.

Parameters

2914 Chapter 18. Modules

Matplotlib, Release 3.4.3

ax
[matplotlib.axes.Axes]

onselect
[func(min, max), min/max are floats]

direction
[{"horizontal", "vertical"}] The direction along which to draw the span selector.

minspan
[float, default: None] If selection is less than minspan, do not call onselect.

useblit
[bool, default: False] If True, use the backend-dependent blitting features for faster
canvas updates.

rectprops
[dict, default: None] Dictionary of matplotlib.patches.Patch proper-
ties.

onmove_callback
[func(min, max), min/max are floats, default: None] Called on mouse move while
the span is being selected.

span_stays
[bool, default: False] If True, the span stays visible after the mouse is released.

button
[MouseButton or list of MouseButton] The mouse buttons which activate
the span selector.

Examples

>>> import matplotlib.pyplot as plt
>>> import matplotlib.widgets as mwidgets
>>> fig, ax = plt.subplots()
>>> ax.plot([1, 2, 3], [10, 50, 100])
>>> def onselect(vmin, vmax):
... print(vmin, vmax)
>>> rectprops = dict(facecolor='blue', alpha=0.5)
>>> span = mwidgets.SpanSelector(ax, onselect, 'horizontal',
... rectprops=rectprops)
>>> fig.show()

See also: /gallery/widgets/span_selector

ignore(event)
Return whether event should be ignored.

18.61. matplotlib.widgets 2915

Matplotlib, Release 3.4.3

This method should be called at the beginning of any event callback.

new_axes(ax)
Set SpanSelector to operate on a new Axes.

class matplotlib.widgets.SubplotTool(targetfig, toolfig)
Bases: matplotlib.widgets.Widget

A tool to adjust the subplot params of a matplotlib.figure.Figure.

Parameters

targetfig
[Figure] The figure instance to adjust.

toolfig
[Figure] The figure instance to embed the subplot tool into.

property axbottom

property axhspace

property axleft

property axright

property axtop

property axwspace

funcbottom(val)
[Deprecated]

Notes

Deprecated since version 3.3:

funchspace(val)
[Deprecated]

Notes

Deprecated since version 3.3:

funcleft(val)
[Deprecated]

2916 Chapter 18. Modules

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.3:

funcright(val)
[Deprecated]

Notes

Deprecated since version 3.3:

functop(val)
[Deprecated]

Notes

Deprecated since version 3.3:

funcwspace(val)
[Deprecated]

Notes

Deprecated since version 3.3:

class matplotlib.widgets.TextBox(ax, label, initial='', color='.95', hovercolor='1', la-
bel_pad=0.01)

Bases: matplotlib.widgets.AxesWidget

A GUI neutral text input box.

For the text box to remain responsive you must keep a reference to it.

Call on_text_change to be updated whenever the text changes.

Call on_submit to be updated whenever the user hits enter or leaves the text entry field.

Attributes

ax
[Axes] The parent axes for the widget.

label
[Text]

color
[color] The color of the text box when not hovering.

hovercolor
[color] The color of the text box when hovering.

18.61. matplotlib.widgets 2917

Matplotlib, Release 3.4.3

Parameters

ax
[Axes] The Axes instance the button will be placed into.

label
[str] Label for this text box.

initial
[str] Initial value in the text box.

color
[color] The color of the box.

hovercolor
[color] The color of the box when the mouse is over it.

label_pad
[float] The distance between the label and the right side of the textbox.

begin_typing(x)

property change_observers

property cnt

disconnect(cid)
Remove the observer with connection id cid.

on_submit(func)
When the user hits enter or leaves the submission box, call this func with event.

A connection id is returned which can be used to disconnect.

on_text_change(func)
When the text changes, call this func with event.

A connection id is returned which can be used to disconnect.

property params_to_disable

position_cursor(x)

set_val(val)

stop_typing()

property submit_observers

property text

class matplotlib.widgets.ToolHandles(ax, x, y, marker='o', marker_props=None,
useblit=True)

Bases: object

2918 Chapter 18. Modules

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Control handles for canvas tools.

Parameters

ax
[matplotlib.axes.Axes] Matplotlib axes where tool handles are displayed.

x, y
[1D arrays] Coordinates of control handles.

marker
[str] Shape of marker used to display handle. See matplotlib.pyplot.
plot.

marker_props
[dict] Additional marker properties. See matplotlib.lines.Line2D.

closest(x, y)
Return index and pixel distance to closest index.

set_animated(val)

set_data(pts, y=None)
Set x and y positions of handles.

set_visible(val)

property x

property y

class matplotlib.widgets.Widget
Bases: object

Abstract base class for GUI neutral widgets.

property active
Is the widget active?

drawon = True

eventson = True

get_active()
Get whether the widget is active.

ignore(event)
Return whether event should be ignored.

This method should be called at the beginning of any event callback.

set_active(active)
Set whether the widget is active.

18.61. matplotlib.widgets 2919

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

18.62 matplotlib._api

Helper functions for managing the Matplotlib API.

This documentation is only relevant for Matplotlib developers, not for users.

matplotlib._api.check_getitem(_mapping, **kwargs)
kwargs must consist of a single key, value pair. If key is in _mapping, return _mapping[value];
else, raise an appropriate ValueError.

Examples

>>> _api.check_getitem({"foo": "bar"}, arg=arg)

matplotlib._api.check_in_list(_values, *, _print_supported_values=True, **kwargs)
For each key, value pair in kwargs, check that value is in _values.

Parameters

_values
[iterable] Sequence of values to check on.

_print_supported_values
[bool, default: True] Whether to print _values when raising ValueError.

**kwargs
[dict] key, value pairs as keyword arguments to find in _values.

Raises

ValueError
If any value in kwargs is not found in _values.

Examples

>>> _api.check_in_list(["foo", "bar"], arg=arg, other_arg=other_arg)

matplotlib._api.check_isinstance(_types, **kwargs)
For each key, value pair in kwargs, check that value is an instance of one of _types; if not, raise an
appropriate TypeError.

As a special case, a None entry in _types is treated as NoneType.

2920 Chapter 18. Modules

Matplotlib, Release 3.4.3

Examples

>>> _api.check_isinstance((SomeClass, None), arg=arg)

matplotlib._api.check_shape(_shape, **kwargs)
For each key, value pair in kwargs, check that value has the shape _shape, if not, raise an appropriate
ValueError.

None in the shape is treated as a "free" size that can have any length. e.g. (None, 2) -> (N, 2)

The values checked must be numpy arrays.

Examples

To check for (N, 2) shaped arrays

>>> _api.check_shape((None, 2), arg=arg, other_arg=other_arg)

class matplotlib._api.classproperty(fget, fset=None, fdel=None, doc=None)
Bases: object

Like property, but also triggers on access via the class, and it is the class that's passed as argument.

Examples

class C:
@classproperty
def foo(cls):

return cls.__name__

assert C.foo == "C"

property fget

matplotlib._api.warn_external(message, category=None)
warnings.warn wrapper that sets stacklevel to "outside Matplotlib".

The original emitter of the warning can be obtained by patching this function back to
warnings.warn, i.e. _api.warn_external = warnings.warn (or functools.
partial(warnings.warn, stacklevel=2), etc.).

Helper functions for deprecating parts of the Matplotlib API.

This documentation is only relevant for Matplotlib developers, not for users.

exception matplotlib._api.deprecation.MatplotlibDeprecationWarning
Bases: UserWarning

A class for issuing deprecation warnings for Matplotlib users.

18.62. matplotlib._api 2921

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/warnings.html#warnings.warn
https://docs.python.org/3/library/warnings.html#warnings.warn
https://docs.python.org/3/library/exceptions.html#UserWarning

Matplotlib, Release 3.4.3

In light of the fact that Python builtin DeprecationWarnings are ignored by default as of Python 2.7
(see link below), this class was put in to allow for the signaling of deprecation, but via UserWarnings
which are not ignored by default.

https://docs.python.org/dev/whatsnew/2.7.html#the-future-for-python-2-x

matplotlib._api.deprecation.delete_parameter(since, name, func=None,
**kwargs)

Decorator indicating that parameter name of func is being deprecated.

The actual implementation of func should keep the name parameter in its signature, or accept a
**kwargs argument (through which name would be passed).

Parameters that come after the deprecated parameter effectively become keyword-only (as they cannot
be passed positionally without triggering the DeprecationWarning on the deprecated parameter), and
should be marked as such after the deprecation period has passed and the deprecated parameter is
removed.

Parameters other than since, name, and func are keyword-only and forwarded to
warn_deprecated.

Examples

@_api.delete_parameter("3.1", "unused")
def func(used_arg, other_arg, unused, more_args): ...

matplotlib._api.deprecation.deprecate_method_override(method, obj, *, al-
low_empty=False,
**kwargs)

Return obj.method with a deprecation if it was overridden, else None.

Parameters

method
An unbound method, i.e. an expression of the form Class.method_name.
Remember that within the body of a method, one can always use __class__ to
refer to the class that is currently being defined.

obj
Either an object of the class where method is defined, or a subclass of that class.

allow_empty
[bool, default: False] Whether to allow overrides by "empty" methods without
emitting a warning.

**kwargs
Additional parameters passed to warn_deprecated to generate the depreca-
tion warning; must at least include the "since" key.

2922 Chapter 18. Modules

https://docs.python.org/dev/whatsnew/2.7.html#the-future-for-python-2-x

Matplotlib, Release 3.4.3

class matplotlib._api.deprecation.deprecate_privatize_attribute(*args,
**kwargs)

Bases: object

Helper to deprecate public access to an attribute.

This helper should only be used at class scope, as follows:

class Foo:
attr = _deprecate_privatize_attribute(*args, **kwargs)

where all parameters are forwarded to deprecated. This form makes attr a property which for-
wards access to self._attr (same name but with a leading underscore), with a deprecation warn-
ing. Note that the attribute name is derived from the name this helper is assigned to.

matplotlib._api.deprecation.deprecated(since, *, message='', name='', alterna-
tive='', pending=False, obj_type=None,
addendum='', removal='')

Decorator to mark a function, a class, or a property as deprecated.

When deprecating a classmethod, a staticmethod, or a property, the @deprecated decorator should
go under @classmethod and @staticmethod (i.e., deprecated should directly decorate the
underlying callable), but over @property.

When deprecating a class C intended to be used as a base class in a multiple inheritance hierarchy,
C must define an __init__ method (if C instead inherited its __init__ from its own base class,
then @deprecated would mess up __init__ inheritance when installing its own (deprecation-
emitting) C.__init__).

Parameters

since
[str] The release at which this API became deprecated.

message
[str, optional] Override the default deprecation message. The %(since)s,
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s, and
%(removal)s format specifiers will be replaced by the values of the respective
arguments passed to this function.

name
[str, optional] The name used in the deprecationmessage; if not provided, the name
is automatically determined from the deprecated object.

alternative
[str, optional] An alternative API that the user may use in place of the deprecated
API. The deprecation warning will tell the user about this alternative if provided.

pending
[bool, optional] If True, uses a PendingDeprecationWarning instead of a Depre-
cationWarning. Cannot be used together with removal.

18.62. matplotlib._api 2923

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

obj_type
[str, optional] The object type being deprecated; by default, 'class' if decorating a
class, 'attribute' if decorating a property, 'function' otherwise.

addendum
[str, optional] Additional text appended directly to the final message.

removal
[str, optional] The expected removal version. With the default (an empty string),
a removal version is automatically computed from since. Set to other Falsy values
to not schedule a removal date. Cannot be used together with pending.

Examples

Basic example:

@deprecated('1.4.0')
def the_function_to_deprecate():

pass

matplotlib._api.deprecation.make_keyword_only(since, name, func=None)
Decorator indicating that passing parameter name (or any of the following ones) positionally to func
is being deprecated.

matplotlib._api.deprecation.mplDeprecation
alias of matplotlib._api.deprecation.MatplotlibDeprecationWarning

matplotlib._api.deprecation.rename_parameter(since, old, new, func=None)
Decorator indicating that parameter old of func is renamed to new.

The actual implementation of func should use new, not old. If old is passed to func, a Deprecation-
Warning is emitted, and its value is used, even if new is also passed by keyword (this is to simplify
pyplot wrapper functions, which always pass new explicitly to the Axes method). If new is also passed
but positionally, a TypeError will be raised by the underlying function during argument binding.

Examples

@_api.rename_parameter("3.1", "bad_name", "good_name")
def func(good_name): ...

matplotlib._api.deprecation.suppress_matplotlib_deprecation_warning()

matplotlib._api.deprecation.warn_deprecated(since, *, message='', name='',
alternative='', pending=False,
obj_type='', addendum='', re-
moval='')

Display a standardized deprecation.

Parameters

2924 Chapter 18. Modules

Matplotlib, Release 3.4.3

since
[str] The release at which this API became deprecated.

message
[str, optional] Override the default deprecation message. The %(since)s,
%(name)s, %(alternative)s, %(obj_type)s, %(addendum)s, and
%(removal)s format specifiers will be replaced by the values of the respective
arguments passed to this function.

name
[str, optional] The name of the deprecated object.

alternative
[str, optional] An alternative API that the user may use in place of the deprecated
API. The deprecation warning will tell the user about this alternative if provided.

pending
[bool, optional] If True, uses a PendingDeprecationWarning instead of a Depre-
cationWarning. Cannot be used together with removal.

obj_type
[str, optional] The object type being deprecated.

addendum
[str, optional] Additional text appended directly to the final message.

removal
[str, optional] The expected removal version. With the default (an empty string),
a removal version is automatically computed from since. Set to other Falsy values
to not schedule a removal date. Cannot be used together with pending.

Examples

Basic example:

To warn of the deprecation of "matplotlib.name_of_module"
warn_deprecated('1.4.0', name='matplotlib.name_of_module',

obj_type='module')

18.62. matplotlib._api 2925

Matplotlib, Release 3.4.3

18.63 matplotlib._enums

Enums representing sets of strings that Matplotlib uses as input parameters.

Matplotlib often uses simple data types like strings or tuples to define a concept; e.g. the line capstyle can
be specified as one of 'butt', 'round', or 'projecting'. The classes in this module are used internally and serve
to document these concepts formally.

As an end-user you will not use these classes directly, but only the values they define.

class matplotlib._enums.JoinStyle(value)
Define how the connection between two line segments is drawn.

For a visual impression of each JoinStyle, view these docs online, or run JoinStyle.
demo.

Lines inMatplotlib are typically defined by a 1D Path and a finite linewidth, where the underlying
1D Path represents the center of the stroked line.

By default, GraphicsContextBase defines the boundaries of a stroked line to simply be every
point within some radius, linewidth/2, away from any point of the center line. However, this
results in corners appearing "rounded", which may not be the desired behavior if you are drawing, for
example, a polygon or pointed star.

Supported values:
'miter'

the "arrow-tip" style. Each boundary of the filled-in area will extend in a straight line parallel
to the tangent vector of the centerline at the point it meets the corner, until they meet in a sharp
point.

'round'
stokes every point within a radius of linewidth/2 of the center lines.

'bevel'
the "squared-off" style. It can be thought of as a rounded corner where the "circular" part of the
corner has been cut off.

Note: Very long miter tips are cut off (to form a bevel) after a backend-dependent limit called the
"miter limit", which specifies the maximum allowed ratio of miter length to line width. For example,
the PDF backend uses the default value of 10 specified by the PDF standard, while the SVG backend
does not even specify the miter limit, resulting in a default value of 4 per the SVG specification.
Matplotlib does not currently allow the user to adjust this parameter.

A more detailed description of the effect of a miter limit can be found in the Mozilla Developer Docs

static demo()
Demonstrate how each JoinStyle looks for various join angles.

class matplotlib._enums.CapStyle(value)
Define how the two endpoints (caps) of an unclosed line are drawn.

2926 Chapter 18. Modules

https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/stroke-miterlimit

Matplotlib, Release 3.4.3

miter

20 degrees

45 degrees

60 degrees

90 degrees

120 degrees

round bevel

Join style

How to draw the start and end points of lines that represent a closed curve (i.e. that end in a CLOSE-
POLY) is controlled by the line's JoinStyle. For all other lines, how the start and end points are
drawn is controlled by the CapStyle.

For a visual impression of each CapStyle, view these docs online or run CapStyle.demo.

Supported values:
'butt'

the line is squared off at its endpoint.

'projecting'
the line is squared off as in butt, but the filled in area extends beyond the endpoint a distance of
linewidth/2.

'round'
like butt, but a semicircular cap is added to the end of the line, of radius linewidth/2.

butt round projecting
(default)

Cap style

18.63. matplotlib._enums 2927

Matplotlib, Release 3.4.3

static demo()
Demonstrate how each CapStyle looks for a thick line segment.

2928 Chapter 18. Modules

CHAPTER

NINETEEN

TOOLKITS

Toolkits are collections of application-specific functions that extend Matplotlib. The following toolkits are
included:

19.1 Toolkits

Toolkits are collections of application-specific functions that extend Matplotlib.

19.1.1 mplot3d

mpl_toolkits.mplot3d provides some basic 3D plotting (scatter, surf, line, mesh) tools. Not the
fastest or most feature complete 3D library out there, but it ships with Matplotlib and thus may be a lighter
weight solution for some use cases. Check out the mplot3d tutorial for more information.

2929

../../gallery/mplot3d/contourf3d_2.html

Matplotlib, Release 3.4.3

mplot3d

Matplotlib mplot3d toolkit

The mplot3d toolkit adds simple 3D plotting capabilities to matplotlib by supplying an axes object that can
create a 2D projection of a 3D scene. The resulting graph will have the same look and feel as regular 2D
plots.

See the mplot3d tutorial for more information on how to use this toolkit.

The interactive backends also provide the ability to rotate and zoom the 3D scene. One can rotate the 3D
scene by simply clicking-and-dragging the scene. Zooming is done by right-clicking the scene and dragging
the mouse up and down. Note that one does not use the zoom button like one would use for regular 2D plots.

mplot3d FAQ

How is mplot3d different from Mayavi?

Mayavi is a very powerful and featureful 3D graphing library. For advanced 3D scenes and excellent ren-
dering capabilities, it is highly recommended to use Mayavi.

mplot3d was intended to allow users to create simple 3D graphs with the same "look-and-feel" as matplotlib's
2D plots. Furthermore, users can use the same toolkit that they are already familiar with to generate both

2930 Chapter 19. Toolkits

https://docs.enthought.com/mayavi/mayavi/

Matplotlib, Release 3.4.3

their 2D and 3D plots.

My 3D plot doesn't look right at certain viewing angles

This is probably the most commonly reported issue with mplot3d. The problem is that -- from some viewing
angles -- a 3D object would appear in front of another object, even though it is physically behind it. This can
result in plots that do not look "physically correct."

Unfortunately, while some work is being done to reduce the occurrence of this artifact, it is currently an
intractable problem, and can not be fully solved until matplotlib supports 3D graphics rendering at its core.

The problem occurs due to the reduction of 3D data down to 2D + z-order scalar. A single value represents
the 3rd dimension for all parts of 3D objects in a collection. Therefore, when the bounding boxes of two
collections intersect, it becomes possible for this artifact to occur. Furthermore, the intersection of two 3D
objects (such as polygons or patches) can not be rendered properly in matplotlib's 2D rendering engine.

This problem will likely not be solved until OpenGL support is added to all of the backends (patches are
greatly welcomed). Until then, if you need complex 3D scenes, we recommend using MayaVi.

I don't like how the 3D plot is laid out, how do I change that?

Historically, mplot3d has suffered from a hard-coding of parameters used to control visuals such as label
spacing, tick length, and grid line width. Work is being done to eliminate this issue. For matplotlib v1.1.0,
there is a semi-official manner to modify these parameters. See the note in the mplot3d.axis3d section
of the mplot3d API documentation for more information.

Links

• mpl3d API: mplot3d API

19.1.2 Matplotlib axes_grid1 Toolkit

The matplotlib mpl_toolkits.axes_grid1 toolkit is a collection of helper classes to ease displaying
multiple images in matplotlib. While the aspect parameter in matplotlib adjust the position of the single axes,
axes_grid1 toolkit provides a framework to adjust the position of multiple axes according to their aspects.

See What is axes_grid1 toolkit? for a guide on the usage of axes_grid1.

The submodules of the axes_grid1 API are:

19.1. Toolkits 2931

https://docs.enthought.com/mayavi/mayavi/
../../gallery/axes_grid1/demo_axes_grid.html

Matplotlib, Release 3.4.3

axes_grid1.anchored_artists

axes_grid1.axes_divider Helper classes to adjust the positions of multiple
axes at drawing time.

axes_grid1.axes_grid

axes_grid1.axes_rgb

axes_grid1.axes_size Provides classes of simple units that will be used
with AxesDivider class (or others) to determine the
size of each axes.

axes_grid1.inset_locator A collection of functions and objects for creating or
placing inset axes.

axes_grid1.mpl_axes

axes_grid1.parasite_axes

mpl_toolkits.axes_grid1.anchored_artists

Classes

AnchoredAuxTransformBox(transform, loc[,
...])

An anchored container with transformed coordi-
nates.

AnchoredDirectionArrows(transform,
label_x, ...)

Draw two perpendicular arrows to indicate direc-
tions.

AnchoredDrawingArea(width, height, xdes-
cent, ...)

An anchored container with a fixed size and fillable
DrawingArea.

AnchoredEllipse(transform, width, height,
...)

Draw an anchored ellipse of a given size.

AnchoredSizeBar(transform, size, label, loc) Draw a horizontal scale bar with a center-aligned
label underneath.

mpl_toolkits.axes_grid1.anchored_artists.AnchoredAuxTransformBox

class mpl_toolkits.axes_grid1.anchored_artists.AnchoredAuxTransformBox(transform,
loc,
pad=0.4,
bor-
der-
pad=0.5,
prop=None,
frameon=True,
**kwargs)

Bases: matplotlib.offsetbox.AnchoredOffsetbox

An anchored container with transformed coordinates.

Artists added to the drawing_area are scaled according to the coordinates of the transformation used.

2932 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

The dimensions of this artist will scale to contain the artists added.

Parameters

transform
[matplotlib.transforms.Transform] The transformation object for the
coordinate system in use, i.e., matplotlib.axes.Axes.transData.

loc
[int] Location of this artist. Valid location codes are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10

pad
[float, default: 0.4] Padding around the child objects, in fraction of the font size.

borderpad
[float, default: 0.5] Border padding, in fraction of the font size.

prop
[matplotlib.font_manager.FontProperties, optional] Font prop-
erty used as a reference for paddings.

frameon
[bool, default: True] If True, draw a box around this artists.

**kwargs
Keyworded arguments to pass to matplotlib.offsetbox.
AnchoredOffsetbox.

Examples

To display an ellipse in the upper left, with a width of 0.1 and height of 0.4 in data coordinates:

>>> box = AnchoredAuxTransformBox(ax.transData, loc='upper left')
>>> el = Ellipse((0, 0), width=0.1, height=0.4, angle=30)
>>> box.drawing_area.add_artist(el)
>>> ax.add_artist(box)

19.1. Toolkits 2933

Matplotlib, Release 3.4.3

Attributes

drawing_area
[matplotlib.offsetbox.AuxTransformBox] A container for artists to
display.

__init__(transform, loc, pad=0.4, borderpad=0.5, prop=None, frameon=True, **kwargs)
An anchored container with transformed coordinates.

Artists added to the drawing_area are scaled according to the coordinates of the transformation
used. The dimensions of this artist will scale to contain the artists added.

Parameters

transform
[matplotlib.transforms.Transform] The transformation object for
the coordinate system in use, i.e., matplotlib.axes.Axes.transData.

loc
[int] Location of this artist. Valid location codes are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10

pad
[float, default: 0.4] Padding around the child objects, in fraction of the font size.

borderpad
[float, default: 0.5] Border padding, in fraction of the font size.

prop
[matplotlib.font_manager.FontProperties, optional] Font prop-
erty used as a reference for paddings.

frameon
[bool, default: True] If True, draw a box around this artists.

**kwargs
Keyworded arguments to pass to matplotlib.offsetbox.
AnchoredOffsetbox.

2934 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples

To display an ellipse in the upper left, with a width of 0.1 and height of 0.4 in data coordinates:

>>> box = AnchoredAuxTransformBox(ax.transData, loc='upper left')
>>> el = Ellipse((0, 0), width=0.1, height=0.4, angle=30)
>>> box.drawing_area.add_artist(el)
>>> ax.add_artist(box)

Attributes

drawing_area
[matplotlib.offsetbox.AuxTransformBox] A container for artists
to display.

__module__ = 'mpl_toolkits.axes_grid1.anchored_artists'

Examples using mpl_toolkits.axes_grid1.anchored_artists.
AnchoredAuxTransformBox

• sphx_glr_gallery_userdemo_anchored_box03.py

19.1. Toolkits 2935

Matplotlib, Release 3.4.3

mpl_toolkits.axes_grid1.anchored_artists.AnchoredDirectionArrows

class mpl_toolkits.axes_grid1.anchored_artists.AnchoredDirectionArrows(transform,
la-
bel_x,
la-
bel_y,
length=0.15,
font-
size=0.08,
loc=2,
an-
gle=0,
as-
pect_ratio=1,
pad=0.4,
bor-
der-
pad=0.4,
frameon=False,
color='w',
al-
pha=1,
sep_x=0.01,
sep_y=0,
font-
prop-
er-
ties=None,
back_length=0.15,
head_width=10,
head_length=15,
tail_width=2,
text_props=None,
ar-
row_props=None,
**kwargs)

Bases: matplotlib.offsetbox.AnchoredOffsetbox

Draw two perpendicular arrows to indicate directions.

Parameters

transform
[matplotlib.transforms.Transform] The transformation object for the
coordinate system in use, i.e., matplotlib.axes.Axes.transAxes.

label_x, label_y

2936 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

[str] Label text for the x and y arrows

length
[float, default: 0.15] Length of the arrow, given in coordinates of transform.

fontsize
[float, default: 0.08] Size of label strings, given in coordinates of transform.

loc
[int, default: 2] Location of the direction arrows. Valid location codes are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10

angle
[float, default: 0] The angle of the arrows in degrees.

aspect_ratio
[float, default: 1] The ratio of the length of arrow_x and arrow_y. Negative num-
bers can be used to change the direction.

pad
[float, default: 0.4] Padding around the labels and arrows, in fraction of the font
size.

borderpad
[float, default: 0.4] Border padding, in fraction of the font size.

frameon
[bool, default: False] If True, draw a box around the arrows and labels.

color
[str, default: 'white'] Color for the arrows and labels.

alpha
[float, default: 1] Alpha values of the arrows and labels

sep_x, sep_y
[float, default: 0.01 and 0 respectively] Separation between the arrows and labels
in coordinates of transform.

19.1. Toolkits 2937

Matplotlib, Release 3.4.3

fontproperties
[matplotlib.font_manager.FontProperties, optional] Font proper-
ties for the label text.

back_length
[float, default: 0.15] Fraction of the arrow behind the arrow crossing.

head_width
[float, default: 10] Width of arrow head, sent to ArrowStyle.

head_length
[float, default: 15] Length of arrow head, sent to ArrowStyle.

tail_width
[float, default: 2] Width of arrow tail, sent to ArrowStyle.

text_props, arrow_props
[dict] Properties of the text and arrows, passed to textpath.TextPath and
patches.FancyArrowPatch.

**kwargs
Keyworded arguments to pass to matplotlib.offsetbox.
AnchoredOffsetbox.

Notes

If prop is passed as a keyword argument, but fontproperties is not, then prop is be assumed to be the
intended fontproperties. Using both prop and fontproperties is not supported.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from mpl_toolkits.axes_grid1.anchored_artists import (
... AnchoredDirectionArrows)
>>> fig, ax = plt.subplots()
>>> ax.imshow(np.random.random((10, 10)))
>>> arrows = AnchoredDirectionArrows(ax.transAxes, '111', '110')
>>> ax.add_artist(arrows)
>>> fig.show()

Using several of the optional parameters, creating downward pointing arrow and high contrast text
labels.

2938 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

>>> import matplotlib.font_manager as fm
>>> fontprops = fm.FontProperties(family='monospace')
>>> arrows = AnchoredDirectionArrows(ax.transAxes, 'East', 'South',
... loc='lower left', color='k',
... aspect_ratio=-1, sep_x=0.02,
... sep_y=-0.01,
... text_props={'ec':'w', 'fc':'k'},
... fontproperties=fontprops)

Attributes

arrow_x, arrow_y
[matplotlib.patches.FancyArrowPatch] Arrow x and y

text_path_x, text_path_y
[matplotlib.textpath.TextPath] Path for arrow labels

p_x, p_y
[matplotlib.patches.PathPatch] Patch for arrow labels

box
[matplotlib.offsetbox.AuxTransformBox] Container for the arrows
and labels.

__init__(transform, label_x, label_y, length=0.15, fontsize=0.08, loc=2, angle=0, as-
pect_ratio=1, pad=0.4, borderpad=0.4, frameon=False, color='w', alpha=1,
sep_x=0.01, sep_y=0, fontproperties=None, back_length=0.15, head_width=10,
head_length=15, tail_width=2, text_props=None, arrow_props=None,
**kwargs)

Draw two perpendicular arrows to indicate directions.

Parameters

transform
[matplotlib.transforms.Transform] The transformation object for
the coordinate system in use, i.e., matplotlib.axes.Axes.transAxes.

label_x, label_y
[str] Label text for the x and y arrows

length
[float, default: 0.15] Length of the arrow, given in coordinates of transform.

fontsize
[float, default: 0.08] Size of label strings, given in coordinates of transform.

19.1. Toolkits 2939

Matplotlib, Release 3.4.3

loc
[int, default: 2] Location of the direction arrows. Valid location codes are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10

angle
[float, default: 0] The angle of the arrows in degrees.

aspect_ratio
[float, default: 1] The ratio of the length of arrow_x and arrow_y. Negative
numbers can be used to change the direction.

pad
[float, default: 0.4] Padding around the labels and arrows, in fraction of the font
size.

borderpad
[float, default: 0.4] Border padding, in fraction of the font size.

frameon
[bool, default: False] If True, draw a box around the arrows and labels.

color
[str, default: 'white'] Color for the arrows and labels.

alpha
[float, default: 1] Alpha values of the arrows and labels

sep_x, sep_y
[float, default: 0.01 and 0 respectively] Separation between the arrows and labels
in coordinates of transform.

fontproperties
[matplotlib.font_manager.FontProperties, optional] Font prop-
erties for the label text.

back_length
[float, default: 0.15] Fraction of the arrow behind the arrow crossing.

2940 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

head_width
[float, default: 10] Width of arrow head, sent to ArrowStyle.

head_length
[float, default: 15] Length of arrow head, sent to ArrowStyle.

tail_width
[float, default: 2] Width of arrow tail, sent to ArrowStyle.

text_props, arrow_props
[dict] Properties of the text and arrows, passed to textpath.TextPath and
patches.FancyArrowPatch.

**kwargs
Keyworded arguments to pass to matplotlib.offsetbox.
AnchoredOffsetbox.

Notes

If prop is passed as a keyword argument, but fontproperties is not, then prop is be assumed to be
the intended fontproperties. Using both prop and fontproperties is not supported.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from mpl_toolkits.axes_grid1.anchored_artists import (
... AnchoredDirectionArrows)
>>> fig, ax = plt.subplots()
>>> ax.imshow(np.random.random((10, 10)))
>>> arrows = AnchoredDirectionArrows(ax.transAxes, '111', '110')
>>> ax.add_artist(arrows)
>>> fig.show()

Using several of the optional parameters, creating downward pointing arrow and high contrast
text labels.

>>> import matplotlib.font_manager as fm
>>> fontprops = fm.FontProperties(family='monospace')
>>> arrows = AnchoredDirectionArrows(ax.transAxes, 'East', 'South',
... loc='lower left', color='k',
... aspect_ratio=-1, sep_x=0.02,
... sep_y=-0.01,
... text_props={'ec':'w', 'fc':'k'},
... fontproperties=fontprops)

Attributes

19.1. Toolkits 2941

Matplotlib, Release 3.4.3

arrow_x, arrow_y
[matplotlib.patches.FancyArrowPatch] Arrow x and y

text_path_x, text_path_y
[matplotlib.textpath.TextPath] Path for arrow labels

p_x, p_y
[matplotlib.patches.PathPatch] Patch for arrow labels

box
[matplotlib.offsetbox.AuxTransformBox] Container for the ar-
rows and labels.

__module__ = 'mpl_toolkits.axes_grid1.anchored_artists'

Examples using mpl_toolkits.axes_grid1.anchored_artists.
AnchoredDirectionArrows

• sphx_glr_gallery_axes_grid1_demo_anchored_direction_arrows.py

mpl_toolkits.axes_grid1.anchored_artists.AnchoredDrawingArea

class mpl_toolkits.axes_grid1.anchored_artists.AnchoredDrawingArea(width,
height,
xde-
s-
cent,
yde-
s-
cent,
loc,
pad=0.4,
bor-
der-
pad=0.5,
prop=None,
frameon=True,
**kwargs)

Bases: matplotlib.offsetbox.AnchoredOffsetbox

An anchored container with a fixed size and fillable DrawingArea.

Artists added to the drawing_area will have their coordinates interpreted as pixels. Any transforma-
tions set on the artists will be overridden.

Parameters

2942 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

width, height
[float] width and height of the container, in pixels.

xdescent, ydescent
[float] descent of the container in the x- and y- direction, in pixels.

loc
[int] Location of this artist. Valid location codes are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10

pad
[float, default: 0.4] Padding around the child objects, in fraction of the font size.

borderpad
[float, default: 0.5] Border padding, in fraction of the font size.

prop
[matplotlib.font_manager.FontProperties, optional] Font prop-
erty used as a reference for paddings.

frameon
[bool, default: True] If True, draw a box around this artists.

**kwargs
Keyworded arguments to pass to matplotlib.offsetbox.
AnchoredOffsetbox.

Examples

To display blue and red circles of different sizes in the upper right of an axes ax:

>>> ada = AnchoredDrawingArea(20, 20, 0, 0,
... loc='upper right', frameon=False)
>>> ada.drawing_area.add_artist(Circle((10, 10), 10, fc="b"))
>>> ada.drawing_area.add_artist(Circle((30, 10), 5, fc="r"))
>>> ax.add_artist(ada)

Attributes

19.1. Toolkits 2943

Matplotlib, Release 3.4.3

drawing_area
[matplotlib.offsetbox.DrawingArea] A container for artists to dis-
play.

__init__(width, height, xdescent, ydescent, loc, pad=0.4, borderpad=0.5, prop=None,
frameon=True, **kwargs)

An anchored container with a fixed size and fillable DrawingArea.

Artists added to the drawing_area will have their coordinates interpreted as pixels. Any trans-
formations set on the artists will be overridden.

Parameters

width, height
[float] width and height of the container, in pixels.

xdescent, ydescent
[float] descent of the container in the x- and y- direction, in pixels.

loc
[int] Location of this artist. Valid location codes are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10

pad
[float, default: 0.4] Padding around the child objects, in fraction of the font size.

borderpad
[float, default: 0.5] Border padding, in fraction of the font size.

prop
[matplotlib.font_manager.FontProperties, optional] Font prop-
erty used as a reference for paddings.

frameon
[bool, default: True] If True, draw a box around this artists.

**kwargs
Keyworded arguments to pass to matplotlib.offsetbox.
AnchoredOffsetbox.

2944 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples

To display blue and red circles of different sizes in the upper right of an axes ax:

>>> ada = AnchoredDrawingArea(20, 20, 0, 0,
... loc='upper right', frameon=False)
>>> ada.drawing_area.add_artist(Circle((10, 10), 10, fc="b"))
>>> ada.drawing_area.add_artist(Circle((30, 10), 5, fc="r"))
>>> ax.add_artist(ada)

Attributes

drawing_area
[matplotlib.offsetbox.DrawingArea] A container for artists to dis-
play.

__module__ = 'mpl_toolkits.axes_grid1.anchored_artists'

Examples using mpl_toolkits.axes_grid1.anchored_artists.
AnchoredDrawingArea

• sphx_glr_gallery_axes_grid1_simple_anchored_artists.py

• sphx_glr_gallery_userdemo_anchored_box02.py

mpl_toolkits.axes_grid1.anchored_artists.AnchoredEllipse

class mpl_toolkits.axes_grid1.anchored_artists.AnchoredEllipse(transform,
width,
height,
angle,
loc,
pad=0.1,
bor-
der-
pad=0.1,
prop=None,
frameon=True,
**kwargs)

Bases: matplotlib.offsetbox.AnchoredOffsetbox

Draw an anchored ellipse of a given size.

Parameters

transform

19.1. Toolkits 2945

Matplotlib, Release 3.4.3

[matplotlib.transforms.Transform] The transformation object for the
coordinate system in use, i.e., matplotlib.axes.Axes.transData.

width, height
[float] Width and height of the ellipse, given in coordinates of transform.

angle
[float] Rotation of the ellipse, in degrees, anti-clockwise.

loc
[int] Location of this size bar. Valid location codes are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10

pad
[float, optional] Padding around the ellipse, in fraction of the font size. Defaults
to 0.1.

borderpad
[float, default: 0.1] Border padding, in fraction of the font size.

frameon
[bool, default: True] If True, draw a box around the ellipse.

prop
[matplotlib.font_manager.FontProperties, optional] Font prop-
erty used as a reference for paddings.

**kwargs
Keyworded arguments to pass to matplotlib.offsetbox.
AnchoredOffsetbox.

Attributes

ellipse
[matplotlib.patches.Ellipse] Ellipse patch drawn.

2946 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

__init__(transform, width, height, angle, loc, pad=0.1, borderpad=0.1, prop=None,
frameon=True, **kwargs)

Draw an anchored ellipse of a given size.

Parameters

transform
[matplotlib.transforms.Transform] The transformation object for
the coordinate system in use, i.e., matplotlib.axes.Axes.transData.

width, height
[float] Width and height of the ellipse, given in coordinates of transform.

angle
[float] Rotation of the ellipse, in degrees, anti-clockwise.

loc
[int] Location of this size bar. Valid location codes are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10

pad
[float, optional] Padding around the ellipse, in fraction of the font size. Defaults
to 0.1.

borderpad
[float, default: 0.1] Border padding, in fraction of the font size.

frameon
[bool, default: True] If True, draw a box around the ellipse.

prop
[matplotlib.font_manager.FontProperties, optional] Font prop-
erty used as a reference for paddings.

**kwargs
Keyworded arguments to pass to matplotlib.offsetbox.
AnchoredOffsetbox.

Attributes

19.1. Toolkits 2947

Matplotlib, Release 3.4.3

ellipse
[matplotlib.patches.Ellipse] Ellipse patch drawn.

__module__ = 'mpl_toolkits.axes_grid1.anchored_artists'

Examples using mpl_toolkits.axes_grid1.anchored_artists.AnchoredEllipse

• sphx_glr_gallery_axes_grid1_simple_anchored_artists.py

mpl_toolkits.axes_grid1.anchored_artists.AnchoredSizeBar

class mpl_toolkits.axes_grid1.anchored_artists.AnchoredSizeBar(transform,
size,
label,
loc,
pad=0.1,
bor-
der-
pad=0.1,
sep=2,
frameon=True,
size_vertical=0,
color='black',
la-
bel_top=False,
font-
prop-
er-
ties=None,
fill_bar=None,
**kwargs)

Bases: matplotlib.offsetbox.AnchoredOffsetbox

Draw a horizontal scale bar with a center-aligned label underneath.

Parameters

transform
[matplotlib.transforms.Transform] The transformation object for the
coordinate system in use, i.e., matplotlib.axes.Axes.transData.

size
[float] Horizontal length of the size bar, given in coordinates of transform.

label
[str] Label to display.

2948 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

loc
[int] Location of this size bar. Valid location codes are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10

pad
[float, default: 0.1] Padding around the label and size bar, in fraction of the font
size.

borderpad
[float, default: 0.1] Border padding, in fraction of the font size.

sep
[float, default: 2] Separation between the label and the size bar, in points.

frameon
[bool, default: True] If True, draw a box around the horizontal bar and label.

size_vertical
[float, default: 0] Vertical length of the size bar, given in coordinates of transform.

color
[str, default: 'black'] Color for the size bar and label.

label_top
[bool, default: False] If True, the label will be over the size bar.

fontproperties
[matplotlib.font_manager.FontProperties, optional] Font proper-
ties for the label text.

fill_bar
[bool, optional] If True and if size_vertical is nonzero, the size bar will be filled in
with the color specified by the size bar. Defaults to True if size_vertical is greater
than zero and False otherwise.

**kwargs
Keyworded arguments to pass to matplotlib.offsetbox.
AnchoredOffsetbox.

19.1. Toolkits 2949

Matplotlib, Release 3.4.3

Notes

If prop is passed as a keyworded argument, but fontproperties is not, then prop is be assumed to be
the intended fontproperties. Using both prop and fontproperties is not supported.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from mpl_toolkits.axes_grid1.anchored_artists import (
... AnchoredSizeBar)
>>> fig, ax = plt.subplots()
>>> ax.imshow(np.random.random((10, 10)))
>>> bar = AnchoredSizeBar(ax.transData, 3, '3 data units', 4)
>>> ax.add_artist(bar)
>>> fig.show()

Using all the optional parameters

>>> import matplotlib.font_manager as fm
>>> fontprops = fm.FontProperties(size=14, family='monospace')
>>> bar = AnchoredSizeBar(ax.transData, 3, '3 units', 4, pad=0.5,
... sep=5, borderpad=0.5, frameon=False,
... size_vertical=0.5, color='white',
... fontproperties=fontprops)

Attributes

size_bar
[matplotlib.offsetbox.AuxTransformBox] Container for the size
bar.

txt_label
[matplotlib.offsetbox.TextArea] Container for the label of the size
bar.

__init__(transform, size, label, loc, pad=0.1, borderpad=0.1, sep=2, frameon=True,
size_vertical=0, color='black', label_top=False, fontproperties=None,
fill_bar=None, **kwargs)

Draw a horizontal scale bar with a center-aligned label underneath.

Parameters

transform
[matplotlib.transforms.Transform] The transformation object for
the coordinate system in use, i.e., matplotlib.axes.Axes.transData.

2950 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

size
[float] Horizontal length of the size bar, given in coordinates of transform.

label
[str] Label to display.

loc
[int] Location of this size bar. Valid location codes are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10

pad
[float, default: 0.1] Padding around the label and size bar, in fraction of the font
size.

borderpad
[float, default: 0.1] Border padding, in fraction of the font size.

sep
[float, default: 2] Separation between the label and the size bar, in points.

frameon
[bool, default: True] If True, draw a box around the horizontal bar and label.

size_vertical
[float, default: 0] Vertical length of the size bar, given in coordinates of trans-
form.

color
[str, default: 'black'] Color for the size bar and label.

label_top
[bool, default: False] If True, the label will be over the size bar.

fontproperties
[matplotlib.font_manager.FontProperties, optional] Font prop-
erties for the label text.

19.1. Toolkits 2951

Matplotlib, Release 3.4.3

fill_bar
[bool, optional] If True and if size_vertical is nonzero, the size bar will be filled
in with the color specified by the size bar. Defaults to True if size_vertical is
greater than zero and False otherwise.

**kwargs
Keyworded arguments to pass to matplotlib.offsetbox.
AnchoredOffsetbox.

Notes

If prop is passed as a keyworded argument, but fontproperties is not, then prop is be assumed to
be the intended fontproperties. Using both prop and fontproperties is not supported.

Examples

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from mpl_toolkits.axes_grid1.anchored_artists import (
... AnchoredSizeBar)
>>> fig, ax = plt.subplots()
>>> ax.imshow(np.random.random((10, 10)))
>>> bar = AnchoredSizeBar(ax.transData, 3, '3 data units', 4)
>>> ax.add_artist(bar)
>>> fig.show()

Using all the optional parameters

>>> import matplotlib.font_manager as fm
>>> fontprops = fm.FontProperties(size=14, family='monospace')
>>> bar = AnchoredSizeBar(ax.transData, 3, '3 units', 4, pad=0.5,
... sep=5, borderpad=0.5, frameon=False,
... size_vertical=0.5, color='white',
... fontproperties=fontprops)

Attributes

size_bar
[matplotlib.offsetbox.AuxTransformBox] Container for the size
bar.

txt_label
[matplotlib.offsetbox.TextArea] Container for the label of the size
bar.

__module__ = 'mpl_toolkits.axes_grid1.anchored_artists'

2952 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.anchored_artists.AnchoredSizeBar

• sphx_glr_gallery_axes_grid1_inset_locator_demo2.py

• sphx_glr_gallery_axes_grid1_simple_anchored_artists.py

mpl_toolkits.axes_grid1.axes_divider

Helper classes to adjust the positions of multiple axes at drawing time.

Classes

AxesDivider(axes[, xref, yref]) Divider based on the pre-existing axes.
AxesLocator(axes_divider, nx, ny[, nx1, ny1]) A simple callable object, initialized with AxesDi-

vider class, returns the position and size of the given
cell.

Divider(fig, pos, horizontal, vertical[, ...]) An Axes positioning class.
HBoxDivider(fig, *args[, horizontal, ...])

Parameters

SubplotDivider(fig, *args[, horizontal, ...]) The Divider class whose rectangle area is specified
as a subplot geometry.

VBoxDivider(fig, *args[, horizontal, ...]) The Divider class whose rectangle area is specified
as a subplot geometry.

mpl_toolkits.axes_grid1.axes_divider.AxesDivider

class mpl_toolkits.axes_grid1.axes_divider.AxesDivider(axes, xref=None,
yref=None)

Bases: mpl_toolkits.axes_grid1.axes_divider.Divider

Divider based on the pre-existing axes.

Parameters

axes
[Axes]

xref
yref

__init__(axes, xref=None, yref=None)

Parameters

19.1. Toolkits 2953

Matplotlib, Release 3.4.3

axes
[Axes]

xref
yref

__module__ = 'mpl_toolkits.axes_grid1.axes_divider'

append_axes(position, size, pad=None, add_to_figure=True, **kwargs)
Create an axes at the given position with the same height (or width) of the main axes.

position

["left"|"right"|"bottom"|"top"]

size and pad should be axes_grid.axes_size compatible.

get_anchor()
Return the anchor.

get_aspect()
Return aspect.

get_position()
Return the position of the rectangle.

get_subplotspec()

new_horizontal(size, pad=None, pack_start=False, **kwargs)
Add a new axes on the right (or left) side of the main axes.

Parameters

size
[axes_size or float or str] A width of the axes. If float or string is given,
from_any function is used to create the size, with ref_size set to AxesX instance
of the current axes.

pad
[axes_size or float or str] Pad between the axes. It takes same argument as
size.

pack_start
[bool] If False, the new axes is appended at the end of the list, i.e., it became the
right-most axes. If True, it is inserted at the start of the list, and becomes the
left-most axes.

**kwargs
All extra keywords arguments are passed to the created axes. If axes_class is
given, the new axes will be created as an instance of the given class. Otherwise,
the same class of the main axes will be used.

2954 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

new_vertical(size, pad=None, pack_start=False, **kwargs)
Add a new axes on the top (or bottom) side of the main axes.

Parameters

size
[axes_size or float or str] A height of the axes. If float or string is given,
from_any function is used to create the size, with ref_size set to AxesX instance
of the current axes.

pad
[axes_size or float or str] Pad between the axes. It takes same argument as
size.

pack_start
[bool] If False, the new axes is appended at the end of the list, i.e., it became the
right-most axes. If True, it is inserted at the start of the list, and becomes the
left-most axes.

**kwargs
All extra keywords arguments are passed to the created axes. If axes_class is
given, the new axes will be created as an instance of the given class. Otherwise,
the same class of the main axes will be used.

Examples using mpl_toolkits.axes_grid1.axes_divider.AxesDivider

• sphx_glr_gallery_axes_grid1_demo_colorbar_with_axes_divider.py

• sphx_glr_gallery_axes_grid1_make_room_for_ylabel_using_axesgrid.py

• sphx_glr_gallery_axes_grid1_scatter_hist_locatable_axes.py

• sphx_glr_gallery_axes_grid1_simple_colorbar.py

• Tight Layout guide

mpl_toolkits.axes_grid1.axes_divider.AxesLocator

class mpl_toolkits.axes_grid1.axes_divider.AxesLocator(axes_divider, nx,
ny, nx1=None,
ny1=None)

Bases: object

A simple callable object, initialized with AxesDivider class, returns the position and size of the given
cell.

Parameters

19.1. Toolkits 2955

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

axes_divider
[AxesDivider]

nx, nx1
[int] Integers specifying the column-position of the cell. When nx1 is None, a
single nx-th column is specified. Otherwise location of columns spanning between
nx to nx1 (but excluding nx1-th column) is specified.

ny, ny1
[int] Same as nx and nx1, but for row positions.

__call__(axes, renderer)
Call self as a function.

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axes_grid1.axes_divider', '__doc__': '\n A simple callable object, initialized with AxesDivider class,\n returns the position and size of the given cell.\n ', '__init__': <function AxesLocator.__init__>, '__call__': <function AxesLocator.__call__>, 'get_subplotspec': <function AxesLocator.get_subplotspec>, '__dict__': <attribute '__dict__' of 'AxesLocator' objects>, '__weakref__': <attribute '__weakref__' of 'AxesLocator' objects>, '__annotations__': {}})

__init__(axes_divider, nx, ny, nx1=None, ny1=None)

Parameters

axes_divider
[AxesDivider]

nx, nx1
[int] Integers specifying the column-position of the cell. When nx1 is None, a
single nx-th column is specified. Otherwise location of columns spanning be-
tween nx to nx1 (but excluding nx1-th column) is specified.

ny, ny1
[int] Same as nx and nx1, but for row positions.

__module__ = 'mpl_toolkits.axes_grid1.axes_divider'

__weakref__
list of weak references to the object (if defined)

get_subplotspec()

Examples using mpl_toolkits.axes_grid1.axes_divider.AxesLocator

mpl_toolkits.axes_grid1.axes_divider.Divider

class mpl_toolkits.axes_grid1.axes_divider.Divider(fig, pos, horizontal, ver-
tical, aspect=None, an-
chor='C')

Bases: object

An Axes positioning class.

2956 Chapter 19. Toolkits

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

The divider is initializedwith lists of horizontal and vertical sizes (mpl_toolkits.axes_grid1.
axes_size) based on which a given rectangular area will be divided.

The new_locator method then creates a callable object that can be used as the axes_locator of the
axes.

Parameters

fig
[Figure]

pos
[tuple of 4 floats] Position of the rectangle that will be divided.

horizontal
[list of axes_size] Sizes for horizontal division.

vertical
[list of axes_size] Sizes for vertical division.

aspect
[bool] Whether overall rectangular area is reduced so that the relative part of the
horizontal and vertical scales have the same scale.

anchor
[{'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W'}] Placement of the reduced rectangle,
when aspect is True.

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axes_grid1.axes_divider', '__doc__': '\n An Axes positioning class.\n\n The divider is initialized with lists of horizontal and vertical sizes\n (:mod:`mpl_toolkits.axes_grid1.axes_size`) based on which a given\n rectangular area will be divided.\n\n The `new_locator` method then creates a callable object\n that can be used as the *axes_locator* of the axes.\n ', '__init__': <function Divider.__init__>, 'get_horizontal_sizes': <function Divider.get_horizontal_sizes>, 'get_vertical_sizes': <function Divider.get_vertical_sizes>, 'get_vsize_hsize': <function Divider.get_vsize_hsize>, '_calc_k': <staticmethod object>, '_calc_offsets': <staticmethod object>, 'set_position': <function Divider.set_position>, 'get_position': <function Divider.get_position>, 'set_anchor': <function Divider.set_anchor>, 'get_anchor': <function Divider.get_anchor>, 'set_horizontal': <function Divider.set_horizontal>, 'get_horizontal': <function Divider.get_horizontal>, 'set_vertical': <function Divider.set_vertical>, 'get_vertical': <function Divider.get_vertical>, 'set_aspect': <function Divider.set_aspect>, 'get_aspect': <function Divider.get_aspect>, 'set_locator': <function Divider.set_locator>, 'get_locator': <function Divider.get_locator>, 'get_position_runtime': <function Divider.get_position_runtime>, 'locate': <function Divider.locate>, 'new_locator': <function Divider.new_locator>, 'append_size': <function Divider.append_size>, 'add_auto_adjustable_area': <function Divider.add_auto_adjustable_area>, '__dict__': <attribute '__dict__' of 'Divider' objects>, '__weakref__': <attribute '__weakref__' of 'Divider' objects>, '__annotations__': {}})

__init__(fig, pos, horizontal, vertical, aspect=None, anchor='C')

Parameters

fig
[Figure]

pos
[tuple of 4 floats] Position of the rectangle that will be divided.

horizontal
[list of axes_size] Sizes for horizontal division.

vertical
[list of axes_size] Sizes for vertical division.

aspect
[bool] Whether overall rectangular area is reduced so that the relative part of the
horizontal and vertical scales have the same scale.

19.1. Toolkits 2957

Matplotlib, Release 3.4.3

anchor
[{'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W'}] Placement of the reduced rectangle,
when aspect is True.

__module__ = 'mpl_toolkits.axes_grid1.axes_divider'

__weakref__
list of weak references to the object (if defined)

add_auto_adjustable_area(use_axes, pad=0.1, adjust_dirs=None)

append_size(position, size)

get_anchor()
Return the anchor.

get_aspect()
Return aspect.

get_horizontal()
Return horizontal sizes.

get_horizontal_sizes(renderer)

get_locator()

get_position()
Return the position of the rectangle.

get_position_runtime(ax, renderer)

get_vertical()
Return vertical sizes.

get_vertical_sizes(renderer)

get_vsize_hsize()

locate(nx, ny, nx1=None, ny1=None, axes=None, renderer=None)

Parameters

nx, nx1
[int] Integers specifying the column-position of the cell. When nx1 is None, a
single nx-th column is specified. Otherwise location of columns spanning be-
tween nx to nx1 (but excluding nx1-th column) is specified.

ny, ny1
[int] Same as nx and nx1, but for row positions.

axes
renderer

2958 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

new_locator(nx, ny, nx1=None, ny1=None)
Return a new AxesLocator for the specified cell.

Parameters

nx, nx1
[int] Integers specifying the column-position of the cell. When nx1 is None, a
single nx-th column is specified. Otherwise location of columns spanning be-
tween nx to nx1 (but excluding nx1-th column) is specified.

ny, ny1
[int] Same as nx and nx1, but for row positions.

set_anchor(anchor)

Parameters

anchor
[{'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W'}]

anchor position

value description
'C' Center
'SW' bottom left
'S' bottom
'SE' bottom right
'E' right
'NE' top right
'N' top
'NW' top left
'W' left

set_aspect(aspect=False)

Parameters

aspect
[bool]

set_horizontal(h)

Parameters

h
[list of axes_size] sizes for horizontal division

19.1. Toolkits 2959

Matplotlib, Release 3.4.3

set_locator(_locator)

set_position(pos)
Set the position of the rectangle.

Parameters

pos
[tuple of 4 floats] position of the rectangle that will be divided

set_vertical(v)

Parameters

v
[list of axes_size] sizes for vertical division

Examples using mpl_toolkits.axes_grid1.axes_divider.Divider

mpl_toolkits.axes_grid1.axes_divider.HBoxDivider

class mpl_toolkits.axes_grid1.axes_divider.HBoxDivider(fig, *args, hor-
izontal=None,
vertical=None,
aspect=None,
anchor='C')

Bases: mpl_toolkits.axes_grid1.axes_divider.SubplotDivider

Parameters

fig
[matplotlib.figure.Figure]

*args
[tuple (nrows, ncols, index) or int] The array of subplots in the figure has dimen-
sions (nrows, ncols), and index is the index of the subplot being created.
index starts at 1 in the upper left corner and increases to the right.

If nrows, ncols, and index are all single digit numbers, then args can be passed as
a single 3-digit number (e.g. 234 for (2, 3, 4)).

__module__ = 'mpl_toolkits.axes_grid1.axes_divider'

locate(nx, ny, nx1=None, ny1=None, axes=None, renderer=None)

Parameters

2960 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

axes_divider
[AxesDivider]

nx, nx1
[int] Integers specifying the column-position of the cell. When nx1 is None, a
single nx-th column is specified. Otherwise location of columns spanning be-
tween nx to nx1 (but excluding nx1-th column) is specified.

ny, ny1
[int] Same as nx and nx1, but for row positions.

axes
renderer

new_locator(nx, nx1=None)
Create a new AxesLocator for the specified cell.

Parameters

nx, nx1
[int] Integers specifying the column-position of the cell. When nx1 is None, a
single nx-th column is specified. Otherwise location of columns spanning be-
tween nx to nx1 (but excluding nx1-th column) is specified.

ny, ny1
[int] Same as nx and nx1, but for row positions.

Examples using mpl_toolkits.axes_grid1.axes_divider.HBoxDivider

• sphx_glr_gallery_axes_grid1_demo_axes_hbox_divider.py

mpl_toolkits.axes_grid1.axes_divider.SubplotDivider

class mpl_toolkits.axes_grid1.axes_divider.SubplotDivider(fig, *args,
horizon-
tal=None,
verti-
cal=None,
aspect=None,
anchor='C')

Bases: mpl_toolkits.axes_grid1.axes_divider.Divider

The Divider class whose rectangle area is specified as a subplot geometry.

Parameters

19.1. Toolkits 2961

Matplotlib, Release 3.4.3

fig
[matplotlib.figure.Figure]

*args
[tuple (nrows, ncols, index) or int] The array of subplots in the figure has dimen-
sions (nrows, ncols), and index is the index of the subplot being created.
index starts at 1 in the upper left corner and increases to the right.

If nrows, ncols, and index are all single digit numbers, then args can be passed as
a single 3-digit number (e.g. 234 for (2, 3, 4)).

__init__(fig, *args, horizontal=None, vertical=None, aspect=None, anchor='C')

Parameters

fig
[matplotlib.figure.Figure]

*args
[tuple (nrows, ncols, index) or int] The array of subplots in the figure has dimen-
sions (nrows, ncols), and index is the index of the subplot being created.
index starts at 1 in the upper left corner and increases to the right.

If nrows, ncols, and index are all single digit numbers, then args can be passed
as a single 3-digit number (e.g. 234 for (2, 3, 4)).

__module__ = 'mpl_toolkits.axes_grid1.axes_divider'

change_geometry(numrows, numcols, num)
[Deprecated] Change subplot geometry, e.g., from (1, 1, 1) to (2, 2, 3).

Notes

Deprecated since version 3.4.

property figbox

get_geometry()
[Deprecated] Get the subplot geometry, e.g., (2, 2, 3).

2962 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.4.

get_position()
Return the bounds of the subplot box.

get_subplotspec()
Get the SubplotSpec instance.

set_subplotspec(subplotspec)
Set the SubplotSpec instance.

update_params()
[Deprecated]

Notes

Deprecated since version 3.4:

Examples using mpl_toolkits.axes_grid1.axes_divider.SubplotDivider

mpl_toolkits.axes_grid1.axes_divider.VBoxDivider

class mpl_toolkits.axes_grid1.axes_divider.VBoxDivider(fig, *args, hor-
izontal=None,
vertical=None,
aspect=None,
anchor='C')

Bases: mpl_toolkits.axes_grid1.axes_divider.HBoxDivider

The Divider class whose rectangle area is specified as a subplot geometry.

Parameters

fig
[matplotlib.figure.Figure]

*args
[tuple (nrows, ncols, index) or int] The array of subplots in the figure has dimen-
sions (nrows, ncols), and index is the index of the subplot being created.
index starts at 1 in the upper left corner and increases to the right.

If nrows, ncols, and index are all single digit numbers, then args can be passed as
a single 3-digit number (e.g. 234 for (2, 3, 4)).

__module__ = 'mpl_toolkits.axes_grid1.axes_divider'

locate(nx, ny, nx1=None, ny1=None, axes=None, renderer=None)

19.1. Toolkits 2963

Matplotlib, Release 3.4.3

Parameters

axes_divider
[AxesDivider]

nx, nx1
[int] Integers specifying the column-position of the cell. When nx1 is None, a
single nx-th column is specified. Otherwise location of columns spanning be-
tween nx to nx1 (but excluding nx1-th column) is specified.

ny, ny1
[int] Same as nx and nx1, but for row positions.

axes
renderer

new_locator(ny, ny1=None)
Create a new AxesLocator for the specified cell.

Parameters

ny, ny1
[int] Integers specifying the row-position of the cell. When ny1 is None, a single
ny-th row is specified. Otherwise location of rows spanning between ny to ny1
(but excluding ny1-th row) is specified.

Examples using mpl_toolkits.axes_grid1.axes_divider.VBoxDivider

Functions

make_axes_area_auto_adjustable(ax[,
...])
make_axes_locatable(axes)

2964 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

mpl_toolkits.axes_grid1.axes_divider.make_axes_area_auto_adjustable

mpl_toolkits.axes_grid1.axes_divider.make_axes_area_auto_adjustable(ax,
use_axes=None,
pad=0.1,
ad-
just_dirs=None)

Examples using mpl_toolkits.axes_grid1.axes_divider.
make_axes_area_auto_adjustable

• sphx_glr_gallery_axes_grid1_make_room_for_ylabel_using_axesgrid.py

mpl_toolkits.axes_grid1.axes_divider.make_axes_locatable

mpl_toolkits.axes_grid1.axes_divider.make_axes_locatable(axes)

Examples using mpl_toolkits.axes_grid1.axes_divider.make_axes_locatable

mpl_toolkits.axes_grid1.axes_grid

Classes

AxesGrid alias of mpl_toolkits.axes_grid1.
axes_grid.ImageGrid

CbarAxes(*args, orientation, **kwargs)
CbarAxesBase(*args, orientation, **kwargs)
Grid(fig, rect, nrows_ncols[, ngrids, ...]) A grid of Axes.
ImageGrid(fig, rect, nrows_ncols[, ngrids, ...])

Parameters

19.1. Toolkits 2965

Matplotlib, Release 3.4.3

mpl_toolkits.axes_grid1.axes_grid.AxesGrid

mpl_toolkits.axes_grid1.axes_grid.AxesGrid
alias of mpl_toolkits.axes_grid1.axes_grid.ImageGrid

mpl_toolkits.axes_grid1.axes_grid.CbarAxes

class mpl_toolkits.axes_grid1.axes_grid.CbarAxes(*args, orientation,
**kwargs)

Bases: mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase, mpl_toolkits.
axes_grid1.mpl_axes.Axes

__module__ = 'mpl_toolkits.axes_grid1.axes_grid'

Examples using mpl_toolkits.axes_grid1.axes_grid.CbarAxes

mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase

class mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase(*args, orientation,
**kwargs)

Bases: object

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axes_grid1.axes_grid', '__init__': <function CbarAxesBase.__init__>, 'colorbar': <function CbarAxesBase.colorbar>, 'cbid': <matplotlib._api.deprecation.deprecated.<locals>.deprecate.<locals>._deprecated_property object>, 'locator': <matplotlib._api.deprecation.deprecated.<locals>.deprecate.<locals>._deprecated_property object>, '_config_axes': <function CbarAxesBase._config_axes>, 'toggle_label': <function CbarAxesBase.toggle_label>, 'cla': <function CbarAxesBase.cla>, '__dict__': <attribute '__dict__' of 'CbarAxesBase' objects>, '__weakref__': <attribute '__weakref__' of 'CbarAxesBase' objects>, '__doc__': None, '__annotations__': {}})

__init__(*args, orientation, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_grid'

__weakref__
list of weak references to the object (if defined)

property cbid

cla()

colorbar(mappable, *, ticks=None, **kwargs)

property locator

toggle_label(b)

2966 Chapter 19. Toolkits

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase

mpl_toolkits.axes_grid1.axes_grid.Grid

class mpl_toolkits.axes_grid1.axes_grid.Grid(fig, rect, nrows_ncols,
ngrids=None, direc-
tion='row', axes_pad=0.02,
add_all=<deprecated pa-
rameter>, share_all=False,
share_x=True, share_y=True, la-
bel_mode='L', axes_class=None,
*, aspect=False)

Bases: object

A grid of Axes.

In Matplotlib, the axes location (and size) is specified in normalized figure coordinates. This may not
be ideal for images that needs to be displayed with a given aspect ratio; for example, it is difficult to
display multiple images of a same size with some fixed padding between them. AxesGrid can be used
in such case.

Parameters

fig
[Figure] The parent figure.

rect
[(float, float, float, float) or int] The axes position, as a (left, bottom,
width, height) tuple or as a three-digit subplot position code (e.g., "121").

nrows_ncols
[(int, int)] Number of rows and columns in the grid.

ngrids
[int or None, default: None] If not None, only the first ngrids axes in the grid are
created.

direction
[{"row", "column"}, default: "row"] Whether axes are created in row-major ("row
by row") or column-major order ("column by column").

axes_pad
[float or (float, float), default: 0.02] Padding or (horizontal padding, vertical
padding) between axes, in inches.

add_all
[bool, default: True] Whether to add the axes to the figure using Figure.
add_axes. This parameter is deprecated.

19.1. Toolkits 2967

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

share_all
[bool, default: False]Whether all axes share their x- and y-axis. Overrides share_x
and share_y.

share_x
[bool, default: True] Whether all axes of a column share their x-axis.

share_y
[bool, default: True] Whether all axes of a row share their y-axis.

label_mode
[{"L", "1", "all"}, default: "L"] Determines which axes will get tick labels:

• "L": All axes on the left column get vertical tick labels; all axes on the bottom
row get horizontal tick labels.

• "1": Only the bottom left axes is labelled.

• "all": all axes are labelled.

axes_class
[subclass of matplotlib.axes.Axes, default: None]

aspect
[bool, default: False] Whether the axes aspect ratio follows the aspect ratio of the
data limits.

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axes_grid1.axes_grid', '__doc__': '\n A grid of Axes.\n\n In Matplotlib, the axes location (and size) is specified in normalized\n figure coordinates. This may not be ideal for images that needs to be\n displayed with a given aspect ratio; for example, it is difficult to\n display multiple images of a same size with some fixed padding between\n them. AxesGrid can be used in such case.\n ', '_defaultAxesClass': <class 'mpl_toolkits.axes_grid1.mpl_axes.Axes'>, '__init__': <function Grid.__init__>, '_init_locators': <function Grid._init_locators>, '_get_col_row': <function Grid._get_col_row>, '__len__': <function Grid.__len__>, '__getitem__': <function Grid.__getitem__>, 'get_geometry': <function Grid.get_geometry>, 'set_axes_pad': <function Grid.set_axes_pad>, 'get_axes_pad': <function Grid.get_axes_pad>, 'set_aspect': <function Grid.set_aspect>, 'get_aspect': <function Grid.get_aspect>, 'set_label_mode': <function Grid.set_label_mode>, 'get_divider': <function Grid.get_divider>, 'set_axes_locator': <function Grid.set_axes_locator>, 'get_axes_locator': <function Grid.get_axes_locator>, 'get_vsize_hsize': <function Grid.get_vsize_hsize>, '__dict__': <attribute '__dict__' of 'Grid' objects>, '__weakref__': <attribute '__weakref__' of 'Grid' objects>, '__annotations__': {}})

__getitem__(i)

__init__(fig, rect, nrows_ncols, ngrids=None, direction='row', axes_pad=0.02,
add_all=<deprecated parameter>, share_all=False, share_x=True,
share_y=True, label_mode='L', axes_class=None, *, aspect=False)

Parameters

fig
[Figure] The parent figure.

rect
[(float, float, float, float) or int] The axes position, as a (left, bottom,
width, height) tuple or as a three-digit subplot position code (e.g., "121").

nrows_ncols
[(int, int)] Number of rows and columns in the grid.

ngrids
[int or None, default: None] If not None, only the first ngrids axes in the grid are
created.

2968 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

direction
[{"row", "column"}, default: "row"] Whether axes are created in row-major
("row by row") or column-major order ("column by column").

axes_pad
[float or (float, float), default: 0.02] Padding or (horizontal padding, vertical
padding) between axes, in inches.

add_all
[bool, default: True] Whether to add the axes to the figure using Figure.
add_axes. This parameter is deprecated.

share_all
[bool, default: False] Whether all axes share their x- and y-axis. Overrides
share_x and share_y.

share_x
[bool, default: True] Whether all axes of a column share their x-axis.

share_y
[bool, default: True] Whether all axes of a row share their y-axis.

label_mode
[{"L", "1", "all"}, default: "L"] Determines which axes will get tick labels:

• "L": All axes on the left column get vertical tick labels; all axes on the bottom
row get horizontal tick labels.

• "1": Only the bottom left axes is labelled.

• "all": all axes are labelled.

axes_class
[subclass of matplotlib.axes.Axes, default: None]

aspect
[bool, default: False] Whether the axes aspect ratio follows the aspect ratio of
the data limits.

__len__()

__module__ = 'mpl_toolkits.axes_grid1.axes_grid'

__weakref__
list of weak references to the object (if defined)

get_aspect()
Return the aspect of the SubplotDivider.

get_axes_locator()

19.1. Toolkits 2969

Matplotlib, Release 3.4.3

get_axes_pad()
Return the axes padding.

Returns

hpad, vpad
Padding (horizontal pad, vertical pad) in inches.

get_divider()

get_geometry()
Return the number of rows and columns of the grid as (nrows, ncols).

get_vsize_hsize()

set_aspect(aspect)
Set the aspect of the SubplotDivider.

set_axes_locator(locator)

set_axes_pad(axes_pad)
Set the padding between the axes.

Parameters

axes_pad
[(float, float)] The padding (horizontal pad, vertical pad) in inches.

set_label_mode(mode)
Define which axes have tick labels.

Parameters

mode
[{"L", "1", "all"}] The label mode:

• "L": All axes on the left column get vertical tick labels; all axes on the bottom
row get horizontal tick labels.

• "1": Only the bottom left axes is labelled.

• "all": all axes are labelled.

2970 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.axes_grid.Grid

mpl_toolkits.axes_grid1.axes_grid.ImageGrid

class mpl_toolkits.axes_grid1.axes_grid.ImageGrid(fig, rect, nrows_ncols,
ngrids=None, di-
rection='row',
axes_pad=0.02,
add_all=<deprecated
parameter>,
share_all=False,
aspect=True, la-
bel_mode='L',
cbar_mode=None,
cbar_location='right',
cbar_pad=None,
cbar_size='5%',
cbar_set_cax=True,
axes_class=None)

Bases: mpl_toolkits.axes_grid1.axes_grid.Grid

Parameters

fig
[Figure] The parent figure.

rect
[(float, float, float, float) or int] The axes position, as a (left, bottom,
width, height) tuple or as a three-digit subplot position code (e.g., "121").

nrows_ncols
[(int, int)] Number of rows and columns in the grid.

ngrids
[int or None, default: None] If not None, only the first ngrids axes in the grid are
created.

direction
[{"row", "column"}, default: "row"] Whether axes are created in row-major ("row
by row") or column-major order ("column by column"). This also affects the order
in which axes are accessed using indexing (grid[index]).

axes_pad
[float or (float, float), default: 0.02in] Padding or (horizontal padding, vertical
padding) between axes, in inches.

add_all

19.1. Toolkits 2971

Matplotlib, Release 3.4.3

[bool, default: True] Whether to add the axes to the figure using Figure.
add_axes. This parameter is deprecated.

share_all
[bool, default: False] Whether all axes share their x- and y-axis.

aspect
[bool, default: True] Whether the axes aspect ratio follows the aspect ratio of the
data limits.

label_mode
[{"L", "1", "all"}, default: "L"] Determines which axes will get tick labels:

• "L": All axes on the left column get vertical tick labels; all axes on the bottom
row get horizontal tick labels.

• "1": Only the bottom left axes is labelled.

• "all": all axes are labelled.

cbar_mode
[{"each", "single", "edge", None}, default: None] Whether to create a colorbar for
"each" axes, a "single" colorbar for the entire grid, colorbars only for axes on the
"edge" determined by cbar_location, or no colorbars. The colorbars are stored in
the cbar_axes attribute.

cbar_location
[{"left", "right", "bottom", "top"}, default: "right"]

cbar_pad
[float, default: None] Padding between the image axes and the colorbar axes.

cbar_size
[size specification (see Size.from_any), default: "5%"] Colorbar size.

cbar_set_cax
[bool, default: True] If True, each axes in the grid has a cax attribute that is bound
to associated cbar_axes.

axes_class
[subclass of matplotlib.axes.Axes, default: None]

__init__(fig, rect, nrows_ncols, ngrids=None, direction='row', axes_pad=0.02,
add_all=<deprecated parameter>, share_all=False, aspect=True, la-
bel_mode='L', cbar_mode=None, cbar_location='right', cbar_pad=None,
cbar_size='5%', cbar_set_cax=True, axes_class=None)

Parameters

2972 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

fig
[Figure] The parent figure.

rect
[(float, float, float, float) or int] The axes position, as a (left, bottom,
width, height) tuple or as a three-digit subplot position code (e.g., "121").

nrows_ncols
[(int, int)] Number of rows and columns in the grid.

ngrids
[int or None, default: None] If not None, only the first ngrids axes in the grid are
created.

direction
[{"row", "column"}, default: "row"] Whether axes are created in row-major
("row by row") or column-major order ("column by column"). This also affects
the order in which axes are accessed using indexing (grid[index]).

axes_pad
[float or (float, float), default: 0.02in] Padding or (horizontal padding, vertical
padding) between axes, in inches.

add_all
[bool, default: True] Whether to add the axes to the figure using Figure.
add_axes. This parameter is deprecated.

share_all
[bool, default: False] Whether all axes share their x- and y-axis.

aspect
[bool, default: True] Whether the axes aspect ratio follows the aspect ratio of the
data limits.

label_mode
[{"L", "1", "all"}, default: "L"] Determines which axes will get tick labels:

• "L": All axes on the left column get vertical tick labels; all axes on the bottom
row get horizontal tick labels.

• "1": Only the bottom left axes is labelled.

• "all": all axes are labelled.

cbar_mode
[{"each", "single", "edge", None}, default: None] Whether to create a colorbar
for "each" axes, a "single" colorbar for the entire grid, colorbars only for axes
on the "edge" determined by cbar_location, or no colorbars. The colorbars are
stored in the cbar_axes attribute.

19.1. Toolkits 2973

Matplotlib, Release 3.4.3

cbar_location
[{"left", "right", "bottom", "top"}, default: "right"]

cbar_pad
[float, default: None] Padding between the image axes and the colorbar axes.

cbar_size
[size specification (see Size.from_any), default: "5%"] Colorbar size.

cbar_set_cax
[bool, default: True] If True, each axes in the grid has a cax attribute that is
bound to associated cbar_axes.

axes_class
[subclass of matplotlib.axes.Axes, default: None]

__module__ = 'mpl_toolkits.axes_grid1.axes_grid'

Examples using mpl_toolkits.axes_grid1.axes_grid.ImageGrid

mpl_toolkits.axes_grid1.axes_rgb

Classes

RGBAxes(*args[, pad, add_all]) 4-panel imshow (RGB, R, G, B).
RGBAxesBase(*args[, pad, add_all]) [Deprecated]

mpl_toolkits.axes_grid1.axes_rgb.RGBAxes

class mpl_toolkits.axes_grid1.axes_rgb.RGBAxes(*args, pad=0,
add_all=<deprecated pa-
rameter>, **kwargs)

Bases: object

4-panel imshow (RGB, R, G, B).

Layout:

RGB R
G
B

Subclasses can override the _defaultAxesClass attribute.

Attributes

2974 Chapter 19. Toolkits

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

RGB
[_defaultAxesClass] The axes object for the three-channel imshow.

R
[_defaultAxesClass] The axes object for the red channel imshow.

G
[_defaultAxesClass] The axes object for the green channel imshow.

B
[_defaultAxesClass] The axes object for the blue channel imshow.

Parameters

pad
[float, default: 0] fraction of the axes height to put as padding.

add_all
[bool, default: True] Whether to add the {rgb, r, g, b} axes to the figure. This
parameter is deprecated.

axes_class
[matplotlib.axes.Axes]

*args
Unpacked into axes_class() init for RGB

**kwargs
Unpacked into axes_class() init for RGB, R, G, B axes

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axes_grid1.axes_rgb', '__doc__': '\n 4-panel imshow (RGB, R, G, B).\n\n Layout:\n\n +---------------+-----+\n | | R |\n + +-----+\n | RGB | G |\n + +-----+\n | | B |\n +---------------+-----+\n\n Subclasses can override the ``_defaultAxesClass`` attribute.\n\n Attributes\n ----------\n RGB : ``_defaultAxesClass``\n The axes object for the three-channel imshow.\n R : ``_defaultAxesClass``\n The axes object for the red channel imshow.\n G : ``_defaultAxesClass``\n The axes object for the green channel imshow.\n B : ``_defaultAxesClass``\n The axes object for the blue channel imshow.\n ', '_defaultAxesClass': <class 'mpl_toolkits.axes_grid1.mpl_axes.Axes'>, '__init__': <function RGBAxes.__init__>, 'add_RGB_to_figure': <function RGBAxes.add_RGB_to_figure>, 'imshow_rgb': <function RGBAxes.imshow_rgb>, '__dict__': <attribute '__dict__' of 'RGBAxes' objects>, '__weakref__': <attribute '__weakref__' of 'RGBAxes' objects>, '__annotations__': {}})

__init__(*args, pad=0, add_all=<deprecated parameter>, **kwargs)

Parameters

pad
[float, default: 0] fraction of the axes height to put as padding.

add_all
[bool, default: True] Whether to add the {rgb, r, g, b} axes to the figure. This
parameter is deprecated.

axes_class
[matplotlib.axes.Axes]

19.1. Toolkits 2975

Matplotlib, Release 3.4.3

*args
Unpacked into axes_class() init for RGB

**kwargs
Unpacked into axes_class() init for RGB, R, G, B axes

__module__ = 'mpl_toolkits.axes_grid1.axes_rgb'

__weakref__
list of weak references to the object (if defined)

add_RGB_to_figure()
[Deprecated] Add red, green and blue axes to the RGB composite's axes figure.

Notes

Deprecated since version 3.3.

imshow_rgb(r, g, b, **kwargs)
Create the four images {rgb, r, g, b}.

Parameters

r, g, b
[array-like] The red, green, and blue arrays.

kwargs
[imshow kwargs] kwargs get unpacked into the imshow calls for the four images.

Returns

rgb
[matplotlib.image.AxesImage]

r
[matplotlib.image.AxesImage]

g
[matplotlib.image.AxesImage]

b
[matplotlib.image.AxesImage]

2976 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.axes_rgb.RGBAxes

• sphx_glr_gallery_pyplots_whats_new_99_axes_grid.py

• sphx_glr_gallery_axes_grid1_demo_axes_rgb.py

mpl_toolkits.axes_grid1.axes_rgb.RGBAxesBase

class mpl_toolkits.axes_grid1.axes_rgb.RGBAxesBase(*args, pad=0,
add_all=<deprecated
parameter>, **kwargs)

Bases: mpl_toolkits.axes_grid1.axes_rgb.RGBAxes

[Deprecated]

Notes

Deprecated since version 3.3:

Parameters

pad
[float, default: 0] fraction of the axes height to put as padding.

add_all
[bool, default: True] Whether to add the {rgb, r, g, b} axes to the figure. This
parameter is deprecated.

axes_class
[matplotlib.axes.Axes]

*args
Unpacked into axes_class() init for RGB

**kwargs
Unpacked into axes_class() init for RGB, R, G, B axes

__init__(*args, pad=0, add_all=<deprecated parameter>, **kwargs)

Parameters

pad
[float, default: 0] fraction of the axes height to put as padding.

add_all
[bool, default: True] Whether to add the {rgb, r, g, b} axes to the figure. This
parameter is deprecated.

19.1. Toolkits 2977

Matplotlib, Release 3.4.3

axes_class
[matplotlib.axes.Axes]

*args
Unpacked into axes_class() init for RGB

**kwargs
Unpacked into axes_class() init for RGB, R, G, B axes

__module__ = 'mpl_toolkits.axes_grid1.axes_rgb'

Examples using mpl_toolkits.axes_grid1.axes_rgb.RGBAxesBase

Functions

imshow_rgb(ax, r, g, b, **kwargs) [Deprecated]
make_rgb_axes(ax[, pad, axes_class, add_all])

Parameters

mpl_toolkits.axes_grid1.axes_rgb.imshow_rgb

mpl_toolkits.axes_grid1.axes_rgb.imshow_rgb(ax, r, g, b, **kwargs)
[Deprecated]

Notes

Deprecated since version 3.3:

Examples using mpl_toolkits.axes_grid1.axes_rgb.imshow_rgb

mpl_toolkits.axes_grid1.axes_rgb.make_rgb_axes

mpl_toolkits.axes_grid1.axes_rgb.make_rgb_axes(ax, pad=0.01,
axes_class=None,
add_all=<deprecated pa-
rameter>, **kwargs)

Parameters

pad
[float] Fraction of the axes height.

2978 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.axes_rgb.make_rgb_axes

• sphx_glr_gallery_axes_grid1_demo_axes_rgb.py

mpl_toolkits.axes_grid1.axes_size

Provides classes of simple units that will be used with AxesDivider class (or others) to determine the size
of each axes. The unit classes define get_size method that returns a tuple of two floats, meaning relative
and absolute sizes, respectively.

Note that this class is nothing more than a simple tuple of two floats. Take a look at the Divider class to see
how these two values are used.

Classes

Add(a, b)
AddList(add_list)
AxesX(axes[, aspect, ref_ax]) Scaled size whose relative part corresponds to the

data width of the axes multiplied by the aspect.
AxesY(axes[, aspect, ref_ax]) Scaled size whose relative part corresponds to the

data height of the axes multiplied by the aspect.
Fixed(fixed_size) Simple fixed size with absolute part = fixed_size

and relative part = 0.
Fraction(fraction, ref_size) An instance whose size is a fraction of the ref_size.
GetExtentHelper(ax, direction)
MaxExtent(artist_list, w_or_h) Size whose absolute part is either the largest width

or the largest height of the given artist_list.
MaxHeight(artist_list) Size whose absolute part is the largest height of the

given artist_list.
MaxWidth(artist_list) Size whose absolute part is the largest width of the

given artist_list.
Padded(size, pad) Return a instance where the absolute part of size is

increase by the amount of pad.
Scalable alias of mpl_toolkits.axes_grid1.

axes_size.Scaled

Scaled(scalable_size) Simple scaled(?) size with absolute part = 0 and
relative part = scalable_size.

SizeFromFunc(func)

19.1. Toolkits 2979

Matplotlib, Release 3.4.3

mpl_toolkits.axes_grid1.axes_size.Add

class mpl_toolkits.axes_grid1.axes_size.Add(a, b)
Bases: mpl_toolkits.axes_grid1.axes_size._Base

__init__(a, b)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_size'

get_size(renderer)

Examples using mpl_toolkits.axes_grid1.axes_size.Add

mpl_toolkits.axes_grid1.axes_size.AddList

class mpl_toolkits.axes_grid1.axes_size.AddList(add_list)
Bases: mpl_toolkits.axes_grid1.axes_size._Base

__init__(add_list)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_size'

get_size(renderer)

Examples using mpl_toolkits.axes_grid1.axes_size.AddList

mpl_toolkits.axes_grid1.axes_size.AxesX

class mpl_toolkits.axes_grid1.axes_size.AxesX(axes, aspect=1.0,
ref_ax=None)

Bases: mpl_toolkits.axes_grid1.axes_size._Base

Scaled size whose relative part corresponds to the data width of the axes multiplied by the aspect.

__init__(axes, aspect=1.0, ref_ax=None)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_size'

get_size(renderer)

2980 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.axes_size.AxesX

• sphx_glr_gallery_axes_grid1_demo_axes_hbox_divider.py

• sphx_glr_gallery_axes_grid1_simple_axes_divider3.py

mpl_toolkits.axes_grid1.axes_size.AxesY

class mpl_toolkits.axes_grid1.axes_size.AxesY(axes, aspect=1.0,
ref_ax=None)

Bases: mpl_toolkits.axes_grid1.axes_size._Base

Scaled size whose relative part corresponds to the data height of the axes multiplied by the aspect.

__init__(axes, aspect=1.0, ref_ax=None)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_size'

get_size(renderer)

Examples using mpl_toolkits.axes_grid1.axes_size.AxesY

• sphx_glr_gallery_axes_grid1_demo_axes_hbox_divider.py

• sphx_glr_gallery_axes_grid1_simple_axes_divider3.py

mpl_toolkits.axes_grid1.axes_size.Fixed

class mpl_toolkits.axes_grid1.axes_size.Fixed(fixed_size)
Bases: mpl_toolkits.axes_grid1.axes_size._Base

Simple fixed size with absolute part = fixed_size and relative part = 0.

__init__(fixed_size)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_size'

get_size(renderer)

19.1. Toolkits 2981

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.axes_size.Fixed

• sphx_glr_gallery_axes_grid1_demo_axes_hbox_divider.py

• sphx_glr_gallery_axes_grid1_demo_fixed_size_axes.py

• sphx_glr_gallery_axes_grid1_simple_axes_divider1.py

• sphx_glr_gallery_axes_grid1_simple_axes_divider3.py

mpl_toolkits.axes_grid1.axes_size.Fraction

class mpl_toolkits.axes_grid1.axes_size.Fraction(fraction, ref_size)
Bases: mpl_toolkits.axes_grid1.axes_size._Base

An instance whose size is a fraction of the ref_size.

>>> s = Fraction(0.3, AxesX(ax))

__init__(fraction, ref_size)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_size'

get_size(renderer)

Examples using mpl_toolkits.axes_grid1.axes_size.Fraction

mpl_toolkits.axes_grid1.axes_size.GetExtentHelper

class mpl_toolkits.axes_grid1.axes_size.GetExtentHelper(ax, direction)
Bases: object

__call__(renderer)
Call self as a function.

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axes_grid1.axes_size', '_get_func_map': {'left': <function GetExtentHelper.<lambda>>, 'right': <function GetExtentHelper.<lambda>>, 'bottom': <function GetExtentHelper.<lambda>>, 'top': <function GetExtentHelper.<lambda>>}, '__init__': <function GetExtentHelper.__init__>, '__call__': <function GetExtentHelper.__call__>, '__dict__': <attribute '__dict__' of 'GetExtentHelper' objects>, '__weakref__': <attribute '__weakref__' of 'GetExtentHelper' objects>, '__doc__': None, '__annotations__': {}})

__init__(ax, direction)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_size'

__weakref__
list of weak references to the object (if defined)

2982 Chapter 19. Toolkits

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.axes_size.GetExtentHelper

mpl_toolkits.axes_grid1.axes_size.MaxExtent

class mpl_toolkits.axes_grid1.axes_size.MaxExtent(artist_list, w_or_h)
Bases: mpl_toolkits.axes_grid1.axes_size._Base

Size whose absolute part is either the largest width or the largest height of the given artist_list.

__init__(artist_list, w_or_h)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_size'

add_artist(a)

get_size(renderer)

Examples using mpl_toolkits.axes_grid1.axes_size.MaxExtent

mpl_toolkits.axes_grid1.axes_size.MaxHeight

class mpl_toolkits.axes_grid1.axes_size.MaxHeight(artist_list)
Bases: mpl_toolkits.axes_grid1.axes_size.MaxExtent

Size whose absolute part is the largest height of the given artist_list.

__init__(artist_list)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_size'

Examples using mpl_toolkits.axes_grid1.axes_size.MaxHeight

mpl_toolkits.axes_grid1.axes_size.MaxWidth

class mpl_toolkits.axes_grid1.axes_size.MaxWidth(artist_list)
Bases: mpl_toolkits.axes_grid1.axes_size.MaxExtent

Size whose absolute part is the largest width of the given artist_list.

__init__(artist_list)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_size'

19.1. Toolkits 2983

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.axes_size.MaxWidth

mpl_toolkits.axes_grid1.axes_size.Padded

class mpl_toolkits.axes_grid1.axes_size.Padded(size, pad)
Bases: mpl_toolkits.axes_grid1.axes_size._Base

Return a instance where the absolute part of size is increase by the amount of pad.

__init__(size, pad)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_size'

get_size(renderer)

Examples using mpl_toolkits.axes_grid1.axes_size.Padded

mpl_toolkits.axes_grid1.axes_size.Scalable

mpl_toolkits.axes_grid1.axes_size.Scalable
alias of mpl_toolkits.axes_grid1.axes_size.Scaled

mpl_toolkits.axes_grid1.axes_size.Scaled

class mpl_toolkits.axes_grid1.axes_size.Scaled(scalable_size)
Bases: mpl_toolkits.axes_grid1.axes_size._Base

Simple scaled(?) size with absolute part = 0 and relative part = scalable_size.

__init__(scalable_size)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_size'

get_size(renderer)

Examples using mpl_toolkits.axes_grid1.axes_size.Scaled

• sphx_glr_gallery_axes_grid1_demo_axes_hbox_divider.py

• sphx_glr_gallery_axes_grid1_demo_fixed_size_axes.py

• sphx_glr_gallery_axes_grid1_simple_axes_divider1.py

2984 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

mpl_toolkits.axes_grid1.axes_size.SizeFromFunc

class mpl_toolkits.axes_grid1.axes_size.SizeFromFunc(func)
Bases: mpl_toolkits.axes_grid1.axes_size._Base

__init__(func)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.axes_size'

get_size(renderer)

Examples using mpl_toolkits.axes_grid1.axes_size.SizeFromFunc

Functions

from_any(size[, fraction_ref]) Create a Fixed unit when the first argument is a
float, or a Fraction unit if that is a string that ends
with %.

mpl_toolkits.axes_grid1.axes_size.from_any

mpl_toolkits.axes_grid1.axes_size.from_any(size, fraction_ref=None)
Create a Fixed unit when the first argument is a float, or a Fraction unit if that is a string that ends with
%. The second argument is only meaningful when Fraction unit is created.

>>> a = Size.from_any(1.2) # => Size.Fixed(1.2)
>>> Size.from_any("50%", a) # => Size.Fraction(0.5, a)

Examples using mpl_toolkits.axes_grid1.axes_size.from_any

mpl_toolkits.axes_grid1.inset_locator

A collection of functions and objects for creating or placing inset axes.

Classes

AnchoredLocatorBase(bbox_to_anchor, ...[,
...]) Parameters

continues on next page

19.1. Toolkits 2985

Matplotlib, Release 3.4.3

Table 10 – continued from previous page
AnchoredSizeLocator(bbox_to_anchor,
x_size, ...) Parameters

AnchoredZoomLocator(parent_axes, zoom,
loc) Parameters

BboxConnector(bbox1, bbox2, loc1[, loc2]) Connect two bboxes with a straight line.
BboxConnectorPatch(bbox1, bbox2, loc1a,
...)

Connect two bboxes with a quadrilateral.

BboxPatch(bbox, **kwargs) Patch showing the shape bounded by a Bbox.
InsetPosition(parent, lbwh) An object for positioning an inset axes.

mpl_toolkits.axes_grid1.inset_locator.AnchoredLocatorBase

class mpl_toolkits.axes_grid1.inset_locator.AnchoredLocatorBase(bbox_to_anchor,
off-
set-
box,
loc,
bor-
der-
pad=0.5,
bbox_transform=None)

Bases: matplotlib.offsetbox.AnchoredOffsetbox

Parameters

loc
[str] The box location. Supported values:

• 'upper right'

• 'upper left'

• 'lower left'

• 'lower right'

• 'center left'

• 'center right'

• 'lower center'

• 'upper center'

• 'center'

For backward compatibility, numeric values are accepted as well. See the param-
eter loc of Legend for details.

2986 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

pad
[float, default: 0.4] Padding around the child as fraction of the fontsize.

borderpad
[float, default: 0.5] Padding between the offsetbox frame and the bbox_to_anchor.

child
[OffsetBox] The box that will be anchored.

prop
[FontProperties] This is only used as a reference for paddings. If not given,
rcParams["legend.fontsize"] (default: 'medium') is used.

frameon
[bool] Whether to draw a frame around the box.

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the legend
in conjunction with loc.

bbox_transform
[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor).

**kwargs
All other parameters are passed on to OffsetBox.

Notes

See Legend for a detailed description of the anchoring mechanism.

__call__(ax, renderer)
Call self as a function.

__init__(bbox_to_anchor, offsetbox, loc, borderpad=0.5, bbox_transform=None)

Parameters

loc
[str] The box location. Supported values:

• 'upper right'

• 'upper left'

• 'lower left'

• 'lower right'

• 'center left'

19.1. Toolkits 2987

../../tutorials/introductory/customizing.html?highlight=legend.fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

• 'center right'

• 'lower center'

• 'upper center'

• 'center'

For backward compatibility, numeric values are accepted as well. See the pa-
rameter loc of Legend for details.

pad
[float, default: 0.4] Padding around the child as fraction of the fontsize.

borderpad
[float, default: 0.5] Padding between the offsetbox frame and the
bbox_to_anchor.

child
[OffsetBox] The box that will be anchored.

prop
[FontProperties] This is only used as a reference for paddings. If not given,
rcParams["legend.fontsize"] (default: 'medium') is used.

frameon
[bool] Whether to draw a frame around the box.

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the legend
in conjunction with loc.

bbox_transform
[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor).

**kwargs
All other parameters are passed on to OffsetBox.

Notes

See Legend for a detailed description of the anchoring mechanism.

__module__ = 'mpl_toolkits.axes_grid1.inset_locator'

draw(renderer)
Update the location of children if necessary and draw them to the given renderer.

2988 Chapter 19. Toolkits

../../tutorials/introductory/customizing.html?highlight=legend.fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.inset_locator.AnchoredLocatorBase

mpl_toolkits.axes_grid1.inset_locator.AnchoredSizeLocator

class mpl_toolkits.axes_grid1.inset_locator.AnchoredSizeLocator(bbox_to_anchor,
x_size,
y_size,
loc,
bor-
der-
pad=0.5,
bbox_transform=None)

Bases: mpl_toolkits.axes_grid1.inset_locator.AnchoredLocatorBase

Parameters

loc
[str] The box location. Supported values:

• 'upper right'

• 'upper left'

• 'lower left'

• 'lower right'

• 'center left'

• 'center right'

• 'lower center'

• 'upper center'

• 'center'

For backward compatibility, numeric values are accepted as well. See the param-
eter loc of Legend for details.

pad
[float, default: 0.4] Padding around the child as fraction of the fontsize.

borderpad
[float, default: 0.5] Padding between the offsetbox frame and the bbox_to_anchor.

child
[OffsetBox] The box that will be anchored.

prop
[FontProperties] This is only used as a reference for paddings. If not given,
rcParams["legend.fontsize"] (default: 'medium') is used.

19.1. Toolkits 2989

../../tutorials/introductory/customizing.html?highlight=legend.fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

frameon
[bool] Whether to draw a frame around the box.

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the legend
in conjunction with loc.

bbox_transform
[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor).

**kwargs
All other parameters are passed on to OffsetBox.

Notes

See Legend for a detailed description of the anchoring mechanism.

__init__(bbox_to_anchor, x_size, y_size, loc, borderpad=0.5, bbox_transform=None)

Parameters

loc
[str] The box location. Supported values:

• 'upper right'

• 'upper left'

• 'lower left'

• 'lower right'

• 'center left'

• 'center right'

• 'lower center'

• 'upper center'

• 'center'

For backward compatibility, numeric values are accepted as well. See the pa-
rameter loc of Legend for details.

pad
[float, default: 0.4] Padding around the child as fraction of the fontsize.

borderpad
[float, default: 0.5] Padding between the offsetbox frame and the
bbox_to_anchor.

2990 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

child
[OffsetBox] The box that will be anchored.

prop
[FontProperties] This is only used as a reference for paddings. If not given,
rcParams["legend.fontsize"] (default: 'medium') is used.

frameon
[bool] Whether to draw a frame around the box.

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the legend
in conjunction with loc.

bbox_transform
[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor).

**kwargs
All other parameters are passed on to OffsetBox.

Notes

See Legend for a detailed description of the anchoring mechanism.

__module__ = 'mpl_toolkits.axes_grid1.inset_locator'

get_extent(renderer)
Return the extent of the box as (width, height, x, y).

This is the extent of the child plus the padding.

Examples using mpl_toolkits.axes_grid1.inset_locator.AnchoredSizeLocator

mpl_toolkits.axes_grid1.inset_locator.AnchoredZoomLocator

class mpl_toolkits.axes_grid1.inset_locator.AnchoredZoomLocator(parent_axes,
zoom,
loc,
bor-
der-
pad=0.5,
bbox_to_anchor=None,
bbox_transform=None)

Bases: mpl_toolkits.axes_grid1.inset_locator.AnchoredLocatorBase

Parameters

19.1. Toolkits 2991

../../tutorials/introductory/customizing.html?highlight=legend.fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

loc
[str] The box location. Supported values:

• 'upper right'

• 'upper left'

• 'lower left'

• 'lower right'

• 'center left'

• 'center right'

• 'lower center'

• 'upper center'

• 'center'

For backward compatibility, numeric values are accepted as well. See the param-
eter loc of Legend for details.

pad
[float, default: 0.4] Padding around the child as fraction of the fontsize.

borderpad
[float, default: 0.5] Padding between the offsetbox frame and the bbox_to_anchor.

child
[OffsetBox] The box that will be anchored.

prop
[FontProperties] This is only used as a reference for paddings. If not given,
rcParams["legend.fontsize"] (default: 'medium') is used.

frameon
[bool] Whether to draw a frame around the box.

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the legend
in conjunction with loc.

bbox_transform
[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor).

**kwargs
All other parameters are passed on to OffsetBox.

2992 Chapter 19. Toolkits

../../tutorials/introductory/customizing.html?highlight=legend.fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

See Legend for a detailed description of the anchoring mechanism.

__init__(parent_axes, zoom, loc, borderpad=0.5, bbox_to_anchor=None,
bbox_transform=None)

Parameters

loc
[str] The box location. Supported values:

• 'upper right'

• 'upper left'

• 'lower left'

• 'lower right'

• 'center left'

• 'center right'

• 'lower center'

• 'upper center'

• 'center'

For backward compatibility, numeric values are accepted as well. See the pa-
rameter loc of Legend for details.

pad
[float, default: 0.4] Padding around the child as fraction of the fontsize.

borderpad
[float, default: 0.5] Padding between the offsetbox frame and the
bbox_to_anchor.

child
[OffsetBox] The box that will be anchored.

prop
[FontProperties] This is only used as a reference for paddings. If not given,
rcParams["legend.fontsize"] (default: 'medium') is used.

frameon
[bool] Whether to draw a frame around the box.

bbox_to_anchor
[BboxBase, 2-tuple, or 4-tuple of floats] Box that is used to position the legend
in conjunction with loc.

19.1. Toolkits 2993

../../tutorials/introductory/customizing.html?highlight=legend.fontsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

bbox_transform
[None or matplotlib.transforms.Transform] The transform for the
bounding box (bbox_to_anchor).

**kwargs
All other parameters are passed on to OffsetBox.

Notes

See Legend for a detailed description of the anchoring mechanism.

__module__ = 'mpl_toolkits.axes_grid1.inset_locator'

get_extent(renderer)
Return the extent of the box as (width, height, x, y).

This is the extent of the child plus the padding.

Examples using mpl_toolkits.axes_grid1.inset_locator.AnchoredZoomLocator

mpl_toolkits.axes_grid1.inset_locator.BboxConnector

class mpl_toolkits.axes_grid1.inset_locator.BboxConnector(bbox1,
bbox2, loc1,
loc2=None,
**kwargs)

Bases: matplotlib.patches.Patch

Connect two bboxes with a straight line.

Parameters

bbox1, bbox2
[matplotlib.transforms.Bbox] Bounding boxes to connect.

loc1
[{1, 2, 3, 4}] Corner of bbox1 to draw the line. Valid values are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4

loc2
[{1, 2, 3, 4}, optional] Corner of bbox2 to draw the line. If None, defaults to loc1.
Valid values are:

2994 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4

**kwargs
Patch properties for the line drawn. Valid arguments include:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(bbox1, bbox2, loc1, loc2=None, **kwargs)
Connect two bboxes with a straight line.

Parameters

bbox1, bbox2

19.1. Toolkits 2995

Matplotlib, Release 3.4.3

[matplotlib.transforms.Bbox] Bounding boxes to connect.

loc1
[{1, 2, 3, 4}] Corner of bbox1 to draw the line. Valid values are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4

loc2
[{1, 2, 3, 4}, optional] Corner of bbox2 to draw the line. If None, defaults to
loc1. Valid values are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4

**kwargs
Patch properties for the line drawn. Valid arguments include:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
continues on next page

2996 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Table 12 – continued from previous page
Property Description
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'mpl_toolkits.axes_grid1.inset_locator'

static connect_bbox(bbox1, bbox2, loc1, loc2=None)
Helper function to obtain a Path from one bbox to another.

Parameters

bbox1, bbox2
[matplotlib.transforms.Bbox] Bounding boxes to connect.

loc1
[{1, 2, 3, 4}] Corner of bbox1 to use. Valid values are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4

loc2
[{1, 2, 3, 4}, optional] Corner of bbox2 to use. If None, defaults to loc1. Valid
values are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4

Returns

path
[matplotlib.path.Path] A line segment from the loc1 corner of bbox1
to the loc2 corner of bbox2.

static get_bbox_edge_pos(bbox, loc)
Helper function to obtain the location of a corner of a bbox

Parameters

19.1. Toolkits 2997

Matplotlib, Release 3.4.3

bbox
[matplotlib.transforms.Bbox]

loc
[{1, 2, 3, 4}] Corner of bbox. Valid values are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4

Returns

x, y
[float] Coordinates of the corner specified by loc.

get_path()
Return the path of this patch.

Examples using mpl_toolkits.axes_grid1.inset_locator.BboxConnector

• sphx_glr_gallery_subplots_axes_and_figures_axes_zoom_effect.py

mpl_toolkits.axes_grid1.inset_locator.BboxConnectorPatch

class mpl_toolkits.axes_grid1.inset_locator.BboxConnectorPatch(bbox1,
bbox2,
loc1a,
loc2a,
loc1b,
loc2b,
**kwargs)

Bases: mpl_toolkits.axes_grid1.inset_locator.BboxConnector

Connect two bboxes with a quadrilateral.

The quadrilateral is specified by two lines that start and end at corners of the bboxes. The four sides
of the quadrilateral are defined by the two lines given, the line between the two corners specified in
bbox1 and the line between the two corners specified in bbox2.

Parameters

bbox1, bbox2
[matplotlib.transforms.Bbox] Bounding boxes to connect.

2998 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

loc1a, loc2a
[{1, 2, 3, 4}] Corners of bbox1 and bbox2 to draw the first line. Valid values are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4

loc1b, loc2b
[{1, 2, 3, 4}] Corners of bbox1 and bbox2 to draw the second line. Valid values
are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4

**kwargs
Patch properties for the line drawn:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)

continues on next page

19.1. Toolkits 2999

Matplotlib, Release 3.4.3

Table 13 – continued from previous page
Property Description
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(bbox1, bbox2, loc1a, loc2a, loc1b, loc2b, **kwargs)
Connect two bboxes with a quadrilateral.

The quadrilateral is specified by two lines that start and end at corners of the bboxes. The four
sides of the quadrilateral are defined by the two lines given, the line between the two corners
specified in bbox1 and the line between the two corners specified in bbox2.

Parameters

bbox1, bbox2
[matplotlib.transforms.Bbox] Bounding boxes to connect.

loc1a, loc2a
[{1, 2, 3, 4}] Corners of bbox1 and bbox2 to draw the first line. Valid values are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4

loc1b, loc2b
[{1, 2, 3, 4}] Corners of bbox1 and bbox2 to draw the second line. Valid values
are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4

**kwargs
Patch properties for the line drawn:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

continues on next page

3000 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Table 14 – continued from previous page
Property Description
clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'mpl_toolkits.axes_grid1.inset_locator'

get_path()
Return the path of this patch.

Examples using mpl_toolkits.axes_grid1.inset_locator.BboxConnectorPatch

• sphx_glr_gallery_subplots_axes_and_figures_axes_zoom_effect.py

mpl_toolkits.axes_grid1.inset_locator.BboxPatch

class mpl_toolkits.axes_grid1.inset_locator.BboxPatch(bbox, **kwargs)
Bases: matplotlib.patches.Patch

Patch showing the shape bounded by a Bbox.

Parameters

bbox

19.1. Toolkits 3001

Matplotlib, Release 3.4.3

[matplotlib.transforms.Bbox] Bbox to use for the extents of this patch.

**kwargs
Patch properties. Valid arguments include:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(bbox, **kwargs)
Patch showing the shape bounded by a Bbox.

Parameters

bbox
[matplotlib.transforms.Bbox] Bbox to use for the extents of this
patch.

3002 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

**kwargs
Patch properties. Valid arguments include:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'mpl_toolkits.axes_grid1.inset_locator'

get_path()
Return the path of this patch.

19.1. Toolkits 3003

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.inset_locator.BboxPatch

• sphx_glr_gallery_subplots_axes_and_figures_axes_zoom_effect.py

mpl_toolkits.axes_grid1.inset_locator.InsetPosition

class mpl_toolkits.axes_grid1.inset_locator.InsetPosition(parent, lbwh)
Bases: object

An object for positioning an inset axes.

This is created by specifying the normalized coordinates in the axes, instead of the figure.

Parameters

parent
[matplotlib.axes.Axes] Axes to use for normalizing coordinates.

lbwh
[iterable of four floats] The left edge, bottom edge, width, and height of the inset
axes, in units of the normalized coordinate of the parent axes.

See also:

matplotlib.axes.Axes.set_axes_locator()

Examples

The following bounds the inset axes to a box with 20% of the parent axes's height and 40% of the width.
The size of the axes specified ([0, 0, 1, 1]) ensures that the axes completely fills the bounding box:

>>> parent_axes = plt.gca()
>>> ax_ins = plt.axes([0, 0, 1, 1])
>>> ip = InsetPosition(ax, [0.5, 0.1, 0.4, 0.2])
>>> ax_ins.set_axes_locator(ip)

__call__(ax, renderer)
Call self as a function.

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axes_grid1.inset_locator', '__init__': <function InsetPosition.__init__>, '__call__': <function InsetPosition.__call__>, '__dict__': <attribute '__dict__' of 'InsetPosition' objects>, '__weakref__': <attribute '__weakref__' of 'InsetPosition' objects>, '__doc__': None, '__annotations__': {}})

__init__(parent, lbwh)
An object for positioning an inset axes.

This is created by specifying the normalized coordinates in the axes, instead of the figure.

Parameters

3004 Chapter 19. Toolkits

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

parent
[matplotlib.axes.Axes] Axes to use for normalizing coordinates.

lbwh
[iterable of four floats] The left edge, bottom edge, width, and height of the inset
axes, in units of the normalized coordinate of the parent axes.

See also:

matplotlib.axes.Axes.set_axes_locator()

Examples

The following bounds the inset axes to a box with 20% of the parent axes's height and 40% of
the width. The size of the axes specified ([0, 0, 1, 1]) ensures that the axes completely fills the
bounding box:

>>> parent_axes = plt.gca()
>>> ax_ins = plt.axes([0, 0, 1, 1])
>>> ip = InsetPosition(ax, [0.5, 0.1, 0.4, 0.2])
>>> ax_ins.set_axes_locator(ip)

__module__ = 'mpl_toolkits.axes_grid1.inset_locator'

__weakref__
list of weak references to the object (if defined)

Examples using mpl_toolkits.axes_grid1.inset_locator.InsetPosition

Functions

inset_axes(parent_axes, width, height[, ...]) Create an inset axes with a given width and height.
mark_inset(parent_axes, inset_axes, loc1, ...) Draw a box to mark the location of an area repre-

sented by an inset axes.
zoomed_inset_axes(parent_axes, zoom[, loc,
...])

Create an anchored inset axes by scaling a parent
axes.

19.1. Toolkits 3005

Matplotlib, Release 3.4.3

mpl_toolkits.axes_grid1.inset_locator.inset_axes

mpl_toolkits.axes_grid1.inset_locator.inset_axes(parent_axes, width,
height, loc='upper right',
bbox_to_anchor=None,
bbox_transform=None,
axes_class=None,
axes_kwargs=None,
borderpad=0.5)

Create an inset axes with a given width and height.

Both sizes used can be specified either in inches or percentage. For example,:

inset_axes(parent_axes, width='40%', height='30%', loc=3)

creates in inset axes in the lower left corner of parent_axes which spans over 30% in height and 40%
in width of the parent_axes. Since the usage of inset_axes may become slightly tricky when
exceeding such standard cases, it is recommended to read the examples.

Parameters

parent_axes
[matplotlib.axes.Axes] Axes to place the inset axes.

width, height
[float or str] Size of the inset axes to create. If a float is provided, it is the size in
inches, e.g. width=1.3. If a string is provided, it is the size in relative units, e.g.
width='40%'. By default, i.e. if neither bbox_to_anchor nor bbox_transform are
specified, those are relative to the parent_axes. Otherwise they are to be under-
stood relative to the bounding box provided via bbox_to_anchor.

loc
[int or str, default: 1] Location to place the inset axes. The valid locations are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10

bbox_to_anchor
[tuple or matplotlib.transforms.BboxBase, optional] Bbox that the
inset axes will be anchored to. If None, a tuple of (0, 0, 1, 1) is used if
bbox_transform is set to parent_axes.transAxes or parent_axes.figure.transFigure.

3006 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Otherwise, parent_axes.bbox is used. If a tuple, can be either [left, bottom, width,
height], or [left, bottom]. If the kwargswidth and/or height are specified in relative
units, the 2-tuple [left, bottom] cannot be used. Note that, unless bbox_transform
is set, the units of the bounding box are interpreted in the pixel coordinate. When
using bbox_to_anchor with tuple, it almost always makes sense to also specify a
bbox_transform. This might often be the axes transform parent_axes.transAxes.

bbox_transform
[matplotlib.transforms.Transform, optional] Transformation for
the bbox that contains the inset axes. If None, a transforms.
IdentityTransform is used. The value of bbox_to_anchor (or the return
value of its get_points method) is transformed by the bbox_transform and then
interpreted as points in the pixel coordinate (which is dpi dependent). You may
provide bbox_to_anchor in some normalized coordinate, and give an appropriate
transform (e.g., parent_axes.transAxes).

axes_class
[matplotlib.axes.Axes type, optional] If specified, the inset axes created
will be created with this class's constructor.

axes_kwargs
[dict, optional] Keyworded arguments to pass to the constructor of the inset axes.
Valid arguments include:

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool

continues on next page

19.1. Toolkits 3007

Matplotlib, Release 3.4.3

Table 18 – continued from previous page
Property Description
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

borderpad
[float, default: 0.5] Padding between inset axes and the bbox_to_anchor. The units
are axes font size, i.e. for a default font size of 10 points borderpad = 0.5 is
equivalent to a padding of 5 points.

Returns

inset_axes
[axes_class] Inset axes object created.

3008 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Notes

The meaning of bbox_to_anchor and bbox_to_transform is interpreted differently from that of leg-
end. The value of bbox_to_anchor (or the return value of its get_points method; the default is par-
ent_axes.bbox) is transformed by the bbox_transform (the default is Identity transform) and then in-
terpreted as points in the pixel coordinate (which is dpi dependent).

Thus, following three calls are identical and creates an inset axes with respect to the parent_axes:

axins = inset_axes(parent_axes, "30%", "40%")
axins = inset_axes(parent_axes, "30%", "40%",

bbox_to_anchor=parent_axes.bbox)
axins = inset_axes(parent_axes, "30%", "40%",

bbox_to_anchor=(0, 0, 1, 1),
bbox_transform=parent_axes.transAxes)

Examples using mpl_toolkits.axes_grid1.inset_locator.inset_axes

• sphx_glr_gallery_axes_grid1_demo_colorbar_of_inset_axes.py

• sphx_glr_gallery_axes_grid1_demo_colorbar_with_inset_locator.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo.py

• Overview of axes_grid1 toolkit

mpl_toolkits.axes_grid1.inset_locator.mark_inset

mpl_toolkits.axes_grid1.inset_locator.mark_inset(parent_axes, inset_axes,
loc1, loc2, **kwargs)

Draw a box to mark the location of an area represented by an inset axes.

This function draws a box in parent_axes at the bounding box of inset_axes, and shows a connection
with the inset axes by drawing lines at the corners, giving a "zoomed in" effect.

Parameters

parent_axes
[matplotlib.axes.Axes] Axes which contains the area of the inset axes.

inset_axes
[matplotlib.axes.Axes] The inset axes.

loc1, loc2
[{1, 2, 3, 4}] Corners to use for connecting the inset axes and the area in the parent
axes.

**kwargs
Patch properties for the lines and box drawn:

19.1. Toolkits 3009

Matplotlib, Release 3.4.3

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

Returns

pp
[matplotlib.patches.Patch] The patch drawn to represent the area of the
inset axes.

p1, p2
[matplotlib.patches.Patch] The patches connecting two corners of the
inset axes and its area.

3010 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.inset_locator.mark_inset

• sphx_glr_gallery_axes_grid1_inset_locator_demo2.py

mpl_toolkits.axes_grid1.inset_locator.zoomed_inset_axes

mpl_toolkits.axes_grid1.inset_locator.zoomed_inset_axes(parent_axes,
zoom,
loc='upper
right',
bbox_to_anchor=None,
bbox_transform=None,
axes_class=None,
axes_kwargs=None,
borderpad=0.5)

Create an anchored inset axes by scaling a parent axes. For usage, also see the examples.

Parameters

parent_axes
[matplotlib.axes.Axes] Axes to place the inset axes.

zoom
[float] Scaling factor of the data axes. zoom > 1 will enlargen the coordinates (i.e.,
"zoomed in"), while zoom < 1 will shrink the coordinates (i.e., "zoomed out").

loc
[int or str, default: 'upper right'] Location to place the inset axes. The valid loca-
tions are:

'upper right' : 1,
'upper left' : 2,
'lower left' : 3,
'lower right' : 4,
'right' : 5,
'center left' : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center' : 10

bbox_to_anchor
[tuple or matplotlib.transforms.BboxBase, optional] Bbox that the in-
set axes will be anchored to. If None, parent_axes.bbox is used. If a tuple, can be
either [left, bottom, width, height], or [left, bottom]. If the kwargs width and/or
height are specified in relative units, the 2-tuple [left, bottom] cannot be used.
Note that the units of the bounding box are determined through the transform in

19.1. Toolkits 3011

Matplotlib, Release 3.4.3

use. When using bbox_to_anchor it almost always makes sense to also specify a
bbox_transform. This might often be the axes transform parent_axes.transAxes.

bbox_transform
[matplotlib.transforms.Transform, optional] Transformation for
the bbox that contains the inset axes. If None, a transforms.
IdentityTransform is used (i.e. pixel coordinates). This is useful when
not providing any argument to bbox_to_anchor. When using bbox_to_anchor it
almost always makes sense to also specify a bbox_transform. This might often be
the axes transform parent_axes.transAxes. Inversely, when specifying the axes-
or figure-transform here, be aware that not specifying bbox_to_anchor will use
parent_axes.bbox, the units of which are in display (pixel) coordinates.

axes_class
[matplotlib.axes.Axes type, optional] If specified, the inset axes created
will be created with this class's constructor.

axes_kwargs
[dict, optional] Keyworded arguments to pass to the constructor of the inset axes.
Valid arguments include:

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown

continues on next page

3012 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Table 20 – continued from previous page
Property Description
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

borderpad
[float, default: 0.5] Padding between inset axes and the bbox_to_anchor. The units
are axes font size, i.e. for a default font size of 10 points borderpad = 0.5 is
equivalent to a padding of 5 points.

Returns

inset_axes
[axes_class] Inset axes object created.

19.1. Toolkits 3013

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.inset_locator.zoomed_inset_axes

• sphx_glr_gallery_axes_grid1_demo_colorbar_of_inset_axes.py

• sphx_glr_gallery_axes_grid1_inset_locator_demo2.py

mpl_toolkits.axes_grid1.mpl_axes

Classes

Axes(fig, rect, *[, facecolor, frameon, ...]) Build an axes in a figure.
SimpleAxisArtist(axis, axisnum, spine)
SimpleChainedObjects(objects)

mpl_toolkits.axes_grid1.mpl_axes.Axes

class mpl_toolkits.axes_grid1.mpl_axes.Axes(fig, rect, *, facecolor=None,
frameon=True, sharex=None,
sharey=None, label='', xs-
cale=None, yscale=None,
box_aspect=None, **kwargs)

Bases: matplotlib.axes._axes.Axes

Build an axes in a figure.

Parameters

fig
[Figure] The axes is build in the Figure fig.

rect
[[left, bottom, width, height]] The axes is build in the rectangle rect. rect is in
Figure coordinates.

sharex, sharey
[Axes, optional] The x or y axis is shared with the x or y axis in the input Axes.

frameon
[bool, default: True] Whether the axes frame is visible.

box_aspect
[float, optional] Set a fixed aspect for the axes box, i.e. the ratio of height to width.
See set_box_aspect for details.

**kwargs

3014 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Other optional keyword arguments:

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown

continues on next page

19.1. Toolkits 3015

Matplotlib, Release 3.4.3

Table 22 – continued from previous page
Property Description
xticks unknown
ybound unknown
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

Returns

Axes

The new Axes object.

class AxisDict(axes)
Bases: dict

__call__(*v, **kwargs)
Call self as a function.

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axes_grid1.mpl_axes', '__init__': <function Axes.AxisDict.__init__>, '__getitem__': <function Axes.AxisDict.__getitem__>, '__call__': <function Axes.AxisDict.__call__>, '__dict__': <attribute '__dict__' of 'AxisDict' objects>, '__weakref__': <attribute '__weakref__' of 'AxisDict' objects>, '__doc__': None, '__annotations__': {}})

__getitem__(k)
x.__getitem__(y) <==> x[y]

__init__(axes)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.mpl_axes'

__weakref__
list of weak references to the object (if defined)

__module__ = 'mpl_toolkits.axes_grid1.mpl_axes'

property axis
Convenience method to get or set some axis properties.

Call signatures:

xmin, xmax, ymin, ymax = axis()
xmin, xmax, ymin, ymax = axis([xmin, xmax, ymin, ymax])
xmin, xmax, ymin, ymax = axis(option)
xmin, xmax, ymin, ymax = axis(**kwargs)

Parameters

xmin, xmax, ymin, ymax

3016 Chapter 19. Toolkits

https://docs.python.org/3/library/stdtypes.html#dict

Matplotlib, Release 3.4.3

[float, optional] The axis limits to be set. This can also be achieved using

ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax))

option
[bool or str] If a bool, turns axis lines and labels on or off. If a string, possible
values are:

ValueDescription
'on' Turn on axis lines and labels. Same as True.
'off' Turn off axis lines and labels. Same as False.
'equal'Set equal scaling (i.e., make circles circular) by changing axis lim-

its. This is the same as ax.set_aspect('equal', ad-
justable='datalim'). Explicit data limits may not be respected
in this case.

'scaled'Set equal scaling (i.e., make circles circular) by changing dimensions
of the plot box. This is the same as ax.set_aspect('equal',
adjustable='box', anchor='C'). Additionally, further au-
toscaling will be disabled.

'tight' Set limits just large enough to show all data, then disable further au-
toscaling.

'auto' Automatic scaling (fill plot box with data).
'im-
age'

'scaled' with axis limits equal to data limits.

'square'Square plot; similar to 'scaled', but initially forcing xmax-xmin ==
ymax-ymin.

emit
[bool, default: True] Whether observers are notified of the axis limit change.
This option is passed on to set_xlim and set_ylim.

Returns

xmin, xmax, ymin, ymax
[float] The axis limits.

See also:

matplotlib.axes.Axes.set_xlim

matplotlib.axes.Axes.set_ylim

cla()
Clear the axes.

19.1. Toolkits 3017

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.mpl_axes.Axes

• sphx_glr_gallery_axes_grid1_demo_axes_divider.py

• sphx_glr_gallery_axes_grid1_demo_axes_grid2.py

• sphx_glr_gallery_axes_grid1_parasite_simple2.py

• sphx_glr_gallery_axes_grid1_simple_axesgrid.py

• sphx_glr_gallery_axes_grid1_simple_axesgrid2.py

• Tight Layout guide

mpl_toolkits.axes_grid1.mpl_axes.SimpleAxisArtist

class mpl_toolkits.axes_grid1.mpl_axes.SimpleAxisArtist(axis, axisnum,
spine)

Bases: matplotlib.artist.Artist

__init__(axis, axisnum, spine)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.mpl_axes'

property label

property major_ticklabels

property major_ticks

set_label(txt)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_visible(b)
Set the artist's visibility.

Parameters

b
[bool]

toggle(all=None, ticks=None, ticklabels=None, label=None)

3018 Chapter 19. Toolkits

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.mpl_axes.SimpleAxisArtist

mpl_toolkits.axes_grid1.mpl_axes.SimpleChainedObjects

class mpl_toolkits.axes_grid1.mpl_axes.SimpleChainedObjects(objects)
Bases: object

__call__(*args, **kwargs)
Call self as a function.

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axes_grid1.mpl_axes', '__init__': <function SimpleChainedObjects.__init__>, '__getattr__': <function SimpleChainedObjects.__getattr__>, '__call__': <function SimpleChainedObjects.__call__>, '__dict__': <attribute '__dict__' of 'SimpleChainedObjects' objects>, '__weakref__': <attribute '__weakref__' of 'SimpleChainedObjects' objects>, '__doc__': None, '__annotations__': {}})

__getattr__(k)

__init__(objects)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.mpl_axes'

__weakref__
list of weak references to the object (if defined)

Examples using mpl_toolkits.axes_grid1.mpl_axes.SimpleChainedObjects

mpl_toolkits.axes_grid1.parasite_axes

Classes

HostAxes alias of mpl_toolkits.axes_grid1.
parasite_axes.AxesHostAxes

HostAxesBase(*args, **kwargs)
ParasiteAxes alias of mpl_toolkits.axes_grid1.

parasite_axes.AxesParasite

ParasiteAxesAuxTrans alias of mpl_toolkits.
axes_grid1.parasite_axes.
AxesParasiteParasiteAuxTrans

ParasiteAxesAuxTransBase(parent_axes,
...[, ...])

[Deprecated]

ParasiteAxesBase(parent_axes[, ...])

19.1. Toolkits 3019

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

mpl_toolkits.axes_grid1.parasite_axes.HostAxes

mpl_toolkits.axes_grid1.parasite_axes.HostAxes
alias of mpl_toolkits.axes_grid1.parasite_axes.AxesHostAxes

mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase

class mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase(*args,
**kwargs)

Bases: object

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axes_grid1.parasite_axes', '__init__': <function HostAxesBase.__init__>, 'get_aux_axes': <function HostAxesBase.get_aux_axes>, '_get_legend_handles': <function HostAxesBase._get_legend_handles>, 'draw': <function HostAxesBase.draw>, 'cla': <function HostAxesBase.cla>, 'pick': <function HostAxesBase.pick>, 'twinx': <function HostAxesBase.twinx>, 'twiny': <function HostAxesBase.twiny>, 'twin': <function HostAxesBase.twin>, '_add_twin_axes': <function HostAxesBase._add_twin_axes>, '_remove_any_twin': <function HostAxesBase._remove_any_twin>, 'get_tightbbox': <function HostAxesBase.get_tightbbox>, '__dict__': <attribute '__dict__' of 'HostAxesBase' objects>, '__weakref__': <attribute '__weakref__' of 'HostAxesBase' objects>, '__doc__': None, '__annotations__': {}})

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.parasite_axes'

__weakref__
list of weak references to the object (if defined)

cla()

draw(renderer)

get_aux_axes(tr=None, viewlim_mode='equal', axes_class=<class
'mpl_toolkits.axes_grid1.mpl_axes.Axes'>)

Add a parasite axes to this host.

Despite this method's name, this should actually be thought of as an add_parasite_axes
method.

tr may be Transform, in which case the following relation will hold: parasite.
transData = tr + host.transData. Alternatively, it may be None (the default),
no special relationship will hold between the parasite's and the host's transData.

get_tightbbox(renderer, call_axes_locator=True, bbox_extra_artists=None)

pick(mouseevent)

twin(aux_trans=None, axes_class=None)
Create a twin of Axes with no shared axis.

While self will have ticks on the left and bottom axis, the returned axes will have ticks on the top
and right axis.

twinx(axes_class=None)
Create a twin of Axes with a shared x-axis but independent y-axis.

The y-axis of self will have ticks on the left and the returned axes will have ticks on the right.

twiny(axes_class=None)
Create a twin of Axes with a shared y-axis but independent x-axis.

The x-axis of self will have ticks on the bottom and the returned axes will have ticks on the top.

3020 Chapter 19. Toolkits

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase

• sphx_glr_gallery_axes_grid1_parasite_simple2.py

• sphx_glr_gallery_axisartist_demo_curvelinear_grid.py

• sphx_glr_gallery_axisartist_demo_floating_axes.py

• sphx_glr_gallery_axisartist_demo_floating_axis.py

• sphx_glr_gallery_axisartist_demo_parasite_axes.py

mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxes

mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxes
alias of mpl_toolkits.axes_grid1.parasite_axes.AxesParasite

mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesAuxTrans

mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesAuxTrans
alias of mpl_toolkits.axes_grid1.parasite_axes.AxesParasiteParasiteAuxTrans

mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesAuxTransBase

class mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesAuxTransBase(parent_axes,
aux_transform,
viewlim_mode=None,
**kwargs)

Bases: object

[Deprecated]

Notes

Deprecated since version 3.4:

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axes_grid1.parasite_axes', '__init__': <function ParasiteAxesAuxTransBase.__init__>, '_set_lim_and_transforms': <function ParasiteAxesAuxTransBase._set_lim_and_transforms>, 'set_viewlim_mode': <function ParasiteAxesAuxTransBase.set_viewlim_mode>, 'get_viewlim_mode': <function ParasiteAxesAuxTransBase.get_viewlim_mode>, 'update_viewlim': <function ParasiteAxesAuxTransBase.update_viewlim>, '_update_viewlim': <function ParasiteAxesAuxTransBase._update_viewlim>, 'apply_aspect': <function ParasiteAxesAuxTransBase.apply_aspect>, '__dict__': <attribute '__dict__' of 'ParasiteAxesAuxTransBase' objects>, '__weakref__': <attribute '__weakref__' of 'ParasiteAxesAuxTransBase' objects>, '__doc__': '[*Deprecated*] \n\nNotes\n-----\n.. deprecated:: 3.4\n \\ ', '__annotations__': {}})

__init__(parent_axes, aux_transform, viewlim_mode=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.parasite_axes'

__weakref__
list of weak references to the object (if defined)

apply_aspect(position=None)

get_viewlim_mode()

19.1. Toolkits 3021

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

set_viewlim_mode(mode)

update_viewlim()
[Deprecated]

Notes

Deprecated since version 3.4:

Examples using mpl_toolkits.axes_grid1.parasite_axes.
ParasiteAxesAuxTransBase

mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase

class mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase(parent_axes,
aux_transform=None,
*,
viewlim_mode=None,
**kwargs)

Bases: object

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axes_grid1.parasite_axes', '__init__': <function ParasiteAxesBase.__init__>, 'cla': <function ParasiteAxesBase.cla>, 'get_images_artists': <function ParasiteAxesBase.get_images_artists>, 'pick': <function ParasiteAxesBase.pick>, '_set_lim_and_transforms': <function ParasiteAxesBase._set_lim_and_transforms>, 'set_viewlim_mode': <function ParasiteAxesBase.set_viewlim_mode>, 'get_viewlim_mode': <function ParasiteAxesBase.get_viewlim_mode>, 'update_viewlim': <function ParasiteAxesBase.update_viewlim>, '_update_viewlim': <function ParasiteAxesBase._update_viewlim>, 'apply_aspect': <function ParasiteAxesBase.apply_aspect>, '__dict__': <attribute '__dict__' of 'ParasiteAxesBase' objects>, '__weakref__': <attribute '__weakref__' of 'ParasiteAxesBase' objects>, '__doc__': None, '__annotations__': {}})

__init__(parent_axes, aux_transform=None, *, viewlim_mode=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axes_grid1.parasite_axes'

__weakref__
list of weak references to the object (if defined)

apply_aspect(position=None)

cla()

get_images_artists()

get_viewlim_mode()

pick(mouseevent)

set_viewlim_mode(mode)

update_viewlim()
[Deprecated]

3022 Chapter 19. Toolkits

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.4:

Examples using mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase

• sphx_glr_gallery_axisartist_demo_parasite_axes.py

Functions

host_axes(*args[, axes_class, figure]) Create axes that can act as a hosts to parasitic axes.
host_axes_class_factory([axes_class])
host_subplot(*args[, axes_class, figure]) Create a subplot that can act as a host to parasitic

axes.
host_subplot_class_factory(axes_class)
parasite_axes_auxtrans_class_factory([...])[Deprecated]
parasite_axes_class_factory([axes_class])

mpl_toolkits.axes_grid1.parasite_axes.host_axes

mpl_toolkits.axes_grid1.parasite_axes.host_axes(*args, axes_class=<class
'mpl_toolkits.axes_grid1.mpl_axes.Axes'>,
figure=None, **kwargs)

Create axes that can act as a hosts to parasitic axes.

Parameters

figure
[matplotlib.figure.Figure] Figure to which the axes will be added. De-
faults to the current figure pyplot.gcf().

*args, **kwargs
Will be passed on to the underlying Axes object creation.

Examples using mpl_toolkits.axes_grid1.parasite_axes.host_axes

mpl_toolkits.axes_grid1.parasite_axes.host_axes_class_factory

mpl_toolkits.axes_grid1.parasite_axes.host_axes_class_factory(axes_class=None)

19.1. Toolkits 3023

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.parasite_axes.
host_axes_class_factory

mpl_toolkits.axes_grid1.parasite_axes.host_subplot

mpl_toolkits.axes_grid1.parasite_axes.host_subplot(*args,
axes_class=<class
'mpl_toolkits.axes_grid1.mpl_axes.Axes'>,
figure=None,
**kwargs)

Create a subplot that can act as a host to parasitic axes.

Parameters

figure
[matplotlib.figure.Figure] Figure to which the subplot will be added.
Defaults to the current figure pyplot.gcf().

*args, **kwargs
Will be passed on to the underlying Axes object creation.

Examples using mpl_toolkits.axes_grid1.parasite_axes.host_subplot

mpl_toolkits.axes_grid1.parasite_axes.host_subplot_class_factory

mpl_toolkits.axes_grid1.parasite_axes.host_subplot_class_factory(axes_class)

Examples using mpl_toolkits.axes_grid1.parasite_axes.
host_subplot_class_factory

mpl_toolkits.axes_grid1.parasite_axes.parasite_axes_auxtrans_class_factory

mpl_toolkits.axes_grid1.parasite_axes.parasite_axes_auxtrans_class_factory(axes_class=None)
[Deprecated]

Notes

Deprecated since version 3.4:

3024 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axes_grid1.parasite_axes.
parasite_axes_auxtrans_class_factory

mpl_toolkits.axes_grid1.parasite_axes.parasite_axes_class_factory

mpl_toolkits.axes_grid1.parasite_axes.parasite_axes_class_factory(axes_class=None)

Examples using mpl_toolkits.axes_grid1.parasite_axes.
parasite_axes_class_factory

19.1.3 Matplotlib axisartist Toolkit

The axisartist namespace includes a derived Axes implementation (mpl_toolkits.axisartist.
Axes). The biggest difference is that the artists that are responsible for drawing axis lines, ticks, ticklabels,
and axis labels are separated out from the mpl's Axis class. This change was strongly motivated to support
curvilinear grid.

You can find a tutorial describing usage of axisartist at the axisartist user guide.

The submodules of the axisartist API are:

axisartist.angle_helper

axisartist.axes_divider

axisartist.axes_grid

axisartist.axes_rgb

axisartist.axis_artist The axis_artist module implements custom
artists to draw axis elements (axis lines and labels,
tick lines and labels, grid lines).

axisartist.axisline_style

axisartist.axislines Axislines includes modified implementation of the
Axes class.

axisartist.clip_path

axisartist.floating_axes An experimental support for curvilinear grid.
axisartist.grid_finder

continues on next page

19.1. Toolkits 3025

../../gallery/axisartist/demo_curvelinear_grid.html

Matplotlib, Release 3.4.3

Table 25 – continued from previous page
axisartist.grid_helper_curvelinear An experimental support for curvilinear grid.
axisartist.parasite_axes

mpl_toolkits.axisartist.angle_helper

Classes

ExtremeFinderCycle(nx, ny[, lon_cycle, ...]) This subclass handles the case where one or both
coordinates should be taken modulo 360, or be re-
stricted to not exceed a specific range.

FormatterDMS()
FormatterHMS()
LocatorBase(nbins[, include_last])
LocatorD(nbins[, include_last])
LocatorDM (nbins[, include_last])
LocatorDMS(nbins[, include_last])
LocatorH(nbins[, include_last])
LocatorHM (nbins[, include_last])
LocatorHMS(nbins[, include_last])

mpl_toolkits.axisartist.angle_helper.ExtremeFinderCycle

class mpl_toolkits.axisartist.angle_helper.ExtremeFinderCycle(nx, ny,
lon_cycle=360.0,
lat_cycle=None,
lon_minmax=None,
lat_minmax=(-
90,
90))

Bases: mpl_toolkits.axisartist.grid_finder.ExtremeFinderSimple

This subclass handles the case where one or both coordinates should be taken modulo 360, or be
restricted to not exceed a specific range.

Parameters

nx, ny
[int] The number of samples in each direction.

lon_cycle, lat_cycle
[360 or None] If not None, values in the corresponding direction are taken modulo
lon_cycle or lat_cycle; in theory this can be any number but the implementation
actually assumes that it is 360 (if not None); other values give nonsensical results.

3026 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

This is done by "unwrapping" the transformed grid coordinates so that jumps are
less than a half-cycle; then normalizing the span to no more than a full cycle.

For example, if values are in the union of the [0, 2] and [358, 360] intervals (typi-
cally, angles measured modulo 360), the values in the second interval are normal-
ized to [-2, 0] instead so that the values now cover [-2, 2]. If values are in a range
of [5, 1000], this gets normalized to [5, 365].

lon_minmax, lat_minmax
[(float, float) or None] If not None, the computed bounding box is clipped to the
given range in the corresponding direction.

__call__(transform_xy, x1, y1, x2, y2)
Compute an approximation of the bounding box obtained by applying transform_xy to the box
delimited by (x1, y1, x2, y2).

The intended use is to have (x1, y1, x2, y2) in axes coordinates, and have transform_xy
be the transform from axes coordinates to data coordinates; this method then returns the range
of data coordinates that span the actual axes.

The computation is done by sampling nx * ny equispaced points in the (x1, y1, x2,
y2) box and finding the resulting points with extremal coordinates; then adding some padding
to take into account the finite sampling.

As each sampling step covers a relative range of 1/nx or 1/ny, the padding is computed by ex-
panding the span covered by the extremal coordinates by these fractions.

__init__(nx, ny, lon_cycle=360.0, lat_cycle=None, lon_minmax=None, lat_minmax=(- 90,
90))

This subclass handles the case where one or both coordinates should be taken modulo 360, or be
restricted to not exceed a specific range.

Parameters

nx, ny
[int] The number of samples in each direction.

lon_cycle, lat_cycle
[360 or None] If not None, values in the corresponding direction are taken mod-
ulo lon_cycle or lat_cycle; in theory this can be any number but the implemen-
tation actually assumes that it is 360 (if not None); other values give nonsensical
results.

This is done by "unwrapping" the transformed grid coordinates so that jumps are
less than a half-cycle; then normalizing the span to no more than a full cycle.

For example, if values are in the union of the [0, 2] and [358, 360] intervals
(typically, angles measured modulo 360), the values in the second interval are
normalized to [-2, 0] instead so that the values now cover [-2, 2]. If values are
in a range of [5, 1000], this gets normalized to [5, 365].

19.1. Toolkits 3027

Matplotlib, Release 3.4.3

lon_minmax, lat_minmax
[(float, float) or None] If not None, the computed bounding box is clipped to the
given range in the corresponding direction.

__module__ = 'mpl_toolkits.axisartist.angle_helper'

Examples using mpl_toolkits.axisartist.angle_helper.ExtremeFinderCycle

• sphx_glr_gallery_axisartist_demo_axis_direction.py

• sphx_glr_gallery_axisartist_demo_curvelinear_grid.py

• sphx_glr_gallery_axisartist_demo_floating_axis.py

• sphx_glr_gallery_axisartist_simple_axis_pad.py

mpl_toolkits.axisartist.angle_helper.FormatterDMS

class mpl_toolkits.axisartist.angle_helper.FormatterDMS
Bases: object

__call__(direction, factor, values)
Call self as a function.

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axisartist.angle_helper', 'deg_mark': '^{\\circ}', 'min_mark': '^{\\prime}', 'sec_mark': '^{\\prime\\prime}', 'fmt_d': '$%d^{\\circ}$', 'fmt_ds': '$%d.%s^{\\circ}$', 'fmt_d_m': '$%s%d^{\\circ}\\,%02d^{\\prime}$', 'fmt_d_ms': '$%s%d^{\\circ}\\,%02d.%s^{\\prime}$', 'fmt_d_m_partial': '$%s%d^{\\circ}\\,%02d^{\\prime}\\,', 'fmt_s_partial': '%02d^{\\prime\\prime}$', 'fmt_ss_partial': '%02d.%s^{\\prime\\prime}$', '_get_number_fraction': <function FormatterDMS._get_number_fraction>, '__call__': <function FormatterDMS.__call__>, '__dict__': <attribute '__dict__' of 'FormatterDMS' objects>, '__weakref__': <attribute '__weakref__' of 'FormatterDMS' objects>, '__doc__': None, '__annotations__': {}})

__module__ = 'mpl_toolkits.axisartist.angle_helper'

__weakref__
list of weak references to the object (if defined)

deg_mark = '^{\\circ}'

fmt_d = '$%d^{\\circ}$'

fmt_d_m = '$%s%d^{\\circ}\\,%02d^{\\prime}$'

fmt_d_m_partial = '$%s%d^{\\circ}\\,%02d^{\\prime}\\,'

fmt_d_ms = '$%s%d^{\\circ}\\,%02d.%s^{\\prime}$'

fmt_ds = '$%d.%s^{\\circ}$'

fmt_s_partial = '%02d^{\\prime\\prime}$'

fmt_ss_partial = '%02d.%s^{\\prime\\prime}$'

min_mark = '^{\\prime}'

sec_mark = '^{\\prime\\prime}'

3028 Chapter 19. Toolkits

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axisartist.angle_helper.FormatterDMS

• sphx_glr_gallery_axisartist_demo_axis_direction.py

• sphx_glr_gallery_axisartist_demo_curvelinear_grid.py

• sphx_glr_gallery_axisartist_demo_floating_axes.py

• sphx_glr_gallery_axisartist_demo_floating_axis.py

• sphx_glr_gallery_axisartist_simple_axis_pad.py

mpl_toolkits.axisartist.angle_helper.FormatterHMS

class mpl_toolkits.axisartist.angle_helper.FormatterHMS
Bases: mpl_toolkits.axisartist.angle_helper.FormatterDMS

__call__(direction, factor, values)
Call self as a function.

__module__ = 'mpl_toolkits.axisartist.angle_helper'

deg_mark = '^\\mathrm{h}'

fmt_d = '$%d^\\mathrm{h}$'

fmt_d_m = '$%s%d^\\mathrm{h}\\,%02d^\\mathrm{m}$'

fmt_d_m_partial = '$%s%d^\\mathrm{h}\\,%02d^\\mathrm{m}\\,'

fmt_d_ms = '$%s%d^\\mathrm{h}\\,%02d.%s^\\mathrm{m}$'

fmt_ds = '$%d.%s^\\mathrm{h}$'

fmt_s_partial = '%02d^\\mathrm{s}$'

fmt_ss_partial = '%02d.%s^\\mathrm{s}$'

min_mark = '^\\mathrm{m}'

sec_mark = '^\\mathrm{s}'

Examples using mpl_toolkits.axisartist.angle_helper.FormatterHMS

• sphx_glr_gallery_axisartist_demo_floating_axes.py

19.1. Toolkits 3029

Matplotlib, Release 3.4.3

mpl_toolkits.axisartist.angle_helper.LocatorBase

class mpl_toolkits.axisartist.angle_helper.LocatorBase(nbins, in-
clude_last=True)

Bases: object

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axisartist.angle_helper', '__init__': <function LocatorBase.__init__>, 'den': <matplotlib._api.deprecation.deprecated.<locals>.deprecate.<locals>._deprecated_property object>, 'set_params': <function LocatorBase.set_params>, '__dict__': <attribute '__dict__' of 'LocatorBase' objects>, '__weakref__': <attribute '__weakref__' of 'LocatorBase' objects>, '__doc__': None, '__annotations__': {}})

__init__(nbins, include_last=True)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axisartist.angle_helper'

__weakref__
list of weak references to the object (if defined)

property den

set_params(nbins=None)

Examples using mpl_toolkits.axisartist.angle_helper.LocatorBase

• sphx_glr_gallery_axisartist_demo_axis_direction.py

• sphx_glr_gallery_axisartist_demo_curvelinear_grid.py

• sphx_glr_gallery_axisartist_demo_floating_axes.py

• sphx_glr_gallery_axisartist_demo_floating_axis.py

• sphx_glr_gallery_axisartist_simple_axis_pad.py

mpl_toolkits.axisartist.angle_helper.LocatorD

class mpl_toolkits.axisartist.angle_helper.LocatorD(nbins, in-
clude_last=True)

Bases: mpl_toolkits.axisartist.angle_helper.LocatorBase

__call__(v1, v2)
Call self as a function.

__module__ = 'mpl_toolkits.axisartist.angle_helper'

3030 Chapter 19. Toolkits

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axisartist.angle_helper.LocatorD

mpl_toolkits.axisartist.angle_helper.LocatorDM

class mpl_toolkits.axisartist.angle_helper.LocatorDM(nbins, in-
clude_last=True)

Bases: mpl_toolkits.axisartist.angle_helper.LocatorBase

__call__(v1, v2)
Call self as a function.

__module__ = 'mpl_toolkits.axisartist.angle_helper'

Examples using mpl_toolkits.axisartist.angle_helper.LocatorDM

mpl_toolkits.axisartist.angle_helper.LocatorDMS

class mpl_toolkits.axisartist.angle_helper.LocatorDMS(nbins, in-
clude_last=True)

Bases: mpl_toolkits.axisartist.angle_helper.LocatorBase

__call__(v1, v2)
Call self as a function.

__module__ = 'mpl_toolkits.axisartist.angle_helper'

Examples using mpl_toolkits.axisartist.angle_helper.LocatorDMS

• sphx_glr_gallery_axisartist_demo_axis_direction.py

• sphx_glr_gallery_axisartist_demo_curvelinear_grid.py

• sphx_glr_gallery_axisartist_demo_floating_axis.py

• sphx_glr_gallery_axisartist_simple_axis_pad.py

mpl_toolkits.axisartist.angle_helper.LocatorH

class mpl_toolkits.axisartist.angle_helper.LocatorH(nbins, in-
clude_last=True)

Bases: mpl_toolkits.axisartist.angle_helper.LocatorBase

__call__(v1, v2)
Call self as a function.

__module__ = 'mpl_toolkits.axisartist.angle_helper'

19.1. Toolkits 3031

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axisartist.angle_helper.LocatorH

mpl_toolkits.axisartist.angle_helper.LocatorHM

class mpl_toolkits.axisartist.angle_helper.LocatorHM(nbins, in-
clude_last=True)

Bases: mpl_toolkits.axisartist.angle_helper.LocatorBase

__call__(v1, v2)
Call self as a function.

__module__ = 'mpl_toolkits.axisartist.angle_helper'

Examples using mpl_toolkits.axisartist.angle_helper.LocatorHM

mpl_toolkits.axisartist.angle_helper.LocatorHMS

class mpl_toolkits.axisartist.angle_helper.LocatorHMS(nbins, in-
clude_last=True)

Bases: mpl_toolkits.axisartist.angle_helper.LocatorBase

__call__(v1, v2)
Call self as a function.

__module__ = 'mpl_toolkits.axisartist.angle_helper'

Examples using mpl_toolkits.axisartist.angle_helper.LocatorHMS

• sphx_glr_gallery_axisartist_demo_floating_axes.py

Functions

select_step(v1, v2, nv[, hour, ...])
select_step24(v1, v2, nv[, include_last, ...])
select_step360(v1, v2, nv[, include_last, ...])
select_step_degree(dv)
select_step_hour(dv)
select_step_sub(dv)

3032 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

mpl_toolkits.axisartist.angle_helper.select_step

mpl_toolkits.axisartist.angle_helper.select_step(v1, v2, nv, hour=False,
include_last=True, thresh-
old_factor=3600.0)

Examples using mpl_toolkits.axisartist.angle_helper.select_step

mpl_toolkits.axisartist.angle_helper.select_step24

mpl_toolkits.axisartist.angle_helper.select_step24(v1, v2, nv, in-
clude_last=True,
thresh-
old_factor=3600)

Examples using mpl_toolkits.axisartist.angle_helper.select_step24

mpl_toolkits.axisartist.angle_helper.select_step360

mpl_toolkits.axisartist.angle_helper.select_step360(v1, v2, nv, in-
clude_last=True,
thresh-
old_factor=3600)

Examples using mpl_toolkits.axisartist.angle_helper.select_step360

mpl_toolkits.axisartist.angle_helper.select_step_degree

mpl_toolkits.axisartist.angle_helper.select_step_degree(dv)

Examples using mpl_toolkits.axisartist.angle_helper.select_step_degree

mpl_toolkits.axisartist.angle_helper.select_step_hour

mpl_toolkits.axisartist.angle_helper.select_step_hour(dv)

19.1. Toolkits 3033

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axisartist.angle_helper.select_step_hour

mpl_toolkits.axisartist.angle_helper.select_step_sub

mpl_toolkits.axisartist.angle_helper.select_step_sub(dv)

Examples using mpl_toolkits.axisartist.angle_helper.select_step_sub

mpl_toolkits.axisartist.axes_divider

mpl_toolkits.axisartist.axes_grid

Classes

AxesGrid alias of mpl_toolkits.axisartist.
axes_grid.ImageGrid

CbarAxes(*args, orientation, **kwargs)
Grid(fig, rect, nrows_ncols[, ngrids, ...])

Parameters

ImageGrid(fig, rect, nrows_ncols[, ngrids, ...])
Parameters

mpl_toolkits.axisartist.axes_grid.AxesGrid

mpl_toolkits.axisartist.axes_grid.AxesGrid
alias of mpl_toolkits.axisartist.axes_grid.ImageGrid

mpl_toolkits.axisartist.axes_grid.CbarAxes

class mpl_toolkits.axisartist.axes_grid.CbarAxes(*args, orientation,
**kwargs)

Bases: mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase, mpl_toolkits.
axisartist.axislines.Axes

__module__ = 'mpl_toolkits.axisartist.axes_grid'

3034 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axisartist.axes_grid.CbarAxes

mpl_toolkits.axisartist.axes_grid.Grid

class mpl_toolkits.axisartist.axes_grid.Grid(fig, rect, nrows_ncols,
ngrids=None, direc-
tion='row', axes_pad=0.02,
add_all=<deprecated pa-
rameter>, share_all=False,
share_x=True, share_y=True, la-
bel_mode='L', axes_class=None,
*, aspect=False)

Bases: mpl_toolkits.axes_grid1.axes_grid.Grid

Parameters

fig
[Figure] The parent figure.

rect
[(float, float, float, float) or int] The axes position, as a (left, bottom,
width, height) tuple or as a three-digit subplot position code (e.g., "121").

nrows_ncols
[(int, int)] Number of rows and columns in the grid.

ngrids
[int or None, default: None] If not None, only the first ngrids axes in the grid are
created.

direction
[{"row", "column"}, default: "row"] Whether axes are created in row-major ("row
by row") or column-major order ("column by column").

axes_pad
[float or (float, float), default: 0.02] Padding or (horizontal padding, vertical
padding) between axes, in inches.

add_all
[bool, default: True] Whether to add the axes to the figure using Figure.
add_axes. This parameter is deprecated.

share_all
[bool, default: False]Whether all axes share their x- and y-axis. Overrides share_x
and share_y.

share_x

19.1. Toolkits 3035

Matplotlib, Release 3.4.3

[bool, default: True] Whether all axes of a column share their x-axis.

share_y
[bool, default: True] Whether all axes of a row share their y-axis.

label_mode
[{"L", "1", "all"}, default: "L"] Determines which axes will get tick labels:

• "L": All axes on the left column get vertical tick labels; all axes on the bottom
row get horizontal tick labels.

• "1": Only the bottom left axes is labelled.

• "all": all axes are labelled.

axes_class
[subclass of matplotlib.axes.Axes, default: None]

aspect
[bool, default: False] Whether the axes aspect ratio follows the aspect ratio of the
data limits.

__module__ = 'mpl_toolkits.axisartist.axes_grid'

Examples using mpl_toolkits.axisartist.axes_grid.Grid

mpl_toolkits.axisartist.axes_grid.ImageGrid

class mpl_toolkits.axisartist.axes_grid.ImageGrid(fig, rect, nrows_ncols,
ngrids=None, di-
rection='row',
axes_pad=0.02,
add_all=<deprecated
parameter>,
share_all=False,
aspect=True, la-
bel_mode='L',
cbar_mode=None,
cbar_location='right',
cbar_pad=None,
cbar_size='5%',
cbar_set_cax=True,
axes_class=None)

Bases: mpl_toolkits.axes_grid1.axes_grid.ImageGrid

Parameters

fig

3036 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

[Figure] The parent figure.

rect
[(float, float, float, float) or int] The axes position, as a (left, bottom,
width, height) tuple or as a three-digit subplot position code (e.g., "121").

nrows_ncols
[(int, int)] Number of rows and columns in the grid.

ngrids
[int or None, default: None] If not None, only the first ngrids axes in the grid are
created.

direction
[{"row", "column"}, default: "row"] Whether axes are created in row-major ("row
by row") or column-major order ("column by column"). This also affects the order
in which axes are accessed using indexing (grid[index]).

axes_pad
[float or (float, float), default: 0.02in] Padding or (horizontal padding, vertical
padding) between axes, in inches.

add_all
[bool, default: True] Whether to add the axes to the figure using Figure.
add_axes. This parameter is deprecated.

share_all
[bool, default: False] Whether all axes share their x- and y-axis.

aspect
[bool, default: True] Whether the axes aspect ratio follows the aspect ratio of the
data limits.

label_mode
[{"L", "1", "all"}, default: "L"] Determines which axes will get tick labels:

• "L": All axes on the left column get vertical tick labels; all axes on the bottom
row get horizontal tick labels.

• "1": Only the bottom left axes is labelled.

• "all": all axes are labelled.

cbar_mode
[{"each", "single", "edge", None}, default: None] Whether to create a colorbar for
"each" axes, a "single" colorbar for the entire grid, colorbars only for axes on the
"edge" determined by cbar_location, or no colorbars. The colorbars are stored in
the cbar_axes attribute.

19.1. Toolkits 3037

Matplotlib, Release 3.4.3

cbar_location
[{"left", "right", "bottom", "top"}, default: "right"]

cbar_pad
[float, default: None] Padding between the image axes and the colorbar axes.

cbar_size
[size specification (see Size.from_any), default: "5%"] Colorbar size.

cbar_set_cax
[bool, default: True] If True, each axes in the grid has a cax attribute that is bound
to associated cbar_axes.

axes_class
[subclass of matplotlib.axes.Axes, default: None]

__module__ = 'mpl_toolkits.axisartist.axes_grid'

Examples using mpl_toolkits.axisartist.axes_grid.ImageGrid

mpl_toolkits.axisartist.axes_rgb

Classes

RGBAxes(*args[, pad, add_all])
Parameters

mpl_toolkits.axisartist.axes_rgb.RGBAxes

class mpl_toolkits.axisartist.axes_rgb.RGBAxes(*args, pad=0,
add_all=<deprecated pa-
rameter>, **kwargs)

Bases: mpl_toolkits.axes_grid1.axes_rgb.RGBAxes

Parameters

pad
[float, default: 0] fraction of the axes height to put as padding.

add_all
[bool, default: True] Whether to add the {rgb, r, g, b} axes to the figure. This
parameter is deprecated.

3038 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

axes_class
[matplotlib.axes.Axes]

*args
Unpacked into axes_class() init for RGB

**kwargs
Unpacked into axes_class() init for RGB, R, G, B axes

__module__ = 'mpl_toolkits.axisartist.axes_rgb'

Examples using mpl_toolkits.axisartist.axes_rgb.RGBAxes

mpl_toolkits.axisartist.axis_artist

The axis_artist module implements custom artists to draw axis elements (axis lines and labels, tick
lines and labels, grid lines).

Axis lines and labels and tick lines and labels aremanaged by theAxisArtist class; grid lines aremanaged
by the GridlinesCollection class.

There is one AxisArtist per Axis; it can be accessed through the axis dictionary of the parent Axes
(which should be a mpl_toolkits.axislines.Axes), e.g. ax.axis["bottom"].

Children of the AxisArtist are accessed as attributes: .line and .label for the axis line and label, .
major_ticks, .major_ticklabels, .minor_ticks, .minor_ticklabels for the tick lines
and labels (e.g. ax.axis["bottom"].line).

Children properties (colors, fonts, line widths, etc.) can be set using setters, e.g.

Make the major ticks of the bottom axis red.
ax.axis["bottom"].major_ticks.set_color("red")

However, things like the locations of ticks, and their ticklabels need to be changed from the side of the
grid_helper.

axis_direction

AxisArtist, AxisLabel, TickLabels have an axis_direction attribute, which adjusts the location,
angle, etc. The axis_direction must be one of "left", "right", "bottom", "top", and follows the Matplotlib
convention for rectangular axis.

For example, for the bottom axis (the left and right is relative to the direction of the increasing coordinate),

• ticklabels and axislabel are on the right

• ticklabels and axislabel have text angle of 0

• ticklabels are baseline, center-aligned

19.1. Toolkits 3039

Matplotlib, Release 3.4.3

• axislabel is top, center-aligned

The text angles are actually relative to (90 + angle of the direction to the ticklabel), which gives 0 for bottom
axis.

Parameter left bottom right top
ticklabels location left right right left
axislabel location left right right left
ticklabels angle 90 0 -90 180
axislabel angle 180 0 0 180
ticklabel va center baseline center baseline
axislabel va center top center bottom
ticklabel ha right center right center
axislabel ha right center right center

Ticks are by default direct opposite side of the ticklabels. To make ticks to the same side of the ticklabels,

ax.axis["bottom"].major_ticks.set_tick_out(True)

The following attributes can be customized (use the set_xxx methods):

• Ticks: ticksize, tick_out

• TickLabels: pad

• AxisLabel: pad

Classes

AttributeCopier()
AxisArtist(axes, helper[, offset, ...]) An artist which draws axis (a line along which the

n-th axes coord is constant) line, ticks, ticklabels,
and axis label.

AxisLabel(*args[, axis_direction, axis]) Axis Label.
GridlinesCollection(*args[, which, axis])

Parameters

LabelBase(*args, **kwargs) A base class for AxisLabel and TickLabels.
TickLabels(*[, axis_direction]) Tick Labels.
Ticks(ticksize[, tick_out, axis]) Ticks are derived from Line2D, and note that ticks

themselves are markers.

3040 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

mpl_toolkits.axisartist.axis_artist.AttributeCopier

class mpl_toolkits.axisartist.axis_artist.AttributeCopier
Bases: object

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axisartist.axis_artist', 'get_ref_artist': <function AttributeCopier.get_ref_artist>, 'get_attribute_from_ref_artist': <function AttributeCopier.get_attribute_from_ref_artist>, '__dict__': <attribute '__dict__' of 'AttributeCopier' objects>, '__weakref__': <attribute '__weakref__' of 'AttributeCopier' objects>, '__doc__': None, '__annotations__': {}})

__module__ = 'mpl_toolkits.axisartist.axis_artist'

__weakref__
list of weak references to the object (if defined)

get_attribute_from_ref_artist(attr_name)

get_ref_artist()
Return the underlying artist that actually defines some properties (e.g., color) of this artist.

Examples using mpl_toolkits.axisartist.axis_artist.AttributeCopier

mpl_toolkits.axisartist.axis_artist.AxisArtist

class mpl_toolkits.axisartist.axis_artist.AxisArtist(axes, helper,
offset=None,
axis_direction='bottom',
**kwargs)

Bases: matplotlib.artist.Artist

An artist which draws axis (a line along which the n-th axes coord is constant) line, ticks, ticklabels,
and axis label.

Parameters

axes
[mpl_toolkits.axisartist.axislines.Axes]

helper
[AxisArtistHelper]

property LABELPAD

ZORDER = 2.5

__init__(axes, helper, offset=None, axis_direction='bottom', **kwargs)

Parameters

axes
[mpl_toolkits.axisartist.axislines.Axes]

19.1. Toolkits 3041

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

helper
[AxisArtistHelper]

__module__ = 'mpl_toolkits.axisartist.axis_artist'

property dpi_transform

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

get_axisline_style()
Return the current axisline style.

get_helper()
Return axis artist helper instance.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

get_transform()
Return the Transform instance used by this artist.

invert_ticklabel_direction()

set_axis_direction(axis_direction)
Adjust the direction, text angle, text alignment of ticklabels, labels following the matplotlib con-
vention for the rectangle axes.

3042 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

The axis_direction must be one of [left, right, bottom, top].

property left bottom right top
ticklabels location "-" "+" "+" "-"
axislabel location "-" "+" "+" "-"
ticklabels angle 90 0 -90 180
ticklabel va center baseline center baseline
ticklabel ha right center right center
axislabel angle 180 0 0 180
axislabel va center top center bottom
axislabel ha right center right center

Note that the direction "+" and "-" are relative to the direction of the increasing coordinate. Also,
the text angles are actually relative to (90 + angle of the direction to the ticklabel), which gives
0 for bottom axis.

set_axislabel_direction(label_direction)
Adjust the direction of the axislabel.

Note that the label_directions '+' and '-' are relative to the direction of the increasing coordinate.

Parameters

label_direction
[{"+", "-"}]

set_axisline_style(axisline_style=None, **kwargs)
Set the axisline style.

The new style is completely defined by the passed attributes. Existing style attributes are forgot-
ten.

Parameters

axisline_style
[str or None] The line style, e.g. '->', optionally followed by a comma-separated
list of attributes. Alternatively, the attributes can be provided as keywords.

If None this returns a string containing the available styles.

19.1. Toolkits 3043

Matplotlib, Release 3.4.3

Examples

The following two commands are equal: >>> set_axisline_style("->,size=1.5") >>>
set_axisline_style("->", size=1.5)

set_label(s)
Set a label that will be displayed in the legend.

Parameters

s
[object] s will be converted to a string by calling str.

set_ticklabel_direction(tick_direction)
Adjust the direction of the ticklabel.

Note that the label_directions '+' and '-' are relative to the direction of the increasing coordinate.

Parameters

tick_direction
[{"+", "-"}]

toggle(all=None, ticks=None, ticklabels=None, label=None)
Toggle visibility of ticks, ticklabels, and (axis) label. To turn all off,

axis.toggle(all=False)

To turn all off but ticks on

axis.toggle(all=False, ticks=True)

To turn all on but (axis) label off

axis.toggle(all=True, label=False))

zorder = 2.5

Examples using mpl_toolkits.axisartist.axis_artist.AxisArtist

mpl_toolkits.axisartist.axis_artist.AxisLabel

class mpl_toolkits.axisartist.axis_artist.AxisLabel(*args,
axis_direction='bottom',
axis=None,
**kwargs)

Bases: mpl_toolkits.axisartist.axis_artist.AttributeCopier,
mpl_toolkits.axisartist.axis_artist.LabelBase

3044 Chapter 19. Toolkits

https://docs.python.org/3/library/stdtypes.html#str

Matplotlib, Release 3.4.3

Axis Label. Derived from Text. The position of the text is updated in the fly, so changing text position
has no effect. Otherwise, the properties can be changed as a normal Text.

To change the pad between ticklabels and axis label, use set_pad.

__init__(*args, axis_direction='bottom', axis=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axisartist.axis_artist'

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

get_color()
Return the color of the text.

get_pad()
Return the internal pad in points.

See set_pad for more details.

get_ref_artist()
Return the underlying artist that actually defines some properties (e.g., color) of this artist.

get_text()
Return the text string.

get_window_extent(renderer)
Return the Bbox bounding the text, in display units.

In addition to being used internally, this is useful for specifying clickable regions in a png file on
a web page.

Parameters

renderer
[Renderer, optional] A renderer is needed to compute the bounding box. If the
artist has already been drawn, the renderer is cached; thus, it is only necessary to
pass this argument when calling get_window_extent before the first draw.
In practice, it is usually easier to trigger a draw first (e.g. by saving the figure).

19.1. Toolkits 3045

Matplotlib, Release 3.4.3

dpi
[float, optional] The dpi value for computing the bbox, defaults to self.
figure.dpi (not the renderer dpi); should be set e.g. if to match regions
with a figure saved with a custom dpi value.

set_axis_direction(d)
Adjust the text angle and text alignment of axis label according to the matplotlib convention.

property left bottom right top
axislabel angle 180 0 0 180
axislabel va center top center bottom
axislabel ha right center right center

Note that the text angles are actually relative to (90 + angle of the direction to the ticklabel),
which gives 0 for bottom axis.

set_default_alignment(d)

set_default_angle(d)

set_pad(pad)
Set the internal pad in points.

The actual pad will be the sum of the internal pad and the external pad (the latter is set automat-
ically by the AxisArtist).

Examples using mpl_toolkits.axisartist.axis_artist.AxisLabel

mpl_toolkits.axisartist.axis_artist.GridlinesCollection

class mpl_toolkits.axisartist.axis_artist.GridlinesCollection(*args,
which='major',
axis='both',
**kwargs)

Bases: matplotlib.collections.LineCollection

Parameters

which
[{"major", "minor"}]

axis
[{"both", "x", "y"}]

__init__(*args, which='major', axis='both', **kwargs)

Parameters

3046 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

which
[{"major", "minor"}]

axis
[{"both", "x", "y"}]

__module__ = 'mpl_toolkits.axisartist.axis_artist'

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

set_axis(axis)

set_grid_helper(grid_helper)

set_which(which)

Examples using mpl_toolkits.axisartist.axis_artist.GridlinesCollection

mpl_toolkits.axisartist.axis_artist.LabelBase

class mpl_toolkits.axisartist.axis_artist.LabelBase(*args, **kwargs)
Bases: matplotlib.text.Text

A base class for AxisLabel and TickLabels. The position and angle of the text are calculated by to
offset_ref_angle, text_ref_angle, and offset_radius attributes.

Create a Text instance at x, y with string text.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch

continues on next page

19.1. Toolkits 3047

Matplotlib, Release 3.4.3

Table 31 – continued from previous page
Property Description
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
visible bool
wrap bool
x float
y float
zorder float

__init__(*args, **kwargs)
Create a Text instance at x, y with string text.

3048 Chapter 19. Toolkits

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
visible bool
wrap bool
x float

continues on next page

19.1. Toolkits 3049

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Table 32 – continued from previous page
Property Description
y float
zorder float

__module__ = 'mpl_toolkits.axisartist.axis_artist'

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

get_window_extent(renderer)
Return the Bbox bounding the text, in display units.

In addition to being used internally, this is useful for specifying clickable regions in a png file on
a web page.

Parameters

renderer
[Renderer, optional] A renderer is needed to compute the bounding box. If the
artist has already been drawn, the renderer is cached; thus, it is only necessary to
pass this argument when calling get_window_extent before the first draw.
In practice, it is usually easier to trigger a draw first (e.g. by saving the figure).

dpi
[float, optional] The dpi value for computing the bbox, defaults to self.
figure.dpi (not the renderer dpi); should be set e.g. if to match regions
with a figure saved with a custom dpi value.

3050 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axisartist.axis_artist.LabelBase

mpl_toolkits.axisartist.axis_artist.TickLabels

class mpl_toolkits.axisartist.axis_artist.TickLabels(*,
axis_direction='bottom',
**kwargs)

Bases: mpl_toolkits.axisartist.axis_artist.AxisLabel

Tick Labels. While derived from Text, this single artist draws all ticklabels. As in AxisLabel, the po-
sition of the text is updated in the fly, so changing text position has no effect. Otherwise, the properties
can be changed as a normal Text. Unlike the ticklabels of the mainline matplotlib, properties of single
ticklabel alone cannot modified.

To change the pad between ticks and ticklabels, use set_pad.

__init__(*, axis_direction='bottom', **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axisartist.axis_artist'

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

get_ref_artist()
Return the underlying artist that actually defines some properties (e.g., color) of this artist.

get_texts_widths_heights_descents(renderer)
Return a list of (width, height, descent) tuples for ticklabels.

Empty labels are left out.

get_window_extents(renderer)

invert_axis_direction()

set_axis_direction(label_direction)
Adjust the text angle and text alignment of ticklabels according to the matplotlib convention.

The label_direction must be one of [left, right, bottom, top].

19.1. Toolkits 3051

Matplotlib, Release 3.4.3

property left bottom right top
ticklabels angle 90 0 -90 180
ticklabel va center baseline center baseline
ticklabel ha right center right center

Note that the text angles are actually relative to (90 + angle of the direction to the ticklabel),
which gives 0 for bottom axis.

set_locs_angles_labels(locs_angles_labels)

Examples using mpl_toolkits.axisartist.axis_artist.TickLabels

mpl_toolkits.axisartist.axis_artist.Ticks

class mpl_toolkits.axisartist.axis_artist.Ticks(ticksize, tick_out=False, *,
axis=None, **kwargs)

Bases: mpl_toolkits.axisartist.axis_artist.AttributeCopier,
matplotlib.lines.Line2D

Ticks are derived from Line2D, and note that ticks themselves are markers. Thus, you should use
set_mec, set_mew, etc.

To change the tick size (length), you need to use set_ticksize. To change the direction of the ticks
(ticks are in opposite direction of ticklabels by default), use set_tick_out(False).

__init__(ticksize, tick_out=False, *, axis=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axisartist.axis_artist'

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

3052 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

get_color()
Return the line color.

See also set_color.

get_markeredgecolor()
Return the marker edge color.

See also set_markeredgecolor.

get_markeredgewidth()
Return the marker edge width in points.

See also set_markeredgewidth.

get_ref_artist()
Return the underlying artist that actually defines some properties (e.g., color) of this artist.

get_tick_out()
Return whether ticks are drawn inside or outside the axes.

get_ticksize()
Return length of the ticks in points.

set_locs_angles(locs_angles)

set_tick_out(b)
Set whether ticks are drawn inside or outside the axes.

set_ticksize(ticksize)
Set length of the ticks in points.

Examples using mpl_toolkits.axisartist.axis_artist.Ticks

mpl_toolkits.axisartist.axisline_style

Classes

AxislineStyle(stylename, **kw) A container class which defines style classes for
AxisArtists.

19.1. Toolkits 3053

Matplotlib, Release 3.4.3

mpl_toolkits.axisartist.axisline_style.AxislineStyle

class mpl_toolkits.axisartist.axisline_style.AxislineStyle(stylename,
**kw)

Bases: matplotlib.patches._Style

A container class which defines style classes for AxisArtists.

An instance of any axisline style class is an callable object, whose call signature is

__call__(self, axis_artist, path, transform)

When called, this should return an Artist with the following methods:

def set_path(self, path):
set the path for axisline.

def set_line_mutation_scale(self, scale):
set the scale

def draw(self, renderer):
draw

Return the instance of the subclass with the given style name.

class FilledArrow(size=1)
Bases: mpl_toolkits.axisartist.axisline_style.AxislineStyle.
SimpleArrow

Parameters

size
[float] Size of the arrow as a fraction of the ticklabel size.

ArrowAxisClass
alias of mpl_toolkits.axisartist.axisline_style.
_FancyAxislineStyle.FilledArrow

__module__ = 'mpl_toolkits.axisartist.axisline_style'

class SimpleArrow(size=1)
Bases: mpl_toolkits.axisartist.axisline_style.AxislineStyle._Base

A simple arrow.

Parameters

size
[float] Size of the arrow as a fraction of the ticklabel size.

3054 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

ArrowAxisClass
alias of mpl_toolkits.axisartist.axisline_style.
_FancyAxislineStyle.SimpleArrow

__init__(size=1)
Parameters
size

[float] Size of the arrow as a fraction of the ticklabel size.

__module__ = 'mpl_toolkits.axisartist.axisline_style'

new_line(axis_artist, transform)

__module__ = 'mpl_toolkits.axisartist.axisline_style'

Examples using mpl_toolkits.axisartist.axisline_style.AxislineStyle

mpl_toolkits.axisartist.axislines

Axislines includes modified implementation of the Axes class. The biggest difference is that the artists
responsible for drawing the axis spine, ticks, ticklabels and axis labels are separated out from Matplotlib's
Axis class. Originally, this change was motivated to support curvilinear grid. Here are a few reasons that I
came up with a new axes class:

• "top" and "bottom" x-axis (or "left" and "right" y-axis) can have different ticks (tick locations and
labels). This is not possible with the current Matplotlib, although some twin axes trick can help.

• Curvilinear grid.

• angled ticks.

In the new axes class, xaxis and yaxis is set to not visible by default, and new set of artist (AxisArtist) are
defined to draw axis line, ticks, ticklabels and axis label. Axes.axis attribute serves as a dictionary of these
artists, i.e., ax.axis["left"] is a AxisArtist instance responsible to draw left y-axis. The default Axes.axis
contains "bottom", "left", "top" and "right".

AxisArtist can be considered as a container artist and has following children artists which will draw ticks,
labels, etc.

• line

• major_ticks, major_ticklabels

• minor_ticks, minor_ticklabels

• offsetText

• label

Note that these are separate artists from matplotlib.axis.Axis, thus most tick-related func-
tions in Matplotlib won't work. For example, color and markerwidth of the ax.axis["bottom"].
major_ticks will follow those of Axes.xaxis unless explicitly specified.

19.1. Toolkits 3055

Matplotlib, Release 3.4.3

In addition to AxisArtist, the Axes will have gridlines attribute, which obviously draws grid lines. The
gridlines needs to be separated from the axis as some gridlines can never pass any axis.

Classes

Axes(*args[, grid_helper]) Build an axes in a figure.
AxesZero(*args[, grid_helper]) Build an axes in a figure.
AxisArtistHelper() AxisArtistHelper should define following method

with given APIs. Note that the first axes argument
will be axes attribute of the caller artist.::.

AxisArtistHelperRectlinear()
GridHelperBase()
GridHelperRectlinear(axes)

mpl_toolkits.axisartist.axislines.Axes

class mpl_toolkits.axisartist.axislines.Axes(*args, grid_helper=None,
**kwargs)

Bases: matplotlib.axes._axes.Axes

Build an axes in a figure.

Parameters

fig
[Figure] The axes is build in the Figure fig.

rect
[[left, bottom, width, height]] The axes is build in the rectangle rect. rect is in
Figure coordinates.

sharex, sharey
[Axes, optional] The x or y axis is shared with the x or y axis in the input Axes.

frameon
[bool, default: True] Whether the axes frame is visible.

box_aspect
[float, optional] Set a fixed aspect for the axes box, i.e. the ratio of height to width.
See set_box_aspect for details.

**kwargs
Other optional keyword arguments:

3056 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown

continues on next page

19.1. Toolkits 3057

Matplotlib, Release 3.4.3

Table 35 – continued from previous page
Property Description
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

Returns

Axes

The new Axes object.

__call__(*args, **kwargs)
Call self as a function.

__init__(*args, grid_helper=None, **kwargs)
Build an axes in a figure.

Parameters

fig
[Figure] The axes is build in the Figure fig.

rect
[[left, bottom, width, height]] The axes is build in the rectangle rect. rect is in
Figure coordinates.

sharex, sharey
[Axes, optional] The x or y axis is shared with the x or y axis in the input
Axes.

frameon
[bool, default: True] Whether the axes frame is visible.

box_aspect
[float, optional] Set a fixed aspect for the axes box, i.e. the ratio of height to
width. See set_box_aspect for details.

**kwargs
Other optional keyword arguments:

3058 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown

continues on next page

19.1. Toolkits 3059

Matplotlib, Release 3.4.3

Table 36 – continued from previous page
Property Description
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

Returns

Axes

The new Axes object.

__module__ = 'mpl_toolkits.axisartist.axislines'

property axis
Convenience method to get or set some axis properties.

Call signatures:

xmin, xmax, ymin, ymax = axis()
xmin, xmax, ymin, ymax = axis([xmin, xmax, ymin, ymax])
xmin, xmax, ymin, ymax = axis(option)
xmin, xmax, ymin, ymax = axis(**kwargs)

Parameters

xmin, xmax, ymin, ymax
[float, optional] The axis limits to be set. This can also be achieved using

ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax))

option
[bool or str] If a bool, turns axis lines and labels on or off. If a string, possible
values are:

3060 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

ValueDescription
'on' Turn on axis lines and labels. Same as True.
'off' Turn off axis lines and labels. Same as False.
'equal'Set equal scaling (i.e., make circles circular) by changing axis lim-

its. This is the same as ax.set_aspect('equal', ad-
justable='datalim'). Explicit data limits may not be respected
in this case.

'scaled'Set equal scaling (i.e., make circles circular) by changing dimensions
of the plot box. This is the same as ax.set_aspect('equal',
adjustable='box', anchor='C'). Additionally, further au-
toscaling will be disabled.

'tight' Set limits just large enough to show all data, then disable further au-
toscaling.

'auto' Automatic scaling (fill plot box with data).
'im-
age'

'scaled' with axis limits equal to data limits.

'square'Square plot; similar to 'scaled', but initially forcing xmax-xmin ==
ymax-ymin.

emit
[bool, default: True] Whether observers are notified of the axis limit change.
This option is passed on to set_xlim and set_ylim.

Returns

xmin, xmax, ymin, ymax
[float] The axis limits.

See also:

matplotlib.axes.Axes.set_xlim

matplotlib.axes.Axes.set_ylim

cla()
Clear the axes.

get_children()
Return a list of the child Artists of this Artist.

get_grid_helper()

grid(b=None, which='major', axis='both', **kwargs)
Toggle the gridlines, and optionally set the properties of the lines.

invalidate_grid_helper()
[Deprecated]

19.1. Toolkits 3061

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.4:

new_fixed_axis(loc, offset=None)

new_floating_axis(nth_coord, value, axis_direction='bottom')

new_gridlines(grid_helper=None)
Create and return a new GridlineCollection instance.

which : "major" or "minor" axis : "both", "x" or "y"

toggle_axisline(b=None)

Examples using mpl_toolkits.axisartist.axislines.Axes

mpl_toolkits.axisartist.axislines.AxesZero

class mpl_toolkits.axisartist.axislines.AxesZero(*args, grid_helper=None,
**kwargs)

Bases: mpl_toolkits.axisartist.axislines.Axes

Build an axes in a figure.

Parameters

fig
[Figure] The axes is build in the Figure fig.

rect
[[left, bottom, width, height]] The axes is build in the rectangle rect. rect is in
Figure coordinates.

sharex, sharey
[Axes, optional] The x or y axis is shared with the x or y axis in the input Axes.

frameon
[bool, default: True] Whether the axes frame is visible.

box_aspect
[float, optional] Set a fixed aspect for the axes box, i.e. the ratio of height to width.
See set_box_aspect for details.

**kwargs
Other optional keyword arguments:

3062 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto', 'equal'} or float
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect float or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim (bottom: float, top: float)
xmargin float greater than -0.5
xscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
xticklabels unknown
xticks unknown
ybound unknown

continues on next page

19.1. Toolkits 3063

Matplotlib, Release 3.4.3

Table 37 – continued from previous page
Property Description
ylabel str
ylim (bottom: float, top: float)
ymargin float greater than -0.5
yscale {"linear", "log", "symlog", "logit", ...} or ScaleBase
yticklabels unknown
yticks unknown
zorder float

Returns

Axes

The new Axes object.

__module__ = 'mpl_toolkits.axisartist.axislines'

Examples using mpl_toolkits.axisartist.axislines.AxesZero

mpl_toolkits.axisartist.axislines.AxisArtistHelper

class mpl_toolkits.axisartist.axislines.AxisArtistHelper
Bases: object

AxisArtistHelper should define following method with given APIs. Note that the first axes argument
will be axes attribute of the caller artist.:

LINE (spinal line?)

def get_line(self, axes):
path : Path
return path

def get_line_transform(self, axes):
...
trans : transform
return trans

LABEL

def get_label_pos(self, axes):
x, y : position
return (x, y), trans

def get_label_offset_transform(self,
axes,
pad_points, fontprops, renderer,
bboxes,

(continues on next page)

3064 Chapter 19. Toolkits

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

(continued from previous page)
):

va : vertical alignment
ha : horizontal alignment
a : angle
return trans, va, ha, a

TICK

def get_tick_transform(self, axes):
return trans

def get_tick_iterators(self, axes):
iter : iterable object that yields (c, angle, l) where
c, angle, l is position, tick angle, and label

return iter_major, iter_minor

class Fixed(loc, nth_coord=None)
Bases: mpl_toolkits.axisartist.axislines.AxisArtistHelper._Base

Helper class for a fixed (in the axes coordinate) axis.

nth_coord = along which coordinate value varies in 2D, nth_coord = 0 -> x axis, nth_coord = 1
-> y axis

__init__(loc, nth_coord=None)
nth_coord = along which coordinate value varies in 2D, nth_coord = 0 -> x axis, nth_coord
= 1 -> y axis

__module__ = 'mpl_toolkits.axisartist.axislines'

get_axislabel_pos_angle(axes)
Return the label reference position in transAxes.

get_label_transform() returns a transform of (transAxes+offset)

get_axislabel_transform(axes)

get_line(axes)

get_line_transform(axes)

get_nth_coord()

get_tick_transform(axes)

class Floating(nth_coord, value)
Bases: mpl_toolkits.axisartist.axislines.AxisArtistHelper._Base

__init__(nth_coord, value)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axisartist.axislines'

get_line(axes)

19.1. Toolkits 3065

Matplotlib, Release 3.4.3

get_nth_coord()

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axisartist.axislines', '__doc__': '\n AxisArtistHelper should define\n following method with given APIs. Note that the first axes argument\n will be axes attribute of the caller artist.::\n\n\n # LINE (spinal line?)\n\n def get_line(self, axes):\n # path : Path\n return path\n\n def get_line_transform(self, axes):\n # ...\n # trans : transform\n return trans\n\n # LABEL\n\n def get_label_pos(self, axes):\n # x, y : position\n return (x, y), trans\n\n\n def get_label_offset_transform(self,\n axes,\n pad_points, fontprops, renderer,\n bboxes,\n):\n # va : vertical alignment\n # ha : horizontal alignment\n # a : angle\n return trans, va, ha, a\n\n # TICK\n\n def get_tick_transform(self, axes):\n return trans\n\n def get_tick_iterators(self, axes):\n # iter : iterable object that yields (c, angle, l) where\n # c, angle, l is position, tick angle, and label\n\n return iter_major, iter_minor\n ', '_Base': <class 'mpl_toolkits.axisartist.axislines.AxisArtistHelper._Base'>, 'Fixed': <class 'mpl_toolkits.axisartist.axislines.AxisArtistHelper.Fixed'>, 'Floating': <class 'mpl_toolkits.axisartist.axislines.AxisArtistHelper.Floating'>, '__dict__': <attribute '__dict__' of 'AxisArtistHelper' objects>, '__weakref__': <attribute '__weakref__' of 'AxisArtistHelper' objects>, '__annotations__': {}})

__module__ = 'mpl_toolkits.axisartist.axislines'

__weakref__
list of weak references to the object (if defined)

Examples using mpl_toolkits.axisartist.axislines.AxisArtistHelper

mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear

class mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear
Bases: object

class Fixed(axes, loc, nth_coord=None)
Bases: mpl_toolkits.axisartist.axislines.AxisArtistHelper.Fixed

nth_coord = along which coordinate value varies in 2D, nth_coord = 0 -> x axis, nth_coord = 1
-> y axis

__init__(axes, loc, nth_coord=None)
nth_coord = along which coordinate value varies in 2D, nth_coord = 0 -> x axis, nth_coord
= 1 -> y axis

__module__ = 'mpl_toolkits.axisartist.axislines'

get_tick_iterators(axes)
tick_loc, tick_angle, tick_label

class Floating(axes, nth_coord, passingthrough_point, axis_direction='bottom')
Bases: mpl_toolkits.axisartist.axislines.AxisArtistHelper.
Floating

__init__(axes, nth_coord, passingthrough_point, axis_direction='bottom')
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axisartist.axislines'

get_axislabel_pos_angle(axes)
Return the label reference position in transAxes.

get_label_transform() returns a transform of (transAxes+offset)

get_axislabel_transform(axes)

get_line(axes)

get_line_transform(axes)

get_tick_iterators(axes)
tick_loc, tick_angle, tick_label

get_tick_transform(axes)

3066 Chapter 19. Toolkits

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axisartist.axislines', 'Fixed': <class 'mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear.Fixed'>, 'Floating': <class 'mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear.Floating'>, '__dict__': <attribute '__dict__' of 'AxisArtistHelperRectlinear' objects>, '__weakref__': <attribute '__weakref__' of 'AxisArtistHelperRectlinear' objects>, '__doc__': None, '__annotations__': {}})

__module__ = 'mpl_toolkits.axisartist.axislines'

__weakref__
list of weak references to the object (if defined)

Examples using mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear

mpl_toolkits.axisartist.axislines.GridHelperBase

class mpl_toolkits.axisartist.axislines.GridHelperBase
Bases: object

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axisartist.axislines', '__init__': <function GridHelperBase.__init__>, 'update_lim': <function GridHelperBase.update_lim>, '_update_grid': <function GridHelperBase._update_grid>, 'invalidate': <function GridHelperBase.invalidate>, 'valid': <function GridHelperBase.valid>, 'get_gridlines': <function GridHelperBase.get_gridlines>, 'new_gridlines': <function GridHelperBase.new_gridlines>, '__dict__': <attribute '__dict__' of 'GridHelperBase' objects>, '__weakref__': <attribute '__weakref__' of 'GridHelperBase' objects>, '__doc__': None, '__annotations__': {}})

__init__()
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axisartist.axislines'

__weakref__
list of weak references to the object (if defined)

get_gridlines(which, axis)
Return list of grid lines as a list of paths (list of points).

which : "major" or "minor" axis : "both", "x" or "y"

invalidate()
[Deprecated]

Notes

Deprecated since version 3.4:

new_gridlines(ax)
Create and return a new GridlineCollection instance.

which : "major" or "minor" axis : "both", "x" or "y"

update_lim(axes)

valid()
[Deprecated]

19.1. Toolkits 3067

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Notes

Deprecated since version 3.4:

Examples using mpl_toolkits.axisartist.axislines.GridHelperBase

mpl_toolkits.axisartist.axislines.GridHelperRectlinear

class mpl_toolkits.axisartist.axislines.GridHelperRectlinear(axes)
Bases: mpl_toolkits.axisartist.axislines.GridHelperBase

__init__(axes)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axisartist.axislines'

get_gridlines(which='major', axis='both')
Return list of gridline coordinates in data coordinates.

which : "major" or "minor" axis : "both", "x" or "y"

new_fixed_axis(loc, nth_coord=None, axis_direction=None, offset=None, axes=None)

new_floating_axis(nth_coord, value, axis_direction='bottom', axes=None)

Examples using mpl_toolkits.axisartist.axislines.GridHelperRectlinear

mpl_toolkits.axisartist.clip_path

Functions

atan2(dy, dx)
clip(xlines, ylines, x0[, clip, xdir, ydir])
clip_line_to_rect(xline, yline, bbox)

mpl_toolkits.axisartist.clip_path.atan2

mpl_toolkits.axisartist.clip_path.atan2(dy, dx)

3068 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axisartist.clip_path.atan2

mpl_toolkits.axisartist.clip_path.clip

mpl_toolkits.axisartist.clip_path.clip(xlines, ylines, x0, clip='right', xdir=True,
ydir=True)

Examples using mpl_toolkits.axisartist.clip_path.clip

mpl_toolkits.axisartist.clip_path.clip_line_to_rect

mpl_toolkits.axisartist.clip_path.clip_line_to_rect(xline, yline, bbox)

Examples using mpl_toolkits.axisartist.clip_path.clip_line_to_rect

mpl_toolkits.axisartist.floating_axes

An experimental support for curvilinear grid.

Classes

ExtremeFinderFixed(extremes) This subclass always returns the same bounding
box.

FixedAxisArtistHelper(grid_helper, side[,
...])

nth_coord = along which coordinate value varies.

FloatingAxes alias of mpl_toolkits.axisartist.
floating_axes.Floating
AxesHostAxes

FloatingAxesBase(*args, **kwargs)
FloatingAxisArtistHelper(grid_helper,
...[, ...])

nth_coord = along which coordinate value varies.

GridHelperCurveLinear(aux_trans, ex-
tremes[, ...])

aux_trans : a transform from the source (curved)
coordinate to target (rectilinear) coordinate.

19.1. Toolkits 3069

Matplotlib, Release 3.4.3

mpl_toolkits.axisartist.floating_axes.ExtremeFinderFixed

class mpl_toolkits.axisartist.floating_axes.ExtremeFinderFixed(extremes)
Bases: mpl_toolkits.axisartist.grid_finder.ExtremeFinderSimple

This subclass always returns the same bounding box.

Parameters

extremes
[(float, float, float, float)] The bounding box that this helper always returns.

__call__(transform_xy, x1, y1, x2, y2)
Compute an approximation of the bounding box obtained by applying transform_xy to the box
delimited by (x1, y1, x2, y2).

The intended use is to have (x1, y1, x2, y2) in axes coordinates, and have transform_xy
be the transform from axes coordinates to data coordinates; this method then returns the range
of data coordinates that span the actual axes.

The computation is done by sampling nx * ny equispaced points in the (x1, y1, x2,
y2) box and finding the resulting points with extremal coordinates; then adding some padding
to take into account the finite sampling.

As each sampling step covers a relative range of 1/nx or 1/ny, the padding is computed by ex-
panding the span covered by the extremal coordinates by these fractions.

__init__(extremes)
This subclass always returns the same bounding box.

Parameters

extremes
[(float, float, float, float)] The bounding box that this helper always returns.

__module__ = 'mpl_toolkits.axisartist.floating_axes'

Examples using mpl_toolkits.axisartist.floating_axes.ExtremeFinderFixed

mpl_toolkits.axisartist.floating_axes.FixedAxisArtistHelper

class mpl_toolkits.axisartist.floating_axes.FixedAxisArtistHelper(grid_helper,
side,
nth_coord_ticks=None)

Bases: mpl_toolkits.axisartist.grid_helper_curvelinear.
FloatingAxisArtistHelper

nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis

3070 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

__init__(grid_helper, side, nth_coord_ticks=None)

nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis

__module__ = 'mpl_toolkits.axisartist.floating_axes'

get_line(axes)

get_tick_iterators(axes)
tick_loc, tick_angle, tick_label, (optionally) tick_label

update_lim(axes)

Examples using mpl_toolkits.axisartist.floating_axes.
FixedAxisArtistHelper

mpl_toolkits.axisartist.floating_axes.FloatingAxes

mpl_toolkits.axisartist.floating_axes.FloatingAxes
alias of mpl_toolkits.axisartist.floating_axes.Floating AxesHostAxes

mpl_toolkits.axisartist.floating_axes.FloatingAxesBase

class mpl_toolkits.axisartist.floating_axes.FloatingAxesBase(*args,
**kwargs)

Bases: object

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axisartist.floating_axes', '__init__': <function FloatingAxesBase.__init__>, '_gen_axes_patch': <function FloatingAxesBase._gen_axes_patch>, 'cla': <function FloatingAxesBase.cla>, 'adjust_axes_lim': <function FloatingAxesBase.adjust_axes_lim>, '__dict__': <attribute '__dict__' of 'FloatingAxesBase' objects>, '__weakref__': <attribute '__weakref__' of 'FloatingAxesBase' objects>, '__doc__': None, '__annotations__': {}})

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axisartist.floating_axes'

__weakref__
list of weak references to the object (if defined)

adjust_axes_lim()

cla()

19.1. Toolkits 3071

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axisartist.floating_axes.FloatingAxesBase

• sphx_glr_gallery_axisartist_demo_floating_axes.py

mpl_toolkits.axisartist.floating_axes.FloatingAxisArtistHelper

class mpl_toolkits.axisartist.floating_axes.FloatingAxisArtistHelper(grid_helper,
nth_coord,
value,
axis_direction=None)

Bases: mpl_toolkits.axisartist.grid_helper_curvelinear.
FloatingAxisArtistHelper

nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis

__module__ = 'mpl_toolkits.axisartist.floating_axes'

Examples using mpl_toolkits.axisartist.floating_axes.
FloatingAxisArtistHelper

mpl_toolkits.axisartist.floating_axes.GridHelperCurveLinear

class mpl_toolkits.axisartist.floating_axes.GridHelperCurveLinear(aux_trans,
ex-
tremes,
grid_locator1=None,
grid_locator2=None,
tick_formatter1=None,
tick_formatter2=None)

Bases: mpl_toolkits.axisartist.grid_helper_curvelinear.
GridHelperCurveLinear

aux_trans : a transform from the source (curved) coordinate to target (rectilinear) coordinate. An
instance of MPL's Transform (inverse transform should be defined) or a tuple of two callable objects
which defines the transform and its inverse. The callables need take two arguments of array of source
coordinates and should return two target coordinates.

e.g., x2, y2 = trans(x1, y1)

__init__(aux_trans, extremes, grid_locator1=None, grid_locator2=None,
tick_formatter1=None, tick_formatter2=None)

aux_trans : a transform from the source (curved) coordinate to target (rectilinear) coordinate.
An instance of MPL's Transform (inverse transform should be defined) or a tuple of two callable
objects which defines the transform and its inverse. The callables need take two arguments of
array of source coordinates and should return two target coordinates.

e.g., x2, y2 = trans(x1, y1)

3072 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

__module__ = 'mpl_toolkits.axisartist.floating_axes'

get_boundary()
Return (N, 2) array of (x, y) coordinate of the boundary.

get_data_boundary(side)
Return v=0, nth=1.

get_gridlines(which='major', axis='both')
Return list of grid lines as a list of paths (list of points).

which : "major" or "minor" axis : "both", "x" or "y"

new_fixed_axis(loc, nth_coord=None, axis_direction=None, offset=None, axes=None)

Examples using mpl_toolkits.axisartist.floating_axes.
GridHelperCurveLinear

• sphx_glr_gallery_axisartist_demo_floating_axes.py

Functions

floatingaxes_class_factory(axes_class)

mpl_toolkits.axisartist.floating_axes.floatingaxes_class_factory

mpl_toolkits.axisartist.floating_axes.floatingaxes_class_factory(axes_class)

Examples using mpl_toolkits.axisartist.floating_axes.
floatingaxes_class_factory

mpl_toolkits.axisartist.grid_finder

Classes

DictFormatter(format_dict[, formatter]) format_dict : dictionary for format strings to be
used.

ExtremeFinderSimple(nx, ny) A helper class to figure out the range of grid lines
that need to be drawn.

FixedLocator(locs)
FormatterPrettyPrint([useMathText])

continues on next page

19.1. Toolkits 3073

Matplotlib, Release 3.4.3

Table 41 – continued from previous page
GridFinder(transform[, extreme_finder, ...]) transform : transform from the image coordinate

(which will be the transData of the axes to the world
coordinate.

MaxNLocator([nbins, steps, trim, integer, ...])
Parameters

mpl_toolkits.axisartist.grid_finder.DictFormatter

class mpl_toolkits.axisartist.grid_finder.DictFormatter(format_dict, for-
matter=None)

Bases: object

format_dict : dictionary for format strings to be used. formatter : fall-back formatter

__call__(direction, factor, values)
factor is ignored if value is found in the dictionary

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axisartist.grid_finder', '__init__': <function DictFormatter.__init__>, '__call__': <function DictFormatter.__call__>, '__dict__': <attribute '__dict__' of 'DictFormatter' objects>, '__weakref__': <attribute '__weakref__' of 'DictFormatter' objects>, '__doc__': None, '__annotations__': {}})

__init__(format_dict, formatter=None)
format_dict : dictionary for format strings to be used. formatter : fall-back formatter

__module__ = 'mpl_toolkits.axisartist.grid_finder'

__weakref__
list of weak references to the object (if defined)

Examples using mpl_toolkits.axisartist.grid_finder.DictFormatter

• sphx_glr_gallery_axisartist_demo_floating_axes.py

mpl_toolkits.axisartist.grid_finder.ExtremeFinderSimple

class mpl_toolkits.axisartist.grid_finder.ExtremeFinderSimple(nx, ny)
Bases: object

A helper class to figure out the range of grid lines that need to be drawn.

Parameters

nx, ny
[int] The number of samples in each direction.

__call__(transform_xy, x1, y1, x2, y2)
Compute an approximation of the bounding box obtained by applying transform_xy to the box
delimited by (x1, y1, x2, y2).

3074 Chapter 19. Toolkits

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

The intended use is to have (x1, y1, x2, y2) in axes coordinates, and have transform_xy
be the transform from axes coordinates to data coordinates; this method then returns the range
of data coordinates that span the actual axes.

The computation is done by sampling nx * ny equispaced points in the (x1, y1, x2,
y2) box and finding the resulting points with extremal coordinates; then adding some padding
to take into account the finite sampling.

As each sampling step covers a relative range of 1/nx or 1/ny, the padding is computed by ex-
panding the span covered by the extremal coordinates by these fractions.

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axisartist.grid_finder', '__doc__': '\n A helper class to figure out the range of grid lines that need to be drawn.\n ', '__init__': <function ExtremeFinderSimple.__init__>, '__call__': <function ExtremeFinderSimple.__call__>, '_add_pad': <function ExtremeFinderSimple._add_pad>, '__dict__': <attribute '__dict__' of 'ExtremeFinderSimple' objects>, '__weakref__': <attribute '__weakref__' of 'ExtremeFinderSimple' objects>, '__annotations__': {}})

__init__(nx, ny)

Parameters

nx, ny
[int] The number of samples in each direction.

__module__ = 'mpl_toolkits.axisartist.grid_finder'

__weakref__
list of weak references to the object (if defined)

Examples using mpl_toolkits.axisartist.grid_finder.ExtremeFinderSimple

• sphx_glr_gallery_axisartist_demo_axis_direction.py

• sphx_glr_gallery_axisartist_demo_curvelinear_grid.py

• sphx_glr_gallery_axisartist_demo_curvelinear_grid2.py

• sphx_glr_gallery_axisartist_demo_floating_axis.py

• sphx_glr_gallery_axisartist_simple_axis_pad.py

mpl_toolkits.axisartist.grid_finder.FixedLocator

class mpl_toolkits.axisartist.grid_finder.FixedLocator(locs)
Bases: object

__call__(v1, v2)
Call self as a function.

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axisartist.grid_finder', '__init__': <function FixedLocator.__init__>, '__call__': <function FixedLocator.__call__>, 'set_factor': <function FixedLocator.set_factor>, '__dict__': <attribute '__dict__' of 'FixedLocator' objects>, '__weakref__': <attribute '__weakref__' of 'FixedLocator' objects>, '__doc__': None, '__annotations__': {}})

__init__(locs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axisartist.grid_finder'

19.1. Toolkits 3075

https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

__weakref__
list of weak references to the object (if defined)

set_factor(f)
[Deprecated]

Notes

Deprecated since version 3.3:

Examples using mpl_toolkits.axisartist.grid_finder.FixedLocator

• sphx_glr_gallery_axisartist_demo_floating_axes.py

mpl_toolkits.axisartist.grid_finder.FormatterPrettyPrint

class mpl_toolkits.axisartist.grid_finder.FormatterPrettyPrint(useMathText=True)
Bases: object

__call__(direction, factor, values)
Call self as a function.

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axisartist.grid_finder', '__init__': <function FormatterPrettyPrint.__init__>, '__call__': <function FormatterPrettyPrint.__call__>, '__dict__': <attribute '__dict__' of 'FormatterPrettyPrint' objects>, '__weakref__': <attribute '__weakref__' of 'FormatterPrettyPrint' objects>, '__doc__': None, '__annotations__': {}})

__init__(useMathText=True)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'mpl_toolkits.axisartist.grid_finder'

__weakref__
list of weak references to the object (if defined)

Examples using mpl_toolkits.axisartist.grid_finder.FormatterPrettyPrint

mpl_toolkits.axisartist.grid_finder.GridFinder

class mpl_toolkits.axisartist.grid_finder.GridFinder(transform, ex-
treme_finder=None,
grid_locator1=None,
grid_locator2=None,
tick_formatter1=None,
tick_formatter2=None)

Bases: object

transform : transform from the image coordinate (which will be the transData of the axes to the world
coordinate.

or transform = (transform_xy, inv_transform_xy)

3076 Chapter 19. Toolkits

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Matplotlib, Release 3.4.3

locator1, locator2 : grid locator for 1st and 2nd axis.

__dict__ = mappingproxy({'__module__': 'mpl_toolkits.axisartist.grid_finder', '__init__': <function GridFinder.__init__>, 'get_grid_info': <function GridFinder.get_grid_info>, '_get_raw_grid_lines': <function GridFinder._get_raw_grid_lines>, '_clip_grid_lines_and_find_ticks': <function GridFinder._clip_grid_lines_and_find_ticks>, 'update_transform': <function GridFinder.update_transform>, 'transform_xy': <function GridFinder.transform_xy>, 'inv_transform_xy': <function GridFinder.inv_transform_xy>, 'update': <function GridFinder.update>, '__dict__': <attribute '__dict__' of 'GridFinder' objects>, '__weakref__': <attribute '__weakref__' of 'GridFinder' objects>, '__doc__': None, '__annotations__': {}})

__init__(transform, extreme_finder=None, grid_locator1=None, grid_locator2=None,
tick_formatter1=None, tick_formatter2=None)

transform : transform from the image coordinate (which will be the transData of the axes to the
world coordinate.

or transform = (transform_xy, inv_transform_xy)

locator1, locator2 : grid locator for 1st and 2nd axis.

__module__ = 'mpl_toolkits.axisartist.grid_finder'

__weakref__
list of weak references to the object (if defined)

get_grid_info(x1, y1, x2, y2)

lon_values, lat_values
[list of grid values. if integer is given,] rough number of grids in each direction.

inv_transform_xy(x, y)

transform_xy(x, y)

update(**kw)

update_transform(aux_trans)

Examples using mpl_toolkits.axisartist.grid_finder.GridFinder

mpl_toolkits.axisartist.grid_finder.MaxNLocator

class mpl_toolkits.axisartist.grid_finder.MaxNLocator(nbins=10,
steps=None,
trim=True, in-
teger=False,
symmetric=False,
prune=None)

Bases: matplotlib.ticker.MaxNLocator

Parameters

nbins
[int or 'auto', default: 10] Maximum number of intervals; one less than max num-
ber of ticks. If the string 'auto', the number of bins will be automatically deter-
mined based on the length of the axis.

steps

19.1. Toolkits 3077

Matplotlib, Release 3.4.3

[array-like, optional] Sequence of nice numbers starting with 1 and ending with
10; e.g., [1, 2, 4, 5, 10], where the values are acceptable tick multiples. i.e. for
the example, 20, 40, 60 would be an acceptable set of ticks, as would 0.4, 0.6,
0.8, because they are multiples of 2. However, 30, 60, 90 would not be allowed
because 3 does not appear in the list of steps.

integer
[bool, default: False] If True, ticks will take only integer values, provided at least
min_n_ticks integers are found within the view limits.

symmetric
[bool, default: False] If True, autoscaling will result in a range symmetric about
zero.

prune
[{'lower', 'upper', 'both', None}, default: None] Remove edge ticks -- use-
ful for stacked or ganged plots where the upper tick of one axes overlaps
with the lower tick of the axes above it, primarily when rcParams["axes.
autolimit_mode"] (default: 'data') is 'round_numbers'. If
prune=='lower', the smallest tick will be removed. If prune == 'up-
per', the largest tick will be removed. If prune == 'both', the largest and
smallest ticks will be removed. If prune is None, no ticks will be removed.

min_n_ticks
[int, default: 2] Relax nbins and integer constraints if necessary to obtain this
minimum number of ticks.

__call__(v1, v2)
Return the locations of the ticks.

__init__(nbins=10, steps=None, trim=True, integer=False, symmetric=False,
prune=None)

Parameters

nbins
[int or 'auto', default: 10] Maximum number of intervals; one less than max
number of ticks. If the string 'auto', the number of bins will be automatically
determined based on the length of the axis.

steps
[array-like, optional] Sequence of nice numbers starting with 1 and ending with
10; e.g., [1, 2, 4, 5, 10], where the values are acceptable tick multiples. i.e. for
the example, 20, 40, 60 would be an acceptable set of ticks, as would 0.4, 0.6,
0.8, because they are multiples of 2. However, 30, 60, 90 would not be allowed
because 3 does not appear in the list of steps.

integer

3078 Chapter 19. Toolkits

../../tutorials/introductory/customizing.html?highlight=axes.autolimit_mode#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.autolimit_mode#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

[bool, default: False] If True, ticks will take only integer values, provided at least
min_n_ticks integers are found within the view limits.

symmetric
[bool, default: False] If True, autoscaling will result in a range symmetric about
zero.

prune
[{'lower', 'upper', 'both', None}, default: None] Remove edge ticks -- use-
ful for stacked or ganged plots where the upper tick of one axes overlaps
with the lower tick of the axes above it, primarily when rcParams["axes.
autolimit_mode"] (default: 'data') is 'round_numbers'. If
prune=='lower', the smallest tick will be removed. If prune == 'up-
per', the largest tick will be removed. If prune == 'both', the largest and
smallest ticks will be removed. If prune is None, no ticks will be removed.

min_n_ticks
[int, default: 2] Relax nbins and integer constraints if necessary to obtain this
minimum number of ticks.

__module__ = 'mpl_toolkits.axisartist.grid_finder'

set_factor(f)
[Deprecated]

Notes

Deprecated since version 3.3:

Examples using mpl_toolkits.axisartist.grid_finder.MaxNLocator

• sphx_glr_gallery_axisartist_demo_axis_direction.py

• sphx_glr_gallery_axisartist_demo_curvelinear_grid2.py

• sphx_glr_gallery_axisartist_demo_floating_axes.py

• sphx_glr_gallery_axisartist_simple_axis_pad.py

19.1. Toolkits 3079

../../tutorials/introductory/customizing.html?highlight=axes.autolimit_mode#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.autolimit_mode#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

mpl_toolkits.axisartist.grid_helper_curvelinear

An experimental support for curvilinear grid.

Classes

FixedAxisArtistHelper(grid_helper, side[,
...])

Helper class for a fixed axis.

FloatingAxisArtistHelper(grid_helper,
...[, ...])

nth_coord = along which coordinate value varies.

GridHelperCurveLinear(aux_trans[, ...]) aux_trans : a transform from the source (curved)
coordinate to target (rectilinear) coordinate.

mpl_toolkits.axisartist.grid_helper_curvelinear.FixedAxisArtistHelper

class mpl_toolkits.axisartist.grid_helper_curvelinear.FixedAxisArtistHelper(grid_helper,
side,
nth_coord_ticks=None)

Bases: mpl_toolkits.axisartist.axislines.AxisArtistHelper.Fixed

Helper class for a fixed axis.

nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis

__init__(grid_helper, side, nth_coord_ticks=None)

nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis

__module__ = 'mpl_toolkits.axisartist.grid_helper_curvelinear'

change_tick_coord(coord_number=None)

get_tick_iterators(axes)
tick_loc, tick_angle, tick_label

get_tick_transform(axes)

update_lim(axes)

3080 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.axisartist.grid_helper_curvelinear.
FixedAxisArtistHelper

mpl_toolkits.axisartist.grid_helper_curvelinear.FloatingAxisArtistHelper

class mpl_toolkits.axisartist.grid_helper_curvelinear.FloatingAxisArtistHelper(grid_helper,
nth_coord,
value,
axis_direction=None)

Bases: mpl_toolkits.axisartist.axislines.AxisArtistHelper.Floating

nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis

__init__(grid_helper, nth_coord, value, axis_direction=None)

nth_coord = along which coordinate value varies.
nth_coord = 0 -> x axis, nth_coord = 1 -> y axis

__module__ = 'mpl_toolkits.axisartist.grid_helper_curvelinear'

get_axislabel_pos_angle(axes)

get_axislabel_transform(axes)

get_line(axes)

get_line_transform(axes)

get_tick_iterators(axes)
tick_loc, tick_angle, tick_label, (optionally) tick_label

get_tick_transform(axes)

set_extremes(e1, e2)

update_lim(axes)

Examples using mpl_toolkits.axisartist.grid_helper_curvelinear.
FloatingAxisArtistHelper

mpl_toolkits.axisartist.grid_helper_curvelinear.GridHelperCurveLinear

class mpl_toolkits.axisartist.grid_helper_curvelinear.GridHelperCurveLinear(aux_trans,
ex-
treme_finder=None,
grid_locator1=None,
grid_locator2=None,
tick_formatter1=None,
tick_formatter2=None)

Bases: mpl_toolkits.axisartist.axislines.GridHelperBase

19.1. Toolkits 3081

Matplotlib, Release 3.4.3

aux_trans : a transform from the source (curved) coordinate to target (rectilinear) coordinate. An
instance of MPL's Transform (inverse transform should be defined) or a tuple of two callable objects
which defines the transform and its inverse. The callables need take two arguments of array of source
coordinates and should return two target coordinates.

e.g., x2, y2 = trans(x1, y1)

__init__(aux_trans, extreme_finder=None, grid_locator1=None, grid_locator2=None,
tick_formatter1=None, tick_formatter2=None)

aux_trans : a transform from the source (curved) coordinate to target (rectilinear) coordinate.
An instance of MPL's Transform (inverse transform should be defined) or a tuple of two callable
objects which defines the transform and its inverse. The callables need take two arguments of
array of source coordinates and should return two target coordinates.

e.g., x2, y2 = trans(x1, y1)

__module__ = 'mpl_toolkits.axisartist.grid_helper_curvelinear'

get_gridlines(which='major', axis='both')
Return list of grid lines as a list of paths (list of points).

which : "major" or "minor" axis : "both", "x" or "y"

get_tick_iterator(nth_coord, axis_side, minor=False)

new_fixed_axis(loc, nth_coord=None, axis_direction=None, offset=None, axes=None)

new_floating_axis(nth_coord, value, axes=None, axis_direction='bottom')

update_grid_finder(aux_trans=None, **kw)

Examples using mpl_toolkits.axisartist.grid_helper_curvelinear.
GridHelperCurveLinear

mpl_toolkits.axisartist.parasite_axes

19.1.4 Matplotlib axes_grid Toolkit

Note: AxesGrid toolkit has been a part of matplotlib since v 0.99. Originally, the toolkit had a single names-
pace of axes_grid. In more recent version, the toolkit has divided into two separate namespace (axes_grid1
and axisartist). While axes_grid namespace is maintained for the backward compatibility, use of axes_grid1
and axisartist is recommended. For the documentation on axes_grid, see the previous version of the
docs.

3082 Chapter 19. Toolkits

https://matplotlib.org/2.0.1/mpl_toolkits/axes_grid/index.html#toolkit-axesgrid-index
https://matplotlib.org/2.0.1/mpl_toolkits/axes_grid/index.html#toolkit-axesgrid-index

Matplotlib, Release 3.4.3

Matplotlib axes_grid1 Toolkit

The matplotlib mpl_toolkits.axes_grid1 toolkit is a collection of helper classes to ease displaying
multiple images in matplotlib. While the aspect parameter in matplotlib adjust the position of the single axes,
axes_grid1 toolkit provides a framework to adjust the position of multiple axes according to their aspects.

See What is axes_grid1 toolkit? for a guide on the usage of axes_grid1.

The submodules of the axes_grid1 API are:

axes_grid1.anchored_artists

axes_grid1.axes_divider Helper classes to adjust the positions of multiple
axes at drawing time.

axes_grid1.axes_grid

axes_grid1.axes_rgb

axes_grid1.axes_size Provides classes of simple units that will be used
with AxesDivider class (or others) to determine the
size of each axes.

axes_grid1.inset_locator A collection of functions and objects for creating or
placing inset axes.

axes_grid1.mpl_axes

axes_grid1.parasite_axes

Matplotlib axisartist Toolkit

The axisartist namespace includes a derived Axes implementation (mpl_toolkits.axisartist.
Axes). The biggest difference is that the artists that are responsible for drawing axis lines, ticks, ticklabels,
and axis labels are separated out from the mpl's Axis class. This change was strongly motivated to support
curvilinear grid.

You can find a tutorial describing usage of axisartist at the axisartist user guide.

The submodules of the axisartist API are:

axisartist.angle_helper

axisartist.axes_divider

axisartist.axes_grid

axisartist.axes_rgb

continues on next page

19.1. Toolkits 3083

../../gallery/axes_grid1/demo_axes_grid.html

Matplotlib, Release 3.4.3

Table 44 – continued from previous page
axisartist.axis_artist The axis_artist module implements custom

artists to draw axis elements (axis lines and labels,
tick lines and labels, grid lines).

axisartist.axisline_style

axisartist.axislines Axislines includes modified implementation of the
Axes class.

axisartist.clip_path

axisartist.floating_axes An experimental support for curvilinear grid.
axisartist.grid_finder

axisartist.grid_helper_curvelinear An experimental support for curvilinear grid.
axisartist.parasite_axes

19.2 mplot3d API

Note: pyplot cannot be used to add content to 3D plots, because its function signatures are strictly 2D
and cannot handle the additional information needed for 3D. Instead, use the explicit API by calling the
respective methods on the Axes3D object.

19.2.1 axes3d

Note: 3D plotting in Matplotlib is still not as mature as the 2D case. Please report any functions that do not
behave as expected as a bug. In addition, help and patches would be greatly appreciated!

axes3d.Axes3D(fig[, rect, azim, elev, ...]) 3D axes object.

mpl_toolkits.mplot3d.axes3d.Axes3D

class mpl_toolkits.mplot3d.axes3d.Axes3D(fig, rect=None, *args, azim=-
60, elev=30, sharez=None,
proj_type='persp', box_aspect=None,
**kwargs)

Bases: matplotlib.axes._axes.Axes

3D axes object.

Parameters

fig
[Figure] The parent figure.

3084 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

rect
[(float, float, float, float)] The (left, bottom, width, height) axes
position.

azim
[float, default: -60] Azimuthal viewing angle.

elev
[float, default: 30] Elevation viewing angle.

sharez
[Axes3D, optional] Other axes to share z-limits with.

proj_type
[{'persp', 'ortho'}] The projection type, default 'persp'.

auto_add_to_figure
[bool, default: True] Prior toMatplotlib 3.4 Axes3Dwould add themselves to their
host Figure on init. Other Axes class do not do this.

This behavior is deprecated in 3.4, the default will change to False in 3.5. The
keyword will be undocumented and a non-False value will be an error in 3.6.

**kwargs
Other optional keyword arguments:

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto'}
autoscale_on bool

continues on next page

19.2. mplot3d API 3085

../../gallery/axisartist/demo_curvelinear_grid.html

Matplotlib, Release 3.4.3

Table 46 – continued from previous page
Property Description
autoscalex_on bool
autoscaley_on bool
autoscalez_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect 3-tuple of floats or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
proj_type {'persp', 'ortho'}
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim3d or xlim unknown
xmargin float greater than -0.5
xscale {"linear"}
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim3d or ylim unknown
ymargin float greater than -0.5
yscale {"linear"}

continues on next page

3086 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Table 46 – continued from previous page
Property Description
yticklabels unknown
yticks unknown
zbound unknown
zlabel unknown
zlim3d or zlim unknown
zmargin unknown
zorder float
zscale {"linear"}
zticklabels unknown
zticks unknown

Notes

New in version 1.2.1: The sharez parameter.

__init__(fig, rect=None, *args, azim=- 60, elev=30, sharez=None, proj_type='persp',
box_aspect=None, **kwargs)

Parameters

fig
[Figure] The parent figure.

rect
[(float, float, float, float)] The (left, bottom, width, height) axes
position.

azim
[float, default: -60] Azimuthal viewing angle.

elev
[float, default: 30] Elevation viewing angle.

sharez
[Axes3D, optional] Other axes to share z-limits with.

proj_type
[{'persp', 'ortho'}] The projection type, default 'persp'.

auto_add_to_figure
[bool, default: True] Prior to Matplotlib 3.4 Axes3D would add themselves to
their host Figure on init. Other Axes class do not do this.

This behavior is deprecated in 3.4, the default will change to False in 3.5. The
keyword will be undocumented and a non-False value will be an error in 3.6.

19.2. mplot3d API 3087

Matplotlib, Release 3.4.3

**kwargs
Other optional keyword arguments:

Property Description
adjustable {'box', 'datalim'}
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
anchor 2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}
animated bool
aspect {'auto'}
autoscale_on bool
autoscalex_on bool
autoscaley_on bool
autoscalez_on bool
axes_locator Callable[[Axes, Renderer], Bbox]
axisbelow bool or 'line'
box_aspect 3-tuple of floats or None
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
contains unknown
facecolor or fc color
figure Figure

frame_on bool
gid str
in_layout bool
label object
navigate bool
navigate_mode unknown
path_effects AbstractPathEffect

picker None or bool or float or callable
position [left, bottom, width, height] or Bbox
proj_type {'persp', 'ortho'}
prop_cycle unknown
rasterization_zorder float or None
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
title str
transform Transform

url str
visible bool
xbound unknown
xlabel str
xlim3d or xlim unknown

continues on next page

3088 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Table 47 – continued from previous page
Property Description
xmargin float greater than -0.5
xscale {"linear"}
xticklabels unknown
xticks unknown
ybound unknown
ylabel str
ylim3d or ylim unknown
ymargin float greater than -0.5
yscale {"linear"}
yticklabels unknown
yticks unknown
zbound unknown
zlabel unknown
zlim3d or zlim unknown
zmargin unknown
zorder float
zscale {"linear"}
zticklabels unknown
zticks unknown

Notes

New in version 1.2.1: The sharez parameter.

__module__ = 'mpl_toolkits.mplot3d.axes3d'

add_collection3d(col, zs=0, zdir='z')
Add a 3D collection object to the plot.

2D collection types are converted to a 3D version bymodifying the object and adding z coordinate
information.

Supported are:

• PolyCollection

• LineCollection

• PatchCollection

add_contour_set(cset, extend3d=False, stride=5, zdir='z', offset=None)

add_contourf_set(cset, zdir='z', offset=None)

apply_aspect(position=None)
Adjust the Axes for a specified data aspect ratio.

Depending on get_adjustable this will modify either the Axes box (position) or the view
limits. In the former case, get_anchor will affect the position.

19.2. mplot3d API 3089

Matplotlib, Release 3.4.3

See also:

matplotlib.axes.Axes.set_aspect

For a description of aspect ratio handling.

matplotlib.axes.Axes.set_adjustable

Set how the Axes adjusts to achieve the required aspect ratio.

matplotlib.axes.Axes.set_anchor

Set the position in case of extra space.

Notes

This is called automatically when each Axes is drawn. You may need to call it yourself if you
need to update the Axes position and/or view limits before the Figure is drawn.

auto_scale_xyz(X, Y, Z=None, had_data=None)

autoscale(enable=True, axis='both', tight=None)
Convenience method for simple axis view autoscaling. See matplotlib.axes.Axes.
autoscale() for full explanation. Note that this function behaves the same, but for all three
axes. Therefore, 'z' can be passed for axis, and 'both' applies to all three axes.

New in version 1.1.0.

autoscale_view(tight=None, scalex=True, scaley=True, scalez=True)
Autoscale the view limits using the data limits. See matplotlib.axes.Axes.
autoscale_view() for documentation. Note that this function applies to the 3D axes, and
as such adds the scalez to the function arguments.

Changed in version 1.1.0: Function signature was changed to better match the 2D version. tight
is now explicitly a kwarg and placed first.

Changed in version 1.2.1: This is now fully functional.

bar(left, height, zs=0, zdir='z', *args, **kwargs)
Add 2D bar(s).

Parameters

left
[1D array-like] The x coordinates of the left sides of the bars.

height
[1D array-like] The height of the bars.

zs
[float or 1D array-like] Z coordinate of bars; if a single value is specified, it will
be used for all bars.

3090 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

zdir
[{'x', 'y', 'z'}, default: 'z'] When plotting 2D data, the direction to use as z ('x', 'y'
or 'z').

**kwargs
Other arguments are forwarded to matplotlib.axes.Axes.bar.

Returns

mpl_toolkits.mplot3d.art3d.Patch3DCollection

bar3d(x, y, z, dx, dy, dz, color=None, zsort='average', shade=True, lightsource=None, *args,
**kwargs)

Generate a 3D barplot.

This method creates three dimensional barplot where the width, depth, height, and color of the
bars can all be uniquely set.

Parameters

x, y, z
[array-like] The coordinates of the anchor point of the bars.

dx, dy, dz
[float or array-like] The width, depth, and height of the bars, respectively.

color
[sequence of colors, optional] The color of the bars can be specified globally or
individually. This parameter can be:

• A single color, to color all bars the same color.

• An array of colors of length N bars, to color each bar independently.

• An array of colors of length 6, to color the faces of the bars similarly.

• An array of colors of length 6 * N bars, to color each face independently.

When coloring the faces of the boxes specifically, this is the order of the coloring:

1. -Z (bottom of box)

2. +Z (top of box)

3. -Y

4. +Y

5. -X

6. +X

19.2. mplot3d API 3091

Matplotlib, Release 3.4.3

zsort
[str, optional] The z-axis sorting scheme passed onto Poly3DCollection

shade
[bool, default: True] When true, this shades the dark sides of the bars (relative
to the plot's source of light).

lightsource
[LightSource] The lightsource to use when shade is True.

**kwargs
Any additional keyword arguments are passed onto Poly3DCollection.

Returns

collection
[Poly3DCollection] A collection of three dimensional polygons represent-
ing the bars.

can_pan()
Return whether this axes supports the pan/zoom button functionality.

3D axes objects do not use the pan/zoom button.

can_zoom()
Return whether this axes supports the zoom box button functionality.

3D axes objects do not use the zoom box button.

cla()
Clear the axes.

clabel(*args, **kwargs)
Currently not implemented for 3D axes, and returns None.

contour(X, Y, Z, *args, extend3d=False, stride=5, zdir='z', offset=None, **kwargs)
Create a 3D contour plot.

Parameters

X, Y, Z
[array-like] Input data.

extend3d
[bool, default: False] Whether to extend contour in 3D.

stride
[int] Step size for extending contour.

3092 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

zdir
[{'x', 'y', 'z'}, default: 'z'] The direction to use.

offset
[float, optional] If specified, plot a projection of the contour lines at this position
in a plane normal to zdir.

*args, **kwargs
Other arguments are forwarded to matplotlib.axes.Axes.contour.

Returns

matplotlib.contour.QuadContourSet

contour3D(X, Y, Z, *args, extend3d=False, stride=5, zdir='z', offset=None, **kwargs)
Create a 3D contour plot.

Parameters

X, Y, Z
[array-like] Input data.

extend3d
[bool, default: False] Whether to extend contour in 3D.

stride
[int] Step size for extending contour.

zdir
[{'x', 'y', 'z'}, default: 'z'] The direction to use.

offset
[float, optional] If specified, plot a projection of the contour lines at this position
in a plane normal to zdir.

*args, **kwargs
Other arguments are forwarded to matplotlib.axes.Axes.contour.

Returns

matplotlib.contour.QuadContourSet

contourf(X, Y, Z, *args, zdir='z', offset=None, **kwargs)
Create a 3D filled contour plot.

Parameters

19.2. mplot3d API 3093

Matplotlib, Release 3.4.3

X, Y, Z
[array-like] Input data.

zdir
[{'x', 'y', 'z'}, default: 'z'] The direction to use.

offset
[float, optional] If specified, plot a projection of the contour lines at this position
in a plane normal to zdir.

*args, **kwargs
Other arguments are forwarded to matplotlib.axes.Axes.contourf.

Returns

matplotlib.contour.QuadContourSet

Notes

New in version 1.1.0: The zdir and offset parameters.

contourf3D(X, Y, Z, *args, zdir='z', offset=None, **kwargs)
Create a 3D filled contour plot.

Parameters

X, Y, Z
[array-like] Input data.

zdir
[{'x', 'y', 'z'}, default: 'z'] The direction to use.

offset
[float, optional] If specified, plot a projection of the contour lines at this position
in a plane normal to zdir.

*args, **kwargs
Other arguments are forwarded to matplotlib.axes.Axes.contourf.

Returns

matplotlib.contour.QuadContourSet

3094 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Notes

New in version 1.1.0: The zdir and offset parameters.

convert_zunits(z)
For artists in an axes, if the zaxis has units support, convert z using zaxis unit type

New in version 1.2.1.

disable_mouse_rotation()
Disable mouse buttons for 3D rotation and zooming.

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

errorbar(x, y, z, zerr=None, yerr=None, xerr=None, fmt='', barsabove=False, er-
rorevery=1, ecolor=None, elinewidth=None, capsize=None, capthick=None,
xlolims=False, xuplims=False, ylolims=False, yuplims=False, zlolims=False, zu-
plims=False, **kwargs)

Plot lines and/or markers with errorbars around them.

x/y/z define the data locations, and xerr/yerr/zerr define the errorbar sizes. By default, this draws
the data markers/lines as well the errorbars. Use fmt='none' to draw errorbars only.

Parameters

x, y, z
[float or array-like] The data positions.

xerr, yerr, zerr
[float or array-like, shape (N,) or (2, N), optional] The errorbar sizes:

• scalar: Symmetric +/- values for all data points.

• shape(N,): Symmetric +/-values for each data point.

• shape(2, N): Separate - and + values for each bar. First row contains the lower
errors, the second row contains the upper errors.

• None: No errorbar.

Note that all error arrays should have positive values.

19.2. mplot3d API 3095

Matplotlib, Release 3.4.3

fmt
[str, default: ''] The format for the data points / data lines. See plot for details.

Use 'none' (case insensitive) to plot errorbars without any data markers.

ecolor
[color, default: None] The color of the errorbar lines. If None, use the color of
the line connecting the markers.

elinewidth
[float, default: None] The linewidth of the errorbar lines. If None, the linewidth
of the current style is used.

capsize
[float, default: rcParams["errorbar.capsize"] (default: 0.0)] The
length of the error bar caps in points.

capthick
[float, default: None] An alias to the keyword argumentmarkeredgewidth (a.k.a.
mew). This setting is a more sensible name for the property that controls the
thickness of the error bar cap in points. For backwards compatibility, if mew or
markeredgewidth are given, then they will over-ride capthick. This may change
in future releases.

barsabove
[bool, default: False] If True, will plot the errorbars above the plot symbols.
Default is below.

xlolims, ylolims, zlolims
[bool, default: False] These arguments can be used to indicate that a value gives
only lower limits. In that case a caret symbol is used to indicate this. lims-
arguments may be scalars, or array-likes of the same length as the errors. To
use limits with inverted axes, set_xlim or set_ylim must be called before
errorbar(). Note the tricky parameter names: setting e.g. ylolims to True
means that the y-value is a lower limit of the True value, so, only an upward-
pointing arrow will be drawn!

xuplims, yuplims, zuplims
[bool, default: False] Same as above, but for controlling the upper limits.

errorevery
[int or (int, int), default: 1] draws error bars on a subset of the data. errorevery
=N draws error bars on the points (x[::N], y[::N], z[::N]). errorevery =(start,
N) draws error bars on the points (x[start::N], y[start::N], z[start::N]). e.g. er-
rorevery=(6, 3) adds error bars to the data at (x[6], x[9], x[12], x[15], ...). Used
to avoid overlapping error bars when two series share x-axis values.

Returns

3096 Chapter 19. Toolkits

../../tutorials/introductory/customizing.html?highlight=errorbar.capsize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

errlines
[list] List of Line3DCollection instances each containing an errorbar line.

caplines
[list] List of Line3D instances each containing a capline object.

limmarks
[list] List of Line3D instances each containing a marker with an upper or lower
limit.

Other Parameters

**kwargs
All other keyword arguments for styling errorbar lines are passed
Line3DCollection.

Examples

X label

1.0
0.5

0.0
0.5

1.0

Y l
ab

el

1.0
0.5

0.0
0.5

1.0

Z
la

be
l

1.0
0.5
0.0
0.5

1.0

format_coord(xd, yd)
Given the 2D view coordinates attempt to guess a 3D coordinate. Looks for the nearest edge to

19.2. mplot3d API 3097

Matplotlib, Release 3.4.3

the point and then assumes that the point is at the same z location as the nearest point on the
edge.

format_zdata(z)
Return z string formatted. This function will use the fmt_zdata attribute if it is callable, else
will fall back on the zaxis major formatter

get_autoscale_on()
Get whether autoscaling is applied for all axes on plot commands

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

get_autoscalez_on()
Get whether autoscaling for the z-axis is applied on plot commands

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

get_axis_position()

get_frame_on()
Get whether the 3D axes panels are drawn.

get_proj()
Create the projection matrix from the current viewing position.

get_tightbbox(renderer, call_axes_locator=True, bbox_extra_artists=None, *,
for_layout_only=False)

Return the tight bounding box of the axes, including axis and their decorators (xlabel, title, etc).

Artists that have artist.set_in_layout(False) are not included in the bbox.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

bbox_extra_artists
[list of Artist or None] List of artists to include in the tight bounding box.
If None (default), then all artist children of the axes are included in the tight
bounding box.

call_axes_locator
[bool, default: True] If call_axes_locator is False, it does not call the
_axes_locator attribute, which is necessary to get the correct bounding box.
call_axes_locator=False can be used if the caller is only interested in
the relative size of the tightbbox compared to the axes bbox.

for_layout_only
[default: False] The bounding box will not include the x-extent of the title and
the xlabel, or the y-extent of the ylabel.

Returns

3098 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

BboxBase

Bounding box in figure pixel coordinates.

See also:

matplotlib.axes.Axes.get_window_extent

matplotlib.axis.Axis.get_tightbbox

matplotlib.spines.Spine.get_window_extent

get_w_lims()
Get 3D world limits.

get_xlim()
Alias for get_xlim3d.

get_xlim3d()
Return the x-axis view limits.

Returns

left, right
[(float, float)] The current x-axis limits in data coordinates.

See also:

set_xlim

set_xbound, get_xbound
invert_xaxis, xaxis_inverted

Notes

The x-axis may be inverted, in which case the left value will be greater than the right value.

Changed in version 1.1.0: This function now correctly refers to the 3D x-limits

get_ylim()
Alias for get_ylim3d.

get_ylim3d()
Return the y-axis view limits.

Returns

bottom, top
[(float, float)] The current y-axis limits in data coordinates.

See also:

19.2. mplot3d API 3099

Matplotlib, Release 3.4.3

set_ylim

set_ybound, get_ybound
invert_yaxis, yaxis_inverted

Notes

The y-axis may be inverted, in which case the bottom value will be greater than the top value.

Changed in version 1.1.0: This function now correctly refers to the 3D y-limits.

get_zaxis()
Return the ZAxis (Axis) instance.

get_zbound()
Return the lower and upper z-axis bounds, in increasing order.

New in version 1.1.0.

get_zgridlines()
Return the zaxis' grid lines as a list of Line2Ds.

get_zlabel()
Get the z-label text string.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

get_zlim()
Alias for get_zlim3d.

get_zlim3d()
Get 3D z limits.

get_zmajorticklabels()
Return the zaxis' major tick labels, as a list of Text.

get_zminorticklabels()
Return the zaxis' minor tick labels, as a list of Text.

get_zscale()

get_zticklabels(minor=False, which=None)
Get the zaxis' tick labels.

Parameters

minor
[bool] Whether to return the minor or the major ticklabels.

which
[None, ('minor', 'major', 'both')] Overrides minor.

Selects which ticklabels to return

3100 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Returns

list of Text

Notes

The tick label strings are not populated until a draw method has been called.

See also: draw and draw.

get_zticklines(minor=False)
Return the zaxis' tick lines as a list of Line2Ds.

get_zticks(*, minor=False)
Return the zaxis' tick locations in data coordinates.

grid(b=True, **kwargs)
Set / unset 3D grid.

Note: Currently, this function does not behave the same as matplotlib.axes.Axes.
grid(), but it is intended to eventually support that behavior.

New in version 1.1.0.

invert_zaxis()
Invert the z-axis.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

locator_params(axis='both', tight=None, **kwargs)
Convenience method for controlling tick locators.

See matplotlib.axes.Axes.locator_params() for full documentation. Note that
this is for Axes3D objects, therefore, setting axis to 'both' will result in the parameters being set
for all three axes. Also, axis can also take a value of 'z' to apply parameters to the z axis.

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

margins(*margins, x=None, y=None, z=None, tight=True)
Convenience method to set or retrieve autoscaling margins.

Call signatures:

margins()

returns xmargin, ymargin, zmargin

margins(margin)

margins(xmargin, ymargin, zmargin)

margins(x=xmargin, y=ymargin, z=zmargin)

(continues on next page)

19.2. mplot3d API 3101

Matplotlib, Release 3.4.3

(continued from previous page)

margins(..., tight=False)

All forms above set the xmargin, ymargin and zmargin parameters. All keyword parameters are
optional. A single positional argument specifies xmargin, ymargin and zmargin. Passing both
positional and keyword arguments for xmargin, ymargin, and/or zmargin is invalid.

The tight parameter is passed to autoscale_view(), which is executed after a margin is
changed; the default here is True, on the assumption that when margins are specified, no addi-
tional padding to match tick marks is usually desired. Setting tight to None will preserve the
previous setting.

Specifying any margin changes only the autoscaling; for example, if xmargin is not None, then
xmargin times the X data interval will be added to each end of that interval before it is used in
autoscaling.

New in version 1.1.0.

mouse_init(rotate_btn=1, zoom_btn=3)
Set the mouse buttons for 3D rotation and zooming.

Parameters

rotate_btn
[int or list of int, default: 1] The mouse button or buttons to use for 3D rotation
of the axes.

zoom_btn
[int or list of int, default: 3] The mouse button or buttons to use to zoom the 3D
axes.

name = '3d'

plot(xs, ys, *args, zdir='z', **kwargs)
Plot 2D or 3D data.

Parameters

xs
[1D array-like] x coordinates of vertices.

ys
[1D array-like] y coordinates of vertices.

zs
[float or 1D array-like] z coordinates of vertices; either one for all points or one
for each point.

3102 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

zdir
[{'x', 'y', 'z'}, default: 'z'] When plotting 2D data, the direction to use as z ('x', 'y'
or 'z').

**kwargs
Other arguments are forwarded to matplotlib.axes.Axes.plot.

plot3D(xs, ys, *args, zdir='z', **kwargs)
Plot 2D or 3D data.

Parameters

xs
[1D array-like] x coordinates of vertices.

ys
[1D array-like] y coordinates of vertices.

zs
[float or 1D array-like] z coordinates of vertices; either one for all points or one
for each point.

zdir
[{'x', 'y', 'z'}, default: 'z'] When plotting 2D data, the direction to use as z ('x', 'y'
or 'z').

**kwargs
Other arguments are forwarded to matplotlib.axes.Axes.plot.

plot_surface(X, Y, Z, *args, norm=None, vmin=None, vmax=None, lightsource=None,
**kwargs)

Create a surface plot.

By default it will be colored in shades of a solid color, but it also supports colormapping by
supplying the cmap argument.

Note: The rcount and ccount kwargs, which both default to 50, determine the maximum number
of samples used in each direction. If the input data is larger, it will be downsampled (by slicing)
to these numbers of points.

Note: Tomaximize rendering speed consider setting rstride and cstride to divisors of the number
of rows minus 1 and columns minus 1 respectively. For example, given 51 rows rstride can be
any of the divisors of 50.

19.2. mplot3d API 3103

Matplotlib, Release 3.4.3

Similarly, a setting of rstride and cstride equal to 1 (or rcount and ccount equal the number of
rows and columns) can use the optimized path.

Parameters

X, Y, Z
[2D arrays] Data values.

rcount, ccount
[int] Maximum number of samples used in each direction. If the input data is
larger, it will be downsampled (by slicing) to these numbers of points. Defaults
to 50.

New in version 2.0.

rstride, cstride
[int] Downsampling stride in each direction. These arguments are mutually ex-
clusive with rcount and ccount. If only one of rstride or cstride is set, the other
defaults to 10.

'classic' mode uses a default of rstride = cstride = 10 instead of the
new default of rcount = ccount = 50.

color
[color-like] Color of the surface patches.

cmap
[Colormap] Colormap of the surface patches.

facecolors
[array-like of colors.] Colors of each individual patch.

norm
[Normalize] Normalization for the colormap.

vmin, vmax
[float] Bounds for the normalization.

shade
[bool, default: True] Whether to shade the facecolors. Shading is always dis-
abled when cmap is specified.

lightsource
[LightSource] The lightsource to use when shade is True.

**kwargs
Other arguments are forwarded to Poly3DCollection.

3104 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

plot_trisurf(*args, color=None, norm=None, vmin=None, vmax=None, light-
source=None, **kwargs)

Plot a triangulated surface.

The (optional) triangulation can be specified in one of two ways; either:

plot_trisurf(triangulation, ...)

where triangulation is a Triangulation object, or:

plot_trisurf(X, Y, ...)
plot_trisurf(X, Y, triangles, ...)
plot_trisurf(X, Y, triangles=triangles, ...)

in which case a Triangulation object will be created. See Triangulation for a explanation
of these possibilities.

The remaining arguments are:

plot_trisurf(..., Z)

where Z is the array of values to contour, one per point in the triangulation.

Parameters

X, Y, Z
[array-like] Data values as 1D arrays.

color
Color of the surface patches.

cmap
A colormap for the surface patches.

norm
[Normalize] An instance of Normalize to map values to colors.

vmin, vmax
[float, default: None] Minimum and maximum value to map.

shade
[bool, default: True] Whether to shade the facecolors. Shading is always dis-
abled when cmap is specified.

lightsource
[LightSource] The lightsource to use when shade is True.

**kwargs
All other arguments are passed on to Poly3DCollection

19.2. mplot3d API 3105

Matplotlib, Release 3.4.3

Examples

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.4
0.2
0.0
0.2

0.4

New in version 1.2.0.

plot_wireframe(X, Y, Z, *args, **kwargs)
Plot a 3D wireframe.

Note: The rcount and ccount kwargs, which both default to 50, determine the maximum number
of samples used in each direction. If the input data is larger, it will be downsampled (by slicing)
to these numbers of points.

Parameters

X, Y, Z
[2D arrays] Data values.

rcount, ccount
[int] Maximum number of samples used in each direction. If the input data is
larger, it will be downsampled (by slicing) to these numbers of points. Setting a
count to zero causes the data to be not sampled in the corresponding direction,
producing a 3D line plot rather than a wireframe plot. Defaults to 50.

3106 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

1.0 0.5 0.0 0.5
1.0 1.0

0.5
0.0

0.5
1.0

1.0

0.5

0.0

0.5

1.0

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.5

0.0

0.5

New in version 2.0.

rstride, cstride
[int] Downsampling stride in each direction. These arguments are mutually ex-
clusive with rcount and ccount. If only one of rstride or cstride is set, the other
defaults to 1. Setting a stride to zero causes the data to be not sampled in the
corresponding direction, producing a 3D line plot rather than a wireframe plot.

'classic' mode uses a default of rstride = cstride = 1 instead of the
new default of rcount = ccount = 50.

**kwargs
Other arguments are forwarded to Line3DCollection.

quiver(X, Y, Z, U, V, W, /, length=1, arrow_length_ratio=.3, pivot='tail', normalize=False,
**kwargs)

Plot a 3D field of arrows.

The arguments could be array-like or scalars, so long as they they can be broadcast together. The
arguments can also be masked arrays. If an element in any of argument is masked, then that
corresponding quiver element will not be plotted.

Parameters

X, Y, Z
[array-like] The x, y and z coordinates of the arrow locations (default is tail of
arrow; see pivot kwarg).

U, V, W
[array-like] The x, y and z components of the arrow vectors.

19.2. mplot3d API 3107

Matplotlib, Release 3.4.3

length
[float, default: 1] The length of each quiver.

arrow_length_ratio
[float, default: 0.3] The ratio of the arrow head with respect to the quiver.

pivot
[{'tail', 'middle', 'tip'}, default: 'tail'] The part of the arrow that is at the grid
point; the arrow rotates about this point, hence the name pivot.

normalize
[bool, default: False]Whether all arrows are normalized to have the same length,
or keep the lengths defined by u, v, and w.

**kwargs
Any additional keyword arguments are delegated to LineCollection

quiver3D(X, Y, Z, U, V, W, /, length=1, arrow_length_ratio=.3, pivot='tail', normal-
ize=False, **kwargs)

Plot a 3D field of arrows.

The arguments could be array-like or scalars, so long as they they can be broadcast together. The
arguments can also be masked arrays. If an element in any of argument is masked, then that
corresponding quiver element will not be plotted.

Parameters

X, Y, Z
[array-like] The x, y and z coordinates of the arrow locations (default is tail of
arrow; see pivot kwarg).

U, V, W
[array-like] The x, y and z components of the arrow vectors.

length
[float, default: 1] The length of each quiver.

arrow_length_ratio
[float, default: 0.3] The ratio of the arrow head with respect to the quiver.

pivot
[{'tail', 'middle', 'tip'}, default: 'tail'] The part of the arrow that is at the grid
point; the arrow rotates about this point, hence the name pivot.

normalize
[bool, default: False]Whether all arrows are normalized to have the same length,
or keep the lengths defined by u, v, and w.

3108 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

**kwargs
Any additional keyword arguments are delegated to LineCollection

scatter(xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True, *args, **kwargs)
Create a scatter plot.

Parameters

xs, ys
[array-like] The data positions.

zs
[float or array-like, default: 0] The z-positions. Either an array of the same length
as xs and ys or a single value to place all points in the same plane.

zdir
[{'x', 'y', 'z', '-x', '-y', '-z'}, default: 'z'] The axis direction for the zs. This is useful
when plotting 2D data on a 3D Axes. The data must be passed as xs, ys. Setting
zdir to 'y' then plots the data to the x-z-plane.

See also /gallery/mplot3d/2dcollections3d.

s
[float or array-like, default: 20] The marker size in points**2. Either an array of
the same length as xs and ys or a single value to make all markers the same size.

c
[color, sequence, or sequence of colors, optional] The marker color. Possible
values:

• A single color format string.

• A sequence of colors of length n.

• A sequence of n numbers to be mapped to colors using cmap and norm.

• A 2D array in which the rows are RGB or RGBA.

For more details see the c argument of scatter.

depthshade
[bool, default: True]Whether to shade the scatter markers to give the appearance
of depth. Each call to scatter()will perform its depthshading independently.

**kwargs
All other arguments are passed on to scatter.

Returns

19.2. mplot3d API 3109

Matplotlib, Release 3.4.3

paths
[PathCollection]

scatter3D(xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True, *args, **kwargs)
Create a scatter plot.

Parameters

xs, ys
[array-like] The data positions.

zs
[float or array-like, default: 0] The z-positions. Either an array of the same length
as xs and ys or a single value to place all points in the same plane.

zdir
[{'x', 'y', 'z', '-x', '-y', '-z'}, default: 'z'] The axis direction for the zs. This is useful
when plotting 2D data on a 3D Axes. The data must be passed as xs, ys. Setting
zdir to 'y' then plots the data to the x-z-plane.

See also /gallery/mplot3d/2dcollections3d.

s
[float or array-like, default: 20] The marker size in points**2. Either an array of
the same length as xs and ys or a single value to make all markers the same size.

c
[color, sequence, or sequence of colors, optional] The marker color. Possible
values:

• A single color format string.

• A sequence of colors of length n.

• A sequence of n numbers to be mapped to colors using cmap and norm.

• A 2D array in which the rows are RGB or RGBA.

For more details see the c argument of scatter.

depthshade
[bool, default: True]Whether to shade the scatter markers to give the appearance
of depth. Each call to scatter()will perform its depthshading independently.

**kwargs
All other arguments are passed on to scatter.

Returns

3110 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

paths
[PathCollection]

set_anchor(anchor, share=False)
Define the anchor location.

The actual drawing area (active position) of the Axes may be smaller than the Bbox (original
position) when a fixed aspect is required. The anchor defines where the drawing area will be
located within the available space.

Parameters

anchor
[2-tuple of floats or {'C', 'SW', 'S', 'SE', ...}] The anchor position may be either:

• a sequence (cx, cy). cx and cymay range from 0 to 1, where 0 is left or bottom
and 1 is right or top.

• a string using cardinal directions as abbreviation:

– 'C' for centered

– 'S' (south) for bottom-center

– 'SW' (south west) for bottom-left

– etc.

Here is an overview of the possible positions:

'NW' 'N' 'NE'
'W' 'C' 'E'
'SW' 'S' 'SE'

share
[bool, default: False] If True, apply the settings to all shared Axes.

See also:

matplotlib.axes.Axes.set_aspect

for a description of aspect handling.

set_aspect(aspect, adjustable=None, anchor=None, share=False)
Set the aspect ratios.

Axes 3D does not current support any aspect but 'auto' which fills the axes with the data limits.

To simulate having equal aspect in data space, set the ratio of your data limits to match the value
of get_box_aspect. To control box aspect ratios use set_box_aspect.

Parameters

19.2. mplot3d API 3111

Matplotlib, Release 3.4.3

aspect
[{'auto'}] Possible values:

value description
'auto' automatic; fill the position rectangle with data.

adjustable
[None] Currently ignored by Axes3D

If not None, this defines which parameter will be adjusted to meet the required
aspect. See set_adjustable for further details.

anchor
[None or str or 2-tuple of float, optional] If not None, this defines where the Axes
will be drawn if there is extra space due to aspect constraints. The most common
way to to specify the anchor are abbreviations of cardinal directions:

value description
'C' centered
'SW' lower left corner
'S' middle of bottom edge
'SE' lower right corner
etc.

See set_anchor for further details.

share
[bool, default: False] If True, apply the settings to all shared Axes.

See also:

mpl_toolkits.mplot3d.axes3d.Axes3D.set_box_aspect

set_autoscale_on(b)
Set whether autoscaling is applied on plot commands

New in version 1.1.0: This function was added, but not tested. Please report any bugs.

Parameters

b
[bool]

set_autoscalez_on(b)
Set whether autoscaling for the z-axis is applied on plot commands

New in version 1.1.0.

3112 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Parameters

b
[bool]

set_axis_off()
Turn the x- and y-axis off.

This affects the axis lines, ticks, ticklabels, grid and axis labels.

set_axis_on()
Turn the x- and y-axis on.

This affects the axis lines, ticks, ticklabels, grid and axis labels.

set_box_aspect(aspect, *, zoom=1)
Set the axes box aspect.

The box aspect is the ratio of height to width in display units for each face of the box when viewed
perpendicular to that face. This is not to be confused with the data aspect (which for Axes3D is
always 'auto'). The default ratios are 4:4:3 (x:y:z).

To simulate having equal aspect in data space, set the box aspect to match your data range in each
dimension.

zoom controls the overall size of the Axes3D in the figure.

Parameters

aspect
[3-tuple of floats or None] Changes the physical dimensions of the Axes3D, such
that the ratio of the axis lengths in display units is x:y:z.

If None, defaults to 4:4:3

zoom
[float] Control overall size of the Axes3D in the figure.

set_frame_on(b)
Set whether the 3D axes panels are drawn.

Parameters

b
[bool]

set_proj_type(proj_type)
Set the projection type.

Parameters

19.2. mplot3d API 3113

Matplotlib, Release 3.4.3

proj_type
[{'persp', 'ortho'}]

set_title(label, fontdict=None, loc='center', **kwargs)
Set a title for the Axes.

Set one of the three available Axes titles. The available titles are positioned above the Axes in
the center, flush with the left edge, and flush with the right edge.

Parameters

label
[str] Text to use for the title

fontdict
[dict] A dictionary controlling the appearance of the title text, the default fontdict
is:

{'fontsize': rcParams['axes.titlesize'],
'fontweight': rcParams['axes.titleweight'],
'color': rcParams['axes.titlecolor'],
'verticalalignment': 'baseline',
'horizontalalignment': loc}

loc
[{'center', 'left', 'right'}, default: rcParams["axes.titlelocation"]
(default: 'center')] Which title to set.

y
[float, default: rcParams["axes.titley"] (default: None)] Vertical
Axes loation for the title (1.0 is the top). If None (the default), y is determined
automatically to avoid decorators on the Axes.

pad
[float, default: rcParams["axes.titlepad"] (default: 6.0)] The offset
of the title from the top of the Axes, in points.

Returns

Text

The matplotlib text instance representing the title

Other Parameters

**kwargs
[Text properties] Other keyword arguments are text properties, see Text for a
list of valid text properties.

3114 Chapter 19. Toolkits

../../tutorials/introductory/customizing.html?highlight=axes.titlelocation#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.titley#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=axes.titlepad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

set_top_view()

set_xlim(left=None, right=None, emit=True, auto=False, *, xmin=None, xmax=None)
Alias for set_xlim3d.

set_xlim3d(left=None, right=None, emit=True, auto=False, *, xmin=None, xmax=None)
Set 3D x limits.

See matplotlib.axes.Axes.set_xlim() for full documentation.

set_xmargin(m)
Set padding of X data limits prior to autoscaling.

m times the data interval will be added to each end of that interval before it is used in autoscaling.
For example, if your data is in the range [0, 2], a factor of m = 0.1 will result in a range [-0.2,
2.2].

Negative values -0.5 < m < 0 will result in clipping of the data range. I.e. for a data range [0, 2],
a factor of m = -0.1 will result in a range [0.2, 1.8].

Parameters

m
[float greater than -0.5]

set_xscale(value, **kwargs)
Set the x-axis scale.

Parameters

value
[{"linear"}] The axis scale type to apply. 3D axes currently only support linear
scales; other scales yield nonsensical results.

**kwargs
Keyword arguments are nominally forwarded to the scale class, but none of them
is applicable for linear scales.

set_ylim(bottom=None, top=None, emit=True, auto=False, *, ymin=None, ymax=None)
Alias for set_ylim3d.

set_ylim3d(bottom=None, top=None, emit=True, auto=False, *, ymin=None,
ymax=None)

Set 3D y limits.

See matplotlib.axes.Axes.set_ylim() for full documentation.

set_ymargin(m)
Set padding of Y data limits prior to autoscaling.

m times the data interval will be added to each end of that interval before it is used in autoscaling.
For example, if your data is in the range [0, 2], a factor of m = 0.1 will result in a range [-0.2,
2.2].

19.2. mplot3d API 3115

Matplotlib, Release 3.4.3

Negative values -0.5 < m < 0 will result in clipping of the data range. I.e. for a data range [0, 2],
a factor of m = -0.1 will result in a range [0.2, 1.8].

Parameters

m
[float greater than -0.5]

set_yscale(value, **kwargs)
Set the y-axis scale.

Parameters

value
[{"linear"}] The axis scale type to apply. 3D axes currently only support linear
scales; other scales yield nonsensical results.

**kwargs
Keyword arguments are nominally forwarded to the scale class, but none of them
is applicable for linear scales.

set_zbound(lower=None, upper=None)
Set the lower and upper numerical bounds of the z-axis.

This method will honor axes inversion regardless of parameter order. It will not change the
autoscaling setting (get_autoscalez_on()).

New in version 1.1.0.

set_zlabel(zlabel, fontdict=None, labelpad=None, **kwargs)
Set zlabel. See doc for set_ylabel for description.

set_zlim(bottom=None, top=None, emit=True, auto=False, *, zmin=None, zmax=None)
Alias for set_zlim3d.

set_zlim3d(bottom=None, top=None, emit=True, auto=False, *, zmin=None,
zmax=None)

Set 3D z limits.

See matplotlib.axes.Axes.set_ylim() for full documentation

set_zmargin(m)
Set padding of Z data limits prior to autoscaling.

m times the data interval will be added to each end of that interval before it is used in autoscaling.

accepts: float in range 0 to 1

New in version 1.1.0.

set_zscale(value, **kwargs)
Set the z-axis scale.

Parameters

3116 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

value
[{"linear"}] The axis scale type to apply. 3D axes currently only support linear
scales; other scales yield nonsensical results.

**kwargs
Keyword arguments are nominally forwarded to the scale class, but none of them
is applicable for linear scales.

set_zticklabels(labels, *, fontdict=None, minor=False, **kwargs)
Set the zaxis' labels with list of string labels.

Warning: This method should only be used after fixing the tick positions using Axes3D.
set_zticks. Otherwise, the labels may end up in unexpected positions.

Parameters

labels
[list of str] The label texts.

fontdict
[dict, optional] A dictionary controlling the appearance of the ticklabels. The
default fontdict is:

{'fontsize': rcParams['axes.titlesize'],
'fontweight': rcParams['axes.titleweight'],
'verticalalignment': 'baseline',
'horizontalalignment': loc}

minor
[bool, default: False] Whether to set the minor ticklabels rather than the major
ones.

Returns

list of Text
The labels.

Other Parameters

**kwargs
[Text properties.]

19.2. mplot3d API 3117

Matplotlib, Release 3.4.3

set_zticks(ticks, *, minor=False)
Set the zaxis' tick locations.

If necessary, the view limits of the Axis are expanded so that all given ticks are visible.

Parameters

ticks
[list of floats] List of tick locations.

minor
[bool, default: False] If False, set the major ticks; if True, the minor ticks.

Notes

Themandatory expansion of the view limits is an intentional design choice to prevent the surprise
of a non-visible tick. If you need other limits, you should set the limits explicitly after setting the
ticks.

stem(x, y, z, *, linefmt='C0-', markerfmt='C0o', basefmt='C3-', bottom=0, label=None, ori-
entation='z')

Create a 3D stem plot.

A stem plot draws lines perpendicular to a baseline, and places markers at the heads. By default,
the baseline is defined by x and y, and stems are drawn vertically from bottom to z.

Parameters

x, y, z
[array-like] The positions of the heads of the stems. The stems are drawn
along the orientation-direction from the baseline at bottom (in the orientation-
coordinate) to the heads. By default, the x and y positions are used for the base-
line and z for the head position, but this can be changed by orientation.

linefmt
[str, default: 'C0-'] A string defining the properties of the vertical lines. Usually,
this will be a color or a color and a linestyle:

Character Line Style
'-' solid line
'--' dashed line
'-.' dash-dot line
':' dotted line

Note: While it is technically possible to specify valid formats other than color
or color and linestyle (e.g. 'rx' or '-.'), this is beyond the intention of the method
and will most likely not result in a reasonable plot.

3118 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

markerfmt
[str, default: 'C0o'] A string defining the properties of the markers at the stem
heads.

basefmt
[str, default: 'C3-'] A format string defining the properties of the baseline.

bottom
[float, default: 0] The position of the baseline, in orientation-coordinates.

label
[str, default: None] The label to use for the stems in legends.

orientation
[{'x', 'y', 'z'}, default: 'z'] The direction along which stems are drawn.

Returns

StemContainer

The container may be treated like a tuple (markerline, stemlines, baseline)

Examples

stem3D(x, y, z, *, linefmt='C0-', markerfmt='C0o', basefmt='C3-', bottom=0, label=None,
orientation='z')

Create a 3D stem plot.

A stem plot draws lines perpendicular to a baseline, and places markers at the heads. By default,
the baseline is defined by x and y, and stems are drawn vertically from bottom to z.

Parameters

x, y, z
[array-like] The positions of the heads of the stems. The stems are drawn
along the orientation-direction from the baseline at bottom (in the orientation-
coordinate) to the heads. By default, the x and y positions are used for the base-
line and z for the head position, but this can be changed by orientation.

linefmt
[str, default: 'C0-'] A string defining the properties of the vertical lines. Usually,
this will be a color or a color and a linestyle:

19.2. mplot3d API 3119

Matplotlib, Release 3.4.3

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0
1
2
3
4
5
6

Character Line Style
'-' solid line
'--' dashed line
'-.' dash-dot line
':' dotted line

Note: While it is technically possible to specify valid formats other than color
or color and linestyle (e.g. 'rx' or '-.'), this is beyond the intention of the method
and will most likely not result in a reasonable plot.

markerfmt
[str, default: 'C0o'] A string defining the properties of the markers at the stem
heads.

basefmt
[str, default: 'C3-'] A format string defining the properties of the baseline.

bottom
[float, default: 0] The position of the baseline, in orientation-coordinates.

label

3120 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0
1
2
3
4
5
6

[str, default: None] The label to use for the stems in legends.

orientation
[{'x', 'y', 'z'}, default: 'z'] The direction along which stems are drawn.

Returns

StemContainer

The container may be treated like a tuple (markerline, stemlines, baseline)

Examples

text(x, y, z, s, zdir=None, **kwargs)
Add text to the plot. kwargs will be passed on to Axes.text, except for the zdir keyword, which
sets the direction to be used as the z direction.

text2D(x, y, s, fontdict=None, **kwargs)
Add text to the Axes.

Add the text s to the Axes at location x, y in data coordinates.

Parameters

19.2. mplot3d API 3121

Matplotlib, Release 3.4.3

x

1.0
0.5

0.0
0.5

1.0

y

1.0
0.5

0.0
0.5

1.0

z

0
1
2
3
4
5
6

x, y
[float] The position to place the text. By default, this is in data coordinates. The
coordinate system can be changed using the transform parameter.

s
[str] The text.

fontdict
[dict, default: None] A dictionary to override the default text properties. If font-
dict is None, the defaults are determined by rcParams.

Returns

Text

The created Text instance.

Other Parameters

**kwargs
[Text properties.] Other miscellaneous text parameters.

3122 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0
1
2
3
4
5
6

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str

continues on next page

19.2. mplot3d API 3123

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Table 48 – continued from previous page
Property Description
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
visible bool
wrap bool
x float
y float
zorder float

Examples

Individual keyword arguments can be used to override any given parameter:

>>> text(x, y, s, fontsize=12)

The default transform specifies that text is in data coords, alternatively, you can specify text in
axis coords ((0, 0) is lower-left and (1, 1) is upper-right). The example below places text in the
center of the Axes:

>>> text(0.5, 0.5, 'matplotlib', horizontalalignment='center',
... verticalalignment='center', transform=ax.transAxes)

You can put a rectangular box around the text instance (e.g., to set a background color) by using
the keyword bbox. bbox is a dictionary of Rectangle properties. For example:

>>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))

text3D(x, y, z, s, zdir=None, **kwargs)

3124 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0
1
2
3
4
5
6

Add text to the plot. kwargs will be passed on to Axes.text, except for the zdir keyword, which
sets the direction to be used as the z direction.

tick_params(axis='both', **kwargs)
Convenience method for changing the appearance of ticks and tick labels.

See matplotlib.axes.Axes.tick_params() for more complete documentation.

The only difference is that setting axis to 'both' will mean that the settings are applied to all three
axes. Also, the axis parameter also accepts a value of 'z', which would mean to apply to only the
z-axis.

Also, because of how Axes3D objects are drawn very differently from regular 2D axes, some of
these settings may have ambiguous meaning. For simplicity, the 'z' axis will accept settings as if
it was like the 'y' axis.

Note: Axes3D currently ignores some of these settings.

New in version 1.1.0.

tricontour(*args, extend3d=False, stride=5, zdir='z', offset=None, **kwargs)
Create a 3D contour plot.

Changed in version 1.3.0: Added support for custom triangulations

19.2. mplot3d API 3125

Matplotlib, Release 3.4.3

x

1.0
0.5

0.0
0.5

1.0

y

1.0
0.5

0.0
0.5

1.0

z

0
1
2
3
4
5
6

Note: This method currently produces incorrect output due to a longstanding bug in 3D Poly-
Collection rendering.

Parameters

X, Y, Z
[array-like] Input data.

extend3d
[bool, default: False] Whether to extend contour in 3D.

stride
[int] Step size for extending contour.

zdir
[{'x', 'y', 'z'}, default: 'z'] The direction to use.

offset
[float, optional] If specified, plot a projection of the contour lines at this position
in a plane normal to zdir.

3126 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

*args, **kwargs
Other arguments are forwarded to matplotlib.axes.Axes.
tricontour.

Returns

matplotlib.tri.tricontour.TriContourSet

tricontourf(*args, zdir='z', offset=None, **kwargs)
Create a 3D filled contour plot.

Note: This method currently produces incorrect output due to a longstanding bug in 3D Poly-
Collection rendering.

Parameters

X, Y, Z
[array-like] Input data.

zdir
[{'x', 'y', 'z'}, default: 'z'] The direction to use.

offset
[float, optional] If specified, plot a projection of the contour lines at this position
in a plane normal to zdir.

*args, **kwargs
Other arguments are forwarded to matplotlib.axes.Axes.
tricontourf.

Returns

matplotlib.tri.tricontour.TriContourSet

Notes

New in version 1.1.0: The zdir and offset parameters.

Changed in version 1.3.0: Added support for custom triangulations

tunit_cube(vals=None, M=None)

tunit_edges(vals=None, M=None)

unit_cube(vals=None)

19.2. mplot3d API 3127

Matplotlib, Release 3.4.3

update_datalim(xys, **kwargs)
Extend the dataLim Bbox to include the given points.

If no data is set currently, the Bbox will ignore its limits and set the bound to be the bounds of
the xydata (xys). Otherwise, it will compute the bounds of the union of its current data and the
data in xys.

Parameters

xys
[2D array-like] The points to include in the data limits Bbox. This can be either
a list of (x, y) tuples or a Nx2 array.

updatex, updatey
[bool, default: True] Whether to update the x/y limits.

view_init(elev=None, azim=None)
Set the elevation and azimuth of the axes in degrees (not radians).

This can be used to rotate the axes programmatically.

'elev' stores the elevation angle in the z plane (in degrees). 'azim' stores the azimuth angle in the
(x, y) plane (in degrees).

if 'elev' or 'azim' are None (default), then the initial value is used which was specified in the
Axes3D constructor.

voxels([x, y, z], /, filled, facecolors=None, edgecolors=None, **kwargs)
Plot a set of filled voxels

All voxels are plotted as 1x1x1 cubes on the axis, with filled[0, 0, 0] placed with its
lower corner at the origin. Occluded faces are not plotted.

New in version 2.1.

Parameters

filled
[3D np.array of bool] A 3D array of values, with truthy values indicating which
voxels to fill

x, y, z
[3D np.array, optional] The coordinates of the corners of the voxels. This should
broadcast to a shape one larger in every dimension than the shape of filled. These
can be used to plot non-cubic voxels.

If not specified, defaults to increasing integers along each axis, like those re-
turned by indices(). As indicated by the / in the function signature, these
arguments can only be passed positionally.

facecolors, edgecolors

3128 Chapter 19. Toolkits

https://numpy.org/doc/stable/reference/generated/numpy.indices.html#numpy.indices

Matplotlib, Release 3.4.3

[array-like, optional] The color to draw the faces and edges of the voxels. Can
only be passed as keyword arguments. These parameters can be:

• A single color value, to color all voxels the same color. This can be either a
string, or a 1D rgb/rgba array

• None, the default, to use a single color for the faces, and the style default for
the edges.

• A 3D ndarray of color names, with each item the color for the corresponding
voxel. The size must match the voxels.

• A 4D ndarray of rgb/rgba data, with the components along the last axis.

shade
[bool, default: True] Whether to shade the facecolors. Shading is always dis-
abled when cmap is specified.

New in version 3.1.

lightsource
[LightSource] The lightsource to use when shade is True.

New in version 3.1.

**kwargs
Additional keyword arguments to pass onto Poly3DCollection.

Returns

faces
[dict] A dictionary indexed by coordinate, where faces[i, j, k] is a
Poly3DCollection of the faces drawn for the voxel filled[i, j, k].
If no faces were drawn for a given voxel, either because it was not asked to be
drawn, or it is fully occluded, then (i, j, k) not in faces.

Examples

property w_xaxis

property w_yaxis

property w_zaxis

zaxis_date(tz=None)
Set up axis ticks and labels to treat data along the zaxis as dates.

Parameters

tz

19.2. mplot3d API 3129

Matplotlib, Release 3.4.3

0
2

4
6

8 0
2

4
6

8

0
1
2
3
4
5
6
7
8

[str or datetime.tzinfo, default: rcParams["timezone"] (default:
'UTC')] The timezone used to create date labels.

Notes

This function is merely provided for completeness, but 3D axes do not support dates for ticks,
and so this may not work as expected.

zaxis_inverted()
Returns True if the z-axis is inverted.

New in version 1.1.0.

Examples using mpl_toolkits.mplot3d.axes3d.Axes3D

19.2.2 axis3d

Note: See mpl_toolkits.mplot3d.axis3d._axinfo for a dictionary containing constants that
may be modified for controlling the look and feel of mplot3d axes (e.g., label spacing, font colors and panel

3130 Chapter 19. Toolkits

https://docs.python.org/3/library/datetime.html#datetime.tzinfo
../../tutorials/introductory/customizing.html?highlight=timezone#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

r

0.0 0.2 0.4 0.6 0.8 1.0

g

0.0
0.2

0.4
0.6

0.8
1.0

b

0.0
0.2
0.4
0.6
0.8
1.0

colors). Historically, axis3d has suffered from having hard-coded constants that precluded user adjustments,
and this dictionary was implemented in version 1.1 as a stop-gap measure.

axis3d.Axis(adir, v_intervalx, d_intervalx, ...) An Axis class for the 3D plots.

mpl_toolkits.mplot3d.axis3d.Axis

class mpl_toolkits.mplot3d.axis3d.Axis(adir, v_intervalx, d_intervalx, axes, *args,
rotate_label=None, **kwargs)

Bases: matplotlib.axis.XAxis

An Axis class for the 3D plots.

Parameters

axes
[matplotlib.axes.Axes] The Axes to which the created Axis belongs.

pickradius
[float] The acceptance radius for containment tests. See also Axis.contains.

__init__(adir, v_intervalx, d_intervalx, axes, *args, rotate_label=None, **kwargs)

Parameters

axes
[matplotlib.axes.Axes] The Axes to which the created Axis belongs.

pickradius
[float] The acceptance radius for containment tests. See alsoAxis.contains.

__module__ = 'mpl_toolkits.mplot3d.axis3d'

property d_interval

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

19.2. mplot3d API 3131

Matplotlib, Release 3.4.3

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.4
0.2
0.0
0.2
0.4

Notes

This method is overridden in the Artist subclasses.

draw_pane(renderer)

get_major_ticks(numticks=None)
Return the list of major Ticks.

get_minor_ticks(numticks=None)
Return the list of minor Ticks.

get_rotate_label(text)

get_tightbbox(renderer, *, for_layout_only=False)
Return a bounding box that encloses the axis. It only accounts tick labels, axis label, and offset-
Text.

If for_layout_only is True, then the width of the label (if this is an x-axis) or the height of the
label (if this is a y-axis) is collapsed to near zero. This allows tight/constrained_layout to ignore
too-long labels when doing their layout.

init3d()

set_pane_color(color)
Set pane color to a RGBA tuple.

3132 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

0
1

2
3

4 0.0
0.5

1.0
1.5

2.0
2.5

3.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5

set_pane_pos(xys)

set_rotate_label(val)
Whether to rotate the axis label: True, False or None. If set to None the label will be rotated if
longer than 4 chars.

property v_interval

Examples using mpl_toolkits.mplot3d.axis3d.Axis

19.2.3 art3d

art3d.Line3D(xs, ys, zs, *args, **kwargs) 3D line object.
art3d.Line3DCollection(segments,
*args[, zorder])

A collection of 3D lines.

art3d.Patch3D(*args[, zs, zdir]) 3D patch object.
art3d.Patch3DCollection(*args[, zs, zdir,
...])

A collection of 3D patches.

art3d.Path3DCollection(*args[, zs, zdir,
...])

A collection of 3D paths.

continues on next page

19.2. mplot3d API 3133

Matplotlib, Release 3.4.3

Table 50 – continued from previous page
art3d.PathPatch3D(path, *[, zs, zdir]) 3D PathPatch object.
art3d.Poly3DCollection(verts, *args[,
zsort])

A collection of 3D polygons.

art3d.Text3D([x, y, z, text, zdir]) Text object with 3D position and direction.
art3d.get_dir_vector(zdir) Return a direction vector.
art3d.juggle_axes(xs, ys, zs, zdir) Reorder coordinates so that 2D xs, ys can be plotted

in the plane orthogonal to zdir.
art3d.line_2d_to_3d(line[, zs, zdir]) Convert a 2D line to 3D.
art3d.line_collection_2d_to_3d(col[,
zs, zdir])

Convert a LineCollection to a Line3DCollection
object.

art3d.patch_2d_to_3d(patch[, z, zdir]) Convert a Patch to a Patch3D object.
art3d.patch_collection_2d_to_3d(col[,
zs, ...])

Convert a PatchCollection into a
Patch3DCollection object (or a Path-
Collection into a Path3DCollection
object).

art3d.pathpatch_2d_to_3d(pathpatch[, z,
zdir])

Convert a PathPatch to a PathPatch3D object.

art3d.poly_collection_2d_to_3d(col[,
zs, zdir])

Convert a PolyCollection to a Poly3DCollection
object.

art3d.rotate_axes(xs, ys, zs, zdir) Reorder coordinates so that the axes are rotated
with zdir along the original z axis.

art3d.text_2d_to_3d(obj[, z, zdir]) Convert a Text to a Text3D object.

mpl_toolkits.mplot3d.art3d.Line3D

class mpl_toolkits.mplot3d.art3d.Line3D(xs, ys, zs, *args, **kwargs)
Bases: matplotlib.lines.Line2D

3D line object.

Keyword arguments are passed onto Line2D().

__init__(xs, ys, zs, *args, **kwargs)
Keyword arguments are passed onto Line2D().

__module__ = 'mpl_toolkits.mplot3d.art3d'

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

3134 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

get_data_3d()
Get the current data

Returns

verts3d
[length-3 tuple or array-like] The current data as a tuple or array-like.

set_3d_properties(zs=0, zdir='z')

set_data_3d(*args)
Set the x, y and z data

Parameters

x
[array-like] The x-data to be plotted.

y
[array-like] The y-data to be plotted.

z
[array-like] The z-data to be plotted.

Notes

Accepts x, y, z arguments or a single array-like (x, y, z)

Examples using mpl_toolkits.mplot3d.art3d.Line3D

• sphx_glr_gallery_mplot3d_stem3d_demo.py

mpl_toolkits.mplot3d.art3d.Line3DCollection

class mpl_toolkits.mplot3d.art3d.Line3DCollection(segments, *args,
zorder=2, **kwargs)

Bases: matplotlib.collections.LineCollection

A collection of 3D lines.

Parameters

19.2. mplot3d API 3135

Matplotlib, Release 3.4.3

segments
[list of array-like] A sequence of (line0, line1, line2), where:

linen = (x0, y0), (x1, y1), ... (xm, ym)

or the equivalent numpy array with two columns. Each line can have a different
number of segments.

linewidths
[float or list of float, default: rcParams["lines.linewidth"] (default:
1.5)] The width of each line in points.

colors
[color or list of color, default: rcParams["lines.color"] (default: 'C0')]
A sequence of RGBA tuples (e.g., arbitrary color strings, etc, not allowed).

antialiaseds
[bool or list of bool, default: rcParams["lines.antialiased"] (default:
True)] Whether to use antialiasing for each line.

zorder
[int, default: 2] zorder of the lines once drawn.

facecolors
[color or list of color, default: 'none'] When setting facecolors, each line is inter-
preted as a boundary for an area, implicitly closing the path from the last point
to the first point. The enclosed area is filled with facecolor. In order to manually
specify what should count as the "interior" of each line, please use PathCol-
lection instead, where the "interior" can be specified by appropriate usage of
CLOSEPOLY.

**kwargs
Forwarded to Collection.

__module__ = 'mpl_toolkits.mplot3d.art3d'

do_3d_projection(renderer=<deprecated parameter>)
Project the points according to renderer matrix.

draw(renderer, project=<deprecated parameter>)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

3136 Chapter 19. Toolkits

../../tutorials/introductory/customizing.html?highlight=lines.linewidth#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.color#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=lines.antialiased#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

set_segments(segments)
Set 3D segments.

set_sort_zpos(val)
Set the position to use for z-sorting.

Examples using mpl_toolkits.mplot3d.art3d.Line3DCollection

• sphx_glr_gallery_mplot3d_stem3d_demo.py

mpl_toolkits.mplot3d.art3d.Patch3D

class mpl_toolkits.mplot3d.art3d.Patch3D(*args, zs=(), zdir='z', **kwargs)
Bases: matplotlib.patches.Patch

3D patch object.

The following kwarg properties are supported

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

continues on next page

19.2. mplot3d API 3137

Matplotlib, Release 3.4.3

Table 51 – continued from previous page
Property Description
picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(*args, zs=(), zdir='z', **kwargs)
The following kwarg properties are supported

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

3138 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

__module__ = 'mpl_toolkits.mplot3d.art3d'

do_3d_projection(renderer=<deprecated parameter>)

get_path()
Return the path of this patch.

set_3d_properties(verts, zs=0, zdir='z')

Examples using mpl_toolkits.mplot3d.art3d.Patch3D

mpl_toolkits.mplot3d.art3d.Patch3DCollection

class mpl_toolkits.mplot3d.art3d.Patch3DCollection(*args, zs=0, zdir='z',
depthshade=True,
**kwargs)

Bases: matplotlib.collections.PatchCollection

A collection of 3D patches.

Create a collection of flat 3D patches with its normal vector pointed in zdir direction, and located at
zs on the zdir axis. 'zs' can be a scalar or an array-like of the same length as the number of patches in
the collection.

Constructor arguments are the same as for PatchCollection. In addition, keywords zs=0 and
zdir='z' are available.

Also, the keyword argument depthshade is available to indicate whether or not to shade the patches in
order to give the appearance of depth (default is True). This is typically desired in scatter plots.

__init__(*args, zs=0, zdir='z', depthshade=True, **kwargs)
Create a collection of flat 3D patches with its normal vector pointed in zdir direction, and located
at zs on the zdir axis. 'zs' can be a scalar or an array-like of the same length as the number of
patches in the collection.

Constructor arguments are the same as for PatchCollection. In addition, keywords zs=0
and zdir='z' are available.

Also, the keyword argument depthshade is available to indicate whether or not to shade the
patches in order to give the appearance of depth (default is True). This is typically desired in
scatter plots.

__module__ = 'mpl_toolkits.mplot3d.art3d'

do_3d_projection(renderer=<deprecated parameter>)

get_depthshade()

get_edgecolor()

get_facecolor()

set_3d_properties(zs, zdir)

19.2. mplot3d API 3139

Matplotlib, Release 3.4.3

set_depthshade(depthshade)
Set whether depth shading is performed on collection members.

Parameters

depthshade
[bool] Whether to shade the patches in order to give the appearance of depth.

set_sort_zpos(val)
Set the position to use for z-sorting.

Examples using mpl_toolkits.mplot3d.art3d.Patch3DCollection

mpl_toolkits.mplot3d.art3d.Path3DCollection

class mpl_toolkits.mplot3d.art3d.Path3DCollection(*args, zs=0, zdir='z',
depthshade=True,
**kwargs)

Bases: matplotlib.collections.PathCollection

A collection of 3D paths.

Create a collection of flat 3D paths with its normal vector pointed in zdir direction, and located at zs
on the zdir axis. 'zs' can be a scalar or an array-like of the same length as the number of paths in the
collection.

Constructor arguments are the same as for PathCollection. In addition, keywords zs=0 and
zdir='z' are available.

Also, the keyword argument depthshade is available to indicate whether or not to shade the patches in
order to give the appearance of depth (default is True). This is typically desired in scatter plots.

__init__(*args, zs=0, zdir='z', depthshade=True, **kwargs)
Create a collection of flat 3D paths with its normal vector pointed in zdir direction, and located
at zs on the zdir axis. 'zs' can be a scalar or an array-like of the same length as the number of
paths in the collection.

Constructor arguments are the same as for PathCollection. In addition, keywords zs=0 and
zdir='z' are available.

Also, the keyword argument depthshade is available to indicate whether or not to shade the
patches in order to give the appearance of depth (default is True). This is typically desired in
scatter plots.

__module__ = 'mpl_toolkits.mplot3d.art3d'

do_3d_projection(renderer=<deprecated parameter>)

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

3140 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Parameters

renderer
[RendererBase subclass.]

Notes

This method is overridden in the Artist subclasses.

get_depthshade()

get_edgecolor()

get_facecolor()

set_3d_properties(zs, zdir)

set_depthshade(depthshade)
Set whether depth shading is performed on collection members.

Parameters

depthshade
[bool] Whether to shade the patches in order to give the appearance of depth.

set_linewidth(lw)
Set the linewidth(s) for the collection. lw can be a scalar or a sequence; if it is a sequence the
patches will cycle through the sequence

Parameters

lw
[float or list of floats]

set_sizes(sizes, dpi=72.0)
Set the sizes of each member of the collection.

Parameters

sizes
[ndarray or None] The size to set for each element of the collection. The value
is the 'area' of the element.

dpi
[float, default: 72] The dpi of the canvas.

set_sort_zpos(val)
Set the position to use for z-sorting.

19.2. mplot3d API 3141

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.mplot3d.art3d.Path3DCollection

mpl_toolkits.mplot3d.art3d.PathPatch3D

class mpl_toolkits.mplot3d.art3d.PathPatch3D(path, *, zs=(), zdir='z',
**kwargs)

Bases: mpl_toolkits.mplot3d.art3d.Patch3D

3D PathPatch object.

The following kwarg properties are supported

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__init__(path, *, zs=(), zdir='z', **kwargs)
The following kwarg properties are supported

3142 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
antialiased or aa unknown
capstyle CapStyle or {'butt', 'projecting', 'round'}
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color color
contains unknown
edgecolor or ec color or None or 'auto'
facecolor or fc color or None
figure Figure

fill bool
gid str
hatch {'/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'}
in_layout bool
joinstyle JoinStyle or {'miter', 'round', 'bevel'}
label object
linestyle or ls {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw float or None
path_effects AbstractPathEffect

picker None or bool or float or callable
rasterized bool
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
transform Transform

url str
visible bool
zorder float

__module__ = 'mpl_toolkits.mplot3d.art3d'

do_3d_projection(renderer=<deprecated parameter>)

set_3d_properties(path, zs=0, zdir='z')

19.2. mplot3d API 3143

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.mplot3d.art3d.PathPatch3D

• sphx_glr_gallery_mplot3d_pathpatch3d.py

mpl_toolkits.mplot3d.art3d.Poly3DCollection

class mpl_toolkits.mplot3d.art3d.Poly3DCollection(verts, *args,
zsort='average',
**kwargs)

Bases: matplotlib.collections.PolyCollection

A collection of 3D polygons.

Note: Filling of 3D polygons
There is no simple definition of the enclosed surface of a 3D polygon unless the polygon is planar.

In practice, Matplotlib fills the 2D projection of the polygon. This gives a correct filling appearance
only for planar polygons. For all other polygons, you'll find orientations in which the edges of the
polygon intersect in the projection. This will lead to an incorrect visualization of the 3D area.

If you need filled areas, it is recommended to create them via plot_trisurf, which creates a
triangulation and thus generates consistent surfaces.

Parameters

verts
[list of (N, 3) array-like] Each element describes a polygon as a sequence of N_i
points (x, y, z).

zsort
[{'average', 'min', 'max'}, default: 'average'] The calculation method for the z-
order. See set_zsort for details.

*args, **kwargs
All other parameters are forwarded to PolyCollection.

Notes

Note that this class does a bit of magic with the _facecolors and _edgecolors properties.

__init__(verts, *args, zsort='average', **kwargs)

Parameters

verts

3144 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

[list of (N, 3) array-like] Each element describes a polygon as a sequence of N_i
points (x, y, z).

zsort
[{'average', 'min', 'max'}, default: 'average'] The calculation method for the z-
order. See set_zsort for details.

*args, **kwargs
All other parameters are forwarded to PolyCollection.

Notes

Note that this class does a bit of magic with the _facecolors and _edgecolors properties.

__module__ = 'mpl_toolkits.mplot3d.art3d'

do_3d_projection(renderer=<deprecated parameter>)
Perform the 3D projection for this object.

get_edgecolor()

get_facecolor()

get_vector(segments3d)
Optimize points for projection.

set_3d_properties()

set_alpha(alpha)
Set the alpha value used for blending - not supported on all backends.

Parameters

alpha
[array-like or scalar or None] All values must be within the 0-1 range, inclusive.
Masked values and nans are not supported.

set_edgecolor(colors)
Set the edgecolor(s) of the collection.

Parameters

c
[color or list of colors or 'face'] The collection edgecolor(s). If a sequence, the
patches cycle through it. If 'face', match the facecolor.

set_facecolor(colors)
Set the facecolor(s) of the collection. c can be a color (all patches have same color), or a sequence
of colors; if it is a sequence the patches will cycle through the sequence.

If c is 'none', the patch will not be filled.

19.2. mplot3d API 3145

Matplotlib, Release 3.4.3

Parameters

c
[color or list of colors]

set_sort_zpos(val)
Set the position to use for z-sorting.

set_verts(verts, closed=True)
Set 3D vertices.

set_verts_and_codes(verts, codes)
Set 3D vertices with path codes.

set_zsort(zsort)
Set the calculation method for the z-order.

Parameters

zsort
[{'average', 'min', 'max'}] The function applied on the z-coordinates of the ver-
tices in the viewer's coordinate system, to determine the z-order.

Examples using mpl_toolkits.mplot3d.art3d.Poly3DCollection

• sphx_glr_gallery_pyplots_whats_new_1_subplot3d.py

• sphx_glr_gallery_frontpage_3D.py

• sphx_glr_gallery_mplot3d_custom_shaded_3d_surface.py

• sphx_glr_gallery_mplot3d_mixed_subplots.py

• sphx_glr_gallery_mplot3d_polys3d.py

• sphx_glr_gallery_mplot3d_subplot3d.py

• sphx_glr_gallery_mplot3d_surface3d.py

• sphx_glr_gallery_mplot3d_surface3d_3.py

mpl_toolkits.mplot3d.art3d.Text3D

class mpl_toolkits.mplot3d.art3d.Text3D(x=0, y=0, z=0, text='', zdir='z',
**kwargs)

Bases: matplotlib.text.Text

Text object with 3D position and direction.

Parameters

3146 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

x, y, z
The position of the text.

text
[str] The text string to display.

zdir
[{'x', 'y', 'z', None, 3-tuple}] The direction of the text. See get_dir_vector
for a description of the values.

Other Parameters

**kwargs
All other parameters are passed on to Text.

Create a Text instance at x, y with string text.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}

continues on next page

19.2. mplot3d API 3147

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Table 55 – continued from previous page
Property Description
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
visible bool
wrap bool
x float
y float
zorder float

__init__(x=0, y=0, z=0, text='', zdir='z', **kwargs)
Create a Text instance at x, y with string text.

Valid keyword arguments are:

Property Description
agg_filter a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha scalar or None
animated bool
backgroundcolor color
bbox dict with properties for patches.FancyBboxPatch
clip_box Bbox

clip_on bool
clip_path Patch or (Path, Transform) or None
color or c color
contains unknown
figure Figure

fontfamily or family {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'}
fontproperties or font or font_properties font_manager.FontProperties or str or pathlib.Path
fontsize or size float or {'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large'}
fontstretch or stretch {a numeric value in range 0-1000, 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'}
fontstyle or style {'normal', 'italic', 'oblique'}

continues on next page

3148 Chapter 19. Toolkits

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Matplotlib, Release 3.4.3

Table 56 – continued from previous page
Property Description
fontvariant or variant {'normal', 'small-caps'}
fontweight or weight {a numeric value in range 0-1000, 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'}
gid str
horizontalalignment or ha {'center', 'right', 'left'}
in_layout bool
label object
linespacing float (multiple of font size)
math_fontfamily str
multialignment or ma {'left', 'right', 'center'}
path_effects AbstractPathEffect

picker None or bool or float or callable
position (float, float)
rasterized bool
rotation float or {'vertical', 'horizontal'}
rotation_mode {None, 'default', 'anchor'}
sketch_params (scale: float, length: float, randomness: float)
snap bool or None
text object
transform Transform

transform_rotates_text bool
url str
usetex bool or None
verticalalignment or va {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
visible bool
wrap bool
x float
y float
zorder float

__module__ = 'mpl_toolkits.mplot3d.art3d'

draw(renderer)
Draw the Artist (and its children) using the given renderer.

This has no effect if the artist is not visible (Artist.get_visible returns False).

Parameters

renderer
[RendererBase subclass.]

19.2. mplot3d API 3149

Matplotlib, Release 3.4.3

Notes

This method is overridden in the Artist subclasses.

get_position_3d()
Return the (x, y, z) position of the text.

get_tightbbox(renderer)
Like Artist.get_window_extent, but includes any clipping.

Parameters

renderer
[RendererBase subclass] renderer that will be used to draw the figures (i.e.
fig.canvas.get_renderer())

Returns

Bbox

The enclosing bounding box (in figure pixel coordinates).

set_3d_properties(z=0, zdir='z')

set_position_3d(xyz, zdir=None)
Set the (x, y, z) position of the text.

Parameters

xyz
[(float, float, float)] The position in 3D space.

zdir
[{'x', 'y', 'z', None, 3-tuple}] The direction of the text. If unspecified, the zdir
will not be changed.

set_z(z)
Set the z position of the text.

Parameters

z
[float]

3150 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.mplot3d.art3d.Text3D

mpl_toolkits.mplot3d.art3d.get_dir_vector

mpl_toolkits.mplot3d.art3d.get_dir_vector(zdir)
Return a direction vector.

Parameters

zdir
[{'x', 'y', 'z', None, 3-tuple}] The direction. Possible values are:

• 'x': equivalent to (1, 0, 0)

• 'y': equivalent to (0, 1, 0)

• 'z': equivalent to (0, 0, 1)

• None: equivalent to (0, 0, 0)

• an iterable (x, y, z) is converted to a NumPy array, if not already

Returns

x, y, z
[array-like] The direction vector.

Examples using mpl_toolkits.mplot3d.art3d.get_dir_vector

mpl_toolkits.mplot3d.art3d.juggle_axes

mpl_toolkits.mplot3d.art3d.juggle_axes(xs, ys, zs, zdir)
Reorder coordinates so that 2D xs, ys can be plotted in the plane orthogonal to zdir. zdir is normally
x, y or z. However, if zdir starts with a '-' it is interpreted as a compensation for rotate_axes.

Examples using mpl_toolkits.mplot3d.art3d.juggle_axes

mpl_toolkits.mplot3d.art3d.line_2d_to_3d

mpl_toolkits.mplot3d.art3d.line_2d_to_3d(line, zs=0, zdir='z')
Convert a 2D line to 3D.

19.2. mplot3d API 3151

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.mplot3d.art3d.line_2d_to_3d

mpl_toolkits.mplot3d.art3d.line_collection_2d_to_3d

mpl_toolkits.mplot3d.art3d.line_collection_2d_to_3d(col, zs=0, zdir='z')
Convert a LineCollection to a Line3DCollection object.

Examples using mpl_toolkits.mplot3d.art3d.line_collection_2d_to_3d

mpl_toolkits.mplot3d.art3d.patch_2d_to_3d

mpl_toolkits.mplot3d.art3d.patch_2d_to_3d(patch, z=0, zdir='z')
Convert a Patch to a Patch3D object.

Examples using mpl_toolkits.mplot3d.art3d.patch_2d_to_3d

mpl_toolkits.mplot3d.art3d.patch_collection_2d_to_3d

mpl_toolkits.mplot3d.art3d.patch_collection_2d_to_3d(col, zs=0, zdir='z',
depthshade=True)

Convert a PatchCollection into a Patch3DCollection object (or a PathCollection
into a Path3DCollection object).

Parameters

za
The location or locations to place the patches in the collection along the zdir axis.
Default: 0.

zdir
The axis in which to place the patches. Default: "z".

depthshade
Whether to shade the patches to give a sense of depth. Default: True.

Examples using mpl_toolkits.mplot3d.art3d.patch_collection_2d_to_3d

mpl_toolkits.mplot3d.art3d.pathpatch_2d_to_3d

mpl_toolkits.mplot3d.art3d.pathpatch_2d_to_3d(pathpatch, z=0, zdir='z')
Convert a PathPatch to a PathPatch3D object.

3152 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.mplot3d.art3d.pathpatch_2d_to_3d

• sphx_glr_gallery_mplot3d_pathpatch3d.py

mpl_toolkits.mplot3d.art3d.poly_collection_2d_to_3d

mpl_toolkits.mplot3d.art3d.poly_collection_2d_to_3d(col, zs=0, zdir='z')
Convert a PolyCollection to a Poly3DCollection object.

Examples using mpl_toolkits.mplot3d.art3d.poly_collection_2d_to_3d

mpl_toolkits.mplot3d.art3d.rotate_axes

mpl_toolkits.mplot3d.art3d.rotate_axes(xs, ys, zs, zdir)
Reorder coordinates so that the axes are rotated with zdir along the original z axis. Prepending the
axis with a '-' does the inverse transform, so zdir can be x, -x, y, -y, z or -z

Examples using mpl_toolkits.mplot3d.art3d.rotate_axes

mpl_toolkits.mplot3d.art3d.text_2d_to_3d

mpl_toolkits.mplot3d.art3d.text_2d_to_3d(obj, z=0, zdir='z')
Convert a Text to a Text3D object.

Examples using mpl_toolkits.mplot3d.art3d.text_2d_to_3d

19.2.4 proj3d

proj3d.inv_transform(xs, ys, zs, M)
proj3d.persp_transformation(zfront,
zback)
proj3d.proj_points(points, M)
proj3d.proj_trans_points(points, M)
proj3d.proj_transform(xs, ys, zs, M) Transform the points by the projection matrix
proj3d.proj_transform_clip(xs, ys, zs,
M)

Transform the points by the projection matrix and
return the clipping result returns txs, tys, tzs, tis

proj3d.rot_x(V, alpha)
proj3d.transform(xs, ys, zs, M) Transform the points by the projection matrix
proj3d.view_transformation(E, R, V)
proj3d.world_transformation(xmin,
xmax, ...)

Produce a matrix that scales homogeneous coords
in the specified ranges to [0, 1], or [0, pb_aspect[i]]
if the plotbox aspect ratio is specified.

19.2. mplot3d API 3153

Matplotlib, Release 3.4.3

mpl_toolkits.mplot3d.proj3d.inv_transform

mpl_toolkits.mplot3d.proj3d.inv_transform(xs, ys, zs, M)

Examples using mpl_toolkits.mplot3d.proj3d.inv_transform

mpl_toolkits.mplot3d.proj3d.persp_transformation

mpl_toolkits.mplot3d.proj3d.persp_transformation(zfront, zback)

Examples using mpl_toolkits.mplot3d.proj3d.persp_transformation

mpl_toolkits.mplot3d.proj3d.proj_points

mpl_toolkits.mplot3d.proj3d.proj_points(points, M)

Examples using mpl_toolkits.mplot3d.proj3d.proj_points

mpl_toolkits.mplot3d.proj3d.proj_trans_points

mpl_toolkits.mplot3d.proj3d.proj_trans_points(points, M)

Examples using mpl_toolkits.mplot3d.proj3d.proj_trans_points

mpl_toolkits.mplot3d.proj3d.proj_transform

mpl_toolkits.mplot3d.proj3d.proj_transform(xs, ys, zs, M)
Transform the points by the projection matrix

Examples using mpl_toolkits.mplot3d.proj3d.proj_transform

mpl_toolkits.mplot3d.proj3d.proj_transform_clip

mpl_toolkits.mplot3d.proj3d.proj_transform_clip(xs, ys, zs, M)
Transform the points by the projection matrix and return the clipping result returns txs, tys, tzs, tis

3154 Chapter 19. Toolkits

Matplotlib, Release 3.4.3

Examples using mpl_toolkits.mplot3d.proj3d.proj_transform_clip

mpl_toolkits.mplot3d.proj3d.rot_x

mpl_toolkits.mplot3d.proj3d.rot_x(V, alpha)

Examples using mpl_toolkits.mplot3d.proj3d.rot_x

mpl_toolkits.mplot3d.proj3d.transform

mpl_toolkits.mplot3d.proj3d.transform(xs, ys, zs, M)
Transform the points by the projection matrix

Examples using mpl_toolkits.mplot3d.proj3d.transform

mpl_toolkits.mplot3d.proj3d.view_transformation

mpl_toolkits.mplot3d.proj3d.view_transformation(E, R, V)

Examples using mpl_toolkits.mplot3d.proj3d.view_transformation

mpl_toolkits.mplot3d.proj3d.world_transformation

mpl_toolkits.mplot3d.proj3d.world_transformation(xmin, xmax, ymin,
ymax, zmin, zmax,
pb_aspect=None)

Produce a matrix that scales homogeneous coords in the specified ranges to [0, 1], or [0, pb_aspect[i]]
if the plotbox aspect ratio is specified.

Examples using mpl_toolkits.mplot3d.proj3d.world_transformation

19.3 Matplotlib axes_grid Toolkit

Note: AxesGrid toolkit has been a part of matplotlib since v 0.99. Originally, the toolkit had a single names-
pace of axes_grid. In more recent version, the toolkit has divided into two separate namespace (axes_grid1
and axisartist). While axes_grid namespace is maintained for the backward compatibility, use of axes_grid1
and axisartist is recommended. For the documentation on axes_grid, see the previous version of the
docs.

19.3. Matplotlib axes_grid Toolkit 3155

https://matplotlib.org/2.0.1/mpl_toolkits/axes_grid/index.html#toolkit-axesgrid-index
https://matplotlib.org/2.0.1/mpl_toolkits/axes_grid/index.html#toolkit-axesgrid-index

Matplotlib, Release 3.4.3

3156 Chapter 19. Toolkits

Part IV

External Resources

3157

CHAPTER

TWENTY

BOOKS, CHAPTERS AND ARTICLES

• Mastering matplotlib by Duncan M. McGreggor

• Interactive Applications Using Matplotlib by Benjamin Root

• Matplotlib for Python Developers by Sandro Tosi

• Matplotlib chapter by John Hunter and Michael Droettboom in The Architecture of Open Source Ap-
plications

• Ten Simple Rules for Better Figures by Nicolas P. Rougier, Michael Droettboom and Philip E. Bourne

• Learning Scientific Programming with Python chapter 7 by Christian Hill

3159

https://www.packtpub.com/big-data-and-business-intelligence/mastering-matplotlib
https://www.packtpub.com/application-development/interactive-applications-using-matplotlib
https://www.packtpub.com/application-development/matplotlib-python-developers
http://www.aosabook.org/en/matplotlib.html
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833
http://scipython.com/book/chapter-7-matplotlib/

Matplotlib, Release 3.4.3

3160 Chapter 20. Books, Chapters and Articles

CHAPTER

TWENTYONE

VIDEOS

• Plotting with matplotlib by Mike Müller

• Introduction to NumPy and Matplotlib by Eric Jones

• Anatomy of Matplotlib by Benjamin Root

• Data Visualization Basics with Python (O'Reilly) by Randal S. Olson

3161

https://www.youtube.com/watch?v=P7SVi0YTIuE
https://www.youtube.com/watch?v=3Fp1zn5ao2M&feature=plcp
https://conference.scipy.org/scipy2013/tutorial_detail.php?id=103
http://shop.oreilly.com/product/0636920046592.do

Matplotlib, Release 3.4.3

3162 Chapter 21. Videos

CHAPTER

TWENTYTWO

TUTORIALS

• Matplotlib tutorial by Nicolas P. Rougier

• Anatomy of Matplotlib - IPython Notebooks by Benjamin Root

3163

http://www.labri.fr/perso/nrougier/teaching/matplotlib/
https://github.com/WeatherGod/AnatomyOfMatplotlib

Matplotlib, Release 3.4.3

3164 Chapter 22. Tutorials

Part V

Third party packages

3165

Matplotlib, Release 3.4.3

Several external packages that extend or build on Matplotlib functionality are listed below. You can find
more packages at PyPI. They are maintained and distributed separately from Matplotlib, and thus need to be
installed individually.

If you have a created a package that extends or builds on Matplotlib and would like to have your package
listed on this page, please submit an issue or pull request on GitHub. The pull request should include a
short description of the library and an image demonstrating the functionality. To be included in the PyPI
listing, please include Framework :: Matplotlib in the classifier list in the setup.py file for your
package. We are also happy to host third party packages within the Matplotlib GitHub Organization.

3167

https://pypi.org/search/?q=&o=&c=Framework+%3A%3A+Matplotlib
https://github.com/matplotlib

Matplotlib, Release 3.4.3

3168

CHAPTER

TWENTYTHREE

MAPPING TOOLKITS

23.1 Basemap

Basemap plots data on map projections, with continental and political boundaries.

3169

https://matplotlib.org/basemap/

Matplotlib, Release 3.4.3

23.2 Cartopy

Cartopy builds on top ofMatplotlib to provide object orientedmap projection definitions and close integration
with Shapely for powerful yet easy-to-use vector data processing tools. An example plot from the Cartopy
gallery:

23.3 Geoplot

Geoplot builds on top of Matplotlib and Cartopy to provide a "standard library" of simple, powerful, and
customizable plot types. An example plot from the Geoplot gallery:

3170 Chapter 23. Mapping toolkits

https://scitools.org.uk/cartopy/docs/latest/
https://scitools.org.uk/cartopy/docs/latest/gallery/index.html
https://scitools.org.uk/cartopy/docs/latest/gallery/index.html
https://residentmario.github.io/geoplot/index.html
https://residentmario.github.io/geoplot/index.html

Matplotlib, Release 3.4.3

23.4 Ridge Map

ridge_map uses Matplotlib, SRTM.py, NumPy, and scikit-image to make ridge plots of your favorite ridges.

23.4. Ridge Map 3171

https://github.com/ColCarroll/ridge_map

Matplotlib, Release 3.4.3

3172 Chapter 23. Mapping toolkits

CHAPTER

TWENTYFOUR

DECLARATIVE LIBRARIES

24.1 ggplot

ggplot is a port of the R ggplot2 package to python based on Matplotlib.

24.2 holoviews

holoviews makes it easier to visualize data interactively, especially in a Jupyter notebook, by providing a set
of declarative plotting objects that store your data and associated metadata. Your data is then immediately
visualizable alongside or overlaid with other data, either statically or with automatically provided widgets
for parameter exploration.

3173

https://github.com/yhat/ggplot
http://holoviews.org
https://jupyter.org

Matplotlib, Release 3.4.3

24.3 plotnine

plotnine implements a grammar of graphics, similar to R's ggplot2. The grammar allows users to compose
plots by explicitly mapping data to the visual objects that make up the plot.

3174 Chapter 24. Declarative libraries

https://plotnine.readthedocs.io/en/stable/
https://ggplot2.tidyverse.org/

CHAPTER

TWENTYFIVE

SPECIALTY PLOTS

25.1 Broken Axes

brokenaxes supplies an axes class that can have a visual break to indicate a discontinuous range.

3175

https://github.com/bendichter/brokenaxes

Matplotlib, Release 3.4.3

25.2 DeCiDa

DeCiDa is a library of functions and classes for electron device characterization, electronic circuit design
and general data visualization and analysis.

25.3 matplotlib-scalebar

matplotlib-scalebar provides a new artist to display a scale bar, aka micron bar. It is particularly useful when
displaying calibrated images plotted using plt.imshow(...).

25.4 Matplotlib-Venn

Matplotlib-Venn provides a set of functions for plotting 2- and 3-set area-weighted (or unweighted) Venn
diagrams.

3176 Chapter 25. Specialty plots

https://pypi.org/project/DeCiDa/
https://github.com/ppinard/matplotlib-scalebar
https://github.com/konstantint/matplotlib-venn

Matplotlib, Release 3.4.3

25.5 mpl-probscale

mpl-probscale is a small extension that allows Matplotlib users to specify probability scales. Simply im-
porting the probscale module registers the scale with Matplotlib, making it accessible via e.g., ax.
set_xscale('prob') or plt.yscale('prob').

25.6 mpl-scatter-density

mpl-scatter-density is a small package that makes it easy to make scatter plots of large numbers of points
using a density map. The following example contains around 13 million points and the plotting (excluding
reading in the data) took less than a second on an average laptop:

25.5. mpl-probscale 3177

https://matplotlib.org/mpl-probscale/
https://github.com/astrofrog/mpl-scatter-density

Matplotlib, Release 3.4.3

When used in interactive mode, the density map is downsampled on-the-fly while panning/zooming in order
to provide a smooth interactive experience.

25.7 mplstereonet

mplstereonet provides stereonets for plotting and analyzing orientation data in Matplotlib.

25.8 Natgrid

mpl_toolkits.natgrid is an interface to the natgrid C library for gridding irregularly spaced data.

25.9 pyUpSet

pyUpSet is a static Python implementation of the UpSet suite by Lex et al. to explore complex intersections
of sets and data frames.

3178 Chapter 25. Specialty plots

https://github.com/joferkington/mplstereonet
https://github.com/matplotlib/natgrid
https://github.com/ImSoErgodic/py-upset
http://www.caleydo.org/tools/upset/

Matplotlib, Release 3.4.3

25.10 seaborn

seaborn is a high level interface for drawing statistical graphics withMatplotlib. It aims to make visualization
a central part of exploring and understanding complex datasets.

25.11 WCSAxes

The Astropy core package includes a submodule called WCSAxes (available at as-
tropy.visualization.wcsaxes) which adds Matplotlib projections for Astronomical image data. The
following is an example of a plot made with WCSAxes which includes the original coordinate system of the
image and an overlay of a different coordinate system:

25.10. seaborn 3179

http://seaborn.pydata.org/
http://www.astropy.org
http://docs.astropy.org/en/stable/visualization/wcsaxes/index.html
http://docs.astropy.org/en/stable/visualization/wcsaxes/index.html

Matplotlib, Release 3.4.3

25.12 Windrose

Windrose is a Python Matplotlib, Numpy library to manage wind data, draw windroses (also known as polar
rose plots), draw probability density functions and fit Weibull distributions.

25.13 Yellowbrick

Yellowbrick is a suite of visual diagnostic tools for machine learning that enables human steering of the
model selection process. Yellowbrick combines scikit-learn with matplotlib using an estimator-based API
called the Visualizer, which wraps both sklearn models and matplotlib Axes. Visualizer objects fit
neatly into the machine learning workflow allowing data scientists to integrate visual diagnostic and model
interpretation tools into experimentation without extra steps.

3180 Chapter 25. Specialty plots

https://github.com/scls19fr/windrose
https://www.scikit-yb.org/

CHAPTER

TWENTYSIX

ANIMATIONS

26.1 animatplot

animatplot is a library for producing interactive animated plots with the goal of making production of ani-
mated plots almost as easy as static ones.

For an animated version of the above picture and more examples, see the animatplot gallery.

3181

https://animatplot.readthedocs.io/
https://animatplot.readthedocs.io/en/stable/gallery.html

Matplotlib, Release 3.4.3

26.2 gif

gif is an ultra lightweight animated gif API.

26.3 numpngw

numpngw provides functions for writing NumPy arrays to PNG and animated PNG files. It also includes the
class AnimatedPNGWriter that can be used to save a Matplotlib animation as an animated PNG file. See
the example on the PyPI page or at the numpngw github repository.

3182 Chapter 26. Animations

https://github.com/maxhumber/gif/
https://pypi.org/project/numpngw/
https://github.com/WarrenWeckesser/numpngw

CHAPTER

TWENTYSEVEN

INTERACTIVITY

27.1 mplcursors

mplcursors provides interactive data cursors for Matplotlib.

27.2 MplDataCursor

MplDataCursor is a toolkit written by Joe Kington to provide interactive "data cursors" (clickable annotation
boxes) for Matplotlib.

27.3 mpl_interactions

mpl_interactions makes it easy to create interactive plots controlled by sliders and other widgets. It also
provides several handy capabilities such as manual image segmentation, comparing cross-sections of arrays,
and using the scroll wheel to zoom.

3183

https://mplcursors.readthedocs.io
https://github.com/joferkington/mpldatacursor
https://mpl-interactions.readthedocs.io/en/latest/

Matplotlib, Release 3.4.3

3184 Chapter 27. Interactivity

CHAPTER

TWENTYEIGHT

RENDERING BACKENDS

28.1 mplcairo

mplcairo is a cairo backend for Matplotlib, with faster and more accurate marker drawing, support for a wider
selection of font formats and complex text layout, and various other features.

28.2 gr

gr is a framework for cross-platform visualisation applications, which can be used as a high-performance
Matplotlib backend.

3185

https://github.com/anntzer/mplcairo
http://gr-framework.org/

Matplotlib, Release 3.4.3

3186 Chapter 28. Rendering backends

CHAPTER

TWENTYNINE

GUI INTEGRATION

29.1 wxmplot

WXMPlot provides advanced wxPython widgets for plotting and image display of numerical data based on
Matplotlib.

3187

https://pypi.org/project/wxmplot/

Matplotlib, Release 3.4.3

3188 Chapter 29. GUI integration

CHAPTER

THIRTY

MISCELLANEOUS

30.1 adjustText

adjustText is a small library for automatically adjusting text position in Matplotlib plots to minimize overlaps
between them, specified points and other objects.

3189

https://github.com/Phlya/adjustText

Matplotlib, Release 3.4.3

30.2 iTerm2 terminal backend

matplotlib_iterm2 is an external Matplotlib backend using the iTerm2 nightly build inline image display
feature.

3190 Chapter 30. Miscellaneous

https://github.com/oselivanov/matplotlib_iterm2

Matplotlib, Release 3.4.3

30.3 mpl-template

mpl-template provides a customizable way to add engineering figure elements such as a title block, border,
and logo.

30.3. mpl-template 3191

https://austinorr.github.io/mpl-template/index.html

Matplotlib, Release 3.4.3

30.4 figpager

figpager provides customizable figure elements such as text, lines and images and subplot layout control for
single or multi page output.

3192 Chapter 30. Miscellaneous

https://pypi.org/project/figpager/

Matplotlib, Release 3.4.3

30.5 blume

blume provides a replacement for theMatplotlib tablemodule. It fixes a number of issues with the existing
table. See the blume github repository for more details.

30.6 highlight-text

highlight-text is a small library that provides an easy way to effectively annotate plots by highlighting sub-
strings with the font properties of your choice. See the highlight-text github repository for more details and
examples.

30.5. blume 3193

https://pypi.org/project/blume/
https://github.com/swfiua/blume
https://pypi.org/project/highlight-text/
https://github.com/znstrider/highlight_text

Matplotlib, Release 3.4.3

30.7 DNA Features Viewer

DNA Features Viewer provides methods to plot annotated DNA sequence maps (possibly along other Mat-
plotlib plots) for Bioinformatics and Synthetic Biology applications.

3194 Chapter 30. Miscellaneous

https://github.com/Edinburgh-Genome-Foundry/DnaFeaturesViewer

CHAPTER

THIRTYONE

GUI APPLICATIONS

31.1 sviewgui

sviewgui is a PyQt-based GUI for visualisation of data from csv files or pandas.DataFrames. Main
features:

• Scatter, line, density, histogram, and box plot types

• Settings for the marker size, line width, number of bins of histogram, colormap (from cmocean)

• Save figure as editable PDF

• Code of the plotted graph is available so that it can be reused and modified outside of sviewgui

3195

https://pypi.org/project/sviewgui/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Matplotlib, Release 3.4.3

3196 Chapter 31. GUI applications

Part VI

The Matplotlib Developers' Guide

3197

Matplotlib, Release 3.4.3

Thank you for your interest in helping to improve Matplotlib! There are various ways to contribute to Mat-
plotlib. All of them are super valuable but don't necessarily require writing code at all. For example:

• contributing to the documentation

• opening new issues for bugs

• requesting new features

• asking for clarification on things you find unclear

• fixing bugs

If you have any questions on the process or how to fix something feel free to ask on gitter for short questions
and on discourse for longer questions.

3199

https://gitter.im/matplotlib/matplotlib
https://discourse.matplotlib.org

Matplotlib, Release 3.4.3

3200

CHAPTER

THIRTYTWO

CONTRIBUTING

This project is a community effort, and everyone is welcome to contribute. Everyone within the community
is expected to abide by our code of conduct.

The project is hosted on https://github.com/matplotlib/matplotlib

32.1 Contributor Incubator

If you are interested in becoming a regular contributor to Matplotlib, but don't know where to start or feel
insecure about it, you can join our non-public communication channel for new contributors. To do so, please
go to gitter and ask to be added to '#incubator'. This is a private gitter room moderated by core Matplotlib
developers where you can get guidance and support for your first few PRs. This is a place you can ask
questions about anything: how to use git, github, how our PR review process works, technical questions about
the code, what makes for good documentation or a blog post, how to get involved involved in community
work, or get "pre-review" on your PR.

32.1.1 Issues for New Contributors

While any contributions are welcome, we havemarked some issues as particularly suited for new contributors
by the label good first issue These are well documented issues, that do not require a deep understanding of
the internals of Matplotlib. The issues may additionally be tagged with a difficulty. Difficulty: Easy
is suited for people with little Python experience. Difficulty: Medium and Difficulty: Hard
are not trivial to solve and require more thought and programming experience.

32.2 Submitting a bug report

If you find a bug in the code or documentation, do not hesitate to submit a ticket to the Issue Tracker. You
are also welcome to post feature requests or pull requests.

If you are reporting a bug, please do your best to include the following:

1. A short, top-level summary of the bug. In most cases, this should be 1-2 sentences.

2. A short, self-contained code snippet to reproduce the bug, ideally allowing a simple copy and paste to
reproduce. Please do your best to reduce the code snippet to the minimum required.

3201

https://github.com/matplotlib/matplotlib/blob/master/CODE_OF_CONDUCT.md
https://github.com/matplotlib/matplotlib
https://gitter.im/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib/labels/good%20first%20issue
https://github.com/matplotlib/matplotlib/issues

Matplotlib, Release 3.4.3

3. The actual outcome of the code snippet.

4. The expected outcome of the code snippet.

5. The Matplotlib version, Python version and platform that you are using. You can grab the version with
the following commands:

>>> import matplotlib
>>> matplotlib.__version__
'3.4.1'
>>> import platform
>>> platform.python_version()
'3.9.2'

We have preloaded the issue creation page with a Markdown template that you can use to organize this
information.

Thank you for your help in keeping bug reports complete, targeted and descriptive.

32.3 Requesting a new feature

Please post feature requests to the Issue Tracker.

The Matplotlib developers will give feedback on the feature proposal. Since Matplotlib is an open source
project with limited resources, we encourage users to then also participate in the implementation.

32.4 Contributing code

32.4.1 How to contribute

The preferred way to contribute to Matplotlib is to fork the main repository on GitHub, then submit a "pull
request" (PR).

A brief overview is:

1. Create an account on GitHub if you do not already have one.

2. Fork the project repository: click on the 'Fork' button near the top of the page. This creates a copy of
the code under your account on the GitHub server.

3. Clone this copy to your local disk:

git clone https://github.com/<YOUR GITHUB USERNAME>/matplotlib.git

4. Enter the directory and install the local version of Matplotlib. See ref`<installing_for_devs>` for
instructions

5. Create a branch to hold your changes:

3202 Chapter 32. Contributing

https://github.com/matplotlib/matplotlib/issues
https://github.com/matplotlib/matplotlib/
https://github.com/join
https://github.com/matplotlib/matplotlib

Matplotlib, Release 3.4.3

git checkout -b my-feature origin/master

and start making changes. Never work in the master branch!

6. Work on this copy, on your computer, using Git to do the version control. When you're done editing
e.g., lib/matplotlib/collections.py, do:

git add lib/matplotlib/collections.py
git commit

to record your changes in Git, then push them to GitHub with:

git push -u origin my-feature

Finally, go to the web page of your fork of the Matplotlib repo, and click 'Pull request' to send your changes
to the maintainers for review.

See also:
• Git documentation

• Git-Contributing to a Project

• Introduction to GitHub

• Development workflow for best practices for Matplotlib

• Working with Matplotlib source code

32.4.2 Contributing pull requests

It is recommended to check that your contribution complies with the following rules before submitting a pull
request:

• If your pull request addresses an issue, please use the title to describe the issue and mention the issue
number in the pull request description to ensure that a link is created to the original issue.

• All public methods should have informative docstrings with sample usage when appropriate. Use the
numpy docstring standard.

• Formatting should follow the recommendations of PEP8. You should consider installing/enabling
automatic PEP8 checking in your editor. Part of the test suite is checking PEP8 compliance, things go
smoother if the code is mostly PEP8 compliant to begin with.

• Each high-level plotting function should have a simple example in the Example section of the doc-
string. This should be as simple as possible to demonstrate the method. More complex examples
should go in the examples tree.

• Changes (both new features and bugfixes) should be tested. See Testing for more details.

• Import the following modules using the standard scipy conventions:

32.4. Contributing code 3203

https://git-scm.com/documentation
https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project
https://lab.github.com/githubtraining/introduction-to-github
https://numpydoc.readthedocs.io/en/latest/format.html
https://www.python.org/dev/peps/pep-0008/

Matplotlib, Release 3.4.3

import numpy as np
import numpy.ma as ma
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
import matplotlib.patches as mpatches

In general, Matplotlib modules should not import rcParams using from matplotlib import
rcParams, but rather access it as mpl.rcParams. This is because some modules are imported
very early, before the rcParams singleton is constructed.

• If your change is a major new feature, add an entry to the What's new section by adding a new
file in doc/users/next_whats_new (see doc/users/next_whats_new/README.rst
for more information).

• If you change the API in a backward-incompatible way, please document it in doc/api/
next_api_changes/behavior, by adding a new file with the naming convention 99999-
ABC.rst where the pull request number is followed by the contributor's initials. (see doc/api/
api_changes.rst for more information)

• See below for additional points aboutKeyword argument processing, if applicable for your pull request.

In addition, you can check for common programming errors with the following tools:

• Code with a good unittest coverage (at least 70%, better 100%), check with:

python -m pip install coverage
python -m pytest --cov=matplotlib --showlocals -v

• No pyflakes warnings, check with:

python -m pip install pyflakes
pyflakes path/to/module.py

Note: The current state of the Matplotlib code base is not compliant with all of those guidelines, but we
expect that enforcing those constraints on all new contributions will move the overall code base quality in
the right direction.

See also:
• Coding guidelines

• Testing

• Writing documentation

3204 Chapter 32. Contributing

Matplotlib, Release 3.4.3

32.5 Contributing documentation

You as an end-user of Matplotlib can make a valuable contribution because you more clearly see the potential
for improvement than a core developer. For example, you can:

• Fix a typo

• Clarify a docstring

• Write or update an example plot

• Write or update a comprehensive tutorial

The documentation source files live in the same GitHub repository as the code. Contributions are proposed
and accepted through the pull request process. For details see How to contribute.

If you have trouble getting started, you may instead open an issue describing the intended improvement.

See also:
• Writing documentation

32.6 Other ways to contribute

It also helps us if you spread the word: reference the project from your blog and articles or link to it from
your website! If Matplotlib contributes to a project that leads to a scientific publication, please follow the
Citing Matplotlib guidelines.

32.7 Coding guidelines

32.7.1 API changes

Changes to the public API must follow a standard deprecation procedure to prevent unexpected breaking of
code that uses Matplotlib.

• Deprecations must be announced via a new file in a new file in doc/api/next_api_changes/
deprecations/ with naming convention 99999-ABC.rst where 99999 is the pull request
number and ABC are the contributor's initials.

• Deprecations are targeted at the next point-release (i.e. 3.x.0).

• The deprecated API should, to the maximum extent possible, remain fully functional during the dep-
recation period. In cases where this is not possible, the deprecation must never make a given piece of
code do something different than it was before; at least an exception should be raised.

• If possible, usage of an deprecated API should emit a MatplotlibDeprecationWarning.
There are a number of helper tools for this:

– Use cbook.warn_deprecated() for general deprecation warnings.

32.5. Contributing documentation 3205

https://github.com/matplotlib/matplotlib/issues

Matplotlib, Release 3.4.3

– Use the decorator @cbook.deprecated to deprecate classes, functions, methods, or proper-
ties.

– To warn on changes of the function signature, use the decorators @cbook.
_delete_parameter, @cbook._rename_parameter, and @cbook.
_make_keyword_only.

• Deprecated API may be removed two point-releases after they were deprecated.

32.7.2 Adding new API

Every new function, parameter and attribute that is not explicitly marked as private (i.e., starts with an
underscore) becomes part of Matplotlib's public API. As discussed above, changing the existing API is cum-
bersome. Therefore, take particular care when adding new API:

• Mark helper functions and internal attributes as private by prefixing them with an underscore.

• Carefully think about good names for your functions and variables.

• Try to adopt patterns and naming conventions from existing parts of the Matplotlib API.

• Consider making as many arguments keyword-only as possible. See also API Evolution the RightWay
-- Add Parameters Compatibly.

32.7.3 New modules and files: installation

• If you have added new files or directories, or reorganized existing ones, make sure the new files are
included in the match patterns in MANIFEST.in, and/or in package_data in setup.py.

32.7.4 C/C++ extensions

• Extensions may be written in C or C++.

• Code style should conform to PEP7 (understanding that PEP7 doesn't address C++, but most of its
admonitions still apply).

• Python/C interface code should be kept separate from the core C/C++ code. The interface code should
be named FOO_wrap.cpp or FOO_wrapper.cpp.

• Header file documentation (aka docstrings) should be in Numpydoc format. We don't plan on using
automated tools for these docstrings, and the Numpydoc format is well understood in the scientific
Python community.

3206 Chapter 32. Contributing

https://emptysqua.re/blog/api-evolution-the-right-way/#adding-parameters
https://emptysqua.re/blog/api-evolution-the-right-way/#adding-parameters

Matplotlib, Release 3.4.3

32.7.5 Keyword argument processing

Matplotlib makes extensive use of **kwargs for pass-through customizations from one function to another.
A typical example is in matplotlib.pyplot.text. The definition of the pylab text function is a simple
pass-through to matplotlib.axes.Axes.text:

in pylab.py
def text(*args, **kwargs):

return gca().text(*args, **kwargs)

text in simplified form looks like this, i.e., it just passes all args and kwargs on to matplotlib.
text.Text.__init__:

in axes/_axes.py
def text(self, x, y, s, fontdict=None, withdash=False, **kwargs):

t = Text(x=x, y=y, text=s, **kwargs)

and matplotlib.text.Text.__init__ (again with liberties for illustration) just passes them on to
the matplotlib.artist.Artist.update method:

in text.py
def __init__(self, x=0, y=0, text='', **kwargs):

super().__init__()
self.update(kwargs)

update does the work looking for methods named like set_property if property is a keyword argu-
ment. i.e., no one looks at the keywords, they just get passed through the API to the artist constructor which
looks for suitably named methods and calls them with the value.

As a general rule, the use of **kwargs should be reserved for pass-through keyword arguments, as in the
example above. If all the keyword args are to be used in the function, and not passed on, use the key/value
keyword args in the function definition rather than the **kwargs idiom.

In some cases, you may want to consume some keys in the local function, and let others pass through.
Instead of popping arguments to use off **kwargs, specify them as keyword-only arguments to the local
function. This makes it obvious at a glance which arguments will be consumed in the function. For example,
in plot(), scalex and scaley are local arguments and the rest are passed on as Line2D() keyword
arguments:

in axes/_axes.py
def plot(self, *args, scalex=True, scaley=True, **kwargs):

lines = []
for line in self._get_lines(*args, **kwargs):

self.add_line(line)
lines.append(line)

32.7. Coding guidelines 3207

Matplotlib, Release 3.4.3

32.7.6 Using logging for debug messages

Matplotlib uses the standard Python logging library to write verbose warnings, information, and de-
bug messages. Please use it! In all those places you write print calls to do your debugging, try using
logging.debug instead!

To include logging in your module, at the top of the module, you need to import logging. Then calls
in your code like:

_log = logging.getLogger(__name__) # right after the imports

code
more code
_log.info('Here is some information')
_log.debug('Here is some more detailed information')

will log to a logger named matplotlib.yourmodulename.

If an end-user of Matplotlib sets up logging to display at levels more verbose than logging.WARNING
in their code with the Matplotlib-provided helper:

plt.set_loglevel("debug")

or manually with

import logging
logging.basicConfig(level=logging.DEBUG)
import matplotlib.pyplot as plt

Then they will receive messages like:

DEBUG:matplotlib.backends:backend MacOSX version unknown
DEBUG:matplotlib.yourmodulename:Here is some information
DEBUG:matplotlib.yourmodulename:Here is some more detailed information

Which logging level to use?

There are five levels at which you can emit messages.

• logging.critical and logging.error are really only there for errors that will end the use
of the library but not kill the interpreter.

• logging.warning and _api.warn_external are used to warn the user, see below.

• logging.info is for information that the usermaywant to know if the program behaves oddly. They
are not displayed by default. For instance, if an object isn't drawn because its position is NaN, that can
usually be ignored, but a mystified user could call logging.basicConfig(level=logging.
INFO) and get an error message that says why.

• logging.debug is the least likely to be displayed, and hence can be the most verbose. "Expected"
code paths (e.g., reporting normal intermediate steps of layouting or rendering) should only log at this
level.

3208 Chapter 32. Contributing

https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/logging.html#logging.debug
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#logging.critical
https://docs.python.org/3/library/logging.html#logging.error
https://docs.python.org/3/library/logging.html#logging.warning
https://docs.python.org/3/library/logging.html#logging.info
https://docs.python.org/3/library/logging.html#logging.debug

Matplotlib, Release 3.4.3

By default, logging displays all log messages at levels higher than logging.WARNING to sys.
stderr.

The logging tutorial suggests that the difference between logging.warning and _api.
warn_external (which uses warnings.warn) is that _api.warn_external should be used for
things the user must change to stop the warning (typically in the source), whereas logging.warning
can be more persistent. Moreover, note that _api.warn_external will by default only emit a given
warning once for each line of user code, whereas logging.warning will display the message every time
it is called.

By default, warnings.warn displays the line of code that has the warn call. This usually isn't more
informative than the warning message itself. Therefore, Matplotlib uses _api.warn_external which
uses warnings.warn, but goes up the stack and displays the first line of code outside of Matplotlib. For
example, for the module:

in my_matplotlib_module.py
import warnings

def set_range(bottom, top):
if bottom == top:

warnings.warn('Attempting to set identical bottom==top')

running the script:

from matplotlib import my_matplotlib_module
my_matplotlib_module.set_range(0, 0) #set range

will display:

UserWarning: Attempting to set identical bottom==top
warnings.warn('Attempting to set identical bottom==top')

Modifying the module to use _api.warn_external:

from matplotlib import _api

def set_range(bottom, top):
if bottom == top:

_api.warn_external('Attempting to set identical bottom==top')

and running the same script will display:

UserWarning: Attempting to set identical bottom==top
my_matplotlib_module.set_range(0, 0) #set range

32.7. Coding guidelines 3209

https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/howto/logging.html#logging-basic-tutorial
https://docs.python.org/3/library/logging.html#logging.warning
https://docs.python.org/3/library/warnings.html#warnings.warn
https://docs.python.org/3/library/logging.html#logging.warning
https://docs.python.org/3/library/logging.html#logging.warning
https://docs.python.org/3/library/warnings.html#warnings.warn
https://docs.python.org/3/library/warnings.html#warnings.warn

Matplotlib, Release 3.4.3

32.7.7 Writing examples

We have hundreds of examples in subdirectories of matplotlib/examples, and these are automatically
generated when the website is built to show up in the examples section of the website.

Any sample data that the example uses should be kept small and distributed with Matplotlib in the lib/
matplotlib/mpl-data/sample_data/ directory. Then in your example code you can load it into a
file handle with:

import matplotlib.cbook as cbook
fh = cbook.get_sample_data('mydata.dat')

3210 Chapter 32. Contributing

CHAPTER

THIRTYTHREE

BUG TRIAGING AND ISSUE CURATION

The issue tracker is important to communication in the project because it serves as the centralized location
for making feature requests, reporting bugs, identifying major projects to work on, and discussing priorities.
For this reason, it is important to curate the issue list, adding labels to issues and closing issues that are
resolved or unresolvable.

Triaging issues does not require any particular expertise in the internals of Matplotlib, is extremely valuable
to the project, and we welcome anyone to participate in issue triage! However, people who are not part of the
Matplotlib organization do not have permissions to change milestones, add labels, or close issue. If you do
not have enough GitHub permissions do something (e.g. add a label, close an issue), please leave a comment
tagging @matplotlib/triageteam with your recommendations!

33.1 Working on issues to improve them

Improving issues increases their chances of being successfully resolved. Guidelines on submitting good
issues can be found here. A third party can give useful feedback or even add comments on the issue. The
following actions are typically useful:

• documenting issues that are missing elements to reproduce the problem such as code samples

• suggesting better use of code formatting (e.g. triple back ticks in the markdown).

• suggesting to reformulate the title and description to make them more explicit about the problem to be
solved

• linking to related issues or discussions while briefly describing how they are related, for instance "See
also #xyz for a similar attempt at this" or "See also #xyz where the same thing was reported" provides
context and helps the discussion

• verifying that the issue is reproducible

• classify the issue as a feature request, a long standing bug or a regression

Fruitful discussions

Online discussions may be harder than it seems at first glance, in particular given that a person new to
open-source may have a very different understanding of the process than a seasoned maintainer.

3211

https://github.com/matplotlib/matplotlib/issues
https://docs.github.com/en/github/setting-up-and-managing-organizations-and-teams/repository-permission-levels-for-an-organization

Matplotlib, Release 3.4.3

Overall, it is useful to stay positive and assume good will. The following article explores how to lead
online discussions in the context of open source.

33.2 Triage Team

If you would like to join the triage team:

1. Correctly triage 2-3 issues.

2. Ask someone on the triage team (publicly or privately) to recommend you to the triage team . If you
worked with someone on the issue triaged, they would be a good person to ask.

3. Responsibly exercise your new power!

Anyone with commit or triage rights may also nominate a user to be invited to join the triage team.

33.3 Triaging operations for members of the core and triage teams

In addition to the above, members of the core team and the triage team can do the following important tasks:

• Update labels for issues and PRs: see the list of available github labels.

• Triage issues:

– reproduce the issue, if the posted code is a bug label the issue with "status: confirmed bug".

– identify regressions, determine if the reported bug used to work as expected in a recent version
of Matplotlib and if so determine the last working version. Regressions should be milestoned for
the next bug-fix release and may be labeled as "Release critical".

– close usage questions and politely point the reporter to use discourse or Stack Overflow instead
and label as "community support".

– close duplicate issues, after checking that they are indeed duplicate. Ideally, the original sub-
mitter moves the discussion to the older, duplicate issue

– close issues that cannot be replicated, after leaving time (at least a week) to add extra informa-
tion

Closing issues: a tough call

When uncertain on whether an issue should be closed or not, it is best to strive for consensus with the
original poster, and possibly to seek relevant expertise. However, when the issue is a usage question or
has been considered as unclear for many years, then it should be closed.

3212 Chapter 33. Bug triaging and issue curation

http://gael-varoquaux.info/programming/technical-discussions-are-hard-a-few-tips.html
https://github.com/orgs/matplotlib/teams/triageteam
https://github.com/matplotlib/matplotlib/labels
https://discourse.matplotlib.org

Matplotlib, Release 3.4.3

33.4 A typical workflow for triaging issues

The following workflow1 is a good way to approach issue triaging:

1. Thank the reporter for opening an issue

The issue tracker is many people’s first interaction with the Matplotlib project itself, beyond just using
the library. As such, we want it to be a welcoming, pleasant experience.

2. Is this a usage question? If so close it with a polite message.

3. Is the necessary information provided?

Check that the poster has filled in the issue template. If crucial information (the version of Python,
the version of Matplotlib used, the OS, and the backend), is missing politely ask the original poster to
provide the information.

4. Is the issue minimal and reproducible?

For bug reports, we ask that the reporter provide a minimal reproducible example. See this useful post
by Matthew Rocklin for a good explanation. If the example is not reproducible, or if it's clearly not
minimal, feel free to ask the reporter if they can provide an example or simplify the provided one. Do
acknowledge that writing minimal reproducible examples is hard work. If the reporter is struggling,
you can try to write one yourself.

If a reproducible example is provided, but you see a simplification, add your simpler reproducible
example.

If you can not reproduce the issue, please report that along with your OS, Python, and Matplotlib
versions.

If we need more information from either this or the previous step please label the issue with "status:
needs clarification".

5. Is this a regression?

While we strive for a bug-free library, regressions are the highest priority. If we have broken user-code
that used to work, we should fix that in the next patch release!

Try to determine when the regression happened by running the reproduction code against older ver-
sions of Matplotlib. This can be done by released versions of Matplotlib (to get the version it last
worked in) or by using git bisect to find the first commit where it was broken.

6. Is this a duplicate issue?

We have many open issues. If a new issue seems to be a duplicate, point to the original issue. If it is a
clear duplicate, or consensus is that it is redundant, close it. Make sure to still thank the reporter, and
encourage them to chime in on the original issue, and perhaps try to fix it.

If the new issue provides relevant information, such as a better or slightly different example, add it to
the original issue as a comment or an edit to the original post.

Label the closed issue with "status: duplicate"
1 Adapted from the pandas project maintainers guide and the scikit-learn project .

33.4. A typical workflow for triaging issues 3213

https://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports
https://git-scm.com/docs/git-bisect
https://dev.pandas.io/docs/development/maintaining.html
https://scikit-learn.org/dev/developers/bug_triaging.html

Matplotlib, Release 3.4.3

7. Make sure that the title accurately reflects the issue. If you have the necessary permissions edit it
yourself if it's not clear.

8. Add the relevant labels, such as "Documentation" when the issue is about documentation, "Bug" if it
is clearly a bug, "New feature" if it is a new feature request, ...

If the issue is clearly defined and the fix seems relatively straightforward, label the issue as “Good first
issue” (and possibly a description of the fix or a hint as to where in the code base to look to get started).

An additional useful step can be to tag the corresponding module e.g. the "GUI/Qt" label when rele-
vant.

33.5 Working on PRs to help review

Reviewing code is also encouraged. Contributors and users are welcome to participate to the review process
following our review guidelines.

33.6 Acknowledgments

This page is lightly adapted from the sckit-learn project .

3214 Chapter 33. Bug triaging and issue curation

https://scikit-learn.org/dev/developers/bug_triaging.html

CHAPTER

THIRTYFOUR

SETTING UP MATPLOTLIB FOR DEVELOPMENT

34.1 Creating a dedicated environment

You should set up a dedicated environment to decouple your Matplotlib development from other Python and
Matplotlib installations on your system. Here we use python's virtual environment venv, but you may also
use others such as conda.

A new environment can be set up with

python -m venv <file folder location>

and activated with one of the following:

source <file folder location>/bin/activate # Linux/macOS
<file folder location>\Scripts\activate.bat # Windows cmd.exe
<file folder location>\Scripts\Activate.ps1 # Windows PowerShell

Whenever you plan to work on Matplotlib, remember to activate the development environment in your shell.

34.2 Retrieving the latest version of the code

Matplotlib is hosted at https://github.com/matplotlib/matplotlib.git.

You can retrieve the latest sources with the command (see Set up your fork for more details):

git clone https://github.com/matplotlib/matplotlib.git

This will place the sources in a directory matplotlib below your current working directory.

If you have the proper privileges, you can use git@ instead of https://, which works through the ssh
protocol and might be easier to use if you are using 2-factor authentication.

3215

https://docs.python.org/3/library/venv.html
https://github.com/matplotlib/matplotlib.git

Matplotlib, Release 3.4.3

34.3 Installing Matplotlib in editable mode

Install Matplotlib in editable mode from the matplotlib directory using the command

python -m pip install -ve .

The 'editable/develop mode', builds everything and places links in your Python environment so that Python
will be able to import Matplotlib from your development source directory. This allows you to import your
modified version of Matplotlib without re-installing after every change. Note that this is only true for *.py
files. If you change the C-extension source (which might also happen if you change branches) you will have
to re-run python -m pip install -ve .

34.4 Additional dependencies for testing

This section lists the additional software required for running the tests.

Required:

• pytest (>=3.6)

• Ghostscript (>= 9.0, to render PDF files)

• Inkscape (to render SVG files)

Optional:

• pytest-cov (>=2.3.1) to collect coverage information

• pytest-flake8 to test coding standards using flake8

• pytest-timeout to limit runtime in case of stuck tests

• pytest-xdist to run tests in parallel

34.5 Additional dependencies for building documentation

34.5.1 Python packages

The additional Python packages required to build the documentation are listed in doc-requirements.
txt and can be installed using

pip install -r requirements/doc/doc-requirements.txt

The content of doc-requirements.txt is also shown below:

Requirements for building docs
#
You will first need a matching Matplotlib installation
e.g (from the Matplotlib root directory)

(continues on next page)

3216 Chapter 34. Setting up Matplotlib for development

http://doc.pytest.org/en/latest/
https://www.ghostscript.com/
https://inkscape.org
https://pytest-cov.readthedocs.io/en/latest/
https://pypi.org/project/pytest-flake8/
https://pypi.org/project/flake8/
https://pypi.org/project/pytest-timeout/
https://pypi.org/project/pytest-xdist/

Matplotlib, Release 3.4.3

(continued from previous page)
pip install -e .
#
Install the documentation requirements with:
pip install -r requirements/doc/doc-requirements.txt
#
sphinx>=1.8.1,!=2.0.0
colorspacious
ipython
ipywidgets
numpydoc>=0.8
sphinxcontrib-svg2pdfconverter>=1.1.0
sphinx-gallery>=0.7
sphinx-copybutton
scipy

34.5.2 Additional external dependencies

Required:

• a minimal working LaTeX distribution

• Graphviz

• the LaTeX packages cm-super and dvipng. If your OS bundles TexLive, then often the "complete"
version of the installer will automatically include these packages (e.g. "texlive-full" or "texlive-all").

Optional, but recommended:

• Inkscape

• optipng

• the font "Humor Sans" (aka the "XKCD" font), or the free alternative Comic Neue.

• the font "Times New Roman"

Note: The documentation will not build without LaTeX and Graphviz. These are not Python packages and
must be installed separately. The documentation can be built without Inkscape and optipng, but the build
process will raise various warnings. If the build process warns that you are missing fonts, make sure your
LaTeX distribution bundles cm-super or install it separately.

34.5. Additional dependencies for building documentation 3217

http://www.graphviz.org/download
https://inkscape.org
http://optipng.sourceforge.net
http://comicneue.com/

Matplotlib, Release 3.4.3

3218 Chapter 34. Setting up Matplotlib for development

CHAPTER

THIRTYFIVE

TESTING

Matplotlib uses the pytest framework.

The tests are in lib/matplotlib/tests, and customizations to the pytest testing infrastructure are in
matplotlib.testing.

35.1 Requirements

To run the tests you will need to set up Matplotlib for development. Note in particular the additional depen-
dencies for testing.

Note: We will assume that you want to run the tests in a development setup.

While you can run the tests against a regular installed version of Matplotlib, this is a far less common use
case. You still need the additional dependencies for testing. You have to additionally get the reference images
from the repository, because they are not distributed with pre-built Matplotlib packages.

35.2 Running the tests

In the root directory of your development repository run:

python -m pytest

pytest can be configured via a lot of command-line parameters. Some particularly useful ones are:

-v or --verbose Be more verbose
-n NUM Run tests in parallel over NUM processes (requires pytest-xdist)
--capture=no or -s Do not capture stdout

To run a single test from the command line, you can provide a file path, optionally followed by the function
separated by two colons, e.g., (tests do not need to be installed, but Matplotlib should be):

3219

http://doc.pytest.org/en/latest/
http://doc.pytest.org/en/latest/usage.html
https://pypi.org/project/pytest-xdist/

Matplotlib, Release 3.4.3

pytest lib/matplotlib/tests/test_simplification.py::test_clipping

An alternative implementation that does not look at command line arguments and works from within Python
is to run the tests from the Matplotlib library function matplotlib.test():

import matplotlib
matplotlib.test()

35.3 Writing a simple test

Many elements of Matplotlib can be tested using standard tests. For example, here is a test from
matplotlib/tests/test_basic.py:

def test_simple():
"""
very simple example test
"""
assert 1 + 1 == 2

Pytest determines which functions are tests by searching for files whose names begin with "test_" and
then within those files for functions beginning with "test" or classes beginning with "Test".

Some tests have internal side effects that need to be cleaned up after their execution (such as cre-
ated figures or modified rcParams). The pytest fixture matplotlib.testing.conftest.
mpl_test_settings will automatically clean these up; there is no need to do anything further.

35.4 Random data in tests

Random data is a very convenient way to generate data for examples, however the randomness is problematic
for testing (as the tests must be deterministic!). To work around this set the seed in each test. For numpy use:

import numpy as np
np.random.seed(19680801)

The seed is John Hunter's birthday.

35.5 Writing an image comparison test

Writing an image-based test is only slightly more difficult than a simple test. The main consideration is that
you must specify the "baseline", or expected, images in the image_comparison decorator. For example,
this test generates a single image and automatically tests it:

from matplotlib.testing.decorators import image_comparison
import matplotlib.pyplot as plt

(continues on next page)

3220 Chapter 35. Testing

Matplotlib, Release 3.4.3

(continued from previous page)

@image_comparison(baseline_images=['line_dashes'], remove_text=True,
extensions=['png'])

def test_line_dashes():
fig, ax = plt.subplots()
ax.plot(range(10), linestyle=(0, (3, 3)), lw=5)

The first time this test is run, there will be no baseline image to compare against, so the test will fail. Copy
the output images (in this case result_images/test_lines/test_line_dashes.png) to the
correct subdirectory of baseline_images tree in the source directory (in this case lib/matplotlib/
tests/baseline_images/test_lines). Put this new file under source code revision control (with
git add). When rerunning the tests, they should now pass.

Baseline images take a lot of space in the Matplotlib repository. An alternative approach for image compar-
ison tests is to use the check_figures_equal decorator, which should be used to decorate a function
taking two Figure parameters and draws the same images on the figures using two different methods (the
tested method and the baseline method). The decorator will arrange for setting up the figures and then collect
the drawn results and compare them.

See the documentation of image_comparison and check_figures_equal for additional informa-
tion about their use.

35.6 Creating a new module in matplotlib.tests

We try to keep the tests categorized by the primary module they are testing. For example, the tests related
to the mathtext.py module are in test_mathtext.py.

35.7 Using GitHub Actions for CI

GitHub Actions is a hosted CI system "in the cloud".

GitHub Actions is configured to receive notifications of new commits to GitHub repos and to run builds or
tests when it sees these new commits. It looks for a YAML files in .github/workflows to see how to
test the project.

GitHub Actions is already enabled for the main Matplotlib GitHub repository -- for example, see the Tests
workflows.

GitHub Actions should be automatically enabled for your personal Matplotlib fork once the YAMLworkflow
files are in it. It generally isn't necessary to look at these workflows, since any pull request submitted against
the main Matplotlib repository will be tested.

You can see the GitHub Actions results at https://github.com/your_GitHub_user_name/matplotlib/actions --
here's an example.

35.6. Creating a new module in matplotlib.tests 3221

https://docs.github.com/en/actions
https://github.com/matplotlib/matplotlib/
https://github.com/matplotlib/matplotlib/actions?query=workflow%3ATests
https://github.com/matplotlib/matplotlib/actions?query=workflow%3ATests
https://github.com/your_GitHub_user_name/matplotlib/actions
https://github.com/QuLogic/matplotlib/actions

Matplotlib, Release 3.4.3

35.8 Using tox

Tox is a tool for running tests against multiple Python environments, including multiple versions of Python
(e.g., 3.6, 3.7) and even different Python implementations altogether (e.g., CPython, PyPy, Jython, etc.),
as long as all these versions are available on your system's $PATH (consider using your system package
manager, e.g. apt-get, yum, or Homebrew, to install them).

tox makes it easy to determine if your working copy introduced any regressions before submitting a pull
request. Here's how to use it:

$ pip install tox
$ tox

You can also run tox on a subset of environments:

$ tox -e py37,py38

Tox processes everything serially so it can take a long time to test several environments. To speed it up, you
might try using a new, parallelized version of tox called detox. Give this a try:

$ pip install -U -i http://pypi.testrun.org detox
$ detox

Tox is configured using a file called tox.ini. You may need to edit this file if you want to add new
environments to test (e.g., py33) or if you want to tweak the dependencies or the way the tests are run. For
more info on the tox.ini file, see the Tox Configuration Specification.

35.9 Building old versions of Matplotlib

When running a git bisect to see which commit introduced a certain bug, you may (rarely) need to build
very old versions of Matplotlib. The following constraints need to be taken into account:

• Matplotlib 1.3 (or earlier) requires numpy 1.8 (or earlier).

35.10 Testing released versions of Matplotlib

Running the tests on an installation of a released version (e.g. PyPI package or conda package) also requires
additional setup.

Note: For an end-user, there is usually no need to run the tests on released versions of Matplotlib. Official
releases are tested before publishing.

3222 Chapter 35. Testing

https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/config.html

Matplotlib, Release 3.4.3

35.10.1 Install additional dependencies

Install the additional dependencies for testing.

35.10.2 Obtain the reference images

Many tests compare the plot result against reference images. The reference images are not part of the regular
packaged versions (pip wheels or conda packages). If you want to run tests with reference images, you need
to obtain the reference images matching the version of Matplotlib you want to test.

To do so, either download the matching source distribution matplotlib-X.Y.Z.tar.gz from PyPI or
alternatively, clone the git repository andgit checkout vX.Y.Z. Copy the folderlib/matplotlib/
tests/baseline_images to the folder matplotlib/tests of your the matplotlib installation to
test. The correct target folder can be found using:

python -c "import matplotlib.tests; print(matplotlib.tests.__file__.rsplit('/
↪', 1)[0])"

An analogous copying of lib/mpl_toolkits/tests/baseline_images is necessary for testing
the Toolkits.

35.10.3 Run the tests

To run the all the tests on your installed version of Matplotlib:

python -m pytest --pyargs matplotlib.tests

The test discovery scope can be narrowed to single test modules or even single functions:

python -m pytest --pyargs matplotlib.tests.test_simplification.py::test_
↪clipping

35.10. Testing released versions of Matplotlib 3223

https://pypi.org/project/matplotlib/

Matplotlib, Release 3.4.3

3224 Chapter 35. Testing

CHAPTER

THIRTYSIX

WRITING DOCUMENTATION

Contents

• Getting started

– General file structure

– Setting up the doc build

– Building the docs

• Writing ReST pages

– Formatting and style conventions

∗ Section name formatting

∗ Function arguments

– Referring to other documents and sections

– Referring to other code

– Including figures and files

• Writing docstrings

– Example docstring

– Formatting conventions

∗ Quote positions

∗ Function arguments

∗ Quotes for strings

∗ Parameter type descriptions

∗ Referencing types

∗ Default values

∗ See also sections

∗ Wrapping parameter lists

3225

Matplotlib, Release 3.4.3

∗ rcParams

– Setters and getters

– Keyword arguments

– Inheriting docstrings

– Adding figures

• Writing examples and tutorials

– References for sphinx-gallery

– Order of examples in the gallery

• Miscellaneous

– Moving documentation

– Adding animations

– Generating inheritance diagrams

– Emacs helpers

36.1 Getting started

36.1.1 General file structure

All documentation is built from the doc/, tutorials/, and examples/ directories. The doc/ direc-
tory contains configuration files for Sphinx and reStructuredText (ReST; .rst) files that are rendered to
documentation pages.

The main entry point is doc/index.rst, which pulls in the index.rst file for the users guide (doc/
users), developers guide (doc/devel), api reference (doc/api), and FAQs (doc/faq). The docu-
mentation suite is built as a single document in order to make the most effective use of cross referencing.

Sphinx also creates.rstfiles that are staged indoc/api from the docstrings of the classes in theMatplotlib
library. Except for doc/api/api_changes/, these .rst files are created when the documentation is
built.

Similarly, the contents of doc/gallery and doc/tutorials are generated by the Sphinx Gallery from
the sources in examples/ and tutorials/. These sources consist of python scripts that have ReST
documentation built into their comments.

Note: Don't directly edit the .rst files in doc/gallery, doc/tutorials, and doc/api (excepting
doc/api/api_changes/). Sphinx regenerates files in these directories when building documentation.

3226 Chapter 36. Writing documentation

http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org
https://sphinx-gallery.readthedocs.io/en/latest/
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org

Matplotlib, Release 3.4.3

36.1.2 Setting up the doc build

The documentation for Matplotlib is generated from reStructuredText (ReST) using the Sphinx documenta-
tion generation tool.

To build the documentation you will need to set up Matplotlib for development. Note in particular the
additional dependencies required to build the documentation.

36.1.3 Building the docs

The documentation sources are found in the doc/ directory in the trunk. The configuration file for Sphinx is
doc/conf.py. It controls which directories Sphinx parses, how the docs are built, and how the extensions
are used. To build the documentation in html format, cd into doc/ and run:

make html

Other useful invocations include

Delete built files. May help if you get errors about missing paths or
broken links.
make clean

Build pdf docs.
make latexpdf

The SPHINXOPTS variable is set to -W --keep-going by default to build the complete docs but exit
with exit status 1 if there are warnings. To unset it, use

make SPHINXOPTS= html

On Windows the arguments must be at the end of the statement:

make html SPHINXOPTS=

You can use the O variable to set additional options:

• make O=-j4 html runs a parallel build with 4 processes.

• make O=-Dplot_formats=png:100 html saves figures in low resolution.

• make O=-Dplot_gallery=0 html skips the gallery build.

Multiple options can be combined using e.g. make O='-j4 -Dplot_gallery=0' html.

On Windows, either use the format shown above or set options as environment variables, e.g.:

set O=-W --keep-going -j4
make html

36.1. Getting started 3227

http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org

Matplotlib, Release 3.4.3

36.2 Writing ReST pages

Most documentation is either in the docstring of individual classes and methods, in explicit .rst files, or
in examples and tutorials. All of these use the ReST syntax. Users should look at the ReST documenta-
tion for a full description. But some specific hints and conventions Matplotlib uses are useful for creating
documentation.

36.2.1 Formatting and style conventions

It is useful to strive for consistency in the Matplotlib documentation. Here are some formatting and style
conventions that are used.

Section name formatting

For everything but top-level chapters, use Upper lower for section titles, e.g., Possible hangups
rather than Possible Hangups

Function arguments

Function arguments and keywords within docstrings should be referred to using the *emphasis* role. This
will keep Matplotlib's documentation consistent with Python's documentation:

Here is a description of *argument*

Do not use the `default role`:

Do not describe `argument` like this. As per the next section,
this syntax will (unsuccessfully) attempt to resolve the argument as a
link to a class or method in the library.

nor the ``literal`` role:

Do not describe ``argument`` like this.

36.2.2 Referring to other documents and sections

Sphinx allows internal references between documents.

Documents can be linked with the :doc: directive:

See the :doc:`/faq/installing_faq`

See the tutorial :doc:`/tutorials/introductory/sample_plots`

See the example :doc:`/gallery/lines_bars_and_markers/simple_plot`

3228 Chapter 36. Writing documentation

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org
https://www.sphinx-doc.org/en/stable/usage/restructuredtext/roles.html

Matplotlib, Release 3.4.3

will render as:

See the Installation

See the tutorial Sample plots in Matplotlib

See the example /gallery/lines_bars_and_markers/simple_plot

Sections can also be given reference names. For instance from the Installation link:

.. _clean-install:

How to completely remove Matplotlib
===================================

Occasionally, problems with Matplotlib can be solved with a clean...

and refer to it using the standard reference syntax:

See :ref:`clean-install`

will give the following link: How to completely remove Matplotlib

Tomaximize internal consistency in section labeling and references, use hyphen separated, descriptive labels
for section references. Keep in mind that contents may be reorganized later, so avoid top level names in
references like user or devel or faq unless necessary, because for example the FAQ "what is a backend?"
could later become part of the users guide, so the label:

.. _what-is-a-backend:

is better than:

.. _faq-backend:

In addition, since underscores are widely used by Sphinx itself, use hyphens to separate words.

36.2.3 Referring to other code

To link to other methods, classes, or modules in Matplotlib you can use back ticks, for example:

`matplotlib.collections.LineCollection`

generates a link like this: matplotlib.collections.LineCollection.

Note: We use the sphinx setting default_role = 'obj' so that you don't have to use qualifiers like
:class:, :func:, :meth: and the likes.

Often, you don't want to show the full package and module name. As long as the target is unanbigous you
can simply leave them out:

`.LineCollection`

36.2. Writing ReST pages 3229

Matplotlib, Release 3.4.3

and the link still works: LineCollection.

If there are multiple code elements with the same name (e.g. plot() is a method in multiple classes), you'll
have to extend the definition:

`.pyplot.plot` or `.Axes.plot`

These will show up as pyplot.plot or Axes.plot. To still show only the last segment you can add a
tilde as prefix:

`~.pyplot.plot` or `~.Axes.plot`

will render as plot or plot.

Other packages can also be linked via intersphinx:

`numpy.mean`

will return this link: numpy.mean. This works for Python, Numpy, Scipy, and Pandas (full list is in doc/
conf.py). If external linking fails, you can check the full list of referenceable objects with the following
commands:

python -m sphinx.ext.intersphinx 'https://docs.python.org/3/objects.inv'
python -m sphinx.ext.intersphinx 'https://docs.scipy.org/doc/numpy/objects.inv

↪'
python -m sphinx.ext.intersphinx 'https://docs.scipy.org/doc/scipy/reference/

↪objects.inv'
python -m sphinx.ext.intersphinx 'https://pandas.pydata.org/pandas-docs/

↪stable/objects.inv'

36.2.4 Including figures and files

Image files can directly included in pages with the image:: directive. e.g., thirdpartypackages/
index.rst displays the images for the third-party packages as static images:

.. image:: /_static/toolbar.png

as rendered on the page: Third party packages.

Files can be included verbatim. For instance the matplotlibrc file is important for customizing Mat-
plotlib, and is included verbatim in the tutorial in Customizing Matplotlib with style sheets and rcParams:

.. literalinclude:: ../../_static/matplotlibrc

This is rendered at the bottom of Customizing Matplotlib with style sheets and rcParams. Note that this is in
a tutorial; see Writing examples and tutorials below.

The examples directory is also copied to doc/gallery by sphinx-gallery, so plots from the examples
directory can be included using

3230 Chapter 36. Writing documentation

http://www.sphinx-doc.org/en/master/ext/intersphinx.html
https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean

Matplotlib, Release 3.4.3

.. plot:: gallery/lines_bars_and_markers/simple_plot.py

Note that the python script that generates the plot is referred to, rather than any plot that is created. Sphinx-
gallery will provide the correct reference when the documentation is built.

36.3 Writing docstrings

Most of the API documentation is written in docstrings. These are comment blocks in source code that
explain how the code works.

Note: Some parts of the documentation do not yet conform to the current documentation style. If in doubt,
follow the rules given here and not what you may see in the source code. Pull requests updating docstrings
to the current style are very welcome.

All new or edited docstrings should conform to the numpydoc docstring guide. Much of the ReST syntax
discussed above (Writing ReST pages) can be used for links and references. These docstrings eventually
populate the doc/api directory and form the reference documentation for the library.

36.3.1 Example docstring

An example docstring looks like:

def hlines(self, y, xmin, xmax, colors='k', linestyles='solid',
label='', **kwargs):

"""
Plot horizontal lines at each *y* from *xmin* to *xmax*.

Parameters

y : float or array-like

y-indexes where to plot the lines.

xmin, xmax : float or array-like
Respective beginning and end of each line. If scalars are
provided, all lines will have the same length.

colors : array-like of colors, default: 'k'

linestyles : {'solid', 'dashed', 'dashdot', 'dotted'}, default: 'solid'

label : str, default: ''

Returns

lines : `~matplotlib.collections.LineCollection`

(continues on next page)

36.3. Writing docstrings 3231

https://numpydoc.readthedocs.io/en/latest/format.html
http://docutils.sourceforge.net/rst.html

Matplotlib, Release 3.4.3

(continued from previous page)
Other Parameters

**kwargs : `~matplotlib.collections.LineCollection` properties

See also

vlines : vertical lines
axhline: horizontal line across the axes
"""

See the hlines documentation for how this renders.

The Sphinx website also contains plenty of documentation concerning ReST markup and working with
Sphinx in general.

36.3.2 Formatting conventions

The basic docstring conventions are covered in the numpydoc docstring guide and the Sphinx documentation.
Some Matplotlib-specific formatting conventions to keep in mind:

Quote positions

The quotes for single line docstrings are on the same line (pydocstyle D200):

def get_linewidth(self):
"""Return the line width in points."""

The quotes for multi-line docstrings are on separate lines (pydocstyle D213):

def set_linestyle(self, ls):
"""
Set the linestyle of the line.

[...]
"""

Function arguments

Function arguments and keywords within docstrings should be referred to using the *emphasis* role. This
will keep Matplotlib's documentation consistent with Python's documentation:

If *linestyles* is *None*, the default is 'solid'.

Do not use the `default role` or the ``literal`` role:

Neither `argument` nor ``argument`` should be used.

3232 Chapter 36. Writing documentation

http://www.sphinx-doc.org
https://www.sphinx-doc.org/en/master/contents.html
https://numpydoc.readthedocs.io/en/latest/format.html
http://www.sphinx-doc.org

Matplotlib, Release 3.4.3

Quotes for strings

Matplotlib does not have a convention whether to use single-quotes or double-quotes. There is a mixture of
both in the current code.

Use simple single or double quotes when giving string values, e.g.

If 'tight', try to figure out the tight bbox of the figure.

No ``'extra'`` literal quotes.

The use of extra literal quotes around the text is discouraged. While they slightly improve the rendered docs,
they are cumbersome to type and difficult to read in plain-text docs.

Parameter type descriptions

Themain goal for parameter type descriptions is to be readable and understandable by humans. If the possible
types are too complex use a simplification for the type description and explain the type more precisely in the
text.

Generally, the numpydoc docstring guide conventions apply. The following rules expand on them where the
numpydoc conventions are not specific.

Use float for a type that can be any number.

Use (float, float) to describe a 2D position. The parentheses should be included to make the tuple-
ness more obvious.

Use array-like for homogeneous numeric sequences, which could typically be a numpy.array. Dimen-
sionality may be specified using 2D, 3D, n-dimensional. If you need to have variables denoting the
sizes of the dimensions, use capital letters in brackets ((M, N) array-like). When referring to them
in the text they are easier read and no special formatting is needed. Use array instead of array-like
for return types if the returned object is indeed a numpy array.

float is the implicit default dtype for array-likes. For other dtypes use array-like of int.

Some possible uses:

2D array-like
(N,) array-like
(M, N) array-like
(M, N, 3) array-like
array-like of int

Non-numeric homogeneous sequences are described as lists, e.g.:

list of str
list of `.Artist`

36.3. Writing docstrings 3233

https://numpydoc.readthedocs.io/en/latest/format.html

Matplotlib, Release 3.4.3

Referencing types

Generally, the rules from referring-to-other-code apply. More specifically:

Use full references `~matplotlib.colors.Normalize` with an abbreviation tilde in parameter
types. While the full name helps the reader of plain text docstrings, the HTML does not need to show
the full name as it links to it. Hence, the ~-shortening keeps it more readable.

Use abbreviated links `.Normalize` in the text.

norm : `~matplotlib.colors.Normalize`, optional
A `.Normalize` instance is used to scale luminance data to 0, 1.

Default values

As opposed to the numpydoc guide, parameters need not be marked as optional if they have a simple default:

• use {name} : {type}, default: {val} when possible.

• use {name} : {type}, optional and describe the default in the text if it cannot be explained
sufficiently in the recommended manner.

The default value should provide semantic information targeted at a human reader. In simple cases, it restates
the value in the function signature. If applicable, units should be added.

Prefer:
interval : int, default: 1000ms

over:
interval : int, default: 1000

If None is only used as a sentinel value for "parameter not specified", do not document it as the default.
Depending on the context, give the actual default, or mark the parameter as optional if not specifying has no
particular effect.

Prefer:
dpi : float, default: :rc:`figure.dpi`

over:
dpi : float, default: None

Prefer:
textprops : dict, optional

Dictionary of keyword parameters to be passed to the
`~matplotlib.text.Text` instance contained inside TextArea.

over:
textprops : dict, default: None

Dictionary of keyword parameters to be passed to the
`~matplotlib.text.Text` instance contained inside TextArea.

3234 Chapter 36. Writing documentation

Matplotlib, Release 3.4.3

See also sections

Sphinx automatically links code elements in the definition blocks of See also sections. No need to use
backticks there:

See also

vlines : vertical lines
axhline: horizontal line across the axes

Wrapping parameter lists

Long parameter lists should be wrapped using a \ for continuation and starting on the new line without any
indent (no indent because pydoc will parse the docstring and strip the line continuation so that indent would
result in a lot of whitespace within the line):

def add_axes(self, *args, **kwargs):
"""
...

Parameters

projection : {'aitoff', 'hammer', 'lambert', 'mollweide', 'polar', \

'rectilinear'}, optional
The projection type of the axes.

...
"""

Alternatively, you can describe the valid parameter values in a dedicated section of the docstring.

rcParams

rcParams can be referenced with the custom :rc: role: :rc:`foo` yields rcParams["foo"] =
'default', which is a link to the matplotlibrc file description.

36.3.3 Setters and getters

Artist properties are implemented using setter and getter methods (because Matplotlib predates the intro-
ductions of the property decorator in Python). By convention, these setters and getters are named
set_PROPERTYNAME and get_PROPERTYNAME; the list of properties thusly defined on an artist and
their values can be listed by the setp and getp functions.

The Parameters block of property setter methods is parsed to document the accepted values, e.g. the docstring
of Line2D.set_linestyle starts with

36.3. Writing docstrings 3235

https://docs.python.org/3/library/functions.html#property

Matplotlib, Release 3.4.3

def set_linestyle(self, ls):
"""
Set the linestyle of the line.

Parameters

ls : {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}

etc.
"""

which results in the following line in the output of plt.setp(line) or plt.setp(line,
"linestyle"):

linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}

In some rare cases (mostly, setters which accept both a single tuple and an unpacked tuple), the accepted
values cannot be documented in such a fashion; in that case, they can be documented as an .. ACCEPTS:
block, e.g. for axes.Axes.set_xlim:

def set_xlim(self, ...):
"""
Set the x-axis view limits.

Parameters

left : float, optional

The left xlim in data coordinates. Passing *None* leaves the
limit unchanged.

The left and right xlims may also be passed as the tuple
(*left*, *right*) as the first positional argument (or as
the *left* keyword argument).

.. ACCEPTS: (bottom: float, top: float)

right : float, optional
etc.

"""

Note that the leading ..makes the .. ACCEPTS: block a reST comment, hiding it from the rendered docs.

36.3.4 Keyword arguments

Note: The information in this section is being actively discussed by the development team, so use the
docstring interpolation only if necessary. This section has been left in place for now because this interpolation
is part of the existing documentation.

Since Matplotlib uses a lot of pass-through kwargs, e.g., in every function that creates a line (plot,
semilogx, semilogy, etc...), it can be difficult for the new user to know which kwargs are supported.

3236 Chapter 36. Writing documentation

Matplotlib, Release 3.4.3

Matplotlib uses a docstring interpolation scheme to support documentation of every function that takes a
**kwargs. The requirements are:

1. single point of configuration so changes to the properties don't require multiple docstring edits.

2. as automated as possible so that as properties change, the docs are updated automatically.

The function matplotlib.artist.kwdoc and the decorator matplotlib.docstring.
dedent_interpd facilitate this. They combine Python string interpolation in the docstring with the
Matplotlib artist introspection facility that underlies setp and getp. The kwdoc function gives the list
of properties as a docstring. In order to use this in another docstring, first update the matplotlib.
docstring.interpd object, as seen in this example from matplotlib.lines:

in lines.py
docstring.interpd.update(Line2D_kwdoc=artist.kwdoc(Line2D))

Then in any function accepting Line2D pass-through kwargs, e.g., matplotlib.axes.Axes.plot:

in axes.py
@docstring.dedent_interpd
def plot(self, *args, **kwargs):

"""
Some stuff omitted

Other Parameters

scalex, scaley : bool, default: True

These parameters determine if the view limits are adapted to the
data limits. The values are passed on to `autoscale_view`.

**kwargs : `.Line2D` properties, optional
kwargs are used to specify properties like a line label (for
auto legends), linewidth, antialiasing, marker face color.
Example::

>>> plot([1, 2, 3], [1, 2, 3], 'go-', label='line 1', linewidth=2)
>>> plot([1, 2, 3], [1, 4, 9], 'rs', label='line 2')

If you specify multiple lines with one plot call, the kwargs apply
to all those lines. In case the label object is iterable, each
element is used as labels for each set of data.

Here is a list of available `.Line2D` properties:

%(Line2D_kwdoc)s

"""

Note there is a problem for Artist __init__ methods, e.g., matplotlib.patches.Patch.
__init__, which supports Patch kwargs, since the artist inspector cannot work until the class is fully
defined and we can't modify the Patch.__init__.__doc__ docstring outside the class definition.
There are some some manual hacks in this case, violating the "single entry point" requirement above --
see the docstring.interpd.update calls in matplotlib.patches.

36.3. Writing docstrings 3237

Matplotlib, Release 3.4.3

36.3.5 Inheriting docstrings

If a subclass overrides a method but does not change the semantics, we can reuse the parent docstring for the
method of the child class. Python does this automatically, if the subclass method does not have a docstring.

Use a plain comment # docstring inherited to denote the intention to reuse the parent docstring.
That way we do not accidentally create a docstring in the future:

class A:
def foo():

"""The parent docstring."""
pass

class B(A):
def foo():

docstring inherited
pass

36.3.6 Adding figures

As above (see Including figures and files), figures in the examples gallery can be referenced with a :plot:
directive pointing to the python script that created the figure. For instance the legend docstring references
the file examples/text_labels_and_annotations/legend.py:

"""
...

Examples

.. plot:: gallery/text_labels_and_annotations/legend.py
"""

Note that examples/text_labels_and_annotations/legend.py has been mapped to
gallery/text_labels_and_annotations/legend.py, a redirection that may be fixed in fu-
ture re-organization of the docs.

Plots can also be directly placed inside docstrings. Details are inmatplotlib.sphinxext.plot_directive. A short
example is:

"""
...

Examples

.. plot::
import matplotlib.image as mpimg
img = mpimg.imread('_static/stinkbug.png')
imgplot = plt.imshow(img)

"""

3238 Chapter 36. Writing documentation

Matplotlib, Release 3.4.3

An advantage of this style over referencing an example script is that the code will also appear in interactive
docstrings.

36.4 Writing examples and tutorials

Examples and tutorials are python scripts that are run by Sphinx Gallery to create a gallery of images in the
/doc/gallery and /doc/tutorials directories respectively. To exclude an example from having an
plot generated insert "sgskip" somewhere in the filename.

The format of these files is relatively straightforward. Properly formatted comment blocks are treated as
ReST text, the code is displayed, and figures are put into the built page.

For instance the example /gallery/lines_bars_and_markers/simple_plot example is generated from /
examples/lines_bars_and_markers/simple_plot.py, which looks like:

"""
===========
Simple Plot
===========

Create a simple plot.
"""
import matplotlib.pyplot as plt
import numpy as np

Data for plotting
t = np.arange(0.0, 2.0, 0.01)
s = 1 + np.sin(2 * np.pi * t)

Note that using plt.subplots below is equivalent to using
fig = plt.figure and then ax = fig.add_subplot(111)
fig, ax = plt.subplots()
ax.plot(t, s)

ax.set(xlabel='time (s)', ylabel='voltage (mV)',
title='About as simple as it gets, folks')

ax.grid()
plt.show()

The first comment block is treated as ReST text. The other comment blocks render as comments in
/gallery/lines_bars_and_markers/simple_plot.

Tutorials are made with the exact same mechanism, except they are longer, and typically have more than
one comment block (i.e. Usage Guide). The first comment block can be the same as the example above.
Subsequent blocks of ReST text are delimited by a line of ### characters:

"""
===========
Simple Plot
===========

(continues on next page)

36.4. Writing examples and tutorials 3239

https://sphinx-gallery.readthedocs.io/en/latest/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html

Matplotlib, Release 3.4.3

(continued from previous page)
Create a simple plot.
"""
...
ax.grid()
plt.show()

##
Second plot
===========
#
This is a second plot that is very nice

fig, ax = plt.subplots()
ax.plot(np.sin(range(50)))

In this way text, code, and figures are output in a "notebook" style.

36.4.1 References for sphinx-gallery

The showcased Matplotlib functions should be listed in an admonition at the bottom as follows

##
↪#

#
.. admonition:: References
#
The use of the following functions, methods, classes and modules is shown
in this example:
#
- `matplotlib.axes.Axes.fill` / `matplotlib.pyplot.fill`
- `matplotlib.axes.Axes.axis` / `matplotlib.pyplot.axis`

This allows sphinx-gallery to place an entry to the example in the mini-gallery of the mentioned functions.
Whether or not a function is mentioned here should be decided depending on if a mini-gallery link promi-
nently helps to illustrate that function; e.g. mention matplotlib.pyplot.subplots only in examples
that are about laying out subplots, not in every example that uses it.

Functions that exist in pyplot as well as in Axes or Figure should mention both references no matter which
one is used in the example code. The pyplot reference should always be the second to mention; see the
example above.

3240 Chapter 36. Writing documentation

Matplotlib, Release 3.4.3

36.4.2 Order of examples in the gallery

The order of the sections of the Tutorials and the gallery, as well as the order of the examples within each
section are determined in a two step process from within the /doc/sphinxext/gallery_order.py:

• Explicit order: This file contains a list of folders for the section order and a list of examples for the
subsection order. The order of the items shown in the doc pages is the order those items appear in
those lists.

• Implicit order: If a folder or example is not in those lists, it will be appended after the explicitly ordered
items and all of those additional items will be ordered by pathname (for the sections) or by filename
(for the subsections).

As a consequence, if you want to let your example appear in a certain position in the gallery, extend those lists
with your example. In case no explicit order is desired or necessary, still make sure to name your example
consistently, i.e. use the main function or subject of the example as first word in the filename; e.g. an image
example should ideally be named similar to imshow_mynewexample.py.

36.5 Miscellaneous

36.5.1 Moving documentation

Sometimes it is desirable to move or consolidate documentation. With no action this will lead to links either
going dead (404) or pointing to old versions of the documentation. Preferable is to replace the old page with
an html refresh that immediately redirects the viewer to the new page. So, for example we move /doc/
topic/old_info.rst to/doc/topic/new_info.rst. We remove/doc/topic/old_info.
rst and in /doc/topic/new_info.rst we insert a redirect-from directive that tells sphinx to
still make the old file with the html refresh/redirect in it (probably near the top of the file to make it noticeable)

.. redirect-from:: /topic/old_info

In the built docs this will yield an html file /build/html/topic/old_info.html that has a refresh
to new_info.html. If the two files are in different subdirectories:

.. redirect-from:: /old_topic/old_info2

will yield an html file /build/html/old_topic/old_info2.html that has a (relative) refresh to
../topic/new_info.html.

Use the full path for this directive, relative to the doc root at http://matplotlib.org/stable/.
So /old_topic/old_info2 would be found by users at http://matplotlib.org/stable/
old_topic/old_info2. For clarity, do not use relative links.

36.5. Miscellaneous 3241

Matplotlib, Release 3.4.3

36.5.2 Adding animations

Animations are scraped automatically by Sphinx-gallery. If this is not desired, there is also a Matplotlib
Google/Gmail account with username mplgithub which was used to setup the github account but can be
used for other purposes, like hosting Google docs or Youtube videos. You can embed a Matplotlib animation
in the docs by first saving the animation as a movie using matplotlib.animation.Animation.
save(), and then uploading to Matplotlib's Youtube channel and inserting the embedding string youtube
provides like:

.. raw:: html

<iframe width="420" height="315"
src="http://www.youtube.com/embed/32cjc6V0OZY"
frameborder="0" allowfullscreen>

</iframe>

An example save command to generate a movie looks like this

ani = animation.FuncAnimation(fig, animate, np.arange(1, len(y)),
interval=25, blit=True, init_func=init)

ani.save('double_pendulum.mp4', fps=15)

ContactMichael Droettboom for the login password to upload youtube videos of google docs to themplgithub
account.

36.5.3 Generating inheritance diagrams

Class inheritance diagrams can be generated with the inheritance-diagram directive. To use it, pro-
vide the directive with a number of class or module names (separated by whitespace). If a module name is
provided, all classes in that module will be used. All of the ancestors of these classes will be included in the
inheritance diagram.

A single option is available: parts controls howmany of parts in the path to the class are shown. For example,
if parts == 1, the class matplotlib.patches.Patch is shown as Patch. If parts == 2, it is shown
as patches.Patch. If parts == 0, the full path is shown.

Example:

.. inheritance-diagram:: matplotlib.patches matplotlib.lines matplotlib.text
:parts: 2

3242 Chapter 36. Writing documentation

https://www.youtube.com/user/matplotlib

Matplotlib, Release 3.4.3

artist.Artist

lines.Line2D

patches.Patch

text.Text

lines.VertexSelector

patches.Arc
patches.Ellipse

patches.Circle
patches.Arrow

patches.RegularPolygon

patches.FancyArrowPatch

patches.Polygon

patches.FancyBboxPatch

patches.PathPatch

patches.Rectangle

patches.Shadow

patches.Wedge

patches.ArrowStyle

patches.BoxStyle patches.CirclePolygon

patches.ConnectionPatch

patches.ConnectionStyle

patches.FancyArrow

patches.StepPatch

text.Annotation

text.OffsetFrom

36.5.4 Emacs helpers

There is an emacs mode rst.el which automates many important ReST tasks like building and updating table-
of-contents, and promoting or demoting section headings. Here is the basic .emacs configuration:

(require 'rst)
(setq auto-mode-alist

(append '(("\\.txt$" . rst-mode)
("\\.rst$" . rst-mode)
("\\.rest$" . rst-mode)) auto-mode-alist))

Some helpful functions:

C-c TAB - rst-toc-insert

Insert table of contents at point

C-c C-u - rst-toc-update

Update the table of contents at point

C-c C-l rst-shift-region-left

Shift region to the left

C-c C-r rst-shift-region-right

(continues on next page)

36.5. Miscellaneous 3243

http://docutils.sourceforge.net/tools/editors/emacs/rst.el

Matplotlib, Release 3.4.3

(continued from previous page)

Shift region to the right

3244 Chapter 36. Writing documentation

CHAPTER

THIRTYSEVEN

DEVELOPER'S GUIDE FOR CREATING SCALES AND
TRANSFORMATIONS

Matplotlib supports the addition of custom procedures that transform the data before it is displayed.

There is an important distinction between two kinds of transformations. Separable transformations, working
on a single dimension, are called "scales", and non-separable transformations, that handle data in two or
more dimensions at a time, are called "projections".

From the user's perspective, the scale of a plot can be set with Axes.set_xscale and Axes.
set_yscale. Projections can be chosen using the projection keyword argument of functions that create
Axes, such as pyplot.subplot or pyplot.axes, e.g.

plt.subplot(projection="custom")

This document is intended for developers and advanced users who need to create new scales and projections
for Matplotlib. The necessary code for scales and projections can be included anywhere: directly within a
plot script, in third-party code, or in the Matplotlib source tree itself.

37.1 Creating a new scale

Adding a new scale consists of defining a subclass of matplotlib.scale.ScaleBase, that includes
the following elements:

• A transformation from data coordinates into display coordinates.

• An inverse of that transformation. This is used, for example, to convert mouse positions from screen
space back into data space.

• A function to limit the range of the axis to acceptable values (limit_range_for_scale()). A
log scale, for instance, would prevent the range from including values less than or equal to zero.

• Locators (major and minor) that determine where to place ticks in the plot, and optionally, how to
adjust the limits of the plot to some "good" values. Unlike limit_range_for_scale(), which
is always enforced, the range setting here is only used when automatically setting the range of the plot.

• Formatters (major and minor) that specify how the tick labels should be drawn.

Once the class is defined, it must be registered with Matplotlib so that the user can select it.

3245

Matplotlib, Release 3.4.3

A full-fledged and heavily annotated example is in /gallery/scales/custom_scale. There are also some classes
in matplotlib.scale that may be used as starting points.

37.2 Creating a new projection

Adding a new projection consists of defining a projection axes which subclasses matplotlib.axes.
Axes and includes the following elements:

• A transformation from data coordinates into display coordinates.

• An inverse of that transformation. This is used, for example, to convert mouse positions from screen
space back into data space.

• Transformations for the gridlines, ticks and ticklabels. Custom projections will often need to place
these elements in special locations, and Matplotlib has a facility to help with doing so.

• Setting up default values (overriding cla()), since the defaults for a rectilinear axes may not be
appropriate.

• Defining the shape of the axes, for example, an elliptical axes, that will be used to draw the background
of the plot and for clipping any data elements.

• Defining custom locators and formatters for the projection. For example, in a geographic projection,
it may be more convenient to display the grid in degrees, even if the data is in radians.

• Set up interactive panning and zooming. This is left as an "advanced" feature left to the reader, but
there is an example of this for polar plots in matplotlib.projections.polar.

• Any additional methods for additional convenience or features.

Once the projection axes is defined, it can be used in one of two ways:

• By defining the class attribute name, the projection axes can be registered with matplotlib.
projections.register_projection() and subsequently simply invoked by name:

plt.axes(projection='my_proj_name')

• For more complex, parameterisable projections, a generic "projection" object may be defined which
includes the method _as_mpl_axes. _as_mpl_axes should take no arguments and return the
projection's axes subclass and a dictionary of additional arguments to pass to the subclass' __init__
method. Subsequently a parameterised projection can be initialised with:

plt.axes(projection=MyProjection(param1=param1_value))

where MyProjection is an object which implements a _as_mpl_axes method.

A full-fledged and heavily annotated example is in /gallery/misc/custom_projection. The polar plot func-
tionality in matplotlib.projections.polar may also be of interest.

3246 Chapter 37. Developer's guide for creating scales and transformations

Matplotlib, Release 3.4.3

37.3 API documentation

• matplotlib.scale

• matplotlib.projections

• matplotlib.projections.polar

37.3. API documentation 3247

Matplotlib, Release 3.4.3

3248 Chapter 37. Developer's guide for creating scales and transformations

CHAPTER

THIRTYEIGHT

WORKING WITH MATPLOTLIB SOURCE CODE

Contents:

38.1 Introduction

These pages describe a git and github workflow for the Matplotlib project.

There are several different workflows here, for different ways of working with Matplotlib.

This is not a comprehensive git reference, it's just a workflow for our own project. It's tailored to the github
hosting service. You may well find better or quicker ways of getting stuff done with git, but these should get
you started.

For general resources for learning git, see git resources.

38.2 Install git

38.2.1 Overview

Debian / Ubuntu sudo apt-get install git

Fedora sudo yum install git

Windows Download and install msysGit
OS X Use the git-osx-installer

38.2.2 In detail

See the git page for the most recent information.

Have a look at the github install help pages available from github help

There are good instructions here: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

3249

https://git-scm.com/
https://github.com
http://matplotlib.org
https://git-scm.com/download/win
https://git-scm.com/download/mac
https://help.github.com
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Matplotlib, Release 3.4.3

38.3 Following the latest source

These are the instructions if you just want to follow the latestMatplotlib source, but you don't need to do any
development for now.

The steps are:

• Install git

• get local copy of the Matplotlib github git repository

• update local copy from time to time

38.3.1 Get the local copy of the code

From the command line:

git clone git://github.com/matplotlib/matplotlib.git

You now have a copy of the code tree in the new matplotlib directory.

38.3.2 Updating the code

From time to time you may want to pull down the latest code. Do this with:

cd matplotlib
git pull

The tree in matplotlib will now have the latest changes from the initial repository.

38.4 Making a patch

You've discovered a bug or something else you want to change in Matplotlib .. — excellent!

You've worked out a way to fix it — even better!

You want to tell us about it — best of all!

The easiest way is to make a patch or set of patches. Here we explain how. Making a patch is the simplest and
quickest, but if you're going to be doing anything more than simple quick things, please consider following
the Git for development model instead.

3250 Chapter 38. Working with Matplotlib source code

https://github.com/matplotlib/matplotlib
http://matplotlib.org

Matplotlib, Release 3.4.3

38.4.1 Making patches

Overview

tell git who you are
git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"
get the repository if you don't have it
git clone git://github.com/matplotlib/matplotlib.git
make a branch for your patching
cd matplotlib
git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of
hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'
make the patch files
git format-patch -M -C master

Then, send the generated patch files to the Matplotlib mailing list — where we will thank you warmly.

In detail

1. Tell git who you are so it can label the commits you've made:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

2. If you don't already have one, clone a copy of the Matplotlib repository:

git clone git://github.com/matplotlib/matplotlib.git
cd matplotlib

3. Make a 'feature branch'. This will be where you work on your bug fix. It's nice and safe and leaves you
with access to an unmodified copy of the code in the main branch:

git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of

4. Do some edits, and commit them as you go:

hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'

(continues on next page)

38.4. Making a patch 3251

https://mail.python.org/mailman/listinfo/matplotlib-devel
http://matplotlib.org

Matplotlib, Release 3.4.3

(continued from previous page)
hack hack, hack
git commit -am 'BF - added fix for Funny bug'

Note the -am options to commit. The m flag just signals that you're going to type a message on the
command line. The a flag — you can just take on faith — or see why the -a flag?.

5. When you have finished, check you have committed all your changes:

git status

6. Finally, make your commits into patches. You want all the commits since you branched from the
master branch:

git format-patch -M -C master

You will now have several files named for the commits:

0001-BF-added-tests-for-Funny-bug.patch
0002-BF-added-fix-for-Funny-bug.patch

Send these files to the Matplotlib mailing list.

When you are done, to switch back to the main copy of the code, just return to the master branch:

git checkout master

38.4.2 Moving from patching to development

If you find you have done some patches, and you have one or more feature branches, you will probably want
to switch to development mode. You can do this with the repository you have.

Fork the Matplotlib repository on github — Making your own copy (fork) of Matplotlib. Then:

checkout and refresh master branch from main repo
git checkout master
git pull origin master
rename pointer to main repository to 'upstream'
git remote rename origin upstream
point your repo to default read / write to your fork on github
git remote add origin git@github.com:your-user-name/matplotlib.git
push up any branches you've made and want to keep
git push origin the-fix-im-thinking-of

Then you can, if you want, follow the Development workflow.

3252 Chapter 38. Working with Matplotlib source code

http://gitready.com/beginner/2009/01/18/the-staging-area.html
https://mail.python.org/mailman/listinfo/matplotlib-devel
http://matplotlib.org

Matplotlib, Release 3.4.3

38.5 Git for development

Contents:

38.5.1 Making your own copy (fork) of Matplotlib

You need to do this only once. The instructions here are very similar to the instructions at https://help.github.
com/forking/ — please see that page for more detail. We're repeating some of it here just to give the specifics
for the Matplotlib project, and to suggest some default names.

Set up and configure a github account

If you don't have a github account, go to the github page, and make one.

You then need to configure your account to allow write access — see the Generating SSH keys help
on github help.

Create your own forked copy of Matplotlib

1. Log into your github account.

2. Go to the Matplotlib github home at Matplotlib github.

3. Click on the fork button:

Now, after a short pause, you should find yourself at the home page for your own forked copy of
Matplotlib.

38.5.2 Set up your fork

First you follow the instructions for Making your own copy (fork) of Matplotlib.

38.5. Git for development 3253

https://help.github.com/forking/
https://help.github.com/forking/
http://matplotlib.org
https://help.github.com
http://matplotlib.org
https://github.com/matplotlib/matplotlib
http://matplotlib.org

Matplotlib, Release 3.4.3

Overview

git clone https://github.com/your-user-name/matplotlib.git
cd matplotlib
git remote add upstream git://github.com/matplotlib/matplotlib.git

In detail

Clone your fork

1. Clone your fork to the local computer with git clone https://github.com/your-user-
name/matplotlib.git

2. Investigate. Change directory to your new repo: cd matplotlib. Then git branch -a to
show you all branches. You'll get something like:

* master
remotes/origin/master

This tells you that you are currently on the master branch, and that you also have a remote connec-
tion to origin/master. What remote repository is remote/origin? Try git remote -v
to see the URLs for the remote. They will point to your github fork.

Now you want to connect to the upstream Matplotlib github repository, so you can merge in changes
from trunk.

Linking your repository to the upstream repo

cd matplotlib
git remote add upstream git://github.com/matplotlib/matplotlib.git

upstream here is just the arbitrary name we're using to refer to the mainMatplotlib repository at Matplotlib
github.

Note that we've used git:// for the URL rather than https:// or git@. The git:// URL is read
only. This means that we can't accidentally (or deliberately) write to the upstream repo, and we are only
going to use it to merge into our own code.

Just for your own satisfaction, show yourself that you now have a new 'remote', with git remote -v
show, giving you something like:

upstream git://github.com/matplotlib/matplotlib.git (fetch)
upstream git://github.com/matplotlib/matplotlib.git (push)
origin https://github.com/your-user-name/matplotlib.git (fetch)
origin https://github.com/your-user-name/matplotlib.git (push)

3254 Chapter 38. Working with Matplotlib source code

https://github.com/matplotlib/matplotlib
http://matplotlib.org
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib

Matplotlib, Release 3.4.3

38.5.3 Configure git

Overview

Your personal git configurations are saved in the .gitconfig file in your home directory.

Here is an example .gitconfig file:

[user]
name = Your Name
email = you@yourdomain.example.com

[alias]
ci = commit -a
co = checkout
st = status
stat = status
br = branch
wdiff = diff --color-words

[core]
editor = vim

[merge]
summary = true

You can check what is already in your config file using the git config --list command. You can
edit the .gitconfig file directly or you can use the git config --global command.:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com
git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"
git config --global core.editor vim
git config --global merge.summary true

To set up on another computer, you can copy your ~/.gitconfig file, or run the commands above.

In detail

user.name and user.email

It is good practice to tell git who you are, for labeling any changes you make to the code. The simplest way
to do this is from the command line:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com

38.5. Git for development 3255

https://git-scm.com/

Matplotlib, Release 3.4.3

This will write the settings into your git configuration file, which should now contain a user section with
your name and email:

[user]
name = Your Name
email = you@yourdomain.example.com

You'll need to replace Your Name and you@yourdomain.example.com with your actual name and
email address.

Aliases

You might well benefit from some aliases to common commands.

For example, you might well want to be able to shorten git checkout to git co. Or you may want to
alias git diff --color-words (which gives a nicely formatted output of the diff) to git wdiff

The following git config --global commands:

git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"

will create an alias section in your .gitconfig file with contents like this:

[alias]
ci = commit -a
co = checkout
st = status -a
stat = status -a
br = branch
wdiff = diff --color-words

Editor

You may also want to make sure that your editor of choice is used

git config --global core.editor vim

3256 Chapter 38. Working with Matplotlib source code

Matplotlib, Release 3.4.3

Merging

To enforce summaries when doing merges (~/.gitconfig file again):

[merge]
log = true

Or from the command line:

git config --global merge.log true

Fancy log output

This is a very nice alias to get a fancy log output; it should go in the alias section of your .gitconfig
file:

lg = log --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s
↪%Cgreen(%cr) %C(bold blue)[%an]%Creset' --abbrev-commit --date=relative

You use the alias with:

git lg

and it gives graph / text output something like this (but with color!):

* 6d8e1ee - (HEAD, origin/my-fancy-feature, my-fancy-feature) NF - a fancy␣
↪file (45 minutes ago) [Matthew Brett]

* d304a73 - (origin/placeholder, placeholder) Merge pull request #48 from␣
↪hhuuggoo/master (2 weeks ago) [Jonathan Terhorst]

|\
| * 4aff2a8 - fixed bug 35, and added a test in test_bugfixes (2 weeks ago)␣

↪[Hugo]
|/
* a7ff2e5 - Added notes on discussion/proposal made during Data Array Summit.␣

↪(2 weeks ago) [Corran Webster]
* 68f6752 - Initial implementation of AxisIndexer - uses 'index_by' which␣

↪needs to be changed to a call on an Axes object - this is all very sketchy␣
↪right now. (2 weeks ago) [Corr

* 376adbd - Merge pull request #46 from terhorst/master (2 weeks ago)␣
↪[Jonathan Terhorst]

|\
| * b605216 - updated joshu example to current api (3 weeks ago) [Jonathan␣

↪Terhorst]
| * 2e991e8 - add testing for outer ufunc (3 weeks ago) [Jonathan Terhorst]
| * 7beda5a - prevent axis from throwing an exception if testing equality␣

↪with non-axis object (3 weeks ago) [Jonathan Terhorst]
| * 65af65e - convert unit testing code to assertions (3 weeks ago) [Jonathan␣

↪Terhorst]
| * 956fbab - Merge remote-tracking branch 'upstream/master' (3 weeks ago)␣

↪[Jonathan Terhorst]

(continues on next page)

38.5. Git for development 3257

Matplotlib, Release 3.4.3

(continued from previous page)
| |\
| |/

Thanks to Yury V. Zaytsev for posting it.

38.5.4 Development workflow

You already have your own forked copy of the Matplotlib repository, by following Making your own copy
(fork) of Matplotlib. You have Set up your fork. You have configured git by following Configure git. Now
you are ready for some real work.

Workflow summary

In what follows we'll refer to the upstream Matplotlib master branch, as "trunk".

• Don't use your master branch for anything. Consider deleting it.

• When you are starting a new set of changes, fetch any changes from trunk, and start a new feature
branch from that.

• Make a new branch for each separable set of changes— "one task, one branch" (ipython git workflow).

• Name your branch for the purpose of the changes - e.g. bugfix-for-issue-14 or refactor-
database-code.

• If you can possibly avoid it, avoid merging trunk or any other branches into your feature branch while
you are working.

• If you do find yourself merging from trunk, consider Rebasing on trunk

• Ask on the Matplotlib mailing list if you get stuck.

• Ask for code review!

This way of working helps to keep work well organized, with readable history. This in turn makes it easier
for project maintainers (that might be you) to see what you've done, and why you did it.

See linux git workflow and ipython git workflow for some explanation.

Consider deleting your master branch

It may sound strange, but deleting your own master branch can help reduce confusion about which branch
you are on. See deleting master on github for details.

3258 Chapter 38. Working with Matplotlib source code

http://matplotlib.org
https://mail.python.org/pipermail/ipython-dev/2010-October/005632.html
https://mail.python.org/mailman/listinfo/matplotlib-devel
https://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html
https://mail.python.org/pipermail/ipython-dev/2010-October/005632.html
https://matthew-brett.github.io/pydagogue/gh_delete_master.html

Matplotlib, Release 3.4.3

Update the mirror of trunk

First make sure you have done Linking your repository to the upstream repo.

From time to time you should fetch the upstream (trunk) changes from github:

git fetch upstream

This will pull down any commits you don't have, and set the remote branches to point to the right commit.
For example, 'trunk' is the branch referred to by (remote/branchname) upstream/master - and if there
have been commits since you last checked, upstream/master will change after you do the fetch.

Make a new feature branch

When you are ready to make some changes to the code, you should start a new branch. Branches that are for
a collection of related edits are often called 'feature branches'.

Making an new branch for each set of related changes will make it easier for someone reviewing your branch
to see what you are doing.

Choose an informative name for the branch to remind yourself and the rest of us what the changes in the
branch are for. For example add-ability-to-fly, or buxfix-for-issue-42.

Update the mirror of trunk
git fetch upstream
Make new feature branch starting at current trunk
git branch my-new-feature upstream/master
git checkout my-new-feature

Generally, you will want to keep your feature branches on your public github fork of Matplotlib. To do this,
you git push this new branch up to your github repo. Generally (if you followed the instructions in these
pages, and by default), git will have a link to your github repo, called origin. You push up to your own
repo on github with:

git push origin my-new-feature

In git >= 1.7 you can ensure that the link is correctly set by using the --set-upstream option:

git push --set-upstream origin my-new-feature

From now on git will know that my-new-feature is related to the my-new-feature branch in the
github repo.

38.5. Git for development 3259

https://github.com
http://matplotlib.org
https://schacon.github.io/git/git-push.html

Matplotlib, Release 3.4.3

The editing workflow

Overview

hack hack
git add my_new_file
git commit -am 'NF - some message'
git push

In more detail

1. Make some changes

2. See which files have changed with git status (see git status). You'll see a listing like this one:

On branch ny-new-feature
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working␣

↪directory)
#
modified: README
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
INSTALL
no changes added to commit (use "git add" and/or "git commit -a")

3. Check what the actual changes are with git diff (git diff).

4. Add any new files to version control git add new_file_name (see git add).

5. To commit all modified files into the local copy of your repo,, do git commit -am 'A commit
message'. Note the -am options to commit. The m flag just signals that you're going to type a
message on the command line. The a flag — you can just take on faith — or see why the -a flag? —
and the helpful use-case description in the tangled working copy problem. The git commit manual
page might also be useful.

6. To push the changes up to your forked repo on github, do a git push (see git push).

3260 Chapter 38. Working with Matplotlib source code

https://schacon.github.io/git/git-status.html
https://schacon.github.io/git/git-diff.html
https://schacon.github.io/git/git-add.html
http://gitready.com/beginner/2009/01/18/the-staging-area.html
http://2ndscale.com/rtomayko/2008/the-thing-about-git
https://schacon.github.io/git/git-commit.html
https://schacon.github.io/git/git-push.html

Matplotlib, Release 3.4.3

Ask for your changes to be reviewed or merged

When you are ready to ask for someone to review your code and consider a merge:

1. Go to the URL of your forked repo, say https://github.com/your-user-name/
matplotlib.

2. Use the 'Switch Branches' dropdown menu near the top left of the page to select the branch with your
changes:

3. Click on the 'Pull request' button:

Enter a title for the set of changes, and some explanation of what you've done. Say if there is anything
you'd like particular attention for - like a complicated change or some code you are not happy with.

If you don't think your request is ready to be merged, just say so in your pull request message. This is
still a good way of getting some preliminary code review.

Some other things you might want to do

Delete a branch on github

git checkout master
delete branch locally
git branch -D my-unwanted-branch
delete branch on github
git push origin :my-unwanted-branch

Note the colon : before my-unwanted-branch. See also: https://help.github.com/articles/
pushing-to-a-remote/#deleting-a-remote-branch-or-tag

38.5. Git for development 3261

https://help.github.com/articles/pushing-to-a-remote/#deleting-a-remote-branch-or-tag
https://help.github.com/articles/pushing-to-a-remote/#deleting-a-remote-branch-or-tag

Matplotlib, Release 3.4.3

Several people sharing a single repository

If you want to work on some stuff with other people, where you are all committing into the same repository,
or even the same branch, then just share it via github.

First fork Matplotlib into your account, as from Making your own copy (fork) of Matplotlib.

Then, go to your forked repository github page, say https://github.com/your-user-name/
matplotlib

Click on the 'Admin' button, and add anyone else to the repo as a collaborator:

Now all those people can do:

git clone https://github.com/your-user-name/matplotlib.git

Remember that links starting with https or git@ are read-write, and that git@ uses the ssh protocol;
links starting with git:// are read-only.

Your collaborators can then commit directly into that repo with the usual:

git commit -am 'ENH - much better code'
git push origin master # pushes directly into your repo

Explore your repository

To see a graphical representation of the repository branches and commits:

gitk --all

To see a linear list of commits for this branch:

git log

You can also look at the network graph visualizer for your github repo.

Finally the Fancy log output lg alias will give you a reasonable text-based graph of the repository.

3262 Chapter 38. Working with Matplotlib source code

https://github.com/blog/39-say-hello-to-the-network-graph-visualizer

Matplotlib, Release 3.4.3

Rebasing on trunk

Let's say you thought of some work you'd like to do. YouUpdate the mirror of trunk andMake a new feature
branch called cool-feature. At this stage trunk is at some commit, let's call it E. Now you make some
new commits on your cool-feature branch, let's call them A, B, C. Maybe your changes take a while,
or you come back to them after a while. In the meantime, trunk has progressed from commit E to commit
(say) G:

A---B---C cool-feature
/

D---E---F---G trunk

At this stage you consider merging trunk into your feature branch, and you remember that this here page
sternly advises you not to do that, because the history will get messy. Most of the time you can just ask for
a review, and not worry that trunk has got a little ahead. But sometimes, the changes in trunk might affect
your changes, and you need to harmonize them. In this situation you may prefer to do a rebase.

rebase takes your changes (A, B, C) and replays them as if they had been made to the current state of trunk.
In other words, in this case, it takes the changes represented by A, B, C and replays them on top of G. After
the rebase, your history will look like this:

A'--B'--C' cool-feature
/

D---E---F---G trunk

See rebase without tears for more detail.

To do a rebase on trunk:

Update the mirror of trunk
git fetch upstream
go to the feature branch
git checkout cool-feature
make a backup in case you mess up
git branch tmp cool-feature
rebase cool-feature onto trunk
git rebase --onto upstream/master upstream/master cool-feature

In this situation, where you are already on branch cool-feature, the last command can be written more
succinctly as:

git rebase upstream/master

When all looks good you can delete your backup branch:

git branch -D tmp

If it doesn't look good you may need to have a look at Recovering from mess-ups.

If you have made changes to files that have also changed in trunk, this may generate merge conflicts that you
need to resolve - see the git rebase man page for some instructions at the end of the "Description" section.
There is some related help on merging in the git user manual - see resolving a merge.

38.5. Git for development 3263

https://matthew-brett.github.io/pydagogue/rebase_without_tears.html
https://schacon.github.io/git/git-rebase.html
https://schacon.github.io/git/user-manual.html#resolving-a-merge

Matplotlib, Release 3.4.3

Recovering from mess-ups

Sometimes, you mess up merges or rebases. Luckily, in git it is relatively straightforward to recover from
such mistakes.

If you mess up during a rebase:

git rebase --abort

If you notice you messed up after the rebase:

reset branch back to the saved point
git reset --hard tmp

If you forgot to make a backup branch:

look at the reflog of the branch
git reflog show cool-feature

8630830 cool-feature@{0}: commit: BUG: io: close file handles immediately
278dd2a cool-feature@{1}: rebase finished: refs/heads/my-feature-branch onto␣

↪11ee694744f2552d
26aa21a cool-feature@{2}: commit: BUG: lib: make seek_gzip_factory not leak␣

↪gzip obj
...

reset the branch to where it was before the botched rebase
git reset --hard cool-feature@{2}

Rewriting commit history

Note: Do this only for your own feature branches.

There's an embarrassing typo in a commit you made? Or perhaps the you made several false starts you would
like the posterity not to see.

This can be done via interactive rebasing.

Suppose that the commit history looks like this:

git log --oneline
eadc391 Fix some remaining bugs
a815645 Modify it so that it works
2dec1ac Fix a few bugs + disable
13d7934 First implementation
6ad92e5 * masked is now an instance of a new object, MaskedConstant
29001ed Add pre-nep for a copule of structured_array_extensions.
...

3264 Chapter 38. Working with Matplotlib source code

Matplotlib, Release 3.4.3

and 6ad92e5 is the last commit in the cool-feature branch. Suppose we want to make the following
changes:

• Rewrite the commit message for 13d7934 to something more sensible.

• Combine the commits 2dec1ac, a815645, eadc391 into a single one.

We do as follows:

make a backup of the current state
git branch tmp HEAD
interactive rebase
git rebase -i 6ad92e5

This will open an editor with the following text in it:

pick 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
pick a815645 Modify it so that it works
pick eadc391 Fix some remaining bugs

Rebase 6ad92e5..eadc391 onto 6ad92e5
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

To achieve what we want, we will make the following changes to it:

r 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
f a815645 Modify it so that it works
f eadc391 Fix some remaining bugs

This means that (i) we want to edit the commit message for 13d7934, and (ii) collapse the last three commits
into one. Now we save and quit the editor.

Git will then immediately bring up an editor for editing the commit message. After revising it, we get the
output:

[detached HEAD 721fc64] FOO: First implementation
2 files changed, 199 insertions(+), 66 deletions(-)

[detached HEAD 0f22701] Fix a few bugs + disable
1 files changed, 79 insertions(+), 61 deletions(-)

Successfully rebased and updated refs/heads/my-feature-branch.

and the history looks now like this:

38.5. Git for development 3265

Matplotlib, Release 3.4.3

0f22701 Fix a few bugs + disable
721fc64 ENH: Sophisticated feature
6ad92e5 * masked is now an instance of a new object, MaskedConstant

If it went wrong, recovery is again possible as explained above.

38.5.5 Maintainer workflow

This page is for maintainers — those of us who merge our own or other peoples' changes into the upstream
repository.

Being as how you're a maintainer, you are completely on top of the basic stuff in Development workflow.

The instructions in Linking your repository to the upstream repo add a remote that has read-only access to
the upstream repo. Being a maintainer, you've got read-write access.

It's good to have your upstream remote have a scary name, to remind you that it's a read-write remote:

git remote add upstream-rw git@github.com:matplotlib/matplotlib.git
git fetch upstream-rw

Integrating changes

Let's say you have some changes that need to go into trunk (upstream-rw/master).

The changes are in some branch that you are currently on. For example, you are looking at someone's changes
like this:

git remote add someone git://github.com/someone/matplotlib.git
git fetch someone
git branch cool-feature --track someone/cool-feature
git checkout cool-feature

So now you are on the branch with the changes to be incorporated upstream. The rest of this section assumes
you are on this branch.

A few commits

If there are only a few commits, consider rebasing to upstream:

Fetch upstream changes
git fetch upstream-rw
rebase
git rebase upstream-rw/master

Remember that, if you do a rebase, and push that, you'll have to close any github pull requests manually,
because github will not be able to detect the changes have already been merged.

3266 Chapter 38. Working with Matplotlib source code

Matplotlib, Release 3.4.3

A long series of commits

If there are a longer series of related commits, consider a merge instead:

git fetch upstream-rw
git merge --no-ff upstream-rw/master

The merge will be detected by github, and should close any related pull requests automatically.

Note the --no-ff above. This forces git to make a merge commit, rather than doing a fast-forward, so that
these set of commits branch off trunk then rejoin the main history with a merge, rather than appearing to
have been made directly on top of trunk.

Check the history

Now, in either case, you should check that the history is sensible and you have the right commits:

git log --oneline --graph
git log -p upstream-rw/master..

The first line above just shows the history in a compact way, with a text representation of the history graph.
The second line shows the log of commits excluding those that can be reached from trunk (upstream-rw/
master), and including those that can be reached from current HEAD (implied with the .. at the end).
So, it shows the commits unique to this branch compared to trunk. The -p option shows the diff for these
commits in patch form.

Push to trunk

git push upstream-rw my-new-feature:master

This pushes the my-new-feature branch in this repository to the master branch in the upstream-rw
repository.

38.6 git resources

38.6.1 Tutorials and summaries

• github help has an excellent series of how-to guides.

• The pro git book is a good in-depth book on git.

• A git cheat sheet is a page giving summaries of common commands.

• The git user manual

• The git tutorial

• The git community book

38.6. git resources 3267

https://help.github.com
https://git-scm.com/book/en/v2
https://help.github.com/git-cheat-sheets/
https://schacon.github.io/git/user-manual.html
https://schacon.github.io/git/gittutorial.html
https://git-scm.com/book/en/v2

Matplotlib, Release 3.4.3

• git ready — a nice series of tutorials

• git magic — extended introduction with intermediate detail

• The git parable is an easy read explaining the concepts behind git.

• git foundation expands on the git parable.

• Fernando Perez' git page — Fernando's git page — many links and tips

• A good but technical page on git concepts

• git svn crash course: git for those of us used to subversion

38.6.2 Advanced git workflow

There are many ways of working with git; here are some posts on the rules of thumb that other projects have
come up with:

• Linus Torvalds on git management

• Linus Torvalds on linux git workflow . Summary; use the git tools to make the history of your edits
as clean as possible; merge from upstream edits as little as possible in branches where you are doing
active development.

38.6.3 Manual pages online

You can get these on your own machine with (e.g) git help push or (same thing) git push --help,
but, for convenience, here are the online manual pages for some common commands:

• git add

• git branch

• git checkout

• git clone

• git commit

• git config

• git diff

• git log

• git pull

• git push

• git remote

• git status

3268 Chapter 38. Working with Matplotlib source code

http://gitready.com/
http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html
http://tom.preston-werner.com/2009/05/19/the-git-parable.html
https://matthew-brett.github.io/pydagogue/foundation.html
http://tom.preston-werner.com/2009/05/19/the-git-parable.html
http://www.fperez.org/py4science/git.html
https://www.sbf5.com/~cduan/technical/git/
https://git-scm.com/course/svn.html
https://subversion.apache.org/
https://web.archive.org/web/20090224195437/http://kerneltrap.org/Linux/Git_Management
https://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html
https://schacon.github.io/git/git-add.html
https://schacon.github.io/git/git-branch.html
https://schacon.github.io/git/git-checkout.html
https://schacon.github.io/git/git-clone.html
https://schacon.github.io/git/git-commit.html
https://schacon.github.io/git/git-config.html
https://schacon.github.io/git/git-diff.html
https://schacon.github.io/git/git-log.html
https://schacon.github.io/git/git-pull.html
https://schacon.github.io/git/git-push.html
https://schacon.github.io/git/git-remote.html
https://schacon.github.io/git/git-status.html

Matplotlib, Release 3.4.3

38.7 Two and three dots in difference specs

Thanks to Yarik Halchenko for this explanation.

Imagine a series of commits A, B, C, D... Imagine that there are two branches, topic and master. You
branched topic off master when master was at commit 'E'. The graph of the commits looks like this:

A---B---C topic
/

D---E---F---G master

Then:

git diff master..topic

will output the difference from G to C (i.e. with effects of F and G), while:

git diff master...topic

would output just differences in the topic branch (i.e. only A, B, and C).

38.7. Two and three dots in difference specs 3269

Matplotlib, Release 3.4.3

3270 Chapter 38. Working with Matplotlib source code

CHAPTER

THIRTYNINE

PULL REQUEST GUIDELINES

Pull requests (PRs) are the mechanism for contributing to Matplotlibs code and documentation.

39.1 Summary for PR authors

Note:
• We value contributions from people with all levels of experience. In particular if this is your first PR

not everything has to be perfect. We'll guide you through the PR process.

• Nevertheless, try to follow the guidelines below as well as you can to help make the PR process quick
and smooth.

• Be patient with reviewers. We try our best to respond quickly, but we have limited bandwidth. If there
is no feedback within a couple of days, please ping us by posting a comment to your PR.

When making a PR, pay attention to:

• Target the master branch.

• Adhere to the Coding guidelines.

• Update the documentation if necessary.

• Aim at making the PR as "ready-to-go" as you can. This helps to speed up the review process.

• It is ok to open incomplete or work-in-progress PRs if you need help or feedback from the developers.
You may mark these as draft pull requests on GitHub.

• When updating your PR, instead of adding new commits to fix something, please consider amending
your initial commit(s) to keep the history clean. You can achieve this using:

git commit --amend --no-edit
git push [your-remote-repo] [your-branch] --force-with-lease

See also Contributing for how to make a PR.

3271

https://help.github.com/en/articles/about-pull-requests#draft-pull-requests

Matplotlib, Release 3.4.3

39.2 Summary for PR reviewers

Note:
• If you have commit rights, then you are trusted to use them. Please help review and merge PRs!
• Be patient and kind with contributors.

Content topics:

• Is the feature / bugfix reasonable?

• Does the PR conform with the Coding guidelines?

• Is the documentation (docstrings, examples, what's new, API changes) updated?

Organizational topics:

• Make sure all automated tests pass.

• The PR should target the master branch.

• Tag with descriptive labels.

• Set the milestone.

• Keep an eye on the number of commits.

• Approve if all of the above topics handled.

• Merge if a sufficient number of approvals is reached.

39.3 Detailed Guidelines

39.3.1 Documentation

• Every new feature should be documented. If it's a new module, don't forget to add a new rst file to the
API docs.

• Each high-level plotting function should have a small example in the Examples section of the doc-
string. This should be as simple as possible to demonstrate the method. More complex examples
should go into a dedicated example file in the examples directory, which will be rendered to the
examples gallery in the documentation.

• Build the docs and make sure all formatting warnings are addressed.

• See Writing documentation for our documentation style guide.

• If your change is a major new feature, add an entry to doc/users/whats_new.rst.

• If you change the API in a backward-incompatible way, please document it by adding a file in the
relevant subdirectory of doc/api/next_api_changes/, probably in the behavior/ subdi-
rectory.

3272 Chapter 39. Pull request guidelines

https://youtu.be/tzFWz5fiVKU?t=49m30s

Matplotlib, Release 3.4.3

39.3.2 Labels

• If you have the rights to set labels, tag the PR with descriptive labels. See the list of labels.

39.3.3 Milestones

• Set the milestone according to these rules:

– New features and API changes are milestoned for the next minor release v3.X.0.

– Bugfixes and docstring changes are milestoned for the next patch release v3.X.Y

– Documentation changes (all .rst files and examples) are milestoned v3.X-doc

If multiple rules apply, choose the first matching from the above list.

Setting a milestone does not imply or guarantee that a PR will be merged for that release, but if it were
to be merged what release it would be in.

All of these PRs should target the master branch. The milestone tag triggers an automatic backport
for milestones which have a corresponding branch.

39.3.4 Merging

• Documentation and examples may be merged by the first reviewer. Use the threshold "is this better
than it was?" as the review criteria.

• For code changes (anything in src or lib) at least two core developers (those with commit rights)
should review all pull requests. If you are the first to review a PR and approve of the changes use the
GitHub 'approve review' tool to mark it as such. If you are a subsequent reviewer please approve the
review and if you think no more review is needed, merge the PR.

Ensure that all API changes are documented in a file in one of the subdirectories of doc/api/
next_api_changes, and significant new features have an entry in doc/user/whats_new.

– If a PR already has a positive review, a core developer (e.g. the first reviewer, but not necessarily)
may champion that PR for merging. In order to do so, they should ping all core devs both on
GitHub and on the dev mailing list, and label the PR with the "Merge with single review?" label.
Other core devs can then either review the PR and merge or reject it, or simply request that it gets
a second review before being merged. If no one asks for such a second review within a week, the
PR can then be merged on the basis of that single review.

A core dev should only champion one PR at a time and we should try to keep the flow of cham-
pioned PRs reasonable.

• Do not self merge, except for 'small' patches to un-break the CI or when another reviewer explicitly
allows it (ex, "Approve modulo CI passing, may self merge when green").

39.3. Detailed Guidelines 3273

https://github.com/matplotlib/matplotlib/labels
https://help.github.com/articles/reviewing-changes-in-pull-requests/

Matplotlib, Release 3.4.3

39.3.5 Automated tests

Whenever a pull request is created or updated, various automated test tools will run on all supported platforms
and versions of Python.

• Make sure the Linting, GitHub Actions, AppVeyor, CircleCI, and Azure pipelines are passing before
merging (All checks are listed at the bottom of the GitHub page of your pull request). Here are some
tips for finding the cause of the test failure:

– If Linting fails, you have a code style issue, whichwill be listed as annotations on the pull request's
diff.

– If a GitHubActions or AppVeyor run fails, search the log for FAILURES. The subsequent section
will contain information on the failed tests.

– If CircleCI fails, likely you have some reStructuredText style issue in the docs. Search the Cir-
cleCI log for WARNING.

– If Azure pipelines fail with an image comparison error, you can find the images as artifacts of
the Azure job:

∗ Click Details on the check on the GitHub PR page.

∗ Click View more details on Azure Pipelines to go to Azure.

∗ On the overview page artifacts are listed in the section Related.

• Codecov and LGTM are currently for information only. Their failure is not necessarily a blocker.

• tox is not used in the automated testing. It is supported for testing locally.

39.3.6 Number of commits and squashing

• Squashing is case-by-case. The balance is between burden on the contributor, keeping a relatively
clean history, and keeping a history usable for bisecting. The only time we are really strict about it is
to eliminate binary files (ex multiple test image re-generations) and to remove upstream merges.

• Do not let perfect be the enemy of the good, particularly for documentation or example PRs. If you find
yourself making many small suggestions, either open a PR against the original branch, push changes
to the contributor branch, or merge the PR and then open a new PR against upstream.

• If you push to a contributor branch leave a comment explaining what you did, ex "I took the liberty
of pushing a small clean-up PR to your branch, thanks for your work.". If you are going to make
substantial changes to the code or intent of the PR please check with the contributor first.

3274 Chapter 39. Pull request guidelines

https://tox.readthedocs.io/

Matplotlib, Release 3.4.3

39.4 Branches and Backports

39.4.1 Current branches

The current active branches are

master

The current development version. Future minor releases (v3.N.0) will be branched from this. Supports
Python 3.7+.

v3.N.x

Maintenance branch for Matplotlib 3.N. Future patch releases will be branched from this. Supports
Python 3.6+.

v3.N.M-doc

Documentation for the current release. On a patch release, this will be replaced by a properly named
branch for the new release.

39.4.2 Branch selection for pull requests

Generally, all pull requests should target the master branch.

Other branches are fed through automatic or manual. Directly targeting other branches is only rarely neces-
sary for special maintenance work.

39.4.3 Backport strategy

We will always backport to the patch release branch (v3.N.x):

• critical bug fixes (segfault, failure to import, things that the user can not work around)

• fixes for regressions against the last two releases.

Everything else (regressions against older releases, bugs/api inconsistencies the user can work around in
their code) are on a case-by-case basis, should be low-risk, and need someone to advocate for and shepherd
through the backport.

The only changes to be backported to the documentation branch (v3.N.M-doc) are changes to doc, ex-
amples, or tutorials. Any changes to lib or src including docstring-only changes should not be
backported to this branch.

39.4. Branches and Backports 3275

Matplotlib, Release 3.4.3

39.4.4 Automated backports

We use meeseeksdev bot to automatically backport merges to the correct maintenance branch base on the
milestone. To work properly the milestone must be set before merging. If you have commit rights, the bot can
also be manually triggered after a merge by leaving a message @meeseeksdev backport to BRANCH
on the PR. If there are conflicts meeseekdevs will inform you that the backport needs to be done manually.

The target branch is configured by putting on-merge: backport to TARGETBRANCH in the mile-
stone description on it's own line.

If the bot is not working as expected, please report issues to Meeseeksdev.

39.4.5 Manual backports

When doing backports please copy the form used by meeseekdev, Backport PR #XXXX: TITLE OF
PR. If you need to manually resolve conflicts make note of them and how you resolved them in the commit
message.

We do a backport from master to v2.2.x assuming:

• matplotlib is a read-only remote branch of the matplotlib/matplotlib repo

The TARGET_SHA is the hash of the merge commit you would like to backport. This can be read off of the
GitHub PR page (in the UI with the merge notification) or through the git CLI tools.

Assuming that you already have a local branch v2.2.x (if not, then git checkout -b v2.2.x),
and that your remote pointing to https://github.com/matplotlib/matplotlib is called up-
stream:

git fetch upstream
git checkout v2.2.x # or include -b if you don't already have this.
git reset --hard upstream/v2.2.x
git cherry-pick -m 1 TARGET_SHA
resolve conflicts and commit if required

Files with conflicts can be listed by git status, and will have to be fixed by hand (search on >>>>>).
Once the conflict is resolved, you will have to re-add the file(s) to the branch and then continue the cherry
pick:

git add lib/matplotlib/conflicted_file.py
git add lib/matplotlib/conflicted_file2.py
git cherry-pick --continue

Use your discretion to push directly to upstream or to open a PR; be sure to push or PR against the v2.2.x
upstream branch, not master!

3276 Chapter 39. Pull request guidelines

https://github.com/MeeseeksBox/MeeseeksDev

CHAPTER

FORTY

RELEASE GUIDE

This document is only relevant for Matplotlib release managers.
A guide for developers who are doing a Matplotlib release.

Note: This assumes that a read-only remote for the canonical repository is remote and a read/write remote
is DANGER

40.1 Testing

We use GitHub Actions for continuous integration. When preparing for a release, the final tagged commit
should be tested locally before it is uploaded:

pytest -n 8 .

In addition the following test should be run and manually inspected:

python tools/memleak.py agg 1000 agg.pdf

In addition the following should be run and manually inspected, but is currently broken:

pushd examples/tests/
python backend_driver_sgskip.py
popd

3277

https://github.com/matplotlib/matplotlib/actions

Matplotlib, Release 3.4.3

40.2 GitHub Stats

We automatically extract GitHub issue, PRs, and authors from GitHub via the API. Copy the current doc/
users/github_stats.rst to doc/users/prev_whats_new/github_stats_X.Y.Z.rst,
changing the link target at the top of the file, and removing the "Previous GitHub Stats" section at the end.

For example, when updating from v3.2.0 to v3.2.1:

cp doc/users/github_stats.rst doc/users/prev_whats_new/github_stats_3.2.0.rst
$EDITOR doc/users/prev_whats_new/github_stats_3.2.0.rst
Change contents as noted above.
git add doc/users/prev_whats_new/github_stats_3.2.0.rst

Then re-generate the updated stats:

python tools/github_stats.py --since-tag v3.2.0 --milestone=v3.2.1 --project
↪'matplotlib/matplotlib' --links > doc/users/github_stats.rst

Review and commit changes. Some issue/PR titles may not be valid reST (the most common issue is *which
is interpreted as unclosed markup).

Note: Make sure you authenticate against the GitHub API. If you do not you will get blocked by GitHub
for going over the API rate limits. You can authenticate in one of two ways:

• using the keyring package; pip install keyring and then when running the stats script, you
will be prompted for user name and password, that will be stored in your system keyring, or,

• using a personal access token; generate a new token on this GitHub page with the
repo:public_repo scope and place the token in ~/.ghoauth.

40.3 Update and Validate the Docs

40.3.1 Merge *-doc branch

Merge the most recent 'doc' branch (e.g., v3.2.0-doc) into the branch you are going to tag on and delete
the doc branch on GitHub.

40.3.2 Update supported versions in Security Policy

When making major or minor releases, update the supported versions in the Security Policy in SECURITY.
md. Commonly, this may be one or two previous minor releases, but is dependent on release managers.

3278 Chapter 40. Release Guide

https://github.com/settings/tokens

Matplotlib, Release 3.4.3

40.3.3 Update "What's New" and "API changes"

Before tagging major and minor releases, the "what's new" and "API changes" listings should be updated.
This is not needed for micro releases.

For the "what's new",

1. copy the current content to a file in doc/users/prev_whats_new

2. merge all of the files in doc/users/next_whats_new/ into doc/users/whats_new.rst
and delete the individual files

3. comment out the next what's new glob at the top

Similarly for the "API changes",

1. copy the current api changes to a file is doc/api/prev_api_changes

2. merge all of the files in the most recent doc/api/next_api_changes into doc/api/
api_changes.rst

3. comment out the most recent API changes at the top.

In both cases step 3 will have to be un-done right after the release.

40.3.4 Verify that docs build

Finally, make sure that the docs build cleanly

make -Cdoc O=-j$(nproc) html latexpdf

After the docs are built, check that all of the links, internal and external, are still valid. We use
linkchecker for this, which has not been ported to Python3 yet. You will need to create a Python2
environment with requests==2.9.0 and linkchecker

conda create -p /tmp/lnkchk python=2 requests==2.9.0
source activate /tmp/lnkchk
pip install linkchecker
pushd doc/build/html
linkchecker index.html --check-extern
popd

Address any issues which may arise. The internal links are checked on Circle CI, this should only flag failed
external links.

40.3. Update and Validate the Docs 3279

Matplotlib, Release 3.4.3

40.4 Create release commit and tag

To create the tag, first create an empty commit with a very terse set of the release notes in the commit message

git commit --allow-empty

and then create a signed, annotated tag with the same text in the body message

git tag -a -s v2.0.0

which will prompt you for your GPG key password and an annotation. For pre releases it is important to
follow PEP 440 so that the build artifacts will sort correctly in PyPI.

To prevent issues with any down-stream builders which download the tarball from GitHub it is important to
move all branches away from the commit with the tag1:

git commit --allow-empty

Finally, push the tag to GitHub:

git push DANGER master v2.0.0

Congratulations, the scariest part is done!

If this is a final release, also create a 'doc' branch (this is not done for pre-releases):

git branch v2.0.0-doc
git push DANGER v2.0.0-doc

and if this is a major or minor release, also create a bug-fix branch (a micro release will be cut from this
branch):

git branch v2.0.x

On this branch un-comment the globs from Update and Validate the Docs. And then

git push DANGER v2.0.x

1 The tarball that is provided by GitHub is produced using git archive. We use versioneer which uses a format string in lib/
matplotlib/_version.py to have git insert a list of references to exported commit (see .gitattributes for the con-
figuration). This string is then used by versioneer to produce the correct version, based on the git tag, when users install from
the tarball. However, if there is a branch pointed at the tagged commit, then the branch name will also be included in the tarball.
When the branch eventually moves, anyone how checked the hash of the tarball before the branch moved will have an incorrect hash.

To generate the file that GitHub does use

git archive v2.0.0 -o matplotlib-2.0.0.tar.gz --prefix=matplotlib-2.0.0/

3280 Chapter 40. Release Guide

https://www.python.org/dev/peps/pep-0440
https://git-scm.com/docs/git-archive
https://github.com/warner/python-versioneer

Matplotlib, Release 3.4.3

40.5 Release Management / DOI

Via the GitHub UI, turn the newly pushed tag into a release. If this is a pre-release remember to mark it as
such.

For final releases, also get the DOI from zenodo (which will automatically produce one once the tag is
pushed). Add the doi post-fix and version to the dictionary in tools/cache_zenodo_svg.py and run
the script.

This will download the new svg to the_static directory in the docs and editdoc/citing.rst. Commit
the new svg, the change to tools/cache_zenodo_svg.py, and the changes to doc/citing.rst
to the VER-doc branch and push to GitHub.

git checkout v2.0.0-doc
$EDITOR tools/cache_zenodo_svg.py
python tools/cache_zenodo_svg.py
$EDITOR doc/citing.html
git commit -a
git push DANGER v2.0.0-doc:v2.0.0-doc

40.6 Building binaries

We distribute macOS, Windows, and many Linux wheels as well as a source tarball via PyPI. Most builders
should trigger automatically once the tag is pushed to GitHub:

• Windows, macOS and manylinux wheels are built on GitHub Actions. Builds are triggered by
the GitHub Action defined in .github/workflows/cibuildwheel.yml, and wheels will be
available as artifacts of the build.

• Alternative Windows wheels are built by Christoph Gohlke automatically and will be available at his
site once built.

• The auto-tick bot should open a pull request into the conda-forge feedstock. Review and merge (if you
have the power to).

Warning: Because this is automated, it is extremely important to bump all branches away from the tag
as discussed in Create release commit and tag.

If this is a final release the following downstream packagers should be contacted:

• Debian

• Fedora

• Arch

• Gentoo

• Macports

40.5. Release Management / DOI 3281

https://github.com/matplotlib/matplotlib/releases
https://zenodo.org/
https://www.lfd.uci.edu/~gohlke/pythonlibs/#matplotlib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#matplotlib
https://github.com/conda-forge/matplotlib-feedstock

Matplotlib, Release 3.4.3

• Homebrew

• Continuum

• Enthought

This can be done ahead of collecting all of the binaries and uploading to pypi.

40.7 Make distribution and upload to PyPI

Once you have collected all of the wheels (expect this to take about a day), generate the tarball

git checkout v2.0.0
git clean -xfd
python setup.py sdist

and copy all of the wheels into dist directory. First, check that the dist files are OK

twine check dist/*

and then use twine to upload all of the files to pypi

twine upload -s dist/matplotlib*tar.gz
twine upload dist/*whl

Congratulations, you have now done the second scariest part!

40.8 Build and Deploy Documentation

To build the documentation youmust have the tagged version installed, but build the docs from the ver-doc
branch. An easy way to arrange this is:

pip install matplotlib
pip install -r requirements/doc/doc-requirements.txt
git checkout v2.0.0-doc
git clean -xfd
make -Cdoc O="-Ainclude_analytics=True -j$(nproc)" html latexpdf LATEXMKOPTS=

↪"-silent -f"

which will build both the html and pdf version of the documentation.

The built documentation exists in the matplotlib.github.com repository. Pushing changes to master automat-
ically updates the website.

The documentation is organized by version. At the root of the tree is always the documentation for the
latest stable release. Under that, there are directories containing the documentation for older versions. The
documentation for current master is built on Circle CI and pushed to the devdocs repository. These are
available at matplotlib.org/devdocs.

Assuming you have this repository checked out in the same directory as matplotlib

3282 Chapter 40. Release Guide

https://github.com/matplotlib/matplotlib.github.com/
https://github.com/matplotlib/devdocs/
https://matplotlib.org/devdocs

Matplotlib, Release 3.4.3

cd ../matplotlib.github.com
mkdir 2.0.0
rsync -a ../matplotlib/doc/build/html/* 2.0.0
cp ../matplotlib/doc/build/latex/Matplotlib.pdf 2.0.0

which will copy the built docs over. If this is a final release, link the stable subdirectory to the newest
version:

rsync -a 2.0.0/* ./
rm stable
ln -s 2.0.0/ stable

You will need to manually edit versions.html to show the last 3 tagged versions. You will also need to
edit sitemap.xml to include the newly released version. Now commit and push everything to GitHub

git add *
git commit -a -m 'Updating docs for v2.0.0'
git push DANGER master

Congratulations you have now done the third scariest part!

If you have access, clear the Cloudflare caches.

It typically takes about 5-10 minutes for GitHub to process the push and update the live web page (remember
to clear your browser cache).

40.9 Announcing

The final step is to announce the release to the world. A short version of the release notes along with ac-
knowledgments should be sent to

• matplotlib-users@python.org

• matplotlib-devel@python.org

• matplotlib-announce@python.org

For final releases announcements should also be sent to the numpy/scipy/scikit-image mailing lists.

In addition, announcements should be made on social networks (twitter via the @matplotlib account,
any other via personal accounts). NumFOCUS should be contacted for inclusion in their newsletter.

40.9. Announcing 3283

mailto:matplotlib-users@python.org
mailto:matplotlib-devel@python.org
mailto:matplotlib-announce@python.org
https://numfocus.org/

Matplotlib, Release 3.4.3

40.10 Conda packages

The Matplotlib project itself does not release conda packages. In particular, the Matplotlib release manager
is not responsible for conda packaging.

For information on the packaging of Matplotlib for conda-forge see https://github.com/conda-forge/
matplotlib-feedstock.

3284 Chapter 40. Release Guide

https://github.com/conda-forge/matplotlib-feedstock
https://github.com/conda-forge/matplotlib-feedstock

CHAPTER

FORTYONE

DEPENDENCIES

41.1 Mandatory dependencies

When installing through a package manager like pip or conda, the mandatory dependencies are automat-
ically installed. This list is mainly for reference.

• Python (>= 3.7)

• NumPy (>= 1.16)

• setuptools

• cycler (>= 0.10.0)

• dateutil (>= 2.7)

• kiwisolver (>= 1.0.1)

• Pillow (>= 6.2)

• pyparsing (>=2.2.1)

41.2 Optional dependencies

The following packages and tools are not required but extend the capabilities of Matplotlib.

41.2.1 Backends

Matplotlib figures can be rendered to various user interfaces. See What is a backend? for more details on
the optional Matplotlib backends and the capabilities they provide.

• Tk (>= 8.3, != 8.6.0 or 8.6.1)1: for the Tk-based backends.

• PyQt4 (>= 4.6) or PySide (>= 1.0.3)2: for the Qt4-based backends.

• PyQt5 or PySide2: for the Qt5-based backends.
1 Tk is part of most standard Python installations, but it's not part of Python itself and thus may not be present in rare cases.
2 PySide cannot be pip-installed on Linux (but can be conda-installed).

3285

https://www.python.org/downloads/
https://numpy.org
https://setuptools.readthedocs.io/en/latest/
https://matplotlib.org/cycler/
https://pypi.org/project/python-dateutil
https://github.com/nucleic/kiwi
https://pillow.readthedocs.io/en/latest/
https://pypi.org/project/pyparsing/
https://docs.python.org/3/library/tk.html
https://pypi.org/project/PyQt4
https://pypi.org/project/PySide
https://pypi.org/project/PyQt5
https://pypi.org/project/PySide2

Matplotlib, Release 3.4.3

• PyGObject: for the GTK3-based backends3.

• wxPython (>= 4)4: for the wx-based backends.

• pycairo (>= 1.11.0) or cairocffi (>= 0.8): for the GTK3 and/or cairo-based backends.

• Tornado: for the WebAgg backend.

41.2.2 Animations

• ffmpeg: for saving movies.

• ImageMagick: for saving animated gifs.

41.2.3 Font handling and rendering

• LaTeX (with cm-super) and GhostScript (>=9.0) : for rendering text with LaTeX.

• fontconfig (>= 2.7): for detection of system fonts on Linux.

41.3 C libraries

Matplotlib brings its own copies of the following libraries:

• Agg: the Anti-Grain Geometry C++ rendering engine

• ttconv: a TrueType font utility

Additionally, Matplotlib depends on:

• FreeType (>= 2.3): a font rendering library

• QHull (>= 2020.2): a library for computing triangulations

By default, Matplotlib downloads and builds its own copies of FreeType (this is necessary to run the test
suite, because different versions of FreeType rasterize characters differently) and of Qhull. As an exception,
Matplotlib defaults to the system version of FreeType on AIX.

To forceMatplotlib to use a copy of FreeType or Qhull already installed in your system, create asetup.cfg
file with the following contents:

[libs]
system_freetype = true
system_qhull = true

3 If using pip (and not conda), PyGObject must be built from source; see https://pygobject.readthedocs.io/en/latest/devguide/
dev_environ.html.

4 If using pip (and not conda) on Linux, wxPython wheels must be manually downloaded from https://wxpython.org/pages/
downloads/.

3286 Chapter 41. Dependencies

https://pygobject.readthedocs.io/en/latest/
https://www.wxpython.org/
https://pycairo.readthedocs.io/en/latest/
https://cairocffi.readthedocs.io/en/latest/
https://pypi.org/project/tornado
https://www.ffmpeg.org/
https://www.imagemagick.org/script/index.php
https://www.latex-project.org/
https://ctan.org/pkg/cm-super
https://ghostscript.com/download/
https://www.fontconfig.org
https://www.freetype.org/
http://www.qhull.org/
https://pygobject.readthedocs.io/en/latest/devguide/dev_environ.html
https://pygobject.readthedocs.io/en/latest/devguide/dev_environ.html
https://wxpython.org/pages/downloads/
https://wxpython.org/pages/downloads/

Matplotlib, Release 3.4.3

before running python -m pip install ..

In this case, you need to install the FreeType and Qhull library and headers. This can be achieved using a
package manager, e.g. for FreeType:

Pick ONE of the following:
sudo apt install libfreetype6-dev # Debian/Ubuntu
sudo dnf install freetype-devel # Fedora
brew install freetype # macOS with Homebrew
conda install freetype # conda, any OS

(adapt accordingly for Qhull).

On Linux and macOS, it is also recommended to install pkg-config, a helper tool for locating FreeType:

Pick ONE of the following:
sudo apt install pkg-config # Debian/Ubuntu
sudo dnf install pkgconf # Fedora
brew install pkg-config # macOS with Homebrew
conda install pkg-config # conda
Or point the PKG_CONFIG environment variable to the path to pkg-config:
export PKG_CONFIG=...

If not using pkg-config (in particular on Windows), you may need to set the include path (to the library
headers) and link path (to the libraries) explicitly, if they are not in standard locations. This can be done
using standard environment variables -- on Linux and OSX:

export CFLAGS='-I/directory/containing/ft2build.h'
export LDFLAGS='-L/directory/containing/libfreetype.so'

and on Windows:

set CL=/IC:\directory\containing\ft2build.h
set LINK=/LIBPATH:C:\directory\containing\freetype.lib

If you go this route but need to reset and rebuild to change your settings, remember to clear your artifacts
before re-building:

git clean -xfd

41.3. C libraries 3287

https://www.freedesktop.org/wiki/Software/pkg-config/

Matplotlib, Release 3.4.3

3288 Chapter 41. Dependencies

CHAPTER

FORTYTWO

MINIMUM VERSION OF DEPENDENCIES POLICY

For the purpose of this document, 'minor version' is in the sense of SemVer (major, minor, patch) and includes
both major and minor releases. For projects that use date-based versioning, every release is a 'minor version'.

Matplotlib follows NEP 29.

42.1 Python and NumPy

Matplotlib supports:

• All minor versions of Python released 42 months prior to the project, and at minimum the two latest
minor versions.

• All minor versions of numpy released in the 24 months prior to the project, and at minimum the last
three minor versions.

In setup.py, the python_requires variable should be set to the minimum supported version of
Python. All supported minor versions of Python should be in the test matrix and have binary artifacts built
for the release.

Minimum Python and NumPy version support should be adjusted upward on every major and minor release,
but never on a patch release.

See also the List of dependency versions.

42.2 Python Dependencies

For Python dependencies we should support at least:

with compiled extensions
minor versions initially released in the 24 months prior to our planned release date or the oldest that
support our minimum Python + NumPy

without complied extensions
minor versions initially released in the 12 months prior to our planned release date or the oldest that
supports our minimum Python.

3289

https://numpy.org/neps/nep-0029-deprecation_policy.html

Matplotlib, Release 3.4.3

We will only bump these dependencies as we need new features or the old versions no longer support our
minimum NumPy or Python.

42.3 Test and Documentation Dependencies

As these packages are only needed for testing or building the docs and not needed by end-users, we can be
more aggressive about dropping support for old versions. However, we need to be careful to not over-run
what down-stream packagers support (as most of the run the tests and build the documentation as part of the
packaging process).

We will support at least minor versions of the development dependencies released in the 12 months prior to
our planned release.

We will only bump these as needed or versions no longer support our minimum Python and numpy.

42.4 System and C-dependencies

For system or C-dependencies (FreeType, GUI frameworks, LaTeX, Ghostscript, FFmpeg) support as old
as practical. These can be difficult to install for end-users and we want to be usable on as many systems as
possible. We will bump these on a case-by-case basis.

42.5 List of dependency versions

The following list shows the minimal versions of Python and NumPy dependencies for different versions of
Matplotlib. Follow the links for the full specification of the dependencies.

Matplotlib Python NumPy
3.4 3.7 1.16.0
3.3 3.6 1.15.0
3.2 3.6 1.11.0
3.1 3.6 1.11.0
3.0 3.5 1.10.0
2.2 2.7, 3.4 1.7.1
2.1 2.7, 3.4 1.7.1
2.0 2.7, 3.4 1.7.1
1.5 2.7, 3.4 1.6
1.4 2.6, 3.3 1.6
1.3 2.6, 3.3 1.5
1.2 2.6, 3.1 1.4
1.1 2.4 1.1
1.0 2.4 1.1

3290 Chapter 42. Minimum Version of Dependencies Policy

https://matplotlib.org/3.3.0/users/installing.html#dependencies
https://matplotlib.org/3.2.0/users/installing.html#dependencies
https://matplotlib.org/3.1.0/users/installing.html#dependencies
https://matplotlib.org/3.0.0/users/installing.html#dependencies
https://matplotlib.org/2.2.0/users/installing.html#dependencies
https://matplotlib.org/2.1.0/users/installing.html#dependencies
https://matplotlib.org/2.0.0/users/installing.html#required-dependencies
https://matplotlib.org/1.5.0/users/installing.html#required-dependencies
https://matplotlib.org/1.4.0/users/installing.html#required-dependencies
https://matplotlib.org/1.3.0/users/installing.html#build-requirements

CHAPTER

FORTYTHREE

MATPLOTLIB ENHANCEMENT PROPOSALS

Matplotlib Enhancement Proposals (MEP), inspired by cpython's PEP's but less formal, are design documents
for large or controversial changes to Matplotilb. These documents should provide a discussion of both why
and how the changes should be made.

To create a new MEP open a pull request (PR) adding a file based on the template to this the MEP directory.
For the initial PR only a rough description is required and it should be merged quickly. Further detailed
discussion can happen in follow on PRs.

43.1 MEP Template

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Implementation

• Backward compatibility

• Alternatives

This MEP template is a guideline of the sections that a MEP should contain. Extra sections may be added if
appropriate, and unnecessary sections may be noted as such.

3291

https://www.python.org/dev/peps/

Matplotlib, Release 3.4.3

43.1.1 Status

MEPs go through a number of phases in their lifetime:

• Discussion: The MEP is being actively discussed on the mailing list and it is being improved by its
author. The mailing list discussion of the MEP should include the MEP number (MEPxxx) in the
subject line so they can be easily related to the MEP.

• Progress: Consensus was reached and implementation work has begun.

• Completed: The implementation has been merged into master.

• Superseded: This MEP has been abandoned in favor of another approach.

• Rejected: There are currently no plans to implement the proposal.

43.1.2 Branches and Pull requests

All development branches containing work on this MEP should be linked to from here.

All pull requests submitted relating to this MEP should be linked to from here. (A MEP does not need to be
implemented in a single pull request if it makes sense to implement it in discrete phases).

43.1.3 Abstract

The abstract should be a short description of what the MEP will achieve.

43.1.4 Detailed description

This section describes the need for the MEP. It should describe the existing problem that it is trying to solve
and why this MEPmakes the situation better. It should include examples of how the new functionality would
be used and perhaps some use cases.

43.1.5 Implementation

This section lists the major steps required to implement the MEP. Where possible, it should be noted where
one step is dependent on another, and which steps may be optionally omitted. Where it makes sense, each
step should include a link related pull requests as the implementation progresses.

3292 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

43.1.6 Backward compatibility

This section describes the ways in which the MEP breaks backward incompatibility.

43.1.7 Alternatives

If there were any alternative solutions to solving the same problem, they should be discussed here, along
with a justification for the chosen approach.

43.2 MEP8: PEP8

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Implementation

• Backward compatibility

• Alternatives

43.2.1 Status

Completed
We are currently enforcing a sub-set of pep8 on new code contributions.

43.2.2 Branches and Pull requests

None so far.

43.2.3 Abstract

Thematplotlib codebase predates PEP8, and therefore is less than consistent style-wise in some areas. Bring-
ing the codebase into compliance with PEP8 would go a long way to improving its legibility.

43.2. MEP8: PEP8 3293

Matplotlib, Release 3.4.3

43.2.4 Detailed description

Some files use four space indentation, some use three. Some use different levels in the same file.

For the most part, class/function/variable naming follows PEP8, but it wouldn't hurt to fix where necessary.

43.2.5 Implementation

The implementation should be fairly mechanical: running the pep8 tool over the code and fixing where
appropriate.

This should be merged in after the 2.0 release, since the changes will likely make merging any pending pull
requests more difficult.

Additionally, and optionally, PEP8 compliance could be tracked by an automated build system.

43.2.6 Backward compatibility

Public names of classes and functions that require change (there shouldn't be many of these) should first be
deprecated and then removed in the next release cycle.

43.2.7 Alternatives

PEP8 is a popular standard for Python code style, blessed by the Python core developers, making any alter-
natives less desirable.

43.3 MEP9: Global interaction manager

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Implementation

• Current summary of the mixin

• Backward compatibility

• Alternatives

Add a global manager for all user interactivity with artists; make any artist resizeable, moveable, high-
lightable, and selectable as desired by the user.

3294 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

43.3.1 Status

Discussion

43.3.2 Branches and Pull requests

https://github.com/dhyams/matplotlib/tree/MEP9

43.3.3 Abstract

The goal is to be able to interact with matplotlib artists in a very similar way as drawing programs do. When
appropriate, the user should be able to move, resize, or select an artist that is already on the canvas. Of
course, the script writer is ultimately in control of whether an artist is able to be interacted with, or whether
it is static.

This code to do this has already been privately implemented and tested, and would need to be migrated from
its current "mixin" implementation, to a bona-fide part of matplotlib.

The end result would be to have four new keywords available to matplotlib.artist.Artist: _moveable_, _re-
sizeable_, _selectable_, and _highlightable_. Setting any one of these keywords to True would activate
interactivity for that artist.

In effect, this MEP is a logical extension of event handling in matplotlib; matplotlib already supports "low
level" interactions like left mouse presses, a key press, or similar. The MEP extends the support to the
logical level, where callbacks are performed on the artists when certain interactive gestures from the user are
detected.

43.3.4 Detailed description

This new functionality would be used to allow the end-user to better interact with the graph. Many times, a
graph is almost what the user wants, but a small repositioning and/or resizing of components is necessary.
Rather than force the user to go back to the script to trial-and-error the location, and simple drag and drop
would be appropriate.

Also, this would better support applications that use matplotlib; here, the end-user has no reasonable access
or desire to edit the underlying source in order to fine-tune a plot. Here, if matplotlib offered the capability,
one could move or resize artists on the canvas to suit their needs. Also, the user should be able to highlight
(with a mouse over) an artist, and select it with a double-click, if the application supports that sort of thing.
In this MEP, we also want to support the highlighting and selection natively; it is up to application to handle
what happens when the artist is selected. A typical handling would be to display a dialog to edit the properties
of the artist.

In the future, as well (this is not part of this MEP), matplotlib could offer backend-specific property dialogs
for each artist, which are raised on artist selection. This MEP would be a necessary stepping stone for that
sort of capability.

43.3. MEP9: Global interaction manager 3295

https://github.com/dhyams/matplotlib/tree/MEP9

Matplotlib, Release 3.4.3

There are currently a few interactive capabilities in matplotlib (e.g. legend.draggable()), but they tend to be
scattered and are not available for all artists. This MEP seeks to unify the interactive interface and make it
work for all artists.

The current MEP also includes grab handles for resizing artists, and appropriate boxes drawn when artists
are moved or resized.

43.3.5 Implementation

• Add appropriate methods to the "tree" of artists so that the interactivity manager has a consistent
interface for the interactivity manager to deal with. The proposed methods to add to the artists, if they
are to support interactivity, are:

– get_pixel_position_ll(self): get the pixel position of the lower left corner of the artist's bounding
box

– get_pixel_size(self): get the size of the artist's bounding box, in pixels

– set_pixel_position_and_size(self,x,y,dx,dy): set the new size of the artist, such that it fits within
the specified bounding box.

• add capability to the backends to 1) provide cursors, since these are needed for visual indication of
moving/resizing, and 2) provide a function that gets the current mouse position

• Implement the manager. This has already been done privately (by dhyams) as a mixin, and has been
tested quite a bit. The goal would be to move the functionality of the manager into the artists so that
it is in matplotlib properly, and not as a "monkey patch" as I currently have it coded.

43.3.6 Current summary of the mixin

(Note that this mixin is for now just private code, but can be added to a branch obviously)

InteractiveArtistMixin:

Mixin class tomake any generic object that is drawn on amatplotlib canvasmoveable and possibly resizeable.
The Powerpoint model is followed as closely as possible; not because I'm enamoured with Powerpoint, but
because that's what most people understand. An artist can also be selectable, which means that the artist
will receive the on_activated() callback when double clicked. Finally, an artist can be highlightable, which
means that a highlight is drawn on the artist whenever the mouse passes over. Typically, highlightable artists
will also be selectable, but that is left up to the user. So, basically there are four attributes that can be set by
the user on a per-artist basis:

• highlightable

• selectable

• moveable

• resizeable

To be moveable (draggable) or resizeable, the object that is the target of the mixin must support the following
protocols:

3296 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

• get_pixel_position_ll(self)

• get_pixel_size(self)

• set_pixel_position_and_size(self,x,y,sx,sy)

Note that nonresizeable objects are free to ignore the sx and sy parameters. To be highlightable, the object
that is the target of the mixin must also support the following protocol:

• get_highlight(self)

Which returns a list of artists that will be used to draw the highlight.

If the object that is the target of the mixin is not an matplotlib artist, the following protocols must also be
implemented. Doing so is usually fairly trivial, as there has to be an artist somewhere that is being drawn.
Typically your object would just route these calls to that artist.

• get_figure(self)

• get_axes(self)

• contains(self,event)

• set_animated(self,flag)

• draw(self,renderer)

• get_visible(self)

The following notifications are called on the artist, and the artist can optionally implement these.

• on_select_begin(self)

• on_select_end(self)

• on_drag_begin(self)

• on_drag_end(self)

• on_activated(self)

• on_highlight(self)

• on_right_click(self,event)

• on_left_click(self,event)

• on_middle_click(self,event)

• on_context_click(self,event)

• on_key_up(self,event)

• on_key_down(self,event)

The following notifications are called on the canvas, if no interactive artist handles the event:

• on_press(self,event)

• on_left_click(self,event)

• on_middle_click(self,event)

43.3. MEP9: Global interaction manager 3297

Matplotlib, Release 3.4.3

• on_right_click(self,event)

• on_context_click(self,event)

• on_key_up(self,event)

• on_key_down(self,event)

The following functions, if present, can be used to modify the behavior of the interactive object:

• press_filter(self,event) # determines if the object wants to have the press event routed to it

• handle_unpicked_cursor() # can be used by the object to set a cursor as the cursor passes over the
object when it is unpicked.

Supports multiple canvases, maintaining a drag lock, motion notifier, and a global "enabled" flag per canvas.
Supports fixed aspect ratio resizings by holding the shift key during the resize.

Known problems:

• Zorder is not obeyed during the selection/drag operations. Because of the blit technique used, I do
not believe this can be fixed. The only way I can think of is to search for all artists that have a zorder
greater then me, set them all to animated, and then redraw them all on top during each drag refresh.
This might be very slow; need to try.

• the mixin only works for wx backends because of two things: 1) the cursors are hardcoded, and 2)
there is a call to wx.GetMousePosition() Both of these shortcomings are reasonably fixed by having
each backend supply these things.

43.3.7 Backward compatibility

No problems with backward compatibility, although once this is in place, it would be appropriate to obsolete
some of the existing interactive functions (like legend.draggable())

43.3.8 Alternatives

None that I know of.

43.4 MEP10: Docstring consistency

• Status

• Branches and Pull requests

• Abstract

• Detailed description

– Numpy docstring format

3298 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

– Cross references

– Overriding signatures

– Linking rather than duplicating

– autosummary extension

– Examples linking to relevant documentation

– Documentation using help() vs. a browser

• Implementation

• Backward compatibility

• Alternatives

43.4.1 Status

Progress
This is still an on-going effort

43.4.2 Branches and Pull requests

43.4.3 Abstract

matplotlib has a great deal of inconsistency between docstrings. This not only makes the docs harder to read,
but it is harder on contributors, because they don't know which specifications to follow. There should be a
clear docstring convention that is followed consistently.

The organization of the API documentation is difficult to follow. Some pages, such as pyplot and axes, are
enormous and hard to browse. There should instead be short summary tables that link to detailed documen-
tation. In addition, some of the docstrings themselves are quite long and contain redundant information.

Building the documentation takes a long time and uses a make.py script rather than a Makefile.

43.4.4 Detailed description

There are number of new tools and conventions available since matplotlib started using Sphinx that make life
easier. The following is a list of proposed changes to docstrings, most of which involve these new features.

43.4. MEP10: Docstring consistency 3299

Matplotlib, Release 3.4.3

Numpy docstring format

Numpy docstring format: This format divides the docstring into clear sections, each having different parsing
rules that make the docstring easy to read both as raw text and as HTML. We could consider alternatives, or
invent our own, but this is a strong choice, as it's well used and understood in the Numpy/Scipy community.

Cross references

Most of the docstrings in matplotlib use explicit "roles" when linking to other items, for example:
:func:`myfunction`. As of Sphinx 0.4, there is a "default_role" that can be set to "obj", which will
polymorphically link to a Python object of any type. This allows one to write `myfunction` instead. This
makes docstrings much easier to read and edit as raw text. Additionally, Sphinx allows for setting a current
module, so links like `~matplotlib.axes.Axes.set_xlim` could be written as `~axes.Axes.
set_xlim`.

Overriding signatures

Many methods in matplotlib use the *args and **kwargs syntax to dynamically handle the keyword
arguments that are accepted by the function, or to delegate on to another function. This, however, is often
not useful as a signature in the documentation. For this reason, many matplotlib methods include something
like:

def annotate(self, *args, **kwargs):
"""
Create an annotation: a piece of text referring to a data
point.

Call signature::

annotate(s, xy, xytext=None, xycoords='data',
textcoords='data', arrowprops=None, **kwargs)

"""

This can't be parsed by Sphinx, and is rather verbose in raw text. As of Sphinx 1.1, if the
autodoc_docstring_signature config value is set to True, Sphinx will extract a replacement sig-
nature from the first line of the docstring, allowing this:

def annotate(self, *args, **kwargs):
"""
annotate(s, xy, xytext=None, xycoords='data',

textcoords='data', arrowprops=None, **kwargs)

Create an annotation: a piece of text referring to a data
point.
"""

The explicit signature will replace the actual Python one in the generated documentation.

3300 Chapter 43. Matplotlib Enhancement Proposals

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

Matplotlib, Release 3.4.3

Linking rather than duplicating

Many of the docstrings include long lists of accepted keywords by interpolating things into the docstring at
load time. This makes the docstrings very long. Also, since these tables are the same across many docstrings,
it inserts a lot of redundant information in the docs -- particularly a problem in the printed version.

These tables should be moved to docstrings on functions whose only purpose is for help. The docstrings that
refer to these tables should link to them, rather than including them verbatim.

autosummary extension

The Sphinx autosummary extension should be used to generate summary tables, that link to separate pages of
documentation. Some classes that have many methods (e.g. Axes) should be documented with one method
per page, whereas smaller classes should have all of their methods together.

Examples linking to relevant documentation

The examples, while helpful at illustrating how to use a feature, do not link back to the relevant docstrings.
This could be addressed by addingmodule-level docstrings to the examples, and then including that docstring
in the parsed content on the example page. These docstrings could easily include references to any other part
of the documentation.

Documentation using help() vs. a browser

Using Sphinx markup in the source allows for good-looking docs in your browser, but the markup also makes
the raw text returned using help() look terrible. One of the aims of improving the docstrings should be to
make both methods of accessing the docs look good.

43.4.5 Implementation

1. The numpydoc extensions should be turned on for matplotlib. There is an important question as to
whether these should be included in the matplotlib source tree, or used as a dependency. Installing
Numpy is not sufficient to get the numpydoc extensions -- it's a separate install procedure. In any case,
to the extent that they require customization for our needs, we should endeavor to submit those changes
upstream and not fork them.

2. Manually go through all of the docstrings and update them to the new format and conventions. Updat-
ing the cross references (from `:func:`myfunc` to `func`) may be able to be semi-automated.
This is a lot of busy work, and perhaps this labor should be divided on a per-module basis so no single
developer is over-burdened by it.

3. Reorganize the API docs using autosummary and sphinx-autogen. This should hopefully have
minimal impact on the narrative documentation.

4. Modify the example page generator (gen_rst.py) so that it extracts the module docstring from the
example and includes it in a non-literal part of the example page.

43.4. MEP10: Docstring consistency 3301

Matplotlib, Release 3.4.3

5. Use sphinx-quickstart to generate a new-style Sphinx Makefile. The following features in the
current make.py will have to be addressed in some other way:

• Copying of some static content

• Specifying a "small" build (only low-resolution PNG files for examples)

Steps 1, 2, and 3 are interdependent. 4 and 5 may be done independently, though 5 has some dependency on
3.

43.4.6 Backward compatibility

As this mainly involves docstrings, there should be minimal impact on backward compatibility.

43.4.7 Alternatives

None yet discussed.

43.5 MEP11: Third-party dependencies

• Status

• Branches and Pull requests

• Abstract

• Detailed description

– Current behavior

– Desired behavior

• Implementation

• Backward compatibility

• Alternatives

This MEP attempts to improve the way in which third-party dependencies in matplotlib are handled.

3302 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

43.5.1 Status

Completed -- needs to be merged

43.5.2 Branches and Pull requests

#1157: Use automatic dependency resolution

#1290: Debundle pyparsing

#1261: Update six to 1.2

43.5.3 Abstract

One of the goals of matplotlib has been to keep it as easy to install as possible. To that end, some third-party
dependencies are included in the source tree and, under certain circumstances, installed alongside matplotlib.
This MEP aims to resolve some problems with that approach, bring some consistency, while continuing to
make installation convenient.

At the time that was initially done, setuptools, easy_install and PyPI were not mature enough to be relied on.
However, at present, we should be able to safely leverage the "modern" versions of those tools, distribute
and pip.

While matplotlib has dependencies on both Python libraries and C/C++ libraries, this MEP addresses only
the Python libraries so as to not confuse the issue. C libraries represent a larger and mostly orthogonal set
of problems.

43.5.4 Detailed description

matplotlib depends on the following third-party Python libraries:

• Numpy

• dateutil (pure Python)

• pytz (pure Python)

• six -- required by dateutil (pure Python)

• pyparsing (pure Python)

• PIL (optional)

• GUI frameworks: pygtk, gobject, tkinter, PySide, PyQt4, wx (all optional, but one is required for an
interactive GUI)

43.5. MEP11: Third-party dependencies 3303

https://pypi.org/project/setuptools/
https://setuptools.readthedocs.io/en/latest/easy_install.html
https://pypi.org
https://pypi.org/project/distribute/
https://pypi.org/project/pip/

Matplotlib, Release 3.4.3

Current behavior

When installing from source, a git checkout or pip:

• setup.py attempts to import numpy. If this fails, the installation fails.

• For each of dateutil, pytz and six, setup.py attempts to import them (from the top-level namespace).
If that fails, matplotlib installs its local copy of the library into the top-level namespace.

• pyparsing is always installed inside of the matplotlib namespace.

This behavior is most surprising when used with pip, because no pip dependency resolution is performed,
even though it is likely to work for all of these packages.

The fact that pyparsing is installed in the matplotlib namespace has reportedly (#1290) confused some users
into thinking it is a matplotlib-related module and import it from there rather than the top-level.

When installing using the Windows installer, dateutil, pytz and six are installed at the top-level always,
potentially overwriting already installed copies of those libraries.

TODO: Describe behavior with the OS-X installer.

When installing using a package manager (Debian, RedHat, MacPorts etc.), this behavior actually does the
right thing, and there are no special patches in the matplotlib packages to deal with the fact that we handle
dateutil, pytz and six in this way. However, care should be taken that whatever approachwemove to continues
to work in that context.

Maintaining these packages in the matplotlib tree and making sure they are up-to-date is a maintenance
burden. Advanced new features that may require a third-party pure Python library have a higher barrier to
inclusion because of this burden.

Desired behavior

Third-party dependencies are downloaded and installed from their canonical locations by leveraging pip,
distribute and PyPI.

dateutil, pytz, and pyparsing should be made into optional dependencies -- though obviously some features
would fail if they aren't installed. This will allow the user to decide whether they want to bother installing a
particular feature.

43.5.5 Implementation

For installing from source, and assuming the user has all of the C-level compilers and dependencies, this
can be accomplished fairly easily using distribute and following the instructions here. The only anticipated
change to the matplotlib library code will be to import pyparsing from the top-level namespace rather than
from within matplotlib. Note that distribute will also allow us to remove the direct dependency on six, since
it is, strictly speaking, only a direct dependency of dateutil.

For binary installations, there are a number of alternatives (here ordered from best/hardest to worst/easiest):

3304 Chapter 43. Matplotlib Enhancement Proposals

https://pypi.org/project/pip/
https://pypi.org/project/python-dateutil/
https://pypi.org/project/pytz/
https://pypi.org/project/six/
https://pypi.org/project/pyparsing/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pyparsing/
https://pypi.org/project/python-dateutil/
https://pypi.org/project/pytz/
https://pypi.org/project/six/
https://pypi.org/project/python-dateutil/
https://pypi.org/project/pytz/
https://pypi.org/project/six/
https://pypi.org/project/pip/
https://pypi.org/project/distribute/
https://pypi.org
https://pypi.org/project/python-dateutil/
https://pypi.org/project/pytz/
https://pypi.org/project/pyparsing/
https://pypi.org/project/distribute/
https://pypi.org/project/distribute
https://pypi.org/project/pyparsing/
https://pypi.org/project/distribute/
https://pypi.org/project/six/
https://pypi.org/project/python-dateutil/

Matplotlib, Release 3.4.3

1. The distutils wininst installer allows a post-install script to run. It might be possible to get this script
to run pip to install the other dependencies. (See this thread for someone who has trod that ground
before).

2. Continue to ship dateutil, pytz, six and pyparsing in our installer, but use the post-install-script to
install them only if they can not already be found.

3. Move all of these packages inside a (new) matplotlib.extern namespace so it is clear for outside
users that these are external packages. Add some conditional imports in the core matplotlib codebase
so dateutil (at the top-level) is tried first, and failing that matplotlib.extern.dateutil is
used.

2 and 3 are undesirable as they still require maintaining copies of these packages in our tree -- and this is
exacerbated by the fact that they are used less -- only in the binary installers. None of these 3 approaches
address Numpy, which will still have to be manually installed using an installer.

TODO: How does this relate to the Mac OS-X installer?

43.5.6 Backward compatibility

At present, matplotlib can be installed from source on a machine without the third party dependencies and
without an internet connection. After this change, an internet connection (and a working PyPI) will be
required to install matplotlib for the first time. (Subsequent matplotlib updates or development work will run
without accessing the network).

43.5.7 Alternatives

Distributing binary eggs doesn't feel like a usable solution. That requires getting easy_install installed first,
and Windows users generally prefer the well known .exe or .msi installer that works out of the box.

43.6 MEP12: Improve Gallery and Examples

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Implementation

– Gallery sections

– Clean up guidelines

∗ Additional suggestions

• Backward compatibility

43.6. MEP12: Improve Gallery and Examples 3305

https://pypi.org/project/pip/
http://grokbase.com/t/python/distutils-sig/109bdnfhp4/distutils-ann-setuptools-post-install-script-for-bdist-wininst
https://pypi.org/project/python-dateutil/
https://pypi.org/project/pytz/
https://pypi.org/project/six/
https://pypi.org/project/pyparsing/
https://pypi.org/project/python-dateutil/
https://setuptools.readthedocs.io/en/latest/easy_install.html

Matplotlib, Release 3.4.3

• Alternatives

– Tags

43.6.1 Status

Progress
Initial changes added in 1.3. Conversion of the gallery is on-going. 29 September 2015 - The last py-
lab_examples where pylab is imported has been converted over to use matplotlib.pyplot and
numpy.

43.6.2 Branches and Pull requests

#1623, #1924, #2181

PR #2474 demonstrates a single example being cleaned up and moved to the appropriate section.

43.6.3 Abstract

Reorganizing the matplotlib plot gallery would greatly simplify navigation of the gallery. In addition, exam-
ples should be cleaned-up and simplified for clarity.

43.6.4 Detailed description

The matplotlib gallery was recently set up to split examples up into sections. As discussed in that PR1, the
current example sections (api, pylab_examples) aren't terribly useful to users: New sections in the
gallery would help users find relevant examples.

These sections would also guide a cleanup of the examples: Initially, all the current examples would remain
and be listed under their current directories. Over time, these examples could be cleaned up and moved into
one of the new sections.

This process allows users to easily identify examples that need to be cleaned up; i.e. anything in the api
and pylab_examples directories.

1 https://github.com/matplotlib/matplotlib/pull/714

3306 Chapter 43. Matplotlib Enhancement Proposals

https://numpy.org/doc/stable/reference/index.html#module-numpy
https://github.com/matplotlib/matplotlib/pull/2474
https://github.com/matplotlib/matplotlib/pull/714

Matplotlib, Release 3.4.3

43.6.5 Implementation

1. Create new gallery sections. [Done]

2. Clean up examples and move them to the new gallery sections (over the course of many PRs and with
the help of many users/developers). [In progress]

Gallery sections

The naming of sections is critical and will guide the clean-up effort. The current sections are:

• Lines, bars, and markers (more-or-less 1D data)

• Shapes and collections

• Statistical plots

• Images, contours, and fields

• Pie and polar charts: Round things

• Color

• Text, labels, and annotations

• Ticks and spines

• Subplots, axes, and figures

• Specialty plots (e.g., sankey, radar, tornado)

• Showcase (plots with tweaks to make them publication-quality)

• separate sections for toolboxes (already exists: 'mplot3d', 'axes_grid', 'units', 'widgets')

These names are certainly up for debate. As these sections grow, we should reevaluate them and split them
up as necessary.

Clean up guidelines

The current examples in the api and pylab_examples sections of the gallery would remain in those
directories until they are cleaned up. After clean-up, they would be moved to one of the new gallery sections
described above. "Clean-up" should involve:

• sphinx-gallery docstrings: a title and a description of the example formatted as follows, at the top of
the example:

"""
===============================
Colormaps alter your perception
===============================

Here I plot the function

(continues on next page)

43.6. MEP12: Improve Gallery and Examples 3307

https://sphinx-gallery.readthedocs.io/en/latest/

Matplotlib, Release 3.4.3

(continued from previous page)
.. math:: f(x, y) = \sin(x) + \cos(y)

with different colormaps. Look at how colormaps alter your perception!
"""

• PEP8 clean-ups (running flake8, or a similar checker, is highly recommended)

• Commented-out code should be removed.

• Replace uses of pylab interface with pyplot (+ numpy, etc.). See c25ef1e

• Remove shebang line, e.g.:

#!/usr/bin/env python

• Use consistent imports. In particular:

import numpy as np

import matplotlib.pyplot as plt

Avoid importing specific functions from these modules (e.g. from numpy import sin)

• Each example should focus on a specific feature (excluding showcase examples, which will show
more "polished" plots). Tweaking unrelated to that feature should be removed. See f7b2217, e57b5fc,
and 1458aa8

Use of pylab should be demonstrated/discussed on a dedicated help page instead of the gallery examples.

Note: When moving an existing example, you should search for references to that example. For example,
the API documentation for axes.py and pyplot.pymay use these examples to generate plots. Use your
favorite search tool (e.g., grep, ack, grin, pss) to search the matplotlib package. See 2dc9a46 and aa6b410

Additional suggestions

• Provide links (both ways) between examples and API docs for the methods/objects used. (issue #2222)

• Use plt.subplots (note trailing "s") in preference over plt.subplot.

• Rename the example to clarify it's purpose. For example, the most basic demo of imshow
might be imshow_demo.py, and one demonstrating different interpolation settings would be
imshow_demo_interpolation.py (not imshow_demo2.py).

• Split up examples that try to do too much. See 5099675 and fc2ab07

• Delete examples that don't show anything new.

• Some examples exercise esoteric features for unit testing. These tweaks should be moved out of the
gallery to an example in the unit directory located in the root directory of the package.

• Add plot titles to clarify intent of the example. See bd2b13c

3308 Chapter 43. Matplotlib Enhancement Proposals

https://www.python.org/dev/peps/pep-0008/
https://pypi.org/project/flake8
https://numpy.org/doc/stable/reference/index.html#module-numpy
https://github.com/tonysyu/matplotlib/commit/c25ef1e02b3a0ecb279492409dac0de9b3d2c0e2
https://github.com/tonysyu/matplotlib/commit/f7b2217a1f92343e8aca0684d19c9915cc2e8674
https://github.com/tonysyu/matplotlib/commit/e57b5fc31fbad83ed9c43c77ef15368efdcb9ec1
https://github.com/tonysyu/matplotlib/commit/1458aa87c5eae9dd99e141956a6adf7a0f3c6707
https://pypi.org/project/grin
https://pypi.org/project/pss
https://github.com/tonysyu/matplotlib/commit/2dc9a4651e5e566afc0866c603aa8d06aaf32b71
https://github.com/tonysyu/matplotlib/commit/aa6b410f9fa085ccf5f4f962a6f26af5beeae7af
https://github.com/matplotlib/matplotlib/issues/2222
https://github.com/tonysyu/matplotlib/commit/509967518ce5ce5ba31edf12486ffaa344e748f2
https://github.com/tonysyu/matplotlib/commit/fc2ab07cc586abba4c024d8c0d841c4357a3936f
https://github.com/tonysyu/matplotlib/commit/bd2b13c54bf4aa2058781b9a805d68f2feab5ba5

Matplotlib, Release 3.4.3

43.6.6 Backward compatibility

The website for each Matplotlib version is readily accessible, so users who want to refer to old examples can
still do so.

43.6.7 Alternatives

Tags

Tagging examples will also help users search the example gallery. Although tags would be a big win for
users with specific goals, the plot gallery will remain the entry point to these examples, and sections could
really help users navigate the gallery. Thus, tags are complementary to this reorganization.

43.7 MEP13: Use properties for Artists

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Implementation

• Backward compatibility

• Examples

– axes.Axes.set_axis_off/set_axis_on

– axes.Axes.get_xlim/set_xlim and get_autoscalex_on/set_autoscalex_on

– axes.Axes.get_title/set_title

– axes.Axes.get_xticklabels/set_xticklabels

• Alternatives

43.7.1 Status

• Discussion

43.7. MEP13: Use properties for Artists 3309

Matplotlib, Release 3.4.3

43.7.2 Branches and Pull requests

None

43.7.3 Abstract

Wrap all of the matplotlib getter and setter methods with python properties, allowing them to be read and
written like class attributes.

43.7.4 Detailed description

Currently matplotlib uses getter and setter functions (usually prefixed with get_ and set_, respectively) for
reading and writing data related to classes. However, since 2.6 python supports properties, which allow such
setter and getter functions to be accessed as though they were attributes. This proposal would implement all
existing setter and getter methods as properties.

43.7.5 Implementation

1. All existing getter and setter methods will need to have two aliases, one with the get_ or set_ prefix
and one without. Getter methods that currently lack prefixes should be recording in a text file.

2. Classes should be reorganized so setter and getter methods are sequential in the code, with getter
methods first.

3. Getter and setter methods the provide additional optional optional arguments should have those argu-
ments accessible in another manner, either as additional getter or setter methods or attributes of other
classes. If those classes are not accessible, getters for them should be added.

4. Property decorators will be added to the setter and getter methods without the prefix. Those with the
prefix will be marked as deprecated.

5. Docstrings will need to be rewritten so the getter with the prefix has the current docstring and the getter
without the prefix has a generic docstring appropriate for an attribute.

6. Automatic alias generation will need to be modified so it will also create aliases for the properties.

7. All instances of getter and setter method calls will need to be changed to attribute access.

8. All setter and getter aliases with prefixes will be removed

The following steps can be done simultaneously: 1, 2, and 3; 4 and 5; 6 and 7.

Only the following steps must be done in the same release: 4, 5, and 6. All other changes can be done in
separate releases. 8 should be done several major releases after everything else.

3310 Chapter 43. Matplotlib Enhancement Proposals

https://docs.python.org/3/library/functions.html#property

Matplotlib, Release 3.4.3

43.7.6 Backward compatibility

All existing getter methods that do not have a prefix (such as get_) will need to be changed from function
calls to attribute access. In most cases this will only require removing the parenthesis.

setter and getter methods that have additional optional arguments will need to have those arguments imple-
mented in another way, either as a separate property in the same class or as attributes or properties of another
class.

Cases where the setter returns a value will need to be changed to using the setter followed by the getter.

Cases where there are set_ATTR_on() and set_ATTR_off() methods will be changed to ATTR_on properties.

43.7.7 Examples

axes.Axes.set_axis_off/set_axis_on

Current implementation:

axes.Axes.set_axis_off()
axes.Axes.set_axis_on()

New implementation:

True = axes.Axes.axis_on
False = axes.Axes.axis_on
axes.Axes.axis_on = True
axes.Axes.axis_on = False

axes.Axes.get_xlim/set_xlim and get_autoscalex_on/set_autoscalex_on

Current implementation:

[left, right] = axes.Axes.get_xlim()
auto = axes.Axes.get_autoscalex_on()

[left, right] = axes.Axes.set_xlim(left=left, right=right, emit=emit,␣
↪auto=auto)

[left, right] = axes.Axes.set_xlim(left=left, right=None, emit=emit,␣
↪auto=auto)

[left, right] = axes.Axes.set_xlim(left=None, right=right, emit=emit,␣
↪auto=auto)

[left, right] = axes.Axes.set_xlim(left=left, emit=emit, auto=auto)
[left, right] = axes.Axes.set_xlim(right=right, emit=emit, auto=auto)

axes.Axes.set_autoscalex_on(auto)

New implementation:

43.7. MEP13: Use properties for Artists 3311

Matplotlib, Release 3.4.3

[left, right] = axes.Axes.axes_xlim
auto = axes.Axes.autoscalex_on

axes.Axes.axes_xlim = [left, right]
axes.Axes.axes_xlim = [left, None]
axes.Axes.axes_xlim = [None, right]
axes.Axes.axes_xlim[0] = left
axes.Axes.axes_xlim[1] = right

axes.Axes.autoscalex_on = auto

axes.Axes.emit_xlim = emit

axes.Axes.get_title/set_title

Current implementation:

string = axes.Axes.get_title()
axes.Axes.set_title(string, fontdict=fontdict, **kwargs)

New implementation:

string = axes.Axes.title
string = axes.Axes.title_text.text

text.Text = axes.Axes.title_text
text.Text.<attribute> = attribute
text.Text.fontdict = fontdict

axes.Axes.title = string
axes.Axes.title = text.Text
axes.Axes.title_text = string
axes.Axes.title_text = text.Text

axes.Axes.get_xticklabels/set_xticklabels

Current implementation:

[text.Text] = axes.Axes.get_xticklabels()
[text.Text] = axes.Axes.get_xticklabels(minor=False)
[text.Text] = axes.Axes.get_xticklabels(minor=True)
[text.Text] = axes.Axes.([string], fontdict=None, **kwargs)
[text.Text] = axes.Axes.([string], fontdict=None, minor=False, **kwargs)
[text.Text] = axes.Axes.([string], fontdict=None, minor=True, **kwargs)

New implementation:

[text.Text] = axes.Axes.xticklabels
[text.Text] = axes.Axes.xminorticklabels

(continues on next page)

3312 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

(continued from previous page)
axes.Axes.xticklabels = [string]
axes.Axes.xminorticklabels = [string]
axes.Axes.xticklabels = [text.Text]
axes.Axes.xminorticklabels = [text.Text]

43.7.8 Alternatives

Instead of using decorators, it is also possible to use the property function. This would change the procedure
so that all getter methods that lack a prefix will need to be renamed or removed. This makes handling
docstrings more difficult and harder to read.

It is not necessary to deprecate the setter and getter methods, but leaving them in will complicate the code.

This could also serve as an opportunity to rewrite or even remove automatic alias generation.

Another alternate proposal:

Convert set_xlim, set_xlabel, set_title, etc. to xlim, xlabel, title,... to make the transi-
tion from plt functions to axes methods significantly simpler. These would still be methods, not proper-
ties, but it's still a great usability enhancement while retaining the interface.

43.8 MEP14: Text handling

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Implementation

• Backward compatibility

• Alternatives

43.8.1 Status

• Discussion

43.8. MEP14: Text handling 3313

Matplotlib, Release 3.4.3

43.8.2 Branches and Pull requests

Issue #253 demonstrates a bug where using the bounding box rather than the advance width of text results
in misaligned text. This is a minor point in the grand scheme of things, but it should be addressed as part of
this MEP.

43.8.3 Abstract

By reorganizing how text is handled, this MEP aims to:

• improve support for Unicode and non-ltr languages

• improve text layout (especially multi-line text)

• allow support for more fonts, especially non-Apple-format TrueType fonts and OpenType fonts.

• make the font configuration easier and more transparent

43.8.4 Detailed description

Text layout
At present, matplotlib has two different ways to render text: "built-in" (based on FreeType and our own
Python code), and "usetex" (based on calling out to a TeX installation). Adjunct to the "built-in" renderer
there is also the Python-based "mathtext" system for rendering mathematical equations using a subset of the
TeX language without having a TeX installation available. Support for these two engines in strewn about
many source files, including every backend, where one finds clauses like

if rcParams['text.usetex']: # do one thing else: # do another

Adding a third text rendering approach (more on that later) would require editing all of these places as well,
and therefore doesn't scale.

Instead, this MEP proposes adding a concept of "text engines", where the user could select one of many
different approaches for rendering text. The implementations of each of these would be localized to their
own set of modules, and not have little pieces around the whole source tree.

Why add more text rendering engines? The "built-in" text rendering has a number of shortcomings.

• It only handles right-to-left languages, and doesn't handle many special features of Unicode, such as
combining diacriticals.

• The multiline support is imperfect and only supports manual line-breaking -- it can not break up a
paragraph into lines of a certain length.

• It also does not handle inline formatting changes in order to support something like Markdown, re-
StructuredText or HTML. (Though rich-text formatting is contemplated in this MEP, since we want
to make sure this design allows it, the specifics of a rich-text formatting implementation is outside of
the scope of this MEP.)

Supporting these things is difficult, and is the "full-time job" of a number of other projects:

3314 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

• pango/harfbuzz

• QtTextLayout

• Microsoft DirectWrite

• Apple Core Text

Of the above options, it should be noted that harfbuzz is designed from the start as a cross platform option
with minimal dependencies, so therefore is a good candidate for a single option to support.

Additionally, for supporting rich text, we could consider usingWebKit, and possibly whether than represents
a good single cross-platform option. Again, however, rich text formatting is outside of the scope of this
project.

Rather than trying to reinvent the wheel and add these features to matplotlib's "built-in" text renderer, we
should provide a way to leverage these projects to get more powerful text layout. The "built-in" renderer will
still need to exist for reasons of ease of installation, but its feature set will be more limited compared to the
others. [TODO: This MEP should clearly decide what those limited features are, and fix any bugs to bring
the implementation into a state of working correctly in all cases that we want it to work. I know @leejjoon
has some thoughts on this.]

Font selection
Going from an abstract description of a font to a file on disk is the task of the font selection algorithm -- it
turns out to be much more complicated than it seems at first.

The "built-in" and "usetex" renderers have very different ways of handling font selection, given their different
technologies. TeX requires the installation of TeX-specific font packages, for example, and can not use
TrueType fonts directly. Unfortunately, despite the different semantics for font selection, the same set of
font properties are used for each. This is true of both the FontProperties class and the font-related
rcParams (which basically share the same code underneath). Instead, we should define a core set of font
selection parameters that will work across all text engines, and have engine-specific configuration to allow
the user to do engine-specific things when required. For example, it is possible to directly select a font by
name in the "built-in" using rcParams["font.family"] (default: ['sans-serif']), but the same
is not possible with "usetex". It may be possible to make it easier to use TrueType fonts by using XeTeX,
but users will still want to use the traditional metafonts through TeX font packages. So the issue still stands
that different text engines will need engine-specific configuration, and it should be more obvious to the user
which configuration will work across text engines and which are engine-specific.

Note that even excluding "usetex", there are different ways to find fonts. The default is to use the font list
cache in font_manager which matches fonts using our own algorithm based on the CSS font matching
algorithm. It doesn't always do the same thing as the native font selection algorithms on Linux (fontconfig),
Mac and Windows, and it doesn't always find all of the fonts on the system that the OS would normally
pick up. However, it is cross-platform, and always finds the fonts that ship with matplotlib. The Cairo and
MacOSX backends (and presumably a future HTML5-based backend) currently bypass this mechanism and
use the OS-native ones. The same is true when not embedding fonts in SVG, PS or PDF files and opening
them in a third-party viewer. A downside there is that (at least with Cairo, need to confirm with MacOSX)
they don't always find the fonts we ship with matplotlib. (It may be possible to add the fonts to their search
path, though, or we may need to find a way to install our fonts to a location the OS expects to find them).

There are also special modes in the PS and PDF to only use the core fonts that are always available to those
formats. There, the font lookup mechanism must only match against those fonts. It is unclear whether the

43.8. MEP14: Text handling 3315

https://www.pango.org/
https://www.freedesktop.org/wiki/Software/HarfBuzz/
https://doc.qt.io/archives/qt-4.8/qtextlayout.html
https://docs.microsoft.com/en-ca/windows/win32/directwrite/introducing-directwrite
https://developer.apple.com/library/content/documentation/StringsTextFonts/Conceptual/CoreText_Programming/Overview/Overview.html
https://www.freedesktop.org/wiki/Software/HarfBuzz/
https://webkit.org/
../../tutorials/introductory/customizing.html?highlight=font.family#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
http://www.w3.org/TR/CSS2/fonts.html#algorithm
http://www.w3.org/TR/CSS2/fonts.html#algorithm
https://www.freedesktop.org/wiki/Software/fontconfig/

Matplotlib, Release 3.4.3

OS-native font lookup systems can handle this case.

There is also experimental support for using fontconfig for font selection in matplotlib, turned off by default.
fontconfig is the native font selection algorithm on Linux, but is also cross platform and works well on the
other platforms (though obviously is an additional dependency there).

Many of the text layout libraries proposed above (pango, QtTextLayout, DirectWrite and CoreText etc.) insist
on using the font selection library from their own ecosystem.

All of the above seems to suggest that we should move away from our self-written font selection algorithm
and use the native APIs where possible. That's what Cairo andMacOSX backends already want to use, and it
will be a requirement of any complex text layout library. On Linux, we already have the bones of a fontconfig
implementation (which could also be accessed through pango). On Windows and Mac we may need to write
custom wrappers. The nice thing is that the API for font lookup is relatively small, and essentially consist of
"given a dictionary of font properties, give me a matching font file".

Font subsetting
Font subsetting is currently handled using ttconv. ttconv was a standalone commandline utility for converting
TrueType fonts to subsetted Type 3 fonts (among other features) written in 1995, which matplotlib (well, I)
forked in order to make it work as a library. It only handles Apple-style TrueType fonts, not ones with the
Microsoft (or other vendor) encodings. It doesn't handle OpenType fonts at all. This means that even though
the STIX fonts come as .otf files, we have to convert them to .ttf files to ship them with matplotlib. The Linux
packagers hate this -- they'd rather just depend on the upstream STIX fonts. ttconv has also been shown to
have a few bugs that have been difficult to fix over time.

Instead, we should be able to use FreeType to get the font outlines and write our own code (probably in
Python) to output subsetted fonts (Type 3 on PS and PDF and paths on SVG). Freetype, as a popular and
well-maintained project, handles a wide variety of fonts in the wild. This would remove a lot of custom C
code, and remove some code duplication between backends.

Note that subsetting fonts this way, while the easiest route, does lose the hinting in the font, so we will need
to continue, as we do now, provide a way to embed the entire font in the file where possible.

Alternative font subsetting options include using the subsetting built-in to Cairo (not clear if it can be used
without the rest of Cairo), or using fontforge (which is a heavy and not terribly cross-platform dependency).

Freetype wrappers
Our FreeType wrapper could really use a reworking. It defines its own image buffer class (when a Numpy
array would be easier). While FreeType can handle a huge diversity of font files, there are limitations to
our wrapper that make it much harder to support non-Apple-vendor TrueType files, and certain features of
OpenType files. (See #2088 for a terrible result of this, just to support the fonts that ship with Windows 7
and 8). I think a fresh rewrite of this wrapper would go a long way.

Text anchoring and alignment and rotation
The handling of baselines was changed in 1.3.0 such that the backends are now given the location of the
baseline of the text, not the bottom of the text. This is probably the correct behavior, and theMEP refactoring
should also follow this convention.

In order to support alignment on multi-line text, it should be the responsibility of the (proposed) text engine
to handle text alignment. For a given chunk of text, each engine calculates a bounding box for that text and

3316 Chapter 43. Matplotlib Enhancement Proposals

https://www.freedesktop.org/wiki/Software/fontconfig/
https://www.freedesktop.org/wiki/Software/fontconfig/
https://fontforge.org

Matplotlib, Release 3.4.3

the offset of the anchor point within that box. Therefore, if the va of a block was "top", the anchor point
would be at the top of the box.

Rotating of text should always be around the anchor point. I'm not sure that lines up with current behavior
in matplotlib, but it seems like the sanest/least surprising choice. [This could be revisited once we have
something working]. Rotation of text should not be handled by the text engine -- that should be handled by
a layer between the text engine and the rendering backend so it can be handled in a uniform way. [I don't see
any advantage to rotation being handled by the text engines individually...]

There are other problems with text alignment and anchoring that should be resolved as part of this work.
[TODO: enumerate these].

Other minor problems to fix
Themathtext code has backend-specific code -- it should instead provide its output as just another text engine.
However, it's still desirable to have mathtext layout inserted as part of a larger layout performed by another
text engine, so it should be possible to do this. It's an open question whether embedding the text layout of an
arbitrary text engine in another should be possible.

The text mode is currently set by a global rcParam ("text.usetex") so it's either all on or all off. We should
continue to have a global rcParam to choose the text engine ("text.layout_engine"), but it should under the
hood be an overridable property on the Text object, so the same figure can combine the results of multiple
text layout engines if necessary.

43.8.5 Implementation

A concept of a "text engine" will be introduced. Each text engine will implement a number of abstract classes.
The TextFont interface will represent text for a given set of font properties. It isn't necessarily limited to
a single font file -- if the layout engine supports rich text, it may handle a number of font files in a family.
Given a TextFont instance, the user can get a TextLayout instance, which represents the layout for a
given string of text in a given font. From a TextLayout, an iterator over TextSpans is returned so the
engine can output raw editable text using as few spans as possible. If the engine would rather get individual
characters, they can be obtained from the TextSpan instance:

class TextFont(TextFontBase):
def __init__(self, font_properties):

"""
Create a new object for rendering text using the given font␣

↪properties.
"""
pass

def get_layout(self, s, ha, va):
"""
Get the TextLayout for the given string in the given font and
the horizontal (left, center, right) and verticalalignment (top,
center, baseline, bottom)
"""
pass

class TextLayout(TextLayoutBase):

(continues on next page)

43.8. MEP14: Text handling 3317

Matplotlib, Release 3.4.3

(continued from previous page)
def get_metrics(self):

"""
Return the bounding box of the layout, anchored at (0, 0).
"""
pass

def get_spans(self):
"""
Returns an iterator over the spans of different in the layout.
This is useful for backends that want to editable raw text as
individual lines. For rich text where the font may change,
each span of different font type will have its own span.
"""
pass

def get_image(self):
"""
Returns a rasterized image of the text. Useful for raster backends,
like Agg.

In all likelihood, this will be overridden in the backend, as it can
be created from get_layout(), but certain backends may want to
override it if their library provides it (as freetype does).
"""
pass

def get_rectangles(self):
"""
Returns an iterator over the filled black rectangles in the layout.
Used by TeX and mathtext for drawing, for example, fraction lines.
"""
pass

def get_path(self):
"""
Returns a single Path object of the entire laid out text.

[Not strictly necessary, but might be useful for textpath
functionality]
"""
pass

class TextSpan(TextSpanBase):
x, y # Position of the span -- relative to the text layout as a whole

where (0, 0) is the anchor. y is the baseline of the span.
fontfile # The font file to use for the span
text # The text content of the span

def get_path(self):
pass # See TextLayout.get_path

def get_chars(self):
(continues on next page)

3318 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

(continued from previous page)
"""
Returns an iterator over the characters in the span.
"""
pass

class TextChar(TextCharBase):
x, y # Position of the character -- relative to the text layout as

a whole, where (0, 0) is the anchor. y is in the baseline
of the character.

codepoint # The unicode code point of the character -- only for␣
↪informational

purposes, since the mapping of codepoint to glyph_id may have␣
↪been

handled in a complex way by the layout engine. This is an int
to avoid problems on narrow Unicode builds.

glyph_id # The index of the glyph within the font
fontfile # The font file to use for the char

def get_path(self):
"""
Get the path for the character.
"""

pass

Graphic backends that want to output subset of fonts would likely build up a file-global dictionary of char-
acters where the keys are (fontname, glyph_id) and the values are the paths so that only one copy of the path
for each character will be stored in the file.

Special casing: The "usetex" functionality currently is able to get Postscript directly from TeX to insert
directly in a Postscript file, but for other backends, parses a DVI file and generates something more abstract.
For a case like this, TextLayout would implement get_spans for most backends, but add get_ps for
the Postscript backend, which would look for the presence of this method and use it if available, or fall back
to get_spans. This kind of special casing may also be necessary, for example, when the graphics backend
and text engine belong to the same ecosystem, e.g. Cairo and Pango, or MacOSX and CoreText.

There are three main pieces to the implementation:

1) Rewriting the freetype wrapper, and removing ttconv.

a) Once (1) is done, as a proof of concept, we can move to the upstream STIX .otf fonts

b) Add support for web fonts loaded from a remote URL. (Enabled by using freetype for font subsetting).

2) Refactoring the existing "builtin" and "usetex" code into separate text engines and to follow the API
outlined above.

3) Implementing support for advanced text layout libraries.

(1) and (2) are fairly independent, though having (1) done first will allow (2) to be simpler. (3) is dependent
on (1) and (2), but even if it doesn't get done (or is postponed), completing (1) and (2) will make it easier to
move forward with improving the "builtin" text engine.

43.8. MEP14: Text handling 3319

Matplotlib, Release 3.4.3

43.8.6 Backward compatibility

The layout of text with respect to its anchor and rotation will change in hopefully small, but improved,
ways. The layout of multiline text will be much better, as it will respect horizontal alignment. The layout
of bidirectional text or other advanced Unicode features will now work inherently, which may break some
things if users are currently using their own workarounds.

Fonts will be selected differently. Hacks that used to sort of work between the "builtin" and "usetex" text
rendering engines may no longer work. Fonts found by the OS that weren't previously found by matplotlib
may be selected.

43.8.7 Alternatives

TBD

43.9 MEP15 - Fix axis autoscaling when limits are specified for one
axis only

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Implementation

• Backward compatibility

• Alternatives

43.9.1 Status

Discussion

43.9.2 Branches and Pull requests

None so far.

3320 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

43.9.3 Abstract

When one Axis of a 2-dimensional plot is overridden via set_xlim or set_ylim, automatic scaling of
the remaining Axis should be based on the data that falls within the specified limits of the first Axis.

43.9.4 Detailed description

When axis limits for a 2-D plot are specified for one axis only (via set_xlim or set_ylim), matplotlib
currently does not currently rescale the other axis. The result is that the displayed curves or symbols may
be compressed into a tiny portion of the available area, so that the final plot conveys much less information
than it would with appropriate axis scaling.

The proposed change of behavior would make matplotlib choose the scale for the remaining axis using only
the data that falls within the limits for the axis where limits were specified.

43.9.5 Implementation

I don't know enough about the internals of matplotlib to be able to suggest an implementation.

43.9.6 Backward compatibility

From the standpoint of software interfaces, there would be no break in backward compatibility. Some outputs
would be different, but if the user truly desires the previous behavior, he/she can achieve this by overriding
the axis scaling for both axes.

43.9.7 Alternatives

The only alternative that I can see is to maintain the status quo.

43.10 MEP19: Continuous Integration

43.10.1 Status

Completed

43.10. MEP19: Continuous Integration 3321

Matplotlib, Release 3.4.3

43.10.2 Branches and Pull requests

43.10.3 Abstract

matplotlib could benefit from better and more reliable continuous integration, both for testing and building
installers and documentation.

43.10.4 Detailed description

Current state-of-the-art

Testing
matplotlib currently uses Travis-CI for automated tests. While Travis-CI should be praised for how much it
does as a free service, it has a number of shortcomings:

• It often fails due to network timeouts when installing dependencies.

• It often fails for inexplicable reasons.

• build or test products can only be saved from build off of branches on the main repo, not pull requests,
so it is often difficult to "post mortem" analyse what went wrong. This is particularly frustrating when
the failure can not be subsequently reproduced locally.

• It is not extremely fast. matplotlib's cpu and memory requirements for testing are much higher than
the average Python project.

• It only tests on Ubuntu Linux, and we have only minimal control over the specifics of the platform. It
can be upgraded at any time outside of our control, causing unexpected delays at times that may not
be convenient in our release schedule.

On the plus side, Travis-CI's integration with github -- automatically testing all pending pull requests -- is
exceptional.

Builds
There is no centralized effort for automated binary builds for matplotlib. However, the following disparate
things are being done [If the authors mentioned here could fill in detail, that would be great!]:

• @sandrotosi: builds Debian packages

• @takluyver: Has automated Ubuntu builds on Launchpad

• @cgohlke: Makes Windows builds (don't know how automated that is)

• @r-owen: Makes OS-X builds (don't know how automated that is)

Documentation
Documentation of master is now built by travis and uploaded to http://matplotlib.org/devdocs/index.html

@NelleV, I believe, generates the docs automatically and posts them on the web to chart MEP10 progress.

3322 Chapter 43. Matplotlib Enhancement Proposals

http://matplotlib.org/devdocs/index.html

Matplotlib, Release 3.4.3

Peculiarities of matplotlib

matplotlib has complex requirements that make testing and building more taxing than many other Python
projects.

• The CPU time to run the tests is quite high. It puts us beyond the free accounts of many CI services
(e.g. ShiningPanda)

• It has a large number of dependencies, and testing the full matrix of all combinations is impractical.
We need to be clever about what space we test and guarantee to support.

Requirements

This section outlines the requirements that we would like to have.

1. Testing all pull requests by hooking into the GitHub API, as Travis-CI does

2. Testing on all major platforms: Linux, Mac OS-X, MS Windows (in that order of priority, based on
user survey)

3. Retain the last n days worth of build and test products, to aid in post-mortem debugging.

4. Automated nightly binary builds, so that users can test the bleeding edge without installing a complete
compilation environment.

5. Automated benchmarking. It would be nice to have a standard benchmark suite (separate from the
tests) whose performance could be tracked over time, in different backends and platforms. While this
is separate from building and testing, ideally it would run on the same infrastructure.

6. Automated nightly building and publishing of documentation (or as part of testing, to ensure PRs don't
introduce documentation bugs). (This would not replace the static documentation for stable releases
as a default).

7. The test systems should be manageable by multiple developers, so that no single person becomes a
bottleneck. (Travis-CI's design does this well -- storing build configuration in the git repository, rather
than elsewhere, is a very good design.)

8. Make it easy to test a large but sparse matrix of different versions of matplotlib's dependencies. The
matplotlib user survey provides some good data as to where to focus our efforts: https://docs.google.
com/spreadsheet/ccc?key=0AjrPjlTMRTwTdHpQS25pcTZIRWdqX0pNckNSU01sMHc

9. Nice to have: A decentralized design so that those with more obscure platforms can publish build
results to a central dashboard.

43.10. MEP19: Continuous Integration 3323

https://docs.google.com/spreadsheet/ccc?key=0AjrPjlTMRTwTdHpQS25pcTZIRWdqX0pNckNSU01sMHc
https://docs.google.com/spreadsheet/ccc?key=0AjrPjlTMRTwTdHpQS25pcTZIRWdqX0pNckNSU01sMHc

Matplotlib, Release 3.4.3

43.10.5 Implementation

This part is yet-to-be-written.

However, ideally, the implementation would be a third-party service, to avoid adding system administration
to our already stretched time. As we have some donated funds, this service may be a paid one if it offers
significant time-saving advantages over free offerings.

43.10.6 Backward compatibility

Backward compatibility is not a major concern for this MEP. We will replace current tools and procedures
with something better and throw out the old.

43.10.7 Alternatives

43.10.8 Hangout Notes

CI Infrastructure

• We like Travis and it will probably remain part of our arsenal in any event. The reliability issues are
being looked into.

• Enable Amazon S3 uploads of testing products on Travis. This will help with post-mortem of failures
(@mdboom is looking into this now).

• We want Mac coverage. The best bet is probably to push Travis to enable it for our project by paying
them for a Pro account (since they don't otherwise allow testing on both Linux and Mac).

• We want Windows coverage. Shining Panda is an option there.

• Investigate finding or building a tool that would collect and synthesize test results from a number of
sources and post it toGitHub using theGitHubAPI. Thismay be of general use to the Scipy community.

• For both Windows and Mac, we should document (or better yet, script) the process of setting up the
machine for a build, and how to build binaries and installers. This may require getting information
from Russel Owen and Christoph Gohlke. This is a necessary step for doing automated builds, but
would also be valuable for a number of other reasons.

The test framework itself

• We should investigate ways to make it take less time

– Eliminating redundant tests, if possible

– General performance improvements to matplotlib will help

• We should be covering more things, particularly more backends

• We should have more unit tests, fewer integration tests, if possible

3324 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

43.11 MEP21: color and cm refactor

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Implementation

• Backward compatibility

• Alternatives

43.11.1 Status

• Discussion: This MEP has not commenced yet, but here are some ongoing ideas which may become
a part of this MEP:

43.11.2 Branches and Pull requests

43.11.3 Abstract

• color

– tidy up the namespace

– Define a "Color" class

– make it easy to convert from one color type to another `hex -> RGB`, `RGB -> hex`,
`HSV -> RGB` etc.

– improve the construction of a colormap - the dictionary approach is archaic and overly complex
(though incredibly powerful)

– make it possible to interpolate between two or more color types in different modes, especially
useful for construction of colormaps in HSV space for instance

• cm

– rename the module to something more descriptive - mappables?

Overall, there are a lot of improvements that can be made with matplotlib color handling - managing back-
wards compatibility will be difficult as there are some badly named variables/modules which really shouldn't
exist - but a clear path and message for migration should be available, with a large amount of focus on this
in the API changes documentation.

43.11. MEP21: color and cm refactor 3325

Matplotlib, Release 3.4.3

43.11.4 Detailed description

43.11.5 Implementation

43.11.6 Backward compatibility

43.11.7 Alternatives

43.12 MEP22: Toolbar rewrite

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Implementation

– ToolBase(object)

– ToolToggleBase(ToolBase)

– NavigationBase

– ToolbarBase

• Backward compatibility

43.12.1 Status

Progress

43.12.2 Branches and Pull requests

Previous work
• https://github.com/matplotlib/matplotlib/pull/1849

• https://github.com/matplotlib/matplotlib/pull/2557

• https://github.com/matplotlib/matplotlib/pull/2465

Pull Requests:
• Removing the NavigationToolbar classes https://github.com/matplotlib/matplotlib/pull/2740

CLOSED

3326 Chapter 43. Matplotlib Enhancement Proposals

https://github.com/matplotlib/matplotlib/pull/1849
https://github.com/matplotlib/matplotlib/pull/2557
https://github.com/matplotlib/matplotlib/pull/2465
https://github.com/matplotlib/matplotlib/pull/2740

Matplotlib, Release 3.4.3

• Keeping the NavigationToolbar classes https://github.com/matplotlib/matplotlib/pull/2759
CLOSED

• Navigation by events: https://github.com/matplotlib/matplotlib/pull/3652

43.12.3 Abstract

The main goal of this MEP is to make it easier to modify (add, change, remove) the way the user interacts
with the figures.

The user interaction with the figure is deeply integrated within the Canvas and Toolbar. Making extremely
difficult to do any modification.

This MEP proposes the separation of this interaction into Toolbar, Navigation and Tools to provide indepen-
dent access and reconfiguration.

This approach will make easier to create and share tools among users. In the far future, we can even foresee
a kind of Marketplace for Tools where the most popular can be added into the main distribution.

43.12.4 Detailed description

The reconfiguration of the Toolbar is complex, most of the time it requires a custom backend.

The creation of custom Tools sometimes interferes with the Toolbar, as example see https://github.com/
matplotlib/matplotlib/issues/2694 also the shortcuts are hardcoded and again not easily modifiable https:
//github.com/matplotlib/matplotlib/issues/2699

The proposed solution is to take the actions out of the Toolbar and the shortcuts out of the Canvas. The
actions and shortcuts will be in the form of Tools.

A new class Navigation will be the bridge between the events from the Canvas and Toolbar and
redirect them to the appropriate Tool.

At the end the user interaction will be divided into three classes:

• NavigationBase: This class is instantiated for each FigureManager and connect the all user interactions
with the Tools

• ToolbarBase: This existing class is relegated only as a GUI access to Tools.

• ToolBase: Is the basic definition of Tools.

43.12.5 Implementation

ToolBase(object)

Tools can have a graphical representation as the SubplotTool or not even be present in the Toolbar as
Quit.

The ToolBase has the following class attributes for configuration at definition time

• keymap = None: Key(s) to be used to trigger the tool

43.12. MEP22: Toolbar rewrite 3327

https://github.com/matplotlib/matplotlib/pull/2759
https://github.com/matplotlib/matplotlib/pull/3652
https://github.com/matplotlib/matplotlib/issues/2694
https://github.com/matplotlib/matplotlib/issues/2694
https://github.com/matplotlib/matplotlib/issues/2699
https://github.com/matplotlib/matplotlib/issues/2699

Matplotlib, Release 3.4.3

• description = '': Small description of the tool

• image = None: Image that is used in the toolbar

The following instance attributes are set at instantiation:
• name

• navigation

Methods
• trigger(self, event): This is the main method of the Tool, it is called when the Tool is trig-

gered by: * Toolbar button click * keypress associated with the Tool Keymap * Call to navi-
gation.trigger_tool(name)

• set_figure(self, figure): Set the figure and navigation attributes

• destroy(self, *args): Destroy the Tool graphical interface (if exists)

Available Tools
• ToolQuit

• ToolEnableAllNavigation

• ToolEnableNavigation

• ToolToggleGrid

• ToolToggleFullScreen

• ToolToggleYScale

• ToolToggleXScale

• ToolHome

• ToolBack

• ToolForward

• SaveFigureBase

• ConfigureSubplotsBase

ToolToggleBase(ToolBase)

The ToolToggleBase has the following class attributes for configuration at definition time

• radio_group = None: Attribute to group 'radio' like tools (mutually exclusive)

• cursor = None: Cursor to use when the tool is active

The Toggleable Tools, can capture keypress, mouse moves, and mouse button press

It defines the following methods
• enable(self, event): Called by ToolToggleBase.trigger method

3328 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

• disable(self, event): Called when the tool is untoggled

• toggled : Property True or False

Available Tools
• ToolZoom

• ToolPan

NavigationBase

Defines the following attributes
• canvas:

• keypresslock: Lock to know if the canvas key_press_event is
available and process it

• messagelock: Lock to know if the message is available to write

Public methods for User use:
• nav_connect(self, s, func): Connect to to navigation for events

• nav_disconnect(self, cid): Disconnect from navigation event

• message_event(self, message, sender=None): Emit a tool_message_event event

• active_toggle(self): Property The currently toggled tools or None

• get_tool_keymap(self, name): Return a list of keys that are associated with the tool

• set_tool_keymap(self, name, *keys): Set the keys for the given tool

• remove_tool(self, name): Removes tool from the navigation control.

• add_tools(self, tools): Add multiple tools to Navigation

• add_tool(self, name, tool, group=None, position=None): Add a tool to the Navigation

• tool_trigger_event(self, name, sender=None, canvasevent=None, data=None): Trigger a tool
and fire the event

• tools(self) Property: Return a dict with available tools with corresponding keymaps, descrip-
tions and objects

• get_tool(self, name): Return the tool object

43.12. MEP22: Toolbar rewrite 3329

Matplotlib, Release 3.4.3

ToolbarBase

Methods for Backend implementation
• add_toolitem(self, name, group, position, image, description, tog-
gle): Add a toolitem to the toolbar. This method is a callback from tool_added_event (emitted
by navigation)

• set_message(self, s): Display a message on toolbar or in status bar

• toggle_toolitem(self, name): Toggle the toolitem without firing event.

• remove_toolitem(self, name): Remove a toolitem from the Toolbar

43.12.6 Backward compatibility

For backward compatibility added 'navigation' to the list of values supported by rcParams["toolbar"]
(default: 'toolbar2'), that is used for Navigation classes instantiation instead of the NavigationTool-
bar classes

With this parameter, it makes it transparent to anyone using the existing backends.

[@pelson comment: This also gives us an opportunity to avoid needing to implement all of this in the same
PR - some backends can potentially exist without the new functionality for a short while (but it must be done
at some point).]

43.13 MEP23: Multiple Figures per GUI window

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Implementation

– FigureManagerBase

– new_figure_manager

– new_figure_manager_given_figure

– NavigationBase

• Backward compatibility

• Alternatives

3330 Chapter 43. Matplotlib Enhancement Proposals

../../tutorials/introductory/customizing.html?highlight=toolbar#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

43.13.1 Status

Discussion

43.13.2 Branches and Pull requests

Previous work - https://github.com/matplotlib/matplotlib/pull/2465 To-delete

43.13.3 Abstract

Add the possibility to have multiple figures grouped under the same FigureManager

43.13.4 Detailed description

Under the current structure, every canvas has its own window.

This is and may continue to be the desired method of operation for most use cases.

Sometimes when there are too many figures open at the same time, it is desirable to be able to group these
under the same window [see](https://github.com/matplotlib/matplotlib/issues/2194).

The proposed solution modifies FigureManagerBase to contain and manage more than one Canvas.
The settings parameter rcParams["backend.multifigure"] control when the MultiFigure be-
haviour is desired.

Note
It is important to note, that the proposed solution, assumes that the [MEP22](https://github.com/matplotlib/
matplotlib/wiki/Mep22) is already in place. This is simply because the actual implementation of the Tool-
bar makes it pretty hard to switch between canvases.

43.13.5 Implementation

The first implementation will be done in GTK3 using a Notebook as canvas container.

FigureManagerBase

will add the following new methods

• add_canvas: To add a canvas to an existing FigureManager object

• remove_canvas: To remove a canvas from a FigureManager object, if it is the last one, it will
be destroyed

• move_canvas: To move a canvas from one FigureManager to another.

• set_canvas_title: To change the title associated with a specific canvas container

• get_canvas_title: To get the title associated with a specific canvas container

43.13. MEP23: Multiple Figures per GUI window 3331

https://github.com/matplotlib/matplotlib/pull/2465
https://github.com/matplotlib/matplotlib/issues/2194
../../tutorials/introductory/customizing.html?highlight=backend.multifigure#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://github.com/matplotlib/matplotlib/wiki/Mep22
https://github.com/matplotlib/matplotlib/wiki/Mep22

Matplotlib, Release 3.4.3

• get_active_canvas: To get the canvas that is in the foreground and is subject to the gui events.
There is no set_active_canvas because the active canvas, is defined when show is called on a
Canvas object.

new_figure_manager

To control which FigureManagerwill contain the new figures, an extra optional parameter figuremanager
will be added, this parameter value will be passed to new_figure_manager_given_figure.

new_figure_manager_given_figure

• If figuremanager parameter is given, this FigureManager object will be used instead of creating a
new one.

• If rcParams['backend.multifigure'] is True: The last FigureManager object will be
used instead of creating a new one.

NavigationBase

Modifies the NavigationBase to keep a list of canvases, directing the actions to the active one.

43.13.6 Backward compatibility

For the MultiFigure properties to be visible, the user has to activate them directly setting rc-
Params['backend.multifigure'] = True

It should be backwards compatible for backends that adhere to the current FigureManagerBase structure
even if they have not implemented the MultiFigure magic yet.

43.13.7 Alternatives

Instead of modifying the FigureManagerBase it could be possible to add a parallel class, that handles
the cases where rcParams['backend.multifigure'] = True. This will warranty that there won't
be any problems with custom made backends, but also makes bigger the code, and more things to maintain.

43.14 MEP24: negative radius in polar plots

• Status

• Branches and Pull requests

• Abstract

3332 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

• Detailed description

• Implementation

• Related Issues

• Backward compatibility

• Alternatives

43.14.1 Status

Discussion

43.14.2 Branches and Pull requests

None

43.14.3 Abstract

It is clear that polar plots need to be able to gracefully handle negative r values (not by clipping or reflection).

43.14.4 Detailed description

One obvious application that we should support is bB plots (see https://github.com/matplotlib/matplotlib/
issues/1730#issuecomment-40815837), but this seems more generally useful (for example growth rate as a
function of angle). The assumption in the current code (as I understand it) is that the center of the graph is
r==0, however it would be good to be able to set the center to be at any r (with any value less than the offset
clipped).

43.14.5 Implementation

43.14.6 Related Issues

#1730, #1603, #2203, #2133

43.14. MEP24: negative radius in polar plots 3333

https://github.com/matplotlib/matplotlib/issues/1730#issuecomment-40815837
https://github.com/matplotlib/matplotlib/issues/1730#issuecomment-40815837

Matplotlib, Release 3.4.3

43.14.7 Backward compatibility

43.14.8 Alternatives

43.15 MEP25: Serialization

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Examples

• Implementation

• Backward compatibility

• Alternatives

43.15.1 Status

Rejected
This work is important, but this particular effort has stalled.

43.15.2 Branches and Pull requests

• development branches:

• related pull requests:

43.15.3 Abstract

This MEP aims at adding a serializable Controller objects to act as an Artistmanagers. Users would
then communicate changes to an Artist via a Controller. In this way, functionality of the Con-
troller objects may be added incrementally since each Artist is still responsible for drawing every-
thing. The goal is to create an API that is usable both by graphing libraries requiring high-level descriptions
of figures and libraries requiring low-level interpretations.

3334 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

43.15.4 Detailed description

Matplotlib is a core plotting engine with an API that many users already understand. It's difficult/impossible
for other graphing libraries to (1) get a complete figure description, (2) output raw data from the figure object
as the user has provided it, (3) understand the semantics of the figure objects without heuristics, and (4) give
matplotlib a complete figure description to visualize. In addition, because an Artist has no conception of
its own semantics within the figure, it's difficult to interact with them in a natural way.

In this sense, matplotlib will adopt a standardModel-View-Controller (MVC) framework. TheModelwill be
the user defined data, style, and semantics. The Views are the ensemble of each individual Artist, which
are responsible for producing the final image based on the model. The Controller will be the Controller
object managing its set of Artist objects.

The Controller must be able to export the information that it's carrying about the figure on command,
perhaps via a to_json method or similar. Because it would be extremely extraneous to duplicate all of
the information in the model with the controller, only user-specified information (data + style) are explicitly
kept. If a user wants more information (defaults) from the view/model, it should be able to query for it.

• This might be annoying to do, non-specified kwargs are pulled from the rcParams object which is in
turn created from reading a user specified file and can be dynamically changed at run time. I suppose
we could keep a dict of default defaults and compare against that. Not clear how this will interact with
the style sheet [[MEP26]] - @tacaswell

Additional Notes:

• The "raw data" does not necessarily need to be a list, ndarray, etc. Rather, it can more abstractly
just have a method to yield data when needed.

• Because the Controller will contain extra information that users may not want to keep around, it
should not be created by default. You should be able to both (a) instantiate a Controller with a
figure and (b) build a figure with a Controller.

Use Cases:

• Export all necessary informat

• Serializing a matplotlib figure, saving it, and being able to rerun later.

• Any other source sending an appropriately formatted representation to matplotlib to open

43.15.5 Examples

Here are some examples of what the controllers should be able to do.

1. Instantiate a matplotlib figure from a serialized representation (e.g., JSON):

import json
from matplotlib.controllers import Controller
with open('my_figure') as f:

o = json.load(f)
c = Controller(o)
fig = c.figure

43.15. MEP25: Serialization 3335

Matplotlib, Release 3.4.3

2. Manage artists from the controller (e.g., Line2D):

not really sure how this should look
c.axes[0].lines[0].color = 'b'
?

3. Export serializable figure representation:

o = c.to_json()
or... we should be able to throw a figure object in there too
o = Controller.to_json(mpl_fig)

43.15.6 Implementation

1. Create base Controller objects that are able to manage Artist objects (e.g., Hist)

Comments:

• initialization should happen via unpacking **, so we need a copy of call signature
parameter for the Artist we're ultimately trying to control. Unfortunate hard-coded
repetition...

• should the additional **kwargs accepted by each Artist be tracked at the Con-
troller

• how does a Controller know which artist belongs where? E.g., do we need to pass
axes references?

Progress:

• A simple NB demonstrating some functionality for Line2DController objects:
https://nbviewer.jupyter.org/gist/theengineear/f0aa8d79f64325e767c0

2. Write in protocols for the Controller to update the model.

Comments:

• how should containers be dealt with? E.g., what happens to old patches when we re-bin
a histogram?

• in the link from (1), the old line is completely destroyed and redrawn, what if something
is referencing it?

3. Create method by which a json object can be assembled from the Controllers

4. Deal with serializing the unserializable aspects of a figure (e.g., non-affine transforms?)

5. Be able to instantiate from a serialized representation

6. Reimplement the existing pyplot and Axes method, e.g. pyplot.hist and Axes.hist in terms
of the new controller class.

> @theengineer: in #2 above, what do you mean by get updates from each Artist?

^ Yup. The Controller shouldn't need to get updated. This just happens in #3. Delete comments when
you see this.

3336 Chapter 43. Matplotlib Enhancement Proposals

https://nbviewer.jupyter.org/gist/theengineear/f0aa8d79f64325e767c0

Matplotlib, Release 3.4.3

43.15.7 Backward compatibility

• pickling will change

• non-affine transformations will require a defined pickling method

43.15.8 Alternatives

PR #3150 suggested adding semantics by parasitically attaching extra containers to axes objects. This is a
more complete solution with what should be a more developed/flexible/powerful framework.

43.16 MEP26: Artist styling

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Implementation

– BNF Grammar

– Syntax

∗ Selectors

∗ GID selector

∗ Attributes and values

– Parsing

– Visitor pattern for matplotlib figure

• Backward compatibility

• Alternatives

• Appendix

– Matplotlib primitives

43.16. MEP26: Artist styling 3337

Matplotlib, Release 3.4.3

43.16.1 Status

Rejected

43.16.2 Branches and Pull requests

43.16.3 Abstract

This MEP proposes a new stylesheet implementation to allow more comprehensive and dynamic styling of
artists.

The current version of matplotlib (1.4.0) allows stylesheets based on the rcParams syntax to be applied before
creation of a plot. The methodology below proposes a new syntax, based on CSS, which would allow styling
of individual artists and properties, which can be applied dynamically to existing objects.

This is related to (and makes steps toward) the overall goal of moving to a DOM/tree-like architecture.

43.16.4 Detailed description

Currently, the look and appearance of existing artist objects (figure, axes, Line2D etc...) can only be updated
via set_ and get_ methods on the artist object, which is quite laborious, especially if no reference to the
artist(s) has been stored. The new style sheets introduced in 1.4 allow styling before a plot is created, but
do not offer any means to dynamically update plots or distinguish between artists of the same type (i.e. to
specify the line color and line style separately for differing Line2D objects).

The initial development should concentrate on allowing styling of artist primitives (those Artists that do
not contain other Artists), and further development could expand the CSS syntax rules and parser to allow
more complex styling. See the appendix for a list of primitives.

The new methodology would require development of a number of steps:

• A new stylesheet syntax (likely based on CSS) to allow selection of artists by type, class, id etc...

• A mechanism by which to parse a stylesheet into a tree

• A mechanism by which to translate the parse-tree into something which can be used to update the
properties of relevant artists. Ideally this would implement a method by which to traverse the artists
in a tree-like structure.

• A mechanism by which to generate a stylesheet from existing artist properties. This would be useful
to allow a user to export a stylesheet from an existing figure (where the appearance may have been set
using the matplotlib API)...

3338 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

43.16.5 Implementation

It will be easiest to allow a '3rd party' to modify/set the style of an artist if the 'style' is created as a separate
class and store against the artist as a property. The GraphicsContextBase class already provides a the
basis of a Style class and an artist's draw method can be refactored to use the Style class rather than
setting up its own GraphicsContextBase and transferring its style-related properties to it. A minimal
example of how this could be implemented is shown here: https://github.com/JamesRamm/mpl_experiment

IMO, this will also make the API and code base much neater as individual get/set methods for artist style
properties are now redundant... Indirectly related would be a general drive to replace get/set methods with
properties. Implementing the style class with properties would be a big stride toward this...

For initial development, I suggest developing a syntax based on a much (much much) simplified version of
CSS. I am in favour of dubbing this Artist Style Sheets :+1: :

BNF Grammar

I propose a very simple syntax to implement initially (like a proof of concept), which can be expanded upon
in the future. The BNF form of the syntax is given below and then explained

RuleSet ::= SelectorSequence "{"Declaration"}"

SelectorSequence :: = Selector {"," Selector}

Declaration ::= propName":" propValue";"

Selector ::= ArtistIdent{"#"Ident}

propName ::= Ident

propValue ::= Ident | Number | Colour | "None"

ArtistIdent, Ident, Number and Colour are tokens (the basic building blocks of the expression)
which are defined by regular expressions.

Syntax

A CSS stylesheet consists of a series of rule sets in hierarchical order (rules are applied from top to bottom).
Each rule follows the syntax

selector {attribute: value;}

Each rule can have any number of attribute: value pairs, and a stylesheet can have any number of
rules.

The initial syntax is designed only for Artist primitives. It does not address the question of how to set
properties on Container types (whose properties may themselves be Artists with settable properties),
however, a future solution to this could simply be nested RuleSets

43.16. MEP26: Artist styling 3339

https://github.com/JamesRamm/mpl_experiment

Matplotlib, Release 3.4.3

Selectors

Selectors define the object to which the attribute updates should be applied. As a starting point, I propose
just 2 selectors to use in initial development:

Artist Type Selector

Select an Artist by it's type. E.g Line2D or Text:

Line2D {attribute: value}

The regex for matching the artist type selector (ArtistIdent in the BNF grammar) would be:

ArtistIdent = r'(?P<ArtistIdent>\bLine2D\b|\bText\b|\bAxesImage\b|\
↪bFigureImage\b|\bPatch\b)'

GID selector

Select an Artist by its gid:

Line2D#myGID {attribute: value}

A gid can be any string, so the regex could be as follows:

Ident = r'(?P<Ident>[a-zA-Z_][a-zA-Z_0-9]*)'

The above selectors roughly correspond to their CSS counterparts (http://www.w3.org/TR/CSS21/selector.
html)

Attributes and values

• Attributes are any valid (settable) property for the Artist in question.

• Values are any valid value for the property (Usually a string, or number).

Parsing

Parsing would consist of breaking the stylesheet into tokens (the python cookbook gives a nice tokenizing
recipe on page 66), applying the syntax rules and constructing a Tree. This requires defining the grammar
of the stylesheet (again, we can borrow from CSS) and writing a parser. Happily, there is a recipe for this in
the python cookbook as well.

3340 Chapter 43. Matplotlib Enhancement Proposals

http://www.w3.org/TR/CSS21/selector.html
http://www.w3.org/TR/CSS21/selector.html

Matplotlib, Release 3.4.3

Visitor pattern for matplotlib figure

In order to apply the stylesheet rules to the relevant artists, we need to 'visit' each artist in a figure and apply
the relevant rule. Here is a visitor class (again, thanks to python cookbook), where each node would be
an artist in the figure. A visit_ method would need to be implemented for each mpl artist, to handle the
different properties for each

class Visitor:
def visit(self, node):

name = 'visit_' + type(node).__name__
meth = getattr(self, name, None)
if meth is None:

raise NotImplementedError
return meth(node)

An evaluator class would then take the stylesheet rules and implement the visitor on each one of them.

43.16.6 Backward compatibility

Implementing a separate Style class would break backward compatibility as many get/set methods on
an artist would become redundant. While it would be possible to alter these methods to hook into the
Style class (stored as a property against the artist), I would be in favor of simply removing them to both
neaten/simplify the codebase and to provide a simple, uncluttered API...

43.16.7 Alternatives

No alternatives, but some of the ground covered here overlaps with MEP25, which may assist in this devel-
opment

43.16.8 Appendix

Matplotlib primitives

This will form the initial selectors which stylesheets can use.

• Line2D

• Text

• AxesImage

• FigureImage

• Patch

43.16. MEP26: Artist styling 3341

Matplotlib, Release 3.4.3

43.17 MEP27: decouple pyplot from backends

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Implementation

• Future compatibility

• Backward compatibility

• Alternatives

• Questions

43.17.1 Status

Progress

43.17.2 Branches and Pull requests

Main PR (including GTK3): + https://github.com/matplotlib/matplotlib/pull/4143

Backend specific branch diffs: + https://github.com/OceanWolf/matplotlib/compare/backend-refactor.
..OceanWolf:backend-refactor-tkagg + https://github.com/OceanWolf/matplotlib/compare/
backend-refactor...OceanWolf:backend-refactor-qt + https://github.com/OceanWolf/matplotlib/compare/
backend-refactor...backend-refactor-wx

43.17.3 Abstract

This MEP refactors the backends to give a more structured and consistent API, removing generic code and
consolidate existing code. To do this we propose splitting:

1. FigureManagerBase and its derived classes into the core functionality class FigureManager
and a backend specific class WindowBase and

2. ShowBase and its derived classes into Gcf.show_all and MainLoopBase.

3342 Chapter 43. Matplotlib Enhancement Proposals

https://github.com/matplotlib/matplotlib/pull/4143
https://github.com/OceanWolf/matplotlib/compare/backend-refactor...OceanWolf:backend-refactor-tkagg
https://github.com/OceanWolf/matplotlib/compare/backend-refactor...OceanWolf:backend-refactor-tkagg
https://github.com/OceanWolf/matplotlib/compare/backend-refactor...OceanWolf:backend-refactor-qt
https://github.com/OceanWolf/matplotlib/compare/backend-refactor...OceanWolf:backend-refactor-qt
https://github.com/OceanWolf/matplotlib/compare/backend-refactor...backend-refactor-wx
https://github.com/OceanWolf/matplotlib/compare/backend-refactor...backend-refactor-wx

Matplotlib, Release 3.4.3

43.17.4 Detailed description

This MEP aims to consolidate the backends API into one single uniform API, removing generic code out of
the backend (which includes _pylab_helpers and Gcf), and push code to a more appropriate level
in matplotlib. With this we automatically remove inconsistencies that appear in the backends, such as
FigureManagerBase.resize(w, h)which sometimes sets the canvas, and other times set the entire
window to the dimensions given, depending on the backend.

Two main places for generic code appear in the classes derived from FigureManagerBase and Show-
Base.

1. FigureManagerBase has three jobs at the moment:

1. The documentation describes it as a ``Helper class for pyplot mode, wraps everything up into a
neat bundle''

2. But it doesn't just wrap the canvas and toolbar, it also does all of the windowing tasks itself.
The conflation of these two tasks gets seen the best in the following line: `python self.
set_window_title("Figure %d" % num) ` This combines backend specific code
self.set_window_title(title) with matplotlib generic code title = "Figure
%d" % num.

3. Currently the backend specific subclass of FigureManager decides when to end themainloop.
This also seems very wrong as the figure should have no control over the other figures.

2. ShowBase has two jobs:

1. It has the job of going through all figure managers registered in _pylab_helpers.Gcf and
telling them to show themselves.

2. And secondly it has the job of performing the backend specific mainloop to block the main
programme and thus keep the figures from dying.

43.17.5 Implementation

The description of this MEP gives us most of the solution:

1. To remove the windowing aspect out of FigureManagerBase letting it simply wrap this new
class along with the other backend classes. Create a new WindowBase class that can handle this
functionality, with pass-through methods (:arrow_right:) to WindowBase. Classes that subclass
WindowBase should also subclass the GUI specific window class to ensure backward compatibility
(manager.window == manager.window).

2. Refactor the mainloop of ShowBase into MainLoopBase, which encapsulates the end of the loop
as well. We give an instance of MainLoop to FigureManager as a key unlock the exit method (re-
quiring all keys returned before the loop can die). Note this opens the possibility for multiple backends
to run concurrently.

3. Now that FigureManagerBase has no backend specifics in it, to rename it to FigureManager,
and move to a new file backend_managers.py noting that:

1. This allows us to break up the conversion of backends into separate PRs as we can keep the
existing FigureManagerBase class and its dependencies intact.

43.17. MEP27: decouple pyplot from backends 3343

Matplotlib, Release 3.4.3

2. and this also anticipatesMEP22 where the new NavigationBase has morphed into a backend
independent ToolManager.

FigureManager-
Base(canvas, num)

FigureMan-
ager(figure, num)

Window-
Base(title)

Notes

show show
destroy calls destroy on all

components
destroy

full_screen_toggle handles logic set_fullscreen
resize resize
key_press key_press
get_window_title get_window_title
set_window_title set_window_title

_get_toolbar A common method to all subclasses
of FigureManagerBase

set_default_size
add_element_to_window

Show-
Base

MainLoop-
Base

Notes

mainloop begin
end Gets called automagically when no more instances of the subclass exist

__call__ Method moved to Gcf.show_all

43.17.6 Future compatibility

As eluded to above when discussingMEP 22, this refactor makes it easy to add in new generic features. At the
moment, MEP 22 has to make ugly hacks to each class extending from FigureManagerBase. With this
code, this only needs to get made in the singleFigureManager class. This alsomakes the later deprecation
of NavigationToolbar2 very straightforward, only needing to touch the single FigureManager
class

MEP 23 makes for another use case where this refactored code will come in very handy.

43.17.7 Backward compatibility

As we leave all backend code intact, only adding missing methods to existing classes, this should work
seamlessly for all use cases. The only difference will lie for backends that used FigureManager.resize
to resize the canvas and not the window, due to the standardisation of the API.

I would envision that the classes made obsolete by this refactor get deprecated and removed on the same
timetable as NavigationToolbar2, also note that the change in call signature to the FigureCan-
vasWx constructor, while backward compatible, I think the old (imho ugly style) signature should get dep-
recated and removed in the same manner as everything else.

3344 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

back-
end

man-
ager.resize(w,h)

Extra

gtk3 window
Tk canvas
Qt window
Wx canvas FigureManagerWx had frame as an alias to window, so this also

breaks BC.

43.17.8 Alternatives

If there were any alternative solutions to solving the same problem, they should be discussed here, along
with a justification for the chosen approach.

43.17.9 Questions

Mdehoon: Can you elaborate on how to run multiple backends concurrently?

OceanWolf: @mdehoon, as I say, not for this MEP, but I see this MEP opens it up as a future possibility.
Basically the MainLoopBase class acts a per backend Gcf, in this MEP it tracks the number of figures
open per backend, and manages the mainloops for those backends. It closes the backend specific mainloop
when it detects that no figures remain open for that backend. Because of this I imagine that with only a
small amount of tweaking that we can do full-multi-backend matplotlib. No idea yet why one would want
to, but I leave the possibility there in MainLoopBase. With all the backend-code specifics refactored out of
FigureManager also aids in this, one manager to rule them (the backends) all.

Mdehoon: @OceanWolf, OK, thanks for the explanation. Having a uniform API for the backends is very
important for the maintainability of matplotlib. I think this MEP is a step in the right direction.

43.18 MEP28: Remove Complexity from Axes.boxplot

• Status

• Branches and Pull requests

• Abstract

• Detailed description

– Importance

• Implementation

– Passing transform functions to cbook.boxplots_stats

– Simplifications to the Axes.boxplot API and other functions

43.18. MEP28: Remove Complexity from Axes.boxplot 3345

Matplotlib, Release 3.4.3

• Backward compatibility

– Schedule

– Anticipated Impacts to Users

– Anticipated Impacts to Downstream Libraries

• Alternatives

– Variations on the theme

– Doing less

– Doing nothing

43.18.1 Status

Discussion

43.18.2 Branches and Pull requests

The following lists any open PRs or branches related to this MEP:

1. Deprecate redundant statistical kwargs in Axes.boxplot: https://github.com/phobson/matplotlib/
tree/MEP28-initial-deprecations

2. Deprecate redundant style options in Axes.boxplot: https://github.com/phobson/matplotlib/tree/
MEP28-initial-deprecations

3. Deprecate passings 2D NumPy arrays as input: None

4. Add pre- & post-processing options to cbook.boxplot_stats: https://github.com/phobson/
matplotlib/tree/boxplot-stat-transforms

5. Exposing cbook.boxplot_stats through Axes.boxplot kwargs: None

6. Remove redundant statistical kwargs in Axes.boxplot: None

7. Remove redundant style options in Axes.boxplot: None

8. Remaining items that arise through discussion: None

43.18.3 Abstract

Over the past few releases, the Axes.boxplotmethod has grown in complexity to support fully customiz-
able artist styling and statistical computation. This lead to Axes.boxplot being split off into multiple
parts. The statistics needed to draw a boxplot are computed in cbook.boxplot_stats, while the actual
artists are drawn by Axes.bxp. The original method, Axes.boxplot remains as the most public API
that handles passing the user-supplied data to cbook.boxplot_stats, feeding the results to Axes.
bxp, and pre-processing style information for each facet of the boxplot plots.

3346 Chapter 43. Matplotlib Enhancement Proposals

https://github.com/phobson/matplotlib/tree/MEP28-initial-deprecations
https://github.com/phobson/matplotlib/tree/MEP28-initial-deprecations
https://github.com/phobson/matplotlib/tree/MEP28-initial-deprecations
https://github.com/phobson/matplotlib/tree/MEP28-initial-deprecations
https://github.com/phobson/matplotlib/tree/boxplot-stat-transforms
https://github.com/phobson/matplotlib/tree/boxplot-stat-transforms

Matplotlib, Release 3.4.3

This MEP will outline a path forward to rollback the added complexity and simplify the API while maintain-
ing reasonable backwards compatibility.

43.18.4 Detailed description

Currently, the Axes.boxplot method accepts parameters that allow the users to specify medians and
confidence intervals for each box that will be drawn in the plot. These were provided so that avdanced
users could provide statistics computed in a different fashion that the simple method provided by matplotlib.
However, handling this input requires complex logic to make sure that the forms of the data structure match
what needs to be drawn. At the moment, that logic contains 9 separate if/else statements nested up to 5 levels
deep with a for loop, and may raise up to 2 errors. These parameters were added prior to the creation of
the Axes.bxp method, which draws boxplots from a list of dictionaries containing the relevant statistics.
Matplotlib also provides a function that computes these statistics via cbook.boxplot_stats. Note that
advanced users can now either a) write their own function to compute the stats required by Axes.bxp, or
b) modify the output returned by cbook.boxplots_stats to fully customize the position of the artists
of the plots. With this flexibility, the parameters to manually specify only the medians and their confidences
intervals remain for backwards compatibility.

Around the same time that the two roles of Axes.boxplot were split into cbook.boxplot_stats
for computation and Axes.bxp for drawing, both Axes.boxplot and Axes.bxp were written to ac-
cept parameters that individually toggle the drawing of all components of the boxplots, and parameters that
individually configure the style of those artists. However, to maintain backwards compatibility, the sym
parameter (previously used to specify the symbol of the fliers) was retained. This parameter itself requires
fairly complex logic to reconcile the sym parameters with the newer flierprops parameter at the default
style specified by matplotlibrc.

This MEP seeks to dramatically simplify the creation of boxplots for novice and advanced users alike. Im-
portantly, the changes proposed here will also be available to downstream packages like seaborn, as seaborn
smartly allows users to pass arbitrary dictionaries of parameters through the seaborn API to the underlying
matplotlib functions.

This will be achieved in the following way:

1. cbook.boxplot_statswill bemodified to allow pre- and post- computation transformation func-
tions to be passed in (e.g., np.log and np.exp for lognormally distributed data)

2. Axes.boxplot will be modified to also accept and naïvely pass them to cbook.
boxplots_stats (Alt: pass the stat function and a dict of its optional parameters).

3. Outdated parameters from Axes.boxplot will be deprecated and later removed.

43.18. MEP28: Remove Complexity from Axes.boxplot 3347

Matplotlib, Release 3.4.3

Importance

Since the limits of the whiskers are computed arithmetically, there is an implicit assumption of normality in
box and whisker plots. This primarily affects which data points are classified as outliers.

Allowing transformations to the data and the results used to draw boxplots will allow users to opt-out of that
assumption if the data are known to not fit a normal distribution.

Below is an example of how Axes.boxplot classifies outliers of lognormal data differently depending
one these types of transforms.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cbook
np.random.seed(0)

fig, ax = plt.subplots(figsize=(4, 6))
ax.set_yscale('log')
data = np.random.lognormal(-1.75, 2.75, size=37)

stats = cbook.boxplot_stats(data, labels=['arithmetic'])
logstats = cbook.boxplot_stats(np.log(data), labels=['log-transformed'])

for lsdict in logstats:
for key, value in lsdict.items():

if key != 'label':
lsdict[key] = np.exp(value)

stats.extend(logstats)
ax.bxp(stats)
fig.show()

43.18.5 Implementation

Passing transform functions to cbook.boxplots_stats

This MEP proposes that two parameters (e.g., transform_in and transform_out be added to the
cookbook function that computes the statistics for the boxplot function. These will be optional keyword-only
arguments and can easily be set to lambda x: x as a no-op when omitted by the user. The trans-
form_in function will be applied to the data as the boxplot_stats function loops through each subset
of the data passed to it. After the list of statistics dictionaries are computed the transform_out function
is applied to each value in the dictionaries.

These transformations can then be added to the call signature of Axes.boxplot with little impact to that
method's complexity. This is because they can be directly passed to cbook.boxplot_stats. Alterna-
tively, Axes.boxplot could be modified to accept an optional statistical function kwarg and a dictionary
of parameters to be directly passed to it.

At this point in the implementation users and external libraries like seaborn would have complete control via
the Axes.boxplot method. More importantly, at the very least, seaborn would require no changes to its
API to allow users to take advantage of these new options.

3348 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

arithmetic log-transformed
10 4

10 3

10 2

10 1

100

101

102

43.18. MEP28: Remove Complexity from Axes.boxplot 3349

Matplotlib, Release 3.4.3

Simplifications to the Axes.boxplot API and other functions

Simplifying the boxplot method consists primarily of deprecating and then removing the redundant parame-
ters. Optionally, a next step would include rectifying minor terminological inconsistencies between Axes.
boxplot and Axes.bxp.

The parameters to be deprecated and removed include:

1. usermedians - processed by 10 SLOC, 3 if blocks, a for loop

2. conf_intervals - handled by 15 SLOC, 6 if blocks, a for loop

3. sym - processed by 12 SLOC, 4 if blocks

Removing thesym option allows all code in handling the remaining styling parameters to bemoved toAxes.
bxp. This doesn't remove any complexity, but does reinforce the single responsibility principle among
Axes.bxp, cbook.boxplot_stats, and Axes.boxplot.

Additionally, the notch parameter could be renamed shownotches to be consistent with Axes.bxp.
This kind of cleanup could be taken a step further and the whis, bootstrap, autorange could be rolled
into the kwargs passed to the new statfxn parameter.

43.18.6 Backward compatibility

Implementation of this MEP would eventually result in the backwards incompatible deprecation and then
removal of the keyword parameters usermedians, conf_intervals, and sym. Cursory searches on
GitHub indicated that usermedians, conf_intervals are used by few users, who all seem to have
a very strong knowledge of matplotlib. A robust deprecation cycle should provide sufficient time for these
users to migrate to a new API.

Deprecation of sym however, may have a much broader reach into the matplotlib userbase.

Schedule

An accelerated timeline could look like the following:

1. v2.0.1 add transforms to cbook.boxplots_stats, expose in Axes.boxplot

2. v2.1.0 Initial Deprecations , and using 2D NumPy arrays as input

a. Using 2D NumPy arrays as input. The semantics around 2D arrays are generally confusing.

b. usermedians, conf_intervals, sym parameters

3. v2.2.0

a. remove usermedians, conf_intervals, sym parameters

b. deprecate notch in favor of shownotches to be consistent with other parameters and Axes.
bxp

4. v2.3.0
a. remove notch parameter

3350 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

b. move all style and artist toggling logic to Axes.bxp such Axes.boxplot is little more
than a broker between Axes.bxp and cbook.boxplots_stats

Anticipated Impacts to Users

As described above deprecating usermedians and conf_intervals will likely impact few users.
Those who will be impacted are almost certainly advanced users who will be able to adapt to the change.

Deprecating the sym optionmay import more users and effort should be taken to collect community feedback
on this.

Anticipated Impacts to Downstream Libraries

The source code (GitHub master as of 2016-10-17) was inspected for seaborn and python-ggplot to see if
these changes would impact their use. None of the parameters nominated for removal in this MEP are used by
seaborn. The seaborn APIs that use matplotlib's boxplot function allow user's to pass arbitrary **kwargs
through to matplotlib's API. Thus seaborn users with modern matplotlib installations will be able to take full
advantage of any new features added as a result of this MEP.

Python-ggplot has implemented its own function to draw boxplots. Therefore, no impact can come to it as a
result of implementing this MEP.

43.18.7 Alternatives

Variations on the theme

This MEP can be divided into a few loosely coupled components:

1. Allowing pre- and post-computation transformation function in cbook.boxplot_stats

2. Exposing that transformation in the Axes.boxplot API

3. Removing redundant statistical options in Axes.boxplot

4. Shifting all styling parameter processing from Axes.boxplot to Axes.bxp.

With this approach, #2 depends and #1, and #4 depends on #3.

There are two possible approaches to #2. The first and most direct would be to mirror the new trans-
form_in and transform_out parameters of cbook.boxplot_stats in Axes.boxplot and pass
them directly.

The second approach would be to add statfxn and statfxn_args parameters to Axes.boxplot.
Under this implementation, the default value of statfxn would be cbook.boxplot_stats, but users
could pass their own function. Then transform_in and transform_out would then be passed as
elements of the statfxn_args parameter.

43.18. MEP28: Remove Complexity from Axes.boxplot 3351

Matplotlib, Release 3.4.3

def boxplot_stats(data, ..., transform_in=None, transform_out=None):
if transform_in is None:

transform_in = lambda x: x

if transform_out is None:
transform_out = lambda x: x

output = []
for _d in data:

d = transform_in(_d)
stat_dict = do_stats(d)
for key, value in stat_dict.item():

if key != 'label':
stat_dict[key] = transform_out(value)

output.append(d)
return output

class Axes(...):
def boxplot_option1(data, ..., transform_in=None, transform_out=None):

stats = cbook.boxplot_stats(data, ...,
transform_in=transform_in,
transform_out=transform_out)

return self.bxp(stats, ...)

def boxplot_option2(data, ..., statfxn=None, **statopts):
if statfxn is None:

statfxn = boxplot_stats
stats = statfxn(data, **statopts)
return self.bxp(stats, ...)

Both cases would allow users to do the following:

fig, ax1 = plt.subplots()
artists1 = ax1.boxplot_optionX(data, transform_in=np.log,

transform_out=np.exp)

But Option Two lets a user write a completely custom stat function (e.g., my_box_stats) with fancy BCA
confidence intervals and the whiskers set differently depending on some attribute of the data.

This is available under the current API:

fig, ax1 = plt.subplots()
my_stats = my_box_stats(data, bootstrap_method='BCA',

whisker_method='dynamic')
ax1.bxp(my_stats)

And would be more concise with Option Two

fig, ax = plt.subplots()
statopts = dict(transform_in=np.log, transform_out=np.exp)
ax.boxplot(data, ..., **statopts)

3352 Chapter 43. Matplotlib Enhancement Proposals

Matplotlib, Release 3.4.3

Users could also pass their own function to compute the stats:

fig, ax1 = plt.subplots()
ax1.boxplot(data, statfxn=my_box_stats, bootstrap_method='BCA',

whisker_method='dynamic')

From the examples above, Option Two seems to have only marginal benefit, but in the context of downstream
libraries like seaborn, its advantage is more apparent as the following would be possible without any patches
to seaborn:

import seaborn
tips = seaborn.load_data('tips')
g = seaborn.factorplot(x="day", y="total_bill", hue="sex", data=tips,

kind='box', palette="PRGn", shownotches=True,
statfxn=my_box_stats, bootstrap_method='BCA',
whisker_method='dynamic')

This type of flexibility was the intention behind splitting the overall boxplot API in the current three func-
tions. In practice however, downstream libraries like seaborn support versions of matplotlib dating back
well before the split. Thus, adding just a bit more flexibility to the Axes.boxplot could expose all the
functionality to users of the downstream libraries with modern matplotlib installation without intervention
from the downstream library maintainers.

Doing less

Another obvious alternative would be to omit the added pre- and post- computation transform functionality
in cbook.boxplot_stats and Axes.boxplot, and simply remove the redundant statistical and style
parameters as described above.

Doing nothing

As with many things in life, doing nothing is an option here. This means we simply advocate for users and
downstream libraries to take advantage of the split between cbook.boxplot_stats and Axes.bxp
and let them decide how to provide an interface to that.

43.19 MEP29: Text light markup

• Status

• Branches and Pull requests

• Abstract

• Detailed description

• Implementation

43.19. MEP29: Text light markup 3353

Matplotlib, Release 3.4.3

– Improvements

– Problems

• Backward compatibility

• Alternatives

43.19.1 Status

Discussion

43.19.2 Branches and Pull requests

None at the moment, proof of concept only.

43.19.3 Abstract

This MEP proposes to add lightweight markup to the text artist.

43.19.4 Detailed description

Using different size/color/family in a text annotation is difficult because the text method accepts ar-
gument for size/color/family/weight/etc. that are used for the whole text. But, if one wants, for ex-
ample, to have different colors, one has to look at the gallery where one such example is provided:
/gallery/text_labels_and_annotations/rainbow_text

This example takes a list of strings as well as a list of colors whichmakes it cumbersome to use. An alternative
would be to use a restricted set of pango-like markup and to interpret this markup.

Some markup examples:

Hello world!`
Hello world!

43.19.5 Implementation

A proof of concept is provided in markup_example.py but it currently only handles the horizontal direction.

3354 Chapter 43. Matplotlib Enhancement Proposals

https://developer.gnome.org/pygtk/stable/pango-markup-language.html
https://github.com/rougier/matplotlib/blob/markup/examples/text_labels_and_annotations/markup.py

Matplotlib, Release 3.4.3

Improvements

• This proof of concept uses regex to parse the text but it may be better to use the html.parser from the
standard library.

• Computation of text fragment positions could benefit from the OffsetFrom class. See for example item
5 in Using Complex Coordinates with Annotations

Problems

• One serious problem is how to deal with text having both LaTeX and HTML-like tags. For example,
consider the following:

$Bold$

Recommendation would be to have mutual exclusion.

43.19.6 Backward compatibility

None at the moment since it is only a proof of concept

43.19.7 Alternatives

As proposed by @anntzer, this could be also implemented as improvements to mathtext. For example:

r"$\text{Hello \textbf{world}}$"
r"$\text{Hello \textcolor{blue}{world}}$"
r"$\text{Hello \textsf{\small world}}$"

43.19. MEP29: Text light markup 3355

http://matplotlib.org/devdocs/tutorials/text/annotations.html#using-complex-coordinates-with-annotations

Matplotlib, Release 3.4.3

3356 Chapter 43. Matplotlib Enhancement Proposals

CHAPTER

FORTYFOUR

LICENSES

Matplotlib only uses BSD compatible code. If you bring in code from another project make sure it has a
PSF, BSD, MIT or compatible license (see the Open Source Initiative licenses page for details on individual
licenses). If it doesn't, youmay consider contacting the author and asking them to relicense it. GPL and LGPL
code are not acceptable in the main code base, though we are considering an alternative way of distributing
L/GPL code through an separate channel, possibly a toolkit. If you include code, make sure you include a
copy of that code's license in the license directory if the code's license requires you to distribute the license
with it. Non-BSD compatible licenses are acceptable in Matplotlib toolkits (e.g., basemap), but make sure
you clearly state the licenses you are using.

44.1 Why BSD compatible?

The two dominant license variants in the wild are GPL-style and BSD-style. There are countless other
licenses that place specific restrictions on code reuse, but there is an important difference to be considered
in the GPL and BSD variants. The best known and perhaps most widely used license is the GPL, which
in addition to granting you full rights to the source code including redistribution, carries with it an extra
obligation. If you use GPL code in your own code, or link with it, your product must be released under a
GPL compatible license. i.e., you are required to give the source code to other people and give them the right
to redistribute it as well. Many of the most famous and widely used open source projects are released under
the GPL, including linux, gcc, emacs and sage.

The second major class are the BSD-style licenses (which includes MIT and the python PSF license). These
basically allow you to do whatever you want with the code: ignore it, include it in your own open source
project, include it in your proprietary product, sell it, whatever. python itself is released under a BSD com-
patible license, in the sense that, quoting from the PSF license page:

There is no GPL-like "copyleft" restriction. Distributing
binary-only versions of Python, modified or not, is allowed. There
is no requirement to release any of your source code. You can also
write extension modules for Python and provide them only in binary
form.

Famous projects released under a BSD-style license in the permissive sense of the last paragraph are the
BSD operating system, python and TeX.

There are several reasons why earlyMatplotlib developers selected a BSD compatible license. Matplotlib is a
python extension, and we choose a license that was based on the python license (BSD compatible). Also, we

3357

https://opensource.org/licenses

Matplotlib, Release 3.4.3

wanted to attract as many users and developers as possible, and many software companies will not use GPL
code in software they plan to distribute, even those that are highly committed to open source development,
such as enthought, out of legitimate concern that use of the GPL will "infect" their code base by its viral
nature. In effect, they want to retain the right to release some proprietary code. Companies and institutions
who use Matplotlib often make significant contributions, because they have the resources to get a job done,
even a boring one. Two of the Matplotlib backends (FLTK andWX) were contributed by private companies.
The final reason behind the licensing choice is compatibility with the other python extensions for scientific
computing: ipython, numpy, scipy, the enthought tool suite and python itself are all distributed under BSD
compatible licenses.

3358 Chapter 44. Licenses

https://www.enthought.com

CHAPTER

FORTYFIVE

DEFAULT COLOR CHANGES

As discussed at length elsewhere [insert links], jet is an empirically bad colormap and should not be the
default colormap. Due to the position that changing the appearance of the plot breaks backward compatibility,
this change has been put off for far longer than it should have been. In addition to changing the default color
map we plan to take the chance to change the default color-cycle on plots and to adopt a different colormap
for filled plots (imshow, pcolor, contourf, etc) and for scatter like plots.

45.1 Default Heat Map Colormap

The choice of a new colormap is fertile ground to bike-shedding ("No, it should be _this_ color") so we have
a proposed set criteria (via Nathaniel Smith) to evaluate proposed colormaps.

• it should be a sequential colormap, because diverging colormaps are reallymisleading unless you know
where the "center" of the data is, and for a default colormap we generally won't.

• it should be perceptually uniform, i.e., human subjective judgments of how far apart nearby colors are
should correspond as linearly as possible to the difference between the numerical values they represent,
at least locally.

• it should have a perceptually uniform luminance ramp, i.e. if you convert to greyscale it should still
be uniform. This is useful both in practical terms (greyscale printers are still a thing!) and because
luminance is a very strong and natural cue to magnitude.

• it should also have some kind of variation in hue, because hue variation is a really helpful additional
cue to perception, having two cues is better than one, and there's no reason not to do it.

• the hue variation should be chosen to produce reasonable results even for viewers with the more com-
mon types of colorblindness. (Which rules out things like red-to-green.)

• For bonus points, it would be nice to choose a hue ramp that still works if you throw away the luminance
variation, because then we could use the version with varying luminance for 2d plots, and the version
with just hue variation for 3d plots. (In 3d plots you really want to reserve the luminance channel for
lighting/shading, because your brain is really good at extracting 3d shape from luminance variation.
If the 3d surface itself has massively varying luminance then this screws up the ability to see shape.)

• Not infringe any existing IP

3359

Matplotlib, Release 3.4.3

45.1.1 Example script

45.1.2 Proposed Colormaps

45.2 Default Scatter Colormap

For heat-map like applications it can be desirable to cover asmuch of the luminance scale as possible, however
when colormapping markers, havingmarkers too close to white can be a problem. For that reason we propose
using a different (but maybe related) colormap to the heat map for marker-based. The design parameters are
the same as above, only with a more limited luminance variation.

45.2.1 Example script

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(1234)

fig, (ax1, ax2) = plt.subplots(1, 2)

N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = np.pi * (15 * np.random.rand(N))**2 # 0 to 15 point radiuses

ax1.scatter(x, y, s=area, c=colors, alpha=0.5)

X,Y = np.meshgrid(np.arange(0, 2*np.pi, .2),
np.arange(0, 2*np.pi, .2))

U = np.cos(X)
V = np.sin(Y)
Q = ax2.quiver(X, Y, U, V, units='width')
qd = np.random.rand(np.prod(X.shape))
Q.set_array(qd)

45.2.2 Proposed Colormaps

45.3 Color Cycle / Qualitative colormap

When plotting lines it is frequently desirable to plot multiple lines or artists which need to be distinguishable,
but there is no inherent ordering.

3360 Chapter 45. Default Color changes

Matplotlib, Release 3.4.3

45.3.1 Example script

import numpy as np
import matplotlib.pyplot as plt

fig, (ax1, ax2) = plt.subplots(1, 2)

x = np.linspace(0, 1, 10)

for j in range(10):
ax1.plot(x, x * j)

th = np.linspace(0, 2*np.pi, 1024)
for j in np.linspace(0, np.pi, 10):

ax2.plot(th, np.sin(th + j))

ax2.set_xlim(0, 2*np.pi)

45.3.2 Proposed Color cycle

45.3. Color Cycle / Qualitative colormap 3361

Matplotlib, Release 3.4.3

3362 Chapter 45. Default Color changes

Part VII

Appendices

3363

BIBLIOGRAPHY

[colorcet] https://colorcet.pyviz.org

[Ware] http://ccom.unh.edu/sites/default/files/publications/Ware_1988_CGA_Color_sequences_
univariate_maps.pdf

[Moreland] http://www.kennethmoreland.com/color-maps/ColorMapsExpanded.pdf

[list-colormaps] https://gist.github.com/endolith/2719900#id7

[mycarta-banding] https://mycarta.wordpress.com/2012/10/14/the-rainbow-is-deadlong-live-the-rainbow-part-4-cie-lab-heated-body/

[mycarta-jet] https://mycarta.wordpress.com/2012/10/06/the-rainbow-is-deadlong-live-the-rainbow-part-3/

[kovesi-colormaps] https://arxiv.org/abs/1509.03700

[bw] http://www.tannerhelland.com/3643/grayscale-image-algorithm-vb6/

[colorblindness] http://www.color-blindness.com/

[IBM] https://doi.org/10.1109/VISUAL.1995.480803

[palettable] https://jiffyclub.github.io/palettable/

[turbo] https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html

[1] Kpathsea documentation The library that kpsewhich is part of.

[1] Michel Bernadou, Kamal Hassan, "Basis functions for general Hsieh-Clough-Tocher triangles,
complete or reduced.", International Journal for Numerical Methods in Engineering, 17(5):784 -
789. 2.01.

[2] C.T. Kelley, "Iterative Methods for Optimization".

3365

https://colorcet.pyviz.org
http://ccom.unh.edu/sites/default/files/publications/Ware_1988_CGA_Color_sequences_univariate_maps.pdf
http://ccom.unh.edu/sites/default/files/publications/Ware_1988_CGA_Color_sequences_univariate_maps.pdf
http://www.kennethmoreland.com/color-maps/ColorMapsExpanded.pdf
https://gist.github.com/endolith/2719900#id7
https://mycarta.wordpress.com/2012/10/14/the-rainbow-is-deadlong-live-the-rainbow-part-4-cie-lab-heated-body/
https://mycarta.wordpress.com/2012/10/06/the-rainbow-is-deadlong-live-the-rainbow-part-3/
https://arxiv.org/abs/1509.03700
http://www.tannerhelland.com/3643/grayscale-image-algorithm-vb6/
http://www.color-blindness.com/
https://doi.org/10.1109/VISUAL.1995.480803
https://jiffyclub.github.io/palettable/
https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html
http://www.tug.org/kpathsea/

Matplotlib, Release 3.4.3

3366 Bibliography

PYTHON MODULE INDEX

m
matplotlib._api, 2920
matplotlib._api.deprecation, 2921
matplotlib._enums, 2926
matplotlib.afm, 1156
matplotlib.animation, 1159
matplotlib.artist, 1210
matplotlib.axes, 1238
matplotlib.axis, 1540
matplotlib.backend_bases, 1572
matplotlib.backend_managers, 1603
matplotlib.backend_tools, 1607
matplotlib.backends.backend_agg,

1625
matplotlib.backends.backend_cairo,

1632
matplotlib.backends.backend_gtk3agg,

1637
matplotlib.backends.backend_gtk3cairo,

1637
matplotlib.backends.backend_mixed,

1620
matplotlib.backends.backend_nbagg,

1637
matplotlib.backends.backend_pdf,

1638
matplotlib.backends.backend_pgf,

1650
matplotlib.backends.backend_ps, 1657
matplotlib.backends.backend_qt4agg,

1662
matplotlib.backends.backend_qt4cairo,

1662
matplotlib.backends.backend_qt5agg,

1662
matplotlib.backends.backend_qt5cairo,

1662

matplotlib.backends.backend_svg,
1662

matplotlib.backends.backend_template,
1621

matplotlib.backends.backend_tkagg,
1669

matplotlib.backends.backend_tkcairo,
1669

matplotlib.backends.backend_webagg,
1669

matplotlib.backends.backend_wxagg,
1670

matplotlib.backends.backend_wxcairo,
1670

matplotlib.bezier, 1670
matplotlib.blocking_input, 1674
matplotlib.category, 1677
matplotlib.cbook, 1680
matplotlib.cm, 1694
matplotlib.collections, 1699
matplotlib.colorbar, 1988
matplotlib.colors, 1997
matplotlib.container, 2036
matplotlib.contour, 2039
matplotlib.dates, 2049
matplotlib.docstring, 2069
matplotlib.dviread, 2069
matplotlib.figure, 2075
matplotlib.font_manager, 2218
matplotlib.fontconfig_pattern, 2226
matplotlib.gridspec, 2227
matplotlib.image, 2237
matplotlib.legend, 2248
matplotlib.legend_handler, 2257
matplotlib.lines, 2264
matplotlib.markers, 2281
matplotlib.mathtext, 2286

3367

Matplotlib, Release 3.4.3

matplotlib.mlab, 2293
matplotlib.offsetbox, 2312
matplotlib.patches, 2330
matplotlib.path, 2427
matplotlib.patheffects, 2437
matplotlib.projections, 2704
matplotlib.projections.polar, 2704
matplotlib.pyplot, 2444
matplotlib.quiver, 2727
matplotlib.rcsetup, 2748
matplotlib.sankey, 2752
matplotlib.scale, 2759
matplotlib.sphinxext.plot_directive,

2770
matplotlib.spines, 2774
matplotlib.style, 2778
matplotlib.table, 2779
matplotlib.testing, 2789
matplotlib.testing.compare, 2789
matplotlib.testing.decorators, 2790
matplotlib.testing.exceptions, 2793
matplotlib.texmanager, 2811
matplotlib.text, 2793
matplotlib.textpath, 2813
matplotlib.ticker, 2816
matplotlib.tight_bbox, 2841
matplotlib.tight_layout, 2842
matplotlib.transforms, 2844
matplotlib.tri, 2883
matplotlib.type1font, 2892
matplotlib.units, 2894
matplotlib.widgets, 2896
mpl_toolkits.axes_grid1, 3082
mpl_toolkits.axes_grid1.anchored_artists,

2932
mpl_toolkits.axes_grid1.axes_divider,

2953
mpl_toolkits.axes_grid1.axes_grid,

2965
mpl_toolkits.axes_grid1.axes_rgb,

2974
mpl_toolkits.axes_grid1.axes_size,

2979
mpl_toolkits.axes_grid1.inset_locator,

2985
mpl_toolkits.axes_grid1.mpl_axes,

3014

mpl_toolkits.axes_grid1.parasite_axes,
3019

mpl_toolkits.axisartist, 3083
mpl_toolkits.axisartist.angle_helper,

3026
mpl_toolkits.axisartist.axes_divider,

3034
mpl_toolkits.axisartist.axes_grid,

3034
mpl_toolkits.axisartist.axes_rgb,

3038
mpl_toolkits.axisartist.axis_artist,

3039
mpl_toolkits.axisartist.axisline_style,

3053
mpl_toolkits.axisartist.axislines,

3055
mpl_toolkits.axisartist.clip_path,

3068
mpl_toolkits.axisartist.floating_axes,

3069
mpl_toolkits.axisartist.grid_finder,

3073
mpl_toolkits.axisartist.grid_helper_curvelinear,

3080
mpl_toolkits.axisartist.parasite_axes,

3082
mpl_toolkits.mplot3d, 3084
mpl_toolkits.mplot3d.art3d, 3133
mpl_toolkits.mplot3d.axes3d, 3084
mpl_toolkits.mplot3d.axis3d, 3130
mpl_toolkits.mplot3d.proj3d, 3153

p
pylab, 1140

3368 Python Module Index

INDEX

Non-alphabetical
__add__() (matplotlib.transforms.Transform method), 2873
__array__() (matplotlib.transforms.AffineBase method),

2849
__array__() (matplotlib.transforms.BboxBase method),

2857
__array__() (matplotlib.transforms.Transform method),

2873
__bool__() (matplotlib.markers.MarkerStyle method), 2283
__call__() (matplotlib.colors.BoundaryNorm method),

2000
__call__() (matplotlib.colors.CenteredNorm method), 2005
__call__() (matplotlib.colors.Colormap method), 2002
__call__() (matplotlib.colors.FuncNorm method), 2031
__call__() (matplotlib.colors.LogNorm method), 2019
__call__() (matplotlib.colors.NoNorm method), 2021
__call__() (matplotlib.colors.Normalize method), 2022
__call__() (matplotlib.colors.PowerNorm method), 2025
__call__() (matplotlib.colors.SymLogNorm method), 2027
__call__() (matplotlib.colors.TwoSlopeNorm method),

2029
__call__() (matplotlib.patches.BoxStyle.Circle method),

2349
__call__() (matplotlib.patches.BoxStyle.DArrow method),

2349
__call__() (matplotlib.patches.BoxStyle.LArrow method),

2350
__call__() (matplotlib.patches.BoxStyle.RArrow method),

2350
__call__() (matplotlib.patches.BoxStyle.Round method),

2351
__call__() (matplotlib.patches.BoxStyle.Round4 method),

2352
__call__() (matplotlib.patches.BoxStyle.Roundtooth

method), 2352
__call__() (matplotlib.patches.BoxStyle.Sawtooth method),

2353
__call__() (matplotlib.patches.BoxStyle.Square method),

2354
__call__()

(mpl_toolkits.axes_grid1.axes_divider.AxesLocator
method), 2956

__call__()
(mpl_toolkits.axes_grid1.axes_size.GetExtentHelper
method), 2982

__call__()

(mpl_toolkits.axes_grid1.inset_locator.AnchoredLocatorBase
method), 2987

__call__()
(mpl_toolkits.axes_grid1.inset_locator.InsetPosition
method), 3004

__call__()
(mpl_toolkits.axes_grid1.mpl_axes.Axes.AxisDict
method), 3016

__call__()
(mpl_toolkits.axes_grid1.mpl_axes.SimpleChainedObjects
method), 3019

__call__()
(mpl_toolkits.axisartist.angle_helper.ExtremeFinderCycle
method), 3027

__call__()
(mpl_toolkits.axisartist.angle_helper.FormatterDMS
method), 3028

__call__()
(mpl_toolkits.axisartist.angle_helper.FormatterHMS
method), 3029

__call__() (mpl_toolkits.axisartist.angle_helper.LocatorD
method), 3030

__call__()
(mpl_toolkits.axisartist.angle_helper.LocatorDM
method), 3031

__call__()
(mpl_toolkits.axisartist.angle_helper.LocatorDMS
method), 3031

__call__() (mpl_toolkits.axisartist.angle_helper.LocatorH
method), 3031

__call__()
(mpl_toolkits.axisartist.angle_helper.LocatorHM
method), 3032

__call__()
(mpl_toolkits.axisartist.angle_helper.LocatorHMS
method), 3032

__call__() (mpl_toolkits.axisartist.axislines.Axes method),
3058

__call__()
(mpl_toolkits.axisartist.floating_axes.ExtremeFinderFixed
method), 3070

__call__()
(mpl_toolkits.axisartist.grid_finder.DictFormatter
method), 3074

__call__()
(mpl_toolkits.axisartist.grid_finder.ExtremeFinderSimple

3369

Matplotlib, Release 3.4.3

method), 3074
__call__()

(mpl_toolkits.axisartist.grid_finder.FixedLocator
method), 3075

__call__()
(mpl_toolkits.axisartist.grid_finder.FormatterPrettyPrint
method), 3076

__call__()
(mpl_toolkits.axisartist.grid_finder.MaxNLocator
method), 3078

__copy__() (matplotlib.colors.Colormap method), 2002
__copy__() (matplotlib.transforms.TransformNode method),

2877
__deepcopy__() (matplotlib.transforms.TransformNode

method), 2877
__dict__ (matplotlib.axes.SubplotBase attribute), 1242
__dict__ (matplotlib.colors.Colormap attribute), 2002
__dict__ (matplotlib.colors.LightSource attribute), 2007
__dict__ (matplotlib.colors.Normalize attribute), 2023
__dict__ (matplotlib.gridspec.GridSpecBase attribute),

2233
__dict__ (matplotlib.gridspec.SubplotSpec attribute), 2231
__dict__ (matplotlib.lines.VertexSelector attribute), 2280
__dict__ (matplotlib.markers.MarkerStyle attribute), 2283
__dict__ (matplotlib.transforms.TransformNode attribute),

2877
__dict__

(mpl_toolkits.axes_grid1.axes_divider.AxesLocator
attribute), 2956

__dict__ (mpl_toolkits.axes_grid1.axes_divider.Divider
attribute), 2957

__dict__ (mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase
attribute), 2966

__dict__ (mpl_toolkits.axes_grid1.axes_grid.Grid
attribute), 2968

__dict__ (mpl_toolkits.axes_grid1.axes_rgb.RGBAxes
attribute), 2975

__dict__
(mpl_toolkits.axes_grid1.axes_size.GetExtentHelper
attribute), 2982

__dict__
(mpl_toolkits.axes_grid1.inset_locator.InsetPosition
attribute), 3004

__dict__ (mpl_toolkits.axes_grid1.mpl_axes.Axes.AxisDict
attribute), 3016

__dict__
(mpl_toolkits.axes_grid1.mpl_axes.SimpleChainedObjects
attribute), 3019

__dict__
(mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase
attribute), 3020

__dict__
(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesAuxTransBase
attribute), 3021

__dict__
(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase
attribute), 3022

__dict__
(mpl_toolkits.axisartist.angle_helper.FormatterDMS

attribute), 3028
__dict__ (mpl_toolkits.axisartist.angle_helper.LocatorBase

attribute), 3030
__dict__ (mpl_toolkits.axisartist.axis_artist.AttributeCopier

attribute), 3041
__dict__ (mpl_toolkits.axisartist.axislines.AxisArtistHelper

attribute), 3066
__dict__

(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear
attribute), 3066

__dict__ (mpl_toolkits.axisartist.axislines.GridHelperBase
attribute), 3067

__dict__
(mpl_toolkits.axisartist.floating_axes.FloatingAxesBase
attribute), 3071

__dict__ (mpl_toolkits.axisartist.grid_finder.DictFormatter
attribute), 3074

__dict__
(mpl_toolkits.axisartist.grid_finder.ExtremeFinderSimple
attribute), 3075

__dict__ (mpl_toolkits.axisartist.grid_finder.FixedLocator
attribute), 3075

__dict__
(mpl_toolkits.axisartist.grid_finder.FormatterPrettyPrint
attribute), 3076

__dict__ (mpl_toolkits.axisartist.grid_finder.GridFinder
attribute), 3077

__eq__() (matplotlib.gridspec.SubplotSpec method), 2231
__eq__() (matplotlib.transforms.AffineBase method), 2849
__eq__()

(matplotlib.transforms.CompositeGenericTransform
method), 2866

__eq__() (matplotlib.transforms.TransformWrapper
method), 2878

__format__() (matplotlib.transforms.Bbox method), 2854
__getattr__()

(mpl_toolkits.axes_grid1.mpl_axes.SimpleChainedObjects
method), 3019

__getitem__() (matplotlib.gridspec.GridSpecBase
method), 2233

__getitem__() (mpl_toolkits.axes_grid1.axes_grid.Grid
method), 2968

__getitem__()
(mpl_toolkits.axes_grid1.mpl_axes.Axes.AxisDict
method), 3016

__getstate__() (matplotlib.gridspec.GridSpec method),
2228

__getstate__() (matplotlib.gridspec.SubplotSpec
method), 2231

__getstate__() (matplotlib.transforms.TransformNode
method), 2877

__hash__ (matplotlib.transforms.AffineBase attribute), 2849
__hash__

(matplotlib.transforms.CompositeGenericTransform
attribute), 2866

__hash__ (matplotlib.transforms.TransformWrapper
attribute), 2878

__hash__() (matplotlib.gridspec.SubplotSpec method), 2231
__init__() (matplotlib.animation.AbstractMovieWriter

3370 Index

Matplotlib, Release 3.4.3

method), 1199
__init__() (matplotlib.animation.Animation method), 1160
__init__() (matplotlib.animation.ArtistAnimation method),

1166
__init__() (matplotlib.animation.AVConvBase method),

1207
__init__() (matplotlib.animation.AVConvFileWriter

method), 1194
__init__() (matplotlib.animation.AVConvWriter method),

1189
__init__() (matplotlib.animation.FFMpegBase method),

1207
__init__() (matplotlib.animation.FFMpegFileWriter

method), 1191
__init__() (matplotlib.animation.FFMpegWriter method),

1186
__init__() (matplotlib.animation.FileMovieWriter

method), 1204
__init__() (matplotlib.animation.FuncAnimation method),

1165
__init__() (matplotlib.animation.HTMLWriter method),

1183
__init__() (matplotlib.animation.ImageMagickBase

method), 1208
__init__() (matplotlib.animation.ImageMagickFileWriter

method), 1193
__init__() (matplotlib.animation.ImageMagickWriter

method), 1188
__init__() (matplotlib.animation.MovieWriter method),

1201
__init__() (matplotlib.animation.MovieWriterRegistry

method), 1198
__init__() (matplotlib.animation.PillowWriter method),

1181
__init__() (matplotlib.animation.TimedAnimation

method), 1197
__init__() (matplotlib.artist.ArtistInspector method), 1235
__init__() (matplotlib.axes.SubplotBase method), 1242
__init__() (matplotlib.colors.BoundaryNorm method),

2000
__init__() (matplotlib.colors.CenteredNorm method), 2005
__init__() (matplotlib.colors.Colormap method), 2002
__init__() (matplotlib.colors.FuncNorm method), 2031
__init__() (matplotlib.colors.LightSource method), 2007
__init__() (matplotlib.colors.LinearSegmentedColormap

method), 2014
__init__() (matplotlib.colors.ListedColormap method),

2018
__init__() (matplotlib.colors.LogNorm method), 2020
__init__() (matplotlib.colors.Normalize method), 2023
__init__() (matplotlib.colors.PowerNorm method), 2026
__init__() (matplotlib.colors.SymLogNorm method), 2028
__init__() (matplotlib.colors.TwoSlopeNorm method),

2029
__init__() (matplotlib.gridspec.GridSpec method), 2228
__init__() (matplotlib.gridspec.GridSpecBase method),

2234
__init__() (matplotlib.gridspec.GridSpecFromSubplotSpec

method), 2236

__init__() (matplotlib.gridspec.SubplotSpec method), 2231
__init__() (matplotlib.lines.Line2D method), 2265
__init__() (matplotlib.lines.VertexSelector method), 2280
__init__() (matplotlib.markers.MarkerStyle method), 2283
__init__() (matplotlib.patches.Arc method), 2332
__init__() (matplotlib.patches.Arrow method), 2336
__init__() (matplotlib.patches.ArrowStyle.BarAB method),

2340
__init__() (matplotlib.patches.ArrowStyle.BracketA

method), 2340
__init__() (matplotlib.patches.ArrowStyle.BracketAB

method), 2341
__init__() (matplotlib.patches.ArrowStyle.BracketB

method), 2342
__init__() (matplotlib.patches.ArrowStyle.Curve method),

2342
__init__() (matplotlib.patches.ArrowStyle.CurveA

method), 2343
__init__() (matplotlib.patches.ArrowStyle.CurveAB

method), 2343
__init__() (matplotlib.patches.ArrowStyle.CurveB

method), 2344
__init__() (matplotlib.patches.ArrowStyle.CurveFilledA

method), 2344
__init__() (matplotlib.patches.ArrowStyle.CurveFilledAB

method), 2345
__init__() (matplotlib.patches.ArrowStyle.CurveFilledB

method), 2345
__init__() (matplotlib.patches.ArrowStyle.Fancy method),

2346
__init__() (matplotlib.patches.ArrowStyle.Simple method),

2346
__init__() (matplotlib.patches.ArrowStyle.Wedge method),

2347
__init__() (matplotlib.patches.BoxStyle.Circle method),

2349
__init__() (matplotlib.patches.BoxStyle.DArrow method),

2349
__init__() (matplotlib.patches.BoxStyle.LArrow method),

2350
__init__() (matplotlib.patches.BoxStyle.Round method),

2351
__init__() (matplotlib.patches.BoxStyle.Round4 method),

2352
__init__() (matplotlib.patches.BoxStyle.Sawtooth method),

2353
__init__() (matplotlib.patches.BoxStyle.Square method),

2354
__init__() (matplotlib.patches.Circle method), 2355
__init__() (matplotlib.patches.CirclePolygon method),

2358
__init__() (matplotlib.patches.ConnectionPatch method),

2361
__init__() (matplotlib.patches.ConnectionStyle.Angle

method), 2366
__init__() (matplotlib.patches.ConnectionStyle.Angle3

method), 2366
__init__() (matplotlib.patches.ConnectionStyle.Arc

method), 2367

Index 3371

Matplotlib, Release 3.4.3

__init__() (matplotlib.patches.ConnectionStyle.Arc3
method), 2367

__init__() (matplotlib.patches.ConnectionStyle.Bar
method), 2368

__init__() (matplotlib.patches.Ellipse method), 2370
__init__() (matplotlib.patches.FancyArrow method), 2375
__init__() (matplotlib.patches.FancyArrowPatch method),

2380
__init__() (matplotlib.patches.FancyBboxPatch method),

2388
__init__() (matplotlib.patches.Patch method), 2394
__init__() (matplotlib.patches.PathPatch method), 2405
__init__() (matplotlib.patches.Polygon method), 2411
__init__() (matplotlib.patches.Rectangle method), 2414
__init__() (matplotlib.patches.RegularPolygon method),

2419
__init__() (matplotlib.patches.Shadow method), 2422
__init__() (matplotlib.patches.StepPatch method), 2408
__init__() (matplotlib.patches.Wedge method), 2425
__init__() (matplotlib.quiver.Barbs method), 2744
__init__() (matplotlib.quiver.Quiver method), 2731
__init__() (matplotlib.quiver.QuiverKey method), 2738
__init__() (matplotlib.transforms.Affine2D method), 2846
__init__() (matplotlib.transforms.AffineBase method),

2849
__init__() (matplotlib.transforms.AffineDeltaTransform

method), 2852
__init__() (matplotlib.transforms.Bbox method), 2854
__init__() (matplotlib.transforms.BboxTransform method),

2861
__init__() (matplotlib.transforms.BboxTransformFrom

method), 2862
__init__() (matplotlib.transforms.BboxTransformTo

method), 2862
__init__() (matplotlib.transforms.BlendedAffine2D

method), 2863
__init__()

(matplotlib.transforms.BlendedGenericTransform
method), 2863

__init__() (matplotlib.transforms.CompositeAffine2D
method), 2865

__init__()
(matplotlib.transforms.CompositeGenericTransform
method), 2866

__init__() (matplotlib.transforms.LockableBbox method),
2871

__init__() (matplotlib.transforms.ScaledTranslation
method), 2872

__init__() (matplotlib.transforms.TransformedBbox
method), 2879

__init__() (matplotlib.transforms.TransformedPatchPath
method), 2880

__init__() (matplotlib.transforms.TransformedPath
method), 2880

__init__() (matplotlib.transforms.TransformNode method),
2877

__init__() (matplotlib.transforms.TransformWrapper
method), 2878

__init__()

(mpl_toolkits.axes_grid1.anchored_artists.AnchoredAuxTransformBox
method), 2934

__init__()
(mpl_toolkits.axes_grid1.anchored_artists.AnchoredDirectionArrows
method), 2939

__init__()
(mpl_toolkits.axes_grid1.anchored_artists.AnchoredDrawingArea
method), 2944

__init__()
(mpl_toolkits.axes_grid1.anchored_artists.AnchoredEllipse
method), 2946

__init__()
(mpl_toolkits.axes_grid1.anchored_artists.AnchoredSizeBar
method), 2950

__init__()
(mpl_toolkits.axes_grid1.axes_divider.AxesDivider
method), 2953

__init__()
(mpl_toolkits.axes_grid1.axes_divider.AxesLocator
method), 2956

__init__() (mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2957

__init__()
(mpl_toolkits.axes_grid1.axes_divider.SubplotDivider
method), 2962

__init__()
(mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase
method), 2966

__init__() (mpl_toolkits.axes_grid1.axes_grid.Grid
method), 2968

__init__() (mpl_toolkits.axes_grid1.axes_grid.ImageGrid
method), 2972

__init__() (mpl_toolkits.axes_grid1.axes_rgb.RGBAxes
method), 2975

__init__()
(mpl_toolkits.axes_grid1.axes_rgb.RGBAxesBase
method), 2977

__init__() (mpl_toolkits.axes_grid1.axes_size.Add
method), 2980

__init__() (mpl_toolkits.axes_grid1.axes_size.AddList
method), 2980

__init__() (mpl_toolkits.axes_grid1.axes_size.AxesX
method), 2980

__init__() (mpl_toolkits.axes_grid1.axes_size.AxesY
method), 2981

__init__() (mpl_toolkits.axes_grid1.axes_size.Fixed
method), 2981

__init__() (mpl_toolkits.axes_grid1.axes_size.Fraction
method), 2982

__init__()
(mpl_toolkits.axes_grid1.axes_size.GetExtentHelper
method), 2982

__init__() (mpl_toolkits.axes_grid1.axes_size.MaxExtent
method), 2983

__init__() (mpl_toolkits.axes_grid1.axes_size.MaxHeight
method), 2983

__init__() (mpl_toolkits.axes_grid1.axes_size.MaxWidth
method), 2983

__init__() (mpl_toolkits.axes_grid1.axes_size.Padded

3372 Index

Matplotlib, Release 3.4.3

method), 2984
__init__() (mpl_toolkits.axes_grid1.axes_size.Scaled

method), 2984
__init__()

(mpl_toolkits.axes_grid1.axes_size.SizeFromFunc
method), 2985

__init__()
(mpl_toolkits.axes_grid1.inset_locator.AnchoredLocatorBase
method), 2987

__init__()
(mpl_toolkits.axes_grid1.inset_locator.AnchoredSizeLocator
method), 2990

__init__()
(mpl_toolkits.axes_grid1.inset_locator.AnchoredZoomLocator
method), 2993

__init__()
(mpl_toolkits.axes_grid1.inset_locator.BboxConnector
method), 2995

__init__()
(mpl_toolkits.axes_grid1.inset_locator.BboxConnectorPatch
method), 3000

__init__()
(mpl_toolkits.axes_grid1.inset_locator.BboxPatch
method), 3002

__init__()
(mpl_toolkits.axes_grid1.inset_locator.InsetPosition
method), 3004

__init__()
(mpl_toolkits.axes_grid1.mpl_axes.Axes.AxisDict
method), 3016

__init__()
(mpl_toolkits.axes_grid1.mpl_axes.SimpleAxisArtist
method), 3018

__init__()
(mpl_toolkits.axes_grid1.mpl_axes.SimpleChainedObjects
method), 3019

__init__()
(mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase
method), 3020

__init__()
(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesAuxTransBase
method), 3021

__init__()
(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase
method), 3022

__init__()
(mpl_toolkits.axisartist.angle_helper.ExtremeFinderCycle
method), 3027

__init__()
(mpl_toolkits.axisartist.angle_helper.LocatorBase
method), 3030

__init__() (mpl_toolkits.axisartist.axis_artist.AxisArtist
method), 3041

__init__() (mpl_toolkits.axisartist.axis_artist.AxisLabel
method), 3045

__init__()
(mpl_toolkits.axisartist.axis_artist.GridlinesCollection
method), 3046

__init__() (mpl_toolkits.axisartist.axis_artist.LabelBase

method), 3048
__init__() (mpl_toolkits.axisartist.axis_artist.TickLabels

method), 3051
__init__() (mpl_toolkits.axisartist.axis_artist.Ticks

method), 3052
__init__()

(mpl_toolkits.axisartist.axisline_style.AxislineStyle.SimpleArrow
method), 3055

__init__() (mpl_toolkits.axisartist.axislines.Axes method),
3058

__init__()
(mpl_toolkits.axisartist.axislines.AxisArtistHelper.Fixed
method), 3065

__init__()
(mpl_toolkits.axisartist.axislines.AxisArtistHelper.Floating
method), 3065

__init__()
(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear.Fixed
method), 3066

__init__()
(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear.Floating
method), 3066

__init__()
(mpl_toolkits.axisartist.axislines.GridHelperBase
method), 3067

__init__()
(mpl_toolkits.axisartist.axislines.GridHelperRectlinear
method), 3068

__init__()
(mpl_toolkits.axisartist.floating_axes.ExtremeFinderFixed
method), 3070

__init__()
(mpl_toolkits.axisartist.floating_axes.FixedAxisArtistHelper
method), 3070

__init__()
(mpl_toolkits.axisartist.floating_axes.FloatingAxesBase
method), 3071

__init__()
(mpl_toolkits.axisartist.floating_axes.GridHelperCurveLinear
method), 3072

__init__()
(mpl_toolkits.axisartist.grid_finder.DictFormatter
method), 3074

__init__()
(mpl_toolkits.axisartist.grid_finder.ExtremeFinderSimple
method), 3075

__init__()
(mpl_toolkits.axisartist.grid_finder.FixedLocator
method), 3075

__init__()
(mpl_toolkits.axisartist.grid_finder.FormatterPrettyPrint
method), 3076

__init__() (mpl_toolkits.axisartist.grid_finder.GridFinder
method), 3077

__init__()
(mpl_toolkits.axisartist.grid_finder.MaxNLocator
method), 3078

__init__()
(mpl_toolkits.axisartist.grid_helper_curvelinear.FixedAxisArtistHelper

Index 3373

Matplotlib, Release 3.4.3

method), 3080
__init__()

(mpl_toolkits.axisartist.grid_helper_curvelinear.FloatingAxisArtistHelper
method), 3081

__init__()
(mpl_toolkits.axisartist.grid_helper_curvelinear.GridHelperCurveLinear
method), 3082

__init__() (mpl_toolkits.mplot3d.art3d.Line3D method),
3134

__init__() (mpl_toolkits.mplot3d.art3d.Patch3D method),
3138

__init__() (mpl_toolkits.mplot3d.art3d.Patch3DCollection
method), 3139

__init__() (mpl_toolkits.mplot3d.art3d.Path3DCollection
method), 3140

__init__() (mpl_toolkits.mplot3d.art3d.PathPatch3D
method), 3142

__init__() (mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 3144

__init__() (mpl_toolkits.mplot3d.art3d.Text3D method),
3148

__init__() (mpl_toolkits.mplot3d.axes3d.Axes3D method),
3087

__init__() (mpl_toolkits.mplot3d.axis3d.Axis method),
3131

__init_subclass__() (matplotlib.transforms.Transform
class method), 2873

__len__() (mpl_toolkits.axes_grid1.axes_grid.Grid
method), 2969

__module__ (matplotlib.axes.SubplotBase attribute), 1242
__module__ (matplotlib.colors.BoundaryNorm attribute),

2001
__module__ (matplotlib.colors.CenteredNorm attribute),

2006
__module__ (matplotlib.colors.Colormap attribute), 2003
__module__ (matplotlib.colors.FuncNorm attribute), 2032
__module__ (matplotlib.colors.LightSource attribute), 2007
__module__ (matplotlib.colors.LinearSegmentedColormap

attribute), 2014
__module__ (matplotlib.colors.ListedColormap attribute),

2018
__module__ (matplotlib.colors.LogNorm attribute), 2020
__module__ (matplotlib.colors.NoNorm attribute), 2022
__module__ (matplotlib.colors.Normalize attribute), 2023
__module__ (matplotlib.colors.PowerNorm attribute), 2026
__module__ (matplotlib.colors.SymLogNorm attribute),

2028
__module__ (matplotlib.colors.TwoSlopeNorm attribute),

2030
__module__ (matplotlib.gridspec.GridSpec attribute), 2229
__module__ (matplotlib.gridspec.GridSpecBase attribute),

2234
__module__ (matplotlib.gridspec.GridSpecFromSubplotSpec

attribute), 2236
__module__ (matplotlib.gridspec.SubplotSpec attribute),

2231
__module__ (matplotlib.lines.Line2D attribute), 2267
__module__ (matplotlib.lines.VertexSelector attribute), 2280

__module__ (matplotlib.markers.MarkerStyle attribute),
2284

__module__ (matplotlib.patches.Arc attribute), 2333
__module__ (matplotlib.patches.Arrow attribute), 2337
__module__ (matplotlib.patches.ArrowStyle attribute), 2347
__module__ (matplotlib.patches.ArrowStyle.BarAB

attribute), 2340
__module__ (matplotlib.patches.ArrowStyle.BracketA

attribute), 2340
__module__ (matplotlib.patches.ArrowStyle.BracketAB

attribute), 2341
__module__ (matplotlib.patches.ArrowStyle.BracketB

attribute), 2342
__module__ (matplotlib.patches.ArrowStyle.Curve

attribute), 2342
__module__ (matplotlib.patches.ArrowStyle.CurveA

attribute), 2343
__module__ (matplotlib.patches.ArrowStyle.CurveAB

attribute), 2343
__module__ (matplotlib.patches.ArrowStyle.CurveB

attribute), 2344
__module__ (matplotlib.patches.ArrowStyle.CurveFilledA

attribute), 2344
__module__ (matplotlib.patches.ArrowStyle.CurveFilledAB

attribute), 2345
__module__ (matplotlib.patches.ArrowStyle.CurveFilledB

attribute), 2345
__module__ (matplotlib.patches.ArrowStyle.Fancy

attribute), 2346
__module__ (matplotlib.patches.ArrowStyle.Simple

attribute), 2347
__module__ (matplotlib.patches.ArrowStyle.Wedge

attribute), 2347
__module__ (matplotlib.patches.BoxStyle attribute), 2354
__module__ (matplotlib.patches.BoxStyle.Circle attribute),

2349
__module__ (matplotlib.patches.BoxStyle.DArrow attribute),

2350
__module__ (matplotlib.patches.BoxStyle.LArrow attribute),

2350
__module__ (matplotlib.patches.BoxStyle.RArrow attribute),

2351
__module__ (matplotlib.patches.BoxStyle.Round attribute),

2351
__module__ (matplotlib.patches.BoxStyle.Round4 attribute),

2352
__module__ (matplotlib.patches.BoxStyle.Roundtooth

attribute), 2353
__module__ (matplotlib.patches.BoxStyle.Sawtooth

attribute), 2353
__module__ (matplotlib.patches.BoxStyle.Square attribute),

2354
__module__ (matplotlib.patches.Circle attribute), 2356
__module__ (matplotlib.patches.CirclePolygon attribute),

2359
__module__ (matplotlib.patches.ConnectionPatch attribute),

2363
__module__ (matplotlib.patches.ConnectionStyle attribute),

2368

3374 Index

Matplotlib, Release 3.4.3

__module__ (matplotlib.patches.ConnectionStyle.Angle
attribute), 2366

__module__ (matplotlib.patches.ConnectionStyle.Angle3
attribute), 2366

__module__ (matplotlib.patches.ConnectionStyle.Arc
attribute), 2367

__module__ (matplotlib.patches.ConnectionStyle.Arc3
attribute), 2367

__module__ (matplotlib.patches.ConnectionStyle.Bar
attribute), 2368

__module__ (matplotlib.patches.Ellipse attribute), 2371
__module__ (matplotlib.patches.FancyArrow attribute),

2376
__module__ (matplotlib.patches.FancyArrowPatch

attribute), 2383
__module__ (matplotlib.patches.FancyBboxPatch attribute),

2390
__module__ (matplotlib.patches.Patch attribute), 2395
__module__ (matplotlib.patches.PathPatch attribute), 2406
__module__ (matplotlib.patches.Polygon attribute), 2411
__module__ (matplotlib.patches.Rectangle attribute), 2416
__module__ (matplotlib.patches.RegularPolygon attribute),

2420
__module__ (matplotlib.patches.Shadow attribute), 2423
__module__ (matplotlib.patches.StepPatch attribute), 2409
__module__ (matplotlib.patches.Wedge attribute), 2425
__module__ (matplotlib.quiver.Barbs attribute), 2748
__module__ (matplotlib.quiver.Quiver attribute), 2735
__module__ (matplotlib.quiver.QuiverKey attribute), 2739
__module__ (matplotlib.transforms.Affine2D attribute), 2846
__module__ (matplotlib.transforms.Affine2DBase attribute),

2848
__module__ (matplotlib.transforms.AffineBase attribute),

2850
__module__ (matplotlib.transforms.AffineDeltaTransform

attribute), 2852
__module__ (matplotlib.transforms.Bbox attribute), 2854
__module__ (matplotlib.transforms.BboxBase attribute),

2857
__module__ (matplotlib.transforms.BboxTransform

attribute), 2861
__module__ (matplotlib.transforms.BboxTransformFrom

attribute), 2862
__module__ (matplotlib.transforms.BboxTransformTo

attribute), 2862
__module__

(matplotlib.transforms.BboxTransformToMaxOnly
attribute), 2863

__module__ (matplotlib.transforms.BlendedAffine2D
attribute), 2863

__module__
(matplotlib.transforms.BlendedGenericTransform
attribute), 2864

__module__ (matplotlib.transforms.CompositeAffine2D
attribute), 2865

__module__
(matplotlib.transforms.CompositeGenericTransform
attribute), 2866

__module__ (matplotlib.transforms.IdentityTransform
attribute), 2868

__module__ (matplotlib.transforms.LockableBbox attribute),
2871

__module__ (matplotlib.transforms.ScaledTranslation
attribute), 2872

__module__ (matplotlib.transforms.Transform attribute),
2873

__module__ (matplotlib.transforms.TransformedBbox
attribute), 2879

__module__ (matplotlib.transforms.TransformedPatchPath
attribute), 2880

__module__ (matplotlib.transforms.TransformedPath
attribute), 2880

__module__ (matplotlib.transforms.TransformNode
attribute), 2877

__module__ (matplotlib.transforms.TransformWrapper
attribute), 2878

__module__
(mpl_toolkits.axes_grid1.anchored_artists.AnchoredAuxTransformBox
attribute), 2935

__module__
(mpl_toolkits.axes_grid1.anchored_artists.AnchoredDirectionArrows
attribute), 2942

__module__
(mpl_toolkits.axes_grid1.anchored_artists.AnchoredDrawingArea
attribute), 2945

__module__
(mpl_toolkits.axes_grid1.anchored_artists.AnchoredEllipse
attribute), 2948

__module__
(mpl_toolkits.axes_grid1.anchored_artists.AnchoredSizeBar
attribute), 2952

__module__
(mpl_toolkits.axes_grid1.axes_divider.AxesDivider
attribute), 2954

__module__
(mpl_toolkits.axes_grid1.axes_divider.AxesLocator
attribute), 2956

__module__ (mpl_toolkits.axes_grid1.axes_divider.Divider
attribute), 2958

__module__
(mpl_toolkits.axes_grid1.axes_divider.HBoxDivider
attribute), 2960

__module__
(mpl_toolkits.axes_grid1.axes_divider.SubplotDivider
attribute), 2962

__module__
(mpl_toolkits.axes_grid1.axes_divider.VBoxDivider
attribute), 2963

__module__ (mpl_toolkits.axes_grid1.axes_grid.CbarAxes
attribute), 2966

__module__
(mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase
attribute), 2966

__module__ (mpl_toolkits.axes_grid1.axes_grid.Grid
attribute), 2969

__module__ (mpl_toolkits.axes_grid1.axes_grid.ImageGrid
attribute), 2974

Index 3375

Matplotlib, Release 3.4.3

__module__ (mpl_toolkits.axes_grid1.axes_rgb.RGBAxes
attribute), 2976

__module__
(mpl_toolkits.axes_grid1.axes_rgb.RGBAxesBase
attribute), 2978

__module__ (mpl_toolkits.axes_grid1.axes_size.Add
attribute), 2980

__module__ (mpl_toolkits.axes_grid1.axes_size.AddList
attribute), 2980

__module__ (mpl_toolkits.axes_grid1.axes_size.AxesX
attribute), 2980

__module__ (mpl_toolkits.axes_grid1.axes_size.AxesY
attribute), 2981

__module__ (mpl_toolkits.axes_grid1.axes_size.Fixed
attribute), 2981

__module__ (mpl_toolkits.axes_grid1.axes_size.Fraction
attribute), 2982

__module__
(mpl_toolkits.axes_grid1.axes_size.GetExtentHelper
attribute), 2982

__module__ (mpl_toolkits.axes_grid1.axes_size.MaxExtent
attribute), 2983

__module__ (mpl_toolkits.axes_grid1.axes_size.MaxHeight
attribute), 2983

__module__ (mpl_toolkits.axes_grid1.axes_size.MaxWidth
attribute), 2983

__module__ (mpl_toolkits.axes_grid1.axes_size.Padded
attribute), 2984

__module__ (mpl_toolkits.axes_grid1.axes_size.Scaled
attribute), 2984

__module__
(mpl_toolkits.axes_grid1.axes_size.SizeFromFunc
attribute), 2985

__module__
(mpl_toolkits.axes_grid1.inset_locator.AnchoredLocatorBase
attribute), 2988

__module__
(mpl_toolkits.axes_grid1.inset_locator.AnchoredSizeLocator
attribute), 2991

__module__
(mpl_toolkits.axes_grid1.inset_locator.AnchoredZoomLocator
attribute), 2994

__module__
(mpl_toolkits.axes_grid1.inset_locator.BboxConnector
attribute), 2997

__module__
(mpl_toolkits.axes_grid1.inset_locator.BboxConnectorPatch
attribute), 3001

__module__
(mpl_toolkits.axes_grid1.inset_locator.BboxPatch
attribute), 3003

__module__
(mpl_toolkits.axes_grid1.inset_locator.InsetPosition
attribute), 3005

__module__ (mpl_toolkits.axes_grid1.mpl_axes.Axes
attribute), 3016

__module__
(mpl_toolkits.axes_grid1.mpl_axes.Axes.AxisDict
attribute), 3016

__module__
(mpl_toolkits.axes_grid1.mpl_axes.SimpleAxisArtist
attribute), 3018

__module__
(mpl_toolkits.axes_grid1.mpl_axes.SimpleChainedObjects
attribute), 3019

__module__
(mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase
attribute), 3020

__module__
(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesAuxTransBase
attribute), 3021

__module__
(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase
attribute), 3022

__module__
(mpl_toolkits.axisartist.angle_helper.ExtremeFinderCycle
attribute), 3028

__module__
(mpl_toolkits.axisartist.angle_helper.FormatterDMS
attribute), 3028

__module__
(mpl_toolkits.axisartist.angle_helper.FormatterHMS
attribute), 3029

__module__
(mpl_toolkits.axisartist.angle_helper.LocatorBase
attribute), 3030

__module__ (mpl_toolkits.axisartist.angle_helper.LocatorD
attribute), 3030

__module__
(mpl_toolkits.axisartist.angle_helper.LocatorDM
attribute), 3031

__module__
(mpl_toolkits.axisartist.angle_helper.LocatorDMS
attribute), 3031

__module__ (mpl_toolkits.axisartist.angle_helper.LocatorH
attribute), 3031

__module__
(mpl_toolkits.axisartist.angle_helper.LocatorHM
attribute), 3032

__module__
(mpl_toolkits.axisartist.angle_helper.LocatorHMS
attribute), 3032

__module__ (mpl_toolkits.axisartist.axes_grid.CbarAxes
attribute), 3034

__module__ (mpl_toolkits.axisartist.axes_grid.Grid
attribute), 3036

__module__ (mpl_toolkits.axisartist.axes_grid.ImageGrid
attribute), 3038

__module__ (mpl_toolkits.axisartist.axes_rgb.RGBAxes
attribute), 3039

__module__
(mpl_toolkits.axisartist.axis_artist.AttributeCopier
attribute), 3041

__module__ (mpl_toolkits.axisartist.axis_artist.AxisArtist
attribute), 3042

__module__ (mpl_toolkits.axisartist.axis_artist.AxisLabel
attribute), 3045

__module__

3376 Index

Matplotlib, Release 3.4.3

(mpl_toolkits.axisartist.axis_artist.GridlinesCollection
attribute), 3047

__module__ (mpl_toolkits.axisartist.axis_artist.LabelBase
attribute), 3050

__module__ (mpl_toolkits.axisartist.axis_artist.TickLabels
attribute), 3051

__module__ (mpl_toolkits.axisartist.axis_artist.Ticks
attribute), 3052

__module__
(mpl_toolkits.axisartist.axisline_style.AxislineStyle
attribute), 3055

__module__
(mpl_toolkits.axisartist.axisline_style.AxislineStyle.FilledArrow
attribute), 3054

__module__
(mpl_toolkits.axisartist.axisline_style.AxislineStyle.SimpleArrow
attribute), 3055

__module__ (mpl_toolkits.axisartist.axislines.Axes
attribute), 3060

__module__ (mpl_toolkits.axisartist.axislines.AxesZero
attribute), 3064

__module__
(mpl_toolkits.axisartist.axislines.AxisArtistHelper
attribute), 3066

__module__
(mpl_toolkits.axisartist.axislines.AxisArtistHelper.Fixed
attribute), 3065

__module__
(mpl_toolkits.axisartist.axislines.AxisArtistHelper.Floating
attribute), 3065

__module__
(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear
attribute), 3067

__module__
(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear.Fixed
attribute), 3066

__module__
(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear.Floating
attribute), 3066

__module__
(mpl_toolkits.axisartist.axislines.GridHelperBase
attribute), 3067

__module__
(mpl_toolkits.axisartist.axislines.GridHelperRectlinear
attribute), 3068

__module__
(mpl_toolkits.axisartist.floating_axes.ExtremeFinderFixed
attribute), 3070

__module__
(mpl_toolkits.axisartist.floating_axes.FixedAxisArtistHelper
attribute), 3071

__module__
(mpl_toolkits.axisartist.floating_axes.FloatingAxesBase
attribute), 3071

__module__
(mpl_toolkits.axisartist.floating_axes.FloatingAxisArtistHelper
attribute), 3072

__module__
(mpl_toolkits.axisartist.floating_axes.GridHelperCurveLinear

attribute), 3072
__module__

(mpl_toolkits.axisartist.grid_finder.DictFormatter
attribute), 3074

__module__
(mpl_toolkits.axisartist.grid_finder.ExtremeFinderSimple
attribute), 3075

__module__
(mpl_toolkits.axisartist.grid_finder.FixedLocator
attribute), 3075

__module__
(mpl_toolkits.axisartist.grid_finder.FormatterPrettyPrint
attribute), 3076

__module__ (mpl_toolkits.axisartist.grid_finder.GridFinder
attribute), 3077

__module__
(mpl_toolkits.axisartist.grid_finder.MaxNLocator
attribute), 3079

__module__
(mpl_toolkits.axisartist.grid_helper_curvelinear.FixedAxisArtistHelper
attribute), 3080

__module__
(mpl_toolkits.axisartist.grid_helper_curvelinear.FloatingAxisArtistHelper
attribute), 3081

__module__
(mpl_toolkits.axisartist.grid_helper_curvelinear.GridHelperCurveLinear
attribute), 3082

__module__ (mpl_toolkits.mplot3d.art3d.Line3D attribute),
3134

__module__ (mpl_toolkits.mplot3d.art3d.Line3DCollection
attribute), 3136

__module__ (mpl_toolkits.mplot3d.art3d.Patch3D attribute),
3138

__module__ (mpl_toolkits.mplot3d.art3d.Patch3DCollection
attribute), 3139

__module__ (mpl_toolkits.mplot3d.art3d.Path3DCollection
attribute), 3140

__module__ (mpl_toolkits.mplot3d.art3d.PathPatch3D
attribute), 3143

__module__ (mpl_toolkits.mplot3d.art3d.Poly3DCollection
attribute), 3145

__module__ (mpl_toolkits.mplot3d.art3d.Text3D attribute),
3149

__module__ (mpl_toolkits.mplot3d.axes3d.Axes3D
attribute), 3089

__module__ (mpl_toolkits.mplot3d.axis3d.Axis attribute),
3131

__reduce__() (matplotlib.axes.SubplotBase method), 1242
__repr__() (matplotlib.gridspec.GridSpecBase method),

2234
__repr__() (matplotlib.gridspec.SubplotSpec method), 2231
__repr__() (matplotlib.transforms.Bbox method), 2854
__setstate__() (matplotlib.transforms.TransformNode

method), 2877
__slotnames__ (matplotlib.colors.BoundaryNorm

attribute), 2001
__slotnames__ (matplotlib.colors.CenteredNorm

attribute), 2006
__slotnames__ (matplotlib.colors.FuncNorm attribute),

Index 3377

Matplotlib, Release 3.4.3

2032
__slotnames__ (matplotlib.colors.LogNorm attribute),

2020
__slotnames__ (matplotlib.colors.NoNorm attribute), 2022
__slotnames__ (matplotlib.colors.Normalize attribute),

2023
__slotnames__ (matplotlib.colors.PowerNorm attribute),

2026
__slotnames__ (matplotlib.colors.SymLogNorm attribute),

2028
__slotnames__ (matplotlib.colors.TwoSlopeNorm

attribute), 2030
__str__() (matplotlib.lines.Line2D method), 2267
__str__() (matplotlib.patches.Arc method), 2334
__str__() (matplotlib.patches.Arrow method), 2337
__str__() (matplotlib.patches.Circle method), 2356
__str__() (matplotlib.patches.CirclePolygon method), 2359
__str__() (matplotlib.patches.ConnectionPatch method),

2364
__str__() (matplotlib.patches.Ellipse method), 2371
__str__() (matplotlib.patches.FancyArrow method), 2376
__str__() (matplotlib.patches.FancyArrowPatch method),

2383
__str__() (matplotlib.patches.FancyBboxPatch method),

2390
__str__() (matplotlib.patches.PathPatch method), 2406
__str__() (matplotlib.patches.Polygon method), 2412
__str__() (matplotlib.patches.Rectangle method), 2416
__str__() (matplotlib.patches.RegularPolygon method),

2420
__str__() (matplotlib.patches.Shadow method), 2423
__str__() (matplotlib.patches.Wedge method), 2426
__str__() (matplotlib.transforms.Affine2D method), 2846
__str__() (matplotlib.transforms.AffineDeltaTransform

method), 2852
__str__() (matplotlib.transforms.Bbox method), 2854
__str__() (matplotlib.transforms.BboxTransform method),

2861
__str__() (matplotlib.transforms.BboxTransformFrom

method), 2862
__str__() (matplotlib.transforms.BboxTransformTo

method), 2862
__str__() (matplotlib.transforms.CompositeAffine2D

method), 2865
__str__()

(matplotlib.transforms.CompositeGenericTransform
method), 2866

__str__() (matplotlib.transforms.IdentityTransform
method), 2868

__str__() (matplotlib.transforms.LockableBbox method),
2871

__str__() (matplotlib.transforms.ScaledTranslation
method), 2872

__str__() (matplotlib.transforms.TransformedBbox
method), 2879

__str__() (matplotlib.transforms.TransformWrapper
method), 2878

__sub__() (matplotlib.transforms.Transform method), 2873
__weakref__ (matplotlib.axes.SubplotBase attribute), 1242

__weakref__ (matplotlib.colors.Colormap attribute), 2003
__weakref__ (matplotlib.colors.LightSource attribute),

2007
__weakref__ (matplotlib.colors.Normalize attribute), 2023
__weakref__ (matplotlib.gridspec.GridSpecBase attribute),

2234
__weakref__ (matplotlib.gridspec.SubplotSpec attribute),

2231
__weakref__ (matplotlib.lines.VertexSelector attribute),

2280
__weakref__ (matplotlib.markers.MarkerStyle attribute),

2284
__weakref__ (matplotlib.transforms.TransformNode

attribute), 2877
__weakref__

(mpl_toolkits.axes_grid1.axes_divider.AxesLocator
attribute), 2956

__weakref__ (mpl_toolkits.axes_grid1.axes_divider.Divider
attribute), 2958

__weakref__
(mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase
attribute), 2966

__weakref__ (mpl_toolkits.axes_grid1.axes_grid.Grid
attribute), 2969

__weakref__ (mpl_toolkits.axes_grid1.axes_rgb.RGBAxes
attribute), 2976

__weakref__
(mpl_toolkits.axes_grid1.axes_size.GetExtentHelper
attribute), 2982

__weakref__
(mpl_toolkits.axes_grid1.inset_locator.InsetPosition
attribute), 3005

__weakref__
(mpl_toolkits.axes_grid1.mpl_axes.Axes.AxisDict
attribute), 3016

__weakref__
(mpl_toolkits.axes_grid1.mpl_axes.SimpleChainedObjects
attribute), 3019

__weakref__
(mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase
attribute), 3020

__weakref__
(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesAuxTransBase
attribute), 3021

__weakref__
(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase
attribute), 3022

__weakref__
(mpl_toolkits.axisartist.angle_helper.FormatterDMS
attribute), 3028

__weakref__
(mpl_toolkits.axisartist.angle_helper.LocatorBase
attribute), 3030

__weakref__
(mpl_toolkits.axisartist.axis_artist.AttributeCopier
attribute), 3041

__weakref__
(mpl_toolkits.axisartist.axislines.AxisArtistHelper
attribute), 3066

3378 Index

Matplotlib, Release 3.4.3

__weakref__
(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear
attribute), 3067

__weakref__
(mpl_toolkits.axisartist.axislines.GridHelperBase
attribute), 3067

__weakref__
(mpl_toolkits.axisartist.floating_axes.FloatingAxesBase
attribute), 3071

__weakref__
(mpl_toolkits.axisartist.grid_finder.DictFormatter
attribute), 3074

__weakref__
(mpl_toolkits.axisartist.grid_finder.ExtremeFinderSimple
attribute), 3075

__weakref__
(mpl_toolkits.axisartist.grid_finder.FixedLocator
attribute), 3075

__weakref__
(mpl_toolkits.axisartist.grid_finder.FormatterPrettyPrint
attribute), 3076

__weakref__
(mpl_toolkits.axisartist.grid_finder.GridFinder
attribute), 3077

A
AbstractMovieWriter (class in matplotlib.animation),

1199
AbstractPathEffect (class in matplotlib.patheffects),

2437
acorr() (in module matplotlib.pyplot), 2449
acorr() (matplotlib.axes.Axes method), 1310
active() (matplotlib.widgets.Widget property), 2919
active_toggle()

(matplotlib.backend_managers.ToolManager
property), 1604

Add (class in mpl_toolkits.axes_grid1.axes_size), 2980
add() (matplotlib.backends.backend_pgf.TmpDirCleaner

static method), 1656
add() (matplotlib.sankey.Sankey method), 2754
add_artist() (matplotlib.axes.Axes method), 1511
add_artist() (matplotlib.figure.Figure method), 2076
add_artist() (matplotlib.figure.FigureBase method), 2129
add_artist() (matplotlib.figure.SubFigure method), 2173
add_artist() (matplotlib.offsetbox.AuxTransformBox

method), 2318
add_artist() (matplotlib.offsetbox.DrawingArea method),

2320
add_artist()

(mpl_toolkits.axes_grid1.axes_size.MaxExtent
method), 2983

add_auto_adjustable_area()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2958

add_axes() (matplotlib.figure.Figure method), 2077
add_axes() (matplotlib.figure.FigureBase method), 2130
add_axes() (matplotlib.figure.SubFigure method), 2173
add_axobserver() (matplotlib.figure.Figure method),

2079

add_callback() (matplotlib.artist.Artist method), 1211
add_callback() (matplotlib.axes.Axes method), 1522
add_callback() (matplotlib.backend_bases.TimerBase

method), 1600
add_callback()

(matplotlib.collections.AsteriskPolygonCollection
method), 1700

add_callback()
(matplotlib.collections.BrokenBarHCollection
method), 1720

add_callback() (matplotlib.collections.CircleCollection
method), 1740

add_callback() (matplotlib.collections.Collection
method), 1762

add_callback() (matplotlib.collections.EllipseCollection
method), 1781

add_callback() (matplotlib.collections.EventCollection
method), 1802

add_callback() (matplotlib.collections.LineCollection
method), 1823

add_callback() (matplotlib.collections.PatchCollection
method), 1844

add_callback() (matplotlib.collections.PathCollection
method), 1863

add_callback() (matplotlib.collections.PolyCollection
method), 1884

add_callback() (matplotlib.collections.QuadMesh
method), 1907

add_callback()
(matplotlib.collections.RegularPolyCollection
method), 1927

add_callback()
(matplotlib.collections.StarPolygonCollection
method), 1947

add_callback() (matplotlib.collections.TriMesh method),
1968

add_callback() (matplotlib.container.Container method),
2037

add_callback() (matplotlib.figure.Figure method), 2079
add_callback() (matplotlib.figure.FigureBase method),

2132
add_callback() (matplotlib.figure.SubFigure method),

2176
add_cell() (matplotlib.table.Table method), 2784
add_checker() (matplotlib.cm.ScalarMappable method),

1694
add_checker()

(matplotlib.collections.AsteriskPolygonCollection
method), 1700

add_checker()
(matplotlib.collections.BrokenBarHCollection
method), 1720

add_checker() (matplotlib.collections.CircleCollection
method), 1740

add_checker() (matplotlib.collections.Collection method),
1762

add_checker() (matplotlib.collections.EllipseCollection
method), 1782

add_checker() (matplotlib.collections.EventCollection

Index 3379

Matplotlib, Release 3.4.3

method), 1803
add_checker() (matplotlib.collections.LineCollection

method), 1824
add_checker() (matplotlib.collections.PatchCollection

method), 1844
add_checker() (matplotlib.collections.PathCollection

method), 1864
add_checker() (matplotlib.collections.PolyCollection

method), 1885
add_checker() (matplotlib.collections.QuadMesh method),

1907
add_checker()

(matplotlib.collections.RegularPolyCollection
method), 1927

add_checker()
(matplotlib.collections.StarPolygonCollection
method), 1947

add_checker() (matplotlib.collections.TriMesh method),
1969

add_child_axes() (matplotlib.axes.Axes method), 1512
add_click()

(matplotlib.blocking_input.BlockingContourLabeler
method), 1674

add_click()
(matplotlib.blocking_input.BlockingMouseInput
method), 1676

add_collection() (matplotlib.axes.Axes method), 1513
add_collection3d() (mpl_toolkits.mplot3d.Axes3D

method), 397
add_collection3d()

(mpl_toolkits.mplot3d.axes3d.Axes3D method),
3089

add_container() (matplotlib.axes.Axes method), 1513
add_contour_set()

(mpl_toolkits.mplot3d.axes3d.Axes3D method),
3089

add_contourf_set()
(mpl_toolkits.mplot3d.axes3d.Axes3D method),
3089

add_event() (matplotlib.blocking_input.BlockingInput
method), 1675

add_figure()
(matplotlib.backend_tools.ToolViewsPositions
method), 1616

add_gridspec() (matplotlib.figure.Figure method), 2080
add_gridspec() (matplotlib.figure.FigureBase method),

2133
add_gridspec() (matplotlib.figure.SubFigure method),

2176
add_image() (matplotlib.axes.Axes method), 1513
add_label() (matplotlib.contour.ContourLabeler method),

2040
add_label_clabeltext()

(matplotlib.contour.ContourLabeler method), 2041
add_label_near() (matplotlib.contour.ContourLabeler

method), 2041
add_line() (matplotlib.axes.Axes method), 1514
add_lines() (matplotlib.colorbar.Colorbar method), 1988
add_lines() (matplotlib.colorbar.ColorbarBase method),

1991
add_patch() (matplotlib.axes.Axes method), 1514
add_positions() (matplotlib.collections.EventCollection

method), 1803
add_RGB_to_figure()

(mpl_toolkits.axes_grid1.axes_rgb.RGBAxes
method), 2976

add_subfigure() (matplotlib.figure.Figure method), 2081
add_subfigure() (matplotlib.figure.FigureBase method),

2134
add_subfigure() (matplotlib.figure.SubFigure method),

2177
add_subplot() (matplotlib.figure.Figure method), 2081
add_subplot() (matplotlib.figure.FigureBase method),

2134
add_subplot() (matplotlib.figure.SubFigure method), 2178
add_table() (matplotlib.axes.Axes method), 1516
add_tool() (matplotlib.backend_bases.ToolContainerBase

method), 1600
add_tool() (matplotlib.backend_managers.ToolManager

method), 1604
add_toolitem()

(matplotlib.backend_bases.ToolContainerBase
method), 1601

add_tools_to_container() (in module
matplotlib.backend_tools), 1618

add_tools_to_manager() (in module
matplotlib.backend_tools), 1619

addfont() (matplotlib.font_manager.FontManager method),
2218

addGouraudTriangles()
(matplotlib.backends.backend_pdf.PdfFile method),
1642

AddList (class in mpl_toolkits.axes_grid1.axes_size), 2980
adjust_axes_lim()

(mpl_toolkits.axisartist.floating_axes.FloatingAxesBase
method), 3071

adjust_bbox() (in module matplotlib.tight_bbox), 2841
adjust_drawing_area()

(matplotlib.legend_handler.HandlerBase method),
2258

Affine2D (class in matplotlib.transforms), 2845
Affine2DBase (class in matplotlib.transforms), 2848
AffineBase (class in matplotlib.transforms), 2849
AffineDeltaTransform (class in matplotlib.transforms),

2851
AFM (class in matplotlib.afm), 1157
afmFontProperty() (in module matplotlib.font_manager),

2223
aliased_name() (matplotlib.artist.ArtistInspector method),

1236
aliased_name_rest() (matplotlib.artist.ArtistInspector

method), 1236
align_labels() (matplotlib.figure.Figure method), 2084
align_labels() (matplotlib.figure.FigureBase method),

2137
align_labels() (matplotlib.figure.SubFigure method),

2181
align_xlabels() (matplotlib.figure.Figure method), 2085

3380 Index

Matplotlib, Release 3.4.3

align_xlabels() (matplotlib.figure.FigureBase method),
2138

align_xlabels() (matplotlib.figure.SubFigure method),
2181

align_ylabels() (matplotlib.figure.Figure method), 2085
align_ylabels() (matplotlib.figure.FigureBase method),

2138
align_ylabels() (matplotlib.figure.SubFigure method),

2182
allow_rasterization() (in module matplotlib.artist),

1232
alpha_cmd() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

alphaState() (matplotlib.backends.backend_pdf.PdfFile
method), 1642

anchored() (matplotlib.transforms.BboxBase method), 2857
AnchoredAuxTransformBox (class in

mpl_toolkits.axes_grid1.anchored_artists), 2932
AnchoredDirectionArrows (class in

mpl_toolkits.axes_grid1.anchored_artists), 2936
AnchoredDrawingArea (class in

mpl_toolkits.axes_grid1.anchored_artists), 2942
AnchoredEllipse (class in

mpl_toolkits.axes_grid1.anchored_artists), 2945
AnchoredLocatorBase (class in

mpl_toolkits.axes_grid1.inset_locator), 2986
AnchoredOffsetbox (class in matplotlib.offsetbox), 2313
AnchoredSizeBar (class in

mpl_toolkits.axes_grid1.anchored_artists), 2948
AnchoredSizeLocator (class in

mpl_toolkits.axes_grid1.inset_locator), 2989
AnchoredText (class in matplotlib.offsetbox), 2315
AnchoredZoomLocator (class in

mpl_toolkits.axes_grid1.inset_locator), 2991
angle() (matplotlib.patches.Ellipse property), 2371
angle_spectrum() (in module matplotlib.mlab), 2296
angle_spectrum() (in module matplotlib.pyplot), 2451
angle_spectrum() (matplotlib.axes.Axes method), 1312
Animation (class in matplotlib.animation), 1159
anncoords() (matplotlib.offsetbox.AnnotationBbox

property), 2316
anncoords() (matplotlib.text.Annotation property), 2796
annotate() (in module matplotlib.pyplot), 2453
annotate() (matplotlib.axes.Axes method), 1402
Annotation (class in matplotlib.text), 2793
AnnotationBbox (class in matplotlib.offsetbox), 2315
append_axes()

(mpl_toolkits.axes_grid1.axes_divider.AxesDivider
method), 2954

append_positions()
(matplotlib.collections.EventCollection method),
1803

append_size()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2958

apply_aspect() (matplotlib.axes.Axes method), 1490
apply_aspect()

(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesAuxTransBase

method), 3021
apply_aspect()

(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase
method), 3022

apply_aspect() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 3089

apply_tickdir() (matplotlib.axis.Tick method), 1570
Arc (class in matplotlib.patches), 2331
arc() (matplotlib.path.Path class method), 2429
arc_spine() (matplotlib.spines.Spine class method), 2775
args_key() (matplotlib.animation.HTMLWriter property),

1184
args_key() (matplotlib.animation.MovieWriter property),

1203
Arrow (class in matplotlib.patches), 2335
arrow() (in module matplotlib.pyplot), 2457
arrow() (matplotlib.axes.Axes method), 1413
ArrowAxisClass

(mpl_toolkits.axisartist.axisline_style.AxislineStyle.FilledArrow
attribute), 3054

ArrowAxisClass
(mpl_toolkits.axisartist.axisline_style.AxislineStyle.SimpleArrow
attribute), 3054

ArrowStyle (class in matplotlib.patches), 2338
ArrowStyle.BarAB (class in matplotlib.patches), 2339
ArrowStyle.BracketA (class in matplotlib.patches), 2340
ArrowStyle.BracketAB (class in matplotlib.patches),

2341
ArrowStyle.BracketB (class in matplotlib.patches), 2342
ArrowStyle.Curve (class in matplotlib.patches), 2342
ArrowStyle.CurveA (class in matplotlib.patches), 2342
ArrowStyle.CurveAB (class in matplotlib.patches), 2343
ArrowStyle.CurveB (class in matplotlib.patches), 2343
ArrowStyle.CurveFilledA (class in

matplotlib.patches), 2344
ArrowStyle.CurveFilledAB (class in

matplotlib.patches), 2344
ArrowStyle.CurveFilledB (class in

matplotlib.patches), 2345
ArrowStyle.Fancy (class in matplotlib.patches), 2345
ArrowStyle.Simple (class in matplotlib.patches), 2346
ArrowStyle.Wedge (class in matplotlib.patches), 2347
Artist (class in matplotlib.artist), 1211
artist_picker() (matplotlib.offsetbox.DraggableBase

method), 2319
ArtistAnimation (class in matplotlib.animation), 1165
ArtistInspector (class in matplotlib.artist), 1235
AsteriskPolygonCollection (class in

matplotlib.collections), 1699
atan2() (in module mpl_toolkits.axisartist.clip_path), 3068
attach_note()

(matplotlib.backends.backend_pdf.PdfPages
method), 1644

AttributeCopier (class in
mpl_toolkits.axisartist.axis_artist), 3041

auto_adjust_subplotpars() (in module
matplotlib.tight_layout), 2842

auto_scale_xyz() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 3090

Index 3381

Matplotlib, Release 3.4.3

auto_set_column_width() (matplotlib.table.Table
method), 2784

auto_set_font_size() (matplotlib.table.Cell method),
2780

auto_set_font_size() (matplotlib.table.Table method),
2784

AutoDateFormatter (class in matplotlib.dates), 2052
AutoDateLocator (class in matplotlib.dates), 2053
autofmt_xdate() (matplotlib.figure.Figure method), 2086
autofmt_xdate() (matplotlib.figure.FigureBase method),

2139
autofmt_xdate() (matplotlib.figure.SubFigure method),

2183
AutoLocator (class in matplotlib.ticker), 2819
AutoMinorLocator (class in matplotlib.ticker), 2819
autoscale() (in module matplotlib.pyplot), 2459
autoscale() (matplotlib.axes.Axes method), 1486
autoscale() (matplotlib.cm.ScalarMappable method),

1695
autoscale()

(matplotlib.collections.AsteriskPolygonCollection
method), 1701

autoscale() (matplotlib.collections.BrokenBarHCollection
method), 1720

autoscale() (matplotlib.collections.CircleCollection
method), 1741

autoscale() (matplotlib.collections.Collection method),
1763

autoscale() (matplotlib.collections.EllipseCollection
method), 1782

autoscale() (matplotlib.collections.EventCollection
method), 1803

autoscale() (matplotlib.collections.LineCollection
method), 1824

autoscale() (matplotlib.collections.PatchCollection
method), 1844

autoscale() (matplotlib.collections.PathCollection
method), 1864

autoscale() (matplotlib.collections.PolyCollection
method), 1885

autoscale() (matplotlib.collections.QuadMesh method),
1907

autoscale() (matplotlib.collections.RegularPolyCollection
method), 1927

autoscale() (matplotlib.collections.StarPolygonCollection
method), 1948

autoscale() (matplotlib.collections.TriMesh method), 1969
autoscale() (matplotlib.colors.CenteredNorm method),

2006
autoscale() (matplotlib.colors.Normalize method), 2023
autoscale() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3090
autoscale_None() (matplotlib.cm.ScalarMappable

method), 1695
autoscale_None()

(matplotlib.collections.AsteriskPolygonCollection
method), 1701

autoscale_None()
(matplotlib.collections.BrokenBarHCollection

method), 1720
autoscale_None()

(matplotlib.collections.CircleCollection method),
1741

autoscale_None() (matplotlib.collections.Collection
method), 1763

autoscale_None()
(matplotlib.collections.EllipseCollection method),
1782

autoscale_None() (matplotlib.collections.EventCollection
method), 1803

autoscale_None() (matplotlib.collections.LineCollection
method), 1824

autoscale_None() (matplotlib.collections.PatchCollection
method), 1844

autoscale_None() (matplotlib.collections.PathCollection
method), 1864

autoscale_None() (matplotlib.collections.PolyCollection
method), 1885

autoscale_None() (matplotlib.collections.QuadMesh
method), 1907

autoscale_None()
(matplotlib.collections.RegularPolyCollection
method), 1927

autoscale_None()
(matplotlib.collections.StarPolygonCollection
method), 1948

autoscale_None() (matplotlib.collections.TriMesh
method), 1969

autoscale_None() (matplotlib.colors.CenteredNorm
method), 2006

autoscale_None() (matplotlib.colors.Normalize method),
2023

autoscale_None() (matplotlib.colors.TwoSlopeNorm
method), 2030

autoscale_view() (matplotlib.axes.Axes method), 1486
autoscale_view() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3090
autumn() (in module matplotlib.pyplot), 2459
AuxTransformBox (class in matplotlib.offsetbox), 2318
available() (matplotlib.widgets.LockDraw method), 2904
AVConvBase (class in matplotlib.animation), 1207
AVConvFileWriter (class in matplotlib.animation), 1194
AVConvWriter (class in matplotlib.animation), 1189
ax() (matplotlib.contour.ContourSet property), 2046
ax() (matplotlib.quiver.Quiver method), 2735
axbottom() (matplotlib.widgets.SubplotTool property), 2916
Axes (class in matplotlib.axes), 1239
Axes (class in mpl_toolkits.axes_grid1.mpl_axes), 3014
Axes (class in mpl_toolkits.axisartist.axislines), 3056
axes() (in module matplotlib.pyplot), 2460
axes() (matplotlib.artist.Artist property), 1226
axes() (matplotlib.axis.Axis property), 1567
axes() (matplotlib.collections.AsteriskPolygonCollection

property), 1701
axes() (matplotlib.collections.BrokenBarHCollection

property), 1720
axes() (matplotlib.collections.CircleCollection property),

1741

3382 Index

Matplotlib, Release 3.4.3

axes() (matplotlib.collections.Collection property), 1763
axes() (matplotlib.collections.EllipseCollection property),

1782
axes() (matplotlib.collections.EventCollection property),

1803
axes() (matplotlib.collections.LineCollection property), 1824
axes() (matplotlib.collections.PatchCollection property),

1844
axes() (matplotlib.collections.PathCollection property),

1864
axes() (matplotlib.collections.PolyCollection property), 1885
axes() (matplotlib.collections.QuadMesh property), 1907
axes() (matplotlib.collections.RegularPolyCollection

property), 1927
axes() (matplotlib.collections.StarPolygonCollection

property), 1948
axes() (matplotlib.collections.TriMesh property), 1969
axes() (matplotlib.figure.Figure property), 2087
axes() (matplotlib.figure.FigureBase property), 2140
axes() (matplotlib.figure.SubFigure property), 2183
axes() (matplotlib.lines.Line2D property), 2267
axes() (matplotlib.offsetbox.OffsetBox property), 2322
Axes3D (class in mpl_toolkits.mplot3d.axes3d), 3084
Axes.AxisDict (class in

mpl_toolkits.axes_grid1.mpl_axes), 3016
AxesDivider (class in

mpl_toolkits.axes_grid1.axes_divider), 2953
AxesGrid (in module mpl_toolkits.axes_grid1.axes_grid),

2966
AxesGrid (in module mpl_toolkits.axisartist.axes_grid), 3034
AxesImage (class in matplotlib.image), 2237
AxesLocator (class in

mpl_toolkits.axes_grid1.axes_divider), 2955
AXESPAD (matplotlib.table.Table attribute), 2783
AxesWidget (class in matplotlib.widgets), 2897
AxesX (class in mpl_toolkits.axes_grid1.axes_size), 2980
AxesY (class in mpl_toolkits.axes_grid1.axes_size), 2981
AxesZero (class in mpl_toolkits.axisartist.axislines), 3062
axhline() (in module matplotlib.pyplot), 2463
axhline() (matplotlib.axes.Axes method), 1299
axhspace() (matplotlib.widgets.SubplotTool property), 2916
axhspan() (in module matplotlib.pyplot), 2465
axhspan() (matplotlib.axes.Axes method), 1301
Axis (class in matplotlib.axis), 1540
Axis (class in mpl_toolkits.mplot3d.axis3d), 3131
axis (matplotlib.ticker.TickHelper attribute), 2840
axis() (in module matplotlib.pyplot), 2467
axis() (matplotlib.axes.Axes method), 1435
axis() (mpl_toolkits.axes_grid1.mpl_axes.Axes property),

3016
axis() (mpl_toolkits.axisartist.axislines.Axes property), 3060
axis_aligned_extrema()

(matplotlib.bezier.BezierSegment method), 1670
axis_date() (matplotlib.axis.Axis method), 1555
axis_name (matplotlib.axis.XAxis attribute), 1563
axis_name (matplotlib.axis.YAxis attribute), 1565
axis_name (matplotlib.projections.polar.RadialAxis

attribute), 2723

axis_name (matplotlib.projections.polar.ThetaAxis
attribute), 2725

AxisArtist (class in mpl_toolkits.axisartist.axis_artist),
3041

AxisArtistHelper (class in
mpl_toolkits.axisartist.axislines), 3064

AxisArtistHelper.Fixed (class in
mpl_toolkits.axisartist.axislines), 3065

AxisArtistHelper.Floating (class in
mpl_toolkits.axisartist.axislines), 3065

AxisArtistHelperRectlinear (class in
mpl_toolkits.axisartist.axislines), 3066

AxisArtistHelperRectlinear.Fixed (class in
mpl_toolkits.axisartist.axislines), 3066

AxisArtistHelperRectlinear.Floating (class in
mpl_toolkits.axisartist.axislines), 3066

AxisInfo (class in matplotlib.units), 2894
axisinfo() (matplotlib.category.StrCategoryConverter

static method), 1677
axisinfo() (matplotlib.dates.ConciseDateConverter

method), 2055
axisinfo() (matplotlib.dates.DateConverter method), 2057
axisinfo() (matplotlib.units.ConversionInterface static

method), 2895
axisinfo() (matplotlib.units.DecimalConverter static

method), 2895
AxisLabel (class in mpl_toolkits.axisartist.axis_artist), 3044
AxislineStyle (class in

mpl_toolkits.axisartist.axisline_style), 3054
AxislineStyle.FilledArrow (class in

mpl_toolkits.axisartist.axisline_style), 3054
AxislineStyle.SimpleArrow (class in

mpl_toolkits.axisartist.axisline_style), 3054
AxisScaleBase (class in matplotlib.backend_tools), 1607
axleft() (matplotlib.widgets.SubplotTool property), 2916
axline() (in module matplotlib.pyplot), 2469
axline() (matplotlib.axes.Axes method), 1308
axright() (matplotlib.widgets.SubplotTool property), 2916
axtop() (matplotlib.widgets.SubplotTool property), 2916
axvline() (in module matplotlib.pyplot), 2471
axvline() (matplotlib.axes.Axes method), 1303
axvspan() (in module matplotlib.pyplot), 2473
axvspan() (matplotlib.axes.Axes method), 1306
axwspace() (matplotlib.widgets.SubplotTool property), 2916

B
BACK (matplotlib.backend_bases.MouseButton attribute), 1588
back() (matplotlib.backend_bases.NavigationToolbar2

method), 1590
back() (matplotlib.backend_tools.ToolViewsPositions

method), 1616
back() (matplotlib.cbook.Stack method), 1682
bar() (in module matplotlib.pyplot), 2475
bar() (matplotlib.axes.Axes method), 1276
bar() (mpl_toolkits.mplot3d.Axes3D method), 398
bar() (mpl_toolkits.mplot3d.axes3d.Axes3D method), 3090
bar3d() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3091

Index 3383

Matplotlib, Release 3.4.3

bar_label() (in module matplotlib.pyplot), 2478
bar_label() (matplotlib.axes.Axes method), 1283
Barbs (class in matplotlib.quiver), 2740
barbs() (in module matplotlib.pyplot), 2479
barbs() (matplotlib.axes.Axes method), 1423
barbs_doc (matplotlib.quiver.Barbs attribute), 2748
BarContainer (class in matplotlib.container), 2036
barh() (in module matplotlib.pyplot), 2483
barh() (matplotlib.axes.Axes method), 1280
base() (matplotlib.scale.FuncScaleLog property), 2760
base() (matplotlib.scale.LogScale property), 2764
base() (matplotlib.scale.SymmetricalLogScale property),

2768
base() (matplotlib.ticker.LogFormatter method), 2826
base() (matplotlib.ticker.LogLocator method), 2828
Bbox (class in matplotlib.transforms), 2852
bbox (matplotlib.afm.CharMetrics attribute), 1158
bbox_artist() (in module matplotlib.offsetbox), 2330
bbox_artist() (in module matplotlib.patches), 2426
BboxBase (class in matplotlib.transforms), 2857
BboxConnector (class in

mpl_toolkits.axes_grid1.inset_locator), 2994
BboxConnectorPatch (class in

mpl_toolkits.axes_grid1.inset_locator), 2998
BboxImage (class in matplotlib.image), 2240
BboxPatch (class in mpl_toolkits.axes_grid1.inset_locator),

3001
BboxTransform (class in matplotlib.transforms), 2861
BboxTransformFrom (class in matplotlib.transforms), 2861
BboxTransformTo (class in matplotlib.transforms), 2862
BboxTransformToMaxOnly (class in

matplotlib.transforms), 2862
begin_text (matplotlib.backends.backend_pdf.Op

attribute), 1640
begin_typing() (matplotlib.widgets.TextBox method),

2918
beginStream() (matplotlib.backends.backend_pdf.PdfFile

method), 1642
BezierSegment (class in matplotlib.bezier), 1670
bin_path() (matplotlib.animation.ImageMagickBase class

method), 1208
bin_path() (matplotlib.animation.MovieWriter class

method), 1203
blend_hsv() (matplotlib.colors.LightSource method), 2007
blend_overlay() (matplotlib.colors.LightSource method),

2008
blend_soft_light() (matplotlib.colors.LightSource

method), 2009
blended_transform_factory() (in module

matplotlib.transforms), 2881
BlendedAffine2D (class in matplotlib.transforms), 2863
BlendedGenericTransform (class in

matplotlib.transforms), 2863
blit() (matplotlib.backend_bases.FigureCanvasBase

method), 1574
blit() (mat-

plotlib.backends.backend_tkagg.FigureCanvasTkAgg
method), 1669

BlockingContourLabeler (class in
matplotlib.blocking_input), 1674

BlockingInput (class in matplotlib.blocking_input), 1675
BlockingKeyMouseInput (class in

matplotlib.blocking_input), 1675
BlockingMouseInput (class in

matplotlib.blocking_input), 1676
bone() (in module matplotlib.pyplot), 2486
BoundaryNorm (class in matplotlib.colors), 1999
bounds() (matplotlib.transforms.Bbox property), 2854
bounds() (matplotlib.transforms.BboxBase property), 2858
box() (in module matplotlib.pyplot), 2486
boxplot() (in module matplotlib.pyplot), 2487
boxplot() (matplotlib.axes.Axes method), 1337
boxplot_stats() (in module matplotlib.cbook), 1683
BoxStyle (class in matplotlib.patches), 2348
BoxStyle.Circle (class in matplotlib.patches), 2348
BoxStyle.DArrow (class in matplotlib.patches), 2349
BoxStyle.LArrow (class in matplotlib.patches), 2350
BoxStyle.RArrow (class in matplotlib.patches), 2350
BoxStyle.Round (class in matplotlib.patches), 2351
BoxStyle.Round4 (class in matplotlib.patches), 2351
BoxStyle.Roundtooth (class in matplotlib.patches), 2352
BoxStyle.Sawtooth (class in matplotlib.patches), 2353
BoxStyle.Square (class in matplotlib.patches), 2353
broken_barh() (in module matplotlib.pyplot), 2491
broken_barh() (matplotlib.axes.Axes method), 1293
BrokenBarHCollection (class in matplotlib.collections),

1719
bubble() (matplotlib.cbook.Stack method), 1682
buffer_rgba() (mat-

plotlib.backends.backend_agg.FigureCanvasAgg
method), 1626

buffer_rgba()
(matplotlib.backends.backend_agg.RendererAgg
method), 1629

Button (class in matplotlib.widgets), 2897
button1()

(matplotlib.blocking_input.BlockingContourLabeler
method), 1674

button3()
(matplotlib.blocking_input.BlockingContourLabeler
method), 1675

button_add (matplotlib.blocking_input.BlockingMouseInput
attribute), 1676

button_pick_id()
(matplotlib.backend_bases.FigureCanvasBase
property), 1574

button_pop (matplotlib.blocking_input.BlockingMouseInput
attribute), 1676

button_press()
(matplotlib.backend_bases.FigureManagerBase
method), 1583

button_press_event()
(matplotlib.backend_bases.FigureCanvasBase
method), 1574

button_press_handler() (in module
matplotlib.backend_bases), 1602

button_release_event()

3384 Index

Matplotlib, Release 3.4.3

(matplotlib.backend_bases.FigureCanvasBase
method), 1574

button_stop
(matplotlib.blocking_input.BlockingMouseInput
attribute), 1676

bxp() (matplotlib.axes.Axes method), 1345

C
cachedir() (matplotlib.texmanager.TexManager property),

2812
calc_label_rot_and_inline()

(matplotlib.contour.ContourLabeler method), 2041
calculate_plane_coefficients()

(matplotlib.tri.Triangulation method), 2883
calculate_rms() (in module matplotlib.testing.compare),

2789
CallbackRegistry (class in matplotlib.cbook), 1680
callbacks() (matplotlib.backend_bases.FigureCanvasBase

property), 1575
can_pan() (matplotlib.axes.Axes method), 1524
can_pan() (matplotlib.projections.polar.PolarAxes method),

2711
can_pan() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3092
can_zoom() (matplotlib.axes.Axes method), 1524
can_zoom() (matplotlib.projections.polar.PolarAxes

method), 2711
can_zoom() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3092
canvas() (matplotlib.backend_managers.ToolManager

property), 1604
canvas() (matplotlib.backend_tools.ToolBase property),

1610
CapStyle (class in matplotlib._enums), 2926
capstyle_cmd() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

capstyles (mat-
plotlib.backends.backend_pdf.GraphicsContextPdf
attribute), 1639

CbarAxes (class in mpl_toolkits.axes_grid1.axes_grid), 2966
CbarAxes (class in mpl_toolkits.axisartist.axes_grid), 3034
CbarAxesBase (class in mpl_toolkits.axes_grid1.axes_grid),

2966
cbid() (mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase

property), 2966
Cell (class in matplotlib.table), 2780
center() (matplotlib.patches.Ellipse property), 2371
center() (matplotlib.widgets.RectangleSelector property),

2911
CenteredNorm (class in matplotlib.colors), 2004
change_geometry() (matplotlib.axes.SubplotBase

method), 1242
change_geometry()

(mpl_toolkits.axes_grid1.axes_divider.SubplotDivider
method), 2962

change_observers() (matplotlib.widgets.TextBox
property), 2918

change_tick_coord()
(mpl_toolkits.axisartist.grid_helper_curvelinear.FixedAxisArtistHelper
method), 3080

changed() (matplotlib.cm.ScalarMappable method), 1695
changed() (matplotlib.collections.AsteriskPolygonCollection

method), 1701
changed() (matplotlib.collections.BrokenBarHCollection

method), 1720
changed() (matplotlib.collections.CircleCollection method),

1741
changed() (matplotlib.collections.Collection method), 1763
changed() (matplotlib.collections.EllipseCollection

method), 1782
changed() (matplotlib.collections.EventCollection method),

1803
changed() (matplotlib.collections.LineCollection method),

1824
changed() (matplotlib.collections.PatchCollection method),

1844
changed() (matplotlib.collections.PathCollection method),

1864
changed() (matplotlib.collections.PolyCollection method),

1885
changed() (matplotlib.collections.QuadMesh method), 1907
changed() (matplotlib.collections.RegularPolyCollection

method), 1927
changed() (matplotlib.collections.StarPolygonCollection

method), 1948
changed() (matplotlib.collections.TriMesh method), 1969
changed() (matplotlib.contour.ContourSet method), 2046
CharMetrics (class in matplotlib.afm), 1158
check_figures_equal() (in module

matplotlib.testing.decorators), 2790
check_freetype_version() (in module

matplotlib.testing.decorators), 2791
check_gc() (matplotlib.backends.backend_pdf.RendererPdf

method), 1645
check_getitem() (in module matplotlib._api), 2920
check_if_parallel() (in module matplotlib.bezier),

1671
check_in_list() (in module matplotlib._api), 2920
check_isinstance() (in module matplotlib._api), 2920
check_shape() (in module matplotlib._api), 2921
check_update() (matplotlib.cm.ScalarMappable method),

1695
check_update()

(matplotlib.collections.AsteriskPolygonCollection
method), 1701

check_update()
(matplotlib.collections.BrokenBarHCollection
method), 1721

check_update() (matplotlib.collections.CircleCollection
method), 1741

check_update() (matplotlib.collections.Collection
method), 1763

check_update() (matplotlib.collections.EllipseCollection
method), 1782

check_update() (matplotlib.collections.EventCollection
method), 1803

Index 3385

Matplotlib, Release 3.4.3

check_update() (matplotlib.collections.LineCollection
method), 1824

check_update() (matplotlib.collections.PatchCollection
method), 1844

check_update() (matplotlib.collections.PathCollection
method), 1864

check_update() (matplotlib.collections.PolyCollection
method), 1885

check_update() (matplotlib.collections.QuadMesh
method), 1908

check_update()
(matplotlib.collections.RegularPolyCollection
method), 1928

check_update()
(matplotlib.collections.StarPolygonCollection
method), 1948

check_update() (matplotlib.collections.TriMesh method),
1969

CheckButtons (class in matplotlib.widgets), 2898
checksum (matplotlib.dviread.Tfm attribute), 2073
cids() (matplotlib.widgets.AxesWidget property), 2897
Circle (class in matplotlib.patches), 2354
circle() (matplotlib.path.Path class method), 2429
circle_ratios() (matplotlib.tri.TriAnalyzer method),

2891
CircleCollection (class in matplotlib.collections), 1740
CirclePolygon (class in matplotlib.patches), 2357
circular_spine() (matplotlib.spines.Spine class method),

2775
cla() (in module matplotlib.pyplot), 2493
cla() (matplotlib.axes.Axes method), 1434
cla() (matplotlib.axis.Axis method), 1543
cla() (matplotlib.projections.polar.PolarAxes method), 2712
cla() (matplotlib.projections.polar.RadialAxis method), 2723
cla() (matplotlib.projections.polar.ThetaAxis method), 2725
cla() (matplotlib.spines.Spine method), 2775
cla() (mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase

method), 2966
cla() (mpl_toolkits.axes_grid1.mpl_axes.Axes method), 3017
cla() (mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase

method), 3020
cla()

(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase
method), 3022

cla() (mpl_toolkits.axisartist.axislines.Axes method), 3061
cla() (mpl_toolkits.axisartist.floating_axes.FloatingAxesBase

method), 3071
cla() (mpl_toolkits.mplot3d.axes3d.Axes3D method), 3092
clabel() (in module matplotlib.pyplot), 2493
clabel() (matplotlib.axes.Axes method), 1362
clabel() (matplotlib.contour.ContourLabeler method), 2041
clabel() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3092
ClabelText (class in matplotlib.contour), 2039
classproperty (class in matplotlib._api), 2921
clean() (matplotlib.cbook.Grouper method), 1682
cleaned() (matplotlib.path.Path method), 2429
cleanup() (in module matplotlib.testing.decorators), 2791

cleanup() (matplotlib.animation.MovieWriter method),
1203

cleanup() (matplotlib.blocking_input.BlockingInput
method), 1675

cleanup() (matplotlib.blocking_input.BlockingMouseInput
method), 1676

cleanup_remaining_tmpdirs()
(matplotlib.backends.backend_pgf.TmpDirCleaner
static method), 1656

CleanupTestCase (class in matplotlib.testing.decorators),
2790

clear() (matplotlib.axes.Axes method), 1435
clear() (matplotlib.axis.Axis method), 1542
clear() (matplotlib.backend_tools.ToolViewsPositions

method), 1616
clear() (matplotlib.backends.backend_agg.RendererAgg

method), 1629
clear() (matplotlib.cbook.Stack method), 1682
clear() (matplotlib.figure.Figure method), 2087
clear() (matplotlib.projections.polar.RadialAxis method),

2723
clear() (matplotlib.projections.polar.ThetaAxis method),

2725
clear() (matplotlib.spines.Spine method), 2775
clear() (matplotlib.transforms.Affine2D method), 2846
clear() (matplotlib.widgets.Cursor method), 2900
clear() (matplotlib.widgets.MultiCursor method), 2905
clear_temp() (matplotlib.animation.FileMovieWriter

property), 1206
clearup_closed() (mat-

plotlib.backends.backend_nbagg.FigureManagerNbAgg
method), 1637

clf() (in module matplotlib.pyplot), 2494
clf() (matplotlib.figure.Figure method), 2087
clim() (in module matplotlib.pyplot), 2494
clip (matplotlib.backends.backend_pdf.Op attribute), 1640
clip() (in module mpl_toolkits.axisartist.clip_path), 3069
clip_children() (matplotlib.offsetbox.DrawingArea

property), 2320
clip_cmd() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

clip_line_to_rect() (in module
mpl_toolkits.axisartist.clip_path), 3069

clip_to_bbox() (matplotlib.path.Path method), 2430
close() (in module matplotlib.pyplot), 2494
close() (matplotlib.backends.backend_pdf.PdfFile method),

1642
close() (matplotlib.backends.backend_pdf.PdfPages

method), 1644
close() (matplotlib.backends.backend_pgf.PdfPages

method), 1652
close() (matplotlib.backends.backend_svg.XMLWriter

method), 1667
close() (matplotlib.dviread.Dvi method), 2070
close_event()

(matplotlib.backend_bases.FigureCanvasBase
method), 1575

close_fill_stroke

3386 Index

Matplotlib, Release 3.4.3

(matplotlib.backends.backend_pdf.Op attribute),
1640

close_group() (matplotlib.backend_bases.RendererBase
method), 1593

close_group()
(matplotlib.backends.backend_svg.RendererSVG
method), 1663

close_stroke (matplotlib.backends.backend_pdf.Op
attribute), 1640

CloseEvent (class in matplotlib.backend_bases), 1573
closepath (matplotlib.backends.backend_pdf.Op attribute),

1640
CLOSEPOLY (matplotlib.path.Path attribute), 2428
closest() (matplotlib.widgets.ToolHandles method), 2919
cnt() (matplotlib.widgets.Button property), 2898
cnt() (matplotlib.widgets.CheckButtons property), 2899
cnt() (matplotlib.widgets.RadioButtons property), 2907
cnt() (matplotlib.widgets.Slider property), 2913
cnt() (matplotlib.widgets.TextBox property), 2918
code_type (matplotlib.path.Path attribute), 2430
codes (matplotlib.legend.Legend attribute), 2254
codes (matplotlib.offsetbox.AnchoredOffsetbox attribute),

2314
codes (matplotlib.table.Table attribute), 2784
codes() (matplotlib.path.Path property), 2430
codes() (matplotlib.textpath.TextPath property), 2814
coefs (matplotlib.transforms.BboxBase attribute), 2858
cohere() (in module matplotlib.mlab), 2297
cohere() (in module matplotlib.pyplot), 2495
cohere() (matplotlib.axes.Axes method), 1315
Collection (class in matplotlib.collections), 1759
Colorbar (class in matplotlib.colorbar), 1988
colorbar (matplotlib.cm.ScalarMappable attribute), 1695
colorbar() (in module matplotlib.pyplot), 2498
colorbar() (matplotlib.figure.Figure method), 2087
colorbar() (matplotlib.figure.FigureBase method), 2140
colorbar() (matplotlib.figure.SubFigure method), 2183
colorbar()

(mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase
method), 2966

colorbar_extend (matplotlib.colors.Colormap attribute),
2003

colorbar_factory() (in module matplotlib.colorbar),
1993

ColorbarBase (class in matplotlib.colorbar), 1989
ColorbarPatch (class in matplotlib.colorbar), 1993
Colormap (class in matplotlib.colors), 2002
colormaps() (in module matplotlib.pyplot), 2699
colspan() (matplotlib.gridspec.SubplotSpec property), 2231
commands (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
attribute), 1639

comment() (matplotlib.backends.backend_svg.XMLWriter
method), 1667

common_texification() (in module
matplotlib.backends.backend_pgf), 1656

CommSocket (class in matplotlib.backends.backend_nbagg),
1637

comparable_formats() (in module
matplotlib.testing.compare), 2789

compare_images() (in module
matplotlib.testing.compare), 2789

complex_spectrum() (in module matplotlib.mlab), 2299
composite_images() (in module matplotlib.image), 2245
composite_transform_factory() (in module

matplotlib.transforms), 2881
CompositeAffine2D (class in matplotlib.transforms), 2865
CompositeGenericTransform (class in

matplotlib.transforms), 2866
CompositePart (class in matplotlib.afm), 1158
compressobj (matplotlib.backends.backend_pdf.Stream

attribute), 1649
concat_matrix (matplotlib.backends.backend_pdf.Op

attribute), 1640
concatenate_paths() (in module matplotlib.bezier),

1671
ConciseDateConverter (class in matplotlib.dates), 2055
ConciseDateFormatter (class in matplotlib.dates), 2055
config_axis() (matplotlib.colorbar.ColorbarBase

method), 1991
configure_subplots()

(matplotlib.backend_bases.NavigationToolbar2
method), 1590

ConfigureSubplotsBase (class in
matplotlib.backend_tools), 1608

connect() (in module matplotlib.pyplot), 2501
connect() (matplotlib.cbook.CallbackRegistry method),

1681
connect() (matplotlib.patches.ConnectionStyle.Angle

method), 2366
connect() (matplotlib.patches.ConnectionStyle.Angle3

method), 2366
connect() (matplotlib.patches.ConnectionStyle.Arc

method), 2367
connect() (matplotlib.patches.ConnectionStyle.Arc3

method), 2367
connect() (matplotlib.patches.ConnectionStyle.Bar

method), 2368
connect() (matplotlib.widgets.MultiCursor method), 2905
connect_bbox()

(mpl_toolkits.axes_grid1.inset_locator.BboxConnector
static method), 2997

connect_event() (matplotlib.widgets.AxesWidget
method), 2897

connected() (mat-
plotlib.backends.backend_nbagg.FigureManagerNbAgg
property), 1637

connection_info() (in module
matplotlib.backends.backend_nbagg), 1638

ConnectionPatch (class in matplotlib.patches), 2360
ConnectionStyle (class in matplotlib.patches), 2365
ConnectionStyle.Angle (class in matplotlib.patches),

2365
ConnectionStyle.Angle3 (class in matplotlib.patches),

2366
ConnectionStyle.Arc (class in matplotlib.patches), 2366

Index 3387

Matplotlib, Release 3.4.3

ConnectionStyle.Arc3 (class in matplotlib.patches),
2367

ConnectionStyle.Bar (class in matplotlib.patches), 2367
Container (class in matplotlib.container), 2037
contains() (matplotlib.artist.Artist method), 1213
contains() (matplotlib.axes.Axes method), 1528
contains() (matplotlib.axis.Axis method), 1559
contains()

(matplotlib.collections.AsteriskPolygonCollection
method), 1701

contains() (matplotlib.collections.BrokenBarHCollection
method), 1721

contains() (matplotlib.collections.CircleCollection
method), 1741

contains() (matplotlib.collections.Collection method),
1763

contains() (matplotlib.collections.EllipseCollection
method), 1783

contains() (matplotlib.collections.EventCollection
method), 1803

contains() (matplotlib.collections.LineCollection method),
1825

contains() (matplotlib.collections.PatchCollection
method), 1845

contains() (matplotlib.collections.PathCollection method),
1864

contains() (matplotlib.collections.PolyCollection method),
1886

contains() (matplotlib.collections.QuadMesh method),
1908

contains() (matplotlib.collections.RegularPolyCollection
method), 1928

contains() (matplotlib.collections.StarPolygonCollection
method), 1948

contains() (matplotlib.collections.TriMesh method), 1969
contains() (matplotlib.figure.Figure method), 2090
contains() (matplotlib.figure.FigureBase method), 2143
contains() (matplotlib.figure.SubFigure method), 2187
contains() (matplotlib.image.BboxImage method), 2240
contains() (matplotlib.legend.Legend method), 2254
contains() (matplotlib.lines.Line2D method), 2267
contains() (matplotlib.offsetbox.AnnotationBbox method),

2316
contains() (matplotlib.offsetbox.OffsetBox method), 2322
contains() (matplotlib.patches.Patch method), 2395
contains() (matplotlib.quiver.QuiverKey method), 2739
contains() (matplotlib.table.Table method), 2784
contains() (matplotlib.text.Annotation method), 2796
contains() (matplotlib.text.Text method), 2800
contains() (matplotlib.transforms.BboxBase method), 2858
contains_branch()

(matplotlib.transforms.BlendedGenericTransform
method), 2864

contains_branch() (matplotlib.transforms.Transform
method), 2873

contains_branch_seperately()
(matplotlib.transforms.Transform method), 2873

contains_path() (matplotlib.path.Path method), 2430
contains_point() (matplotlib.axes.Axes method), 1529

contains_point() (matplotlib.patches.Patch method),
2395

contains_point() (matplotlib.path.Path method), 2430
contains_points() (matplotlib.patches.Patch method),

2396
contains_points() (matplotlib.path.Path method), 2431
containsx() (matplotlib.transforms.BboxBase method),

2858
containsy() (matplotlib.transforms.BboxBase method),

2858
context() (in module matplotlib.style), 2778
contiguous_regions() (in module matplotlib.cbook),

1684
contour() (in module matplotlib.pyplot), 2503
contour() (matplotlib.axes.Axes method), 1363
contour() (mpl_toolkits.mplot3d.Axes3D method), 394
contour() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3092
contour3D() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3093
contourf() (in module matplotlib.pyplot), 2507
contourf() (matplotlib.axes.Axes method), 1367
contourf() (mpl_toolkits.mplot3d.Axes3D method), 396
contourf() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3093
contourf3D() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3094
ContourLabeler (class in matplotlib.contour), 2040
ContourSet (class in matplotlib.contour), 2044
control_points() (matplotlib.bezier.BezierSegment

property), 1670
ConversionError, 2895
ConversionInterface (class in matplotlib.units), 2895
convert() (matplotlib.category.StrCategoryConverter static

method), 1678
convert() (matplotlib.dates.DateConverter static method),

2057
convert() (matplotlib.units.ConversionInterface static

method), 2895
convert() (matplotlib.units.DecimalConverter static

method), 2895
convert_mesh_to_paths()

(matplotlib.collections.QuadMesh static method),
1908

convert_mesh_to_paths()
(matplotlib.collections.TriMesh static method), 1969

convert_mesh_to_triangles()
(matplotlib.collections.QuadMesh method), 1908

convert_psfrags() (in module
matplotlib.backends.backend_ps), 1661

convert_to_pct() (matplotlib.ticker.PercentFormatter
method), 2834

convert_units() (matplotlib.axis.Axis method), 1560
convert_xunits() (matplotlib.artist.Artist method), 1228
convert_xunits() (matplotlib.axes.Axes method), 1510
convert_xunits()

(matplotlib.collections.AsteriskPolygonCollection
method), 1701

convert_xunits()

3388 Index

Matplotlib, Release 3.4.3

(matplotlib.collections.BrokenBarHCollection
method), 1721

convert_xunits()
(matplotlib.collections.CircleCollection method),
1741

convert_xunits() (matplotlib.collections.Collection
method), 1763

convert_xunits()
(matplotlib.collections.EllipseCollection method),
1783

convert_xunits() (matplotlib.collections.EventCollection
method), 1803

convert_xunits() (matplotlib.collections.LineCollection
method), 1825

convert_xunits() (matplotlib.collections.PatchCollection
method), 1845

convert_xunits() (matplotlib.collections.PathCollection
method), 1864

convert_xunits() (matplotlib.collections.PolyCollection
method), 1886

convert_xunits() (matplotlib.collections.QuadMesh
method), 1908

convert_xunits()
(matplotlib.collections.RegularPolyCollection
method), 1928

convert_xunits()
(matplotlib.collections.StarPolygonCollection
method), 1948

convert_xunits() (matplotlib.collections.TriMesh
method), 1969

convert_xunits() (matplotlib.figure.Figure method),
2090

convert_xunits() (matplotlib.figure.FigureBase method),
2143

convert_xunits() (matplotlib.figure.SubFigure method),
2187

convert_yunits() (matplotlib.artist.Artist method), 1229
convert_yunits() (matplotlib.axes.Axes method), 1510
convert_yunits()

(matplotlib.collections.AsteriskPolygonCollection
method), 1701

convert_yunits()
(matplotlib.collections.BrokenBarHCollection
method), 1721

convert_yunits()
(matplotlib.collections.CircleCollection method),
1741

convert_yunits() (matplotlib.collections.Collection
method), 1763

convert_yunits()
(matplotlib.collections.EllipseCollection method),
1783

convert_yunits() (matplotlib.collections.EventCollection
method), 1803

convert_yunits() (matplotlib.collections.LineCollection
method), 1825

convert_yunits() (matplotlib.collections.PatchCollection
method), 1845

convert_yunits() (matplotlib.collections.PathCollection

method), 1864
convert_yunits() (matplotlib.collections.PolyCollection

method), 1886
convert_yunits() (matplotlib.collections.QuadMesh

method), 1908
convert_yunits()

(matplotlib.collections.RegularPolyCollection
method), 1928

convert_yunits()
(matplotlib.collections.StarPolygonCollection
method), 1948

convert_yunits() (matplotlib.collections.TriMesh
method), 1970

convert_yunits() (matplotlib.figure.Figure method),
2090

convert_yunits() (matplotlib.figure.FigureBase method),
2143

convert_yunits() (matplotlib.figure.SubFigure method),
2187

convert_zunits() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 3095

cool() (in module matplotlib.pyplot), 2511
copper() (in module matplotlib.pyplot), 2511
copy() (in module matplotlib.docstring), 2069
copy() (matplotlib.colors.Colormap method), 2003
copy() (matplotlib.font_manager.FontProperties method),

2221
copy() (matplotlib.mathtext.GlueSpec method), 2287
copy() (matplotlib.path.Path method), 2431
copy_from_bbox() (mat-

plotlib.backends.backend_agg.FigureCanvasAgg
method), 1626

copy_from_bbox() (mat-
plotlib.backends.backend_cairo.FigureCanvasCairo
method), 1632

copy_properties()
(matplotlib.backend_bases.GraphicsContextBase
method), 1583

copy_properties() (mat-
plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

copy_with_path_effect()
(matplotlib.patheffects.PathEffectRenderer method),
2438

corners() (matplotlib.transforms.BboxBase method), 2858
corners() (matplotlib.widgets.RectangleSelector property),

2911
count_contains() (matplotlib.transforms.BboxBase

method), 2858
count_overlaps() (matplotlib.transforms.BboxBase

method), 2858
covariance_factor() (matplotlib.mlab.GaussianKDE

method), 2295
create_artists()

(matplotlib.legend_handler.HandlerBase method),
2258

create_artists()
(matplotlib.legend_handler.HandlerErrorbar
method), 2259

Index 3389

Matplotlib, Release 3.4.3

create_artists()
(matplotlib.legend_handler.HandlerLine2D
method), 2260

create_artists()
(matplotlib.legend_handler.HandlerLineCollection
method), 2260

create_artists()
(matplotlib.legend_handler.HandlerPatch method),
2261

create_artists()
(matplotlib.legend_handler.HandlerPolyCollection
method), 2262

create_artists() (mat-
plotlib.legend_handler.HandlerRegularPolyCollection
method), 2262

create_artists()
(matplotlib.legend_handler.HandlerStem method),
2263

create_artists()
(matplotlib.legend_handler.HandlerStepPatch
method), 2263

create_artists()
(matplotlib.legend_handler.HandlerTuple method),
2263

create_collection() (mat-
plotlib.legend_handler.HandlerCircleCollection
method), 2259

create_collection()
(matplotlib.legend_handler.HandlerPathCollection
method), 2262

create_collection() (mat-
plotlib.legend_handler.HandlerRegularPolyCollection
method), 2262

create_dummy_axis() (matplotlib.ticker.TickHelper
method), 2840

create_hatch()
(matplotlib.backends.backend_ps.RendererPS
method), 1657

createType1Descriptor()
(matplotlib.backends.backend_pdf.PdfFile method),
1642

csd() (in module matplotlib.mlab), 2300
csd() (in module matplotlib.pyplot), 2511
csd() (matplotlib.axes.Axes method), 1318
CubicTriInterpolator (class in matplotlib.tri), 2886
cursive() (matplotlib.texmanager.TexManager property),

2812
Cursor (class in matplotlib.widgets), 2900
cursor (matplotlib.backend_tools.ToolPan attribute), 1614
cursor (matplotlib.backend_tools.ToolToggleBase attribute),

1615
cursor (matplotlib.backend_tools.ToolZoom attribute), 1617
Cursors (class in matplotlib.backend_tools), 1608
cursors (in module matplotlib.backend_tools), 1620
CURVE3 (matplotlib.path.Path attribute), 2429
CURVE4 (matplotlib.path.Path attribute), 2429
curveto (matplotlib.backends.backend_pdf.Op attribute),

1640
CustomCell (in module matplotlib.table), 2783

cycler() (in module matplotlib.rcsetup), 2748

D
d_interval() (mpl_toolkits.mplot3d.axis3d.Axis property),

3131
dash_cmd() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

data() (matplotlib.backends.backend_svg.XMLWriter
method), 1667

datalim_to_dt() (matplotlib.dates.DateLocator method),
2058

date2num() (in module matplotlib.dates), 2061
DateConverter (class in matplotlib.dates), 2057
DateFormatter (class in matplotlib.dates), 2057
DateLocator (class in matplotlib.dates), 2057
datestr2num() (in module matplotlib.dates), 2062
DayLocator (class in matplotlib.dates), 2058
DecimalConverter (class in matplotlib.units), 2895
deepcopy() (matplotlib.path.Path method), 2432
default_keymap

(matplotlib.backend_tools.SaveFigureBase
attribute), 1608

default_keymap (matplotlib.backend_tools.ToolBack
attribute), 1609

default_keymap (matplotlib.backend_tools.ToolBase
attribute), 1610

default_keymap (mat-
plotlib.backend_tools.ToolCopyToClipboardBase
attribute), 1611

default_keymap (matplotlib.backend_tools.ToolForward
attribute), 1612

default_keymap (matplotlib.backend_tools.ToolFullScreen
attribute), 1612

default_keymap (matplotlib.backend_tools.ToolGrid
attribute), 1612

default_keymap (matplotlib.backend_tools.ToolHelpBase
attribute), 1613

default_keymap (matplotlib.backend_tools.ToolHome
attribute), 1613

default_keymap (matplotlib.backend_tools.ToolMinorGrid
attribute), 1613

default_keymap (matplotlib.backend_tools.ToolPan
attribute), 1614

default_keymap (matplotlib.backend_tools.ToolQuit
attribute), 1614

default_keymap (matplotlib.backend_tools.ToolQuitAll
attribute), 1615

default_keymap (matplotlib.backend_tools.ToolXScale
attribute), 1617

default_keymap (matplotlib.backend_tools.ToolYScale
attribute), 1617

default_keymap (matplotlib.backend_tools.ToolZoom
attribute), 1617

default_params (matplotlib.ticker.MaxNLocator
attribute), 2832

default_toggled
(matplotlib.backend_tools.ToolToggleBase
attribute), 1615

3390 Index

Matplotlib, Release 3.4.3

default_toolbar_tools (in module
matplotlib.backend_tools), 1620

default_tools (in module matplotlib.backend_tools), 1620
default_units()

(matplotlib.category.StrCategoryConverter static
method), 1678

default_units() (matplotlib.dates.DateConverter static
method), 2057

default_units() (matplotlib.units.ConversionInterface
static method), 2895

default_units() (matplotlib.units.DecimalConverter
static method), 2896

defaultFont() (matplotlib.font_manager.FontManager
property), 2218

deg_mark
(mpl_toolkits.axisartist.angle_helper.FormatterDMS
attribute), 3028

deg_mark
(mpl_toolkits.axisartist.angle_helper.FormatterHMS
attribute), 3029

degree() (matplotlib.bezier.BezierSegment property), 1670
delaxes() (in module matplotlib.pyplot), 2515
delaxes() (matplotlib.figure.Figure method), 2090
delaxes() (matplotlib.figure.FigureBase method), 2143
delaxes() (matplotlib.figure.SubFigure method), 2187
delay() (matplotlib.animation.ImageMagickBase property),

1208
delete_masked_points() (in module matplotlib.cbook),

1685
delete_parameter() (in module

matplotlib._api.deprecation), 2922
delta() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

demo() (matplotlib._enums.CapStyle static method), 2927
demo() (matplotlib._enums.JoinStyle static method), 2926
den() (mpl_toolkits.axisartist.angle_helper.LocatorBase

property), 3030
deprecate_method_override() (in module

matplotlib._api.deprecation), 2922
deprecate_privatize_attribute (class in

matplotlib._api.deprecation), 2922
deprecated() (in module matplotlib._api.deprecation),

2923
deprecated() (in module matplotlib.cbook), 1685
depth (matplotlib.dviread.Tfm attribute), 2073
depth() (matplotlib.transforms.BlendedGenericTransform

property), 2864
depth() (matplotlib.transforms.CompositeAffine2D

property), 2865
depth() (matplotlib.transforms.CompositeGenericTransform

property), 2866
depth() (matplotlib.transforms.Transform property), 2874
description

(matplotlib.backend_tools.ConfigureSubplotsBase
attribute), 1608

description (matplotlib.backend_tools.SaveFigureBase
attribute), 1608

description (matplotlib.backend_tools.ToolBack attribute),
1609

description (matplotlib.backend_tools.ToolBase attribute),
1610

description (mat-
plotlib.backend_tools.ToolCopyToClipboardBase
attribute), 1611

description (matplotlib.backend_tools.ToolForward
attribute), 1612

description (matplotlib.backend_tools.ToolFullScreen
attribute), 1612

description (matplotlib.backend_tools.ToolGrid attribute),
1612

description (matplotlib.backend_tools.ToolHelpBase
attribute), 1613

description (matplotlib.backend_tools.ToolHome
attribute), 1613

description (matplotlib.backend_tools.ToolMinorGrid
attribute), 1613

description (matplotlib.backend_tools.ToolPan attribute),
1614

description (matplotlib.backend_tools.ToolQuit attribute),
1614

description (matplotlib.backend_tools.ToolQuitAll
attribute), 1615

description (matplotlib.backend_tools.ToolXScale
attribute), 1617

description (matplotlib.backend_tools.ToolYScale
attribute), 1617

description (matplotlib.backend_tools.ToolZoom
attribute), 1617

design_size (matplotlib.dviread.Tfm attribute), 2073
destroy() (matplotlib.backend_bases.FigureManagerBase

method), 1583
destroy() (matplotlib.backend_tools.ToolBase method),

1610
destroy() (mat-

plotlib.backends.backend_nbagg.FigureManagerNbAgg
method), 1637

detrend() (in module matplotlib.mlab), 2302
detrend_linear() (in module matplotlib.mlab), 2303
detrend_mean() (in module matplotlib.mlab), 2303
detrend_none() (in module matplotlib.mlab), 2304
DictFormatter (class in

mpl_toolkits.axisartist.grid_finder), 3074
dimension() (matplotlib.bezier.BezierSegment property),

1670
direction() (matplotlib.colors.LightSource property),

2009
disable() (matplotlib.backend_tools.AxisScaleBase

method), 1607
disable() (matplotlib.backend_tools.ToolFullScreen

method), 1612
disable() (matplotlib.backend_tools.ToolToggleBase

method), 1615
disable() (matplotlib.backend_tools.ZoomPanBase

method), 1618
disable_mouse_rotation()

(mpl_toolkits.mplot3d.axes3d.Axes3D method),

Index 3391

Matplotlib, Release 3.4.3

3095
disconnect() (in module matplotlib.pyplot), 2515
disconnect() (matplotlib.cbook.CallbackRegistry method),

1681
disconnect() (matplotlib.offsetbox.DraggableBase

method), 2319
disconnect() (matplotlib.widgets.Button method), 2898
disconnect() (matplotlib.widgets.CheckButtons method),

2899
disconnect() (matplotlib.widgets.MultiCursor method),

2905
disconnect() (matplotlib.widgets.RadioButtons method),

2907
disconnect() (matplotlib.widgets.SliderBase method),

2914
disconnect() (matplotlib.widgets.TextBox method), 2918
disconnect_events() (matplotlib.widgets.AxesWidget

method), 2897
DISPLAY, 18
display_js() (mat-

plotlib.backends.backend_nbagg.FigureManagerNbAgg
method), 1637

Divider (class in mpl_toolkits.axes_grid1.axes_divider),
2956

do_3d_projection()
(mpl_toolkits.mplot3d.art3d.Line3DCollection
method), 3136

do_3d_projection()
(mpl_toolkits.mplot3d.art3d.Patch3D method), 3139

do_3d_projection()
(mpl_toolkits.mplot3d.art3d.Patch3DCollection
method), 3139

do_3d_projection()
(mpl_toolkits.mplot3d.art3d.Path3DCollection
method), 3140

do_3d_projection()
(mpl_toolkits.mplot3d.art3d.PathPatch3D method),
3143

do_3d_projection()
(mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 3145

DPI (matplotlib.textpath.TextToPath attribute), 2814
dpi() (matplotlib.figure.Figure property), 2090
dpi() (matplotlib.figure.SubFigure property), 2187
dpi_transform()

(mpl_toolkits.axisartist.axis_artist.AxisArtist
property), 3042

drag_pan() (matplotlib.axes.Axes method), 1526
drag_pan() (matplotlib.backend_bases.NavigationToolbar2

method), 1590
drag_pan() (matplotlib.projections.polar.PolarAxes

method), 2712
drag_zoom()

(matplotlib.backend_bases.NavigationToolbar2
method), 1590

DraggableAnnotation (class in matplotlib.offsetbox),
2318

DraggableBase (class in matplotlib.offsetbox), 2319
DraggableLegend (class in matplotlib.legend), 2249

DraggableOffsetBox (class in matplotlib.offsetbox), 2320
drange() (in module matplotlib.dates), 2062
draw() (in module matplotlib.pyplot), 2516
draw() (matplotlib.artist.Artist method), 1220
draw() (matplotlib.axes.Axes method), 1531
draw() (matplotlib.backend_bases.FigureCanvasBase

method), 1575
draw() (matplotlib.backend_bases.NavigationToolbar2

method), 1590
draw() (matplotlib.backends.backend_agg.FigureCanvasAgg

method), 1626
draw() (matplotlib.backends.backend_pdf.FigureCanvasPdf

method), 1638
draw() (matplotlib.backends.backend_pgf.FigureCanvasPgf

method), 1650
draw() (matplotlib.backends.backend_ps.FigureCanvasPS

method), 1657
draw() (matplotlib.backends.backend_svg.FigureCanvasSVG

method), 1662
draw() (mat-

plotlib.backends.backend_template.FigureCanvasTemplate
method), 1622

draw() (mat-
plotlib.backends.backend_tkagg.FigureCanvasTkAgg
method), 1669

draw() (mat-
plotlib.backends.backend_tkcairo.FigureCanvasTkCairo
method), 1669

draw() (matplotlib.collections.AsteriskPolygonCollection
method), 1701

draw() (matplotlib.collections.BrokenBarHCollection
method), 1721

draw() (matplotlib.collections.CircleCollection method),
1741

draw() (matplotlib.collections.Collection method), 1763
draw() (matplotlib.collections.EllipseCollection method),

1783
draw() (matplotlib.collections.EventCollection method), 1803
draw() (matplotlib.collections.LineCollection method), 1825
draw() (matplotlib.collections.PatchCollection method), 1845
draw() (matplotlib.collections.PathCollection method), 1864
draw() (matplotlib.collections.PolyCollection method), 1886
draw() (matplotlib.collections.QuadMesh method), 1908
draw() (matplotlib.collections.RegularPolyCollection

method), 1928
draw() (matplotlib.collections.StarPolygonCollection

method), 1948
draw() (matplotlib.collections.TriMesh method), 1970
draw() (matplotlib.figure.Figure method), 2090
draw() (matplotlib.figure.FigureBase method), 2143
draw() (matplotlib.figure.SubFigure method), 2187
draw() (matplotlib.legend.Legend method), 2254
draw() (matplotlib.lines.Line2D method), 2267
draw() (matplotlib.offsetbox.AnchoredOffsetbox method),

2314
draw() (matplotlib.offsetbox.AnnotationBbox method), 2317
draw() (matplotlib.offsetbox.AuxTransformBox method), 2318
draw() (matplotlib.offsetbox.DrawingArea method), 2320
draw() (matplotlib.offsetbox.OffsetBox method), 2323

3392 Index

Matplotlib, Release 3.4.3

draw() (matplotlib.offsetbox.OffsetImage method), 2325
draw() (matplotlib.offsetbox.PaddedBox method), 2326
draw() (matplotlib.offsetbox.TextArea method), 2327
draw() (matplotlib.patches.Arc method), 2334
draw() (matplotlib.patches.ConnectionPatch method), 2364
draw() (matplotlib.patches.FancyArrowPatch method), 2383
draw() (matplotlib.patches.Patch method), 2397
draw() (matplotlib.patches.Shadow method), 2423
draw() (matplotlib.projections.polar.PolarAxes method),

2712
draw() (matplotlib.quiver.Quiver method), 2736
draw() (matplotlib.quiver.QuiverKey method), 2739
draw() (matplotlib.spines.Spine method), 2775
draw() (matplotlib.table.Cell method), 2781
draw() (matplotlib.table.Table method), 2785
draw() (matplotlib.text.Annotation method), 2796
draw() (matplotlib.text.Text method), 2800
draw()

(mpl_toolkits.axes_grid1.inset_locator.AnchoredLocatorBase
method), 2988

draw() (mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase
method), 3020

draw() (mpl_toolkits.axisartist.axis_artist.AxisArtist
method), 3042

draw() (mpl_toolkits.axisartist.axis_artist.AxisLabel
method), 3045

draw()
(mpl_toolkits.axisartist.axis_artist.GridlinesCollection
method), 3047

draw() (mpl_toolkits.axisartist.axis_artist.LabelBase
method), 3050

draw() (mpl_toolkits.axisartist.axis_artist.TickLabels
method), 3051

draw() (mpl_toolkits.axisartist.axis_artist.Ticks method),
3052

draw() (mpl_toolkits.mplot3d.art3d.Line3D method), 3134
draw() (mpl_toolkits.mplot3d.art3d.Line3DCollection

method), 3136
draw() (mpl_toolkits.mplot3d.art3d.Path3DCollection

method), 3140
draw() (mpl_toolkits.mplot3d.art3d.Text3D method), 3149
draw() (mpl_toolkits.mplot3d.axes3d.Axes3D method), 3095
draw() (mpl_toolkits.mplot3d.axis3d.Axis method), 3131
draw_all() (matplotlib.colorbar.ColorbarBase method),

1992
draw_artist() (matplotlib.axes.Axes method), 1532
draw_artist() (matplotlib.figure.Figure method), 2091
draw_bbox() (in module matplotlib.patches), 2427
draw_event()

(matplotlib.backend_bases.FigureCanvasBase
method), 1575

draw_frame() (matplotlib.legend.Legend method), 2254
draw_frame() (matplotlib.offsetbox.PaddedBox method),

2326
draw_gouraud_triangle()

(matplotlib.backend_bases.RendererBase method),
1594

draw_gouraud_triangle()
(matplotlib.backends.backend_pdf.RendererPdf

method), 1645
draw_gouraud_triangle()

(matplotlib.backends.backend_ps.RendererPS
method), 1658

draw_gouraud_triangle()
(matplotlib.backends.backend_svg.RendererSVG
method), 1663

draw_gouraud_triangles()
(matplotlib.backend_bases.RendererBase method),
1594

draw_gouraud_triangles()
(matplotlib.backends.backend_pdf.RendererPdf
method), 1646

draw_gouraud_triangles()
(matplotlib.backends.backend_ps.RendererPS
method), 1658

draw_gouraud_triangles()
(matplotlib.backends.backend_svg.RendererSVG
method), 1663

draw_idle() (matplotlib.backend_bases.FigureCanvasBase
method), 1575

draw_if_interactive() (in module
matplotlib.backends.backend_template), 1625

draw_if_interactive() (in module matplotlib.pyplot),
2516

draw_image() (matplotlib.backend_bases.RendererBase
method), 1594

draw_image()
(matplotlib.backends.backend_cairo.RendererCairo
method), 1634

draw_image()
(matplotlib.backends.backend_pdf.RendererPdf
method), 1646

draw_image()
(matplotlib.backends.backend_pgf.RendererPgf
method), 1653

draw_image()
(matplotlib.backends.backend_ps.RendererPS
method), 1658

draw_image()
(matplotlib.backends.backend_svg.RendererSVG
method), 1664

draw_image() (mat-
plotlib.backends.backend_template.RendererTemplate
method), 1623

draw_markers() (matplotlib.backend_bases.RendererBase
method), 1595

draw_markers()
(matplotlib.backends.backend_cairo.RendererCairo
method), 1634

draw_markers()
(matplotlib.backends.backend_pdf.RendererPdf
method), 1646

draw_markers()
(matplotlib.backends.backend_pgf.RendererPgf
method), 1653

draw_markers()
(matplotlib.backends.backend_ps.RendererPS
method), 1659

Index 3393

Matplotlib, Release 3.4.3

draw_markers()
(matplotlib.backends.backend_svg.RendererSVG
method), 1664

draw_markers()
(matplotlib.patheffects.PathEffectRenderer method),
2438

draw_mathtext()
(matplotlib.backends.backend_agg.RendererAgg
method), 1629

draw_mathtext()
(matplotlib.backends.backend_pdf.RendererPdf
method), 1647

draw_mathtext()
(matplotlib.backends.backend_ps.RendererPS
method), 1659

draw_pane() (mpl_toolkits.mplot3d.axis3d.Axis method),
3132

draw_path() (matplotlib.backend_bases.RendererBase
method), 1595

draw_path()
(matplotlib.backends.backend_agg.RendererAgg
method), 1629

draw_path()
(matplotlib.backends.backend_cairo.RendererCairo
method), 1635

draw_path()
(matplotlib.backends.backend_pdf.RendererPdf
method), 1647

draw_path()
(matplotlib.backends.backend_pgf.RendererPgf
method), 1654

draw_path() (matplotlib.backends.backend_ps.RendererPS
method), 1659

draw_path()
(matplotlib.backends.backend_svg.RendererSVG
method), 1665

draw_path() (mat-
plotlib.backends.backend_template.RendererTemplate
method), 1623

draw_path() (matplotlib.patheffects.AbstractPathEffect
method), 2437

draw_path() (matplotlib.patheffects.PathEffectRenderer
method), 2438

draw_path() (matplotlib.patheffects.PathPatchEffect
method), 2439

draw_path() (matplotlib.patheffects.SimpleLineShadow
method), 2439

draw_path() (matplotlib.patheffects.SimplePatchShadow
method), 2440

draw_path() (matplotlib.patheffects.Stroke method), 2440
draw_path() (matplotlib.patheffects.TickedStroke method),

2441
draw_path()

(matplotlib.patheffects.withSimplePatchShadow
method), 2442

draw_path() (matplotlib.patheffects.withStroke method),
2442

draw_path() (matplotlib.patheffects.withTickedStroke
method), 2444

draw_path_collection()
(matplotlib.backend_bases.RendererBase method),
1595

draw_path_collection()
(matplotlib.backends.backend_agg.RendererAgg
method), 1629

draw_path_collection()
(matplotlib.backends.backend_pdf.RendererPdf
method), 1647

draw_path_collection()
(matplotlib.backends.backend_ps.RendererPS
method), 1659

draw_path_collection()
(matplotlib.backends.backend_svg.RendererSVG
method), 1665

draw_path_collection()
(matplotlib.patheffects.PathEffectRenderer method),
2438

draw_quad_mesh()
(matplotlib.backend_bases.RendererBase method),
1596

draw_rubberband()
(matplotlib.backend_bases.NavigationToolbar2
method), 1591

draw_rubberband()
(matplotlib.backend_tools.RubberbandBase
method), 1608

draw_shape() (matplotlib.widgets.EllipseSelector method),
2903

draw_shape() (matplotlib.widgets.RectangleSelector
method), 2912

draw_tex() (matplotlib.backend_bases.RendererBase
method), 1596

draw_tex()
(matplotlib.backends.backend_agg.RendererAgg
method), 1629

draw_tex() (matplotlib.backends.backend_pdf.RendererPdf
method), 1647

draw_tex() (matplotlib.backends.backend_pgf.RendererPgf
method), 1654

draw_tex() (matplotlib.backends.backend_ps.RendererPS
method), 1660

draw_tex()
(matplotlib.backends.backend_svg.RendererSVG
method), 1665

draw_text() (matplotlib.backend_bases.RendererBase
method), 1596

draw_text()
(matplotlib.backends.backend_agg.RendererAgg
method), 1629

draw_text()
(matplotlib.backends.backend_cairo.RendererCairo
method), 1635

draw_text()
(matplotlib.backends.backend_pdf.RendererPdf
method), 1647

draw_text()
(matplotlib.backends.backend_pgf.RendererPgf
method), 1654

3394 Index

Matplotlib, Release 3.4.3

draw_text() (matplotlib.backends.backend_ps.RendererPS
method), 1660

draw_text()
(matplotlib.backends.backend_svg.RendererSVG
method), 1665

draw_text() (mat-
plotlib.backends.backend_template.RendererTemplate
method), 1623

DrawEvent (class in matplotlib.backend_bases), 1573
DrawingArea (class in matplotlib.offsetbox), 2320
drawon (matplotlib.widgets.Widget attribute), 2919
drawStyleKeys (matplotlib.lines.Line2D attribute), 2268
drawStyles (matplotlib.lines.Line2D attribute), 2268
Dvi (class in matplotlib.dviread), 2070
DviFont (class in matplotlib.dviread), 2070
dviFontName() (matplotlib.backends.backend_pdf.PdfFile

method), 1642
dx (matplotlib.afm.CompositePart attribute), 1159
dy (matplotlib.afm.CompositePart attribute), 1159

E
edge_centers() (matplotlib.widgets.RectangleSelector

property), 2912
edges() (matplotlib.table.Table property), 2785
edges() (matplotlib.tri.Triangulation property), 2884
effects (matplotlib.dviread.PsFont attribute), 2072
element() (matplotlib.backends.backend_svg.XMLWriter

method), 1667
Ellipse (class in matplotlib.patches), 2368
EllipseCollection (class in matplotlib.collections), 1781
EllipseSelector (class in matplotlib.widgets), 2900
embedTTF() (matplotlib.backends.backend_pdf.PdfFile

method), 1642
empty() (matplotlib.cbook.Stack method), 1683
enable() (matplotlib.backend_tools.AxisScaleBase method),

1608
enable() (matplotlib.backend_tools.ToolFullScreen

method), 1612
enable() (matplotlib.backend_tools.ToolToggleBase

method), 1616
enable() (matplotlib.backend_tools.ZoomPanBase method),

1618
encode_string()

(matplotlib.backends.backend_pdf.RendererPdf
method), 1648

Encoding (class in matplotlib.dviread), 2071
encoding (matplotlib.dviread.Encoding attribute), 2071
encoding (matplotlib.dviread.PsFont attribute), 2072
end() (matplotlib.backends.backend_pdf.Stream method),

1649
end() (matplotlib.backends.backend_svg.XMLWriter

method), 1667
end_pan() (matplotlib.axes.Axes method), 1526
end_pan() (matplotlib.projections.polar.PolarAxes method),

2712
end_text (matplotlib.backends.backend_pdf.Op attribute),

1640
endpath (matplotlib.backends.backend_pdf.Op attribute),

1640

endStream() (matplotlib.backends.backend_pdf.PdfFile
method), 1642

ENG_PREFIXES (matplotlib.ticker.EngFormatter attribute),
2820

EngFormatter (class in matplotlib.ticker), 2819
enter_notify_event()

(matplotlib.backend_bases.FigureCanvasBase
method), 1575

environment variable
DISPLAY, 18, 947
HOME, 944, 947
MPLBACKEND, 18, 764, 822, 947
MPLCONFIGDIR, 85, 944, 947
PATH, 356, 359, 360, 362, 947
PYTHONPATH, 947, 948
QT_API, 21, 947, 1025

epoch2num() (in module matplotlib.dates), 2062
errorbar() (in module matplotlib.pyplot), 2516
errorbar() (matplotlib.axes.Axes method), 1256
errorbar() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3095
ErrorbarContainer (class in matplotlib.container), 2038
escape_attrib() (in module

matplotlib.backends.backend_svg), 1668
escape_cdata() (in module

matplotlib.backends.backend_svg), 1668
escape_comment() (in module

matplotlib.backends.backend_svg), 1668
evaluate() (matplotlib.mlab.GaussianKDE method), 2295
Event (class in matplotlib.backend_bases), 1573
EventCollection (class in matplotlib.collections), 1800
eventplot() (in module matplotlib.pyplot), 2520
eventplot() (matplotlib.axes.Axes method), 1286
events (matplotlib.backend_bases.FigureCanvasBase

attribute), 1575
eventson (matplotlib.widgets.Widget attribute), 2919
exec_key() (matplotlib.animation.MovieWriter property),

1203
execute_constrained_layout()

(matplotlib.figure.Figure method), 2091
expanded() (matplotlib.transforms.BboxBase method), 2858
extend_positions()

(matplotlib.collections.EventCollection method),
1804

extents() (matplotlib.transforms.BboxBase property), 2858
extents() (matplotlib.widgets.RectangleSelector property),

2912
extra (matplotlib.backends.backend_pdf.Stream attribute),

1649
ExtremeFinderCycle (class in

mpl_toolkits.axisartist.angle_helper), 3026
ExtremeFinderFixed (class in

mpl_toolkits.axisartist.floating_axes), 3070
ExtremeFinderSimple (class in

mpl_toolkits.axisartist.grid_finder), 3074

F
factory() (matplotlib.mathtext.GlueSpec class method),

2287

Index 3395

Matplotlib, Release 3.4.3

family_escape() (in module
matplotlib.fontconfig_pattern), 2226

family_name() (matplotlib.afm.AFM property), 1157
family_unescape() (in module

matplotlib.fontconfig_pattern), 2226
FancyArrow (class in matplotlib.patches), 2373
FancyArrowPatch (class in matplotlib.patches), 2377
FancyBboxPatch (class in matplotlib.patches), 2386
FFMpegBase (class in matplotlib.animation), 1207
FFMpegFileWriter (class in matplotlib.animation), 1190
FFMpegWriter (class in matplotlib.animation), 1185
fget() (matplotlib._api.classproperty property), 2921
figaspect() (in module matplotlib.figure), 2217
figbox() (matplotlib.axes.SubplotBase property), 1242
figbox()

(mpl_toolkits.axes_grid1.axes_divider.SubplotDivider
property), 2962

figimage() (in module matplotlib.pyplot), 2523
figimage() (matplotlib.figure.Figure method), 2091
figlegend() (in module matplotlib.pyplot), 2524
fignum_exists() (in module matplotlib.pyplot), 2530
figtext() (in module matplotlib.pyplot), 2530
Figure (class in matplotlib.figure), 2075
figure() (in module matplotlib.pyplot), 2532
figure() (matplotlib.backend_managers.ToolManager

property), 1604
figure() (matplotlib.backend_tools.ToolBase property),

1610
FigureBase (class in matplotlib.figure), 2129
FigureCanvas (in module

matplotlib.backends.backend_agg), 1626
FigureCanvas (in module

matplotlib.backends.backend_cairo), 1632
FigureCanvas (in module

matplotlib.backends.backend_nbagg), 1637
FigureCanvas (in module

matplotlib.backends.backend_pdf), 1638
FigureCanvas (in module

matplotlib.backends.backend_pgf), 1650
FigureCanvas (in module

matplotlib.backends.backend_ps), 1657
FigureCanvas (in module

matplotlib.backends.backend_svg), 1662
FigureCanvas (in module

matplotlib.backends.backend_template), 1621
FigureCanvas (in module

matplotlib.backends.backend_tkagg), 1669
FigureCanvas (in module

matplotlib.backends.backend_tkcairo), 1669
FigureCanvasAgg (class in

matplotlib.backends.backend_agg), 1626
FigureCanvasBase (class in matplotlib.backend_bases),

1574
FigureCanvasCairo (class in

matplotlib.backends.backend_cairo), 1632
FigureCanvasNbAgg (class in

matplotlib.backends.backend_nbagg), 1637
FigureCanvasPdf (class in

matplotlib.backends.backend_pdf), 1638

FigureCanvasPgf (class in
matplotlib.backends.backend_pgf), 1650

FigureCanvasPS (class in
matplotlib.backends.backend_ps), 1657

FigureCanvasSVG (class in
matplotlib.backends.backend_svg), 1662

FigureCanvasTemplate (class in
matplotlib.backends.backend_template), 1621

FigureCanvasTkAgg (class in
matplotlib.backends.backend_tkagg), 1669

FigureCanvasTkCairo (class in
matplotlib.backends.backend_tkcairo), 1669

FigureImage (class in matplotlib.image), 2240
FigureManager (in module

matplotlib.backends.backend_nbagg), 1637
FigureManager (in module

matplotlib.backends.backend_template), 1622
FigureManagerBase (class in matplotlib.backend_bases),

1581
FigureManagerNbAgg (class in

matplotlib.backends.backend_nbagg), 1637
FigureManagerTemplate (class in

matplotlib.backends.backend_template), 1622
file (matplotlib.backends.backend_pdf.Stream attribute),

1649
file_requires_unicode() (in module

matplotlib.cbook), 1685
FileMovieWriter (class in matplotlib.animation), 1204
filename (matplotlib.dviread.PsFont attribute), 2072
filetypes (matplotlib.backend_bases.FigureCanvasBase

attribute), 1575
filetypes

(matplotlib.backends.backend_pdf.FigureCanvasPdf
attribute), 1638

filetypes
(matplotlib.backends.backend_pgf.FigureCanvasPgf
attribute), 1650

filetypes
(matplotlib.backends.backend_ps.FigureCanvasPS
attribute), 1657

filetypes (mat-
plotlib.backends.backend_svg.FigureCanvasSVG
attribute), 1662

filetypes (mat-
plotlib.backends.backend_template.FigureCanvasTemplate
attribute), 1622

fill (matplotlib.backends.backend_pdf.Op attribute), 1640
fill() (in module matplotlib.backends.backend_pdf), 1650
fill() (in module matplotlib.pyplot), 2534
fill() (matplotlib.axes.Axes method), 1297
fill() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

fill() (matplotlib.patches.Patch property), 2397
fill_between() (in module matplotlib.pyplot), 2535
fill_between() (matplotlib.axes.Axes method), 1270
fill_betweenx() (in module matplotlib.pyplot), 2538
fill_betweenx() (matplotlib.axes.Axes method), 1273

3396 Index

Matplotlib, Release 3.4.3

fill_stroke (matplotlib.backends.backend_pdf.Op
attribute), 1640

fillcolor_cmd() (mat-
plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

filled_markers (matplotlib.lines.Line2D attribute), 2268
filled_markers (matplotlib.markers.MarkerStyle

attribute), 2284
fillStyles (matplotlib.lines.Line2D attribute), 2268
fillstyles (matplotlib.markers.MarkerStyle attribute),

2284
finalize() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

finalize() (matplotlib.backends.backend_pdf.PdfFile
method), 1642

finalize() (matplotlib.backends.backend_pdf.RendererPdf
method), 1648

finalize()
(matplotlib.backends.backend_svg.RendererSVG
method), 1666

finalize_offset() (matplotlib.legend.DraggableLegend
method), 2249

finalize_offset() (matplotlib.offsetbox.DraggableBase
method), 2319

find_all() (matplotlib.RcParams method), 1152
find_bezier_t_intersecting_with_closedpath()

(in module matplotlib.bezier), 1672
find_control_points() (in module matplotlib.bezier),

1672
find_nearest_contour()

(matplotlib.contour.ContourSet method), 2046
find_tex_file() (in module matplotlib.dviread), 2074
findfont() (in module matplotlib.font_manager), 2223
findfont() (matplotlib.font_manager.FontManager

method), 2218
findobj() (in module matplotlib.pyplot), 2540
findobj() (matplotlib.artist.Artist method), 1227
findobj() (matplotlib.axes.Axes method), 1530
findobj() (matplotlib.collections.AsteriskPolygonCollection

method), 1702
findobj() (matplotlib.collections.BrokenBarHCollection

method), 1721
findobj() (matplotlib.collections.CircleCollection method),

1742
findobj() (matplotlib.collections.Collection method), 1764
findobj() (matplotlib.collections.EllipseCollection

method), 1783
findobj() (matplotlib.collections.EventCollection method),

1804
findobj() (matplotlib.collections.LineCollection method),

1825
findobj() (matplotlib.collections.PatchCollection method),

1845
findobj() (matplotlib.collections.PathCollection method),

1865
findobj() (matplotlib.collections.PolyCollection method),

1886
findobj() (matplotlib.collections.QuadMesh method), 1909

findobj() (matplotlib.collections.RegularPolyCollection
method), 1928

findobj() (matplotlib.collections.StarPolygonCollection
method), 1949

findobj() (matplotlib.collections.TriMesh method), 1970
findobj() (matplotlib.figure.Figure method), 2092
findobj() (matplotlib.figure.FigureBase method), 2144
findobj() (matplotlib.figure.SubFigure method), 2188
findSystemFonts() (in module matplotlib.font_manager),

2223
finish() (matplotlib.animation.AbstractMovieWriter

method), 1200
finish() (matplotlib.animation.FileMovieWriter method),

1206
finish() (matplotlib.animation.HTMLWriter method), 1184
finish() (matplotlib.animation.MovieWriter method), 1203
finish() (matplotlib.animation.PillowWriter method), 1181
finish() (matplotlib.sankey.Sankey method), 2758
fix_minus() (matplotlib.ticker.Formatter static method),

2822
Fixed (class in mpl_toolkits.axes_grid1.axes_size), 2981
fixed_dpi (matplotlib.backend_bases.FigureCanvasBase

attribute), 1575
fixed_dpi

(matplotlib.backends.backend_pdf.FigureCanvasPdf
attribute), 1638

fixed_dpi
(matplotlib.backends.backend_ps.FigureCanvasPS
attribute), 1657

fixed_dpi (mat-
plotlib.backends.backend_svg.FigureCanvasSVG
attribute), 1662

FixedAxisArtistHelper (class in
mpl_toolkits.axisartist.floating_axes), 3070

FixedAxisArtistHelper (class in
mpl_toolkits.axisartist.grid_helper_curvelinear),
3080

FixedFormatter (class in matplotlib.ticker), 2821
FixedLocator (class in matplotlib.ticker), 2821
FixedLocator (class in mpl_toolkits.axisartist.grid_finder),

3075
flag() (in module matplotlib.pyplot), 2541
flatten() (in module matplotlib.cbook), 1685
flipy() (matplotlib.backend_bases.RendererBase method),

1597
flipy() (matplotlib.backends.backend_pgf.RendererPgf

method), 1655
flipy() (matplotlib.backends.backend_svg.RendererSVG

method), 1666
flipy() (mat-

plotlib.backends.backend_template.RendererTemplate
method), 1624

FloatingAxes (in module
mpl_toolkits.axisartist.floating_axes), 3071

floatingaxes_class_factory() (in module
mpl_toolkits.axisartist.floating_axes), 3073

FloatingAxesBase (class in
mpl_toolkits.axisartist.floating_axes), 3071

Index 3397

Matplotlib, Release 3.4.3

FloatingAxisArtistHelper (class in
mpl_toolkits.axisartist.floating_axes), 3072

FloatingAxisArtistHelper (class in
mpl_toolkits.axisartist.grid_helper_curvelinear),
3081

flush() (matplotlib.backends.backend_svg.XMLWriter
method), 1668

flush_events()
(matplotlib.backend_bases.FigureCanvasBase
method), 1575

fmt_d (mpl_toolkits.axisartist.angle_helper.FormatterDMS
attribute), 3028

fmt_d (mpl_toolkits.axisartist.angle_helper.FormatterHMS
attribute), 3029

fmt_d_m (mpl_toolkits.axisartist.angle_helper.FormatterDMS
attribute), 3028

fmt_d_m (mpl_toolkits.axisartist.angle_helper.FormatterHMS
attribute), 3029

fmt_d_m_partial
(mpl_toolkits.axisartist.angle_helper.FormatterDMS
attribute), 3028

fmt_d_m_partial
(mpl_toolkits.axisartist.angle_helper.FormatterHMS
attribute), 3029

fmt_d_ms
(mpl_toolkits.axisartist.angle_helper.FormatterDMS
attribute), 3028

fmt_d_ms
(mpl_toolkits.axisartist.angle_helper.FormatterHMS
attribute), 3029

fmt_ds (mpl_toolkits.axisartist.angle_helper.FormatterDMS
attribute), 3028

fmt_ds (mpl_toolkits.axisartist.angle_helper.FormatterHMS
attribute), 3029

fmt_s_partial
(mpl_toolkits.axisartist.angle_helper.FormatterDMS
attribute), 3028

fmt_s_partial
(mpl_toolkits.axisartist.angle_helper.FormatterHMS
attribute), 3029

fmt_ss_partial
(mpl_toolkits.axisartist.angle_helper.FormatterDMS
attribute), 3028

fmt_ss_partial
(mpl_toolkits.axisartist.angle_helper.FormatterHMS
attribute), 3029

font_families (matplotlib.texmanager.TexManager
attribute), 2812

font_family (matplotlib.texmanager.TexManager
attribute), 2812

font_info (matplotlib.texmanager.TexManager attribute),
2812

FONT_SCALE (matplotlib.textpath.TextToPath attribute), 2814
fontangles()

(matplotlib.backends.backend_cairo.RendererCairo
property), 1636

FontconfigPatternParser (class in
matplotlib.fontconfig_pattern), 2226

FontEntry (class in matplotlib.font_manager), 2218

FontManager (class in matplotlib.font_manager), 2218
fontName() (matplotlib.backends.backend_pdf.PdfFile

method), 1642
FontProperties (class in matplotlib.font_manager), 2220
FONTSIZE (matplotlib.table.Table attribute), 2784
fontweights()

(matplotlib.backends.backend_cairo.RendererCairo
property), 1636

format_coord() (matplotlib.axes.Axes method), 1527
format_coord() (matplotlib.projections.polar.PolarAxes

method), 2713
format_coord() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3097
format_cursor_data() (matplotlib.artist.Artist method),

1213
format_cursor_data() (matplotlib.axes.Axes method),

1527
format_cursor_data()

(matplotlib.collections.AsteriskPolygonCollection
method), 1702

format_cursor_data()
(matplotlib.collections.BrokenBarHCollection
method), 1722

format_cursor_data()
(matplotlib.collections.CircleCollection method),
1742

format_cursor_data()
(matplotlib.collections.Collection method), 1764

format_cursor_data()
(matplotlib.collections.EllipseCollection method),
1784

format_cursor_data()
(matplotlib.collections.EventCollection method),
1804

format_cursor_data()
(matplotlib.collections.LineCollection method),
1826

format_cursor_data()
(matplotlib.collections.PatchCollection method),
1846

format_cursor_data()
(matplotlib.collections.PathCollection method),
1865

format_cursor_data()
(matplotlib.collections.PolyCollection method),
1887

format_cursor_data()
(matplotlib.collections.QuadMesh method), 1909

format_cursor_data()
(matplotlib.collections.RegularPolyCollection
method), 1929

format_cursor_data()
(matplotlib.collections.StarPolygonCollection
method), 1949

format_cursor_data() (matplotlib.collections.TriMesh
method), 1970

format_cursor_data() (matplotlib.figure.Figure
method), 2093

format_cursor_data() (matplotlib.figure.FigureBase

3398 Index

Matplotlib, Release 3.4.3

method), 2144
format_cursor_data() (matplotlib.figure.SubFigure

method), 2188
format_cursor_data() (matplotlib.image.AxesImage

method), 2238
format_data() (matplotlib.ticker.Formatter method), 2822
format_data() (matplotlib.ticker.LogFormatter method),

2826
format_data() (matplotlib.ticker.ScalarFormatter

method), 2836
format_data_short()

(matplotlib.dates.ConciseDateFormatter method),
2057

format_data_short() (matplotlib.ticker.Formatter
method), 2822

format_data_short() (matplotlib.ticker.LogFormatter
method), 2826

format_data_short() (matplotlib.ticker.LogitFormatter
method), 2829

format_data_short() (matplotlib.ticker.ScalarFormatter
method), 2836

format_eng() (matplotlib.ticker.EngFormatter method),
2820

format_pct() (matplotlib.ticker.PercentFormatter method),
2835

format_shortcut()
(matplotlib.backend_tools.ToolHelpBase static
method), 1613

format_ticks()
(matplotlib.category.StrCategoryFormatter
method), 1679

format_ticks() (matplotlib.dates.ConciseDateFormatter
method), 2057

format_ticks() (matplotlib.ticker.Formatter method),
2822

format_xdata() (matplotlib.axes.Axes method), 1527
format_ydata() (matplotlib.axes.Axes method), 1527
format_zdata() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3098
FormatStrFormatter (class in matplotlib.ticker), 2821
Formatter (class in matplotlib.ticker), 2822
FormatterDMS (class in

mpl_toolkits.axisartist.angle_helper), 3028
FormatterHMS (class in

mpl_toolkits.axisartist.angle_helper), 3029
FormatterPrettyPrint (class in

mpl_toolkits.axisartist.grid_finder), 3076
FORWARD (matplotlib.backend_bases.MouseButton attribute),

1588
forward() (matplotlib.backend_bases.NavigationToolbar2

method), 1591
forward() (matplotlib.backend_tools.ToolViewsPositions

method), 1616
forward() (matplotlib.cbook.Stack method), 1683
Fraction (class in mpl_toolkits.axes_grid1.axes_size), 2982
frame_format() (matplotlib.animation.FileMovieWriter

property), 1206
frame_size() (matplotlib.animation.AbstractMovieWriter

property), 1200

frameon() (matplotlib.figure.Figure property), 2093
frameon() (matplotlib.figure.FigureBase property), 2144
frameon() (matplotlib.figure.SubFigure property), 2188
from_any() (in module mpl_toolkits.axes_grid1.axes_size),

2985
from_bounds() (matplotlib.transforms.Bbox static method),

2854
from_dict() (matplotlib.spines.Spines class method), 2778
from_extents() (matplotlib.transforms.Bbox static

method), 2854
from_levels_and_colors() (in module

matplotlib.colors), 2032
from_list() (matplotlib.colors.LinearSegmentedColormap

static method), 2015
from_values() (matplotlib.transforms.Affine2D static

method), 2846
frozen() (matplotlib.transforms.Affine2DBase method),

2848
frozen() (matplotlib.transforms.BboxBase method), 2858
frozen() (matplotlib.transforms.BlendedGenericTransform

method), 2864
frozen()

(matplotlib.transforms.CompositeGenericTransform
method), 2866

frozen() (matplotlib.transforms.IdentityTransform method),
2868

frozen() (matplotlib.transforms.TransformNode method),
2877

frozen() (matplotlib.transforms.TransformWrapper
method), 2878

full_screen_toggle()
(matplotlib.backend_bases.FigureManagerBase
method), 1583

fully_contains() (matplotlib.transforms.BboxBase
method), 2858

fully_containsx() (matplotlib.transforms.BboxBase
method), 2859

fully_containsy() (matplotlib.transforms.BboxBase
method), 2859

fully_overlaps() (matplotlib.transforms.BboxBase
method), 2859

FuncAnimation (class in matplotlib.animation), 1163
funcbottom() (matplotlib.widgets.SubplotTool method),

2916
FuncFormatter (class in matplotlib.ticker), 2822
funchspace() (matplotlib.widgets.SubplotTool method),

2916
funcleft() (matplotlib.widgets.SubplotTool method), 2916
FuncNorm (class in matplotlib.colors), 2030
funcright() (matplotlib.widgets.SubplotTool method),

2917
FuncScale (class in matplotlib.scale), 2759
FuncScaleLog (class in matplotlib.scale), 2760
functop() (matplotlib.widgets.SubplotTool method), 2917
FuncTransform (class in matplotlib.scale), 2760
funcwspace() (matplotlib.widgets.SubplotTool method),

2917

Index 3399

Matplotlib, Release 3.4.3

G
GaussianKDE (class in matplotlib.mlab), 2294
gca() (in module matplotlib.pyplot), 2541
gca() (matplotlib.figure.Figure method), 2093
gca() (matplotlib.figure.FigureBase method), 2144
gca() (matplotlib.figure.SubFigure method), 2188
gcf() (in module matplotlib.pyplot), 2543
gci() (in module matplotlib.pyplot), 2543
generate_css() (in module

matplotlib.backends.backend_svg), 1668
generate_fontconfig_pattern() (in module

matplotlib.fontconfig_pattern), 2226
generate_transform() (in module

matplotlib.backends.backend_svg), 1668
geometry() (matplotlib.widgets.RectangleSelector

property), 2912
get() (in module matplotlib.artist), 1232
get() (in module matplotlib.pyplot), 2544
get_aa() (matplotlib.lines.Line2D method), 2268
get_aa() (matplotlib.patches.Patch method), 2397
get_active() (matplotlib.widgets.Widget method), 2919
get_adjustable() (matplotlib.axes.Axes method), 1494
get_affine() (matplotlib.transforms.AffineBase method),

2850
get_affine()

(matplotlib.transforms.BlendedGenericTransform
method), 2864

get_affine()
(matplotlib.transforms.CompositeGenericTransform
method), 2866

get_affine() (matplotlib.transforms.IdentityTransform
method), 2868

get_affine() (matplotlib.transforms.Transform method),
2874

get_affine() (matplotlib.transforms.TransformedPath
method), 2880

get_agg_filter() (matplotlib.artist.Artist method), 1225
get_agg_filter()

(matplotlib.collections.AsteriskPolygonCollection
method), 1702

get_agg_filter()
(matplotlib.collections.BrokenBarHCollection
method), 1722

get_agg_filter()
(matplotlib.collections.CircleCollection method),
1742

get_agg_filter() (matplotlib.collections.Collection
method), 1764

get_agg_filter()
(matplotlib.collections.EllipseCollection method),
1784

get_agg_filter() (matplotlib.collections.EventCollection
method), 1805

get_agg_filter() (matplotlib.collections.LineCollection
method), 1826

get_agg_filter() (matplotlib.collections.PatchCollection
method), 1846

get_agg_filter() (matplotlib.collections.PathCollection

method), 1865
get_agg_filter() (matplotlib.collections.PolyCollection

method), 1887
get_agg_filter() (matplotlib.collections.QuadMesh

method), 1909
get_agg_filter()

(matplotlib.collections.RegularPolyCollection
method), 1929

get_agg_filter()
(matplotlib.collections.StarPolygonCollection
method), 1949

get_agg_filter() (matplotlib.collections.TriMesh
method), 1971

get_agg_filter() (matplotlib.figure.Figure method),
2095

get_agg_filter() (matplotlib.figure.FigureBase method),
2146

get_agg_filter() (matplotlib.figure.SubFigure method),
2190

get_aliases() (matplotlib.artist.ArtistInspector method),
1236

get_alpha() (matplotlib.artist.Artist method), 1221
get_alpha()

(matplotlib.backend_bases.GraphicsContextBase
method), 1583

get_alpha() (matplotlib.cm.ScalarMappable method),
1695

get_alpha()
(matplotlib.collections.AsteriskPolygonCollection
method), 1702

get_alpha() (matplotlib.collections.BrokenBarHCollection
method), 1722

get_alpha() (matplotlib.collections.CircleCollection
method), 1742

get_alpha() (matplotlib.collections.Collection method),
1764

get_alpha() (matplotlib.collections.EllipseCollection
method), 1784

get_alpha() (matplotlib.collections.EventCollection
method), 1805

get_alpha() (matplotlib.collections.LineCollection
method), 1826

get_alpha() (matplotlib.collections.PatchCollection
method), 1846

get_alpha() (matplotlib.collections.PathCollection
method), 1865

get_alpha() (matplotlib.collections.PolyCollection
method), 1887

get_alpha() (matplotlib.collections.QuadMesh method),
1909

get_alpha() (matplotlib.collections.RegularPolyCollection
method), 1929

get_alpha() (matplotlib.collections.StarPolygonCollection
method), 1949

get_alpha() (matplotlib.collections.TriMesh method), 1971
get_alpha() (matplotlib.contour.ContourSet method), 2047
get_alpha() (matplotlib.figure.Figure method), 2095
get_alpha() (matplotlib.figure.FigureBase method), 2146
get_alpha() (matplotlib.figure.SubFigure method), 2190

3400 Index

Matplotlib, Release 3.4.3

get_alt_path() (matplotlib.markers.MarkerStyle method),
2284

get_alt_transform() (matplotlib.markers.MarkerStyle
method), 2284

get_anchor() (matplotlib.axes.Axes method), 1519
get_anchor()

(mpl_toolkits.axes_grid1.axes_divider.AxesDivider
method), 2954

get_anchor()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2958

get_angle() (matplotlib.afm.AFM method), 1157
get_angle() (matplotlib.patches.Ellipse method), 2371
get_animated() (matplotlib.artist.Artist method), 1221
get_animated()

(matplotlib.collections.AsteriskPolygonCollection
method), 1702

get_animated()
(matplotlib.collections.BrokenBarHCollection
method), 1722

get_animated() (matplotlib.collections.CircleCollection
method), 1742

get_animated() (matplotlib.collections.Collection
method), 1764

get_animated() (matplotlib.collections.EllipseCollection
method), 1784

get_animated() (matplotlib.collections.EventCollection
method), 1805

get_animated() (matplotlib.collections.LineCollection
method), 1826

get_animated() (matplotlib.collections.PatchCollection
method), 1846

get_animated() (matplotlib.collections.PathCollection
method), 1866

get_animated() (matplotlib.collections.PolyCollection
method), 1887

get_animated() (matplotlib.collections.QuadMesh
method), 1909

get_animated()
(matplotlib.collections.RegularPolyCollection
method), 1929

get_animated()
(matplotlib.collections.StarPolygonCollection
method), 1949

get_animated() (matplotlib.collections.TriMesh method),
1971

get_animated() (matplotlib.figure.Figure method), 2095
get_animated() (matplotlib.figure.FigureBase method),

2146
get_animated() (matplotlib.figure.SubFigure method),

2190
get_anncoords() (matplotlib.text.Annotation method),

2797
get_annotation_clip()

(matplotlib.patches.ConnectionPatch method), 2364
get_antialiased()

(matplotlib.backend_bases.GraphicsContextBase
method), 1583

get_antialiased() (matplotlib.lines.Line2D method),

2268
get_antialiased() (matplotlib.patches.Patch method),

2397
get_array() (matplotlib.cm.ScalarMappable method),

1695
get_array()

(matplotlib.collections.AsteriskPolygonCollection
method), 1702

get_array() (matplotlib.collections.BrokenBarHCollection
method), 1722

get_array() (matplotlib.collections.CircleCollection
method), 1742

get_array() (matplotlib.collections.Collection method),
1764

get_array() (matplotlib.collections.EllipseCollection
method), 1784

get_array() (matplotlib.collections.EventCollection
method), 1805

get_array() (matplotlib.collections.LineCollection
method), 1826

get_array() (matplotlib.collections.PatchCollection
method), 1846

get_array() (matplotlib.collections.PathCollection
method), 1866

get_array() (matplotlib.collections.PolyCollection
method), 1887

get_array() (matplotlib.collections.QuadMesh method),
1909

get_array() (matplotlib.collections.RegularPolyCollection
method), 1929

get_array() (matplotlib.collections.StarPolygonCollection
method), 1949

get_array() (matplotlib.collections.TriMesh method), 1971
get_arrowstyle() (matplotlib.patches.FancyArrowPatch

method), 2383
get_aspect() (matplotlib.axes.Axes method), 1492
get_aspect()

(mpl_toolkits.axes_grid1.axes_divider.AxesDivider
method), 2954

get_aspect()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2958

get_aspect() (mpl_toolkits.axes_grid1.axes_grid.Grid
method), 2969

get_attribute_from_ref_artist()
(mpl_toolkits.axisartist.axis_artist.AttributeCopier
method), 3041

get_autoscale_on() (matplotlib.axes.Axes method),
1488

get_autoscale_on()
(mpl_toolkits.mplot3d.axes3d.Axes3D method),
3098

get_autoscalex_on() (matplotlib.axes.Axes method),
1488

get_autoscaley_on() (matplotlib.axes.Axes method),
1489

get_autoscalez_on()
(mpl_toolkits.mplot3d.axes3d.Axes3D method),
3098

Index 3401

Matplotlib, Release 3.4.3

get_aux_axes()
(mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase
method), 3020

get_axes() (matplotlib.figure.Figure method), 2095
get_axes() (matplotlib.figure.SubFigure method), 2190
get_axes_locator() (matplotlib.axes.Axes method),

1520
get_axes_locator()

(mpl_toolkits.axes_grid1.axes_grid.Grid method),
2969

get_axes_pad() (mpl_toolkits.axes_grid1.axes_grid.Grid
method), 2969

get_axis_position()
(mpl_toolkits.mplot3d.axes3d.Axes3D method),
3098

get_axisbelow() (matplotlib.axes.Axes method), 1439
get_axislabel_pos_angle()

(mpl_toolkits.axisartist.axislines.AxisArtistHelper.Fixed
method), 3065

get_axislabel_pos_angle()
(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear.Floating
method), 3066

get_axislabel_pos_angle()
(mpl_toolkits.axisartist.grid_helper_curvelinear.FloatingAxisArtistHelper
method), 3081

get_axislabel_transform()
(mpl_toolkits.axisartist.axislines.AxisArtistHelper.Fixed
method), 3065

get_axislabel_transform()
(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear.Floating
method), 3066

get_axislabel_transform()
(mpl_toolkits.axisartist.grid_helper_curvelinear.FloatingAxisArtistHelper
method), 3081

get_axisline_style()
(mpl_toolkits.axisartist.axis_artist.AxisArtist
method), 3042

get_backend() (in module matplotlib), 1141
get_bad() (matplotlib.colors.Colormap method), 2003
get_basefile() (matplotlib.texmanager.TexManager

method), 2812
get_bbox() (matplotlib.patches.FancyBboxPatch method),

2390
get_bbox() (matplotlib.patches.Rectangle method), 2416
get_bbox_char() (matplotlib.afm.AFM method), 1157
get_bbox_edge_pos()

(mpl_toolkits.axes_grid1.inset_locator.BboxConnector
static method), 2997

get_bbox_header() (in module
matplotlib.backends.backend_ps), 1661

get_bbox_patch() (matplotlib.text.Text method), 2800
get_bbox_to_anchor() (matplotlib.legend.Legend

method), 2255
get_bbox_to_anchor()

(matplotlib.offsetbox.AnchoredOffsetbox method),
2314

get_boundary()
(mpl_toolkits.axisartist.floating_axes.GridHelperCurveLinear
method), 3073

get_bounds() (matplotlib.spines.Spine method), 2776
get_box_aspect() (matplotlib.axes.Axes method), 1493
get_boxstyle() (matplotlib.patches.FancyBboxPatch

method), 2390
get_c() (matplotlib.lines.Line2D method), 2268
get_c() (matplotlib.text.Text method), 2800
get_cachedir() (in module matplotlib), 1156
get_canvas_width_height()

(matplotlib.backend_bases.RendererBase method),
1597

get_canvas_width_height()
(matplotlib.backends.backend_agg.RendererAgg
method), 1630

get_canvas_width_height()
(matplotlib.backends.backend_cairo.RendererCairo
method), 1636

get_canvas_width_height()
(matplotlib.backends.backend_pgf.RendererPgf
method), 1655

get_canvas_width_height()
(matplotlib.backends.backend_svg.RendererSVG
method), 1666

get_canvas_width_height() (mat-
plotlib.backends.backend_template.RendererTemplate
method), 1624

get_capheight() (matplotlib.afm.AFM method), 1157
get_capstyle()

(matplotlib.backend_bases.GraphicsContextBase
method), 1584

get_capstyle() (mat-
plotlib.backends.backend_ps.GraphicsContextPS
method), 1657

get_capstyle()
(matplotlib.collections.AsteriskPolygonCollection
method), 1703

get_capstyle()
(matplotlib.collections.BrokenBarHCollection
method), 1722

get_capstyle() (matplotlib.collections.CircleCollection
method), 1743

get_capstyle() (matplotlib.collections.Collection
method), 1765

get_capstyle() (matplotlib.collections.EllipseCollection
method), 1784

get_capstyle() (matplotlib.collections.EventCollection
method), 1805

get_capstyle() (matplotlib.collections.LineCollection
method), 1826

get_capstyle() (matplotlib.collections.PatchCollection
method), 1846

get_capstyle() (matplotlib.collections.PathCollection
method), 1866

get_capstyle() (matplotlib.collections.PolyCollection
method), 1887

get_capstyle() (matplotlib.collections.QuadMesh
method), 1910

get_capstyle()
(matplotlib.collections.RegularPolyCollection
method), 1929

3402 Index

Matplotlib, Release 3.4.3

get_capstyle()
(matplotlib.collections.StarPolygonCollection
method), 1950

get_capstyle() (matplotlib.collections.TriMesh method),
1971

get_capstyle() (matplotlib.markers.MarkerStyle method),
2284

get_capstyle() (matplotlib.patches.Patch method), 2397
get_celld() (matplotlib.table.Table method), 2785
get_center() (matplotlib.patches.Ellipse method), 2371
get_child() (matplotlib.offsetbox.AnchoredOffsetbox

method), 2314
get_children() (matplotlib.artist.Artist method), 1227
get_children() (matplotlib.axes.Axes method), 1530
get_children()

(matplotlib.collections.AsteriskPolygonCollection
method), 1703

get_children()
(matplotlib.collections.BrokenBarHCollection
method), 1722

get_children() (matplotlib.collections.CircleCollection
method), 1743

get_children() (matplotlib.collections.Collection
method), 1765

get_children() (matplotlib.collections.EllipseCollection
method), 1784

get_children() (matplotlib.collections.EventCollection
method), 1805

get_children() (matplotlib.collections.LineCollection
method), 1826

get_children() (matplotlib.collections.PatchCollection
method), 1846

get_children() (matplotlib.collections.PathCollection
method), 1866

get_children() (matplotlib.collections.PolyCollection
method), 1887

get_children() (matplotlib.collections.QuadMesh
method), 1910

get_children()
(matplotlib.collections.RegularPolyCollection
method), 1929

get_children()
(matplotlib.collections.StarPolygonCollection
method), 1950

get_children() (matplotlib.collections.TriMesh method),
1971

get_children() (matplotlib.container.Container method),
2037

get_children() (matplotlib.figure.Figure method), 2095
get_children() (matplotlib.figure.FigureBase method),

2146
get_children() (matplotlib.figure.SubFigure method),

2190
get_children() (matplotlib.legend.Legend method), 2255
get_children() (matplotlib.offsetbox.AnchoredOffsetbox

method), 2314
get_children() (matplotlib.offsetbox.AnnotationBbox

method), 2317

get_children() (matplotlib.offsetbox.OffsetBox method),
2323

get_children() (matplotlib.offsetbox.OffsetImage
method), 2325

get_children() (matplotlib.table.Table method), 2785
get_children() (mpl_toolkits.axisartist.axislines.Axes

method), 3061
get_clim() (matplotlib.cm.ScalarMappable method), 1695
get_clim()

(matplotlib.collections.AsteriskPolygonCollection
method), 1703

get_clim() (matplotlib.collections.BrokenBarHCollection
method), 1722

get_clim() (matplotlib.collections.CircleCollection
method), 1743

get_clim() (matplotlib.collections.Collection method),
1765

get_clim() (matplotlib.collections.EllipseCollection
method), 1784

get_clim() (matplotlib.collections.EventCollection
method), 1805

get_clim() (matplotlib.collections.LineCollection method),
1826

get_clim() (matplotlib.collections.PatchCollection
method), 1846

get_clim() (matplotlib.collections.PathCollection method),
1866

get_clim() (matplotlib.collections.PolyCollection method),
1887

get_clim() (matplotlib.collections.QuadMesh method),
1910

get_clim() (matplotlib.collections.RegularPolyCollection
method), 1929

get_clim() (matplotlib.collections.StarPolygonCollection
method), 1950

get_clim() (matplotlib.collections.TriMesh method), 1971
get_clip_box() (matplotlib.artist.Artist method), 1217
get_clip_box()

(matplotlib.collections.AsteriskPolygonCollection
method), 1703

get_clip_box()
(matplotlib.collections.BrokenBarHCollection
method), 1722

get_clip_box() (matplotlib.collections.CircleCollection
method), 1743

get_clip_box() (matplotlib.collections.Collection
method), 1765

get_clip_box() (matplotlib.collections.EllipseCollection
method), 1784

get_clip_box() (matplotlib.collections.EventCollection
method), 1805

get_clip_box() (matplotlib.collections.LineCollection
method), 1826

get_clip_box() (matplotlib.collections.PatchCollection
method), 1846

get_clip_box() (matplotlib.collections.PathCollection
method), 1866

get_clip_box() (matplotlib.collections.PolyCollection
method), 1887

Index 3403

Matplotlib, Release 3.4.3

get_clip_box() (matplotlib.collections.QuadMesh
method), 1910

get_clip_box()
(matplotlib.collections.RegularPolyCollection
method), 1929

get_clip_box()
(matplotlib.collections.StarPolygonCollection
method), 1950

get_clip_box() (matplotlib.collections.TriMesh method),
1971

get_clip_box() (matplotlib.figure.Figure method), 2095
get_clip_box() (matplotlib.figure.FigureBase method),

2146
get_clip_box() (matplotlib.figure.SubFigure method),

2190
get_clip_on() (matplotlib.artist.Artist method), 1217
get_clip_on()

(matplotlib.collections.AsteriskPolygonCollection
method), 1703

get_clip_on()
(matplotlib.collections.BrokenBarHCollection
method), 1722

get_clip_on() (matplotlib.collections.CircleCollection
method), 1743

get_clip_on() (matplotlib.collections.Collection method),
1765

get_clip_on() (matplotlib.collections.EllipseCollection
method), 1784

get_clip_on() (matplotlib.collections.EventCollection
method), 1805

get_clip_on() (matplotlib.collections.LineCollection
method), 1826

get_clip_on() (matplotlib.collections.PatchCollection
method), 1846

get_clip_on() (matplotlib.collections.PathCollection
method), 1866

get_clip_on() (matplotlib.collections.PolyCollection
method), 1887

get_clip_on() (matplotlib.collections.QuadMesh method),
1910

get_clip_on()
(matplotlib.collections.RegularPolyCollection
method), 1929

get_clip_on()
(matplotlib.collections.StarPolygonCollection
method), 1950

get_clip_on() (matplotlib.collections.TriMesh method),
1971

get_clip_on() (matplotlib.figure.Figure method), 2095
get_clip_on() (matplotlib.figure.FigureBase method),

2146
get_clip_on() (matplotlib.figure.SubFigure method), 2190
get_clip_path() (matplotlib.artist.Artist method), 1218
get_clip_path()

(matplotlib.backend_bases.GraphicsContextBase
method), 1584

get_clip_path()
(matplotlib.collections.AsteriskPolygonCollection
method), 1703

get_clip_path()
(matplotlib.collections.BrokenBarHCollection
method), 1722

get_clip_path() (matplotlib.collections.CircleCollection
method), 1743

get_clip_path() (matplotlib.collections.Collection
method), 1765

get_clip_path() (matplotlib.collections.EllipseCollection
method), 1784

get_clip_path() (matplotlib.collections.EventCollection
method), 1805

get_clip_path() (matplotlib.collections.LineCollection
method), 1826

get_clip_path() (matplotlib.collections.PatchCollection
method), 1846

get_clip_path() (matplotlib.collections.PathCollection
method), 1866

get_clip_path() (matplotlib.collections.PolyCollection
method), 1887

get_clip_path() (matplotlib.collections.QuadMesh
method), 1910

get_clip_path()
(matplotlib.collections.RegularPolyCollection
method), 1929

get_clip_path()
(matplotlib.collections.StarPolygonCollection
method), 1950

get_clip_path() (matplotlib.collections.TriMesh
method), 1971

get_clip_path() (matplotlib.figure.Figure method), 2095
get_clip_path() (matplotlib.figure.FigureBase method),

2146
get_clip_path() (matplotlib.figure.SubFigure method),

2190
get_clip_rectangle()

(matplotlib.backend_bases.GraphicsContextBase
method), 1584

get_closed() (matplotlib.patches.Polygon method), 2412
get_cmap() (in module matplotlib.cm), 1697
get_cmap() (matplotlib.cm.ScalarMappable method), 1695
get_cmap()

(matplotlib.collections.AsteriskPolygonCollection
method), 1703

get_cmap() (matplotlib.collections.BrokenBarHCollection
method), 1723

get_cmap() (matplotlib.collections.CircleCollection
method), 1743

get_cmap() (matplotlib.collections.Collection method),
1765

get_cmap() (matplotlib.collections.EllipseCollection
method), 1784

get_cmap() (matplotlib.collections.EventCollection
method), 1805

get_cmap() (matplotlib.collections.LineCollection method),
1826

get_cmap() (matplotlib.collections.PatchCollection
method), 1846

get_cmap() (matplotlib.collections.PathCollection method),
1866

3404 Index

Matplotlib, Release 3.4.3

get_cmap() (matplotlib.collections.PolyCollection method),
1887

get_cmap() (matplotlib.collections.QuadMesh method),
1910

get_cmap() (matplotlib.collections.RegularPolyCollection
method), 1930

get_cmap() (matplotlib.collections.StarPolygonCollection
method), 1950

get_cmap() (matplotlib.collections.TriMesh method), 1971
get_color() (matplotlib.collections.EventCollection

method), 1805
get_color() (matplotlib.collections.LineCollection

method), 1826
get_color() (matplotlib.lines.Line2D method), 2268
get_color() (matplotlib.text.Text method), 2800
get_color() (mpl_toolkits.axisartist.axis_artist.AxisLabel

method), 3045
get_color() (mpl_toolkits.axisartist.axis_artist.Ticks

method), 3053
get_colors() (matplotlib.collections.EventCollection

method), 1805
get_colors() (matplotlib.collections.LineCollection

method), 1826
get_configdir() (in module matplotlib), 1155
get_connectionstyle()

(matplotlib.patches.FancyArrowPatch method),
2383

get_constrained_layout() (matplotlib.figure.Figure
method), 2095

get_constrained_layout()
(matplotlib.figure.SubFigure method), 2190

get_constrained_layout_pads()
(matplotlib.figure.Figure method), 2095

get_constrained_layout_pads()
(matplotlib.figure.SubFigure method), 2190

get_contains() (matplotlib.artist.Artist method), 1214
get_contains()

(matplotlib.collections.AsteriskPolygonCollection
method), 1703

get_contains()
(matplotlib.collections.BrokenBarHCollection
method), 1723

get_contains() (matplotlib.collections.CircleCollection
method), 1743

get_contains() (matplotlib.collections.Collection
method), 1765

get_contains() (matplotlib.collections.EllipseCollection
method), 1784

get_contains() (matplotlib.collections.EventCollection
method), 1805

get_contains() (matplotlib.collections.LineCollection
method), 1826

get_contains() (matplotlib.collections.PatchCollection
method), 1846

get_contains() (matplotlib.collections.PathCollection
method), 1866

get_contains() (matplotlib.collections.PolyCollection
method), 1887

get_contains() (matplotlib.collections.QuadMesh
method), 1910

get_contains()
(matplotlib.collections.RegularPolyCollection
method), 1930

get_contains()
(matplotlib.collections.StarPolygonCollection
method), 1950

get_contains() (matplotlib.collections.TriMesh method),
1971

get_contains() (matplotlib.figure.Figure method), 2095
get_contains() (matplotlib.figure.FigureBase method),

2146
get_contains() (matplotlib.figure.SubFigure method),

2191
get_content_extents()

(matplotlib.backends.backend_agg.RendererAgg
method), 1630

get_converter() (matplotlib.units.Registry method), 2896
get_cos_sin() (in module matplotlib.bezier), 1672
get_cpp_triangulation() (matplotlib.tri.Triangulation

method), 2884
get_current_fig_manager() (in module

matplotlib.pyplot), 2544
get_cursor_data() (matplotlib.artist.Artist method),

1212
get_cursor_data() (matplotlib.axes.Axes method), 1529
get_cursor_data()

(matplotlib.collections.AsteriskPolygonCollection
method), 1703

get_cursor_data()
(matplotlib.collections.BrokenBarHCollection
method), 1723

get_cursor_data()
(matplotlib.collections.CircleCollection method),
1743

get_cursor_data() (matplotlib.collections.Collection
method), 1765

get_cursor_data()
(matplotlib.collections.EllipseCollection method),
1785

get_cursor_data()
(matplotlib.collections.EventCollection method),
1806

get_cursor_data()
(matplotlib.collections.LineCollection method),
1827

get_cursor_data()
(matplotlib.collections.PatchCollection method),
1847

get_cursor_data()
(matplotlib.collections.PathCollection method),
1866

get_cursor_data()
(matplotlib.collections.PolyCollection method),
1888

get_cursor_data() (matplotlib.collections.QuadMesh
method), 1910

get_cursor_data()

Index 3405

Matplotlib, Release 3.4.3

(matplotlib.collections.RegularPolyCollection
method), 1930

get_cursor_data()
(matplotlib.collections.StarPolygonCollection
method), 1950

get_cursor_data() (matplotlib.collections.TriMesh
method), 1972

get_cursor_data() (matplotlib.figure.Figure method),
2096

get_cursor_data() (matplotlib.figure.FigureBase
method), 2147

get_cursor_data() (matplotlib.figure.SubFigure
method), 2191

get_cursor_data() (matplotlib.image.AxesImage
method), 2239

get_cursor_data() (matplotlib.image.PcolorImage
method), 2244

get_custom_preamble()
(matplotlib.texmanager.TexManager method), 2812

get_dash_capstyle() (matplotlib.lines.Line2D method),
2268

get_dash_joinstyle() (matplotlib.lines.Line2D
method), 2268

get_dashes()
(matplotlib.backend_bases.GraphicsContextBase
method), 1584

get_dashes()
(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_dashes()
(matplotlib.collections.BrokenBarHCollection
method), 1723

get_dashes() (matplotlib.collections.CircleCollection
method), 1744

get_dashes() (matplotlib.collections.Collection method),
1766

get_dashes() (matplotlib.collections.EllipseCollection
method), 1785

get_dashes() (matplotlib.collections.EventCollection
method), 1806

get_dashes() (matplotlib.collections.LineCollection
method), 1827

get_dashes() (matplotlib.collections.PatchCollection
method), 1847

get_dashes() (matplotlib.collections.PathCollection
method), 1867

get_dashes() (matplotlib.collections.PolyCollection
method), 1888

get_dashes() (matplotlib.collections.QuadMesh method),
1911

get_dashes()
(matplotlib.collections.RegularPolyCollection
method), 1930

get_dashes()
(matplotlib.collections.StarPolygonCollection
method), 1951

get_dashes() (matplotlib.collections.TriMesh method),
1972

get_data() (matplotlib.lines.Line2D method), 2268

get_data() (matplotlib.offsetbox.OffsetImage method), 2325
get_data() (matplotlib.patches.StepPatch method), 2409
get_data_3d() (mpl_toolkits.mplot3d.art3d.Line3D

method), 3135
get_data_boundary()

(mpl_toolkits.axisartist.floating_axes.GridHelperCurveLinear
method), 3073

get_data_interval() (matplotlib.axis.Axis method),
1556

get_data_path() (in module matplotlib), 1155
get_data_ratio() (matplotlib.axes.Axes method), 1536
get_data_ratio()

(matplotlib.projections.polar.PolarAxes method),
2713

get_data_transform() (matplotlib.patches.Patch
method), 2397

get_datalim()
(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_datalim()
(matplotlib.collections.BrokenBarHCollection
method), 1723

get_datalim() (matplotlib.collections.CircleCollection
method), 1744

get_datalim() (matplotlib.collections.Collection method),
1766

get_datalim() (matplotlib.collections.EllipseCollection
method), 1785

get_datalim() (matplotlib.collections.EventCollection
method), 1806

get_datalim() (matplotlib.collections.LineCollection
method), 1827

get_datalim() (matplotlib.collections.PatchCollection
method), 1847

get_datalim() (matplotlib.collections.PathCollection
method), 1867

get_datalim() (matplotlib.collections.PolyCollection
method), 1888

get_datalim() (matplotlib.collections.QuadMesh method),
1911

get_datalim()
(matplotlib.collections.RegularPolyCollection
method), 1930

get_datalim()
(matplotlib.collections.StarPolygonCollection
method), 1951

get_datalim() (matplotlib.collections.TriMesh method),
1972

get_datalim() (matplotlib.quiver.Quiver method), 2736
get_default_bbox_extra_artists()

(matplotlib.axes.Axes method), 1539
get_default_bbox_extra_artists()

(matplotlib.figure.Figure method), 2096
get_default_bbox_extra_artists()

(matplotlib.figure.FigureBase method), 2147
get_default_bbox_extra_artists()

(matplotlib.figure.SubFigure method), 2191
get_default_filename()

(matplotlib.backend_bases.FigureCanvasBase

3406 Index

Matplotlib, Release 3.4.3

method), 1576
get_default_filetype()

(matplotlib.backend_bases.FigureCanvasBase class
method), 1576

get_default_filetype()
(matplotlib.backends.backend_pdf.FigureCanvasPdf
method), 1638

get_default_filetype()
(matplotlib.backends.backend_pgf.FigureCanvasPgf
method), 1650

get_default_filetype()
(matplotlib.backends.backend_ps.FigureCanvasPS
method), 1657

get_default_filetype() (mat-
plotlib.backends.backend_svg.FigureCanvasSVG
method), 1662

get_default_filetype() (mat-
plotlib.backends.backend_template.FigureCanvasTemplate
method), 1622

get_default_handler_map()
(matplotlib.legend.Legend class method), 2255

get_default_size()
(matplotlib.font_manager.FontManager static
method), 2219

get_default_weight()
(matplotlib.font_manager.FontManager method),
2219

get_depth() (matplotlib.mathtext.MathTextParser method),
2287

get_depthshade()
(mpl_toolkits.mplot3d.art3d.Patch3DCollection
method), 3139

get_depthshade()
(mpl_toolkits.mplot3d.art3d.Path3DCollection
method), 3141

get_dir_vector() (in module
mpl_toolkits.mplot3d.art3d), 3151

get_divider() (mpl_toolkits.axes_grid1.axes_grid.Grid
method), 2970

get_dpi() (matplotlib.figure.Figure method), 2096
get_dpi_cor() (matplotlib.patches.FancyArrowPatch

method), 2383
get_draggable() (matplotlib.legend.Legend method),

2255
get_drawstyle() (matplotlib.lines.Line2D method), 2268
get_ds() (matplotlib.lines.Line2D method), 2268
get_ec() (matplotlib.collections.AsteriskPolygonCollection

method), 1704
get_ec() (matplotlib.collections.BrokenBarHCollection

method), 1723
get_ec() (matplotlib.collections.CircleCollection method),

1744
get_ec() (matplotlib.collections.Collection method), 1766
get_ec() (matplotlib.collections.EllipseCollection method),

1785
get_ec() (matplotlib.collections.EventCollection method),

1806
get_ec() (matplotlib.collections.LineCollection method),

1827

get_ec() (matplotlib.collections.PatchCollection method),
1847

get_ec() (matplotlib.collections.PathCollection method),
1867

get_ec() (matplotlib.collections.PolyCollection method),
1888

get_ec() (matplotlib.collections.QuadMesh method), 1911
get_ec() (matplotlib.collections.RegularPolyCollection

method), 1930
get_ec() (matplotlib.collections.StarPolygonCollection

method), 1951
get_ec() (matplotlib.collections.TriMesh method), 1972
get_ec() (matplotlib.patches.Patch method), 2397
get_edgecolor()

(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_edgecolor()
(matplotlib.collections.BrokenBarHCollection
method), 1723

get_edgecolor() (matplotlib.collections.CircleCollection
method), 1744

get_edgecolor() (matplotlib.collections.Collection
method), 1766

get_edgecolor() (matplotlib.collections.EllipseCollection
method), 1785

get_edgecolor() (matplotlib.collections.EventCollection
method), 1806

get_edgecolor() (matplotlib.collections.LineCollection
method), 1827

get_edgecolor() (matplotlib.collections.PatchCollection
method), 1847

get_edgecolor() (matplotlib.collections.PathCollection
method), 1867

get_edgecolor() (matplotlib.collections.PolyCollection
method), 1888

get_edgecolor() (matplotlib.collections.QuadMesh
method), 1911

get_edgecolor()
(matplotlib.collections.RegularPolyCollection
method), 1930

get_edgecolor()
(matplotlib.collections.StarPolygonCollection
method), 1951

get_edgecolor() (matplotlib.collections.TriMesh
method), 1972

get_edgecolor() (matplotlib.figure.Figure method), 2096
get_edgecolor() (matplotlib.figure.FigureBase method),

2147
get_edgecolor() (matplotlib.figure.SubFigure method),

2191
get_edgecolor() (matplotlib.patches.Patch method), 2397
get_edgecolor()

(mpl_toolkits.mplot3d.art3d.Patch3DCollection
method), 3139

get_edgecolor()
(mpl_toolkits.mplot3d.art3d.Path3DCollection
method), 3141

get_edgecolor()
(mpl_toolkits.mplot3d.art3d.Poly3DCollection

Index 3407

Matplotlib, Release 3.4.3

method), 3145
get_edgecolors()

(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_edgecolors()
(matplotlib.collections.BrokenBarHCollection
method), 1723

get_edgecolors()
(matplotlib.collections.CircleCollection method),
1744

get_edgecolors() (matplotlib.collections.Collection
method), 1766

get_edgecolors()
(matplotlib.collections.EllipseCollection method),
1785

get_edgecolors() (matplotlib.collections.EventCollection
method), 1806

get_edgecolors() (matplotlib.collections.LineCollection
method), 1827

get_edgecolors() (matplotlib.collections.PatchCollection
method), 1847

get_edgecolors() (matplotlib.collections.PathCollection
method), 1867

get_edgecolors() (matplotlib.collections.PolyCollection
method), 1888

get_edgecolors() (matplotlib.collections.QuadMesh
method), 1911

get_edgecolors()
(matplotlib.collections.RegularPolyCollection
method), 1930

get_edgecolors()
(matplotlib.collections.StarPolygonCollection
method), 1951

get_edgecolors() (matplotlib.collections.TriMesh
method), 1972

get_epoch() (in module matplotlib.dates), 2063
get_err_size()

(matplotlib.legend_handler.HandlerErrorbar
method), 2259

get_extent() (matplotlib.image.AxesImage method), 2239
get_extent() (matplotlib.image.FigureImage method),

2241
get_extent() (matplotlib.image.NonUniformImage

method), 2241
get_extent() (matplotlib.offsetbox.AnchoredOffsetbox

method), 2314
get_extent() (matplotlib.offsetbox.AuxTransformBox

method), 2318
get_extent() (matplotlib.offsetbox.DrawingArea method),

2320
get_extent() (matplotlib.offsetbox.OffsetBox method),

2323
get_extent() (matplotlib.offsetbox.OffsetImage method),

2325
get_extent() (matplotlib.offsetbox.TextArea method), 2327
get_extent()

(mpl_toolkits.axes_grid1.inset_locator.AnchoredSizeLocator
method), 2991

get_extent()

(mpl_toolkits.axes_grid1.inset_locator.AnchoredZoomLocator
method), 2994

get_extent_offsets() (matplotlib.offsetbox.HPacker
method), 2322

get_extent_offsets() (matplotlib.offsetbox.OffsetBox
method), 2323

get_extent_offsets() (matplotlib.offsetbox.PaddedBox
method), 2326

get_extent_offsets() (matplotlib.offsetbox.VPacker
method), 2329

get_extents() (matplotlib.patches.Patch method), 2397
get_extents() (matplotlib.path.Path method), 2432
get_facecolor() (matplotlib.axes.Axes method), 1443
get_facecolor()

(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_facecolor()
(matplotlib.collections.BrokenBarHCollection
method), 1724

get_facecolor() (matplotlib.collections.CircleCollection
method), 1744

get_facecolor() (matplotlib.collections.Collection
method), 1766

get_facecolor() (matplotlib.collections.EllipseCollection
method), 1785

get_facecolor() (matplotlib.collections.EventCollection
method), 1806

get_facecolor() (matplotlib.collections.LineCollection
method), 1827

get_facecolor() (matplotlib.collections.PatchCollection
method), 1847

get_facecolor() (matplotlib.collections.PathCollection
method), 1867

get_facecolor() (matplotlib.collections.PolyCollection
method), 1888

get_facecolor() (matplotlib.collections.QuadMesh
method), 1911

get_facecolor()
(matplotlib.collections.RegularPolyCollection
method), 1931

get_facecolor()
(matplotlib.collections.StarPolygonCollection
method), 1951

get_facecolor() (matplotlib.collections.TriMesh
method), 1972

get_facecolor() (matplotlib.figure.Figure method), 2096
get_facecolor() (matplotlib.figure.FigureBase method),

2147
get_facecolor() (matplotlib.figure.SubFigure method),

2191
get_facecolor() (matplotlib.patches.Patch method), 2397
get_facecolor()

(mpl_toolkits.mplot3d.art3d.Patch3DCollection
method), 3139

get_facecolor()
(mpl_toolkits.mplot3d.art3d.Path3DCollection
method), 3141

get_facecolor()
(mpl_toolkits.mplot3d.art3d.Poly3DCollection

3408 Index

Matplotlib, Release 3.4.3

method), 3145
get_facecolors()

(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_facecolors()
(matplotlib.collections.BrokenBarHCollection
method), 1724

get_facecolors()
(matplotlib.collections.CircleCollection method),
1744

get_facecolors() (matplotlib.collections.Collection
method), 1766

get_facecolors()
(matplotlib.collections.EllipseCollection method),
1785

get_facecolors() (matplotlib.collections.EventCollection
method), 1806

get_facecolors() (matplotlib.collections.LineCollection
method), 1827

get_facecolors() (matplotlib.collections.PatchCollection
method), 1847

get_facecolors() (matplotlib.collections.PathCollection
method), 1867

get_facecolors() (matplotlib.collections.PolyCollection
method), 1888

get_facecolors() (matplotlib.collections.QuadMesh
method), 1911

get_facecolors()
(matplotlib.collections.RegularPolyCollection
method), 1931

get_facecolors()
(matplotlib.collections.StarPolygonCollection
method), 1951

get_facecolors() (matplotlib.collections.TriMesh
method), 1972

get_family() (matplotlib.font_manager.FontProperties
method), 2221

get_family() (matplotlib.text.Text method), 2800
get_familyname() (matplotlib.afm.AFM method), 1157
get_fc() (matplotlib.collections.AsteriskPolygonCollection

method), 1704
get_fc() (matplotlib.collections.BrokenBarHCollection

method), 1724
get_fc() (matplotlib.collections.CircleCollection method),

1744
get_fc() (matplotlib.collections.Collection method), 1766
get_fc() (matplotlib.collections.EllipseCollection method),

1785
get_fc() (matplotlib.collections.EventCollection method),

1806
get_fc() (matplotlib.collections.LineCollection method),

1828
get_fc() (matplotlib.collections.PatchCollection method),

1848
get_fc() (matplotlib.collections.PathCollection method),

1867
get_fc() (matplotlib.collections.PolyCollection method),

1888
get_fc() (matplotlib.collections.QuadMesh method), 1911

get_fc() (matplotlib.collections.RegularPolyCollection
method), 1931

get_fc() (matplotlib.collections.StarPolygonCollection
method), 1951

get_fc() (matplotlib.collections.TriMesh method), 1972
get_fc() (matplotlib.patches.Patch method), 2397
get_figheight() (matplotlib.figure.Figure method), 2096
get_figlabels() (in module matplotlib.pyplot), 2545
get_fignums() (in module matplotlib.pyplot), 2545
get_figure() (matplotlib.artist.Artist method), 1226
get_figure()

(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_figure()
(matplotlib.collections.BrokenBarHCollection
method), 1724

get_figure() (matplotlib.collections.CircleCollection
method), 1744

get_figure() (matplotlib.collections.Collection method),
1766

get_figure() (matplotlib.collections.EllipseCollection
method), 1785

get_figure() (matplotlib.collections.EventCollection
method), 1806

get_figure() (matplotlib.collections.LineCollection
method), 1828

get_figure() (matplotlib.collections.PatchCollection
method), 1848

get_figure() (matplotlib.collections.PathCollection
method), 1867

get_figure() (matplotlib.collections.PolyCollection
method), 1888

get_figure() (matplotlib.collections.QuadMesh method),
1911

get_figure()
(matplotlib.collections.RegularPolyCollection
method), 1931

get_figure()
(matplotlib.collections.StarPolygonCollection
method), 1951

get_figure() (matplotlib.collections.TriMesh method),
1972

get_figure() (matplotlib.figure.Figure method), 2096
get_figure() (matplotlib.figure.FigureBase method), 2147
get_figure() (matplotlib.figure.SubFigure method), 2191
get_figwidth() (matplotlib.figure.Figure method), 2097
get_file() (matplotlib.font_manager.FontProperties

method), 2221
get_fill()

(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_fill() (matplotlib.collections.BrokenBarHCollection
method), 1724

get_fill() (matplotlib.collections.CircleCollection
method), 1744

get_fill() (matplotlib.collections.Collection method),
1766

get_fill() (matplotlib.collections.EllipseCollection
method), 1786

Index 3409

Matplotlib, Release 3.4.3

get_fill() (matplotlib.collections.EventCollection
method), 1806

get_fill() (matplotlib.collections.LineCollection method),
1828

get_fill() (matplotlib.collections.PatchCollection
method), 1848

get_fill() (matplotlib.collections.PathCollection method),
1867

get_fill() (matplotlib.collections.PolyCollection method),
1889

get_fill() (matplotlib.collections.QuadMesh method),
1911

get_fill() (matplotlib.collections.RegularPolyCollection
method), 1931

get_fill() (matplotlib.collections.StarPolygonCollection
method), 1951

get_fill() (matplotlib.collections.TriMesh method), 1972
get_fill() (matplotlib.patches.Patch method), 2397
get_fillstyle() (matplotlib.lines.Line2D method), 2268
get_fillstyle() (matplotlib.markers.MarkerStyle

method), 2284
get_flat_tri_mask() (matplotlib.tri.TriAnalyzer

method), 2891
get_font() (in module matplotlib.font_manager), 2224
get_font() (matplotlib.text.Text method), 2800
get_font_config() (matplotlib.texmanager.TexManager

method), 2812
get_font_preamble()

(matplotlib.texmanager.TexManager method), 2812
get_font_properties() (matplotlib.text.Text method),

2800
get_fontconfig_fonts() (in module

matplotlib.font_manager), 2224
get_fontconfig_pattern()

(matplotlib.font_manager.FontProperties method),
2221

get_fontext_synonyms() (in module
matplotlib.font_manager), 2224

get_fontfamily() (matplotlib.text.Text method), 2800
get_fontname() (matplotlib.afm.AFM method), 1157
get_fontname() (matplotlib.text.Text method), 2800
get_fontproperties() (matplotlib.text.Text method),

2801
get_fontsize() (matplotlib.offsetbox.AnnotationBbox

method), 2317
get_fontsize() (matplotlib.table.Cell method), 2781
get_fontsize() (matplotlib.text.Text method), 2801
get_fontspec() (in module

matplotlib.backends.backend_pgf), 1656
get_fontstyle() (matplotlib.text.Text method), 2801
get_fontvariant() (matplotlib.text.Text method), 2801
get_fontweight() (matplotlib.text.Text method), 2801
get_forced_alpha()

(matplotlib.backend_bases.GraphicsContextBase
method), 1584

get_frame() (matplotlib.legend.Legend method), 2255
get_frame_on() (matplotlib.axes.Axes method), 1439
get_frame_on() (matplotlib.legend.Legend method), 2255

get_frame_on() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 3098

get_frameon() (matplotlib.figure.Figure method), 2097
get_frameon() (matplotlib.figure.FigureBase method),

2147
get_frameon() (matplotlib.figure.SubFigure method), 2192
get_from_args_and_kwargs()

(matplotlib.tri.Triangulation static method), 2884
get_fullname() (matplotlib.afm.AFM method), 1157
get_fully_transformed_path()

(matplotlib.transforms.TransformedPath method),
2880

get_geometry() (matplotlib.axes.SubplotBase method),
1242

get_geometry() (matplotlib.gridspec.GridSpecBase
method), 2234

get_geometry() (matplotlib.gridspec.SubplotSpec
method), 2231

get_geometry()
(mpl_toolkits.axes_grid1.axes_divider.SubplotDivider
method), 2962

get_geometry() (mpl_toolkits.axes_grid1.axes_grid.Grid
method), 2970

get_gid() (matplotlib.artist.Artist method), 1229
get_gid() (matplotlib.backend_bases.GraphicsContextBase

method), 1584
get_gid() (matplotlib.collections.AsteriskPolygonCollection

method), 1704
get_gid() (matplotlib.collections.BrokenBarHCollection

method), 1724
get_gid() (matplotlib.collections.CircleCollection method),

1744
get_gid() (matplotlib.collections.Collection method), 1766
get_gid() (matplotlib.collections.EllipseCollection

method), 1786
get_gid() (matplotlib.collections.EventCollection method),

1807
get_gid() (matplotlib.collections.LineCollection method),

1828
get_gid() (matplotlib.collections.PatchCollection method),

1848
get_gid() (matplotlib.collections.PathCollection method),

1867
get_gid() (matplotlib.collections.PolyCollection method),

1889
get_gid() (matplotlib.collections.QuadMesh method), 1911
get_gid() (matplotlib.collections.RegularPolyCollection

method), 1931
get_gid() (matplotlib.collections.StarPolygonCollection

method), 1951
get_gid() (matplotlib.collections.TriMesh method), 1973
get_gid() (matplotlib.figure.Figure method), 2097
get_gid() (matplotlib.figure.FigureBase method), 2147
get_gid() (matplotlib.figure.SubFigure method), 2192
get_glyphs_mathtext() (matplotlib.textpath.TextToPath

method), 2815
get_glyphs_tex() (matplotlib.textpath.TextToPath

method), 2815

3410 Index

Matplotlib, Release 3.4.3

get_glyphs_with_font()
(matplotlib.textpath.TextToPath method), 2815

get_grey() (matplotlib.texmanager.TexManager method),
2812

get_grid_helper()
(mpl_toolkits.axisartist.axislines.Axes method),
3061

get_grid_info()
(mpl_toolkits.axisartist.grid_finder.GridFinder
method), 3077

get_grid_positions()
(matplotlib.gridspec.GridSpecBase method), 2234

get_gridlines() (matplotlib.axis.Axis method), 1554
get_gridlines()

(mpl_toolkits.axisartist.axislines.GridHelperBase
method), 3067

get_gridlines()
(mpl_toolkits.axisartist.axislines.GridHelperRectlinear
method), 3068

get_gridlines()
(mpl_toolkits.axisartist.floating_axes.GridHelperCurveLinear
method), 3073

get_gridlines()
(mpl_toolkits.axisartist.grid_helper_curvelinear.GridHelperCurveLinear
method), 3082

get_gridspec() (matplotlib.axes.SubplotBase method),
1243

get_gridspec() (matplotlib.gridspec.SubplotSpec
method), 2231

get_ha() (matplotlib.text.Text method), 2801
get_hatch()

(matplotlib.backend_bases.GraphicsContextBase
method), 1584

get_hatch()
(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_hatch() (matplotlib.collections.BrokenBarHCollection
method), 1724

get_hatch() (matplotlib.collections.CircleCollection
method), 1744

get_hatch() (matplotlib.collections.Collection method),
1766

get_hatch() (matplotlib.collections.EllipseCollection
method), 1786

get_hatch() (matplotlib.collections.EventCollection
method), 1807

get_hatch() (matplotlib.collections.LineCollection
method), 1828

get_hatch() (matplotlib.collections.PatchCollection
method), 1848

get_hatch() (matplotlib.collections.PathCollection
method), 1867

get_hatch() (matplotlib.collections.PolyCollection
method), 1889

get_hatch() (matplotlib.collections.QuadMesh method),
1911

get_hatch() (matplotlib.collections.RegularPolyCollection
method), 1931

get_hatch() (matplotlib.collections.StarPolygonCollection

method), 1951
get_hatch() (matplotlib.collections.TriMesh method), 1973
get_hatch() (matplotlib.patches.Patch method), 2397
get_hatch_color()

(matplotlib.backend_bases.GraphicsContextBase
method), 1584

get_hatch_linewidth()
(matplotlib.backend_bases.GraphicsContextBase
method), 1584

get_hatch_path()
(matplotlib.backend_bases.GraphicsContextBase
method), 1584

get_height() (matplotlib.patches.Ellipse method), 2371
get_height() (matplotlib.patches.FancyBboxPatch

method), 2390
get_height() (matplotlib.patches.Rectangle method), 2416
get_height_char() (matplotlib.afm.AFM method), 1157
get_height_ratios()

(matplotlib.gridspec.GridSpecBase method), 2234
get_helper() (mpl_toolkits.axisartist.axis_artist.AxisArtist

method), 3042
get_hinting_flag() (in module

matplotlib.backends.backend_agg), 1632
get_hinting_type()

(matplotlib.mathtext.MathtextBackend method),
2290

get_hinting_type()
(matplotlib.mathtext.MathtextBackendAgg method),
2290

get_horizontal()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2958

get_horizontal_sizes()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2958

get_horizontal_stem_width() (matplotlib.afm.AFM
method), 1157

get_horizontalalignment() (matplotlib.text.Text
method), 2801

get_image_magnification()
(matplotlib.backend_bases.RendererBase method),
1597

get_image_magnification()
(matplotlib.backends.backend_pdf.RendererPdf
method), 1648

get_image_magnification()
(matplotlib.backends.backend_ps.RendererPS
method), 1660

get_image_magnification()
(matplotlib.backends.backend_svg.RendererSVG
method), 1666

get_images() (matplotlib.axes.Axes method), 1530
get_images_artists()

(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase
method), 3022

get_in_layout() (matplotlib.artist.Artist method), 1231
get_in_layout()

(matplotlib.collections.AsteriskPolygonCollection
method), 1704

Index 3411

Matplotlib, Release 3.4.3

get_in_layout()
(matplotlib.collections.BrokenBarHCollection
method), 1724

get_in_layout() (matplotlib.collections.CircleCollection
method), 1744

get_in_layout() (matplotlib.collections.Collection
method), 1766

get_in_layout() (matplotlib.collections.EllipseCollection
method), 1786

get_in_layout() (matplotlib.collections.EventCollection
method), 1807

get_in_layout() (matplotlib.collections.LineCollection
method), 1828

get_in_layout() (matplotlib.collections.PatchCollection
method), 1848

get_in_layout() (matplotlib.collections.PathCollection
method), 1867

get_in_layout() (matplotlib.collections.PolyCollection
method), 1889

get_in_layout() (matplotlib.collections.QuadMesh
method), 1911

get_in_layout()
(matplotlib.collections.RegularPolyCollection
method), 1931

get_in_layout()
(matplotlib.collections.StarPolygonCollection
method), 1951

get_in_layout() (matplotlib.collections.TriMesh
method), 1973

get_in_layout() (matplotlib.figure.Figure method), 2097
get_in_layout() (matplotlib.figure.FigureBase method),

2147
get_in_layout() (matplotlib.figure.SubFigure method),

2192
get_intersection() (in module matplotlib.bezier), 1672
get_inverted() (matplotlib.axis.Axis method), 1556
get_javascript() (mat-

plotlib.backends.backend_nbagg.FigureManagerNbAgg
class method), 1637

get_joinstyle()
(matplotlib.backend_bases.GraphicsContextBase
method), 1584

get_joinstyle() (mat-
plotlib.backends.backend_ps.GraphicsContextPS
method), 1657

get_joinstyle()
(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_joinstyle()
(matplotlib.collections.BrokenBarHCollection
method), 1724

get_joinstyle() (matplotlib.collections.CircleCollection
method), 1744

get_joinstyle() (matplotlib.collections.Collection
method), 1766

get_joinstyle() (matplotlib.collections.EllipseCollection
method), 1786

get_joinstyle() (matplotlib.collections.EventCollection
method), 1807

get_joinstyle() (matplotlib.collections.LineCollection
method), 1828

get_joinstyle() (matplotlib.collections.PatchCollection
method), 1848

get_joinstyle() (matplotlib.collections.PathCollection
method), 1867

get_joinstyle() (matplotlib.collections.PolyCollection
method), 1889

get_joinstyle() (matplotlib.collections.QuadMesh
method), 1911

get_joinstyle()
(matplotlib.collections.RegularPolyCollection
method), 1931

get_joinstyle()
(matplotlib.collections.StarPolygonCollection
method), 1951

get_joinstyle() (matplotlib.collections.TriMesh
method), 1973

get_joinstyle() (matplotlib.markers.MarkerStyle
method), 2284

get_joinstyle() (matplotlib.patches.Patch method), 2397
get_kern_dist() (matplotlib.afm.AFM method), 1157
get_kern_dist_from_name() (matplotlib.afm.AFM

method), 1157
get_label() (matplotlib.artist.Artist method), 1230
get_label() (matplotlib.axis.Axis method), 1549
get_label()

(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_label() (matplotlib.collections.BrokenBarHCollection
method), 1724

get_label() (matplotlib.collections.CircleCollection
method), 1744

get_label() (matplotlib.collections.Collection method),
1766

get_label() (matplotlib.collections.EllipseCollection
method), 1786

get_label() (matplotlib.collections.EventCollection
method), 1807

get_label() (matplotlib.collections.LineCollection
method), 1828

get_label() (matplotlib.collections.PatchCollection
method), 1848

get_label() (matplotlib.collections.PathCollection
method), 1867

get_label() (matplotlib.collections.PolyCollection
method), 1889

get_label() (matplotlib.collections.QuadMesh method),
1911

get_label() (matplotlib.collections.RegularPolyCollection
method), 1931

get_label() (matplotlib.collections.StarPolygonCollection
method), 1951

get_label() (matplotlib.collections.TriMesh method), 1973
get_label() (matplotlib.container.Container method),

2037
get_label() (matplotlib.figure.Figure method), 2097
get_label() (matplotlib.figure.FigureBase method), 2147
get_label() (matplotlib.figure.SubFigure method), 2192

3412 Index

Matplotlib, Release 3.4.3

get_label_coords() (matplotlib.contour.ContourLabeler
method), 2043

get_label_position() (matplotlib.axis.Axis method),
1550

get_label_text() (matplotlib.axis.Axis method), 1550
get_label_width() (matplotlib.contour.ContourLabeler

method), 2043
get_legend() (matplotlib.axes.Axes method), 1479
get_legend_handler() (matplotlib.legend.Legend static

method), 2255
get_legend_handler_map() (matplotlib.legend.Legend

method), 2255
get_legend_handles_labels() (matplotlib.axes.Axes

method), 1479
get_line()

(mpl_toolkits.axisartist.axislines.AxisArtistHelper.Fixed
method), 3065

get_line()
(mpl_toolkits.axisartist.axislines.AxisArtistHelper.Floating
method), 3065

get_line()
(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear.Floating
method), 3066

get_line()
(mpl_toolkits.axisartist.floating_axes.FixedAxisArtistHelper
method), 3071

get_line()
(mpl_toolkits.axisartist.grid_helper_curvelinear.FloatingAxisArtistHelper
method), 3081

get_line_transform()
(mpl_toolkits.axisartist.axislines.AxisArtistHelper.Fixed
method), 3065

get_line_transform()
(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear.Floating
method), 3066

get_line_transform()
(mpl_toolkits.axisartist.grid_helper_curvelinear.FloatingAxisArtistHelper
method), 3081

get_linelength() (matplotlib.collections.EventCollection
method), 1807

get_lineoffset() (matplotlib.collections.EventCollection
method), 1807

get_lines() (matplotlib.axes.Axes method), 1530
get_lines() (matplotlib.legend.Legend method), 2255
get_linestyle()

(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_linestyle()
(matplotlib.collections.BrokenBarHCollection
method), 1724

get_linestyle() (matplotlib.collections.CircleCollection
method), 1744

get_linestyle() (matplotlib.collections.Collection
method), 1766

get_linestyle() (matplotlib.collections.EllipseCollection
method), 1786

get_linestyle() (matplotlib.collections.EventCollection
method), 1807

get_linestyle() (matplotlib.collections.LineCollection

method), 1828
get_linestyle() (matplotlib.collections.PatchCollection

method), 1848
get_linestyle() (matplotlib.collections.PathCollection

method), 1867
get_linestyle() (matplotlib.collections.PolyCollection

method), 1889
get_linestyle() (matplotlib.collections.QuadMesh

method), 1911
get_linestyle()

(matplotlib.collections.RegularPolyCollection
method), 1931

get_linestyle()
(matplotlib.collections.StarPolygonCollection
method), 1951

get_linestyle() (matplotlib.collections.TriMesh
method), 1973

get_linestyle() (matplotlib.lines.Line2D method), 2268
get_linestyle() (matplotlib.patches.Patch method), 2398
get_linestyles()

(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_linestyles()
(matplotlib.collections.BrokenBarHCollection
method), 1724

get_linestyles()
(matplotlib.collections.CircleCollection method),
1744

get_linestyles() (matplotlib.collections.Collection
method), 1766

get_linestyles()
(matplotlib.collections.EllipseCollection method),
1786

get_linestyles() (matplotlib.collections.EventCollection
method), 1807

get_linestyles() (matplotlib.collections.LineCollection
method), 1828

get_linestyles() (matplotlib.collections.PatchCollection
method), 1848

get_linestyles() (matplotlib.collections.PathCollection
method), 1868

get_linestyles() (matplotlib.collections.PolyCollection
method), 1889

get_linestyles() (matplotlib.collections.QuadMesh
method), 1911

get_linestyles()
(matplotlib.collections.RegularPolyCollection
method), 1931

get_linestyles()
(matplotlib.collections.StarPolygonCollection
method), 1951

get_linestyles() (matplotlib.collections.TriMesh
method), 1973

get_linewidth()
(matplotlib.backend_bases.GraphicsContextBase
method), 1584

get_linewidth()
(matplotlib.collections.AsteriskPolygonCollection
method), 1704

Index 3413

Matplotlib, Release 3.4.3

get_linewidth()
(matplotlib.collections.BrokenBarHCollection
method), 1724

get_linewidth() (matplotlib.collections.CircleCollection
method), 1744

get_linewidth() (matplotlib.collections.Collection
method), 1766

get_linewidth() (matplotlib.collections.EllipseCollection
method), 1786

get_linewidth() (matplotlib.collections.EventCollection
method), 1807

get_linewidth() (matplotlib.collections.LineCollection
method), 1828

get_linewidth() (matplotlib.collections.PatchCollection
method), 1848

get_linewidth() (matplotlib.collections.PathCollection
method), 1868

get_linewidth() (matplotlib.collections.PolyCollection
method), 1889

get_linewidth() (matplotlib.collections.QuadMesh
method), 1911

get_linewidth()
(matplotlib.collections.RegularPolyCollection
method), 1931

get_linewidth()
(matplotlib.collections.StarPolygonCollection
method), 1951

get_linewidth() (matplotlib.collections.TriMesh
method), 1973

get_linewidth() (matplotlib.figure.Figure method), 2097
get_linewidth() (matplotlib.figure.FigureBase method),

2148
get_linewidth() (matplotlib.figure.SubFigure method),

2192
get_linewidth() (matplotlib.lines.Line2D method), 2268
get_linewidth() (matplotlib.patches.Patch method), 2398
get_linewidths()

(matplotlib.collections.AsteriskPolygonCollection
method), 1704

get_linewidths()
(matplotlib.collections.BrokenBarHCollection
method), 1724

get_linewidths()
(matplotlib.collections.CircleCollection method),
1744

get_linewidths() (matplotlib.collections.Collection
method), 1766

get_linewidths()
(matplotlib.collections.EllipseCollection method),
1786

get_linewidths() (matplotlib.collections.EventCollection
method), 1807

get_linewidths() (matplotlib.collections.LineCollection
method), 1828

get_linewidths() (matplotlib.collections.PatchCollection
method), 1848

get_linewidths() (matplotlib.collections.PathCollection
method), 1868

get_linewidths() (matplotlib.collections.PolyCollection

method), 1889
get_linewidths() (matplotlib.collections.QuadMesh

method), 1911
get_linewidths()

(matplotlib.collections.RegularPolyCollection
method), 1931

get_linewidths()
(matplotlib.collections.StarPolygonCollection
method), 1951

get_linewidths() (matplotlib.collections.TriMesh
method), 1973

get_loc() (matplotlib.axis.Tick method), 1570
get_loc_in_canvas()

(matplotlib.offsetbox.DraggableOffsetBox method),
2320

get_locator() (matplotlib.dates.AutoDateLocator
method), 2054

get_locator() (matplotlib.ticker.OldAutoLocator method),
2833

get_locator()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2958

get_ls() (matplotlib.collections.AsteriskPolygonCollection
method), 1705

get_ls() (matplotlib.collections.BrokenBarHCollection
method), 1724

get_ls() (matplotlib.collections.CircleCollection method),
1745

get_ls() (matplotlib.collections.Collection method), 1767
get_ls() (matplotlib.collections.EllipseCollection method),

1786
get_ls() (matplotlib.collections.EventCollection method),

1807
get_ls() (matplotlib.collections.LineCollection method),

1828
get_ls() (matplotlib.collections.PatchCollection method),

1848
get_ls() (matplotlib.collections.PathCollection method),

1868
get_ls() (matplotlib.collections.PolyCollection method),

1889
get_ls() (matplotlib.collections.QuadMesh method), 1912
get_ls() (matplotlib.collections.RegularPolyCollection

method), 1931
get_ls() (matplotlib.collections.StarPolygonCollection

method), 1952
get_ls() (matplotlib.collections.TriMesh method), 1973
get_ls() (matplotlib.lines.Line2D method), 2269
get_ls() (matplotlib.patches.Patch method), 2398
get_lw() (matplotlib.collections.AsteriskPolygonCollection

method), 1705
get_lw() (matplotlib.collections.BrokenBarHCollection

method), 1724
get_lw() (matplotlib.collections.CircleCollection method),

1745
get_lw() (matplotlib.collections.Collection method), 1767
get_lw() (matplotlib.collections.EllipseCollection method),

1786

3414 Index

Matplotlib, Release 3.4.3

get_lw() (matplotlib.collections.EventCollection method),
1807

get_lw() (matplotlib.collections.LineCollection method),
1828

get_lw() (matplotlib.collections.PatchCollection method),
1848

get_lw() (matplotlib.collections.PathCollection method),
1868

get_lw() (matplotlib.collections.PolyCollection method),
1889

get_lw() (matplotlib.collections.QuadMesh method), 1912
get_lw() (matplotlib.collections.RegularPolyCollection

method), 1931
get_lw() (matplotlib.collections.StarPolygonCollection

method), 1952
get_lw() (matplotlib.collections.TriMesh method), 1973
get_lw() (matplotlib.lines.Line2D method), 2269
get_lw() (matplotlib.patches.Patch method), 2398
get_major_formatter() (matplotlib.axis.Axis method),

1544
get_major_locator() (matplotlib.axis.Axis method),

1544
get_major_ticks() (matplotlib.axis.Axis method), 1551
get_major_ticks() (mpl_toolkits.mplot3d.axis3d.Axis

method), 3132
get_majorticklabels() (matplotlib.axis.Axis method),

1551
get_majorticklines() (matplotlib.axis.Axis method),

1551
get_majorticklocs() (matplotlib.axis.Axis method),

1551
get_marker() (matplotlib.lines.Line2D method), 2269
get_marker() (matplotlib.markers.MarkerStyle method),

2284
get_markeredgecolor() (matplotlib.lines.Line2D

method), 2269
get_markeredgecolor()

(mpl_toolkits.axisartist.axis_artist.Ticks method),
3053

get_markeredgewidth() (matplotlib.lines.Line2D
method), 2269

get_markeredgewidth()
(mpl_toolkits.axisartist.axis_artist.Ticks method),
3053

get_markerfacecolor() (matplotlib.lines.Line2D
method), 2269

get_markerfacecoloralt() (matplotlib.lines.Line2D
method), 2269

get_markersize() (matplotlib.lines.Line2D method),
2269

get_markevery() (matplotlib.lines.Line2D method), 2269
get_masked_triangles() (matplotlib.tri.Triangulation

method), 2884
get_math_fontfamily()

(matplotlib.font_manager.FontProperties method),
2221

get_math_fontfamily() (matplotlib.text.Text method),
2801

get_matrix() (matplotlib.projections.polar.PolarAffine
method), 2705

get_matrix()
(matplotlib.projections.polar.PolarAxes.PolarAffine
method), 2709

get_matrix() (matplotlib.transforms.Affine2D method),
2846

get_matrix() (matplotlib.transforms.AffineDeltaTransform
method), 2852

get_matrix() (matplotlib.transforms.BboxTransform
method), 2861

get_matrix() (matplotlib.transforms.BboxTransformFrom
method), 2862

get_matrix() (matplotlib.transforms.BboxTransformTo
method), 2862

get_matrix()
(matplotlib.transforms.BboxTransformToMaxOnly
method), 2863

get_matrix() (matplotlib.transforms.BlendedAffine2D
method), 2863

get_matrix() (matplotlib.transforms.CompositeAffine2D
method), 2866

get_matrix() (matplotlib.transforms.IdentityTransform
method), 2868

get_matrix() (matplotlib.transforms.ScaledTranslation
method), 2872

get_matrix() (matplotlib.transforms.Transform method),
2874

get_mec() (matplotlib.lines.Line2D method), 2269
get_mew() (matplotlib.lines.Line2D method), 2269
get_mfc() (matplotlib.lines.Line2D method), 2269
get_mfcalt() (matplotlib.lines.Line2D method), 2269
get_minimumdescent() (matplotlib.offsetbox.TextArea

method), 2327
get_minor_formatter() (matplotlib.axis.Axis method),

1544
get_minor_locator() (matplotlib.axis.Axis method),

1544
get_minor_ticks() (matplotlib.axis.Axis method), 1551
get_minor_ticks() (mpl_toolkits.mplot3d.axis3d.Axis

method), 3132
get_minorticklabels() (matplotlib.axis.Axis method),

1552
get_minorticklines() (matplotlib.axis.Axis method),

1552
get_minorticklocs() (matplotlib.axis.Axis method),

1552
get_minpos() (matplotlib.axis.Axis method), 1558
get_ms() (matplotlib.lines.Line2D method), 2269
get_multilinebaseline()

(matplotlib.offsetbox.TextArea method), 2328
get_mutation_aspect()

(matplotlib.patches.FancyArrowPatch method),
2384

get_mutation_aspect()
(matplotlib.patches.FancyBboxPatch method), 2390

get_mutation_scale()
(matplotlib.patches.FancyArrowPatch method),
2384

Index 3415

Matplotlib, Release 3.4.3

get_mutation_scale()
(matplotlib.patches.FancyBboxPatch method), 2390

get_name() (matplotlib.font_manager.FontProperties
method), 2222

get_name() (matplotlib.text.Text method), 2801
get_name_char() (matplotlib.afm.AFM method), 1158
get_named_colors_mapping() (in module

matplotlib.colors), 2036
get_navigate() (matplotlib.axes.Axes method), 1524
get_navigate_mode() (matplotlib.axes.Axes method),

1525
get_normal_points() (in module matplotlib.bezier),

1673
get_nth_coord()

(mpl_toolkits.axisartist.axislines.AxisArtistHelper.Fixed
method), 3065

get_nth_coord()
(mpl_toolkits.axisartist.axislines.AxisArtistHelper.Floating
method), 3065

get_numpoints()
(matplotlib.legend_handler.HandlerLineCollection
method), 2260

get_numpoints()
(matplotlib.legend_handler.HandlerNpoints
method), 2260

get_numpoints() (mat-
plotlib.legend_handler.HandlerRegularPolyCollection
method), 2262

get_numsides()
(matplotlib.collections.AsteriskPolygonCollection
method), 1705

get_numsides()
(matplotlib.collections.RegularPolyCollection
method), 1931

get_numsides()
(matplotlib.collections.StarPolygonCollection
method), 1952

get_offset() (matplotlib.dates.ConciseDateFormatter
method), 2057

get_offset() (matplotlib.offsetbox.AuxTransformBox
method), 2318

get_offset() (matplotlib.offsetbox.DrawingArea method),
2320

get_offset() (matplotlib.offsetbox.OffsetBox method),
2323

get_offset() (matplotlib.offsetbox.OffsetImage method),
2325

get_offset() (matplotlib.offsetbox.TextArea method), 2328
get_offset() (matplotlib.ticker.FixedFormatter method),

2821
get_offset() (matplotlib.ticker.Formatter method), 2822
get_offset() (matplotlib.ticker.FuncFormatter method),

2822
get_offset() (matplotlib.ticker.ScalarFormatter method),

2836
get_offset_position()

(matplotlib.collections.AsteriskPolygonCollection
method), 1705

get_offset_position()

(matplotlib.collections.BrokenBarHCollection
method), 1724

get_offset_position()
(matplotlib.collections.CircleCollection method),
1745

get_offset_position()
(matplotlib.collections.Collection method), 1767

get_offset_position()
(matplotlib.collections.EllipseCollection method),
1786

get_offset_position()
(matplotlib.collections.EventCollection method),
1807

get_offset_position()
(matplotlib.collections.LineCollection method),
1828

get_offset_position()
(matplotlib.collections.PatchCollection method),
1848

get_offset_position()
(matplotlib.collections.PathCollection method),
1868

get_offset_position()
(matplotlib.collections.PolyCollection method),
1889

get_offset_position()
(matplotlib.collections.QuadMesh method), 1912

get_offset_position()
(matplotlib.collections.RegularPolyCollection
method), 1931

get_offset_position()
(matplotlib.collections.StarPolygonCollection
method), 1952

get_offset_position() (matplotlib.collections.TriMesh
method), 1973

get_offset_text() (matplotlib.axis.Axis method), 1552
get_offset_transform()

(matplotlib.collections.AsteriskPolygonCollection
method), 1705

get_offset_transform()
(matplotlib.collections.BrokenBarHCollection
method), 1725

get_offset_transform()
(matplotlib.collections.CircleCollection method),
1745

get_offset_transform()
(matplotlib.collections.Collection method), 1767

get_offset_transform()
(matplotlib.collections.EllipseCollection method),
1786

get_offset_transform()
(matplotlib.collections.EventCollection method),
1808

get_offset_transform()
(matplotlib.collections.LineCollection method),
1829

get_offset_transform()
(matplotlib.collections.PatchCollection method),
1849

3416 Index

Matplotlib, Release 3.4.3

get_offset_transform()
(matplotlib.collections.PathCollection method),
1868

get_offset_transform()
(matplotlib.collections.PolyCollection method),
1889

get_offset_transform()
(matplotlib.collections.QuadMesh method), 1912

get_offset_transform()
(matplotlib.collections.RegularPolyCollection
method), 1932

get_offset_transform()
(matplotlib.collections.StarPolygonCollection
method), 1952

get_offset_transform()
(matplotlib.collections.TriMesh method), 1973

get_offsets()
(matplotlib.collections.AsteriskPolygonCollection
method), 1705

get_offsets()
(matplotlib.collections.BrokenBarHCollection
method), 1725

get_offsets() (matplotlib.collections.CircleCollection
method), 1745

get_offsets() (matplotlib.collections.Collection method),
1767

get_offsets() (matplotlib.collections.EllipseCollection
method), 1786

get_offsets() (matplotlib.collections.EventCollection
method), 1808

get_offsets() (matplotlib.collections.LineCollection
method), 1829

get_offsets() (matplotlib.collections.PatchCollection
method), 1849

get_offsets() (matplotlib.collections.PathCollection
method), 1868

get_offsets() (matplotlib.collections.PolyCollection
method), 1889

get_offsets() (matplotlib.collections.QuadMesh method),
1912

get_offsets()
(matplotlib.collections.RegularPolyCollection
method), 1932

get_offsets()
(matplotlib.collections.StarPolygonCollection
method), 1952

get_offsets() (matplotlib.collections.TriMesh method),
1973

get_orientation()
(matplotlib.collections.EventCollection method),
1808

get_over() (matplotlib.colors.Colormap method), 2003
get_pad() (matplotlib.axis.Tick method), 1571
get_pad() (mpl_toolkits.axisartist.axis_artist.AxisLabel

method), 3045
get_pad_pixels() (matplotlib.axis.Tick method), 1571
get_pagecount()

(matplotlib.backends.backend_pdf.PdfPages
method), 1645

get_pagecount()
(matplotlib.backends.backend_pgf.PdfPages
method), 1652

get_parallels() (in module matplotlib.bezier), 1673
get_patch_transform() (matplotlib.patches.Arrow

method), 2337
get_patch_transform() (matplotlib.patches.Ellipse

method), 2371
get_patch_transform() (matplotlib.patches.Patch

method), 2398
get_patch_transform() (matplotlib.patches.Rectangle

method), 2416
get_patch_transform()

(matplotlib.patches.RegularPolygon method), 2420
get_patch_transform() (matplotlib.patches.Shadow

method), 2423
get_patch_transform() (matplotlib.spines.Spine

method), 2776
get_patches() (matplotlib.legend.Legend method), 2255
get_path() (matplotlib.lines.Line2D method), 2270
get_path() (matplotlib.markers.MarkerStyle method), 2284
get_path() (matplotlib.patches.Arrow method), 2338
get_path() (matplotlib.patches.Ellipse method), 2371
get_path() (matplotlib.patches.FancyArrowPatch method),

2384
get_path() (matplotlib.patches.FancyBboxPatch method),

2390
get_path() (matplotlib.patches.Patch method), 2398
get_path() (matplotlib.patches.PathPatch method), 2406
get_path() (matplotlib.patches.Polygon method), 2412
get_path() (matplotlib.patches.Rectangle method), 2416
get_path() (matplotlib.patches.RegularPolygon method),

2420
get_path() (matplotlib.patches.Shadow method), 2423
get_path() (matplotlib.patches.Wedge method), 2426
get_path() (matplotlib.spines.Spine method), 2776
get_path() (matplotlib.table.Cell method), 2781
get_path()

(mpl_toolkits.axes_grid1.inset_locator.BboxConnector
method), 2998

get_path()
(mpl_toolkits.axes_grid1.inset_locator.BboxConnectorPatch
method), 3001

get_path()
(mpl_toolkits.axes_grid1.inset_locator.BboxPatch
method), 3003

get_path() (mpl_toolkits.mplot3d.art3d.Patch3D method),
3139

get_path_collection_extents() (in module
matplotlib.path), 2436

get_path_effects() (matplotlib.artist.Artist method),
1225

get_path_effects()
(matplotlib.collections.AsteriskPolygonCollection
method), 1705

get_path_effects()
(matplotlib.collections.BrokenBarHCollection
method), 1725

get_path_effects()

Index 3417

Matplotlib, Release 3.4.3

(matplotlib.collections.CircleCollection method),
1745

get_path_effects() (matplotlib.collections.Collection
method), 1767

get_path_effects()
(matplotlib.collections.EllipseCollection method),
1786

get_path_effects()
(matplotlib.collections.EventCollection method),
1808

get_path_effects()
(matplotlib.collections.LineCollection method),
1829

get_path_effects()
(matplotlib.collections.PatchCollection method),
1849

get_path_effects()
(matplotlib.collections.PathCollection method),
1868

get_path_effects()
(matplotlib.collections.PolyCollection method),
1889

get_path_effects() (matplotlib.collections.QuadMesh
method), 1912

get_path_effects()
(matplotlib.collections.RegularPolyCollection
method), 1932

get_path_effects()
(matplotlib.collections.StarPolygonCollection
method), 1952

get_path_effects() (matplotlib.collections.TriMesh
method), 1973

get_path_effects() (matplotlib.figure.Figure method),
2097

get_path_effects() (matplotlib.figure.FigureBase
method), 2148

get_path_effects() (matplotlib.figure.SubFigure
method), 2192

get_path_in_displaycoord()
(matplotlib.patches.ConnectionPatch method), 2364

get_path_in_displaycoord()
(matplotlib.patches.FancyArrowPatch method),
2384

get_paths()
(matplotlib.collections.AsteriskPolygonCollection
method), 1705

get_paths() (matplotlib.collections.BrokenBarHCollection
method), 1725

get_paths() (matplotlib.collections.CircleCollection
method), 1745

get_paths() (matplotlib.collections.Collection method),
1767

get_paths() (matplotlib.collections.EllipseCollection
method), 1786

get_paths() (matplotlib.collections.EventCollection
method), 1808

get_paths() (matplotlib.collections.LineCollection
method), 1829

get_paths() (matplotlib.collections.PatchCollection

method), 1849
get_paths() (matplotlib.collections.PathCollection

method), 1868
get_paths() (matplotlib.collections.PolyCollection

method), 1889
get_paths() (matplotlib.collections.QuadMesh method),

1912
get_paths() (matplotlib.collections.RegularPolyCollection

method), 1932
get_paths() (matplotlib.collections.StarPolygonCollection

method), 1952
get_paths() (matplotlib.collections.TriMesh method), 1973
get_picker() (matplotlib.artist.Artist method), 1216
get_picker()

(matplotlib.collections.AsteriskPolygonCollection
method), 1705

get_picker()
(matplotlib.collections.BrokenBarHCollection
method), 1725

get_picker() (matplotlib.collections.CircleCollection
method), 1745

get_picker() (matplotlib.collections.Collection method),
1767

get_picker() (matplotlib.collections.EllipseCollection
method), 1787

get_picker() (matplotlib.collections.EventCollection
method), 1808

get_picker() (matplotlib.collections.LineCollection
method), 1829

get_picker() (matplotlib.collections.PatchCollection
method), 1849

get_picker() (matplotlib.collections.PathCollection
method), 1868

get_picker() (matplotlib.collections.PolyCollection
method), 1890

get_picker() (matplotlib.collections.QuadMesh method),
1912

get_picker()
(matplotlib.collections.RegularPolyCollection
method), 1932

get_picker()
(matplotlib.collections.StarPolygonCollection
method), 1952

get_picker() (matplotlib.collections.TriMesh method),
1973

get_picker() (matplotlib.figure.Figure method), 2097
get_picker() (matplotlib.figure.FigureBase method), 2148
get_picker() (matplotlib.figure.SubFigure method), 2192
get_pickradius() (matplotlib.axis.Axis method), 1559
get_pickradius()

(matplotlib.collections.AsteriskPolygonCollection
method), 1705

get_pickradius()
(matplotlib.collections.BrokenBarHCollection
method), 1725

get_pickradius()
(matplotlib.collections.CircleCollection method),
1745

get_pickradius() (matplotlib.collections.Collection

3418 Index

Matplotlib, Release 3.4.3

method), 1767
get_pickradius()

(matplotlib.collections.EllipseCollection method),
1787

get_pickradius() (matplotlib.collections.EventCollection
method), 1808

get_pickradius() (matplotlib.collections.LineCollection
method), 1829

get_pickradius() (matplotlib.collections.PatchCollection
method), 1849

get_pickradius() (matplotlib.collections.PathCollection
method), 1868

get_pickradius() (matplotlib.collections.PolyCollection
method), 1890

get_pickradius() (matplotlib.collections.QuadMesh
method), 1912

get_pickradius()
(matplotlib.collections.RegularPolyCollection
method), 1932

get_pickradius()
(matplotlib.collections.StarPolygonCollection
method), 1952

get_pickradius() (matplotlib.collections.TriMesh
method), 1974

get_pickradius() (matplotlib.lines.Line2D method),
2270

get_plot_commands() (in module matplotlib.pyplot),
2545

get_points() (matplotlib.transforms.Bbox method), 2854
get_points() (matplotlib.transforms.BboxBase method),

2859
get_points() (matplotlib.transforms.LockableBbox

method), 2871
get_points() (matplotlib.transforms.TransformedBbox

method), 2879
get_position() (matplotlib.axes.Axes method), 1521
get_position() (matplotlib.gridspec.SubplotSpec

method), 2232
get_position() (matplotlib.spines.Spine method), 2776
get_position() (matplotlib.text.Text method), 2802
get_position()

(mpl_toolkits.axes_grid1.axes_divider.AxesDivider
method), 2954

get_position()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2958

get_position()
(mpl_toolkits.axes_grid1.axes_divider.SubplotDivider
method), 2963

get_position_3d() (mpl_toolkits.mplot3d.art3d.Text3D
method), 3150

get_position_runtime()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2958

get_positions() (matplotlib.collections.EventCollection
method), 1808

get_preamble() (in module
matplotlib.backends.backend_pgf), 1656

get_proj() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3098
get_projection_class() (in module

matplotlib.projections), 2704
get_projection_class()

(matplotlib.projections.ProjectionRegistry method),
2704

get_projection_names() (in module
matplotlib.projections), 2704

get_projection_names()
(matplotlib.projections.ProjectionRegistry method),
2704

get_prop_tup() (matplotlib.text.Text method), 2802
get_radius() (matplotlib.patches.Circle method), 2356
get_rasterization_zorder() (matplotlib.axes.Axes

method), 1532
get_rasterized() (matplotlib.artist.Artist method), 1224
get_rasterized()

(matplotlib.collections.AsteriskPolygonCollection
method), 1705

get_rasterized()
(matplotlib.collections.BrokenBarHCollection
method), 1725

get_rasterized()
(matplotlib.collections.CircleCollection method),
1745

get_rasterized() (matplotlib.collections.Collection
method), 1767

get_rasterized()
(matplotlib.collections.EllipseCollection method),
1787

get_rasterized() (matplotlib.collections.EventCollection
method), 1808

get_rasterized() (matplotlib.collections.LineCollection
method), 1829

get_rasterized() (matplotlib.collections.PatchCollection
method), 1849

get_rasterized() (matplotlib.collections.PathCollection
method), 1868

get_rasterized() (matplotlib.collections.PolyCollection
method), 1890

get_rasterized() (matplotlib.collections.QuadMesh
method), 1912

get_rasterized()
(matplotlib.collections.RegularPolyCollection
method), 1932

get_rasterized()
(matplotlib.collections.StarPolygonCollection
method), 1952

get_rasterized() (matplotlib.collections.TriMesh
method), 1974

get_rasterized() (matplotlib.figure.Figure method),
2097

get_rasterized() (matplotlib.figure.FigureBase method),
2148

get_rasterized() (matplotlib.figure.SubFigure method),
2192

get_realpath_and_stat() (in module
matplotlib.cbook), 1685

get_ref_artist()

Index 3419

Matplotlib, Release 3.4.3

(mpl_toolkits.axisartist.axis_artist.AttributeCopier
method), 3041

get_ref_artist()
(mpl_toolkits.axisartist.axis_artist.AxisLabel
method), 3045

get_ref_artist()
(mpl_toolkits.axisartist.axis_artist.TickLabels
method), 3051

get_ref_artist()
(mpl_toolkits.axisartist.axis_artist.Ticks method),
3053

get_registered_canvas_class() (in module
matplotlib.backend_bases), 1602

get_remove_overlapping_locs()
(matplotlib.axis.Axis method), 1548

get_renderer() (in module matplotlib.tight_layout), 2843
get_renderer() (mat-

plotlib.backends.backend_agg.FigureCanvasAgg
method), 1626

get_renderer()
(matplotlib.backends.backend_pgf.FigureCanvasPgf
method), 1650

get_renderer_cache() (matplotlib.axes.Axes method),
1532

get_required_width() (matplotlib.table.Cell method),
2781

get_results() (matplotlib.mathtext.MathtextBackend
method), 2290

get_results() (matplotlib.mathtext.MathtextBackendAgg
method), 2290

get_results()
(matplotlib.mathtext.MathtextBackendBitmap
method), 2291

get_results()
(matplotlib.mathtext.MathtextBackendCairo
method), 2291

get_results() (matplotlib.mathtext.MathtextBackendPath
method), 2291

get_results() (matplotlib.mathtext.MathtextBackendPdf
method), 2292

get_results() (matplotlib.mathtext.MathtextBackendPs
method), 2292

get_results() (matplotlib.mathtext.MathtextBackendSvg
method), 2292

get_rgb() (matplotlib.backend_bases.GraphicsContextBase
method), 1584

get_rgb() (mat-
plotlib.backends.backend_cairo.GraphicsContextCairo
method), 1632

get_rgba() (matplotlib.texmanager.TexManager method),
2812

get_rlabel_position()
(matplotlib.projections.polar.PolarAxes method),
2713

get_rmax() (matplotlib.projections.polar.PolarAxes
method), 2713

get_rmin() (matplotlib.projections.polar.PolarAxes
method), 2713

get_rorigin() (matplotlib.projections.polar.PolarAxes

method), 2713
get_rotate_label() (mpl_toolkits.mplot3d.axis3d.Axis

method), 3132
get_rotation() (in module matplotlib.text), 2811
get_rotation()

(matplotlib.collections.AsteriskPolygonCollection
method), 1705

get_rotation()
(matplotlib.collections.RegularPolyCollection
method), 1932

get_rotation()
(matplotlib.collections.StarPolygonCollection
method), 1952

get_rotation() (matplotlib.contour.ClabelText method),
2040

get_rotation() (matplotlib.text.Text method), 2802
get_rotation_mode() (matplotlib.text.Text method),

2802
get_rows_columns() (matplotlib.gridspec.SubplotSpec

method), 2232
get_rsign() (matplotlib.projections.polar.PolarAxes

method), 2713
get_sample_data() (in module matplotlib.cbook), 1686
get_scale() (matplotlib.axis.Axis method), 1543
get_scale_names() (in module matplotlib.scale), 2769
get_segments() (matplotlib.collections.EventCollection

method), 1808
get_segments() (matplotlib.collections.LineCollection

method), 1829
get_setters() (matplotlib.artist.ArtistInspector method),

1236
get_shared_x_axes() (matplotlib.axes.Axes method),

1518
get_shared_y_axes() (matplotlib.axes.Axes method),

1518
get_siblings() (matplotlib.cbook.Grouper method), 1682
get_size() (matplotlib.font_manager.FontProperties

method), 2222
get_size() (matplotlib.textpath.TextPath method), 2814
get_size() (matplotlib.text.Text method), 2802
get_size() (mpl_toolkits.axes_grid1.axes_size.Add

method), 2980
get_size() (mpl_toolkits.axes_grid1.axes_size.AddList

method), 2980
get_size() (mpl_toolkits.axes_grid1.axes_size.AxesX

method), 2980
get_size() (mpl_toolkits.axes_grid1.axes_size.AxesY

method), 2981
get_size() (mpl_toolkits.axes_grid1.axes_size.Fixed

method), 2981
get_size() (mpl_toolkits.axes_grid1.axes_size.Fraction

method), 2982
get_size() (mpl_toolkits.axes_grid1.axes_size.MaxExtent

method), 2983
get_size() (mpl_toolkits.axes_grid1.axes_size.Padded

method), 2984
get_size() (mpl_toolkits.axes_grid1.axes_size.Scaled

method), 2984
get_size()

3420 Index

Matplotlib, Release 3.4.3

(mpl_toolkits.axes_grid1.axes_size.SizeFromFunc
method), 2985

get_size_in_points()
(matplotlib.font_manager.FontProperties method),
2222

get_size_inches() (matplotlib.figure.Figure method),
2097

get_sizes()
(matplotlib.collections.AsteriskPolygonCollection
method), 1705

get_sizes() (matplotlib.collections.BrokenBarHCollection
method), 1725

get_sizes() (matplotlib.collections.CircleCollection
method), 1745

get_sizes() (matplotlib.collections.PathCollection
method), 1868

get_sizes() (matplotlib.collections.PolyCollection
method), 1890

get_sizes() (matplotlib.collections.RegularPolyCollection
method), 1932

get_sizes() (matplotlib.collections.StarPolygonCollection
method), 1952

get_sizes() (mat-
plotlib.legend_handler.HandlerRegularPolyCollection
method), 2262

get_sketch_params() (matplotlib.artist.Artist method),
1223

get_sketch_params()
(matplotlib.backend_bases.GraphicsContextBase
method), 1584

get_sketch_params()
(matplotlib.collections.AsteriskPolygonCollection
method), 1705

get_sketch_params()
(matplotlib.collections.BrokenBarHCollection
method), 1725

get_sketch_params()
(matplotlib.collections.CircleCollection method),
1745

get_sketch_params() (matplotlib.collections.Collection
method), 1767

get_sketch_params()
(matplotlib.collections.EllipseCollection method),
1787

get_sketch_params()
(matplotlib.collections.EventCollection method),
1808

get_sketch_params()
(matplotlib.collections.LineCollection method),
1829

get_sketch_params()
(matplotlib.collections.PatchCollection method),
1849

get_sketch_params()
(matplotlib.collections.PathCollection method),
1869

get_sketch_params()
(matplotlib.collections.PolyCollection method),
1890

get_sketch_params() (matplotlib.collections.QuadMesh
method), 1912

get_sketch_params()
(matplotlib.collections.RegularPolyCollection
method), 1932

get_sketch_params()
(matplotlib.collections.StarPolygonCollection
method), 1952

get_sketch_params() (matplotlib.collections.TriMesh
method), 1974

get_sketch_params() (matplotlib.figure.Figure method),
2098

get_sketch_params() (matplotlib.figure.FigureBase
method), 2148

get_sketch_params() (matplotlib.figure.SubFigure
method), 2192

get_slant() (matplotlib.font_manager.FontProperties
method), 2222

get_snap() (matplotlib.artist.Artist method), 1222
get_snap()

(matplotlib.backend_bases.GraphicsContextBase
method), 1585

get_snap()
(matplotlib.collections.AsteriskPolygonCollection
method), 1706

get_snap() (matplotlib.collections.BrokenBarHCollection
method), 1725

get_snap() (matplotlib.collections.CircleCollection
method), 1746

get_snap() (matplotlib.collections.Collection method),
1768

get_snap() (matplotlib.collections.EllipseCollection
method), 1787

get_snap() (matplotlib.collections.EventCollection
method), 1809

get_snap() (matplotlib.collections.LineCollection method),
1829

get_snap() (matplotlib.collections.PatchCollection
method), 1849

get_snap() (matplotlib.collections.PathCollection method),
1869

get_snap() (matplotlib.collections.PolyCollection method),
1890

get_snap() (matplotlib.collections.QuadMesh method),
1913

get_snap() (matplotlib.collections.RegularPolyCollection
method), 1932

get_snap() (matplotlib.collections.StarPolygonCollection
method), 1953

get_snap() (matplotlib.collections.TriMesh method), 1974
get_snap() (matplotlib.figure.Figure method), 2098
get_snap() (matplotlib.figure.FigureBase method), 2148
get_snap() (matplotlib.figure.SubFigure method), 2192
get_snap_threshold() (matplotlib.markers.MarkerStyle

method), 2284
get_solid_capstyle() (matplotlib.lines.Line2D

method), 2270
get_solid_joinstyle() (matplotlib.lines.Line2D

method), 2270

Index 3421

Matplotlib, Release 3.4.3

get_spine_transform() (matplotlib.spines.Spine
method), 2776

get_status() (matplotlib.widgets.CheckButtons method),
2899

get_str_bbox() (matplotlib.afm.AFM method), 1158
get_str_bbox_and_descent() (matplotlib.afm.AFM

method), 1158
get_stretch() (matplotlib.font_manager.FontProperties

method), 2222
get_stretch() (matplotlib.text.Text method), 2802
get_style() (matplotlib.font_manager.FontProperties

method), 2222
get_style() (matplotlib.text.Text method), 2802
get_subplot_params() (matplotlib.gridspec.GridSpec

method), 2229
get_subplot_params()

(matplotlib.gridspec.GridSpecBase method), 2235
get_subplot_params()

(matplotlib.gridspec.GridSpecFromSubplotSpec
method), 2236

get_subplotspec() (matplotlib.axes.SubplotBase
method), 1243

get_subplotspec()
(mpl_toolkits.axes_grid1.axes_divider.AxesDivider
method), 2954

get_subplotspec()
(mpl_toolkits.axes_grid1.axes_divider.AxesLocator
method), 2956

get_subplotspec()
(mpl_toolkits.axes_grid1.axes_divider.SubplotDivider
method), 2963

get_subplotspec_list() (in module
matplotlib.tight_layout), 2843

get_supported_filetypes()
(matplotlib.backend_bases.FigureCanvasBase class
method), 1576

get_supported_filetypes_grouped()
(matplotlib.backend_bases.FigureCanvasBase class
method), 1576

get_texmanager()
(matplotlib.backend_bases.RendererBase method),
1597

get_texmanager() (matplotlib.textpath.TextToPath
method), 2815

get_text() (matplotlib.contour.ContourLabeler method),
2043

get_text() (matplotlib.offsetbox.TextArea method), 2328
get_text() (matplotlib.table.Cell method), 2781
get_text() (matplotlib.text.Text method), 2802
get_text() (mpl_toolkits.axisartist.axis_artist.AxisLabel

method), 3045
get_text_bounds() (matplotlib.table.Cell method), 2781
get_text_heights() (matplotlib.axis.XAxis method),

1563
get_text_path() (matplotlib.textpath.TextToPath

method), 2815
get_text_width_height_descent()

(matplotlib.backend_bases.RendererBase method),
1597

get_text_width_height_descent()
(matplotlib.backends.backend_agg.RendererAgg
method), 1630

get_text_width_height_descent()
(matplotlib.backends.backend_cairo.RendererCairo
method), 1636

get_text_width_height_descent()
(matplotlib.backends.backend_pgf.RendererPgf
method), 1655

get_text_width_height_descent()
(matplotlib.backends.backend_svg.RendererSVG
method), 1666

get_text_width_height_descent() (mat-
plotlib.backends.backend_template.RendererTemplate
method), 1624

get_text_width_height_descent()
(matplotlib.texmanager.TexManager method), 2812

get_text_width_height_descent()
(matplotlib.textpath.TextToPath method), 2815

get_text_widths() (matplotlib.axis.YAxis method), 1565
get_texts() (matplotlib.legend.Legend method), 2255
get_texts_widths_heights_descents()

(mpl_toolkits.axisartist.axis_artist.TickLabels
method), 3051

get_theta_direction()
(matplotlib.projections.polar.PolarAxes method),
2713

get_theta_offset()
(matplotlib.projections.polar.PolarAxes method),
2713

get_thetamax() (matplotlib.projections.polar.PolarAxes
method), 2713

get_thetamin() (matplotlib.projections.polar.PolarAxes
method), 2714

get_tick_iterator()
(mpl_toolkits.axisartist.grid_helper_curvelinear.GridHelperCurveLinear
method), 3082

get_tick_iterators()
(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear.Fixed
method), 3066

get_tick_iterators()
(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear.Floating
method), 3066

get_tick_iterators()
(mpl_toolkits.axisartist.floating_axes.FixedAxisArtistHelper
method), 3071

get_tick_iterators()
(mpl_toolkits.axisartist.grid_helper_curvelinear.FixedAxisArtistHelper
method), 3080

get_tick_iterators()
(mpl_toolkits.axisartist.grid_helper_curvelinear.FloatingAxisArtistHelper
method), 3081

get_tick_out() (mpl_toolkits.axisartist.axis_artist.Ticks
method), 3053

get_tick_padding() (matplotlib.axis.Axis method), 1552
get_tick_padding() (matplotlib.axis.Tick method), 1571
get_tick_space() (matplotlib.axis.Axis method), 1558
get_tick_transform()

(mpl_toolkits.axisartist.axislines.AxisArtistHelper.Fixed

3422 Index

Matplotlib, Release 3.4.3

method), 3065
get_tick_transform()

(mpl_toolkits.axisartist.axislines.AxisArtistHelperRectlinear.Floating
method), 3066

get_tick_transform()
(mpl_toolkits.axisartist.grid_helper_curvelinear.FixedAxisArtistHelper
method), 3080

get_tick_transform()
(mpl_toolkits.axisartist.grid_helper_curvelinear.FloatingAxisArtistHelper
method), 3081

get_tickdir() (matplotlib.axis.Tick method), 1571
get_ticklabel_extents() (matplotlib.axis.Axis

method), 1558
get_ticklabels() (matplotlib.axis.Axis method), 1553
get_ticklines() (matplotlib.axis.Axis method), 1553
get_ticklocs() (matplotlib.axis.Axis method), 1554
get_ticks() (matplotlib.colorbar.ColorbarBase method),

1992
get_ticks_position() (matplotlib.axis.XAxis method),

1563
get_ticks_position() (matplotlib.axis.YAxis method),

1565
get_ticksize() (mpl_toolkits.axisartist.axis_artist.Ticks

method), 3053
get_tight_layout() (matplotlib.figure.Figure method),

2098
get_tight_layout_figure() (in module

matplotlib.tight_layout), 2843
get_tightbbox() (matplotlib.axes.Axes method), 1533
get_tightbbox() (matplotlib.axis.Axis method), 1558
get_tightbbox()

(matplotlib.collections.AsteriskPolygonCollection
method), 1706

get_tightbbox()
(matplotlib.collections.BrokenBarHCollection
method), 1726

get_tightbbox() (matplotlib.collections.CircleCollection
method), 1746

get_tightbbox() (matplotlib.collections.Collection
method), 1768

get_tightbbox() (matplotlib.collections.EllipseCollection
method), 1787

get_tightbbox() (matplotlib.collections.EventCollection
method), 1809

get_tightbbox() (matplotlib.collections.LineCollection
method), 1830

get_tightbbox() (matplotlib.collections.PatchCollection
method), 1849

get_tightbbox() (matplotlib.collections.PathCollection
method), 1869

get_tightbbox() (matplotlib.collections.PolyCollection
method), 1890

get_tightbbox() (matplotlib.collections.QuadMesh
method), 1913

get_tightbbox()
(matplotlib.collections.RegularPolyCollection
method), 1933

get_tightbbox()
(matplotlib.collections.StarPolygonCollection

method), 1953
get_tightbbox() (matplotlib.collections.TriMesh

method), 1974
get_tightbbox() (matplotlib.figure.Figure method), 2098
get_tightbbox() (matplotlib.figure.FigureBase method),

2148
get_tightbbox() (matplotlib.figure.SubFigure method),

2193
get_tightbbox() (matplotlib.legend.Legend method),

2255
get_tightbbox() (matplotlib.offsetbox.AnnotationBbox

method), 2317
get_tightbbox() (matplotlib.text.Annotation method),

2797
get_tightbbox()

(mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase
method), 3020

get_tightbbox()
(mpl_toolkits.axisartist.axis_artist.AxisArtist
method), 3042

get_tightbbox() (mpl_toolkits.mplot3d.art3d.Text3D
method), 3150

get_tightbbox() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 3098

get_tightbbox() (mpl_toolkits.mplot3d.axis3d.Axis
method), 3132

get_title() (matplotlib.axes.Axes method), 1472
get_title() (matplotlib.legend.Legend method), 2256
get_tool() (matplotlib.backend_managers.ToolManager

method), 1604
get_tool_keymap()

(matplotlib.backend_managers.ToolManager
method), 1605

get_topmost_subplotspec()
(matplotlib.gridspec.GridSpecFromSubplotSpec
method), 2236

get_topmost_subplotspec()
(matplotlib.gridspec.SubplotSpec method), 2232

get_transform() (matplotlib.artist.Artist method), 1228
get_transform()

(matplotlib.collections.AsteriskPolygonCollection
method), 1706

get_transform()
(matplotlib.collections.BrokenBarHCollection
method), 1726

get_transform() (matplotlib.collections.CircleCollection
method), 1746

get_transform() (matplotlib.collections.Collection
method), 1768

get_transform() (matplotlib.collections.EllipseCollection
method), 1787

get_transform() (matplotlib.collections.EventCollection
method), 1809

get_transform() (matplotlib.collections.LineCollection
method), 1830

get_transform() (matplotlib.collections.PatchCollection
method), 1850

get_transform() (matplotlib.collections.PathCollection
method), 1869

Index 3423

Matplotlib, Release 3.4.3

get_transform() (matplotlib.collections.PolyCollection
method), 1891

get_transform() (matplotlib.collections.QuadMesh
method), 1913

get_transform()
(matplotlib.collections.RegularPolyCollection
method), 1933

get_transform()
(matplotlib.collections.StarPolygonCollection
method), 1953

get_transform() (matplotlib.collections.TriMesh
method), 1974

get_transform() (matplotlib.contour.ContourSet method),
2047

get_transform() (matplotlib.figure.Figure method), 2098
get_transform() (matplotlib.figure.FigureBase method),

2149
get_transform() (matplotlib.figure.SubFigure method),

2193
get_transform() (matplotlib.markers.MarkerStyle

method), 2284
get_transform() (matplotlib.offsetbox.AuxTransformBox

method), 2318
get_transform() (matplotlib.offsetbox.DrawingArea

method), 2320
get_transform() (matplotlib.patches.Patch method), 2398
get_transform() (matplotlib.scale.FuncScale method),

2759
get_transform() (matplotlib.scale.FuncScaleLog

method), 2760
get_transform() (matplotlib.scale.LinearScale method),

2763
get_transform() (matplotlib.scale.LogitScale method),

2766
get_transform() (matplotlib.scale.LogScale method),

2764
get_transform() (matplotlib.scale.ScaleBase method),

2767
get_transform() (matplotlib.scale.SymmetricalLogScale

method), 2768
get_transform()

(mpl_toolkits.axisartist.axis_artist.AxisArtist
method), 3042

get_transform_rotates_text() (matplotlib.text.Text
method), 2802

get_transformed_clip_path_and_affine()
(matplotlib.artist.Artist method), 1225

get_transformed_clip_path_and_affine()
(matplotlib.axes.Axes method), 1539

get_transformed_clip_path_and_affine()
(matplotlib.collections.AsteriskPolygonCollection
method), 1706

get_transformed_clip_path_and_affine()
(matplotlib.collections.BrokenBarHCollection
method), 1726

get_transformed_clip_path_and_affine()
(matplotlib.collections.CircleCollection method),
1746

get_transformed_clip_path_and_affine()

(matplotlib.collections.Collection method), 1768
get_transformed_clip_path_and_affine()

(matplotlib.collections.EllipseCollection method),
1788

get_transformed_clip_path_and_affine()
(matplotlib.collections.EventCollection method),
1809

get_transformed_clip_path_and_affine()
(matplotlib.collections.LineCollection method),
1830

get_transformed_clip_path_and_affine()
(matplotlib.collections.PatchCollection method),
1850

get_transformed_clip_path_and_affine()
(matplotlib.collections.PathCollection method),
1869

get_transformed_clip_path_and_affine()
(matplotlib.collections.PolyCollection method),
1891

get_transformed_clip_path_and_affine()
(matplotlib.collections.QuadMesh method), 1913

get_transformed_clip_path_and_affine()
(matplotlib.collections.RegularPolyCollection
method), 1933

get_transformed_clip_path_and_affine()
(matplotlib.collections.StarPolygonCollection
method), 1953

get_transformed_clip_path_and_affine()
(matplotlib.collections.TriMesh method), 1974

get_transformed_clip_path_and_affine()
(matplotlib.figure.Figure method), 2098

get_transformed_clip_path_and_affine()
(matplotlib.figure.FigureBase method), 2149

get_transformed_clip_path_and_affine()
(matplotlib.figure.SubFigure method), 2193

get_transformed_path_and_affine()
(matplotlib.transforms.TransformedPath method),
2880

get_transformed_points_and_affine()
(matplotlib.transforms.TransformedPath method),
2880

get_transforms()
(matplotlib.collections.AsteriskPolygonCollection
method), 1706

get_transforms()
(matplotlib.collections.BrokenBarHCollection
method), 1726

get_transforms()
(matplotlib.collections.CircleCollection method),
1746

get_transforms() (matplotlib.collections.Collection
method), 1768

get_transforms()
(matplotlib.collections.EllipseCollection method),
1788

get_transforms() (matplotlib.collections.EventCollection
method), 1809

get_transforms() (matplotlib.collections.LineCollection
method), 1830

3424 Index

Matplotlib, Release 3.4.3

get_transforms() (matplotlib.collections.PatchCollection
method), 1850

get_transforms() (matplotlib.collections.PathCollection
method), 1869

get_transforms() (matplotlib.collections.PolyCollection
method), 1891

get_transforms() (matplotlib.collections.QuadMesh
method), 1913

get_transforms()
(matplotlib.collections.RegularPolyCollection
method), 1933

get_transforms()
(matplotlib.collections.StarPolygonCollection
method), 1953

get_transforms() (matplotlib.collections.TriMesh
method), 1975

get_trifinder() (matplotlib.tri.Triangulation method),
2884

get_under() (matplotlib.colors.Colormap method), 2003
get_underline_thickness() (matplotlib.afm.AFM

method), 1158
get_unicode_index() (in module matplotlib.mathtext),

2292
get_unit() (matplotlib.text.OffsetFrom method), 2798
get_unit_generic() (matplotlib.dates.RRuleLocator

static method), 2060
get_unitless_position() (matplotlib.text.Text

method), 2802
get_units() (matplotlib.axis.Axis method), 1561
get_url() (matplotlib.artist.Artist method), 1230
get_url() (matplotlib.backend_bases.GraphicsContextBase

method), 1585
get_url() (matplotlib.collections.AsteriskPolygonCollection

method), 1706
get_url() (matplotlib.collections.BrokenBarHCollection

method), 1726
get_url() (matplotlib.collections.CircleCollection method),

1746
get_url() (matplotlib.collections.Collection method), 1768
get_url() (matplotlib.collections.EllipseCollection

method), 1788
get_url() (matplotlib.collections.EventCollection method),

1809
get_url() (matplotlib.collections.LineCollection method),

1830
get_url() (matplotlib.collections.PatchCollection method),

1850
get_url() (matplotlib.collections.PathCollection method),

1869
get_url() (matplotlib.collections.PolyCollection method),

1891
get_url() (matplotlib.collections.QuadMesh method), 1913
get_url() (matplotlib.collections.RegularPolyCollection

method), 1933
get_url() (matplotlib.collections.StarPolygonCollection

method), 1953
get_url() (matplotlib.collections.TriMesh method), 1975
get_url() (matplotlib.figure.Figure method), 2099
get_url() (matplotlib.figure.FigureBase method), 2149

get_url() (matplotlib.figure.SubFigure method), 2193
get_urls()

(matplotlib.collections.AsteriskPolygonCollection
method), 1706

get_urls() (matplotlib.collections.BrokenBarHCollection
method), 1726

get_urls() (matplotlib.collections.CircleCollection
method), 1746

get_urls() (matplotlib.collections.Collection method),
1768

get_urls() (matplotlib.collections.EllipseCollection
method), 1788

get_urls() (matplotlib.collections.EventCollection
method), 1809

get_urls() (matplotlib.collections.LineCollection method),
1830

get_urls() (matplotlib.collections.PatchCollection
method), 1850

get_urls() (matplotlib.collections.PathCollection method),
1869

get_urls() (matplotlib.collections.PolyCollection method),
1891

get_urls() (matplotlib.collections.QuadMesh method),
1913

get_urls() (matplotlib.collections.RegularPolyCollection
method), 1933

get_urls() (matplotlib.collections.StarPolygonCollection
method), 1953

get_urls() (matplotlib.collections.TriMesh method), 1975
get_useLocale() (matplotlib.ticker.ScalarFormatter

method), 2837
get_useMathText() (matplotlib.ticker.EngFormatter

method), 2821
get_useMathText() (matplotlib.ticker.ScalarFormatter

method), 2837
get_useOffset() (matplotlib.ticker.ScalarFormatter

method), 2837
get_usetex() (matplotlib.text.Text method), 2802
get_usetex() (matplotlib.ticker.EngFormatter method),

2821
get_va() (matplotlib.text.Text method), 2802
get_valid_values() (matplotlib.artist.ArtistInspector

method), 1236
get_variant() (matplotlib.font_manager.FontProperties

method), 2222
get_variant() (matplotlib.text.Text method), 2802
get_vector()

(mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 3145

get_vertical()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2958

get_vertical_sizes()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2958

get_vertical_stem_width() (matplotlib.afm.AFM
method), 1158

get_verticalalignment() (matplotlib.text.Text
method), 2802

Index 3425

Matplotlib, Release 3.4.3

get_verts() (matplotlib.patches.Patch method), 2398
get_view_interval() (matplotlib.axis.Axis method),

1556
get_view_interval() (matplotlib.axis.Tick method),

1571
get_viewlim_mode()

(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesAuxTransBase
method), 3021

get_viewlim_mode()
(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase
method), 3022

get_visible() (matplotlib.artist.Artist method), 1222
get_visible()

(matplotlib.collections.AsteriskPolygonCollection
method), 1706

get_visible()
(matplotlib.collections.BrokenBarHCollection
method), 1726

get_visible() (matplotlib.collections.CircleCollection
method), 1746

get_visible() (matplotlib.collections.Collection method),
1768

get_visible() (matplotlib.collections.EllipseCollection
method), 1788

get_visible() (matplotlib.collections.EventCollection
method), 1809

get_visible() (matplotlib.collections.LineCollection
method), 1830

get_visible() (matplotlib.collections.PatchCollection
method), 1850

get_visible() (matplotlib.collections.PathCollection
method), 1870

get_visible() (matplotlib.collections.PolyCollection
method), 1891

get_visible() (matplotlib.collections.QuadMesh method),
1913

get_visible()
(matplotlib.collections.RegularPolyCollection
method), 1933

get_visible()
(matplotlib.collections.StarPolygonCollection
method), 1953

get_visible() (matplotlib.collections.TriMesh method),
1975

get_visible() (matplotlib.figure.Figure method), 2099
get_visible() (matplotlib.figure.FigureBase method),

2149
get_visible() (matplotlib.figure.SubFigure method), 2193
get_visible_children()

(matplotlib.offsetbox.OffsetBox method), 2324
get_vsize_hsize()

(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2958

get_vsize_hsize()
(mpl_toolkits.axes_grid1.axes_grid.Grid method),
2970

get_w_lims() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 3099

get_weight() (matplotlib.afm.AFM method), 1158

get_weight() (matplotlib.font_manager.FontProperties
method), 2222

get_weight() (matplotlib.text.Text method), 2802
get_width() (matplotlib.patches.Ellipse method), 2371
get_width() (matplotlib.patches.FancyBboxPatch method),

2390
get_width() (matplotlib.patches.Rectangle method), 2416
get_width_char() (matplotlib.afm.AFM method), 1158
get_width_from_char_name() (matplotlib.afm.AFM

method), 1158
get_width_height()

(matplotlib.backend_bases.FigureCanvasBase
method), 1576

get_width_height_descent()
(matplotlib.backends.backend_pgf.LatexManager
method), 1651

get_width_ratios() (matplotlib.gridspec.GridSpecBase
method), 2235

get_window_extent() (matplotlib.artist.Artist method),
1225

get_window_extent() (matplotlib.axes.Axes method),
1533

get_window_extent()
(matplotlib.collections.AsteriskPolygonCollection
method), 1707

get_window_extent()
(matplotlib.collections.BrokenBarHCollection
method), 1726

get_window_extent()
(matplotlib.collections.CircleCollection method),
1746

get_window_extent() (matplotlib.collections.Collection
method), 1768

get_window_extent()
(matplotlib.collections.EllipseCollection method),
1788

get_window_extent()
(matplotlib.collections.EventCollection method),
1809

get_window_extent()
(matplotlib.collections.LineCollection method),
1830

get_window_extent()
(matplotlib.collections.PatchCollection method),
1850

get_window_extent()
(matplotlib.collections.PathCollection method),
1870

get_window_extent()
(matplotlib.collections.PolyCollection method),
1891

get_window_extent() (matplotlib.collections.QuadMesh
method), 1913

get_window_extent()
(matplotlib.collections.RegularPolyCollection
method), 1933

get_window_extent()
(matplotlib.collections.StarPolygonCollection
method), 1954

3426 Index

Matplotlib, Release 3.4.3

get_window_extent() (matplotlib.collections.TriMesh
method), 1975

get_window_extent() (matplotlib.figure.Figure method),
2099

get_window_extent() (matplotlib.figure.FigureBase
method), 2149

get_window_extent() (matplotlib.figure.SubFigure
method), 2193

get_window_extent() (matplotlib.image.AxesImage
method), 2239

get_window_extent() (matplotlib.image.BboxImage
method), 2240

get_window_extent() (matplotlib.legend.Legend
method), 2256

get_window_extent() (matplotlib.lines.Line2D method),
2270

get_window_extent()
(matplotlib.offsetbox.AnchoredOffsetbox method),
2314

get_window_extent()
(matplotlib.offsetbox.AnnotationBbox method), 2317

get_window_extent()
(matplotlib.offsetbox.AuxTransformBox method),
2318

get_window_extent()
(matplotlib.offsetbox.DrawingArea method), 2321

get_window_extent() (matplotlib.offsetbox.OffsetBox
method), 2324

get_window_extent() (matplotlib.offsetbox.OffsetImage
method), 2325

get_window_extent() (matplotlib.offsetbox.TextArea
method), 2328

get_window_extent() (matplotlib.patches.Patch
method), 2398

get_window_extent() (matplotlib.spines.Spine method),
2776

get_window_extent() (matplotlib.table.Table method),
2785

get_window_extent() (matplotlib.text.Annotation
method), 2797

get_window_extent() (matplotlib.text.Text method),
2802

get_window_extent()
(mpl_toolkits.axisartist.axis_artist.AxisLabel
method), 3045

get_window_extent()
(mpl_toolkits.axisartist.axis_artist.LabelBase
method), 3050

get_window_extents()
(mpl_toolkits.axisartist.axis_artist.TickLabels
method), 3051

get_window_title()
(matplotlib.backend_bases.FigureCanvasBase
method), 1576

get_window_title()
(matplotlib.backend_bases.FigureManagerBase
method), 1583

get_wrap() (matplotlib.text.Text method), 2803
get_x() (matplotlib.patches.FancyBboxPatch method), 2390

get_x() (matplotlib.patches.Rectangle method), 2416
get_xaxis() (matplotlib.axes.Axes method), 1445
get_xaxis_text1_transform() (matplotlib.axes.Axes

method), 1536
get_xaxis_text1_transform()

(matplotlib.projections.polar.PolarAxes method),
2714

get_xaxis_text2_transform() (matplotlib.axes.Axes
method), 1537

get_xaxis_text2_transform()
(matplotlib.projections.polar.PolarAxes method),
2714

get_xaxis_transform() (matplotlib.axes.Axes method),
1535

get_xaxis_transform()
(matplotlib.projections.polar.PolarAxes method),
2715

get_xbound() (matplotlib.axes.Axes method), 1457
get_xdata() (matplotlib.legend_handler.HandlerNpoints

method), 2260
get_xdata() (matplotlib.lines.Line2D method), 2270
get_xgridlines() (matplotlib.axes.Axes method), 1500
get_xheight() (matplotlib.afm.AFM method), 1158
get_xlabel() (matplotlib.axes.Axes method), 1462
get_xlim() (matplotlib.axes.Axes method), 1451
get_xlim() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3099
get_xlim3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3099
get_xmajorticklabels() (matplotlib.axes.Axes

method), 1499
get_xminorticklabels() (matplotlib.axes.Axes

method), 1499
get_xscale() (matplotlib.axes.Axes method), 1481
get_xticklabels() (matplotlib.axes.Axes method), 1498
get_xticklines() (matplotlib.axes.Axes method), 1500
get_xticks() (matplotlib.axes.Axes method), 1497
get_xy() (matplotlib.patches.Polygon method), 2412
get_xy() (matplotlib.patches.Rectangle method), 2416
get_xydata() (matplotlib.lines.Line2D method), 2270
get_y() (matplotlib.patches.FancyBboxPatch method), 2390
get_y() (matplotlib.patches.Rectangle method), 2416
get_yaxis() (matplotlib.axes.Axes method), 1445
get_yaxis_text1_transform() (matplotlib.axes.Axes

method), 1537
get_yaxis_text1_transform()

(matplotlib.projections.polar.PolarAxes method),
2715

get_yaxis_text2_transform() (matplotlib.axes.Axes
method), 1538

get_yaxis_text2_transform()
(matplotlib.projections.polar.PolarAxes method),
2715

get_yaxis_transform() (matplotlib.axes.Axes method),
1535

get_yaxis_transform()
(matplotlib.projections.polar.PolarAxes method),
2716

get_ybound() (matplotlib.axes.Axes method), 1458

Index 3427

Matplotlib, Release 3.4.3

get_ydata()
(matplotlib.legend_handler.HandlerNpointsYoffsets
method), 2261

get_ydata() (matplotlib.legend_handler.HandlerStem
method), 2263

get_ydata() (matplotlib.lines.Line2D method), 2270
get_ygridlines() (matplotlib.axes.Axes method), 1504
get_ylabel() (matplotlib.axes.Axes method), 1466
get_ylim() (matplotlib.axes.Axes method), 1455
get_ylim() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3099
get_ylim3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3099
get_ymajorticklabels() (matplotlib.axes.Axes

method), 1504
get_yminorticklabels() (matplotlib.axes.Axes

method), 1504
get_yscale() (matplotlib.axes.Axes method), 1482
get_yticklabels() (matplotlib.axes.Axes method), 1503
get_yticklines() (matplotlib.axes.Axes method), 1504
get_yticks() (matplotlib.axes.Axes method), 1502
get_zaxis() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3100
get_zbound() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3100
get_zgridlines() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3100
get_zlabel() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3100
get_zlim() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3100
get_zlim3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3100
get_zmajorticklabels()

(mpl_toolkits.mplot3d.axes3d.Axes3D method),
3100

get_zminorticklabels()
(mpl_toolkits.mplot3d.axes3d.Axes3D method),
3100

get_zoom() (matplotlib.offsetbox.OffsetImage method), 2325
get_zorder() (matplotlib.artist.Artist method), 1223
get_zorder()

(matplotlib.collections.AsteriskPolygonCollection
method), 1707

get_zorder()
(matplotlib.collections.BrokenBarHCollection
method), 1726

get_zorder() (matplotlib.collections.CircleCollection
method), 1747

get_zorder() (matplotlib.collections.Collection method),
1769

get_zorder() (matplotlib.collections.EllipseCollection
method), 1788

get_zorder() (matplotlib.collections.EventCollection
method), 1810

get_zorder() (matplotlib.collections.LineCollection
method), 1830

get_zorder() (matplotlib.collections.PatchCollection
method), 1850

get_zorder() (matplotlib.collections.PathCollection
method), 1870

get_zorder() (matplotlib.collections.PolyCollection
method), 1891

get_zorder() (matplotlib.collections.QuadMesh method),
1914

get_zorder()
(matplotlib.collections.RegularPolyCollection
method), 1933

get_zorder()
(matplotlib.collections.StarPolygonCollection
method), 1954

get_zorder() (matplotlib.collections.TriMesh method),
1975

get_zorder() (matplotlib.figure.Figure method), 2099
get_zorder() (matplotlib.figure.FigureBase method), 2149
get_zorder() (matplotlib.figure.SubFigure method), 2193
get_zscale() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3100
get_zticklabels()

(mpl_toolkits.mplot3d.axes3d.Axes3D method),
3100

get_zticklines() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 3101

get_zticks() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 3101

GetExtentHelper (class in
mpl_toolkits.axes_grid1.axes_size), 2982

getp() (in module matplotlib.artist), 1233
getp() (in module matplotlib.pyplot), 2545
ginput() (in module matplotlib.pyplot), 2546
ginput() (matplotlib.figure.Figure method), 2099
GlueSpec (class in matplotlib.mathtext), 2287
grab_frame() (matplotlib.animation.AbstractMovieWriter

method), 1200
grab_frame() (matplotlib.animation.FileMovieWriter

method), 1206
grab_frame() (matplotlib.animation.HTMLWriter method),

1184
grab_frame() (matplotlib.animation.MovieWriter method),

1203
grab_frame() (matplotlib.animation.PillowWriter method),

1181
grab_mouse()

(matplotlib.backend_bases.FigureCanvasBase
method), 1576

gradient() (matplotlib.tri.CubicTriInterpolator method),
2888

gradient() (matplotlib.tri.LinearTriInterpolator method),
2886

GraphicsContextBase (class in
matplotlib.backend_bases), 1583

GraphicsContextCairo (class in
matplotlib.backends.backend_cairo), 1632

GraphicsContextPdf (class in
matplotlib.backends.backend_pdf), 1639

GraphicsContextPgf (class in
matplotlib.backends.backend_pgf), 1651

3428 Index

Matplotlib, Release 3.4.3

GraphicsContextPS (class in
matplotlib.backends.backend_ps), 1657

GraphicsContextTemplate (class in
matplotlib.backends.backend_template), 1622

gray() (in module matplotlib.pyplot), 2547
grestore (matplotlib.backends.backend_pdf.Op attribute),

1640
grey_arrayd (matplotlib.texmanager.TexManager

attribute), 2812
Grid (class in mpl_toolkits.axes_grid1.axes_grid), 2967
Grid (class in mpl_toolkits.axisartist.axes_grid), 3035
grid() (in module matplotlib.pyplot), 2547
grid() (matplotlib.axes.Axes method), 1440
grid() (matplotlib.axis.Axis method), 1554
grid() (mpl_toolkits.axisartist.axislines.Axes method), 3061
grid() (mpl_toolkits.mplot3d.axes3d.Axes3D method), 3101
GridFinder (class in mpl_toolkits.axisartist.grid_finder),

3076
GridHelperBase (class in mpl_toolkits.axisartist.axislines),

3067
GridHelperCurveLinear (class in

mpl_toolkits.axisartist.floating_axes), 3072
GridHelperCurveLinear (class in

mpl_toolkits.axisartist.grid_helper_curvelinear),
3081

GridHelperRectlinear (class in
mpl_toolkits.axisartist.axislines), 3068

GridlinesCollection (class in
mpl_toolkits.axisartist.axis_artist), 3046

GridSpec (class in matplotlib.gridspec), 2227
GridSpecBase (class in matplotlib.gridspec), 2233
GridSpecFromSubplotSpec (class in

matplotlib.gridspec), 2236
Grouper (class in matplotlib.cbook), 1681
gs_distill() (in module

matplotlib.backends.backend_ps), 1661
gsave (matplotlib.backends.backend_pdf.Op attribute), 1640

H
halfrange() (matplotlib.colors.CenteredNorm property),

2006
halign (matplotlib.quiver.QuiverKey attribute), 2740
HAND (matplotlib.backend_tools.Cursors attribute), 1608
HandlerBase (class in matplotlib.legend_handler), 2258
HandlerCircleCollection (class in

matplotlib.legend_handler), 2258
HandlerErrorbar (class in matplotlib.legend_handler),

2259
HandlerLine2D (class in matplotlib.legend_handler), 2259
HandlerLineCollection (class in

matplotlib.legend_handler), 2260
HandlerNpoints (class in matplotlib.legend_handler),

2260
HandlerNpointsYoffsets (class in

matplotlib.legend_handler), 2260
HandlerPatch (class in matplotlib.legend_handler), 2261
HandlerPathCollection (class in

matplotlib.legend_handler), 2261

HandlerPolyCollection (class in
matplotlib.legend_handler), 2262

HandlerRegularPolyCollection (class in
matplotlib.legend_handler), 2262

HandlerStem (class in matplotlib.legend_handler), 2262
HandlerStepPatch (class in matplotlib.legend_handler),

2263
HandlerTuple (class in matplotlib.legend_handler), 2263
has_data() (matplotlib.axes.Axes method), 1539
has_inverse (mat-

plotlib.projections.polar.InvertedPolarTransform
attribute), 2705

has_inverse (mat-
plotlib.projections.polar.PolarAxes.InvertedPolarTransform
attribute), 2708

has_inverse (mat-
plotlib.projections.polar.PolarAxes.PolarTransform
attribute), 2709

has_inverse (matplotlib.projections.polar.PolarTransform
attribute), 2722

has_inverse (matplotlib.scale.FuncTransform attribute),
2760

has_inverse (matplotlib.scale.InvertedLogTransform
attribute), 2761

has_inverse
(matplotlib.scale.InvertedSymmetricalLogTransform
attribute), 2762

has_inverse (matplotlib.scale.LogisticTransform attribute),
2765

has_inverse (matplotlib.scale.LogitTransform attribute),
2766

has_inverse (matplotlib.scale.LogTransform attribute),
2764

has_inverse (matplotlib.scale.SymmetricalLogTransform
attribute), 2769

has_inverse (matplotlib.transforms.Affine2DBase
attribute), 2848

has_inverse (matplotlib.transforms.Transform attribute),
2874

has_inverse()
(matplotlib.transforms.BlendedGenericTransform
property), 2864

has_inverse()
(matplotlib.transforms.CompositeGenericTransform
property), 2866

has_inverse() (matplotlib.transforms.TransformWrapper
property), 2878

hatch() (matplotlib.path.Path static method), 2432
hatch_cmd() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

hatchPattern()
(matplotlib.backends.backend_pdf.PdfFile method),
1643

have_units() (matplotlib.artist.Artist method), 1229
have_units() (matplotlib.axes.Axes method), 1511
have_units()

(matplotlib.collections.AsteriskPolygonCollection
method), 1707

Index 3429

Matplotlib, Release 3.4.3

have_units()
(matplotlib.collections.BrokenBarHCollection
method), 1726

have_units() (matplotlib.collections.CircleCollection
method), 1747

have_units() (matplotlib.collections.Collection method),
1769

have_units() (matplotlib.collections.EllipseCollection
method), 1788

have_units() (matplotlib.collections.EventCollection
method), 1810

have_units() (matplotlib.collections.LineCollection
method), 1830

have_units() (matplotlib.collections.PatchCollection
method), 1850

have_units() (matplotlib.collections.PathCollection
method), 1870

have_units() (matplotlib.collections.PolyCollection
method), 1891

have_units() (matplotlib.collections.QuadMesh method),
1914

have_units()
(matplotlib.collections.RegularPolyCollection
method), 1934

have_units()
(matplotlib.collections.StarPolygonCollection
method), 1954

have_units() (matplotlib.collections.TriMesh method),
1975

have_units() (matplotlib.figure.Figure method), 2100
have_units() (matplotlib.figure.FigureBase method), 2149
have_units() (matplotlib.figure.SubFigure method), 2193
HBoxDivider (class in

mpl_toolkits.axes_grid1.axes_divider), 2960
height (matplotlib.dviread.Tfm attribute), 2073
height() (matplotlib.patches.Ellipse property), 2371
height() (matplotlib.transforms.BboxBase property), 2859
hexbin() (in module matplotlib.pyplot), 2549
hexbin() (matplotlib.axes.Axes method), 1350
hexify() (matplotlib.backends.backend_pdf.Name static

method), 1640
hillshade() (matplotlib.colors.LightSource method), 2009
hist() (in module matplotlib.pyplot), 2553
hist() (matplotlib.axes.Axes method), 1354
hist2d() (in module matplotlib.pyplot), 2557
hist2d() (matplotlib.axes.Axes method), 1358
hlines() (in module matplotlib.pyplot), 2559
hlines() (matplotlib.axes.Axes method), 1296
hms0d (matplotlib.dates.DateLocator attribute), 2058
HOME, 944, 947
home() (matplotlib.backend_bases.NavigationToolbar2

method), 1591
home() (matplotlib.backend_tools.ToolViewsPositions

method), 1617
home() (matplotlib.cbook.Stack method), 1683
host_axes() (in module

mpl_toolkits.axes_grid1.parasite_axes), 3023
host_axes_class_factory() (in module

mpl_toolkits.axes_grid1.parasite_axes), 3023

host_subplot() (in module
mpl_toolkits.axes_grid1.parasite_axes), 3024

host_subplot_class_factory() (in module
mpl_toolkits.axes_grid1.parasite_axes), 3024

HostAxes (in module mpl_toolkits.axes_grid1.parasite_axes),
3020

HostAxesBase (class in
mpl_toolkits.axes_grid1.parasite_axes), 3020

hot() (in module matplotlib.pyplot), 2561
HourLocator (class in matplotlib.dates), 2058
HPacker (class in matplotlib.offsetbox), 2321
hsv() (in module matplotlib.pyplot), 2561
hsv_to_rgb() (in module matplotlib.colors), 2033
HTMLWriter (class in matplotlib.animation), 1182

I
id (matplotlib.backends.backend_pdf.Stream attribute), 1649
identity() (matplotlib.transforms.Affine2D static method),

2846
IdentityTransform (class in matplotlib.transforms), 2868
ignore() (matplotlib.transforms.Bbox method), 2854
ignore() (matplotlib.widgets.SpanSelector method), 2915
ignore() (matplotlib.widgets.Widget method), 2919
IgnoredKeywordWarning, 1682
illegal_s() (matplotlib.dates.DateFormatter property),

2057
image (matplotlib.backend_tools.ConfigureSubplotsBase

attribute), 1608
image (matplotlib.backend_tools.SaveFigureBase attribute),

1609
image (matplotlib.backend_tools.ToolBack attribute), 1609
image (matplotlib.backend_tools.ToolBase attribute), 1610
image (matplotlib.backend_tools.ToolForward attribute),

1612
image (matplotlib.backend_tools.ToolHelpBase attribute),

1613
image (matplotlib.backend_tools.ToolHome attribute), 1613
image (matplotlib.backend_tools.ToolPan attribute), 1614
image (matplotlib.backend_tools.ToolZoom attribute), 1617
image_comparison() (in module

matplotlib.testing.decorators), 2791
ImageComparisonFailure, 2793
ImageGrid (class in mpl_toolkits.axes_grid1.axes_grid),

2971
ImageGrid (class in mpl_toolkits.axisartist.axes_grid), 3036
ImageMagickBase (class in matplotlib.animation), 1208
ImageMagickFileWriter (class in matplotlib.animation),

1192
ImageMagickWriter (class in matplotlib.animation), 1187
imageObject() (matplotlib.backends.backend_pdf.PdfFile

method), 1643
imread() (in module matplotlib.image), 2246
imread() (in module matplotlib.pyplot), 2561
imsave() (in module matplotlib.image), 2246
imsave() (in module matplotlib.pyplot), 2562
imshow() (in module matplotlib.pyplot), 2563
imshow() (matplotlib.axes.Axes method), 1372
imshow_rgb() (in module

mpl_toolkits.axes_grid1.axes_rgb), 2978

3430 Index

Matplotlib, Release 3.4.3

imshow_rgb() (mpl_toolkits.axes_grid1.axes_rgb.RGBAxes
method), 2976

in_axes() (matplotlib.axes.Axes method), 1528
inaxes() (matplotlib.backend_bases.FigureCanvasBase

method), 1576
index_of() (in module matplotlib.cbook), 1686
IndexDateFormatter (class in matplotlib.dates), 2058
IndexFormatter (class in matplotlib.ticker), 2822
IndexLocator (class in matplotlib.ticker), 2823
indicate_inset() (matplotlib.axes.Axes method), 1416
indicate_inset_zoom() (matplotlib.axes.Axes method),

1418
inferno() (in module matplotlib.pyplot), 2567
infodict() (matplotlib.backends.backend_pdf.PdfPages

method), 1645
init3d() (mpl_toolkits.mplot3d.axis3d.Axis method), 3132
init_layoutgrid() (matplotlib.figure.Figure method),

2100
init_layoutgrid() (matplotlib.figure.SubFigure

method), 2193
input_dims (mat-

plotlib.projections.polar.InvertedPolarTransform
attribute), 2705

input_dims (mat-
plotlib.projections.polar.PolarAxes.InvertedPolarTransform
attribute), 2708

input_dims (mat-
plotlib.projections.polar.PolarAxes.PolarTransform
attribute), 2709

input_dims (matplotlib.projections.polar.PolarTransform
attribute), 2722

input_dims (matplotlib.scale.FuncTransform attribute),
2760

input_dims (matplotlib.scale.InvertedLogTransform
attribute), 2761

input_dims
(matplotlib.scale.InvertedSymmetricalLogTransform
attribute), 2762

input_dims (matplotlib.scale.LogisticTransform attribute),
2765

input_dims (matplotlib.scale.LogitTransform attribute),
2766

input_dims (matplotlib.scale.LogTransform attribute), 2764
input_dims (matplotlib.scale.SymmetricalLogTransform

attribute), 2769
input_dims (matplotlib.transforms.Affine2DBase attribute),

2848
input_dims

(matplotlib.transforms.BlendedGenericTransform
attribute), 2864

input_dims (matplotlib.transforms.Transform attribute),
2874

inset_axes() (in module
mpl_toolkits.axes_grid1.inset_locator), 3006

inset_axes() (matplotlib.axes.Axes method), 1415
InsetPosition (class in

mpl_toolkits.axes_grid1.inset_locator), 3004
inside_circle() (in module matplotlib.bezier), 1673

install_repl_displayhook() (in module
matplotlib.pyplot), 2567

interactive() (in module matplotlib), 1142
interpolated() (matplotlib.path.Path method), 2432
intersection() (matplotlib.transforms.BboxBase static

method), 2859
intersects_bbox() (matplotlib.path.Path method), 2432
intersects_path() (matplotlib.path.Path method), 2432
interval() (matplotlib.backend_bases.TimerBase

property), 1600
interval_contains() (in module matplotlib.transforms),

2881
interval_contains_open() (in module

matplotlib.transforms), 2881
intervalx() (matplotlib.transforms.Bbox property), 2855
intervalx() (matplotlib.transforms.BboxBase property),

2859
intervaly() (matplotlib.transforms.Bbox property), 2855
intervaly() (matplotlib.transforms.BboxBase property),

2859
inv_transform() (in module

mpl_toolkits.mplot3d.proj3d), 3154
inv_transform_xy()

(mpl_toolkits.axisartist.grid_finder.GridFinder
method), 3077

INVALID (matplotlib.transforms.TransformNode attribute),
2877

INVALID_AFFINE (matplotlib.transforms.TransformNode
attribute), 2877

INVALID_NON_AFFINE
(matplotlib.transforms.TransformNode attribute),
2877

invalidate() (matplotlib.transforms.TransformNode
method), 2877

invalidate()
(mpl_toolkits.axisartist.axislines.GridHelperBase
method), 3067

invalidate_grid_helper()
(mpl_toolkits.axisartist.axislines.Axes method),
3061

inverse() (matplotlib.colors.BoundaryNorm method), 2001
inverse() (matplotlib.colors.FuncNorm method), 2032
inverse() (matplotlib.colors.LogNorm method), 2020
inverse() (matplotlib.colors.NoNorm method), 2022
inverse() (matplotlib.colors.Normalize method), 2023
inverse() (matplotlib.colors.PowerNorm method), 2026
inverse() (matplotlib.colors.SymLogNorm method), 2028
inverse_transformed()

(matplotlib.transforms.BboxBase method), 2859
invert_axis_direction()

(mpl_toolkits.axisartist.axis_artist.TickLabels
method), 3051

invert_ticklabel_direction()
(mpl_toolkits.axisartist.axis_artist.AxisArtist
method), 3042

invert_xaxis() (matplotlib.axes.Axes method), 1446
invert_yaxis() (matplotlib.axes.Axes method), 1446
invert_zaxis() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3101

Index 3431

Matplotlib, Release 3.4.3

inverted() (mat-
plotlib.projections.polar.InvertedPolarTransform
method), 2705

inverted() (mat-
plotlib.projections.polar.PolarAxes.InvertedPolarTransform
method), 2708

inverted() (mat-
plotlib.projections.polar.PolarAxes.PolarTransform
method), 2709

inverted() (matplotlib.projections.polar.PolarTransform
method), 2722

inverted() (matplotlib.scale.FuncTransform method), 2760
inverted() (matplotlib.scale.InvertedLogTransform

method), 2761
inverted()

(matplotlib.scale.InvertedSymmetricalLogTransform
method), 2762

inverted() (matplotlib.scale.LogisticTransform method),
2765

inverted() (matplotlib.scale.LogitTransform method), 2766
inverted() (matplotlib.scale.LogTransform method), 2764
inverted() (matplotlib.scale.SymmetricalLogTransform

method), 2769
inverted() (matplotlib.transforms.Affine2DBase method),

2848
inverted()

(matplotlib.transforms.BlendedGenericTransform
method), 2864

inverted()
(matplotlib.transforms.CompositeGenericTransform
method), 2867

inverted() (matplotlib.transforms.IdentityTransform
method), 2868

inverted() (matplotlib.transforms.Transform method),
2874

InvertedLogTransform (class in matplotlib.scale), 2761
InvertedLogTransform() (matplotlib.scale.LogScale

property), 2764
InvertedPolarTransform (class in

matplotlib.projections.polar), 2704
InvertedSymmetricalLogTransform (class in

matplotlib.scale), 2762
InvertedSymmetricalLogTransform()

(matplotlib.scale.SymmetricalLogScale property),
2768

ioff() (in module matplotlib.pyplot), 2568
ion() (in module matplotlib.pyplot), 2569
is_affine (matplotlib.transforms.AffineBase attribute),

2850
is_affine (matplotlib.transforms.BboxBase attribute), 2859
is_affine (matplotlib.transforms.TransformNode attribute),

2877
is_affine()

(matplotlib.transforms.BlendedGenericTransform
property), 2864

is_affine()
(matplotlib.transforms.CompositeGenericTransform
property), 2867

is_affine() (matplotlib.transforms.TransformWrapper

property), 2878
is_alias() (matplotlib.artist.ArtistInspector method), 1236
is_available()

(matplotlib.animation.MovieWriterRegistry
method), 1198

is_bbox (matplotlib.transforms.BboxBase attribute), 2859
is_bbox (matplotlib.transforms.TransformNode attribute),

2877
is_color_like() (in module matplotlib.colors), 2036
is_dashed() (matplotlib.lines.Line2D method), 2270
is_filled() (matplotlib.markers.MarkerStyle method),

2284
is_first_col() (matplotlib.axes.SubplotBase method),

1243
is_first_col() (matplotlib.gridspec.SubplotSpec

method), 2232
is_first_row() (matplotlib.axes.SubplotBase method),

1243
is_first_row() (matplotlib.gridspec.SubplotSpec

method), 2232
is_gray() (matplotlib.colors.Colormap method), 2003
is_grayscale() (matplotlib.image.NonUniformImage

property), 2241
is_grayscale() (matplotlib.image.PcolorImage property),

2244
is_horizontal() (matplotlib.collections.EventCollection

method), 1810
is_interactive() (in module matplotlib), 1142
is_last_col() (matplotlib.axes.SubplotBase method),

1243
is_last_col() (matplotlib.gridspec.SubplotSpec method),

2232
is_last_row() (matplotlib.axes.SubplotBase method),

1243
is_last_row() (matplotlib.gridspec.SubplotSpec method),

2232
is_math_text() (in module matplotlib.cbook), 1686
is_numlike() (matplotlib.units.ConversionInterface static

method), 2895
is_open()

(matplotlib.backends.backend_nbagg.CommSocket
method), 1637

is_opentype_cff_font() (in module
matplotlib.font_manager), 2225

is_saving() (matplotlib.backend_bases.FigureCanvasBase
method), 1577

is_scalar_or_string() (in module matplotlib.cbook),
1686

is_separable (matplotlib.scale.FuncTransform attribute),
2761

is_separable (matplotlib.scale.InvertedLogTransform
attribute), 2762

is_separable
(matplotlib.scale.InvertedSymmetricalLogTransform
attribute), 2762

is_separable (matplotlib.scale.LogisticTransform
attribute), 2765

is_separable (matplotlib.scale.LogitTransform attribute),
2766

3432 Index

Matplotlib, Release 3.4.3

is_separable (matplotlib.scale.LogTransform attribute),
2764

is_separable (matplotlib.scale.SymmetricalLogTransform
attribute), 2769

is_separable (matplotlib.transforms.BboxTransform
attribute), 2861

is_separable (matplotlib.transforms.BboxTransformFrom
attribute), 2862

is_separable (matplotlib.transforms.BboxTransformTo
attribute), 2862

is_separable (matplotlib.transforms.BlendedAffine2D
attribute), 2863

is_separable
(matplotlib.transforms.BlendedGenericTransform
attribute), 2865

is_separable (matplotlib.transforms.Transform attribute),
2874

is_separable() (matplotlib.transforms.Affine2DBase
property), 2848

is_separable()
(matplotlib.transforms.CompositeGenericTransform
property), 2867

is_separable() (matplotlib.transforms.TransformWrapper
property), 2878

is_transform_set() (matplotlib.artist.Artist method),
1228

is_transform_set()
(matplotlib.collections.AsteriskPolygonCollection
method), 1707

is_transform_set()
(matplotlib.collections.BrokenBarHCollection
method), 1727

is_transform_set()
(matplotlib.collections.CircleCollection method),
1747

is_transform_set() (matplotlib.collections.Collection
method), 1769

is_transform_set()
(matplotlib.collections.EllipseCollection method),
1788

is_transform_set()
(matplotlib.collections.EventCollection method),
1810

is_transform_set()
(matplotlib.collections.LineCollection method),
1831

is_transform_set()
(matplotlib.collections.PatchCollection method),
1850

is_transform_set()
(matplotlib.collections.PathCollection method),
1870

is_transform_set()
(matplotlib.collections.PolyCollection method),
1891

is_transform_set() (matplotlib.collections.QuadMesh
method), 1914

is_transform_set()
(matplotlib.collections.RegularPolyCollection

method), 1934
is_transform_set()

(matplotlib.collections.StarPolygonCollection
method), 1954

is_transform_set() (matplotlib.collections.TriMesh
method), 1975

is_transform_set() (matplotlib.figure.Figure method),
2100

is_transform_set() (matplotlib.figure.FigureBase
method), 2149

is_transform_set() (matplotlib.figure.SubFigure
method), 2193

is_writable_file_like() (in module
matplotlib.cbook), 1686

isAvailable() (matplotlib.animation.AVConvBase class
method), 1207

isAvailable() (matplotlib.animation.FFMpegBase class
method), 1208

isAvailable() (matplotlib.animation.HTMLWriter class
method), 1184

isAvailable() (matplotlib.animation.ImageMagickBase
class method), 1208

isAvailable() (matplotlib.animation.MovieWriter class
method), 1203

isAvailable() (matplotlib.animation.PillowWriter class
method), 1182

isinteractive() (in module matplotlib.pyplot), 2570
isowner() (matplotlib.widgets.LockDraw method), 2904
iter_bezier() (matplotlib.path.Path method), 2432
iter_segments() (matplotlib.path.Path method), 2433

J
jet() (in module matplotlib.pyplot), 2570
join() (matplotlib.cbook.Grouper method), 1682
joined() (matplotlib.cbook.Grouper method), 1682
JoinStyle (class in matplotlib._enums), 2926
joinstyle_cmd() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

joinstyles (mat-
plotlib.backends.backend_pdf.GraphicsContextPdf
attribute), 1639

json_dump() (in module matplotlib.font_manager), 2225
json_load() (in module matplotlib.font_manager), 2225
juggle_axes() (in module mpl_toolkits.mplot3d.art3d),

3151

K
keep_empty (matplotlib.backends.backend_pdf.PdfPages

attribute), 1645
keep_empty (matplotlib.backends.backend_pgf.PdfPages

attribute), 1652
key_event()

(matplotlib.blocking_input.BlockingMouseInput
method), 1676

key_press()
(matplotlib.backend_bases.FigureManagerBase
method), 1583

Index 3433

Matplotlib, Release 3.4.3

key_press_event()
(matplotlib.backend_bases.FigureCanvasBase
method), 1577

key_press_handler() (in module
matplotlib.backend_bases), 1602

key_release_event()
(matplotlib.backend_bases.FigureCanvasBase
method), 1577

KeyEvent (class in matplotlib.backend_bases), 1587
kwdoc() (in module matplotlib.artist), 1235

L
label() (mpl_toolkits.axes_grid1.mpl_axes.SimpleAxisArtist

property), 3018
label_minor() (matplotlib.ticker.LogFormatter method),

2826
label_outer() (matplotlib.axes.SubplotBase method),

1243
LabelBase (class in mpl_toolkits.axisartist.axis_artist), 3047
LABELPAD() (mpl_toolkits.axisartist.axis_artist.AxisArtist

property), 3041
labels() (matplotlib.contour.ContourLabeler method), 2043
Lasso (class in matplotlib.widgets), 2903
LassoSelector (class in matplotlib.widgets), 2903
lastevent (matplotlib.backend_bases.LocationEvent

attribute), 1588
latex_stdin_utf8()

(matplotlib.backends.backend_pgf.LatexManager
method), 1651

LatexError, 1651
LatexManager (class in matplotlib.backends.backend_pgf),

1651
leave_notify_event()

(matplotlib.backend_bases.FigureCanvasBase
method), 1577

LEFT (matplotlib.backend_bases.MouseButton attribute), 1588
Legend (class in matplotlib.legend), 2249
legend entry, 122
legend handle, 122
legend key, 122
legend label, 122
legend() (in module matplotlib.pyplot), 2571
legend() (matplotlib.axes.Axes method), 1472
legend() (matplotlib.figure.Figure method), 2100
legend() (matplotlib.figure.FigureBase method), 2149
legend() (matplotlib.figure.SubFigure method), 2193
legend_artist()

(matplotlib.legend_handler.HandlerBase method),
2258

legend_elements()
(matplotlib.collections.PathCollection method),
1870

legend_elements() (matplotlib.contour.ContourSet
method), 2047

len (matplotlib.backends.backend_pdf.Stream attribute), 1650
LightSource (class in matplotlib.colors), 2006
limit_range_for_scale() (matplotlib.axis.Axis

method), 1567

limit_range_for_scale() (matplotlib.scale.LogitScale
method), 2766

limit_range_for_scale() (matplotlib.scale.LogScale
method), 2764

limit_range_for_scale() (matplotlib.scale.ScaleBase
method), 2767

Line2D (class in matplotlib.lines), 2264
Line3D (class in mpl_toolkits.mplot3d.art3d), 3134
Line3DCollection (class in mpl_toolkits.mplot3d.art3d),

3135
line_2d_to_3d() (in module mpl_toolkits.mplot3d.art3d),

3151
line_collection_2d_to_3d() (in module

mpl_toolkits.mplot3d.art3d), 3152
linear_spine() (matplotlib.spines.Spine class method),

2776
LinearLocator (class in matplotlib.ticker), 2823
LinearScale (class in matplotlib.scale), 2763
LinearSegmentedColormap (class in matplotlib.colors),

2013
LinearTriInterpolator (class in matplotlib.tri), 2885
LineCollection (class in matplotlib.collections), 1822
lineStyles (matplotlib.lines.Line2D attribute), 2270
lineto (matplotlib.backends.backend_pdf.Op attribute), 1640
LINETO (matplotlib.path.Path attribute), 2429
linewidth_cmd() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

linscale() (matplotlib.scale.SymmetricalLogScale
property), 2768

linthresh() (matplotlib.scale.SymmetricalLogScale
property), 2768

list() (matplotlib.animation.MovieWriterRegistry method),
1199

list_fonts() (in module matplotlib.font_manager), 2225
ListedColormap (class in matplotlib.colors), 2017
local_over_kwdict() (in module matplotlib.cbook),

1686
locally_modified_subplot_params()

(matplotlib.gridspec.GridSpec method), 2229
locate() (mpl_toolkits.axes_grid1.axes_divider.Divider

method), 2958
locate()

(mpl_toolkits.axes_grid1.axes_divider.HBoxDivider
method), 2960

locate()
(mpl_toolkits.axes_grid1.axes_divider.VBoxDivider
method), 2963

locate_label() (matplotlib.contour.ContourLabeler
method), 2043

LocationEvent (class in matplotlib.backend_bases), 1588
Locator (class in matplotlib.ticker), 2824
locator()

(mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase
property), 2966

locator_params() (in module matplotlib.pyplot), 2576
locator_params() (matplotlib.axes.Axes method), 1509
locator_params() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3101

3434 Index

Matplotlib, Release 3.4.3

LocatorBase (class in mpl_toolkits.axisartist.angle_helper),
3030

LocatorD (class in mpl_toolkits.axisartist.angle_helper),
3030

LocatorDM (class in mpl_toolkits.axisartist.angle_helper),
3031

LocatorDMS (class in mpl_toolkits.axisartist.angle_helper),
3031

LocatorH (class in mpl_toolkits.axisartist.angle_helper),
3031

LocatorHM (class in mpl_toolkits.axisartist.angle_helper),
3032

LocatorHMS (class in mpl_toolkits.axisartist.angle_helper),
3032

lock (matplotlib.backends.backend_agg.RendererAgg
attribute), 1630

LockableBbox (class in matplotlib.transforms), 2870
LockDraw (class in matplotlib.widgets), 2904
locked() (matplotlib.widgets.LockDraw method), 2904
locked_x0() (matplotlib.transforms.LockableBbox

property), 2871
locked_x1() (matplotlib.transforms.LockableBbox

property), 2871
locked_y0() (matplotlib.transforms.LockableBbox

property), 2871
locked_y1() (matplotlib.transforms.LockableBbox

property), 2871
locs (matplotlib.ticker.Formatter attribute), 2822
LogFormatter (class in matplotlib.ticker), 2825
LogFormatterExponent (class in matplotlib.ticker), 2827
LogFormatterMathtext (class in matplotlib.ticker), 2827
LogFormatterSciNotation (class in matplotlib.ticker),

2827
LogisticTransform (class in matplotlib.scale), 2765
LogitFormatter (class in matplotlib.ticker), 2828
LogitLocator (class in matplotlib.ticker), 2830
LogitScale (class in matplotlib.scale), 2765
LogitTransform (class in matplotlib.scale), 2766
LogLocator (class in matplotlib.ticker), 2827
loglog() (in module matplotlib.pyplot), 2578
loglog() (matplotlib.axes.Axes method), 1267
LogNorm (class in matplotlib.colors), 2019
LogScale (class in matplotlib.scale), 2763
LogTransform (class in matplotlib.scale), 2764
LogTransform() (matplotlib.scale.LogScale property),

2764
ls_mapper (in module matplotlib.cbook), 1687
ls_mapper_r (in module matplotlib.cbook), 1687

M
magma() (in module matplotlib.pyplot), 2579
magnitude_spectrum() (in module matplotlib.mlab),

2304
magnitude_spectrum() (in module matplotlib.pyplot),

2579
magnitude_spectrum() (matplotlib.axes.Axes method),

1322

major_ticklabels()
(mpl_toolkits.axes_grid1.mpl_axes.SimpleAxisArtist
property), 3018

major_ticks()
(mpl_toolkits.axes_grid1.mpl_axes.SimpleAxisArtist
property), 3018

make_axes() (in module matplotlib.colorbar), 1994
make_axes_area_auto_adjustable() (in module

mpl_toolkits.axes_grid1.axes_divider), 2965
make_axes_gridspec() (in module matplotlib.colorbar),

1995
make_axes_locatable() (in module

mpl_toolkits.axes_grid1.axes_divider), 2965
make_compound_path() (matplotlib.path.Path class

method), 2434
make_compound_path_from_polys()

(matplotlib.path.Path class method), 2434
make_dvi() (matplotlib.texmanager.TexManager method),

2812
make_dvi_preview()

(matplotlib.texmanager.TexManager method), 2812
make_image() (matplotlib.image.AxesImage method), 2239
make_image() (matplotlib.image.BboxImage method), 2240
make_image() (matplotlib.image.FigureImage method),

2241
make_image() (matplotlib.image.NonUniformImage

method), 2241
make_image() (matplotlib.image.PcolorImage method),

2244
make_keyword_only() (in module

matplotlib._api.deprecation), 2924
make_path_regular() (in module matplotlib.bezier),

1673
make_pdf_to_png_converter() (in module

matplotlib.backends.backend_pgf), 1656
make_png() (matplotlib.texmanager.TexManager method),

2813
make_rgb_axes() (in module

mpl_toolkits.axes_grid1.axes_rgb), 2978
make_tex() (matplotlib.texmanager.TexManager method),

2813
make_tex_preview()

(matplotlib.texmanager.TexManager method), 2813
make_wedged_bezier2() (in module matplotlib.bezier),

1673
margins() (in module matplotlib.pyplot), 2582
margins() (matplotlib.axes.Axes method), 1483
margins() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3101
mark_inset() (in module

mpl_toolkits.axes_grid1.inset_locator), 3009
mark_plot_labels() (in module

matplotlib.sphinxext.plot_directive), 2773
markerObject()

(matplotlib.backends.backend_pdf.PdfFile method),
1643

markers (matplotlib.lines.Line2D attribute), 2270
markers (matplotlib.markers.MarkerStyle attribute), 2284
MarkerStyle (class in matplotlib.markers), 2283

Index 3435

Matplotlib, Release 3.4.3

math_to_image() (in module matplotlib.mathtext), 2293
mathtext_parser()

(matplotlib.backends.backend_cairo.RendererCairo
property), 1636

mathtext_parser()
(matplotlib.backends.backend_pdf.RendererPdf
property), 1648

mathtext_parser()
(matplotlib.backends.backend_ps.RendererPS
property), 1661

mathtext_parser()
(matplotlib.backends.backend_svg.RendererSVG
property), 1666

MathtextBackend (class in matplotlib.mathtext), 2289
MathtextBackendAgg (class in matplotlib.mathtext), 2290
MathtextBackendBitmap (class in matplotlib.mathtext),

2290
MathtextBackendCairo (class in matplotlib.mathtext),

2291
MathtextBackendPath (class in matplotlib.mathtext),

2291
MathtextBackendPdf (class in matplotlib.mathtext), 2291
MathtextBackendPs (class in matplotlib.mathtext), 2292
MathtextBackendSvg (class in matplotlib.mathtext), 2292
MathTextParser (class in matplotlib.mathtext), 2287
MathTextWarning, 2289
matplotlib._api

module, 2920
matplotlib._api.deprecation

module, 2921
matplotlib._enums

module, 2926
matplotlib_fname() (in module matplotlib), 1155
matplotlib.afm

module, 1156
matplotlib.animation

module, 1159
matplotlib.artist

module, 1210
matplotlib.axes

module, 1238
matplotlib.axis

module, 1540
matplotlib.backend_bases

module, 1572
matplotlib.backend_managers

module, 1603
matplotlib.backend_tools

module, 1607
matplotlib.backends.backend_agg

module, 1625
matplotlib.backends.backend_cairo

module, 1632
matplotlib.backends.backend_gtk3agg

module, 1637
matplotlib.backends.backend_gtk3cairo

module, 1637
matplotlib.backends.backend_mixed

module, 1620

matplotlib.backends.backend_nbagg
module, 1637

matplotlib.backends.backend_pdf
module, 1638

matplotlib.backends.backend_pgf
module, 1650

matplotlib.backends.backend_ps
module, 1657

matplotlib.backends.backend_qt4agg
module, 1662

matplotlib.backends.backend_qt4cairo
module, 1662

matplotlib.backends.backend_qt5agg
module, 1662

matplotlib.backends.backend_qt5cairo
module, 1662

matplotlib.backends.backend_svg
module, 1662

matplotlib.backends.backend_template
module, 1621

matplotlib.backends.backend_tkagg
module, 1669

matplotlib.backends.backend_tkcairo
module, 1669

matplotlib.backends.backend_webagg
module, 1669

matplotlib.backends.backend_wxagg
module, 1670

matplotlib.backends.backend_wxcairo
module, 1670

matplotlib.bezier
module, 1670

matplotlib.blocking_input
module, 1674

matplotlib.category
module, 1677

matplotlib.cbook
module, 1680

matplotlib.cm
module, 1694

matplotlib.collections
module, 1699

matplotlib.colorbar
module, 1988

matplotlib.colors
module, 1997

matplotlib.container
module, 2036

matplotlib.contour
module, 2039

matplotlib.dates
module, 2049

MatplotlibDeprecationWarning, 2921
matplotlib.docstring

module, 2069
matplotlib.dviread

module, 2069
matplotlib.figure

module, 2075

3436 Index

Matplotlib, Release 3.4.3

matplotlib.font_manager
module, 2218

matplotlib.fontconfig_pattern
module, 2226

matplotlib.gridspec
module, 2227

matplotlib.image
module, 2237

matplotlib.legend
module, 2248

matplotlib.legend_handler
module, 2257

matplotlib.lines
module, 2264

matplotlib.markers
module, 2281

matplotlib.mathtext
module, 2286

matplotlib.mlab
module, 2293

matplotlib.offsetbox
module, 2312

matplotlib.patches
module, 2330

matplotlib.path
module, 2427

matplotlib.patheffects
module, 2437

matplotlib.projections
module, 2704

matplotlib.projections.polar
module, 2704

matplotlib.pyplot
module, 2444

matplotlib.quiver
module, 2727

matplotlib.rcsetup
module, 2748

matplotlib.sankey
module, 2752

matplotlib.scale
module, 2759

matplotlib.sphinxext.plot_directive
module, 2770

matplotlib.spines
module, 2774

matplotlib.style
module, 2778

matplotlib.style.available (in module
matplotlib.style), 2779

matplotlib.style.library (in module
matplotlib.style), 2779

matplotlib.table
module, 2779

matplotlib.testing
module, 2789

matplotlib.testing.compare
module, 2789

matplotlib.testing.decorators

module, 2790
matplotlib.testing.exceptions

module, 2793
matplotlib.texmanager

module, 2811
matplotlib.text

module, 2793
matplotlib.textpath

module, 2813
matplotlib.ticker

module, 2816
matplotlib.tight_bbox

module, 2841
matplotlib.tight_layout

module, 2842
matplotlib.transforms

module, 2844
matplotlib.tri

module, 2883
matplotlib.type1font

module, 2892
matplotlib.units

module, 2894
matplotlib.widgets

module, 2896
matshow() (in module matplotlib.pyplot), 2583
matshow() (matplotlib.axes.Axes method), 1377
max() (matplotlib.transforms.BboxBase property), 2859
maxdict (class in matplotlib.cbook), 1687
MaxExtent (class in mpl_toolkits.axes_grid1.axes_size),

2983
MaxHeight (class in mpl_toolkits.axes_grid1.axes_size),

2983
MaxNLocator (class in matplotlib.ticker), 2831
MaxNLocator (class in mpl_toolkits.axisartist.grid_finder),

3077
MAXTICKS (matplotlib.ticker.Locator attribute), 2824
MaxWidth (class in mpl_toolkits.axes_grid1.axes_size), 2983
merge_used_characters()

(matplotlib.backends.backend_pdf.RendererPdf
method), 1648

merge_used_characters()
(matplotlib.backends.backend_ps.RendererPS
method), 1661

message_event()
(matplotlib.backend_managers.ToolManager
method), 1605

metadata() (matplotlib.backends.backend_pgf.PdfPages
property), 1652

MicrosecondLocator (class in matplotlib.dates), 2059
MIDDLE (matplotlib.backend_bases.MouseButton attribute),

1588
min() (matplotlib.transforms.BboxBase property), 2859
min_mark

(mpl_toolkits.axisartist.angle_helper.FormatterDMS
attribute), 3028

min_mark
(mpl_toolkits.axisartist.angle_helper.FormatterHMS
attribute), 3029

Index 3437

Matplotlib, Release 3.4.3

minor() (matplotlib.ticker.LogitLocator property), 2830
minorticks_off() (in module matplotlib.pyplot), 2584
minorticks_off() (matplotlib.axes.Axes method), 1505
minorticks_off() (matplotlib.colorbar.ColorbarBase

method), 1992
minorticks_on() (in module matplotlib.pyplot), 2584
minorticks_on() (matplotlib.axes.Axes method), 1505
minorticks_on() (matplotlib.colorbar.ColorbarBase

method), 1992
minpos() (matplotlib.transforms.Bbox property), 2855
minposx() (matplotlib.transforms.Bbox property), 2855
minposy() (matplotlib.transforms.Bbox property), 2855
MinuteLocator (class in matplotlib.dates), 2059
MixedModeRenderer (class in

matplotlib.backends.backend_mixed), 1620
module

matplotlib._api, 2920
matplotlib._api.deprecation, 2921
matplotlib._enums, 2926
matplotlib.afm, 1156
matplotlib.animation, 1159
matplotlib.artist, 1210
matplotlib.axes, 1238
matplotlib.axis, 1540
matplotlib.backend_bases, 1572
matplotlib.backend_managers, 1603
matplotlib.backend_tools, 1607
matplotlib.backends.backend_agg, 1625
matplotlib.backends.backend_cairo, 1632
matplotlib.backends.backend_gtk3agg,

1637
matplotlib.backends.backend_gtk3cairo,

1637
matplotlib.backends.backend_mixed, 1620
matplotlib.backends.backend_nbagg, 1637
matplotlib.backends.backend_pdf, 1638
matplotlib.backends.backend_pgf, 1650
matplotlib.backends.backend_ps, 1657
matplotlib.backends.backend_qt4agg, 1662
matplotlib.backends.backend_qt4cairo,

1662
matplotlib.backends.backend_qt5agg, 1662
matplotlib.backends.backend_qt5cairo,

1662
matplotlib.backends.backend_svg, 1662
matplotlib.backends.backend_template,

1621
matplotlib.backends.backend_tkagg, 1669
matplotlib.backends.backend_tkcairo,

1669
matplotlib.backends.backend_webagg, 1669
matplotlib.backends.backend_wxagg, 1670
matplotlib.backends.backend_wxcairo,

1670
matplotlib.bezier, 1670
matplotlib.blocking_input, 1674
matplotlib.category, 1677
matplotlib.cbook, 1680
matplotlib.cm, 1694

matplotlib.collections, 1699
matplotlib.colorbar, 1988
matplotlib.colors, 1997
matplotlib.container, 2036
matplotlib.contour, 2039
matplotlib.dates, 2049
matplotlib.docstring, 2069
matplotlib.dviread, 2069
matplotlib.figure, 2075
matplotlib.font_manager, 2218
matplotlib.fontconfig_pattern, 2226
matplotlib.gridspec, 2227
matplotlib.image, 2237
matplotlib.legend, 2248
matplotlib.legend_handler, 2257
matplotlib.lines, 2264
matplotlib.markers, 2281
matplotlib.mathtext, 2286
matplotlib.mlab, 2293
matplotlib.offsetbox, 2312
matplotlib.patches, 2330
matplotlib.path, 2427
matplotlib.patheffects, 2437
matplotlib.projections, 2704
matplotlib.projections.polar, 2704
matplotlib.pyplot, 2444
matplotlib.quiver, 2727
matplotlib.rcsetup, 2748
matplotlib.sankey, 2752
matplotlib.scale, 2759
matplotlib.sphinxext.plot_directive,

2770
matplotlib.spines, 2774
matplotlib.style, 2778
matplotlib.table, 2779
matplotlib.testing, 2789
matplotlib.testing.compare, 2789
matplotlib.testing.decorators, 2790
matplotlib.testing.exceptions, 2793
matplotlib.texmanager, 2811
matplotlib.text, 2793
matplotlib.textpath, 2813
matplotlib.ticker, 2816
matplotlib.tight_bbox, 2841
matplotlib.tight_layout, 2842
matplotlib.transforms, 2844
matplotlib.tri, 2883
matplotlib.type1font, 2892
matplotlib.units, 2894
matplotlib.widgets, 2896
mpl_toolkits.axes_grid1, 3082
mpl_toolkits.axes_grid1.anchored_artists,

2932
mpl_toolkits.axes_grid1.axes_divider,

2953
mpl_toolkits.axes_grid1.axes_grid, 2965
mpl_toolkits.axes_grid1.axes_rgb, 2974
mpl_toolkits.axes_grid1.axes_size, 2979

3438 Index

Matplotlib, Release 3.4.3

mpl_toolkits.axes_grid1.inset_locator,
2985

mpl_toolkits.axes_grid1.mpl_axes, 3014
mpl_toolkits.axes_grid1.parasite_axes,

3019
mpl_toolkits.axisartist, 3083
mpl_toolkits.axisartist.angle_helper,

3026
mpl_toolkits.axisartist.axes_divider,

3034
mpl_toolkits.axisartist.axes_grid, 3034
mpl_toolkits.axisartist.axes_rgb, 3038
mpl_toolkits.axisartist.axis_artist,

3039
mpl_toolkits.axisartist.axisline_style,

3053
mpl_toolkits.axisartist.axislines, 3055
mpl_toolkits.axisartist.clip_path, 3068
mpl_toolkits.axisartist.floating_axes,

3069
mpl_toolkits.axisartist.grid_finder,

3073
mpl_toolkits.axisartist.grid_helper_curvelinear,

3080
mpl_toolkits.axisartist.parasite_axes,

3082
mpl_toolkits.mplot3d, 3084
mpl_toolkits.mplot3d.art3d, 3133
mpl_toolkits.mplot3d.axes3d, 3084
mpl_toolkits.mplot3d.axis3d, 3130
mpl_toolkits.mplot3d.proj3d, 3153
pylab, 1140

monospace() (matplotlib.texmanager.TexManager
property), 2813

MonthLocator (class in matplotlib.dates), 2060
motion_notify_event()

(matplotlib.backend_bases.FigureCanvasBase
method), 1577

mouse_event()
(matplotlib.blocking_input.BlockingMouseInput
method), 1676

mouse_event_add()
(matplotlib.blocking_input.BlockingMouseInput
method), 1676

mouse_event_pop()
(matplotlib.blocking_input.BlockingMouseInput
method), 1677

mouse_event_stop()
(matplotlib.blocking_input.BlockingMouseInput
method), 1677

mouse_init() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 3102

mouse_move()
(matplotlib.backend_bases.NavigationToolbar2
method), 1591

MouseButton (class in matplotlib.backend_bases), 1588
MouseEvent (class in matplotlib.backend_bases), 1588
mouseover (matplotlib.image.NonUniformImage attribute),

2242

mouseover() (matplotlib.artist.Artist property), 1213
mouseover() (matplotlib.axes.Axes property), 1528
mouseover()

(matplotlib.collections.AsteriskPolygonCollection
property), 1707

mouseover() (matplotlib.collections.BrokenBarHCollection
property), 1727

mouseover() (matplotlib.collections.CircleCollection
property), 1747

mouseover() (matplotlib.collections.Collection property),
1769

mouseover() (matplotlib.collections.EllipseCollection
property), 1788

mouseover() (matplotlib.collections.EventCollection
property), 1810

mouseover() (matplotlib.collections.LineCollection
property), 1831

mouseover() (matplotlib.collections.PatchCollection
property), 1850

mouseover() (matplotlib.collections.PathCollection
property), 1871

mouseover() (matplotlib.collections.PolyCollection
property), 1891

mouseover() (matplotlib.collections.QuadMesh property),
1914

mouseover() (matplotlib.collections.RegularPolyCollection
property), 1934

mouseover() (matplotlib.collections.StarPolygonCollection
property), 1954

mouseover() (matplotlib.collections.TriMesh property),
1975

mouseover() (matplotlib.figure.Figure property), 2106
mouseover() (matplotlib.figure.FigureBase property), 2155
mouseover() (matplotlib.figure.SubFigure property), 2199
MOVE (matplotlib.backend_tools.Cursors attribute), 1608
moveto (matplotlib.backends.backend_pdf.Op attribute), 1640
MOVETO (matplotlib.path.Path attribute), 2429
MovieWriter (class in matplotlib.animation), 1201
MovieWriterRegistry (class in matplotlib.animation),

1198
mpl_connect()

(matplotlib.backend_bases.FigureCanvasBase
method), 1577

mpl_disconnect()
(matplotlib.backend_bases.FigureCanvasBase
method), 1578

mpl_toolkits.axes_grid1
module, 3082

mpl_toolkits.axes_grid1.anchored_artists
module, 2932

mpl_toolkits.axes_grid1.axes_divider
module, 2953

mpl_toolkits.axes_grid1.axes_grid
module, 2965

mpl_toolkits.axes_grid1.axes_rgb
module, 2974

mpl_toolkits.axes_grid1.axes_size
module, 2979

mpl_toolkits.axes_grid1.inset_locator

Index 3439

Matplotlib, Release 3.4.3

module, 2985
mpl_toolkits.axes_grid1.mpl_axes

module, 3014
mpl_toolkits.axes_grid1.parasite_axes

module, 3019
mpl_toolkits.axisartist

module, 3083
mpl_toolkits.axisartist.angle_helper

module, 3026
mpl_toolkits.axisartist.axes_divider

module, 3034
mpl_toolkits.axisartist.axes_grid

module, 3034
mpl_toolkits.axisartist.axes_rgb

module, 3038
mpl_toolkits.axisartist.axis_artist

module, 3039
mpl_toolkits.axisartist.axisline_style

module, 3053
mpl_toolkits.axisartist.axislines

module, 3055
mpl_toolkits.axisartist.clip_path

module, 3068
mpl_toolkits.axisartist.floating_axes

module, 3069
mpl_toolkits.axisartist.grid_finder

module, 3073
mpl_toolkits.axisartist.grid_helper_curvelinear

module, 3080
mpl_toolkits.axisartist.parasite_axes

module, 3082
mpl_toolkits.mplot3d

module, 3084
mpl_toolkits.mplot3d.art3d

module, 3133
mpl_toolkits.mplot3d.axes3d

module, 3084
mpl_toolkits.mplot3d.axis3d

module, 3130
mpl_toolkits.mplot3d.proj3d

module, 3153
MPLBACKEND, 18, 764, 822
MPLCONFIGDIR, 85, 944, 947
mplDeprecation (in module matplotlib._api.deprecation),

2924
MultiCursor (class in matplotlib.widgets), 2904
MultipleLocator (class in matplotlib.ticker), 2832
mutated() (matplotlib.transforms.Bbox method), 2855
mutatedx() (matplotlib.transforms.Bbox method), 2855
mutatedy() (matplotlib.transforms.Bbox method), 2855

N
n_rasterize (matplotlib.colorbar.ColorbarBase attribute),

1992
Name (class in matplotlib.backends.backend_pdf), 1639
name (matplotlib.afm.CharMetrics attribute), 1158
name (matplotlib.afm.CompositePart attribute), 1159
name (matplotlib.axes.Axes attribute), 1535

name (matplotlib.backends.backend_pdf.Name attribute), 1640
name (matplotlib.projections.polar.PolarAxes attribute), 2716
name (matplotlib.scale.FuncScale attribute), 2759
name (matplotlib.scale.FuncScaleLog attribute), 2760
name (matplotlib.scale.LinearScale attribute), 2763
name (matplotlib.scale.LogitScale attribute), 2766
name (matplotlib.scale.LogScale attribute), 2764
name (matplotlib.scale.SymmetricalLogScale attribute), 2768
name (mpl_toolkits.mplot3d.axes3d.Axes3D attribute), 3102
name() (matplotlib.backend_tools.ToolBase property), 1610
NavigationIPy (class in

matplotlib.backends.backend_nbagg), 1638
NavigationToolbar2 (class in

matplotlib.backend_bases), 1589
ncols() (matplotlib.gridspec.GridSpecBase property), 2235
neighbors() (matplotlib.tri.Triangulation property), 2884
new_axes() (matplotlib.widgets.SpanSelector method), 2916
new_figure_manager() (in module

matplotlib.backends.backend_template), 1625
new_figure_manager() (in module matplotlib.pyplot),

2584
new_figure_manager_given_figure() (in module

matplotlib.backends.backend_nbagg), 1638
new_figure_manager_given_figure() (in module

matplotlib.backends.backend_template), 1625
new_fixed_axis() (mpl_toolkits.axisartist.axislines.Axes

method), 3062
new_fixed_axis()

(mpl_toolkits.axisartist.axislines.GridHelperRectlinear
method), 3068

new_fixed_axis()
(mpl_toolkits.axisartist.floating_axes.GridHelperCurveLinear
method), 3073

new_fixed_axis()
(mpl_toolkits.axisartist.grid_helper_curvelinear.GridHelperCurveLinear
method), 3082

new_floating_axis()
(mpl_toolkits.axisartist.axislines.Axes method),
3062

new_floating_axis()
(mpl_toolkits.axisartist.axislines.GridHelperRectlinear
method), 3068

new_floating_axis()
(mpl_toolkits.axisartist.grid_helper_curvelinear.GridHelperCurveLinear
method), 3082

new_frame_seq() (matplotlib.animation.Animation
method), 1160

new_frame_seq() (matplotlib.animation.FuncAnimation
method), 1165

new_gc() (matplotlib.backend_bases.RendererBase method),
1597

new_gc()
(matplotlib.backends.backend_cairo.RendererCairo
method), 1636

new_gc() (matplotlib.backends.backend_pdf.RendererPdf
method), 1649

new_gc() (mat-
plotlib.backends.backend_template.RendererTemplate
method), 1624

3440 Index

Matplotlib, Release 3.4.3

new_gridlines() (mpl_toolkits.axisartist.axislines.Axes
method), 3062

new_gridlines()
(mpl_toolkits.axisartist.axislines.GridHelperBase
method), 3067

new_horizontal()
(mpl_toolkits.axes_grid1.axes_divider.AxesDivider
method), 2954

new_line()
(mpl_toolkits.axisartist.axisline_style.AxislineStyle.SimpleArrow
method), 3055

new_locator()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2958

new_locator()
(mpl_toolkits.axes_grid1.axes_divider.HBoxDivider
method), 2961

new_locator()
(mpl_toolkits.axes_grid1.axes_divider.VBoxDivider
method), 2964

new_saved_frame_seq()
(matplotlib.animation.Animation method), 1160

new_saved_frame_seq()
(matplotlib.animation.FuncAnimation method),
1165

new_subplotspec() (matplotlib.gridspec.GridSpecBase
method), 2235

new_timer() (matplotlib.backend_bases.FigureCanvasBase
method), 1579

new_vertical()
(mpl_toolkits.axes_grid1.axes_divider.AxesDivider
method), 2954

newPage() (matplotlib.backends.backend_pdf.PdfFile
method), 1643

newTextnote() (matplotlib.backends.backend_pdf.PdfFile
method), 1643

nipy_spectral() (in module matplotlib.pyplot), 2584
NonGuiException, 1592
NonIntersectingPathException, 1671
NoNorm (class in matplotlib.colors), 2021
nonsingular() (in module matplotlib.transforms), 2882
nonsingular() (matplotlib.dates.AutoDateLocator

method), 2054
nonsingular() (matplotlib.dates.DateLocator method),

2058
nonsingular() (mat-

plotlib.projections.polar.PolarAxes.RadialLocator
method), 2710

nonsingular()
(matplotlib.projections.polar.RadialLocator
method), 2723

nonsingular() (matplotlib.ticker.Locator method), 2824
nonsingular() (matplotlib.ticker.LogitLocator method),

2830
nonsingular() (matplotlib.ticker.LogLocator method),

2828
NonUniformImage (class in matplotlib.image), 2241
Normal (class in matplotlib.patheffects), 2437
Normalize (class in matplotlib.colors), 2022

normalize_kwargs() (in module matplotlib.cbook), 1687
normalized() (matplotlib.dates.relativedelta method), 2066
nrows() (matplotlib.gridspec.GridSpecBase property), 2235
null() (matplotlib.transforms.Bbox static method), 2855
NullFormatter (class in matplotlib.ticker), 2833
NullLocator (class in matplotlib.ticker), 2833
num2() (matplotlib.gridspec.SubplotSpec property), 2232
num2date() (in module matplotlib.dates), 2063
num2epoch() (in module matplotlib.dates), 2063
num2timedelta() (in module matplotlib.dates), 2064
NUM_VERTICES_FOR_CODE (matplotlib.path.Path

attribute), 2429
numCols() (matplotlib.axes.SubplotBase property), 1243
numRows() (matplotlib.axes.SubplotBase property), 1243
numticks() (matplotlib.ticker.LinearLocator property),

2823

O
observers() (matplotlib.widgets.Button property), 2898
observers() (matplotlib.widgets.CheckButtons property),

2899
observers() (matplotlib.widgets.RadioButtons property),

2907
observers() (matplotlib.widgets.Slider property), 2913
offset_copy() (in module matplotlib.transforms), 2882
OffsetBox (class in matplotlib.offsetbox), 2322
OffsetFrom (class in matplotlib.text), 2798
OffsetImage (class in matplotlib.offsetbox), 2324
OFFSETTEXTPAD (matplotlib.axis.Axis attribute), 1567
OldAutoLocator (class in matplotlib.ticker), 2833
OldScalarFormatter (class in matplotlib.ticker), 2834
on_changed() (matplotlib.widgets.RangeSlider method),

2909
on_changed() (matplotlib.widgets.Slider method), 2913
on_clicked() (matplotlib.widgets.Button method), 2898
on_clicked() (matplotlib.widgets.CheckButtons method),

2899
on_clicked() (matplotlib.widgets.RadioButtons method),

2907
on_close()

(matplotlib.backends.backend_nbagg.CommSocket
method), 1637

on_event() (matplotlib.blocking_input.BlockingInput
method), 1675

on_mappable_changed() (matplotlib.colorbar.Colorbar
method), 1989

on_message()
(matplotlib.backends.backend_nbagg.CommSocket
method), 1637

on_motion() (matplotlib.offsetbox.DraggableBase method),
2319

on_motion_blit() (matplotlib.offsetbox.DraggableBase
method), 2319

on_pick() (matplotlib.offsetbox.DraggableBase method),
2320

on_release() (matplotlib.offsetbox.DraggableBase
method), 2320

on_submit() (matplotlib.widgets.TextBox method), 2918

Index 3441

Matplotlib, Release 3.4.3

on_text_change() (matplotlib.widgets.TextBox method),
2918

onmove() (matplotlib.widgets.Cursor method), 2900
onmove() (matplotlib.widgets.Lasso method), 2903
onmove() (matplotlib.widgets.MultiCursor method), 2905
onmove() (matplotlib.widgets.PolygonSelector method), 2906
onpick() (matplotlib.lines.VertexSelector method), 2280
onpress() (matplotlib.widgets.LassoSelector method), 2904
onrelease() (matplotlib.widgets.Lasso method), 2903
onrelease() (matplotlib.widgets.LassoSelector method),

2904
Op (class in matplotlib.backends.backend_pdf), 1640
op (matplotlib.backends.backend_pdf.Op attribute), 1640
op (matplotlib.backends.backend_pdf.Operator attribute),

1641
open_file_cm() (in module matplotlib.cbook), 1688
open_group() (matplotlib.backend_bases.RendererBase

method), 1597
open_group()

(matplotlib.backends.backend_svg.RendererSVG
method), 1666

Operator (class in matplotlib.backends.backend_pdf), 1641
option_image_nocomposite()

(matplotlib.backend_bases.RendererBase method),
1597

option_image_nocomposite()
(matplotlib.backends.backend_agg.RendererAgg
method), 1630

option_image_nocomposite()
(matplotlib.backends.backend_pgf.RendererPgf
method), 1655

option_image_nocomposite()
(matplotlib.backends.backend_svg.RendererSVG
method), 1666

option_scale_image()
(matplotlib.backend_bases.RendererBase method),
1597

option_scale_image()
(matplotlib.backends.backend_agg.RendererAgg
method), 1631

option_scale_image()
(matplotlib.backends.backend_pgf.RendererPgf
method), 1655

option_scale_image()
(matplotlib.backends.backend_svg.RendererSVG
method), 1667

out_of_date() (in module
matplotlib.sphinxext.plot_directive), 2773

output() (matplotlib.backends.backend_pdf.PdfFile
method), 1643

output_args() (matplotlib.animation.FFMpegBase
property), 1208

output_args() (matplotlib.animation.ImageMagickBase
property), 1208

output_dims (mat-
plotlib.projections.polar.InvertedPolarTransform
attribute), 2705

output_dims (mat-
plotlib.projections.polar.PolarAxes.InvertedPolarTransform

attribute), 2708
output_dims (mat-

plotlib.projections.polar.PolarAxes.PolarTransform
attribute), 2709

output_dims (matplotlib.projections.polar.PolarTransform
attribute), 2722

output_dims (matplotlib.scale.FuncTransform attribute),
2761

output_dims (matplotlib.scale.InvertedLogTransform
attribute), 2762

output_dims
(matplotlib.scale.InvertedSymmetricalLogTransform
attribute), 2762

output_dims (matplotlib.scale.LogisticTransform attribute),
2765

output_dims (matplotlib.scale.LogitTransform attribute),
2766

output_dims (matplotlib.scale.LogTransform attribute),
2764

output_dims (matplotlib.scale.SymmetricalLogTransform
attribute), 2769

output_dims (matplotlib.transforms.Affine2DBase
attribute), 2848

output_dims
(matplotlib.transforms.BlendedGenericTransform
attribute), 2865

output_dims (matplotlib.transforms.Transform attribute),
2874

overlaps() (matplotlib.transforms.BboxBase method), 2859

P
p0() (matplotlib.transforms.Bbox property), 2855
p0() (matplotlib.transforms.BboxBase property), 2860
p1() (matplotlib.transforms.Bbox property), 2855
p1() (matplotlib.transforms.BboxBase property), 2860
PackerBase (class in matplotlib.offsetbox), 2325
PAD (matplotlib.table.Cell attribute), 2780
Padded (class in mpl_toolkits.axes_grid1.axes_size), 2984
padded() (matplotlib.transforms.BboxBase method), 2860
PaddedBox (class in matplotlib.offsetbox), 2326
paint() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

paint_path() (matplotlib.backends.backend_pdf.Op class
method), 1640

pan() (matplotlib.axis.Axis method), 1562
pan() (matplotlib.backend_bases.NavigationToolbar2

method), 1591
pan() (matplotlib.projections.polar.PolarAxes.RadialLocator

method), 2710
pan() (matplotlib.projections.polar.PolarAxes.ThetaLocator

method), 2711
pan() (matplotlib.projections.polar.RadialLocator method),

2723
pan() (matplotlib.projections.polar.ThetaLocator method),

2725
pan() (matplotlib.ticker.Locator method), 2824
params_to_disable() (matplotlib.widgets.TextBox

property), 2918

3442 Index

Matplotlib, Release 3.4.3

parasite_axes_auxtrans_class_factory() (in
module mpl_toolkits.axes_grid1.parasite_axes),
3024

parasite_axes_class_factory() (in module
mpl_toolkits.axes_grid1.parasite_axes), 3025

ParasiteAxes (in module
mpl_toolkits.axes_grid1.parasite_axes), 3021

ParasiteAxesAuxTrans (in module
mpl_toolkits.axes_grid1.parasite_axes), 3021

ParasiteAxesAuxTransBase (class in
mpl_toolkits.axes_grid1.parasite_axes), 3021

ParasiteAxesBase (class in
mpl_toolkits.axes_grid1.parasite_axes), 3022

parse() (mat-
plotlib.fontconfig_pattern.FontconfigPatternParser
method), 2226

parse() (matplotlib.mathtext.MathTextParser method), 2287
parse_fontconfig_pattern() (in module

matplotlib.fontconfig_pattern), 2226
parts (matplotlib.type1font.Type1Font attribute), 2893
pass_through

(matplotlib.transforms.BlendedGenericTransform
attribute), 2865

pass_through
(matplotlib.transforms.CompositeGenericTransform
attribute), 2867

pass_through (matplotlib.transforms.TransformNode
attribute), 2877

pass_through (matplotlib.transforms.TransformWrapper
attribute), 2879

Patch (class in matplotlib.patches), 2393
Patch3D (class in mpl_toolkits.mplot3d.art3d), 3137
Patch3DCollection (class in mpl_toolkits.mplot3d.art3d),

3139
patch_2d_to_3d() (in module

mpl_toolkits.mplot3d.art3d), 3152
patch_collection_2d_to_3d() (in module

mpl_toolkits.mplot3d.art3d), 3152
PatchCollection (class in matplotlib.collections), 1843
PATH, 356, 359, 360, 362
Path (class in matplotlib.path), 2427
Path3DCollection (class in mpl_toolkits.mplot3d.art3d),

3140
PathCollection (class in matplotlib.collections), 1863
pathCollectionObject()

(matplotlib.backends.backend_pdf.PdfFile method),
1643

PathEffectRenderer (class in matplotlib.patheffects),
2437

pathOperations()
(matplotlib.backends.backend_pdf.PdfFile static
method), 1643

PathPatch (class in matplotlib.patches), 2404
PathPatch3D (class in mpl_toolkits.mplot3d.art3d), 3142
pathpatch_2d_to_3d() (in module

mpl_toolkits.mplot3d.art3d), 3152
PathPatchEffect (class in matplotlib.patheffects), 2438
pause() (in module matplotlib.pyplot), 2585
pause() (matplotlib.animation.Animation method), 1160

pchanged() (matplotlib.artist.Artist method), 1212
pchanged() (matplotlib.axes.Axes method), 1522
pchanged()

(matplotlib.collections.AsteriskPolygonCollection
method), 1707

pchanged() (matplotlib.collections.BrokenBarHCollection
method), 1727

pchanged() (matplotlib.collections.CircleCollection
method), 1747

pchanged() (matplotlib.collections.Collection method),
1769

pchanged() (matplotlib.collections.EllipseCollection
method), 1788

pchanged() (matplotlib.collections.EventCollection
method), 1810

pchanged() (matplotlib.collections.LineCollection method),
1831

pchanged() (matplotlib.collections.PatchCollection
method), 1851

pchanged() (matplotlib.collections.PathCollection method),
1871

pchanged() (matplotlib.collections.PolyCollection method),
1892

pchanged() (matplotlib.collections.QuadMesh method),
1914

pchanged() (matplotlib.collections.RegularPolyCollection
method), 1934

pchanged() (matplotlib.collections.StarPolygonCollection
method), 1954

pchanged() (matplotlib.collections.TriMesh method), 1975
pchanged() (matplotlib.container.Container method), 2037
pchanged() (matplotlib.figure.Figure method), 2106
pchanged() (matplotlib.figure.FigureBase method), 2155
pchanged() (matplotlib.figure.SubFigure method), 2199
pcolor() (in module matplotlib.pyplot), 2585
pcolor() (matplotlib.axes.Axes method), 1378
pcolorfast() (matplotlib.axes.Axes method), 1382
PcolorImage (class in matplotlib.image), 2243
pcolormesh() (in module matplotlib.pyplot), 2589
pcolormesh() (matplotlib.axes.Axes method), 1385
PdfFile (class in matplotlib.backends.backend_pdf), 1641
pdfFile (matplotlib.backends.backend_pdf.Stream attribute),

1650
PdfPages (class in matplotlib.backends.backend_pdf), 1643
PdfPages (class in matplotlib.backends.backend_pgf), 1651
pdfRepr() (in module matplotlib.backends.backend_pdf),

1650
pdfRepr() (matplotlib.backends.backend_pdf.Name

method), 1640
pdfRepr() (matplotlib.backends.backend_pdf.Operator

method), 1641
pdfRepr() (matplotlib.backends.backend_pdf.Reference

method), 1645
pdfRepr() (matplotlib.backends.backend_pdf.Verbatim

method), 1650
PercentFormatter (class in matplotlib.ticker), 2834
persp_transformation() (in module

mpl_toolkits.mplot3d.proj3d), 3154
phase_spectrum() (in module matplotlib.mlab), 2305

Index 3443

Matplotlib, Release 3.4.3

phase_spectrum() (in module matplotlib.pyplot), 2594
phase_spectrum() (matplotlib.axes.Axes method), 1325
pick() (matplotlib.artist.Artist method), 1215
pick() (matplotlib.backend_bases.FigureCanvasBase

method), 1579
pick() (matplotlib.collections.AsteriskPolygonCollection

method), 1707
pick() (matplotlib.collections.BrokenBarHCollection

method), 1727
pick() (matplotlib.collections.CircleCollection method),

1747
pick() (matplotlib.collections.Collection method), 1769
pick() (matplotlib.collections.EllipseCollection method),

1789
pick() (matplotlib.collections.EventCollection method), 1810
pick() (matplotlib.collections.LineCollection method), 1831
pick() (matplotlib.collections.PatchCollection method), 1851
pick() (matplotlib.collections.PathCollection method), 1872
pick() (matplotlib.collections.PolyCollection method), 1892
pick() (matplotlib.collections.QuadMesh method), 1914
pick() (matplotlib.collections.RegularPolyCollection

method), 1934
pick() (matplotlib.collections.StarPolygonCollection

method), 1954
pick() (matplotlib.collections.TriMesh method), 1976
pick() (matplotlib.figure.Figure method), 2106
pick() (matplotlib.figure.FigureBase method), 2155
pick() (matplotlib.figure.SubFigure method), 2199
pick() (mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase

method), 3020
pick()

(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase
method), 3022

pick_event()
(matplotlib.backend_bases.FigureCanvasBase
method), 1579

pickable() (matplotlib.artist.Artist method), 1215
pickable()

(matplotlib.collections.AsteriskPolygonCollection
method), 1707

pickable() (matplotlib.collections.BrokenBarHCollection
method), 1727

pickable() (matplotlib.collections.CircleCollection
method), 1747

pickable() (matplotlib.collections.Collection method),
1769

pickable() (matplotlib.collections.EllipseCollection
method), 1789

pickable() (matplotlib.collections.EventCollection
method), 1810

pickable() (matplotlib.collections.LineCollection method),
1831

pickable() (matplotlib.collections.PatchCollection
method), 1851

pickable() (matplotlib.collections.PathCollection method),
1872

pickable() (matplotlib.collections.PolyCollection method),
1892

pickable() (matplotlib.collections.QuadMesh method),
1914

pickable() (matplotlib.collections.RegularPolyCollection
method), 1934

pickable() (matplotlib.collections.StarPolygonCollection
method), 1954

pickable() (matplotlib.collections.TriMesh method), 1976
pickable() (matplotlib.figure.Figure method), 2106
pickable() (matplotlib.figure.FigureBase method), 2155
pickable() (matplotlib.figure.SubFigure method), 2199
PickEvent (class in matplotlib.backend_bases), 1592
pickradius() (matplotlib.lines.Line2D property), 2270
pie() (in module matplotlib.pyplot), 2596
pie() (matplotlib.axes.Axes method), 1289
pil_to_array() (in module matplotlib.image), 2247
PillowWriter (class in matplotlib.animation), 1181
pink() (in module matplotlib.pyplot), 2599
pivot (matplotlib.quiver.QuiverKey attribute), 2740
plasma() (in module matplotlib.pyplot), 2599
plot() (in module matplotlib.pyplot), 2599
plot() (matplotlib.axes.Axes method), 1245
plot() (mpl_toolkits.mplot3d.Axes3D method), 387
plot() (mpl_toolkits.mplot3d.axes3d.Axes3D method), 3102
plot3D() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3103
plot_date() (in module matplotlib.pyplot), 2605
plot_date() (matplotlib.axes.Axes method), 1263
plot_surface() (mpl_toolkits.mplot3d.Axes3D method),

391
plot_surface() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3103
plot_trisurf() (mpl_toolkits.mplot3d.Axes3D method),

392
plot_trisurf() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3105
plot_wireframe() (mpl_toolkits.mplot3d.Axes3D

method), 389
plot_wireframe() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3106
PlotDirective (class in

matplotlib.sphinxext.plot_directive), 2773
PlotError, 2773
plotting() (in module matplotlib.pyplot), 2696
point_at_t() (matplotlib.bezier.BezierSegment method),

1670
POINTER (matplotlib.backend_tools.Cursors attribute), 1608
points_to_pixels()

(matplotlib.backend_bases.RendererBase method),
1597

points_to_pixels()
(matplotlib.backends.backend_agg.RendererAgg
method), 1631

points_to_pixels()
(matplotlib.backends.backend_cairo.RendererCairo
method), 1636

points_to_pixels()
(matplotlib.backends.backend_pgf.RendererPgf
method), 1655

3444 Index

Matplotlib, Release 3.4.3

points_to_pixels() (mat-
plotlib.backends.backend_template.RendererTemplate
method), 1624

polar() (in module matplotlib.pyplot), 2608
PolarAffine (class in matplotlib.projections.polar), 2705
PolarAxes (class in matplotlib.projections.polar), 2705
PolarAxes.InvertedPolarTransform (class in

matplotlib.projections.polar), 2707
PolarAxes.PolarAffine (class in

matplotlib.projections.polar), 2708
PolarAxes.PolarTransform (class in

matplotlib.projections.polar), 2709
PolarAxes.RadialLocator (class in

matplotlib.projections.polar), 2710
PolarAxes.ThetaFormatter (class in

matplotlib.projections.polar), 2711
PolarAxes.ThetaLocator (class in

matplotlib.projections.polar), 2711
PolarTransform (class in matplotlib.projections.polar),

2721
Poly3DCollection (class in mpl_toolkits.mplot3d.art3d),

3144
poly_collection_2d_to_3d() (in module

mpl_toolkits.mplot3d.art3d), 3153
PolyCollection (class in matplotlib.collections), 1884
Polygon (class in matplotlib.patches), 2410
PolygonSelector (class in matplotlib.widgets), 2905
polynomial_coefficients()

(matplotlib.bezier.BezierSegment property), 1670
pop() (matplotlib.backends.backend_pdf.GraphicsContextPdf

method), 1639
pop() (matplotlib.blocking_input.BlockingInput method),

1675
pop() (matplotlib.blocking_input.BlockingMouseInput

method), 1677
pop_click()

(matplotlib.blocking_input.BlockingContourLabeler
method), 1675

pop_click()
(matplotlib.blocking_input.BlockingMouseInput
method), 1677

pop_event() (matplotlib.blocking_input.BlockingInput
method), 1675

pop_label() (matplotlib.contour.ContourLabeler method),
2043

pos (matplotlib.backends.backend_pdf.Stream attribute), 1650
position_cursor() (matplotlib.widgets.TextBox method),

2918
post_event() (matplotlib.blocking_input.BlockingInput

method), 1675
post_event()

(matplotlib.blocking_input.BlockingKeyMouseInput
method), 1676

post_event()
(matplotlib.blocking_input.BlockingMouseInput
method), 1677

postscript_name() (matplotlib.afm.AFM property), 1158
PowerNorm (class in matplotlib.colors), 2025

pprint_getters() (matplotlib.artist.ArtistInspector
method), 1236

pprint_setters() (matplotlib.artist.ArtistInspector
method), 1237

pprint_setters_rest()
(matplotlib.artist.ArtistInspector method), 1237

press() (matplotlib.backend_bases.NavigationToolbar2
method), 1591

press_pan()
(matplotlib.backend_bases.NavigationToolbar2
method), 1591

press_zoom()
(matplotlib.backend_bases.NavigationToolbar2
method), 1591

print_cycles() (in module matplotlib.cbook), 1688
print_eps()

(matplotlib.backends.backend_ps.FigureCanvasPS
method), 1657

print_figure()
(matplotlib.backend_bases.FigureCanvasBase
method), 1579

print_foo() (mat-
plotlib.backends.backend_template.FigureCanvasTemplate
method), 1622

print_jpeg() (mat-
plotlib.backends.backend_agg.FigureCanvasAgg
method), 1626

print_jpg() (mat-
plotlib.backends.backend_agg.FigureCanvasAgg
method), 1627

print_label() (matplotlib.contour.ContourLabeler
method), 2043

print_pdf() (mat-
plotlib.backends.backend_cairo.FigureCanvasCairo
method), 1632

print_pdf()
(matplotlib.backends.backend_pdf.FigureCanvasPdf
method), 1639

print_pdf()
(matplotlib.backends.backend_pgf.FigureCanvasPgf
method), 1650

print_pgf()
(matplotlib.backends.backend_pgf.FigureCanvasPgf
method), 1650

print_png() (mat-
plotlib.backends.backend_agg.FigureCanvasAgg
method), 1627

print_png() (mat-
plotlib.backends.backend_cairo.FigureCanvasCairo
method), 1632

print_png()
(matplotlib.backends.backend_pgf.FigureCanvasPgf
method), 1650

print_ps() (mat-
plotlib.backends.backend_cairo.FigureCanvasCairo
method), 1632

print_ps()
(matplotlib.backends.backend_ps.FigureCanvasPS
method), 1657

Index 3445

Matplotlib, Release 3.4.3

print_raw() (mat-
plotlib.backends.backend_agg.FigureCanvasAgg
method), 1628

print_raw() (mat-
plotlib.backends.backend_cairo.FigureCanvasCairo
method), 1632

print_rgba() (mat-
plotlib.backends.backend_agg.FigureCanvasAgg
method), 1628

print_rgba() (mat-
plotlib.backends.backend_cairo.FigureCanvasCairo
method), 1632

print_svg() (mat-
plotlib.backends.backend_cairo.FigureCanvasCairo
method), 1632

print_svg() (mat-
plotlib.backends.backend_svg.FigureCanvasSVG
method), 1662

print_svgz() (mat-
plotlib.backends.backend_cairo.FigureCanvasCairo
method), 1632

print_svgz() (mat-
plotlib.backends.backend_svg.FigureCanvasSVG
method), 1663

print_tif() (mat-
plotlib.backends.backend_agg.FigureCanvasAgg
method), 1628

print_tiff() (mat-
plotlib.backends.backend_agg.FigureCanvasAgg
method), 1628

print_to_buffer() (mat-
plotlib.backends.backend_agg.FigureCanvasAgg
method), 1628

prism() (in module matplotlib.pyplot), 2608
process() (matplotlib.cbook.CallbackRegistry method),

1681
process_figure_for_rasterizing() (in module

matplotlib.tight_bbox), 2841
process_selected() (matplotlib.lines.VertexSelector

method), 2280
process_value() (matplotlib.colors.Normalize static

method), 2023
proj_points() (in module mpl_toolkits.mplot3d.proj3d),

3154
proj_trans_points() (in module

mpl_toolkits.mplot3d.proj3d), 3154
proj_transform() (in module

mpl_toolkits.mplot3d.proj3d), 3154
proj_transform_clip() (in module

mpl_toolkits.mplot3d.proj3d), 3154
ProjectionRegistry (class in matplotlib.projections),

2704
prop (matplotlib.type1font.Type1Font attribute), 2893
properties() (matplotlib.artist.Artist method), 1219
properties() (matplotlib.artist.ArtistInspector method),

1237
properties()

(matplotlib.collections.AsteriskPolygonCollection
method), 1708

properties()
(matplotlib.collections.BrokenBarHCollection
method), 1727

properties() (matplotlib.collections.CircleCollection
method), 1748

properties() (matplotlib.collections.Collection method),
1769

properties() (matplotlib.collections.EllipseCollection
method), 1789

properties() (matplotlib.collections.EventCollection
method), 1810

properties() (matplotlib.collections.LineCollection
method), 1831

properties() (matplotlib.collections.PatchCollection
method), 1851

properties() (matplotlib.collections.PathCollection
method), 1872

properties() (matplotlib.collections.PolyCollection
method), 1892

properties() (matplotlib.collections.QuadMesh method),
1914

properties()
(matplotlib.collections.RegularPolyCollection
method), 1934

properties()
(matplotlib.collections.StarPolygonCollection
method), 1955

properties() (matplotlib.collections.TriMesh method),
1976

properties() (matplotlib.figure.Figure method), 2106
properties() (matplotlib.figure.FigureBase method), 2155
properties() (matplotlib.figure.SubFigure method), 2200
props() (matplotlib.patches.Shadow property), 2423
PsBackendHelper (class in

matplotlib.backends.backend_ps), 1657
psd() (in module matplotlib.mlab), 2307
psd() (in module matplotlib.pyplot), 2608
psd() (matplotlib.axes.Axes method), 1328
PsFont (class in matplotlib.dviread), 2071
PsfontsMap (class in matplotlib.dviread), 2072
psname (matplotlib.dviread.PsFont attribute), 2072
pstoeps() (in module matplotlib.backends.backend_ps),

1661
pts_to_midstep() (in module matplotlib.cbook), 1689
pts_to_poststep() (in module matplotlib.cbook), 1689
pts_to_prestep() (in module matplotlib.cbook), 1690
push() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

push() (matplotlib.cbook.Stack method), 1683
push_current()

(matplotlib.backend_bases.NavigationToolbar2
method), 1591

push_current()
(matplotlib.backend_tools.ToolViewsPositions
method), 1617

pylab
module, 1140

Python Enhancement Proposals

3446 Index

Matplotlib, Release 3.4.3

PEP 440, 3280
PEP 3102, 1044

PYTHONPATH, 948

Q
QT_API, 21, 1025
QuadContourSet (class in matplotlib.contour), 2047
QuadMesh (class in matplotlib.collections), 1905
Quiver (class in matplotlib.quiver), 2727
quiver() (in module matplotlib.pyplot), 2612
quiver() (matplotlib.axes.Axes method), 1427
quiver() (mpl_toolkits.mplot3d.Axes3D method), 399
quiver() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3107
quiver3D() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3108
quiver_doc (matplotlib.quiver.Quiver attribute), 2736
QuiverKey (class in matplotlib.quiver), 2736
quiverkey() (in module matplotlib.pyplot), 2616
quiverkey() (matplotlib.axes.Axes method), 1431
quote_ps_string() (in module

matplotlib.backends.backend_ps), 1662

R
RadialAxis (class in matplotlib.projections.polar), 2722
RadialLocator (class in matplotlib.projections.polar),

2723
RadialTick (class in matplotlib.projections.polar), 2724
radio_group (matplotlib.backend_tools.ToolPan attribute),

1614
radio_group (matplotlib.backend_tools.ToolToggleBase

attribute), 1616
radio_group (matplotlib.backend_tools.ToolZoom

attribute), 1618
RadioButtons (class in matplotlib.widgets), 2906
radius() (matplotlib.patches.Circle property), 2356
raise_if_exceeds() (matplotlib.ticker.Locator method),

2824
RangeSlider (class in matplotlib.widgets), 2907
rc() (in module matplotlib), 1153
rc() (in module matplotlib.pyplot), 2617
rc_context() (in module matplotlib), 1152
rc_context() (in module matplotlib.pyplot), 2619
rc_file() (in module matplotlib), 1154
rc_file_defaults() (in module matplotlib), 1154
rc_params() (in module matplotlib), 1154
rc_params_from_file() (in module matplotlib), 1154
rcdefaults() (in module matplotlib), 1154
rcdefaults() (in module matplotlib.pyplot), 2620
RcParams (class in matplotlib), 1142
rcParams (in module matplotlib), 1142
readonly() (matplotlib.path.Path property), 2434
recache() (matplotlib.lines.Line2D method), 2271
recache_always() (matplotlib.lines.Line2D method),

2271
recordXref() (matplotlib.backends.backend_pdf.PdfFile

method), 1643
Rectangle (class in matplotlib.patches), 2413

rectangle (matplotlib.backends.backend_pdf.Op attribute),
1640

RectangleSelector (class in matplotlib.widgets), 2909
redraw_in_frame() (matplotlib.axes.Axes method), 1532
Reference (class in matplotlib.backends.backend_pdf), 1645
refine_field() (matplotlib.tri.UniformTriRefiner

method), 2889
refine_triangulation()

(matplotlib.tri.UniformTriRefiner method), 2890
refresh() (mat-

plotlib.projections.polar.PolarAxes.RadialLocator
method), 2710

refresh() (mat-
plotlib.projections.polar.PolarAxes.ThetaLocator
method), 2711

refresh() (matplotlib.projections.polar.RadialLocator
method), 2724

refresh() (matplotlib.projections.polar.ThetaLocator
method), 2726

refresh() (matplotlib.ticker.Locator method), 2824
refresh_locators()

(matplotlib.backend_tools.ToolViewsPositions
method), 1617

register() (matplotlib.animation.MovieWriterRegistry
method), 1199

register() (matplotlib.projections.ProjectionRegistry
method), 2704

register_axis() (matplotlib.spines.Spine method), 2776
register_backend() (in module

matplotlib.backend_bases), 1603
register_cmap() (in module matplotlib.cm), 1697
register_projection() (in module

matplotlib.projections), 2704
register_scale() (in module matplotlib.scale), 2769
Registry (class in matplotlib.units), 2896
RegularPolyCollection (class in

matplotlib.collections), 1926
RegularPolygon (class in matplotlib.patches), 2418
relativedelta (class in matplotlib.dates), 2064
release() (matplotlib.backend_bases.NavigationToolbar2

method), 1591
release() (matplotlib.widgets.LockDraw method), 2904
release_mouse()

(matplotlib.backend_bases.FigureCanvasBase
method), 1580

release_pan()
(matplotlib.backend_bases.NavigationToolbar2
method), 1592

release_zoom()
(matplotlib.backend_bases.NavigationToolbar2
method), 1592

relim() (matplotlib.axes.Axes method), 1485
reload_library() (in module matplotlib.style), 2779
remaining_tmpdirs

(matplotlib.backends.backend_pgf.TmpDirCleaner
attribute), 1656

remove() (matplotlib.artist.Artist method), 1226
remove() (matplotlib.cbook.Grouper method), 1682
remove() (matplotlib.cbook.Stack method), 1683

Index 3447

Matplotlib, Release 3.4.3

remove() (matplotlib.collections.AsteriskPolygonCollection
method), 1708

remove() (matplotlib.collections.BrokenBarHCollection
method), 1727

remove() (matplotlib.collections.CircleCollection method),
1748

remove() (matplotlib.collections.Collection method), 1769
remove() (matplotlib.collections.EllipseCollection method),

1789
remove() (matplotlib.collections.EventCollection method),

1810
remove() (matplotlib.collections.LineCollection method),

1831
remove() (matplotlib.collections.PatchCollection method),

1851
remove() (matplotlib.collections.PathCollection method),

1872
remove() (matplotlib.collections.PolyCollection method),

1892
remove() (matplotlib.collections.QuadMesh method), 1914
remove() (matplotlib.collections.RegularPolyCollection

method), 1934
remove() (matplotlib.collections.StarPolygonCollection

method), 1955
remove() (matplotlib.collections.TriMesh method), 1976
remove() (matplotlib.colorbar.Colorbar method), 1989
remove() (matplotlib.colorbar.ColorbarBase method), 1992
remove() (matplotlib.container.Container method), 2038
remove() (matplotlib.figure.Figure method), 2106
remove() (matplotlib.figure.FigureBase method), 2155
remove() (matplotlib.figure.SubFigure method), 2200
remove() (matplotlib.quiver.Quiver method), 2736
remove() (matplotlib.quiver.QuiverKey method), 2740
remove_callback() (matplotlib.artist.Artist method),

1212
remove_callback() (matplotlib.axes.Axes method), 1523
remove_callback()

(matplotlib.backend_bases.TimerBase method),
1600

remove_callback()
(matplotlib.collections.AsteriskPolygonCollection
method), 1708

remove_callback()
(matplotlib.collections.BrokenBarHCollection
method), 1727

remove_callback()
(matplotlib.collections.CircleCollection method),
1748

remove_callback() (matplotlib.collections.Collection
method), 1770

remove_callback()
(matplotlib.collections.EllipseCollection method),
1789

remove_callback()
(matplotlib.collections.EventCollection method),
1811

remove_callback()
(matplotlib.collections.LineCollection method),
1831

remove_callback()
(matplotlib.collections.PatchCollection method),
1851

remove_callback()
(matplotlib.collections.PathCollection method),
1872

remove_callback()
(matplotlib.collections.PolyCollection method),
1892

remove_callback() (matplotlib.collections.QuadMesh
method), 1915

remove_callback()
(matplotlib.collections.RegularPolyCollection
method), 1935

remove_callback()
(matplotlib.collections.StarPolygonCollection
method), 1955

remove_callback() (matplotlib.collections.TriMesh
method), 1976

remove_callback() (matplotlib.container.Container
method), 2038

remove_callback() (matplotlib.figure.Figure method),
2106

remove_callback() (matplotlib.figure.FigureBase
method), 2155

remove_callback() (matplotlib.figure.SubFigure
method), 2200

remove_comm() (mat-
plotlib.backends.backend_nbagg.FigureManagerNbAgg
method), 1637

remove_overlapping_locs() (matplotlib.axis.Axis
property), 1548

remove_rubberband()
(matplotlib.backend_bases.NavigationToolbar2
method), 1592

remove_rubberband()
(matplotlib.backend_tools.RubberbandBase
method), 1608

remove_ticks_and_titles() (in module
matplotlib.testing.decorators), 2792

remove_tool()
(matplotlib.backend_managers.ToolManager
method), 1605

remove_toolitem()
(matplotlib.backend_bases.ToolContainerBase
method), 1601

rename_parameter() (in module
matplotlib._api.deprecation), 2924

render_figures() (in module
matplotlib.sphinxext.plot_directive), 2773

render_glyph() (matplotlib.mathtext.MathtextBackend
method), 2290

render_glyph() (matplotlib.mathtext.MathtextBackendAgg
method), 2290

render_glyph()
(matplotlib.mathtext.MathtextBackendCairo
method), 2291

render_glyph()
(matplotlib.mathtext.MathtextBackendPath method),

3448 Index

Matplotlib, Release 3.4.3

2291
render_glyph() (matplotlib.mathtext.MathtextBackendPdf

method), 2292
render_glyph() (matplotlib.mathtext.MathtextBackendPs

method), 2292
render_glyph() (matplotlib.mathtext.MathtextBackendSvg

method), 2292
render_rect_filled()

(matplotlib.mathtext.MathtextBackend method),
2290

render_rect_filled()
(matplotlib.mathtext.MathtextBackendAgg method),
2290

render_rect_filled()
(matplotlib.mathtext.MathtextBackendCairo
method), 2291

render_rect_filled()
(matplotlib.mathtext.MathtextBackendPath method),
2291

render_rect_filled()
(matplotlib.mathtext.MathtextBackendPdf method),
2292

render_rect_filled()
(matplotlib.mathtext.MathtextBackendPs method),
2292

render_rect_filled()
(matplotlib.mathtext.MathtextBackendSvg method),
2292

RendererAgg (class in matplotlib.backends.backend_agg),
1629

RendererBase (class in matplotlib.backend_bases), 1593
RendererCairo (class in

matplotlib.backends.backend_cairo), 1634
RendererPdf (class in matplotlib.backends.backend_pdf),

1645
RendererPgf (class in matplotlib.backends.backend_pgf),

1652
RendererPS (class in matplotlib.backends.backend_ps),

1657
RendererSVG (class in matplotlib.backends.backend_svg),

1663
RendererTemplate (class in

matplotlib.backends.backend_template), 1623
replace() (matplotlib.dates.rrule method), 2068
report_memory() (in module matplotlib.cbook), 1691
required_interactive_framework

(matplotlib.backend_bases.FigureCanvasBase
attribute), 1580

reserveObject()
(matplotlib.backends.backend_pdf.PdfFile method),
1643

reset() (matplotlib.widgets.SliderBase method), 2914
reset_position() (matplotlib.axes.Axes method), 1520
reset_ticks() (matplotlib.axis.Axis method), 1567
reshow() (mat-

plotlib.backends.backend_nbagg.FigureManagerNbAgg
method), 1637

resize() (matplotlib.backend_bases.FigureCanvasBase
method), 1580

resize() (matplotlib.backend_bases.FigureManagerBase
method), 1583

resize_event()
(matplotlib.backend_bases.FigureCanvasBase
method), 1581

ResizeEvent (class in matplotlib.backend_bases), 1598
restore() (matplotlib.backend_bases.GraphicsContextBase

method), 1585
restore() (mat-

plotlib.backends.backend_cairo.GraphicsContextCairo
method), 1632

restore_region() (mat-
plotlib.backends.backend_agg.FigureCanvasAgg
method), 1628

restore_region()
(matplotlib.backends.backend_agg.RendererAgg
method), 1631

restore_region() (mat-
plotlib.backends.backend_cairo.FigureCanvasCairo
method), 1632

resume() (matplotlib.animation.Animation method), 1160
reversed() (matplotlib.colors.Colormap method), 2003
reversed() (matplotlib.colors.LinearSegmentedColormap

method), 2015
reversed() (matplotlib.colors.ListedColormap method),

2018
rgb_cmd() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

rgb_to_hsv() (in module matplotlib.colors), 2034
rgba_arrayd() (matplotlib.texmanager.TexManager

property), 2813
RGBAxes (class in mpl_toolkits.axes_grid1.axes_rgb), 2974
RGBAxes (class in mpl_toolkits.axisartist.axes_rgb), 3038
RGBAxesBase (class in mpl_toolkits.axes_grid1.axes_rgb),

2977
rgrids() (in module matplotlib.pyplot), 2620
RIGHT (matplotlib.backend_bases.MouseButton attribute),

1588
rot_x() (in module mpl_toolkits.mplot3d.proj3d), 3155
rotate() (matplotlib.transforms.Affine2D method), 2846
rotate_around() (matplotlib.transforms.Affine2D

method), 2847
rotate_axes() (in module mpl_toolkits.mplot3d.art3d),

3153
rotate_deg() (matplotlib.transforms.Affine2D method),

2847
rotate_deg_around() (matplotlib.transforms.Affine2D

method), 2847
rotated() (matplotlib.transforms.BboxBase method), 2860
rowspan() (matplotlib.gridspec.SubplotSpec property), 2232
rrule (class in matplotlib.dates), 2066
RRuleLocator (class in matplotlib.dates), 2060
RubberbandBase (class in matplotlib.backend_tools), 1608
run() (matplotlib.sphinxext.plot_directive.PlotDirective

method), 2773
run_code() (in module matplotlib.sphinxext.plot_directive),

2773

Index 3449

Matplotlib, Release 3.4.3

S
safe_first_element() (in module matplotlib.cbook),

1691
safe_masked_invalid() (in module matplotlib.cbook),

1691
same_color() (in module matplotlib.colors), 2036
sanitize_sequence() (in module matplotlib.cbook),

1691
Sankey (class in matplotlib.sankey), 2752
sans_serif() (matplotlib.texmanager.TexManager

property), 2813
save() (matplotlib.animation.Animation method), 1161
save_figure()

(matplotlib.backend_bases.NavigationToolbar2
method), 1592

save_offset() (matplotlib.offsetbox.DraggableAnnotation
method), 2318

save_offset() (matplotlib.offsetbox.DraggableBase
method), 2320

save_offset() (matplotlib.offsetbox.DraggableOffsetBox
method), 2320

savefig() (in module matplotlib.pyplot), 2622
savefig() (matplotlib.backends.backend_pdf.PdfPages

method), 1645
savefig() (matplotlib.backends.backend_pgf.PdfPages

method), 1652
savefig() (matplotlib.figure.Figure method), 2107
SaveFigureBase (class in matplotlib.backend_tools), 1608
saving() (matplotlib.animation.AbstractMovieWriter

method), 1200
sca() (in module matplotlib.pyplot), 2624
sca() (matplotlib.figure.Figure method), 2109
sca() (matplotlib.figure.FigureBase method), 2156
sca() (matplotlib.figure.SubFigure method), 2200
Scalable (in module mpl_toolkits.axes_grid1.axes_size),

2984
ScalarFormatter (class in matplotlib.ticker), 2835
ScalarMappable (class in matplotlib.cm), 1694
scale() (matplotlib.table.Table method), 2785
scale() (matplotlib.transforms.Affine2D method), 2847
scale_factors() (matplotlib.tri.TriAnalyzer property),

2892
scale_factory() (in module matplotlib.scale), 2770
ScaleBase (class in matplotlib.scale), 2767
Scaled (class in mpl_toolkits.axes_grid1.axes_size), 2984
scaled() (matplotlib.colors.Normalize method), 2024
ScaledTranslation (class in matplotlib.transforms), 2871
scatter() (in module matplotlib.pyplot), 2624
scatter() (matplotlib.axes.Axes method), 1259
scatter() (mpl_toolkits.mplot3d.Axes3D method), 388
scatter() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3109
scatter3D() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3110
sci() (in module matplotlib.pyplot), 2627
score_family() (matplotlib.font_manager.FontManager

method), 2219
score_size() (matplotlib.font_manager.FontManager

method), 2220
score_stretch() (matplotlib.font_manager.FontManager

method), 2220
score_style() (matplotlib.font_manager.FontManager

method), 2220
score_variant() (matplotlib.font_manager.FontManager

method), 2220
score_weight() (matplotlib.font_manager.FontManager

method), 2220
scotts_factor() (matplotlib.mlab.GaussianKDE

method), 2296
scroll_event()

(matplotlib.backend_bases.FigureCanvasBase
method), 1581

scroll_pick_id()
(matplotlib.backend_bases.FigureCanvasBase
property), 1581

scroll_zoom() (matplotlib.backend_tools.ZoomPanBase
method), 1618

sec_mark
(mpl_toolkits.axisartist.angle_helper.FormatterDMS
attribute), 3028

sec_mark
(mpl_toolkits.axisartist.angle_helper.FormatterHMS
attribute), 3029

secondary_xaxis() (matplotlib.axes.Axes method), 1419
secondary_yaxis() (matplotlib.axes.Axes method), 1421
SecondLocator (class in matplotlib.dates), 2060
segment_hits() (in module matplotlib.lines), 2281
SELECT_REGION (matplotlib.backend_tools.Cursors

attribute), 1608
select_step() (in module

mpl_toolkits.axisartist.angle_helper), 3033
select_step24() (in module

mpl_toolkits.axisartist.angle_helper), 3033
select_step360() (in module

mpl_toolkits.axisartist.angle_helper), 3033
select_step_degree() (in module

mpl_toolkits.axisartist.angle_helper), 3033
select_step_hour() (in module

mpl_toolkits.axisartist.angle_helper), 3033
select_step_sub() (in module

mpl_toolkits.axisartist.angle_helper), 3034
selectfont (matplotlib.backends.backend_pdf.Op

attribute), 1641
semilogx() (in module matplotlib.pyplot), 2628
semilogx() (matplotlib.axes.Axes method), 1268
semilogy() (in module matplotlib.pyplot), 2629
semilogy() (matplotlib.axes.Axes method), 1269
send_binary()

(matplotlib.backends.backend_nbagg.CommSocket
method), 1637

send_json()
(matplotlib.backends.backend_nbagg.CommSocket
method), 1637

send_message()
(matplotlib.backend_tools.ToolCursorPosition
method), 1611

serif() (matplotlib.texmanager.TexManager property), 2813

3450 Index

Matplotlib, Release 3.4.3

set() (matplotlib.artist.Artist method), 1219
set() (matplotlib.collections.AsteriskPolygonCollection

method), 1708
set() (matplotlib.collections.BrokenBarHCollection method),

1728
set() (matplotlib.collections.CircleCollection method), 1748
set() (matplotlib.collections.Collection method), 1770
set() (matplotlib.collections.EllipseCollection method), 1789
set() (matplotlib.collections.EventCollection method), 1811
set() (matplotlib.collections.LineCollection method), 1832
set() (matplotlib.collections.PatchCollection method), 1851
set() (matplotlib.collections.PathCollection method), 1872
set() (matplotlib.collections.PolyCollection method), 1892
set() (matplotlib.collections.QuadMesh method), 1915
set() (matplotlib.collections.RegularPolyCollection method),

1935
set() (matplotlib.collections.StarPolygonCollection method),

1955
set() (matplotlib.collections.TriMesh method), 1976
set() (matplotlib.figure.Figure method), 2109
set() (matplotlib.figure.FigureBase method), 2156
set() (matplotlib.figure.SubFigure method), 2200
set() (matplotlib.transforms.Affine2D method), 2847
set() (matplotlib.transforms.Bbox method), 2856
set() (matplotlib.transforms.TransformWrapper method),

2879
set_3d_properties()

(mpl_toolkits.mplot3d.art3d.Line3D method), 3135
set_3d_properties()

(mpl_toolkits.mplot3d.art3d.Patch3D method), 3139
set_3d_properties()

(mpl_toolkits.mplot3d.art3d.Patch3DCollection
method), 3139

set_3d_properties()
(mpl_toolkits.mplot3d.art3d.Path3DCollection
method), 3141

set_3d_properties()
(mpl_toolkits.mplot3d.art3d.PathPatch3D method),
3143

set_3d_properties()
(mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 3145

set_3d_properties()
(mpl_toolkits.mplot3d.art3d.Text3D method), 3150

set_aa() (matplotlib.collections.AsteriskPolygonCollection
method), 1708

set_aa() (matplotlib.collections.BrokenBarHCollection
method), 1728

set_aa() (matplotlib.collections.CircleCollection method),
1748

set_aa() (matplotlib.collections.Collection method), 1770
set_aa() (matplotlib.collections.EllipseCollection method),

1789
set_aa() (matplotlib.collections.EventCollection method),

1811
set_aa() (matplotlib.collections.LineCollection method),

1832
set_aa() (matplotlib.collections.PatchCollection method),

1852

set_aa() (matplotlib.collections.PathCollection method),
1872

set_aa() (matplotlib.collections.PolyCollection method),
1892

set_aa() (matplotlib.collections.QuadMesh method), 1915
set_aa() (matplotlib.collections.RegularPolyCollection

method), 1935
set_aa() (matplotlib.collections.StarPolygonCollection

method), 1955
set_aa() (matplotlib.collections.TriMesh method), 1976
set_aa() (matplotlib.lines.Line2D method), 2271
set_aa() (matplotlib.patches.Patch method), 2398
set_active() (matplotlib.widgets.CheckButtons method),

2899
set_active() (matplotlib.widgets.RadioButtons method),

2907
set_active() (matplotlib.widgets.Widget method), 2919
set_adjustable() (matplotlib.axes.Axes method), 1493
set_agg_filter() (matplotlib.artist.Artist method), 1223
set_agg_filter()

(matplotlib.collections.AsteriskPolygonCollection
method), 1708

set_agg_filter()
(matplotlib.collections.BrokenBarHCollection
method), 1728

set_agg_filter()
(matplotlib.collections.CircleCollection method),
1748

set_agg_filter() (matplotlib.collections.Collection
method), 1770

set_agg_filter()
(matplotlib.collections.EllipseCollection method),
1789

set_agg_filter() (matplotlib.collections.EventCollection
method), 1811

set_agg_filter() (matplotlib.collections.LineCollection
method), 1832

set_agg_filter() (matplotlib.collections.PatchCollection
method), 1852

set_agg_filter() (matplotlib.collections.PathCollection
method), 1872

set_agg_filter() (matplotlib.collections.PolyCollection
method), 1893

set_agg_filter() (matplotlib.collections.QuadMesh
method), 1915

set_agg_filter()
(matplotlib.collections.RegularPolyCollection
method), 1935

set_agg_filter()
(matplotlib.collections.StarPolygonCollection
method), 1955

set_agg_filter() (matplotlib.collections.TriMesh
method), 1976

set_agg_filter() (matplotlib.figure.Figure method),
2109

set_agg_filter() (matplotlib.figure.FigureBase method),
2156

set_agg_filter() (matplotlib.figure.SubFigure method),
2200

Index 3451

Matplotlib, Release 3.4.3

set_alpha() (matplotlib.artist.Artist method), 1221
set_alpha()

(matplotlib.backend_bases.GraphicsContextBase
method), 1585

set_alpha() (mat-
plotlib.backends.backend_cairo.GraphicsContextCairo
method), 1632

set_alpha()
(matplotlib.collections.AsteriskPolygonCollection
method), 1708

set_alpha() (matplotlib.collections.BrokenBarHCollection
method), 1728

set_alpha() (matplotlib.collections.CircleCollection
method), 1748

set_alpha() (matplotlib.collections.Collection method),
1770

set_alpha() (matplotlib.collections.EllipseCollection
method), 1790

set_alpha() (matplotlib.collections.EventCollection
method), 1811

set_alpha() (matplotlib.collections.LineCollection
method), 1832

set_alpha() (matplotlib.collections.PatchCollection
method), 1852

set_alpha() (matplotlib.collections.PathCollection
method), 1873

set_alpha() (matplotlib.collections.PolyCollection
method), 1893

set_alpha() (matplotlib.collections.QuadMesh method),
1915

set_alpha() (matplotlib.collections.RegularPolyCollection
method), 1935

set_alpha() (matplotlib.collections.StarPolygonCollection
method), 1955

set_alpha() (matplotlib.collections.TriMesh method), 1977
set_alpha() (matplotlib.colorbar.ColorbarBase method),

1992
set_alpha() (matplotlib.contour.ContourSet method), 2047
set_alpha() (matplotlib.figure.Figure method), 2109
set_alpha() (matplotlib.figure.FigureBase method), 2156
set_alpha() (matplotlib.figure.SubFigure method), 2200
set_alpha() (matplotlib.patches.Patch method), 2398
set_alpha() (mpl_toolkits.mplot3d.art3d.Poly3DCollection

method), 3145
set_anchor() (matplotlib.axes.Axes method), 1519
set_anchor()

(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2959

set_anchor() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 3111

set_angle() (matplotlib.patches.Ellipse method), 2372
set_animated() (matplotlib.artist.Artist method), 1220
set_animated()

(matplotlib.collections.AsteriskPolygonCollection
method), 1708

set_animated()
(matplotlib.collections.BrokenBarHCollection
method), 1728

set_animated() (matplotlib.collections.CircleCollection
method), 1748

set_animated() (matplotlib.collections.Collection
method), 1770

set_animated() (matplotlib.collections.EllipseCollection
method), 1790

set_animated() (matplotlib.collections.EventCollection
method), 1811

set_animated() (matplotlib.collections.LineCollection
method), 1832

set_animated() (matplotlib.collections.PatchCollection
method), 1852

set_animated() (matplotlib.collections.PathCollection
method), 1873

set_animated() (matplotlib.collections.PolyCollection
method), 1893

set_animated() (matplotlib.collections.QuadMesh
method), 1915

set_animated()
(matplotlib.collections.RegularPolyCollection
method), 1935

set_animated()
(matplotlib.collections.StarPolygonCollection
method), 1955

set_animated() (matplotlib.collections.TriMesh method),
1977

set_animated() (matplotlib.figure.Figure method), 2109
set_animated() (matplotlib.figure.FigureBase method),

2156
set_animated() (matplotlib.figure.SubFigure method),

2200
set_animated() (matplotlib.widgets.ToolHandles method),

2919
set_anncoords() (matplotlib.text.Annotation method),

2797
set_annotation_clip()

(matplotlib.patches.ConnectionPatch method), 2364
set_antialiased()

(matplotlib.backend_bases.GraphicsContextBase
method), 1585

set_antialiased() (mat-
plotlib.backends.backend_cairo.GraphicsContextCairo
method), 1633

set_antialiased()
(matplotlib.collections.AsteriskPolygonCollection
method), 1709

set_antialiased()
(matplotlib.collections.BrokenBarHCollection
method), 1728

set_antialiased()
(matplotlib.collections.CircleCollection method),
1749

set_antialiased() (matplotlib.collections.Collection
method), 1771

set_antialiased()
(matplotlib.collections.EllipseCollection method),
1790

set_antialiased()
(matplotlib.collections.EventCollection method),

3452 Index

Matplotlib, Release 3.4.3

1812
set_antialiased()

(matplotlib.collections.LineCollection method),
1832

set_antialiased()
(matplotlib.collections.PatchCollection method),
1852

set_antialiased()
(matplotlib.collections.PathCollection method),
1873

set_antialiased()
(matplotlib.collections.PolyCollection method),
1893

set_antialiased() (matplotlib.collections.QuadMesh
method), 1916

set_antialiased()
(matplotlib.collections.RegularPolyCollection
method), 1935

set_antialiased()
(matplotlib.collections.StarPolygonCollection
method), 1956

set_antialiased() (matplotlib.collections.TriMesh
method), 1977

set_antialiased() (matplotlib.lines.Line2D method),
2271

set_antialiased() (matplotlib.patches.Patch method),
2399

set_antialiaseds()
(matplotlib.collections.AsteriskPolygonCollection
method), 1709

set_antialiaseds()
(matplotlib.collections.BrokenBarHCollection
method), 1729

set_antialiaseds()
(matplotlib.collections.CircleCollection method),
1749

set_antialiaseds() (matplotlib.collections.Collection
method), 1771

set_antialiaseds()
(matplotlib.collections.EllipseCollection method),
1790

set_antialiaseds()
(matplotlib.collections.EventCollection method),
1812

set_antialiaseds()
(matplotlib.collections.LineCollection method),
1833

set_antialiaseds()
(matplotlib.collections.PatchCollection method),
1852

set_antialiaseds()
(matplotlib.collections.PathCollection method),
1873

set_antialiaseds()
(matplotlib.collections.PolyCollection method),
1893

set_antialiaseds() (matplotlib.collections.QuadMesh
method), 1916

set_antialiaseds()

(matplotlib.collections.RegularPolyCollection
method), 1936

set_antialiaseds()
(matplotlib.collections.StarPolygonCollection
method), 1956

set_antialiaseds() (matplotlib.collections.TriMesh
method), 1977

set_array() (matplotlib.cm.ScalarMappable method),
1695

set_array()
(matplotlib.collections.AsteriskPolygonCollection
method), 1709

set_array() (matplotlib.collections.BrokenBarHCollection
method), 1729

set_array() (matplotlib.collections.CircleCollection
method), 1749

set_array() (matplotlib.collections.Collection method),
1771

set_array() (matplotlib.collections.EllipseCollection
method), 1790

set_array() (matplotlib.collections.EventCollection
method), 1812

set_array() (matplotlib.collections.LineCollection
method), 1833

set_array() (matplotlib.collections.PatchCollection
method), 1852

set_array() (matplotlib.collections.PathCollection
method), 1873

set_array() (matplotlib.collections.PolyCollection
method), 1893

set_array() (matplotlib.collections.QuadMesh method),
1916

set_array() (matplotlib.collections.RegularPolyCollection
method), 1936

set_array() (matplotlib.collections.StarPolygonCollection
method), 1956

set_array() (matplotlib.collections.TriMesh method), 1977
set_array() (matplotlib.image.NonUniformImage method),

2242
set_array() (matplotlib.image.PcolorImage method), 2245
set_arrowstyle() (matplotlib.patches.FancyArrowPatch

method), 2384
set_aspect() (matplotlib.axes.Axes method), 1490
set_aspect()

(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2959

set_aspect() (mpl_toolkits.axes_grid1.axes_grid.Grid
method), 2970

set_aspect() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 3111

set_autoscale_on() (matplotlib.axes.Axes method),
1488

set_autoscale_on()
(mpl_toolkits.mplot3d.axes3d.Axes3D method),
3112

set_autoscalex_on() (matplotlib.axes.Axes method),
1488

set_autoscaley_on() (matplotlib.axes.Axes method),
1489

Index 3453

Matplotlib, Release 3.4.3

set_autoscalez_on()
(mpl_toolkits.mplot3d.axes3d.Axes3D method),
3112

set_axes_locator() (matplotlib.axes.Axes method),
1520

set_axes_locator()
(mpl_toolkits.axes_grid1.axes_grid.Grid method),
2970

set_axes_pad() (mpl_toolkits.axes_grid1.axes_grid.Grid
method), 2970

set_axis() (matplotlib.dates.MicrosecondLocator method),
2059

set_axis() (mat-
plotlib.projections.polar.PolarAxes.ThetaLocator
method), 2711

set_axis() (matplotlib.projections.polar.ThetaLocator
method), 2726

set_axis() (matplotlib.ticker.TickHelper method), 2840
set_axis()

(mpl_toolkits.axisartist.axis_artist.GridlinesCollection
method), 3047

set_axis_direction()
(mpl_toolkits.axisartist.axis_artist.AxisArtist
method), 3042

set_axis_direction()
(mpl_toolkits.axisartist.axis_artist.AxisLabel
method), 3046

set_axis_direction()
(mpl_toolkits.axisartist.axis_artist.TickLabels
method), 3051

set_axis_off() (matplotlib.axes.Axes method), 1438
set_axis_off() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3113
set_axis_on() (matplotlib.axes.Axes method), 1438
set_axis_on() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3113
set_axisbelow() (matplotlib.axes.Axes method), 1439
set_axislabel_direction()

(mpl_toolkits.axisartist.axis_artist.AxisArtist
method), 3043

set_axisline_style()
(mpl_toolkits.axisartist.axis_artist.AxisArtist
method), 3043

set_backgroundcolor() (matplotlib.text.Text method),
2803

set_bad() (matplotlib.colors.Colormap method), 2003
set_bbox() (matplotlib.text.Text method), 2803
set_bbox_to_anchor() (matplotlib.legend.Legend

method), 2256
set_bbox_to_anchor()

(matplotlib.offsetbox.AnchoredOffsetbox method),
2315

set_bounds() (matplotlib.patches.FancyBboxPatch
method), 2390

set_bounds() (matplotlib.patches.Rectangle method), 2416
set_bounds() (matplotlib.spines.Spine method), 2776
set_bounds() (matplotlib.ticker.TickHelper method), 2840
set_box_aspect() (matplotlib.axes.Axes method), 1492
set_box_aspect() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3113
set_boxstyle() (matplotlib.patches.FancyBboxPatch

method), 2391
set_c() (matplotlib.lines.Line2D method), 2271
set_c() (matplotlib.text.Text method), 2804
set_canvas() (matplotlib.figure.Figure method), 2110
set_canvas_size()

(matplotlib.mathtext.MathtextBackend method),
2290

set_canvas_size()
(matplotlib.mathtext.MathtextBackendAgg method),
2290

set_capstyle()
(matplotlib.backend_bases.GraphicsContextBase
method), 1585

set_capstyle() (mat-
plotlib.backends.backend_cairo.GraphicsContextCairo
method), 1633

set_capstyle()
(matplotlib.collections.AsteriskPolygonCollection
method), 1709

set_capstyle()
(matplotlib.collections.BrokenBarHCollection
method), 1729

set_capstyle() (matplotlib.collections.CircleCollection
method), 1749

set_capstyle() (matplotlib.collections.Collection
method), 1771

set_capstyle() (matplotlib.collections.EllipseCollection
method), 1790

set_capstyle() (matplotlib.collections.EventCollection
method), 1812

set_capstyle() (matplotlib.collections.LineCollection
method), 1833

set_capstyle() (matplotlib.collections.PatchCollection
method), 1853

set_capstyle() (matplotlib.collections.PathCollection
method), 1874

set_capstyle() (matplotlib.collections.PolyCollection
method), 1894

set_capstyle() (matplotlib.collections.QuadMesh
method), 1916

set_capstyle()
(matplotlib.collections.RegularPolyCollection
method), 1936

set_capstyle()
(matplotlib.collections.StarPolygonCollection
method), 1956

set_capstyle() (matplotlib.collections.TriMesh method),
1977

set_capstyle() (matplotlib.patches.Patch method), 2399
set_center() (matplotlib.patches.Ellipse method), 2372
set_center() (matplotlib.patches.Wedge method), 2426
set_child() (matplotlib.offsetbox.AnchoredOffsetbox

method), 2315
set_children() (matplotlib.transforms.TransformNode

method), 2878
set_clim() (matplotlib.cm.ScalarMappable method), 1695
set_clim()

3454 Index

Matplotlib, Release 3.4.3

(matplotlib.collections.AsteriskPolygonCollection
method), 1709

set_clim() (matplotlib.collections.BrokenBarHCollection
method), 1729

set_clim() (matplotlib.collections.CircleCollection
method), 1749

set_clim() (matplotlib.collections.Collection method),
1771

set_clim() (matplotlib.collections.EllipseCollection
method), 1791

set_clim() (matplotlib.collections.EventCollection
method), 1812

set_clim() (matplotlib.collections.LineCollection method),
1833

set_clim() (matplotlib.collections.PatchCollection
method), 1853

set_clim() (matplotlib.collections.PathCollection method),
1874

set_clim() (matplotlib.collections.PolyCollection method),
1894

set_clim() (matplotlib.collections.QuadMesh method),
1916

set_clim() (matplotlib.collections.RegularPolyCollection
method), 1936

set_clim() (matplotlib.collections.StarPolygonCollection
method), 1956

set_clim() (matplotlib.collections.TriMesh method), 1978
set_clip_box() (matplotlib.artist.Artist method), 1217
set_clip_box()

(matplotlib.collections.AsteriskPolygonCollection
method), 1710

set_clip_box()
(matplotlib.collections.BrokenBarHCollection
method), 1729

set_clip_box() (matplotlib.collections.CircleCollection
method), 1749

set_clip_box() (matplotlib.collections.Collection
method), 1771

set_clip_box() (matplotlib.collections.EllipseCollection
method), 1791

set_clip_box() (matplotlib.collections.EventCollection
method), 1812

set_clip_box() (matplotlib.collections.LineCollection
method), 1833

set_clip_box() (matplotlib.collections.PatchCollection
method), 1853

set_clip_box() (matplotlib.collections.PathCollection
method), 1874

set_clip_box() (matplotlib.collections.PolyCollection
method), 1894

set_clip_box() (matplotlib.collections.QuadMesh
method), 1916

set_clip_box()
(matplotlib.collections.RegularPolyCollection
method), 1936

set_clip_box()
(matplotlib.collections.StarPolygonCollection
method), 1957

set_clip_box() (matplotlib.collections.TriMesh method),

1978
set_clip_box() (matplotlib.figure.Figure method), 2110
set_clip_box() (matplotlib.figure.FigureBase method),

2156
set_clip_box() (matplotlib.figure.SubFigure method),

2201
set_clip_box() (matplotlib.text.Text method), 2804
set_clip_on() (matplotlib.artist.Artist method), 1216
set_clip_on()

(matplotlib.collections.AsteriskPolygonCollection
method), 1710

set_clip_on()
(matplotlib.collections.BrokenBarHCollection
method), 1729

set_clip_on() (matplotlib.collections.CircleCollection
method), 1750

set_clip_on() (matplotlib.collections.Collection method),
1771

set_clip_on() (matplotlib.collections.EllipseCollection
method), 1791

set_clip_on() (matplotlib.collections.EventCollection
method), 1813

set_clip_on() (matplotlib.collections.LineCollection
method), 1833

set_clip_on() (matplotlib.collections.PatchCollection
method), 1853

set_clip_on() (matplotlib.collections.PathCollection
method), 1874

set_clip_on() (matplotlib.collections.PolyCollection
method), 1894

set_clip_on() (matplotlib.collections.QuadMesh method),
1916

set_clip_on()
(matplotlib.collections.RegularPolyCollection
method), 1936

set_clip_on()
(matplotlib.collections.StarPolygonCollection
method), 1957

set_clip_on() (matplotlib.collections.TriMesh method),
1978

set_clip_on() (matplotlib.figure.Figure method), 2110
set_clip_on() (matplotlib.figure.FigureBase method),

2156
set_clip_on() (matplotlib.figure.SubFigure method), 2201
set_clip_on() (matplotlib.text.Text method), 2804
set_clip_path() (matplotlib.artist.Artist method), 1217
set_clip_path()

(matplotlib.backend_bases.GraphicsContextBase
method), 1585

set_clip_path() (mat-
plotlib.backends.backend_cairo.GraphicsContextCairo
method), 1633

set_clip_path()
(matplotlib.collections.AsteriskPolygonCollection
method), 1710

set_clip_path()
(matplotlib.collections.BrokenBarHCollection
method), 1730

set_clip_path() (matplotlib.collections.CircleCollection

Index 3455

Matplotlib, Release 3.4.3

method), 1750
set_clip_path() (matplotlib.collections.Collection

method), 1772
set_clip_path() (matplotlib.collections.EllipseCollection

method), 1791
set_clip_path() (matplotlib.collections.EventCollection

method), 1813
set_clip_path() (matplotlib.collections.LineCollection

method), 1834
set_clip_path() (matplotlib.collections.PatchCollection

method), 1853
set_clip_path() (matplotlib.collections.PathCollection

method), 1874
set_clip_path() (matplotlib.collections.PolyCollection

method), 1894
set_clip_path() (matplotlib.collections.QuadMesh

method), 1917
set_clip_path()

(matplotlib.collections.RegularPolyCollection
method), 1937

set_clip_path()
(matplotlib.collections.StarPolygonCollection
method), 1957

set_clip_path() (matplotlib.collections.TriMesh
method), 1978

set_clip_path() (matplotlib.figure.Figure method), 2110
set_clip_path() (matplotlib.figure.FigureBase method),

2157
set_clip_path() (matplotlib.figure.SubFigure method),

2201
set_clip_path() (matplotlib.text.Text method), 2804
set_clip_rectangle()

(matplotlib.backend_bases.GraphicsContextBase
method), 1585

set_clip_rectangle() (mat-
plotlib.backends.backend_cairo.GraphicsContextCairo
method), 1633

set_closed() (matplotlib.patches.Polygon method), 2412
set_cmap() (in module matplotlib.pyplot), 2630
set_cmap() (matplotlib.cm.ScalarMappable method), 1696
set_cmap()

(matplotlib.collections.AsteriskPolygonCollection
method), 1710

set_cmap() (matplotlib.collections.BrokenBarHCollection
method), 1730

set_cmap() (matplotlib.collections.CircleCollection
method), 1750

set_cmap() (matplotlib.collections.Collection method),
1772

set_cmap() (matplotlib.collections.EllipseCollection
method), 1792

set_cmap() (matplotlib.collections.EventCollection
method), 1813

set_cmap() (matplotlib.collections.LineCollection method),
1834

set_cmap() (matplotlib.collections.PatchCollection
method), 1854

set_cmap() (matplotlib.collections.PathCollection method),
1875

set_cmap() (matplotlib.collections.PolyCollection method),
1895

set_cmap() (matplotlib.collections.QuadMesh method),
1917

set_cmap() (matplotlib.collections.RegularPolyCollection
method), 1937

set_cmap() (matplotlib.collections.StarPolygonCollection
method), 1957

set_cmap() (matplotlib.collections.TriMesh method), 1979
set_cmap() (matplotlib.image.NonUniformImage method),

2242
set_color() (matplotlib.backends.backend_ps.RendererPS

method), 1661
set_color()

(matplotlib.collections.AsteriskPolygonCollection
method), 1711

set_color() (matplotlib.collections.BrokenBarHCollection
method), 1730

set_color() (matplotlib.collections.CircleCollection
method), 1750

set_color() (matplotlib.collections.Collection method),
1772

set_color() (matplotlib.collections.EllipseCollection
method), 1792

set_color() (matplotlib.collections.EventCollection
method), 1813

set_color() (matplotlib.collections.LineCollection
method), 1834

set_color() (matplotlib.collections.PatchCollection
method), 1854

set_color() (matplotlib.collections.PathCollection
method), 1875

set_color() (matplotlib.collections.PolyCollection
method), 1895

set_color() (matplotlib.collections.QuadMesh method),
1917

set_color() (matplotlib.collections.RegularPolyCollection
method), 1937

set_color() (matplotlib.collections.StarPolygonCollection
method), 1958

set_color() (matplotlib.collections.TriMesh method), 1979
set_color() (matplotlib.lines.Line2D method), 2271
set_color() (matplotlib.patches.Patch method), 2399
set_color() (matplotlib.spines.Spine method), 2777
set_color() (matplotlib.text.Text method), 2804
set_colors() (matplotlib.collections.EventCollection

method), 1813
set_colors() (matplotlib.collections.LineCollection

method), 1834
set_connectionstyle()

(matplotlib.patches.FancyArrowPatch method),
2384

set_constrained_layout() (matplotlib.figure.Figure
method), 2111

set_constrained_layout_pads()
(matplotlib.figure.Figure method), 2111

set_contains() (matplotlib.artist.Artist method), 1214
set_contains()

(matplotlib.collections.AsteriskPolygonCollection

3456 Index

Matplotlib, Release 3.4.3

method), 1711
set_contains()

(matplotlib.collections.BrokenBarHCollection
method), 1730

set_contains() (matplotlib.collections.CircleCollection
method), 1751

set_contains() (matplotlib.collections.Collection
method), 1773

set_contains() (matplotlib.collections.EllipseCollection
method), 1792

set_contains() (matplotlib.collections.EventCollection
method), 1814

set_contains() (matplotlib.collections.LineCollection
method), 1835

set_contains() (matplotlib.collections.PatchCollection
method), 1854

set_contains() (matplotlib.collections.PathCollection
method), 1875

set_contains() (matplotlib.collections.PolyCollection
method), 1895

set_contains() (matplotlib.collections.QuadMesh
method), 1918

set_contains()
(matplotlib.collections.RegularPolyCollection
method), 1937

set_contains()
(matplotlib.collections.StarPolygonCollection
method), 1958

set_contains() (matplotlib.collections.TriMesh method),
1979

set_contains() (matplotlib.figure.Figure method), 2112
set_contains() (matplotlib.figure.FigureBase method),

2157
set_contains() (matplotlib.figure.SubFigure method),

2202
set_ctx_from_surface()

(matplotlib.backends.backend_cairo.RendererCairo
method), 1636

set_cursor()
(matplotlib.backend_bases.NavigationToolbar2
method), 1592

set_cursor() (matplotlib.backend_tools.SetCursorBase
method), 1609

set_dash_capstyle() (matplotlib.lines.Line2D method),
2271

set_dash_joinstyle() (matplotlib.lines.Line2D
method), 2271

set_dashes()
(matplotlib.backend_bases.GraphicsContextBase
method), 1585

set_dashes() (mat-
plotlib.backends.backend_cairo.GraphicsContextCairo
method), 1633

set_dashes()
(matplotlib.collections.AsteriskPolygonCollection
method), 1711

set_dashes()
(matplotlib.collections.BrokenBarHCollection
method), 1731

set_dashes() (matplotlib.collections.CircleCollection
method), 1751

set_dashes() (matplotlib.collections.Collection method),
1773

set_dashes() (matplotlib.collections.EllipseCollection
method), 1793

set_dashes() (matplotlib.collections.EventCollection
method), 1814

set_dashes() (matplotlib.collections.LineCollection
method), 1835

set_dashes() (matplotlib.collections.PatchCollection
method), 1855

set_dashes() (matplotlib.collections.PathCollection
method), 1876

set_dashes() (matplotlib.collections.PolyCollection
method), 1896

set_dashes() (matplotlib.collections.QuadMesh method),
1918

set_dashes()
(matplotlib.collections.RegularPolyCollection
method), 1938

set_dashes()
(matplotlib.collections.StarPolygonCollection
method), 1958

set_dashes() (matplotlib.collections.TriMesh method),
1980

set_dashes() (matplotlib.lines.Line2D method), 2271
set_data() (matplotlib.image.FigureImage method), 2241
set_data() (matplotlib.image.NonUniformImage method),

2242
set_data() (matplotlib.image.PcolorImage method), 2245
set_data() (matplotlib.lines.Line2D method), 2272
set_data() (matplotlib.offsetbox.OffsetImage method), 2325
set_data() (matplotlib.patches.StepPatch method), 2409
set_data() (matplotlib.widgets.ToolHandles method), 2919
set_data_3d() (mpl_toolkits.mplot3d.art3d.Line3D

method), 3135
set_data_interval() (matplotlib.axis.Axis method),

1557
set_data_interval()

(matplotlib.dates.MicrosecondLocator method),
2059

set_data_interval() (matplotlib.ticker.TickHelper
method), 2840

set_default_alignment()
(mpl_toolkits.axisartist.axis_artist.AxisLabel
method), 3046

set_default_angle()
(mpl_toolkits.axisartist.axis_artist.AxisLabel
method), 3046

set_default_handler_map()
(matplotlib.legend.Legend class method), 2256

set_default_intervals() (matplotlib.axis.Axis
method), 1567

set_default_locators_and_formatters()
(matplotlib.scale.FuncScale method), 2760

set_default_locators_and_formatters()
(matplotlib.scale.LinearScale method), 2763

Index 3457

Matplotlib, Release 3.4.3

set_default_locators_and_formatters()
(matplotlib.scale.LogitScale method), 2766

set_default_locators_and_formatters()
(matplotlib.scale.LogScale method), 2764

set_default_locators_and_formatters()
(matplotlib.scale.ScaleBase method), 2767

set_default_locators_and_formatters()
(matplotlib.scale.SymmetricalLogScale method),
2768

set_default_weight()
(matplotlib.font_manager.FontManager method),
2220

set_depthshade()
(mpl_toolkits.mplot3d.art3d.Patch3DCollection
method), 3139

set_depthshade()
(mpl_toolkits.mplot3d.art3d.Path3DCollection
method), 3141

set_dpi() (matplotlib.figure.Figure method), 2112
set_dpi_cor() (matplotlib.patches.FancyArrowPatch

method), 2385
set_draggable() (matplotlib.legend.Legend method),

2256
set_drawstyle() (matplotlib.lines.Line2D method), 2272
set_ds() (matplotlib.lines.Line2D method), 2272
set_ec() (matplotlib.collections.AsteriskPolygonCollection

method), 1711
set_ec() (matplotlib.collections.BrokenBarHCollection

method), 1731
set_ec() (matplotlib.collections.CircleCollection method),

1751
set_ec() (matplotlib.collections.Collection method), 1773
set_ec() (matplotlib.collections.EllipseCollection method),

1793
set_ec() (matplotlib.collections.EventCollection method),

1814
set_ec() (matplotlib.collections.LineCollection method),

1835
set_ec() (matplotlib.collections.PatchCollection method),

1855
set_ec() (matplotlib.collections.PathCollection method),

1876
set_ec() (matplotlib.collections.PolyCollection method),

1896
set_ec() (matplotlib.collections.QuadMesh method), 1918
set_ec() (matplotlib.collections.RegularPolyCollection

method), 1938
set_ec() (matplotlib.collections.StarPolygonCollection

method), 1958
set_ec() (matplotlib.collections.TriMesh method), 1980
set_ec() (matplotlib.patches.Patch method), 2399
set_edgecolor()

(matplotlib.collections.AsteriskPolygonCollection
method), 1711

set_edgecolor()
(matplotlib.collections.BrokenBarHCollection
method), 1731

set_edgecolor() (matplotlib.collections.CircleCollection
method), 1751

set_edgecolor() (matplotlib.collections.Collection
method), 1773

set_edgecolor() (matplotlib.collections.EllipseCollection
method), 1793

set_edgecolor() (matplotlib.collections.EventCollection
method), 1814

set_edgecolor() (matplotlib.collections.LineCollection
method), 1835

set_edgecolor() (matplotlib.collections.PatchCollection
method), 1855

set_edgecolor() (matplotlib.collections.PathCollection
method), 1876

set_edgecolor() (matplotlib.collections.PolyCollection
method), 1896

set_edgecolor() (matplotlib.collections.QuadMesh
method), 1918

set_edgecolor()
(matplotlib.collections.RegularPolyCollection
method), 1938

set_edgecolor()
(matplotlib.collections.StarPolygonCollection
method), 1958

set_edgecolor() (matplotlib.collections.TriMesh
method), 1980

set_edgecolor() (matplotlib.figure.Figure method), 2112
set_edgecolor() (matplotlib.figure.FigureBase method),

2158
set_edgecolor() (matplotlib.figure.SubFigure method),

2202
set_edgecolor() (matplotlib.patches.Patch method), 2399
set_edgecolor()

(mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 3145

set_edgecolors()
(matplotlib.collections.AsteriskPolygonCollection
method), 1712

set_edgecolors()
(matplotlib.collections.BrokenBarHCollection
method), 1731

set_edgecolors()
(matplotlib.collections.CircleCollection method),
1752

set_edgecolors() (matplotlib.collections.Collection
method), 1773

set_edgecolors()
(matplotlib.collections.EllipseCollection method),
1793

set_edgecolors() (matplotlib.collections.EventCollection
method), 1814

set_edgecolors() (matplotlib.collections.LineCollection
method), 1835

set_edgecolors() (matplotlib.collections.PatchCollection
method), 1855

set_edgecolors() (matplotlib.collections.PathCollection
method), 1876

set_edgecolors() (matplotlib.collections.PolyCollection
method), 1896

set_edgecolors() (matplotlib.collections.QuadMesh
method), 1918

3458 Index

Matplotlib, Release 3.4.3

set_edgecolors()
(matplotlib.collections.RegularPolyCollection
method), 1938

set_edgecolors()
(matplotlib.collections.StarPolygonCollection
method), 1959

set_edgecolors() (matplotlib.collections.TriMesh
method), 1980

set_epoch() (in module matplotlib.dates), 2068
set_extent() (matplotlib.image.AxesImage method), 2239
set_extremes() (matplotlib.colors.Colormap method),

2004
set_extremes()

(mpl_toolkits.axisartist.grid_helper_curvelinear.FloatingAxisArtistHelper
method), 3081

set_facecolor() (matplotlib.axes.Axes method), 1443
set_facecolor()

(matplotlib.collections.AsteriskPolygonCollection
method), 1712

set_facecolor()
(matplotlib.collections.BrokenBarHCollection
method), 1731

set_facecolor() (matplotlib.collections.CircleCollection
method), 1752

set_facecolor() (matplotlib.collections.Collection
method), 1773

set_facecolor() (matplotlib.collections.EllipseCollection
method), 1793

set_facecolor() (matplotlib.collections.EventCollection
method), 1815

set_facecolor() (matplotlib.collections.LineCollection
method), 1835

set_facecolor() (matplotlib.collections.PatchCollection
method), 1855

set_facecolor() (matplotlib.collections.PathCollection
method), 1876

set_facecolor() (matplotlib.collections.PolyCollection
method), 1896

set_facecolor() (matplotlib.collections.QuadMesh
method), 1918

set_facecolor()
(matplotlib.collections.RegularPolyCollection
method), 1938

set_facecolor()
(matplotlib.collections.StarPolygonCollection
method), 1959

set_facecolor() (matplotlib.collections.TriMesh
method), 1980

set_facecolor() (matplotlib.figure.Figure method), 2112
set_facecolor() (matplotlib.figure.FigureBase method),

2158
set_facecolor() (matplotlib.figure.SubFigure method),

2202
set_facecolor() (matplotlib.patches.Patch method), 2399
set_facecolor()

(mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 3145

set_facecolors()
(matplotlib.collections.AsteriskPolygonCollection

method), 1712
set_facecolors()

(matplotlib.collections.BrokenBarHCollection
method), 1732

set_facecolors()
(matplotlib.collections.CircleCollection method),
1752

set_facecolors() (matplotlib.collections.Collection
method), 1774

set_facecolors()
(matplotlib.collections.EllipseCollection method),
1793

set_facecolors() (matplotlib.collections.EventCollection
method), 1815

set_facecolors() (matplotlib.collections.LineCollection
method), 1836

set_facecolors() (matplotlib.collections.PatchCollection
method), 1855

set_facecolors() (matplotlib.collections.PathCollection
method), 1876

set_facecolors() (matplotlib.collections.PolyCollection
method), 1896

set_facecolors() (matplotlib.collections.QuadMesh
method), 1919

set_facecolors()
(matplotlib.collections.RegularPolyCollection
method), 1939

set_facecolors()
(matplotlib.collections.StarPolygonCollection
method), 1959

set_facecolors() (matplotlib.collections.TriMesh
method), 1980

set_factor()
(mpl_toolkits.axisartist.grid_finder.FixedLocator
method), 3076

set_factor()
(mpl_toolkits.axisartist.grid_finder.MaxNLocator
method), 3079

set_family() (matplotlib.font_manager.FontProperties
method), 2222

set_family() (matplotlib.text.Text method), 2805
set_fc() (matplotlib.collections.AsteriskPolygonCollection

method), 1712
set_fc() (matplotlib.collections.BrokenBarHCollection

method), 1732
set_fc() (matplotlib.collections.CircleCollection method),

1752
set_fc() (matplotlib.collections.Collection method), 1774
set_fc() (matplotlib.collections.EllipseCollection method),

1793
set_fc() (matplotlib.collections.EventCollection method),

1815
set_fc() (matplotlib.collections.LineCollection method),

1836
set_fc() (matplotlib.collections.PatchCollection method),

1855
set_fc() (matplotlib.collections.PathCollection method),

1876
set_fc() (matplotlib.collections.PolyCollection method),

Index 3459

Matplotlib, Release 3.4.3

1896
set_fc() (matplotlib.collections.QuadMesh method), 1919
set_fc() (matplotlib.collections.RegularPolyCollection

method), 1939
set_fc() (matplotlib.collections.StarPolygonCollection

method), 1959
set_fc() (matplotlib.collections.TriMesh method), 1980
set_fc() (matplotlib.patches.Patch method), 2400
set_figheight() (matplotlib.figure.Figure method), 2113
set_figure() (matplotlib.artist.Artist method), 1226
set_figure() (matplotlib.backend_managers.ToolManager

method), 1605
set_figure() (matplotlib.backend_tools.SetCursorBase

method), 1609
set_figure() (matplotlib.backend_tools.ToolBase

method), 1610
set_figure()

(matplotlib.backend_tools.ToolCursorPosition
method), 1611

set_figure() (matplotlib.backend_tools.ToolToggleBase
method), 1616

set_figure()
(matplotlib.collections.AsteriskPolygonCollection
method), 1712

set_figure()
(matplotlib.collections.BrokenBarHCollection
method), 1732

set_figure() (matplotlib.collections.CircleCollection
method), 1752

set_figure() (matplotlib.collections.Collection method),
1774

set_figure() (matplotlib.collections.EllipseCollection
method), 1793

set_figure() (matplotlib.collections.EventCollection
method), 1815

set_figure() (matplotlib.collections.LineCollection
method), 1836

set_figure() (matplotlib.collections.PatchCollection
method), 1856

set_figure() (matplotlib.collections.PathCollection
method), 1876

set_figure() (matplotlib.collections.PolyCollection
method), 1896

set_figure() (matplotlib.collections.QuadMesh method),
1919

set_figure()
(matplotlib.collections.RegularPolyCollection
method), 1939

set_figure()
(matplotlib.collections.StarPolygonCollection
method), 1959

set_figure() (matplotlib.collections.TriMesh method),
1980

set_figure() (matplotlib.figure.Figure method), 2113
set_figure() (matplotlib.figure.FigureBase method), 2158
set_figure() (matplotlib.figure.SubFigure method), 2202
set_figure() (matplotlib.offsetbox.AnnotationBbox

method), 2317

set_figure() (matplotlib.offsetbox.OffsetBox method),
2324

set_figure() (matplotlib.quiver.QuiverKey method), 2740
set_figure() (matplotlib.table.Cell method), 2781
set_figure() (matplotlib.text.Annotation method), 2797
set_figwidth() (matplotlib.figure.Figure method), 2113
set_file() (matplotlib.font_manager.FontProperties

method), 2222
set_fill() (matplotlib.patches.Patch method), 2400
set_fillstyle() (matplotlib.lines.Line2D method), 2272
set_fillstyle() (matplotlib.markers.MarkerStyle

method), 2284
set_filternorm() (matplotlib.image.NonUniformImage

method), 2242
set_filterrad() (matplotlib.image.NonUniformImage

method), 2243
set_font() (matplotlib.backends.backend_ps.RendererPS

method), 1661
set_font() (matplotlib.text.Text method), 2805
set_font_properties() (matplotlib.text.Text method),

2805
set_font_settings_for_testing() (in module

matplotlib.testing), 2789
set_fontconfig_pattern()

(matplotlib.font_manager.FontProperties method),
2222

set_fontfamily() (matplotlib.text.Text method), 2805
set_fontname() (matplotlib.text.Text method), 2805
set_fontproperties() (matplotlib.text.Text method),

2805
set_fontsize() (matplotlib.offsetbox.AnnotationBbox

method), 2317
set_fontsize() (matplotlib.table.Cell method), 2781
set_fontsize() (matplotlib.table.Table method), 2786
set_fontsize() (matplotlib.text.Text method), 2806
set_fontstretch() (matplotlib.text.Text method), 2806
set_fontstyle() (matplotlib.text.Text method), 2806
set_fontvariant() (matplotlib.text.Text method), 2806
set_fontweight() (matplotlib.text.Text method), 2807
set_foreground()

(matplotlib.backend_bases.GraphicsContextBase
method), 1586

set_foreground() (mat-
plotlib.backends.backend_cairo.GraphicsContextCairo
method), 1633

set_frame_on() (matplotlib.axes.Axes method), 1438
set_frame_on() (matplotlib.legend.Legend method), 2257
set_frame_on() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3113
set_frameon() (matplotlib.figure.Figure method), 2113
set_frameon() (matplotlib.figure.FigureBase method),

2158
set_frameon() (matplotlib.figure.SubFigure method), 2203
set_gamma() (matplotlib.colors.LinearSegmentedColormap

method), 2015
set_gid() (matplotlib.artist.Artist method), 1229
set_gid() (matplotlib.backend_bases.GraphicsContextBase

method), 1586

3460 Index

Matplotlib, Release 3.4.3

set_gid() (matplotlib.collections.AsteriskPolygonCollection
method), 1712

set_gid() (matplotlib.collections.BrokenBarHCollection
method), 1732

set_gid() (matplotlib.collections.CircleCollection method),
1752

set_gid() (matplotlib.collections.Collection method), 1774
set_gid() (matplotlib.collections.EllipseCollection

method), 1793
set_gid() (matplotlib.collections.EventCollection method),

1815
set_gid() (matplotlib.collections.LineCollection method),

1836
set_gid() (matplotlib.collections.PatchCollection method),

1856
set_gid() (matplotlib.collections.PathCollection method),

1877
set_gid() (matplotlib.collections.PolyCollection method),

1897
set_gid() (matplotlib.collections.QuadMesh method), 1919
set_gid() (matplotlib.collections.RegularPolyCollection

method), 1939
set_gid() (matplotlib.collections.StarPolygonCollection

method), 1959
set_gid() (matplotlib.collections.TriMesh method), 1980
set_gid() (matplotlib.figure.Figure method), 2114
set_gid() (matplotlib.figure.FigureBase method), 2158
set_gid() (matplotlib.figure.SubFigure method), 2203
set_grid_helper()

(mpl_toolkits.axisartist.axis_artist.GridlinesCollection
method), 3047

set_ha() (matplotlib.text.Text method), 2807
set_hatch()

(matplotlib.backend_bases.GraphicsContextBase
method), 1586

set_hatch()
(matplotlib.collections.AsteriskPolygonCollection
method), 1712

set_hatch() (matplotlib.collections.BrokenBarHCollection
method), 1732

set_hatch() (matplotlib.collections.CircleCollection
method), 1752

set_hatch() (matplotlib.collections.Collection method),
1774

set_hatch() (matplotlib.collections.EllipseCollection
method), 1794

set_hatch() (matplotlib.collections.EventCollection
method), 1815

set_hatch() (matplotlib.collections.LineCollection
method), 1836

set_hatch() (matplotlib.collections.PatchCollection
method), 1856

set_hatch() (matplotlib.collections.PathCollection
method), 1877

set_hatch() (matplotlib.collections.PolyCollection
method), 1897

set_hatch() (matplotlib.collections.QuadMesh method),
1919

set_hatch() (matplotlib.collections.RegularPolyCollection
method), 1939

set_hatch() (matplotlib.collections.StarPolygonCollection
method), 1959

set_hatch() (matplotlib.collections.TriMesh method), 1981
set_hatch() (matplotlib.patches.Patch method), 2400
set_hatch_color()

(matplotlib.backend_bases.GraphicsContextBase
method), 1586

set_height() (matplotlib.offsetbox.OffsetBox method),
2324

set_height() (matplotlib.patches.Ellipse method), 2372
set_height() (matplotlib.patches.FancyBboxPatch

method), 2392
set_height() (matplotlib.patches.Rectangle method), 2416
set_height_ratios()

(matplotlib.gridspec.GridSpecBase method), 2235
set_history_buttons()

(matplotlib.backend_bases.NavigationToolbar2
method), 1592

set_horizontal()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2959

set_horizontalalignment() (matplotlib.text.Text
method), 2807

set_in_layout() (matplotlib.artist.Artist method), 1231
set_in_layout()

(matplotlib.collections.AsteriskPolygonCollection
method), 1713

set_in_layout()
(matplotlib.collections.BrokenBarHCollection
method), 1733

set_in_layout() (matplotlib.collections.CircleCollection
method), 1753

set_in_layout() (matplotlib.collections.Collection
method), 1775

set_in_layout() (matplotlib.collections.EllipseCollection
method), 1794

set_in_layout() (matplotlib.collections.EventCollection
method), 1816

set_in_layout() (matplotlib.collections.LineCollection
method), 1837

set_in_layout() (matplotlib.collections.PatchCollection
method), 1856

set_in_layout() (matplotlib.collections.PathCollection
method), 1877

set_in_layout() (matplotlib.collections.PolyCollection
method), 1897

set_in_layout() (matplotlib.collections.QuadMesh
method), 1920

set_in_layout()
(matplotlib.collections.RegularPolyCollection
method), 1940

set_in_layout()
(matplotlib.collections.StarPolygonCollection
method), 1960

set_in_layout() (matplotlib.collections.TriMesh
method), 1981

set_in_layout() (matplotlib.figure.Figure method), 2114

Index 3461

Matplotlib, Release 3.4.3

set_in_layout() (matplotlib.figure.FigureBase method),
2159

set_in_layout() (matplotlib.figure.SubFigure method),
2203

set_interpolation()
(matplotlib.image.NonUniformImage method), 2243

set_inverted() (matplotlib.axis.Axis method), 1557
set_joinstyle()

(matplotlib.backend_bases.GraphicsContextBase
method), 1586

set_joinstyle() (mat-
plotlib.backends.backend_cairo.GraphicsContextCairo
method), 1634

set_joinstyle()
(matplotlib.collections.AsteriskPolygonCollection
method), 1713

set_joinstyle()
(matplotlib.collections.BrokenBarHCollection
method), 1733

set_joinstyle() (matplotlib.collections.CircleCollection
method), 1753

set_joinstyle() (matplotlib.collections.Collection
method), 1775

set_joinstyle() (matplotlib.collections.EllipseCollection
method), 1794

set_joinstyle() (matplotlib.collections.EventCollection
method), 1816

set_joinstyle() (matplotlib.collections.LineCollection
method), 1837

set_joinstyle() (matplotlib.collections.PatchCollection
method), 1857

set_joinstyle() (matplotlib.collections.PathCollection
method), 1878

set_joinstyle() (matplotlib.collections.PolyCollection
method), 1898

set_joinstyle() (matplotlib.collections.QuadMesh
method), 1920

set_joinstyle()
(matplotlib.collections.RegularPolyCollection
method), 1940

set_joinstyle()
(matplotlib.collections.StarPolygonCollection
method), 1960

set_joinstyle() (matplotlib.collections.TriMesh
method), 1981

set_joinstyle() (matplotlib.patches.Patch method), 2400
set_label() (matplotlib.artist.Artist method), 1230
set_label()

(matplotlib.collections.AsteriskPolygonCollection
method), 1713

set_label() (matplotlib.collections.BrokenBarHCollection
method), 1733

set_label() (matplotlib.collections.CircleCollection
method), 1753

set_label() (matplotlib.collections.Collection method),
1775

set_label() (matplotlib.collections.EllipseCollection
method), 1794

set_label() (matplotlib.collections.EventCollection

method), 1816
set_label() (matplotlib.collections.LineCollection

method), 1837
set_label() (matplotlib.collections.PatchCollection

method), 1857
set_label() (matplotlib.collections.PathCollection

method), 1878
set_label() (matplotlib.collections.PolyCollection

method), 1898
set_label() (matplotlib.collections.QuadMesh method),

1920
set_label() (matplotlib.collections.RegularPolyCollection

method), 1940
set_label() (matplotlib.collections.StarPolygonCollection

method), 1960
set_label() (matplotlib.collections.TriMesh method), 1981
set_label() (matplotlib.colorbar.ColorbarBase method),

1992
set_label() (matplotlib.container.Container method),

2038
set_label() (matplotlib.figure.Figure method), 2114
set_label() (matplotlib.figure.FigureBase method), 2159
set_label() (matplotlib.figure.SubFigure method), 2203
set_label()

(mpl_toolkits.axes_grid1.mpl_axes.SimpleAxisArtist
method), 3018

set_label() (mpl_toolkits.axisartist.axis_artist.AxisArtist
method), 3044

set_label1() (matplotlib.axis.Tick method), 1571
set_label2() (matplotlib.axis.Tick method), 1572
set_label_coords() (matplotlib.axis.Axis method), 1548
set_label_mode()

(mpl_toolkits.axes_grid1.axes_grid.Grid method),
2970

set_label_position() (matplotlib.axis.Axis method),
1549

set_label_props() (matplotlib.contour.ContourLabeler
method), 2044

set_label_text() (matplotlib.axis.Axis method), 1549
set_linecap()

(matplotlib.backends.backend_ps.RendererPS
method), 1661

set_linedash()
(matplotlib.backends.backend_ps.RendererPS
method), 1661

set_linejoin()
(matplotlib.backends.backend_ps.RendererPS
method), 1661

set_linelength() (matplotlib.collections.EventCollection
method), 1816

set_lineoffset() (matplotlib.collections.EventCollection
method), 1816

set_linespacing() (matplotlib.text.Text method), 2807
set_linestyle()

(matplotlib.collections.AsteriskPolygonCollection
method), 1713

set_linestyle()
(matplotlib.collections.BrokenBarHCollection
method), 1733

3462 Index

Matplotlib, Release 3.4.3

set_linestyle() (matplotlib.collections.CircleCollection
method), 1753

set_linestyle() (matplotlib.collections.Collection
method), 1775

set_linestyle() (matplotlib.collections.EllipseCollection
method), 1795

set_linestyle() (matplotlib.collections.EventCollection
method), 1816

set_linestyle() (matplotlib.collections.LineCollection
method), 1837

set_linestyle() (matplotlib.collections.PatchCollection
method), 1857

set_linestyle() (matplotlib.collections.PathCollection
method), 1878

set_linestyle() (matplotlib.collections.PolyCollection
method), 1898

set_linestyle() (matplotlib.collections.QuadMesh
method), 1920

set_linestyle()
(matplotlib.collections.RegularPolyCollection
method), 1940

set_linestyle()
(matplotlib.collections.StarPolygonCollection
method), 1960

set_linestyle() (matplotlib.collections.TriMesh
method), 1982

set_linestyle() (matplotlib.lines.Line2D method), 2273
set_linestyle() (matplotlib.patches.Patch method), 2400
set_linestyles()

(matplotlib.collections.AsteriskPolygonCollection
method), 1714

set_linestyles()
(matplotlib.collections.BrokenBarHCollection
method), 1734

set_linestyles()
(matplotlib.collections.CircleCollection method),
1754

set_linestyles() (matplotlib.collections.Collection
method), 1776

set_linestyles()
(matplotlib.collections.EllipseCollection method),
1795

set_linestyles() (matplotlib.collections.EventCollection
method), 1817

set_linestyles() (matplotlib.collections.LineCollection
method), 1838

set_linestyles() (matplotlib.collections.PatchCollection
method), 1857

set_linestyles() (matplotlib.collections.PathCollection
method), 1878

set_linestyles() (matplotlib.collections.PolyCollection
method), 1898

set_linestyles() (matplotlib.collections.QuadMesh
method), 1921

set_linestyles()
(matplotlib.collections.RegularPolyCollection
method), 1941

set_linestyles()
(matplotlib.collections.StarPolygonCollection

method), 1961
set_linestyles() (matplotlib.collections.TriMesh

method), 1982
set_linewidth()

(matplotlib.backend_bases.GraphicsContextBase
method), 1586

set_linewidth() (mat-
plotlib.backends.backend_cairo.GraphicsContextCairo
method), 1634

set_linewidth()
(matplotlib.backends.backend_ps.RendererPS
method), 1661

set_linewidth()
(matplotlib.collections.AsteriskPolygonCollection
method), 1714

set_linewidth()
(matplotlib.collections.BrokenBarHCollection
method), 1734

set_linewidth() (matplotlib.collections.CircleCollection
method), 1754

set_linewidth() (matplotlib.collections.Collection
method), 1776

set_linewidth() (matplotlib.collections.EllipseCollection
method), 1795

set_linewidth() (matplotlib.collections.EventCollection
method), 1817

set_linewidth() (matplotlib.collections.LineCollection
method), 1838

set_linewidth() (matplotlib.collections.PatchCollection
method), 1857

set_linewidth() (matplotlib.collections.PathCollection
method), 1878

set_linewidth() (matplotlib.collections.PolyCollection
method), 1898

set_linewidth() (matplotlib.collections.QuadMesh
method), 1921

set_linewidth()
(matplotlib.collections.RegularPolyCollection
method), 1941

set_linewidth()
(matplotlib.collections.StarPolygonCollection
method), 1961

set_linewidth() (matplotlib.collections.TriMesh
method), 1982

set_linewidth() (matplotlib.figure.Figure method), 2114
set_linewidth() (matplotlib.figure.FigureBase method),

2159
set_linewidth() (matplotlib.figure.SubFigure method),

2203
set_linewidth() (matplotlib.lines.Line2D method), 2273
set_linewidth() (matplotlib.patches.Patch method), 2401
set_linewidth()

(mpl_toolkits.mplot3d.art3d.Path3DCollection
method), 3141

set_linewidths()
(matplotlib.collections.AsteriskPolygonCollection
method), 1714

set_linewidths()
(matplotlib.collections.BrokenBarHCollection

Index 3463

Matplotlib, Release 3.4.3

method), 1734
set_linewidths()

(matplotlib.collections.CircleCollection method),
1754

set_linewidths() (matplotlib.collections.Collection
method), 1776

set_linewidths()
(matplotlib.collections.EllipseCollection method),
1795

set_linewidths() (matplotlib.collections.EventCollection
method), 1817

set_linewidths() (matplotlib.collections.LineCollection
method), 1838

set_linewidths() (matplotlib.collections.PatchCollection
method), 1858

set_linewidths() (matplotlib.collections.PathCollection
method), 1879

set_linewidths() (matplotlib.collections.PolyCollection
method), 1899

set_linewidths() (matplotlib.collections.QuadMesh
method), 1921

set_linewidths()
(matplotlib.collections.RegularPolyCollection
method), 1941

set_linewidths()
(matplotlib.collections.StarPolygonCollection
method), 1961

set_linewidths() (matplotlib.collections.TriMesh
method), 1982

set_locator()
(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2959

set_locs() (matplotlib.ticker.Formatter method), 2822
set_locs() (matplotlib.ticker.LogFormatter method), 2827
set_locs() (matplotlib.ticker.LogitFormatter method), 2829
set_locs() (matplotlib.ticker.ScalarFormatter method),

2837
set_locs_angles()

(mpl_toolkits.axisartist.axis_artist.Ticks method),
3053

set_locs_angles_labels()
(mpl_toolkits.axisartist.axis_artist.TickLabels
method), 3052

set_loglevel() (in module matplotlib), 1156
set_ls() (matplotlib.collections.AsteriskPolygonCollection

method), 1714
set_ls() (matplotlib.collections.BrokenBarHCollection

method), 1734
set_ls() (matplotlib.collections.CircleCollection method),

1754
set_ls() (matplotlib.collections.Collection method), 1776
set_ls() (matplotlib.collections.EllipseCollection method),

1795
set_ls() (matplotlib.collections.EventCollection method),

1817
set_ls() (matplotlib.collections.LineCollection method),

1838
set_ls() (matplotlib.collections.PatchCollection method),

1858

set_ls() (matplotlib.collections.PathCollection method),
1879

set_ls() (matplotlib.collections.PolyCollection method),
1899

set_ls() (matplotlib.collections.QuadMesh method), 1921
set_ls() (matplotlib.collections.RegularPolyCollection

method), 1941
set_ls() (matplotlib.collections.StarPolygonCollection

method), 1961
set_ls() (matplotlib.collections.TriMesh method), 1982
set_ls() (matplotlib.lines.Line2D method), 2273
set_ls() (matplotlib.patches.Patch method), 2401
set_lw() (matplotlib.collections.AsteriskPolygonCollection

method), 1714
set_lw() (matplotlib.collections.BrokenBarHCollection

method), 1734
set_lw() (matplotlib.collections.CircleCollection method),

1754
set_lw() (matplotlib.collections.Collection method), 1776
set_lw() (matplotlib.collections.EllipseCollection method),

1795
set_lw() (matplotlib.collections.EventCollection method),

1817
set_lw() (matplotlib.collections.LineCollection method),

1838
set_lw() (matplotlib.collections.PatchCollection method),

1858
set_lw() (matplotlib.collections.PathCollection method),

1879
set_lw() (matplotlib.collections.PolyCollection method),

1899
set_lw() (matplotlib.collections.QuadMesh method), 1921
set_lw() (matplotlib.collections.RegularPolyCollection

method), 1941
set_lw() (matplotlib.collections.StarPolygonCollection

method), 1961
set_lw() (matplotlib.collections.TriMesh method), 1982
set_lw() (matplotlib.lines.Line2D method), 2273
set_lw() (matplotlib.patches.Patch method), 2401
set_ma() (matplotlib.text.Text method), 2807
set_major_formatter() (matplotlib.axis.Axis method),

1544
set_major_locator() (matplotlib.axis.Axis method),

1546
set_marker() (matplotlib.lines.Line2D method), 2274
set_marker() (matplotlib.markers.MarkerStyle method),

2285
set_markeredgecolor() (matplotlib.lines.Line2D

method), 2274
set_markeredgewidth() (matplotlib.lines.Line2D

method), 2274
set_markerfacecolor() (matplotlib.lines.Line2D

method), 2274
set_markerfacecoloralt() (matplotlib.lines.Line2D

method), 2274
set_markersize() (matplotlib.lines.Line2D method),

2274
set_markevery() (matplotlib.lines.Line2D method), 2275
set_mask() (matplotlib.tri.Triangulation method), 2884

3464 Index

Matplotlib, Release 3.4.3

set_math_fontfamily()
(matplotlib.font_manager.FontProperties method),
2222

set_math_fontfamily() (matplotlib.text.Text method),
2807

set_matrix() (matplotlib.transforms.Affine2D method),
2847

set_max() (matplotlib.widgets.RangeSlider method), 2909
set_mec() (matplotlib.lines.Line2D method), 2275
set_message()

(matplotlib.backend_bases.NavigationToolbar2
method), 1592

set_message() (matplotlib.backend_bases.StatusbarBase
method), 1599

set_message()
(matplotlib.backend_bases.ToolContainerBase
method), 1602

set_mew() (matplotlib.lines.Line2D method), 2276
set_mfc() (matplotlib.lines.Line2D method), 2276
set_mfcalt() (matplotlib.lines.Line2D method), 2276
set_min() (matplotlib.widgets.RangeSlider method), 2909
set_minimumdescent() (matplotlib.offsetbox.TextArea

method), 2328
set_minor_formatter() (matplotlib.axis.Axis method),

1547
set_minor_locator() (matplotlib.axis.Axis method),

1547
set_minor_number() (matplotlib.ticker.LogitFormatter

method), 2829
set_minor_threshold()

(matplotlib.ticker.LogitFormatter method), 2829
set_ms() (matplotlib.lines.Line2D method), 2276
set_multialignment() (matplotlib.text.Text method),

2808
set_multilinebaseline()

(matplotlib.offsetbox.TextArea method), 2328
set_mutation_aspect()

(matplotlib.patches.FancyArrowPatch method),
2385

set_mutation_aspect()
(matplotlib.patches.FancyBboxPatch method), 2392

set_mutation_scale()
(matplotlib.patches.FancyArrowPatch method),
2385

set_mutation_scale()
(matplotlib.patches.FancyBboxPatch method), 2392

set_name() (matplotlib.font_manager.FontProperties
method), 2223

set_name() (matplotlib.text.Text method), 2808
set_navigate() (matplotlib.axes.Axes method), 1525
set_navigate_mode() (matplotlib.axes.Axes method),

1525
set_norm() (matplotlib.cm.ScalarMappable method), 1696
set_norm()

(matplotlib.collections.AsteriskPolygonCollection
method), 1714

set_norm() (matplotlib.collections.BrokenBarHCollection
method), 1734

set_norm() (matplotlib.collections.CircleCollection
method), 1754

set_norm() (matplotlib.collections.Collection method),
1776

set_norm() (matplotlib.collections.EllipseCollection
method), 1796

set_norm() (matplotlib.collections.EventCollection
method), 1817

set_norm() (matplotlib.collections.LineCollection method),
1838

set_norm() (matplotlib.collections.PatchCollection
method), 1858

set_norm() (matplotlib.collections.PathCollection method),
1879

set_norm() (matplotlib.collections.PolyCollection method),
1899

set_norm() (matplotlib.collections.QuadMesh method),
1921

set_norm() (matplotlib.collections.RegularPolyCollection
method), 1941

set_norm() (matplotlib.collections.StarPolygonCollection
method), 1961

set_norm() (matplotlib.collections.TriMesh method), 1983
set_norm() (matplotlib.image.NonUniformImage method),

2243
set_offset() (matplotlib.offsetbox.AuxTransformBox

method), 2318
set_offset() (matplotlib.offsetbox.DrawingArea method),

2321
set_offset() (matplotlib.offsetbox.OffsetBox method),

2324
set_offset() (matplotlib.offsetbox.TextArea method), 2328
set_offset_position() (matplotlib.axis.YAxis method),

1565
set_offset_position()

(matplotlib.collections.AsteriskPolygonCollection
method), 1715

set_offset_position()
(matplotlib.collections.BrokenBarHCollection
method), 1734

set_offset_position()
(matplotlib.collections.CircleCollection method),
1755

set_offset_position()
(matplotlib.collections.Collection method), 1776

set_offset_position()
(matplotlib.collections.EllipseCollection method),
1796

set_offset_position()
(matplotlib.collections.EventCollection method),
1818

set_offset_position()
(matplotlib.collections.LineCollection method),
1838

set_offset_position()
(matplotlib.collections.PatchCollection method),
1858

set_offset_position()
(matplotlib.collections.PathCollection method),

Index 3465

Matplotlib, Release 3.4.3

1879
set_offset_position()

(matplotlib.collections.PolyCollection method),
1899

set_offset_position()
(matplotlib.collections.QuadMesh method), 1921

set_offset_position()
(matplotlib.collections.RegularPolyCollection
method), 1941

set_offset_position()
(matplotlib.collections.StarPolygonCollection
method), 1962

set_offset_position() (matplotlib.collections.TriMesh
method), 1983

set_offset_string() (matplotlib.ticker.FixedFormatter
method), 2821

set_offset_string() (matplotlib.ticker.FuncFormatter
method), 2822

set_offsets()
(matplotlib.collections.AsteriskPolygonCollection
method), 1715

set_offsets()
(matplotlib.collections.BrokenBarHCollection
method), 1735

set_offsets() (matplotlib.collections.CircleCollection
method), 1755

set_offsets() (matplotlib.collections.Collection method),
1777

set_offsets() (matplotlib.collections.EllipseCollection
method), 1796

set_offsets() (matplotlib.collections.EventCollection
method), 1818

set_offsets() (matplotlib.collections.LineCollection
method), 1839

set_offsets() (matplotlib.collections.PatchCollection
method), 1859

set_offsets() (matplotlib.collections.PathCollection
method), 1879

set_offsets() (matplotlib.collections.PolyCollection
method), 1899

set_offsets() (matplotlib.collections.QuadMesh method),
1922

set_offsets()
(matplotlib.collections.RegularPolyCollection
method), 1942

set_offsets()
(matplotlib.collections.StarPolygonCollection
method), 1962

set_offsets() (matplotlib.collections.TriMesh method),
1983

set_offsets() (matplotlib.quiver.Barbs method), 2748
set_one_half() (matplotlib.ticker.LogitFormatter

method), 2830
set_orientation()

(matplotlib.collections.EventCollection method),
1818

set_over() (matplotlib.colors.Colormap method), 2004
set_pad() (matplotlib.axis.Tick method), 1572
set_pad() (mpl_toolkits.axisartist.axis_artist.AxisLabel

method), 3046
set_pane_color() (mpl_toolkits.mplot3d.axis3d.Axis

method), 3132
set_pane_pos() (mpl_toolkits.mplot3d.axis3d.Axis

method), 3132
set_params() (matplotlib.ticker.FixedLocator method),

2821
set_params() (matplotlib.ticker.IndexLocator method),

2823
set_params() (matplotlib.ticker.LinearLocator method),

2823
set_params() (matplotlib.ticker.Locator method), 2825
set_params() (matplotlib.ticker.LogitLocator method),

2830
set_params() (matplotlib.ticker.LogLocator method), 2828
set_params() (matplotlib.ticker.MaxNLocator method),

2832
set_params() (matplotlib.ticker.MultipleLocator method),

2833
set_params() (matplotlib.ticker.SymmetricalLogLocator

method), 2840
set_params()

(mpl_toolkits.axisartist.angle_helper.LocatorBase
method), 3030

set_patch_arc() (matplotlib.spines.Spine method), 2777
set_patch_circle() (matplotlib.spines.Spine method),

2777
set_patch_line() (matplotlib.spines.Spine method), 2777
set_patchA() (matplotlib.patches.FancyArrowPatch

method), 2385
set_patchB() (matplotlib.patches.FancyArrowPatch

method), 2385
set_path() (matplotlib.patches.PathPatch method), 2406
set_path_effects() (matplotlib.artist.Artist method),

1224
set_path_effects()

(matplotlib.collections.AsteriskPolygonCollection
method), 1715

set_path_effects()
(matplotlib.collections.BrokenBarHCollection
method), 1735

set_path_effects()
(matplotlib.collections.CircleCollection method),
1755

set_path_effects() (matplotlib.collections.Collection
method), 1777

set_path_effects()
(matplotlib.collections.EllipseCollection method),
1796

set_path_effects()
(matplotlib.collections.EventCollection method),
1818

set_path_effects()
(matplotlib.collections.LineCollection method),
1839

set_path_effects()
(matplotlib.collections.PatchCollection method),
1859

set_path_effects()

3466 Index

Matplotlib, Release 3.4.3

(matplotlib.collections.PathCollection method),
1880

set_path_effects()
(matplotlib.collections.PolyCollection method),
1900

set_path_effects() (matplotlib.collections.QuadMesh
method), 1922

set_path_effects()
(matplotlib.collections.RegularPolyCollection
method), 1942

set_path_effects()
(matplotlib.collections.StarPolygonCollection
method), 1962

set_path_effects() (matplotlib.collections.TriMesh
method), 1983

set_path_effects() (matplotlib.figure.Figure method),
2114

set_path_effects() (matplotlib.figure.FigureBase
method), 2159

set_path_effects() (matplotlib.figure.SubFigure
method), 2204

set_paths()
(matplotlib.collections.AsteriskPolygonCollection
method), 1715

set_paths() (matplotlib.collections.BrokenBarHCollection
method), 1735

set_paths() (matplotlib.collections.CircleCollection
method), 1755

set_paths() (matplotlib.collections.Collection method),
1777

set_paths() (matplotlib.collections.EllipseCollection
method), 1796

set_paths() (matplotlib.collections.EventCollection
method), 1818

set_paths() (matplotlib.collections.LineCollection
method), 1839

set_paths() (matplotlib.collections.PatchCollection
method), 1859

set_paths() (matplotlib.collections.PathCollection
method), 1880

set_paths() (matplotlib.collections.PolyCollection
method), 1900

set_paths() (matplotlib.collections.QuadMesh method),
1922

set_paths() (matplotlib.collections.RegularPolyCollection
method), 1942

set_paths() (matplotlib.collections.StarPolygonCollection
method), 1962

set_paths() (matplotlib.collections.TriMesh method), 1983
set_picker() (matplotlib.artist.Artist method), 1215
set_picker()

(matplotlib.collections.AsteriskPolygonCollection
method), 1715

set_picker()
(matplotlib.collections.BrokenBarHCollection
method), 1735

set_picker() (matplotlib.collections.CircleCollection
method), 1755

set_picker() (matplotlib.collections.Collection method),

1777
set_picker() (matplotlib.collections.EllipseCollection

method), 1797
set_picker() (matplotlib.collections.EventCollection

method), 1818
set_picker() (matplotlib.collections.LineCollection

method), 1839
set_picker() (matplotlib.collections.PatchCollection

method), 1859
set_picker() (matplotlib.collections.PathCollection

method), 1880
set_picker() (matplotlib.collections.PolyCollection

method), 1900
set_picker() (matplotlib.collections.QuadMesh method),

1922
set_picker()

(matplotlib.collections.RegularPolyCollection
method), 1942

set_picker()
(matplotlib.collections.StarPolygonCollection
method), 1962

set_picker() (matplotlib.collections.TriMesh method),
1984

set_picker() (matplotlib.figure.Figure method), 2115
set_picker() (matplotlib.figure.FigureBase method), 2159
set_picker() (matplotlib.figure.SubFigure method), 2204
set_picker() (matplotlib.lines.Line2D method), 2276
set_pickradius() (matplotlib.axis.Axis method), 1560
set_pickradius()

(matplotlib.collections.AsteriskPolygonCollection
method), 1716

set_pickradius()
(matplotlib.collections.BrokenBarHCollection
method), 1736

set_pickradius()
(matplotlib.collections.CircleCollection method),
1756

set_pickradius() (matplotlib.collections.Collection
method), 1778

set_pickradius()
(matplotlib.collections.EllipseCollection method),
1797

set_pickradius() (matplotlib.collections.EventCollection
method), 1819

set_pickradius() (matplotlib.collections.LineCollection
method), 1840

set_pickradius() (matplotlib.collections.PatchCollection
method), 1859

set_pickradius() (matplotlib.collections.PathCollection
method), 1880

set_pickradius() (matplotlib.collections.PolyCollection
method), 1901

set_pickradius() (matplotlib.collections.QuadMesh
method), 1923

set_pickradius()
(matplotlib.collections.RegularPolyCollection
method), 1942

set_pickradius()
(matplotlib.collections.StarPolygonCollection

Index 3467

Matplotlib, Release 3.4.3

method), 1963
set_pickradius() (matplotlib.collections.TriMesh

method), 1984
set_pickradius() (matplotlib.lines.Line2D method),

2276
set_points() (matplotlib.transforms.Bbox method), 2856
set_position() (matplotlib.axes.Axes method), 1521
set_position() (matplotlib.spines.Spine method), 2777
set_position() (matplotlib.text.Text method), 2808
set_position()

(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2960

set_position_3d() (mpl_toolkits.mplot3d.art3d.Text3D
method), 3150

set_positions() (matplotlib.collections.EventCollection
method), 1819

set_positions() (matplotlib.patches.FancyArrowPatch
method), 2386

set_powerlimits() (matplotlib.ticker.ScalarFormatter
method), 2837

set_proj_type() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 3113

set_prop_cycle() (matplotlib.axes.Axes method), 1443
set_radius() (matplotlib.patches.Circle method), 2356
set_radius() (matplotlib.patches.Wedge method), 2426
set_rasterization_zorder() (matplotlib.axes.Axes

method), 1532
set_rasterized() (matplotlib.artist.Artist method), 1224
set_rasterized()

(matplotlib.collections.AsteriskPolygonCollection
method), 1716

set_rasterized()
(matplotlib.collections.BrokenBarHCollection
method), 1736

set_rasterized()
(matplotlib.collections.CircleCollection method),
1756

set_rasterized() (matplotlib.collections.Collection
method), 1778

set_rasterized()
(matplotlib.collections.EllipseCollection method),
1797

set_rasterized() (matplotlib.collections.EventCollection
method), 1819

set_rasterized() (matplotlib.collections.LineCollection
method), 1840

set_rasterized() (matplotlib.collections.PatchCollection
method), 1860

set_rasterized() (matplotlib.collections.PathCollection
method), 1880

set_rasterized() (matplotlib.collections.PolyCollection
method), 1901

set_rasterized() (matplotlib.collections.QuadMesh
method), 1923

set_rasterized()
(matplotlib.collections.RegularPolyCollection
method), 1943

set_rasterized()
(matplotlib.collections.StarPolygonCollection

method), 1963
set_rasterized() (matplotlib.collections.TriMesh

method), 1984
set_rasterized() (matplotlib.figure.Figure method),

2115
set_rasterized() (matplotlib.figure.FigureBase method),

2160
set_rasterized() (matplotlib.figure.SubFigure method),

2204
set_remove_overlapping_locs()

(matplotlib.axis.Axis method), 1548
set_reproducibility_for_testing() (in module

matplotlib.testing), 2789
set_rgrids() (matplotlib.projections.polar.PolarAxes

method), 2716
set_rlabel_position()

(matplotlib.projections.polar.PolarAxes method),
2717

set_rlim() (matplotlib.projections.polar.PolarAxes
method), 2717

set_rmax() (matplotlib.projections.polar.PolarAxes
method), 2717

set_rmin() (matplotlib.projections.polar.PolarAxes
method), 2717

set_rorigin() (matplotlib.projections.polar.PolarAxes
method), 2717

set_rotate_label() (mpl_toolkits.mplot3d.axis3d.Axis
method), 3133

set_rotation() (matplotlib.text.Text method), 2808
set_rotation_mode() (matplotlib.text.Text method),

2808
set_rscale() (matplotlib.projections.polar.PolarAxes

method), 2717
set_rticks() (matplotlib.projections.polar.PolarAxes

method), 2717
set_scale() (matplotlib.backend_tools.ToolXScale

method), 1617
set_scale() (matplotlib.backend_tools.ToolYScale

method), 1617
set_scientific() (matplotlib.ticker.ScalarFormatter

method), 2838
set_segments() (matplotlib.collections.EventCollection

method), 1819
set_segments() (matplotlib.collections.LineCollection

method), 1840
set_segments()

(mpl_toolkits.mplot3d.art3d.Line3DCollection
method), 3137

set_size() (matplotlib.font_manager.FontProperties
method), 2223

set_size() (matplotlib.textpath.TextPath method), 2814
set_size() (matplotlib.text.Text method), 2809
set_size_inches() (matplotlib.figure.Figure method),

2115
set_sizes()

(matplotlib.collections.AsteriskPolygonCollection
method), 1716

set_sizes() (matplotlib.collections.BrokenBarHCollection
method), 1736

3468 Index

Matplotlib, Release 3.4.3

set_sizes() (matplotlib.collections.CircleCollection
method), 1756

set_sizes() (matplotlib.collections.PathCollection
method), 1881

set_sizes() (matplotlib.collections.PolyCollection
method), 1901

set_sizes() (matplotlib.collections.RegularPolyCollection
method), 1943

set_sizes() (matplotlib.collections.StarPolygonCollection
method), 1963

set_sizes() (mpl_toolkits.mplot3d.art3d.Path3DCollection
method), 3141

set_sketch_params() (matplotlib.artist.Artist method),
1223

set_sketch_params()
(matplotlib.backend_bases.GraphicsContextBase
method), 1586

set_sketch_params()
(matplotlib.collections.AsteriskPolygonCollection
method), 1717

set_sketch_params()
(matplotlib.collections.BrokenBarHCollection
method), 1736

set_sketch_params()
(matplotlib.collections.CircleCollection method),
1757

set_sketch_params() (matplotlib.collections.Collection
method), 1778

set_sketch_params()
(matplotlib.collections.EllipseCollection method),
1797

set_sketch_params()
(matplotlib.collections.EventCollection method),
1820

set_sketch_params()
(matplotlib.collections.LineCollection method),
1840

set_sketch_params()
(matplotlib.collections.PatchCollection method),
1860

set_sketch_params()
(matplotlib.collections.PathCollection method),
1881

set_sketch_params()
(matplotlib.collections.PolyCollection method),
1901

set_sketch_params() (matplotlib.collections.QuadMesh
method), 1923

set_sketch_params()
(matplotlib.collections.RegularPolyCollection
method), 1943

set_sketch_params()
(matplotlib.collections.StarPolygonCollection
method), 1964

set_sketch_params() (matplotlib.collections.TriMesh
method), 1984

set_sketch_params() (matplotlib.figure.Figure method),
2116

set_sketch_params() (matplotlib.figure.FigureBase

method), 2160
set_sketch_params() (matplotlib.figure.SubFigure

method), 2205
set_slant() (matplotlib.font_manager.FontProperties

method), 2223
set_snap() (matplotlib.artist.Artist method), 1221
set_snap()

(matplotlib.backend_bases.GraphicsContextBase
method), 1587

set_snap()
(matplotlib.collections.AsteriskPolygonCollection
method), 1717

set_snap() (matplotlib.collections.BrokenBarHCollection
method), 1737

set_snap() (matplotlib.collections.CircleCollection
method), 1757

set_snap() (matplotlib.collections.Collection method),
1778

set_snap() (matplotlib.collections.EllipseCollection
method), 1798

set_snap() (matplotlib.collections.EventCollection
method), 1820

set_snap() (matplotlib.collections.LineCollection method),
1840

set_snap() (matplotlib.collections.PatchCollection
method), 1860

set_snap() (matplotlib.collections.PathCollection method),
1881

set_snap() (matplotlib.collections.PolyCollection method),
1902

set_snap() (matplotlib.collections.QuadMesh method),
1923

set_snap() (matplotlib.collections.RegularPolyCollection
method), 1944

set_snap() (matplotlib.collections.StarPolygonCollection
method), 1964

set_snap() (matplotlib.collections.TriMesh method), 1985
set_snap() (matplotlib.figure.Figure method), 2116
set_snap() (matplotlib.figure.FigureBase method), 2160
set_snap() (matplotlib.figure.SubFigure method), 2205
set_solid_capstyle() (matplotlib.lines.Line2D

method), 2276
set_solid_joinstyle() (matplotlib.lines.Line2D

method), 2276
set_sort_zpos()

(mpl_toolkits.mplot3d.art3d.Line3DCollection
method), 3137

set_sort_zpos()
(mpl_toolkits.mplot3d.art3d.Patch3DCollection
method), 3140

set_sort_zpos()
(mpl_toolkits.mplot3d.art3d.Path3DCollection
method), 3141

set_sort_zpos()
(mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 3146

set_stretch() (matplotlib.font_manager.FontProperties
method), 2223

set_stretch() (matplotlib.text.Text method), 2809

Index 3469

Matplotlib, Release 3.4.3

set_style() (matplotlib.font_manager.FontProperties
method), 2223

set_style() (matplotlib.text.Text method), 2809
set_subplotspec() (matplotlib.axes.SubplotBase

method), 1243
set_subplotspec()

(mpl_toolkits.axes_grid1.axes_divider.SubplotDivider
method), 2963

set_text() (matplotlib.offsetbox.TextArea method), 2328
set_text() (matplotlib.text.Text method), 2809
set_text_props() (matplotlib.table.Cell method), 2781
set_theta1() (matplotlib.patches.Wedge method), 2426
set_theta2() (matplotlib.patches.Wedge method), 2426
set_theta_direction()

(matplotlib.projections.polar.PolarAxes method),
2717

set_theta_offset()
(matplotlib.projections.polar.PolarAxes method),
2718

set_theta_zero_location()
(matplotlib.projections.polar.PolarAxes method),
2718

set_thetagrids()
(matplotlib.projections.polar.PolarAxes method),
2718

set_thetalim() (matplotlib.projections.polar.PolarAxes
method), 2719

set_thetamax() (matplotlib.projections.polar.PolarAxes
method), 2719

set_thetamin() (matplotlib.projections.polar.PolarAxes
method), 2719

set_tick_out() (mpl_toolkits.axisartist.axis_artist.Ticks
method), 3053

set_tick_params() (matplotlib.axis.Axis method), 1555
set_ticklabel_direction()

(mpl_toolkits.axisartist.axis_artist.AxisArtist
method), 3044

set_ticklabels() (matplotlib.axis.Axis method), 1568
set_ticklabels() (matplotlib.colorbar.ColorbarBase

method), 1992
set_ticks() (matplotlib.axis.Axis method), 1568
set_ticks() (matplotlib.colorbar.ColorbarBase method),

1993
set_ticks_position() (matplotlib.axis.XAxis method),

1563
set_ticks_position() (matplotlib.axis.YAxis method),

1565
set_ticksize() (mpl_toolkits.axisartist.axis_artist.Ticks

method), 3053
set_tight_layout() (matplotlib.figure.Figure method),

2117
set_title() (matplotlib.axes.Axes method), 1466
set_title() (matplotlib.legend.Legend method), 2257
set_title() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3114
set_top_view() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3115
set_transform() (matplotlib.artist.Artist method), 1228
set_transform()

(matplotlib.collections.AsteriskPolygonCollection
method), 1717

set_transform()
(matplotlib.collections.BrokenBarHCollection
method), 1737

set_transform() (matplotlib.collections.CircleCollection
method), 1757

set_transform() (matplotlib.collections.Collection
method), 1779

set_transform() (matplotlib.collections.EllipseCollection
method), 1798

set_transform() (matplotlib.collections.EventCollection
method), 1820

set_transform() (matplotlib.collections.LineCollection
method), 1841

set_transform() (matplotlib.collections.PatchCollection
method), 1861

set_transform() (matplotlib.collections.PathCollection
method), 1882

set_transform() (matplotlib.collections.PolyCollection
method), 1902

set_transform() (matplotlib.collections.QuadMesh
method), 1924

set_transform()
(matplotlib.collections.RegularPolyCollection
method), 1944

set_transform()
(matplotlib.collections.StarPolygonCollection
method), 1964

set_transform() (matplotlib.collections.TriMesh
method), 1985

set_transform() (matplotlib.figure.Figure method), 2117
set_transform() (matplotlib.figure.FigureBase method),

2161
set_transform() (matplotlib.figure.SubFigure method),

2205
set_transform() (matplotlib.lines.Line2D method), 2276
set_transform() (matplotlib.offsetbox.AuxTransformBox

method), 2318
set_transform() (matplotlib.offsetbox.DrawingArea

method), 2321
set_transform() (matplotlib.offsetbox.TextArea method),

2328
set_transform() (matplotlib.table.Cell method), 2783
set_transform_rotates_text() (matplotlib.text.Text

method), 2809
set_tzinfo() (matplotlib.dates.DateFormatter method),

2057
set_tzinfo() (matplotlib.dates.DateLocator method),

2058
set_under() (matplotlib.colors.Colormap method), 2004
set_unit() (matplotlib.text.OffsetFrom method), 2798
set_units() (matplotlib.axis.Axis method), 1560
set_url() (matplotlib.artist.Artist method), 1230
set_url() (matplotlib.backend_bases.GraphicsContextBase

method), 1587
set_url() (matplotlib.collections.AsteriskPolygonCollection

method), 1717

3470 Index

Matplotlib, Release 3.4.3

set_url() (matplotlib.collections.BrokenBarHCollection
method), 1737

set_url() (matplotlib.collections.CircleCollection method),
1757

set_url() (matplotlib.collections.Collection method), 1779
set_url() (matplotlib.collections.EllipseCollection

method), 1798
set_url() (matplotlib.collections.EventCollection method),

1820
set_url() (matplotlib.collections.LineCollection method),

1841
set_url() (matplotlib.collections.PatchCollection method),

1861
set_url() (matplotlib.collections.PathCollection method),

1882
set_url() (matplotlib.collections.PolyCollection method),

1902
set_url() (matplotlib.collections.QuadMesh method), 1924
set_url() (matplotlib.collections.RegularPolyCollection

method), 1944
set_url() (matplotlib.collections.StarPolygonCollection

method), 1964
set_url() (matplotlib.collections.TriMesh method), 1985
set_url() (matplotlib.figure.Figure method), 2117
set_url() (matplotlib.figure.FigureBase method), 2161
set_url() (matplotlib.figure.SubFigure method), 2205
set_urls()

(matplotlib.collections.AsteriskPolygonCollection
method), 1718

set_urls() (matplotlib.collections.BrokenBarHCollection
method), 1738

set_urls() (matplotlib.collections.CircleCollection
method), 1758

set_urls() (matplotlib.collections.Collection method),
1779

set_urls() (matplotlib.collections.EllipseCollection
method), 1799

set_urls() (matplotlib.collections.EventCollection
method), 1821

set_urls() (matplotlib.collections.LineCollection method),
1841

set_urls() (matplotlib.collections.PatchCollection
method), 1861

set_urls() (matplotlib.collections.PathCollection method),
1882

set_urls() (matplotlib.collections.PolyCollection method),
1902

set_urls() (matplotlib.collections.QuadMesh method),
1924

set_urls() (matplotlib.collections.RegularPolyCollection
method), 1944

set_urls() (matplotlib.collections.StarPolygonCollection
method), 1965

set_urls() (matplotlib.collections.TriMesh method), 1986
set_useLocale() (matplotlib.ticker.ScalarFormatter

method), 2838
set_useMathText() (matplotlib.ticker.EngFormatter

method), 2821

set_useMathText() (matplotlib.ticker.ScalarFormatter
method), 2838

set_useOffset() (matplotlib.ticker.ScalarFormatter
method), 2838

set_usetex() (matplotlib.text.Text method), 2809
set_usetex() (matplotlib.ticker.EngFormatter method),

2821
set_UVC() (matplotlib.quiver.Barbs method), 2748
set_UVC() (matplotlib.quiver.Quiver method), 2736
set_va() (matplotlib.text.Text method), 2809
set_val() (matplotlib.widgets.RangeSlider method), 2909
set_val() (matplotlib.widgets.Slider method), 2914
set_val() (matplotlib.widgets.TextBox method), 2918
set_variant() (matplotlib.font_manager.FontProperties

method), 2223
set_variant() (matplotlib.text.Text method), 2809
set_vertical()

(mpl_toolkits.axes_grid1.axes_divider.Divider
method), 2960

set_verticalalignment() (matplotlib.text.Text
method), 2810

set_verts() (matplotlib.collections.BrokenBarHCollection
method), 1738

set_verts() (matplotlib.collections.EventCollection
method), 1821

set_verts() (matplotlib.collections.LineCollection
method), 1842

set_verts() (matplotlib.collections.PolyCollection
method), 1903

set_verts() (mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 3146

set_verts_and_codes()
(matplotlib.collections.BrokenBarHCollection
method), 1738

set_verts_and_codes()
(matplotlib.collections.PolyCollection method),
1903

set_verts_and_codes()
(mpl_toolkits.mplot3d.art3d.Poly3DCollection
method), 3146

set_view_interval() (matplotlib.axis.Axis method),
1557

set_view_interval()
(matplotlib.dates.MicrosecondLocator method),
2059

set_view_interval() (matplotlib.ticker.TickHelper
method), 2840

set_viewlim_mode()
(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesAuxTransBase
method), 3021

set_viewlim_mode()
(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase
method), 3022

set_visible() (matplotlib.artist.Artist method), 1222
set_visible()

(matplotlib.collections.AsteriskPolygonCollection
method), 1718

set_visible()
(matplotlib.collections.BrokenBarHCollection

Index 3471

Matplotlib, Release 3.4.3

method), 1738
set_visible() (matplotlib.collections.CircleCollection

method), 1758
set_visible() (matplotlib.collections.Collection method),

1779
set_visible() (matplotlib.collections.EllipseCollection

method), 1799
set_visible() (matplotlib.collections.EventCollection

method), 1821
set_visible() (matplotlib.collections.LineCollection

method), 1842
set_visible() (matplotlib.collections.PatchCollection

method), 1861
set_visible() (matplotlib.collections.PathCollection

method), 1882
set_visible() (matplotlib.collections.PolyCollection

method), 1903
set_visible() (matplotlib.collections.QuadMesh method),

1924
set_visible()

(matplotlib.collections.RegularPolyCollection
method), 1945

set_visible()
(matplotlib.collections.StarPolygonCollection
method), 1965

set_visible() (matplotlib.collections.TriMesh method),
1986

set_visible() (matplotlib.figure.Figure method), 2117
set_visible() (matplotlib.figure.FigureBase method),

2161
set_visible() (matplotlib.figure.SubFigure method), 2206
set_visible() (matplotlib.widgets.ToolHandles method),

2919
set_visible()

(mpl_toolkits.axes_grid1.mpl_axes.SimpleAxisArtist
method), 3018

set_weight() (matplotlib.font_manager.FontProperties
method), 2223

set_weight() (matplotlib.text.Text method), 2810
set_which()

(mpl_toolkits.axisartist.axis_artist.GridlinesCollection
method), 3047

set_width() (matplotlib.offsetbox.OffsetBox method), 2324
set_width() (matplotlib.patches.Ellipse method), 2372
set_width() (matplotlib.patches.FancyBboxPatch method),

2392
set_width() (matplotlib.patches.Rectangle method), 2416
set_width() (matplotlib.patches.Wedge method), 2426
set_width_height()

(matplotlib.backends.backend_cairo.RendererCairo
method), 1636

set_width_ratios() (matplotlib.gridspec.GridSpecBase
method), 2235

set_window_title()
(matplotlib.backend_bases.FigureCanvasBase
method), 1581

set_window_title()
(matplotlib.backend_bases.FigureManagerBase
method), 1583

set_wrap() (matplotlib.text.Text method), 2810
set_x() (matplotlib.patches.FancyBboxPatch method), 2392
set_x() (matplotlib.patches.Rectangle method), 2416
set_x() (matplotlib.text.Text method), 2810
set_xbound() (matplotlib.axes.Axes method), 1457
set_xdata() (matplotlib.lines.Line2D method), 2277
set_xlabel() (matplotlib.axes.Axes method), 1459
set_xlim() (matplotlib.axes.Axes method), 1447
set_xlim() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3115
set_xlim3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3115
set_xmargin() (matplotlib.axes.Axes method), 1485
set_xmargin() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3115
set_xscale() (matplotlib.axes.Axes method), 1480
set_xscale() (matplotlib.projections.polar.PolarAxes

method), 2719
set_xscale() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3115
set_xticklabels() (matplotlib.axes.Axes method), 1497
set_xticks() (matplotlib.axes.Axes method), 1495
set_xy() (matplotlib.patches.Polygon method), 2412
set_xy() (matplotlib.patches.Rectangle method), 2416
set_y() (matplotlib.patches.FancyBboxPatch method), 2393
set_y() (matplotlib.patches.Rectangle method), 2417
set_y() (matplotlib.text.Text method), 2810
set_ybound() (matplotlib.axes.Axes method), 1458
set_ydata() (matplotlib.lines.Line2D method), 2277
set_ylabel() (matplotlib.axes.Axes method), 1463
set_ylim() (matplotlib.axes.Axes method), 1451
set_ylim() (matplotlib.projections.polar.PolarAxes

method), 2720
set_ylim() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3115
set_ylim3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3115
set_ymargin() (matplotlib.axes.Axes method), 1485
set_ymargin() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3115
set_yscale() (matplotlib.axes.Axes method), 1481
set_yscale() (matplotlib.projections.polar.PolarAxes

method), 2720
set_yscale() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3116
set_yticklabels() (matplotlib.axes.Axes method), 1502
set_yticks() (matplotlib.axes.Axes method), 1500
set_z() (mpl_toolkits.mplot3d.art3d.Text3D method), 3150
set_zbound() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3116
set_zlabel() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3116
set_zlim() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3116
set_zlim3d() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3116
set_zmargin() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3116
set_zoom() (matplotlib.offsetbox.OffsetImage method), 2325

3472 Index

Matplotlib, Release 3.4.3

set_zorder() (matplotlib.artist.Artist method), 1222
set_zorder()

(matplotlib.collections.AsteriskPolygonCollection
method), 1718

set_zorder()
(matplotlib.collections.BrokenBarHCollection
method), 1738

set_zorder() (matplotlib.collections.CircleCollection
method), 1758

set_zorder() (matplotlib.collections.Collection method),
1780

set_zorder() (matplotlib.collections.EllipseCollection
method), 1799

set_zorder() (matplotlib.collections.EventCollection
method), 1821

set_zorder() (matplotlib.collections.LineCollection
method), 1842

set_zorder() (matplotlib.collections.PatchCollection
method), 1861

set_zorder() (matplotlib.collections.PathCollection
method), 1883

set_zorder() (matplotlib.collections.PolyCollection
method), 1903

set_zorder() (matplotlib.collections.QuadMesh method),
1925

set_zorder()
(matplotlib.collections.RegularPolyCollection
method), 1945

set_zorder()
(matplotlib.collections.StarPolygonCollection
method), 1965

set_zorder() (matplotlib.collections.TriMesh method),
1986

set_zorder() (matplotlib.figure.Figure method), 2118
set_zorder() (matplotlib.figure.FigureBase method), 2161
set_zorder() (matplotlib.figure.SubFigure method), 2206
set_zscale() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3116
set_zsort() (mpl_toolkits.mplot3d.art3d.Poly3DCollection

method), 3146
set_zticklabels()

(mpl_toolkits.mplot3d.axes3d.Axes3D method),
3117

set_zticks() (mpl_toolkits.mplot3d.axes3d.Axes3D
method), 3117

setcolor_nonstroke
(matplotlib.backends.backend_pdf.Op attribute),
1641

setcolor_stroke (matplotlib.backends.backend_pdf.Op
attribute), 1641

setcolorspace_nonstroke
(matplotlib.backends.backend_pdf.Op attribute),
1641

setcolorspace_stroke
(matplotlib.backends.backend_pdf.Op attribute),
1641

SetCursorBase (class in matplotlib.backend_tools), 1609
setdash (matplotlib.backends.backend_pdf.Op attribute),

1641

setgray_nonstroke
(matplotlib.backends.backend_pdf.Op attribute),
1641

setgray_stroke (matplotlib.backends.backend_pdf.Op
attribute), 1641

setgstate (matplotlib.backends.backend_pdf.Op attribute),
1641

setlinecap (matplotlib.backends.backend_pdf.Op
attribute), 1641

setlinejoin (matplotlib.backends.backend_pdf.Op
attribute), 1641

setlinewidth (matplotlib.backends.backend_pdf.Op
attribute), 1641

setp() (in module matplotlib.artist), 1233
setp() (in module matplotlib.pyplot), 2630
setrgb_nonstroke (matplotlib.backends.backend_pdf.Op

attribute), 1641
setrgb_stroke (matplotlib.backends.backend_pdf.Op

attribute), 1641
setup() (in module matplotlib.testing), 2789
setup() (matplotlib.animation.AbstractMovieWriter

method), 1200
setup() (matplotlib.animation.FileMovieWriter method),

1206
setup() (matplotlib.animation.HTMLWriter method), 1184
setup() (matplotlib.animation.MovieWriter method), 1203
setup() (matplotlib.animation.PillowWriter method), 1182
setUpClass()

(matplotlib.testing.decorators.CleanupTestCase
class method), 2790

shade() (matplotlib.colors.LightSource method), 2010
shade_normals() (matplotlib.colors.LightSource method),

2011
shade_rgb() (matplotlib.colors.LightSource method), 2011
shading (matplotlib.backends.backend_pdf.Op attribute),

1641
Shadow (class in matplotlib.patches), 2421
sharex() (matplotlib.axes.Axes method), 1517
sharey() (matplotlib.axes.Axes method), 1518
ship() (in module matplotlib.mathtext), 2293
short_float_fmt() (in module

matplotlib.backends.backend_svg), 1668
should_simplify() (matplotlib.path.Path property), 2435
show (matplotlib.backends.backend_pdf.Op attribute), 1641
show() (in module matplotlib.backends.backend_nbagg),

1638
show() (in module matplotlib.backends.backend_template),

1625
show() (in module matplotlib.pyplot), 2632
show() (matplotlib.backend_bases.FigureManagerBase

method), 1583
show() (mat-

plotlib.backends.backend_nbagg.FigureManagerNbAgg
method), 1638

show() (matplotlib.figure.Figure method), 2118
ShowBase (class in matplotlib.backend_bases), 1598
showkern (matplotlib.backends.backend_pdf.Op attribute),

1641
shrunk() (matplotlib.transforms.BboxBase method), 2860

Index 3473

Matplotlib, Release 3.4.3

shrunk_to_aspect() (matplotlib.transforms.BboxBase
method), 2860

silent_list (class in matplotlib.cbook), 1691
silverman_factor() (matplotlib.mlab.GaussianKDE

method), 2296
simple_linear_interpolation() (in module

matplotlib.cbook), 1691
SimpleAxisArtist (class in

mpl_toolkits.axes_grid1.mpl_axes), 3018
SimpleChainedObjects (class in

mpl_toolkits.axes_grid1.mpl_axes), 3019
SimpleLineShadow (class in matplotlib.patheffects), 2439
SimplePatchShadow (class in matplotlib.patheffects), 2439
simplify_threshold() (matplotlib.path.Path property),

2435
single_shot() (matplotlib.backend_bases.TimerBase

property), 1600
size (matplotlib.dviread.DviFont attribute), 2071
size() (matplotlib.transforms.BboxBase property), 2860
SizeFromFunc (class in mpl_toolkits.axes_grid1.axes_size),

2985
skew() (matplotlib.transforms.Affine2D method), 2847
skew_deg() (matplotlib.transforms.Affine2D method), 2847
Slider (class in matplotlib.widgets), 2912
SliderBase (class in matplotlib.widgets), 2914
span_where()

(matplotlib.collections.BrokenBarHCollection class
method), 1738

SpanSelector (class in matplotlib.widgets), 2914
specgram() (in module matplotlib.mlab), 2309
specgram() (in module matplotlib.pyplot), 2633
specgram() (matplotlib.axes.Axes method), 1332
Spine (class in matplotlib.spines), 2774
Spines (class in matplotlib.spines), 2777
SpinesProxy (class in matplotlib.spines), 2778
split_bezier_intersecting_with_closedpath()

(in module matplotlib.bezier), 1673
split_code_at_show() (in module

matplotlib.sphinxext.plot_directive), 2773
split_de_casteljau() (in module matplotlib.bezier),

1674
split_path_inout() (in module matplotlib.bezier), 1674
splitx() (matplotlib.transforms.BboxBase method), 2860
splity() (matplotlib.transforms.BboxBase method), 2860
spring() (in module matplotlib.pyplot), 2636
spy() (in module matplotlib.pyplot), 2636
spy() (matplotlib.axes.Axes method), 1390
Stack (class in matplotlib.cbook), 1682
stackplot() (in module matplotlib.pyplot), 2639
stackplot() (matplotlib.axes.Axes method), 1291
stairs() (in module matplotlib.pyplot), 2640
stairs() (matplotlib.axes.Axes method), 1360
stale() (matplotlib.artist.Artist property), 1231
stale() (matplotlib.axes.Axes property), 1522
stale() (matplotlib.collections.AsteriskPolygonCollection

property), 1718
stale() (matplotlib.collections.BrokenBarHCollection

property), 1739

stale() (matplotlib.collections.CircleCollection property),
1758

stale() (matplotlib.collections.Collection property), 1780
stale() (matplotlib.collections.EllipseCollection property),

1799
stale() (matplotlib.collections.EventCollection property),

1821
stale() (matplotlib.collections.LineCollection property),

1842
stale() (matplotlib.collections.PatchCollection property),

1862
stale() (matplotlib.collections.PathCollection property),

1883
stale() (matplotlib.collections.PolyCollection property),

1903
stale() (matplotlib.collections.QuadMesh property), 1925
stale() (matplotlib.collections.RegularPolyCollection

property), 1945
stale() (matplotlib.collections.StarPolygonCollection

property), 1965
stale() (matplotlib.collections.TriMesh property), 1986
stale() (matplotlib.figure.Figure property), 2118
stale() (matplotlib.figure.FigureBase property), 2162
stale() (matplotlib.figure.SubFigure property), 2206
StarPolygonCollection (class in

matplotlib.collections), 1946
start() (matplotlib.backend_bases.TimerBase method),

1600
start() (matplotlib.backends.backend_svg.XMLWriter

method), 1668
start_event_loop()

(matplotlib.backend_bases.FigureCanvasBase
method), 1581

start_filter() (matplotlib.backend_bases.RendererBase
method), 1598

start_filter()
(matplotlib.backends.backend_agg.RendererAgg
method), 1631

start_pan() (matplotlib.axes.Axes method), 1525
start_pan() (matplotlib.projections.polar.PolarAxes

method), 2721
start_rasterizing()

(matplotlib.backend_bases.RendererBase method),
1598

start_rasterizing() (mat-
plotlib.backends.backend_mixed.MixedModeRenderer
method), 1621

statusbar()
(matplotlib.backend_bases.FigureManagerBase
property), 1583

StatusbarBase (class in matplotlib.backend_bases), 1599
stem() (in module matplotlib.pyplot), 2641
stem() (matplotlib.axes.Axes method), 1284
stem() (mpl_toolkits.mplot3d.axes3d.Axes3D method), 3118
stem3D() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3119
StemContainer (class in matplotlib.container), 2038
step() (in module matplotlib.pyplot), 2643
step() (matplotlib.axes.Axes method), 1266

3474 Index

Matplotlib, Release 3.4.3

StepPatch (class in matplotlib.patches), 2407
sticky_edges() (matplotlib.artist.Artist property), 1231
sticky_edges()

(matplotlib.collections.AsteriskPolygonCollection
property), 1718

sticky_edges()
(matplotlib.collections.BrokenBarHCollection
property), 1739

sticky_edges() (matplotlib.collections.CircleCollection
property), 1758

sticky_edges() (matplotlib.collections.Collection
property), 1780

sticky_edges() (matplotlib.collections.EllipseCollection
property), 1799

sticky_edges() (matplotlib.collections.EventCollection
property), 1821

sticky_edges() (matplotlib.collections.LineCollection
property), 1842

sticky_edges() (matplotlib.collections.PatchCollection
property), 1862

sticky_edges() (matplotlib.collections.PathCollection
property), 1883

sticky_edges() (matplotlib.collections.PolyCollection
property), 1903

sticky_edges() (matplotlib.collections.QuadMesh
property), 1925

sticky_edges()
(matplotlib.collections.RegularPolyCollection
property), 1945

sticky_edges()
(matplotlib.collections.StarPolygonCollection
property), 1965

sticky_edges() (matplotlib.collections.TriMesh property),
1986

sticky_edges() (matplotlib.figure.Figure property), 2118
sticky_edges() (matplotlib.figure.FigureBase property),

2162
sticky_edges() (matplotlib.figure.SubFigure property),

2206
STOP (matplotlib.path.Path attribute), 2429
stop() (matplotlib.backend_bases.TimerBase method), 1600
stop_event_loop()

(matplotlib.backend_bases.FigureCanvasBase
method), 1581

stop_filter() (matplotlib.backend_bases.RendererBase
method), 1598

stop_filter()
(matplotlib.backends.backend_agg.RendererAgg
method), 1631

stop_rasterizing()
(matplotlib.backend_bases.RendererBase method),
1598

stop_rasterizing() (mat-
plotlib.backends.backend_mixed.MixedModeRenderer
method), 1621

stop_typing() (matplotlib.widgets.TextBox method), 2918
StrCategoryConverter (class in matplotlib.category),

1677
StrCategoryFormatter (class in matplotlib.category),

1679
StrCategoryLocator (class in matplotlib.category), 1679
Stream (class in matplotlib.backends.backend_pdf), 1649
streamplot() (in module matplotlib.pyplot), 2645
streamplot() (matplotlib.axes.Axes method), 1432
stride_windows() (in module matplotlib.mlab), 2311
string_width_height() (matplotlib.afm.AFM method),

1158
strip_math() (in module matplotlib.cbook), 1692
StrMethodFormatter (class in matplotlib.ticker), 2839
Stroke (class in matplotlib.patheffects), 2440
stroke (matplotlib.backends.backend_pdf.Op attribute), 1641
stroke() (mat-

plotlib.backends.backend_pdf.GraphicsContextPdf
method), 1639

SubFigure (class in matplotlib.figure), 2172
subfigures() (matplotlib.figure.Figure method), 2119
subfigures() (matplotlib.figure.FigureBase method), 2162
subfigures() (matplotlib.figure.SubFigure method), 2206
subgridspec() (matplotlib.gridspec.SubplotSpec method),

2232
submit_observers() (matplotlib.widgets.TextBox

property), 2918
subplot() (in module matplotlib.pyplot), 2647
subplot2grid() (in module matplotlib.pyplot), 2651
subplot_class_factory() (in module matplotlib.axes),

1244
subplot_mosaic() (in module matplotlib.pyplot), 2653
subplot_mosaic() (matplotlib.figure.Figure method),

2119
subplot_mosaic() (matplotlib.figure.FigureBase method),

2163
subplot_mosaic() (matplotlib.figure.SubFigure method),

2207
subplot_tool() (in module matplotlib.pyplot), 2654
SubplotBase (class in matplotlib.axes), 1241
SubplotDivider (class in

mpl_toolkits.axes_grid1.axes_divider), 2961
SubplotParams (class in matplotlib.figure), 2216
subplots() (in module matplotlib.pyplot), 2654
subplots() (matplotlib.figure.Figure method), 2121
subplots() (matplotlib.figure.FigureBase method), 2164
subplots() (matplotlib.figure.SubFigure method), 2208
subplots() (matplotlib.gridspec.GridSpecBase method),

2235
subplots_adjust() (in module matplotlib.pyplot), 2657
subplots_adjust() (matplotlib.figure.Figure method),

2123
subplots_adjust() (matplotlib.figure.FigureBase

method), 2166
subplots_adjust() (matplotlib.figure.SubFigure

method), 2210
SubplotSpec (class in matplotlib.gridspec), 2231
SubplotTool (class in matplotlib.widgets), 2916
subs() (matplotlib.ticker.LogLocator method), 2828
Substitution (class in matplotlib.docstring), 2069
summer() (in module matplotlib.pyplot), 2659
supported_formats

(matplotlib.animation.FFMpegFileWriter attribute),

Index 3475

Matplotlib, Release 3.4.3

1192
supported_formats (matplotlib.animation.HTMLWriter

attribute), 1185
supported_formats

(matplotlib.animation.ImageMagickFileWriter
attribute), 1194

supported_formats (matplotlib.animation.MovieWriter
attribute), 1203

supports_blit
(matplotlib.backend_bases.FigureCanvasBase
attribute), 1581

suppress_matplotlib_deprecation_warning()
(in module matplotlib._api.deprecation), 2924

suptitle() (in module matplotlib.pyplot), 2659
suptitle() (matplotlib.figure.Figure method), 2123
suptitle() (matplotlib.figure.FigureBase method), 2167
suptitle() (matplotlib.figure.SubFigure method), 2211
supxlabel() (matplotlib.figure.Figure method), 2124
supxlabel() (matplotlib.figure.FigureBase method), 2168
supxlabel() (matplotlib.figure.SubFigure method), 2212
supylabel() (matplotlib.figure.Figure method), 2125
supylabel() (matplotlib.figure.FigureBase method), 2169
supylabel() (matplotlib.figure.SubFigure method), 2213
switch_backend() (in module matplotlib.pyplot), 2660
switch_backends()

(matplotlib.backend_bases.FigureCanvasBase
method), 1581

switch_orientation()
(matplotlib.collections.EventCollection method),
1822

symbol() (matplotlib.ticker.PercentFormatter property),
2835

SymLogNorm (class in matplotlib.colors), 2027
SymmetricalLogLocator (class in matplotlib.ticker),

2839
SymmetricalLogScale (class in matplotlib.scale), 2767
SymmetricalLogTransform (class in matplotlib.scale),

2768
SymmetricalLogTransform()

(matplotlib.scale.SymmetricalLogScale property),
2768

T
Table (class in matplotlib.table), 2783
table() (in module matplotlib.pyplot), 2660
table() (in module matplotlib.table), 2786
table() (matplotlib.axes.Axes method), 1411
tearDownClass()

(matplotlib.testing.decorators.CleanupTestCase
class method), 2790

test() (in module matplotlib), 2788
texcache (matplotlib.texmanager.TexManager attribute),

2813
TexManager (class in matplotlib.texmanager), 2811
texname (matplotlib.dviread.DviFont attribute), 2071
texname (matplotlib.dviread.PsFont attribute), 2072
Text (class in matplotlib.text), 2798
text() (in module matplotlib.pyplot), 2663
text() (matplotlib.axes.Axes method), 1407

text() (matplotlib.figure.Figure method), 2126
text() (matplotlib.figure.FigureBase method), 2170
text() (matplotlib.figure.SubFigure method), 2214
text() (matplotlib.widgets.TextBox property), 2918
text() (mpl_toolkits.mplot3d.Axes3D method), 401
text() (mpl_toolkits.mplot3d.axes3d.Axes3D method), 3121
text2D() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3121
Text3D (class in mpl_toolkits.mplot3d.art3d), 3146
text3D() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3124
text_2d_to_3d() (in module mpl_toolkits.mplot3d.art3d),

3153
TextArea (class in matplotlib.offsetbox), 2327
TextBox (class in matplotlib.widgets), 2917
textmatrix (matplotlib.backends.backend_pdf.Op

attribute), 1641
TextPath (class in matplotlib.textpath), 2813
textpos (matplotlib.backends.backend_pdf.Op attribute),

1641
TextToPath (class in matplotlib.textpath), 2814
Tfm (class in matplotlib.dviread), 2073
ThetaAxis (class in matplotlib.projections.polar), 2724
ThetaFormatter (class in matplotlib.projections.polar),

2725
thetagrids() (in module matplotlib.pyplot), 2666
ThetaLocator (class in matplotlib.projections.polar), 2725
ThetaTick (class in matplotlib.projections.polar), 2726
thumbnail() (in module matplotlib.image), 2248
Tick (class in matplotlib.axis), 1569
tick_bottom() (matplotlib.axis.XAxis method), 1564
tick_left() (matplotlib.axis.YAxis method), 1566
tick_params() (in module matplotlib.pyplot), 2667
tick_params() (matplotlib.axes.Axes method), 1507
tick_params() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3125
tick_right() (matplotlib.axis.YAxis method), 1566
tick_top() (matplotlib.axis.XAxis method), 1564
tick_values() (matplotlib.category.StrCategoryLocator

method), 1679
tick_values() (matplotlib.dates.AutoDateLocator

method), 2054
tick_values() (matplotlib.dates.MicrosecondLocator

method), 2059
tick_values() (matplotlib.dates.RRuleLocator method),

2060
tick_values() (matplotlib.dates.YearLocator method),

2061
tick_values() (matplotlib.ticker.AutoMinorLocator

method), 2819
tick_values() (matplotlib.ticker.FixedLocator method),

2821
tick_values() (matplotlib.ticker.IndexLocator method),

2823
tick_values() (matplotlib.ticker.LinearLocator method),

2823
tick_values() (matplotlib.ticker.Locator method), 2825
tick_values() (matplotlib.ticker.LogitLocator method),

2830

3476 Index

Matplotlib, Release 3.4.3

tick_values() (matplotlib.ticker.LogLocator method),
2828

tick_values() (matplotlib.ticker.MaxNLocator method),
2832

tick_values() (matplotlib.ticker.MultipleLocator method),
2833

tick_values() (matplotlib.ticker.NullLocator method),
2833

tick_values() (matplotlib.ticker.OldAutoLocator method),
2833

tick_values() (matplotlib.ticker.SymmetricalLogLocator
method), 2840

TickedStroke (class in matplotlib.patheffects), 2440
Ticker (class in matplotlib.axis), 1542
TickHelper (class in matplotlib.ticker), 2840
ticklabel_format() (in module matplotlib.pyplot), 2669
ticklabel_format() (matplotlib.axes.Axes method),

1505
TickLabels (class in mpl_toolkits.axisartist.axis_artist),

3051
Ticks (class in mpl_toolkits.axisartist.axis_artist), 3052
tight_layout() (in module matplotlib.pyplot), 2670
tight_layout() (matplotlib.figure.Figure method), 2128
tight_layout() (matplotlib.gridspec.GridSpec method),

2229
TimedAnimation (class in matplotlib.animation), 1197
TimerBase (class in matplotlib.backend_bases), 1599
title() (in module matplotlib.pyplot), 2671
TmpDirCleaner (class in

matplotlib.backends.backend_pgf), 1655
to_filehandle() (in module matplotlib.cbook), 1692
to_hex() (in module matplotlib.colors), 2034
to_html5_video() (matplotlib.animation.Animation

method), 1162
to_jshtml() (matplotlib.animation.Animation method),

1163
to_mask() (matplotlib.mathtext.MathTextParser method),

2287
to_png() (matplotlib.mathtext.MathTextParser method),

2288
to_polygons() (matplotlib.path.Path method), 2435
to_rgb() (in module matplotlib.colors), 2034
to_rgba() (in module matplotlib.colors), 2035
to_rgba() (matplotlib.cm.ScalarMappable method), 1696
to_rgba() (matplotlib.collections.AsteriskPolygonCollection

method), 1719
to_rgba() (matplotlib.collections.BrokenBarHCollection

method), 1739
to_rgba() (matplotlib.collections.CircleCollection method),

1759
to_rgba() (matplotlib.collections.Collection method), 1780
to_rgba() (matplotlib.collections.EllipseCollection

method), 1800
to_rgba() (matplotlib.collections.EventCollection method),

1822
to_rgba() (matplotlib.collections.LineCollection method),

1842
to_rgba() (matplotlib.collections.PatchCollection method),

1862

to_rgba() (matplotlib.collections.PathCollection method),
1883

to_rgba() (matplotlib.collections.PolyCollection method),
1904

to_rgba() (matplotlib.collections.QuadMesh method), 1925
to_rgba() (matplotlib.collections.RegularPolyCollection

method), 1945
to_rgba() (matplotlib.collections.StarPolygonCollection

method), 1966
to_rgba() (matplotlib.collections.TriMesh method), 1987
to_rgba() (matplotlib.mathtext.MathTextParser method),

2289
to_rgba_array() (in module matplotlib.colors), 2035
to_values() (matplotlib.transforms.Affine2DBase method),

2849
toggle()

(mpl_toolkits.axes_grid1.mpl_axes.SimpleAxisArtist
method), 3018

toggle() (mpl_toolkits.axisartist.axis_artist.AxisArtist
method), 3044

toggle_axisline()
(mpl_toolkits.axisartist.axislines.Axes method),
3062

toggle_label()
(mpl_toolkits.axes_grid1.axes_grid.CbarAxesBase
method), 2966

toggle_toolitem()
(matplotlib.backend_bases.ToolContainerBase
method), 1602

toggled() (matplotlib.backend_tools.ToolToggleBase
property), 1616

too_close() (matplotlib.contour.ContourLabeler method),
2044

ToolBack (class in matplotlib.backend_tools), 1609
ToolbarCls (mat-

plotlib.backends.backend_nbagg.FigureManagerNbAgg
attribute), 1637

ToolBase (class in matplotlib.backend_tools), 1609
ToolContainerBase (class in matplotlib.backend_bases),

1600
ToolCopyToClipboardBase (class in

matplotlib.backend_tools), 1611
ToolCursorPosition (class in matplotlib.backend_tools),

1611
ToolEnableAllNavigation (class in

matplotlib.backend_tools), 1611
ToolEnableNavigation (class in

matplotlib.backend_tools), 1612
ToolEvent (class in matplotlib.backend_managers), 1603
ToolForward (class in matplotlib.backend_tools), 1612
ToolFullScreen (class in matplotlib.backend_tools), 1612
ToolGrid (class in matplotlib.backend_tools), 1612
ToolHandles (class in matplotlib.widgets), 2918
ToolHelpBase (class in matplotlib.backend_tools), 1613
ToolHome (class in matplotlib.backend_tools), 1613
toolitems (matplotlib.backend_bases.NavigationToolbar2

attribute), 1592
toolitems

(matplotlib.backends.backend_nbagg.NavigationIPy

Index 3477

Matplotlib, Release 3.4.3

attribute), 1638
ToolManager (class in matplotlib.backend_managers), 1603
toolmanager() (matplotlib.backend_tools.ToolBase

property), 1610
toolmanager_connect()

(matplotlib.backend_managers.ToolManager
method), 1605

toolmanager_disconnect()
(matplotlib.backend_managers.ToolManager
method), 1606

ToolManagerMessageEvent (class in
matplotlib.backend_managers), 1607

ToolMinorGrid (class in matplotlib.backend_tools), 1613
ToolPan (class in matplotlib.backend_tools), 1614
ToolQuit (class in matplotlib.backend_tools), 1614
ToolQuitAll (class in matplotlib.backend_tools), 1615
tools() (matplotlib.backend_managers.ToolManager

property), 1606
ToolToggleBase (class in matplotlib.backend_tools), 1615
ToolTriggerEvent (class in

matplotlib.backend_managers), 1607
ToolViewsPositions (class in matplotlib.backend_tools),

1616
ToolXScale (class in matplotlib.backend_tools), 1617
ToolYScale (class in matplotlib.backend_tools), 1617
ToolZoom (class in matplotlib.backend_tools), 1617
tostring_argb() (mat-

plotlib.backends.backend_agg.FigureCanvasAgg
method), 1628

tostring_argb()
(matplotlib.backends.backend_agg.RendererAgg
method), 1631

tostring_rgb() (mat-
plotlib.backends.backend_agg.FigureCanvasAgg
method), 1629

tostring_rgb()
(matplotlib.backends.backend_agg.RendererAgg
method), 1632

tostring_rgba_minimized()
(matplotlib.backends.backend_agg.RendererAgg
method), 1632

track_characters()
(matplotlib.backends.backend_pdf.RendererPdf
method), 1649

track_characters()
(matplotlib.backends.backend_ps.RendererPS
method), 1661

Transform (class in matplotlib.transforms), 2872
transform() (in module mpl_toolkits.mplot3d.proj3d), 3155
transform() (matplotlib.transforms.AffineBase method),

2850
transform() (matplotlib.transforms.IdentityTransform

method), 2869
transform() (matplotlib.transforms.Transform method),

2874
transform() (matplotlib.type1font.Type1Font method),

2893
transform_affine()

(matplotlib.transforms.Affine2DBase method), 2849

transform_affine() (matplotlib.transforms.AffineBase
method), 2850

transform_affine()
(matplotlib.transforms.CompositeGenericTransform
method), 2867

transform_affine()
(matplotlib.transforms.IdentityTransform method),
2869

transform_affine() (matplotlib.transforms.Transform
method), 2875

transform_angles() (matplotlib.transforms.Transform
method), 2875

transform_bbox() (matplotlib.transforms.Transform
method), 2876

transform_non_affine() (mat-
plotlib.projections.polar.InvertedPolarTransform
method), 2705

transform_non_affine() (mat-
plotlib.projections.polar.PolarAxes.InvertedPolarTransform
method), 2708

transform_non_affine() (mat-
plotlib.projections.polar.PolarAxes.PolarTransform
method), 2709

transform_non_affine()
(matplotlib.projections.polar.PolarTransform
method), 2722

transform_non_affine()
(matplotlib.scale.FuncTransform method), 2761

transform_non_affine()
(matplotlib.scale.InvertedLogTransform method),
2762

transform_non_affine()
(matplotlib.scale.InvertedSymmetricalLogTransform
method), 2763

transform_non_affine()
(matplotlib.scale.LogisticTransform method), 2765

transform_non_affine()
(matplotlib.scale.LogitTransform method), 2767

transform_non_affine()
(matplotlib.scale.LogTransform method), 2764

transform_non_affine()
(matplotlib.scale.SymmetricalLogTransform
method), 2769

transform_non_affine()
(matplotlib.transforms.AffineBase method), 2850

transform_non_affine()
(matplotlib.transforms.BlendedGenericTransform
method), 2865

transform_non_affine()
(matplotlib.transforms.CompositeGenericTransform
method), 2867

transform_non_affine()
(matplotlib.transforms.IdentityTransform method),
2869

transform_non_affine()
(matplotlib.transforms.Transform method), 2876

transform_path() (matplotlib.transforms.AffineBase
method), 2851

transform_path()

3478 Index

Matplotlib, Release 3.4.3

(matplotlib.transforms.IdentityTransform method),
2870

transform_path() (matplotlib.transforms.Transform
method), 2876

transform_path_affine()
(matplotlib.transforms.AffineBase method), 2851

transform_path_affine()
(matplotlib.transforms.IdentityTransform method),
2870

transform_path_affine()
(matplotlib.transforms.Transform method), 2876

transform_path_non_affine() (mat-
plotlib.projections.polar.PolarAxes.PolarTransform
method), 2709

transform_path_non_affine()
(matplotlib.projections.polar.PolarTransform
method), 2722

transform_path_non_affine()
(matplotlib.transforms.AffineBase method), 2851

transform_path_non_affine()
(matplotlib.transforms.CompositeGenericTransform
method), 2868

transform_path_non_affine()
(matplotlib.transforms.IdentityTransform method),
2870

transform_path_non_affine()
(matplotlib.transforms.Transform method), 2876

transform_point() (matplotlib.transforms.Transform
method), 2876

transform_xy()
(mpl_toolkits.axisartist.grid_finder.GridFinder
method), 3077

transformed() (matplotlib.path.Path method), 2435
transformed() (matplotlib.transforms.BboxBase method),

2860
TransformedBbox (class in matplotlib.transforms), 2879
TransformedPatchPath (class in matplotlib.transforms),

2879
TransformedPath (class in matplotlib.transforms), 2880
TransformNode (class in matplotlib.transforms), 2876
TransformWrapper (class in matplotlib.transforms), 2878
translate() (matplotlib.transforms.Affine2D method),

2847
translated() (matplotlib.transforms.BboxBase method),

2860
transmute() (matplotlib.patches.ArrowStyle.Fancy

method), 2346
transmute() (matplotlib.patches.ArrowStyle.Simple

method), 2347
transmute() (matplotlib.patches.ArrowStyle.Wedge

method), 2347
TrapezoidMapTriFinder (class in matplotlib.tri), 2885
TriAnalyzer (class in matplotlib.tri), 2890
Triangulation (class in matplotlib.tri), 2883
tricontour() (in module matplotlib.pyplot), 2672
tricontour() (matplotlib.axes.Axes method), 1394
tricontour() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3125
tricontourf() (in module matplotlib.pyplot), 2676

tricontourf() (matplotlib.axes.Axes method), 1398
tricontourf() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3127
TriContourSet (class in matplotlib.tri), 2884
TriFinder (class in matplotlib.tri), 2885
trigger() (matplotlib.backend_tools.AxisScaleBase

method), 1608
trigger() (matplotlib.backend_tools.RubberbandBase

method), 1608
trigger() (matplotlib.backend_tools.ToolBase method),

1610
trigger() (mat-

plotlib.backend_tools.ToolCopyToClipboardBase
method), 1611

trigger() (matplotlib.backend_tools.ToolGrid method),
1613

trigger() (matplotlib.backend_tools.ToolMinorGrid
method), 1613

trigger() (matplotlib.backend_tools.ToolQuit method),
1614

trigger() (matplotlib.backend_tools.ToolQuitAll method),
1615

trigger() (matplotlib.backend_tools.ToolToggleBase
method), 1616

trigger() (matplotlib.backend_tools.ViewsPositionsBase
method), 1618

trigger() (matplotlib.backend_tools.ZoomPanBase
method), 1618

trigger_tool()
(matplotlib.backend_bases.ToolContainerBase
method), 1602

trigger_tool()
(matplotlib.backend_managers.ToolManager
method), 1606

TriInterpolator (class in matplotlib.tri), 2885
TriMesh (class in matplotlib.collections), 1966
tripcolor() (in module matplotlib.pyplot), 2679
tripcolor() (matplotlib.axes.Axes method), 1393
triplot() (in module matplotlib.pyplot), 2680
triplot() (matplotlib.axes.Axes method), 1393
TriRefiner (class in matplotlib.tri), 2888
ttfFontProperty() (in module matplotlib.font_manager),

2225
tunit_cube() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3127
tunit_edges() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3127
twin() (mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase

method), 3020
twinx() (in module matplotlib.pyplot), 2681
twinx() (matplotlib.axes.Axes method), 1516
twinx()

(mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase
method), 3020

twiny() (in module matplotlib.pyplot), 2681
twiny() (matplotlib.axes.Axes method), 1517
twiny()

(mpl_toolkits.axes_grid1.parasite_axes.HostAxesBase
method), 3020

Index 3479

Matplotlib, Release 3.4.3

TwoSlopeNorm (class in matplotlib.colors), 2029
Type1Font (class in matplotlib.type1font), 2892

U
unescape_doctest() (in module

matplotlib.sphinxext.plot_directive), 2773
UniformTriRefiner (class in matplotlib.tri), 2889
uninstall_repl_displayhook() (in module

matplotlib.pyplot), 2681
union() (matplotlib.transforms.BboxBase static method),

2860
unit() (matplotlib.transforms.Bbox static method), 2856
unit_circle() (matplotlib.path.Path class method), 2435
unit_circle_righthalf() (matplotlib.path.Path class

method), 2435
unit_cube() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3127
unit_rectangle() (matplotlib.path.Path class method),

2435
unit_regular_asterisk() (matplotlib.path.Path class

method), 2435
unit_regular_polygon() (matplotlib.path.Path class

method), 2435
unit_regular_star() (matplotlib.path.Path class

method), 2435
UnitData (class in matplotlib.category), 1679
unregister_cmap() (in module matplotlib.cm), 1698
update() (matplotlib.artist.Artist method), 1218
update() (matplotlib.backend_bases.NavigationToolbar2

method), 1592
update() (matplotlib.category.UnitData method), 1679
update() (matplotlib.collections.AsteriskPolygonCollection

method), 1719
update() (matplotlib.collections.BrokenBarHCollection

method), 1739
update() (matplotlib.collections.CircleCollection method),

1759
update() (matplotlib.collections.Collection method), 1780
update() (matplotlib.collections.EllipseCollection method),

1800
update() (matplotlib.collections.EventCollection method),

1822
update() (matplotlib.collections.LineCollection method),

1843
update() (matplotlib.collections.PatchCollection method),

1862
update() (matplotlib.collections.PathCollection method),

1883
update() (matplotlib.collections.PolyCollection method),

1904
update() (matplotlib.collections.QuadMesh method), 1925
update() (matplotlib.collections.RegularPolyCollection

method), 1946
update() (matplotlib.collections.StarPolygonCollection

method), 1966
update() (matplotlib.collections.TriMesh method), 1987
update() (matplotlib.docstring.Substitution method), 2069
update() (matplotlib.figure.Figure method), 2129

update() (matplotlib.figure.FigureBase method), 2171
update() (matplotlib.figure.SubFigure method), 2216
update() (matplotlib.figure.SubplotParams method), 2217
update() (matplotlib.gridspec.GridSpec method), 2230
update() (matplotlib.text.Text method), 2810
update() (mpl_toolkits.axisartist.grid_finder.GridFinder

method), 3077
update_bbox_position_size() (matplotlib.text.Text

method), 2811
update_bruteforce() (matplotlib.colorbar.Colorbar

method), 1989
update_datalim() (matplotlib.axes.Axes method), 1456
update_datalim() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3127
update_datalim_bounds() (matplotlib.axes.Axes

method), 1456
update_default_handler_map()

(matplotlib.legend.Legend class method), 2257
update_dict() (matplotlib.cm.ScalarMappable property),

1696
update_dict()

(matplotlib.collections.AsteriskPolygonCollection
property), 1719

update_dict()
(matplotlib.collections.BrokenBarHCollection
property), 1740

update_dict() (matplotlib.collections.CircleCollection
property), 1759

update_dict() (matplotlib.collections.Collection
property), 1781

update_dict() (matplotlib.collections.EllipseCollection
property), 1800

update_dict() (matplotlib.collections.EventCollection
property), 1822

update_dict() (matplotlib.collections.LineCollection
property), 1843

update_dict() (matplotlib.collections.PatchCollection
property), 1863

update_dict() (matplotlib.collections.PathCollection
property), 1884

update_dict() (matplotlib.collections.PolyCollection
property), 1904

update_dict() (matplotlib.collections.QuadMesh
property), 1926

update_dict()
(matplotlib.collections.RegularPolyCollection
property), 1946

update_dict()
(matplotlib.collections.StarPolygonCollection
property), 1966

update_dict() (matplotlib.collections.TriMesh property),
1987

update_frame() (matplotlib.offsetbox.AnchoredOffsetbox
method), 2315

update_frame() (matplotlib.offsetbox.PaddedBox method),
2327

update_from() (matplotlib.artist.Artist method), 1219
update_from()

(matplotlib.collections.AsteriskPolygonCollection

3480 Index

Matplotlib, Release 3.4.3

method), 1719
update_from()

(matplotlib.collections.BrokenBarHCollection
method), 1740

update_from() (matplotlib.collections.CircleCollection
method), 1759

update_from() (matplotlib.collections.Collection method),
1781

update_from() (matplotlib.collections.EllipseCollection
method), 1800

update_from() (matplotlib.collections.EventCollection
method), 1822

update_from() (matplotlib.collections.LineCollection
method), 1843

update_from() (matplotlib.collections.PatchCollection
method), 1863

update_from() (matplotlib.collections.PathCollection
method), 1884

update_from() (matplotlib.collections.PolyCollection
method), 1904

update_from() (matplotlib.collections.QuadMesh method),
1926

update_from()
(matplotlib.collections.RegularPolyCollection
method), 1946

update_from()
(matplotlib.collections.StarPolygonCollection
method), 1966

update_from() (matplotlib.collections.TriMesh method),
1987

update_from() (matplotlib.figure.Figure method), 2129
update_from() (matplotlib.figure.FigureBase method),

2172
update_from() (matplotlib.figure.SubFigure method), 2216
update_from() (matplotlib.lines.Line2D method), 2277
update_from() (matplotlib.patches.Patch method), 2401
update_from() (matplotlib.text.Text method), 2811
update_from_data_xy() (matplotlib.transforms.Bbox

method), 2856
update_from_first_child() (in module

matplotlib.legend_handler), 2263
update_from_path() (matplotlib.transforms.Bbox

method), 2856
update_grid_finder()

(mpl_toolkits.axisartist.grid_helper_curvelinear.GridHelperCurveLinear
method), 3082

update_home_views()
(matplotlib.backend_tools.ToolViewsPositions
method), 1617

update_keymap()
(matplotlib.backend_managers.ToolManager
method), 1606

update_lim()
(mpl_toolkits.axisartist.axislines.GridHelperBase
method), 3067

update_lim()
(mpl_toolkits.axisartist.floating_axes.FixedAxisArtistHelper
method), 3071

update_lim()

(mpl_toolkits.axisartist.grid_helper_curvelinear.FixedAxisArtistHelper
method), 3080

update_lim()
(mpl_toolkits.axisartist.grid_helper_curvelinear.FloatingAxisArtistHelper
method), 3081

update_normal() (matplotlib.colorbar.Colorbar method),
1989

update_offset()
(matplotlib.offsetbox.DraggableAnnotation method),
2319

update_offset() (matplotlib.offsetbox.DraggableBase
method), 2320

update_offset()
(matplotlib.offsetbox.DraggableOffsetBox method),
2320

update_params() (matplotlib.axes.SubplotBase method),
1243

update_params()
(mpl_toolkits.axes_grid1.axes_divider.SubplotDivider
method), 2963

update_position() (matplotlib.axis.Tick method), 1572
update_position()

(matplotlib.projections.polar.RadialTick method),
2724

update_position()
(matplotlib.projections.polar.ThetaTick method),
2726

update_positions()
(matplotlib.offsetbox.AnnotationBbox method), 2318

update_positions() (matplotlib.text.Annotation
method), 2798

update_prop() (matplotlib.legend_handler.HandlerBase
method), 2258

update_prop() (mat-
plotlib.legend_handler.HandlerRegularPolyCollection
method), 2262

update_scalarmappable()
(matplotlib.collections.AsteriskPolygonCollection
method), 1719

update_scalarmappable()
(matplotlib.collections.BrokenBarHCollection
method), 1740

update_scalarmappable()
(matplotlib.collections.CircleCollection method),
1759

update_scalarmappable()
(matplotlib.collections.Collection method), 1781

update_scalarmappable()
(matplotlib.collections.EllipseCollection method),
1800

update_scalarmappable()
(matplotlib.collections.EventCollection method),
1822

update_scalarmappable()
(matplotlib.collections.LineCollection method),
1843

update_scalarmappable()
(matplotlib.collections.PatchCollection method),
1863

Index 3481

Matplotlib, Release 3.4.3

update_scalarmappable()
(matplotlib.collections.PathCollection method),
1884

update_scalarmappable()
(matplotlib.collections.PolyCollection method),
1904

update_scalarmappable()
(matplotlib.collections.QuadMesh method), 1926

update_scalarmappable()
(matplotlib.collections.RegularPolyCollection
method), 1946

update_scalarmappable()
(matplotlib.collections.StarPolygonCollection
method), 1966

update_scalarmappable()
(matplotlib.collections.TriMesh method), 1987

update_ticks() (matplotlib.colorbar.ColorbarBase
method), 1993

update_transform()
(mpl_toolkits.axisartist.grid_finder.GridFinder
method), 3077

update_units() (matplotlib.axis.Axis method), 1561
update_view()

(matplotlib.backend_tools.ToolViewsPositions
method), 1617

update_viewlim()
(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesAuxTransBase
method), 3022

update_viewlim()
(mpl_toolkits.axes_grid1.parasite_axes.ParasiteAxesBase
method), 3022

use() (in module matplotlib), 1141
use() (in module matplotlib.style), 2779
use_overline() (matplotlib.ticker.LogitFormatter

method), 2830
use_sticky_edges() (matplotlib.axes.Axes property),

1483
use_xobject (matplotlib.backends.backend_pdf.Op

attribute), 1641
used_characters()

(matplotlib.backends.backend_pdf.PdfFile
property), 1643

used_characters()
(matplotlib.backends.backend_ps.RendererPS
property), 1661

useLocale() (matplotlib.ticker.ScalarFormatter property),
2839

useMathText() (matplotlib.ticker.EngFormatter property),
2821

useMathText() (matplotlib.ticker.ScalarFormatter
property), 2839

useOffset() (matplotlib.ticker.ScalarFormatter property),
2839

usetex() (matplotlib.ticker.EngFormatter property), 2821

V
v_interval() (mpl_toolkits.mplot3d.axis3d.Axis property),

3133

valid() (mpl_toolkits.axisartist.axislines.GridHelperBase
method), 3067

validate_any() (in module matplotlib.rcsetup), 2749
validate_anylist() (in module matplotlib.rcsetup),

2749
validate_aspect() (in module matplotlib.rcsetup), 2749
validate_axisbelow() (in module matplotlib.rcsetup),

2749
validate_backend() (in module matplotlib.rcsetup),

2749
validate_bbox() (in module matplotlib.rcsetup), 2750
validate_bool() (in module matplotlib.rcsetup), 2750
validate_bool_maybe_none() (in module

matplotlib.rcsetup), 2750
validate_color() (in module matplotlib.rcsetup), 2750
validate_color_for_prop_cycle() (in module

matplotlib.rcsetup), 2750
validate_color_or_auto() (in module

matplotlib.rcsetup), 2750
validate_color_or_inherit() (in module

matplotlib.rcsetup), 2750
validate_colorlist() (in module matplotlib.rcsetup),

2750
validate_cycler() (in module matplotlib.rcsetup), 2750
validate_dashlist() (in module matplotlib.rcsetup),

2750
validate_dpi() (in module matplotlib.rcsetup), 2750
validate_fillstylelist() (in module

matplotlib.rcsetup), 2750
validate_float() (in module matplotlib.rcsetup), 2750
validate_float_or_None() (in module

matplotlib.rcsetup), 2750
validate_floatlist() (in module matplotlib.rcsetup),

2750
validate_font_properties() (in module

matplotlib.rcsetup), 2750
validate_fontsize() (in module matplotlib.rcsetup),

2750
validate_fontsize_None() (in module

matplotlib.rcsetup), 2750
validate_fontsizelist() (in module

matplotlib.rcsetup), 2750
validate_fonttype() (in module matplotlib.rcsetup),

2750
validate_fontweight() (in module matplotlib.rcsetup),

2750
validate_hatch() (in module matplotlib.rcsetup), 2750
validate_hatchlist() (in module matplotlib.rcsetup),

2751
validate_hinting() (in module matplotlib.rcsetup),

2751
validate_hist_bins() (in module matplotlib.rcsetup),

2751
validate_int() (in module matplotlib.rcsetup), 2751
validate_int_or_None() (in module

matplotlib.rcsetup), 2751
validate_markevery() (in module matplotlib.rcsetup),

2751

3482 Index

Matplotlib, Release 3.4.3

validate_markeverylist() (in module
matplotlib.rcsetup), 2751

validate_movie_writer() (in module
matplotlib.rcsetup), 2751

validate_nseq_float() (in module matplotlib.rcsetup),
2752

validate_nseq_int() (in module matplotlib.rcsetup),
2752

validate_ps_distiller() (in module
matplotlib.rcsetup), 2752

validate_sketch() (in module matplotlib.rcsetup), 2752
validate_string() (in module matplotlib.rcsetup), 2752
validate_string_or_None() (in module

matplotlib.rcsetup), 2752
validate_stringlist() (in module matplotlib.rcsetup),

2752
validate_webagg_address() (in module

matplotlib.rcsetup), 2752
validate_whiskers() (in module matplotlib.rcsetup),

2752
ValidateInStrings (class in matplotlib.rcsetup), 2748
validCap (matplotlib.lines.Line2D attribute), 2277
validCap (matplotlib.patches.Patch attribute), 2401
validJoin (matplotlib.lines.Line2D attribute), 2277
validJoin (matplotlib.patches.Patch attribute), 2401
valign (matplotlib.quiver.QuiverKey attribute), 2740
value_escape() (in module matplotlib.fontconfig_pattern),

2226
value_unescape() (in module

matplotlib.fontconfig_pattern), 2226
VBoxDivider (class in

mpl_toolkits.axes_grid1.axes_divider), 2963
vcenter() (matplotlib.colors.CenteredNorm property), 2006
Verbatim (class in matplotlib.backends.backend_pdf), 1650
VertexSelector (class in matplotlib.lines), 2279
vertices() (matplotlib.path.Path property), 2436
vertices() (matplotlib.textpath.TextPath property), 2814
verts() (matplotlib.widgets.PolygonSelector property), 2906
Vf (class in matplotlib.dviread), 2073
view_init() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3128
view_limits() (mat-

plotlib.projections.polar.PolarAxes.RadialLocator
method), 2710

view_limits() (mat-
plotlib.projections.polar.PolarAxes.ThetaLocator
method), 2711

view_limits()
(matplotlib.projections.polar.RadialLocator
method), 2724

view_limits() (matplotlib.projections.polar.ThetaLocator
method), 2726

view_limits() (matplotlib.ticker.LinearLocator method),
2824

view_limits() (matplotlib.ticker.Locator method), 2825
view_limits() (matplotlib.ticker.LogLocator method),

2828
view_limits() (matplotlib.ticker.MaxNLocator method),

2832

view_limits() (matplotlib.ticker.MultipleLocator method),
2833

view_limits() (matplotlib.ticker.OldAutoLocator method),
2834

view_limits() (matplotlib.ticker.SymmetricalLogLocator
method), 2840

view_transformation() (in module
mpl_toolkits.mplot3d.proj3d), 3155

viewlim_to_dt() (matplotlib.dates.DateLocator method),
2058

ViewsPositionsBase (class in matplotlib.backend_tools),
1618

violin() (matplotlib.axes.Axes method), 1343
violin_stats() (in module matplotlib.cbook), 1692
violinplot() (in module matplotlib.pyplot), 2682
violinplot() (matplotlib.axes.Axes method), 1341
viridis() (in module matplotlib.pyplot), 2684
visible_edges() (matplotlib.table.Cell property), 2783
vlines() (in module matplotlib.pyplot), 2684
vlines() (matplotlib.axes.Axes method), 1295
voxels() (mpl_toolkits.mplot3d.axes3d.Axes3D method),

3128
VPacker (class in matplotlib.offsetbox), 2328

W
w_xaxis() (mpl_toolkits.mplot3d.axes3d.Axes3D property),

3129
w_yaxis() (mpl_toolkits.mplot3d.axes3d.Axes3D property),

3129
w_zaxis() (mpl_toolkits.mplot3d.axes3d.Axes3D property),

3129
WAIT (matplotlib.backend_tools.Cursors attribute), 1608
waitforbuttonpress() (in module matplotlib.pyplot),

2685
waitforbuttonpress() (matplotlib.figure.Figure

method), 2129
warn_deprecated() (in module

matplotlib._api.deprecation), 2924
warn_deprecated() (in module matplotlib.cbook), 1693
warn_external() (in module matplotlib._api), 2921
Wedge (class in matplotlib.patches), 2424
wedge() (matplotlib.path.Path class method), 2436
WeekdayLocator (class in matplotlib.dates), 2061
weeks() (matplotlib.dates.relativedelta property), 2066
Widget (class in matplotlib.widgets), 2919
width (matplotlib.afm.CharMetrics attribute), 1158
width (matplotlib.dviread.Tfm attribute), 2073
width() (matplotlib.patches.Ellipse property), 2372
width() (matplotlib.transforms.BboxBase property), 2860
widths (matplotlib.dviread.DviFont attribute), 2071
win32FontDirectory() (in module

matplotlib.font_manager), 2225
win32InstalledFonts() (in module

matplotlib.font_manager), 2226
window_hanning() (in module matplotlib.mlab), 2312
window_none() (in module matplotlib.mlab), 2312
winter() (in module matplotlib.pyplot), 2685
with_extremes() (matplotlib.colors.Colormap method),

2004

Index 3483

Matplotlib, Release 3.4.3

withSimplePatchShadow (class in
matplotlib.patheffects), 2441

withStroke (class in matplotlib.patheffects), 2442
withTickedStroke (class in matplotlib.patheffects), 2443
world_transformation() (in module

mpl_toolkits.mplot3d.proj3d), 3155
write() (matplotlib.backends.backend_pdf.PdfFile method),

1643
write() (matplotlib.backends.backend_pdf.Reference

method), 1645
write() (matplotlib.backends.backend_pdf.Stream method),

1650
writeExtGSTates()

(matplotlib.backends.backend_pdf.PdfFile method),
1643

writeFonts() (matplotlib.backends.backend_pdf.PdfFile
method), 1643

writeGouraudTriangles()
(matplotlib.backends.backend_pdf.PdfFile method),
1643

writeHatches()
(matplotlib.backends.backend_pdf.PdfFile method),
1643

writeImages() (matplotlib.backends.backend_pdf.PdfFile
method), 1643

writeInfoDict()
(matplotlib.backends.backend_pdf.PdfFile method),
1643

writeln() (in module matplotlib.backends.backend_pgf),
1656

writeMarkers()
(matplotlib.backends.backend_pdf.PdfFile method),
1643

writeObject() (matplotlib.backends.backend_pdf.PdfFile
method), 1643

writePath() (matplotlib.backends.backend_pdf.PdfFile
method), 1643

writePathCollectionTemplates()
(matplotlib.backends.backend_pdf.PdfFile method),
1643

writeTrailer()
(matplotlib.backends.backend_pdf.PdfFile method),
1643

writeXref() (matplotlib.backends.backend_pdf.PdfFile
method), 1643

X
x() (matplotlib.widgets.ToolHandles property), 2919
x0() (matplotlib.transforms.Bbox property), 2857
x0() (matplotlib.transforms.BboxBase property), 2861
x1() (matplotlib.transforms.Bbox property), 2857
x1() (matplotlib.transforms.BboxBase property), 2861
XAxis (class in matplotlib.axis), 1541
xaxis_date() (matplotlib.axes.Axes method), 1500
xaxis_inverted() (matplotlib.axes.Axes method), 1446
xcorr() (in module matplotlib.pyplot), 2686
xcorr() (matplotlib.axes.Axes method), 1335
xkcd() (in module matplotlib.pyplot), 2687

xlabel() (in module matplotlib.pyplot), 2688
xlim() (in module matplotlib.pyplot), 2689
xmax() (matplotlib.transforms.BboxBase property), 2861
xmin() (matplotlib.transforms.BboxBase property), 2861
XMLWriter (class in matplotlib.backends.backend_svg), 1667
xpdf_distill() (in module

matplotlib.backends.backend_ps), 1662
xscale() (in module matplotlib.pyplot), 2690
XTick (class in matplotlib.axis), 1570
xticks() (in module matplotlib.pyplot), 2691
xy() (matplotlib.patches.Polygon property), 2412
xy() (matplotlib.patches.Rectangle property), 2417
xyann() (matplotlib.offsetbox.AnnotationBbox property),

2318
xyann() (matplotlib.text.Annotation property), 2798
xycoords() (matplotlib.text.Annotation property), 2798

Y
y() (matplotlib.widgets.ToolHandles property), 2919
y0() (matplotlib.transforms.Bbox property), 2857
y0() (matplotlib.transforms.BboxBase property), 2861
y1() (matplotlib.transforms.Bbox property), 2857
y1() (matplotlib.transforms.BboxBase property), 2861
YAxis (class in matplotlib.axis), 1542
yaxis_date() (matplotlib.axes.Axes method), 1505
yaxis_inverted() (matplotlib.axes.Axes method), 1447
YearLocator (class in matplotlib.dates), 2061
ylabel() (in module matplotlib.pyplot), 2692
ylim() (in module matplotlib.pyplot), 2693
ymax() (matplotlib.transforms.BboxBase property), 2861
ymin() (matplotlib.transforms.BboxBase property), 2861
yscale() (in module matplotlib.pyplot), 2694
YTick (class in matplotlib.axis), 1570
yticks() (in module matplotlib.pyplot), 2695

Z
zaxis_date() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3129
zaxis_inverted() (mpl_toolkits.mplot3d.axes3d.Axes3D

method), 3130
zoom() (matplotlib.axis.Axis method), 1562
zoom() (matplotlib.backend_bases.NavigationToolbar2

method), 1592
zoom() (mat-

plotlib.projections.polar.PolarAxes.RadialLocator
method), 2710

zoom() (matplotlib.projections.polar.PolarAxes.ThetaLocator
method), 2711

zoom() (matplotlib.projections.polar.RadialLocator method),
2724

zoom() (matplotlib.projections.polar.ThetaLocator method),
2726

zoom() (matplotlib.ticker.Locator method), 2825
zoomed_inset_axes() (in module

mpl_toolkits.axes_grid1.inset_locator), 3011
ZoomPanBase (class in matplotlib.backend_tools), 1618
zorder (matplotlib.artist.Artist attribute), 1222
zorder (matplotlib.axes.Axes attribute), 1539

3484 Index

Matplotlib, Release 3.4.3

zorder (matplotlib.collections.AsteriskPolygonCollection
attribute), 1719

zorder (matplotlib.collections.BrokenBarHCollection
attribute), 1740

zorder (matplotlib.collections.CircleCollection attribute),
1759

zorder (matplotlib.collections.Collection attribute), 1781
zorder (matplotlib.collections.EllipseCollection attribute),

1800
zorder (matplotlib.collections.EventCollection attribute),

1822
zorder (matplotlib.collections.LineCollection attribute), 1843
zorder (matplotlib.collections.PatchCollection attribute),

1863
zorder (matplotlib.collections.PathCollection attribute),

1884
zorder (matplotlib.collections.PolyCollection attribute), 1904
zorder (matplotlib.collections.QuadMesh attribute), 1926
zorder (matplotlib.collections.RegularPolyCollection

attribute), 1946
zorder (matplotlib.collections.StarPolygonCollection

attribute), 1966
zorder (matplotlib.collections.TriMesh attribute), 1987
zorder (matplotlib.figure.Figure attribute), 2129
zorder (matplotlib.figure.FigureBase attribute), 2172
zorder (matplotlib.figure.SubFigure attribute), 2216
zorder (matplotlib.image.FigureImage attribute), 2241
zorder (matplotlib.legend.Legend attribute), 2257
zorder (matplotlib.lines.Line2D attribute), 2277
zorder (matplotlib.offsetbox.AnchoredOffsetbox attribute),

2315
zorder (matplotlib.offsetbox.AnnotationBbox attribute), 2318
zorder (matplotlib.patches.Patch attribute), 2401
zorder (matplotlib.text.Text attribute), 2811
ZORDER (mpl_toolkits.axisartist.axis_artist.AxisArtist

attribute), 3041
zorder (mpl_toolkits.axisartist.axis_artist.AxisArtist

attribute), 3044

Index 3485

	I User's Guide
	Installation
	Tutorials
	Interactive Figures
	What's new?
	What's new in Matplotlib 3.4.0
	History
	GitHub Stats
	Previous What's New
	License
	Citing Matplotlib
	Credits

	II The Matplotlib FAQ
	Installation
	How-to
	Troubleshooting
	Environment Variables

	III API Overview
	API Changes
	Usage patterns
	Modules
	Toolkits

	IV External Resources
	Books, Chapters and Articles
	Videos
	Tutorials

	V Third party packages
	Mapping toolkits
	Declarative libraries
	Specialty plots
	Animations
	Interactivity
	Rendering backends
	GUI integration
	Miscellaneous
	GUI applications

	VI The Matplotlib Developers' Guide
	Contributing
	Bug triaging and issue curation
	Setting up Matplotlib for development
	Testing
	Writing documentation
	Developer's guide for creating scales and transformations
	Working with Matplotlib source code
	Pull request guidelines
	Release Guide
	Dependencies
	Minimum Version of Dependencies Policy
	Matplotlib Enhancement Proposals
	Licenses
	Default Color changes

	VII Appendices
	Bibliography
	Python Module Index
	Index

