Matplotlib
Release 3.4.3

John Hunter

Darren Dale

Eric Firing

Michael Droettboom

and the matplotlib development team

August 13, 2021

10

11

I

12

13

14

15

User's Guide
Installation

Tutorials

Interactive Figures
What's new?

What's new in Matplotlib 3.4.0
History

GitHub Stats
Previous What's New
License

Citing Matplotlib

Credits

The Matplotlib FAQ
Installation
How-to
Troubleshooting

Environment Variables

IIT API Overview

16

API Changes

CONTENTS

403
425
427
461
463
677
917
921

925

929
931
935
943

947

949

951

17 Usage patterns
18 Modules

19 Toolkits

IV External Resources
20 Books, Chapters and Articles
21 Videos

22 Tutorials

V Third party packages
23 Mapping toolkits

24 Declarative libraries

25 Specialty plots

26 Animations

27 Interactivity

28 Rendering backends

29 GUI integration

30 Miscellaneous

31 GUI applications

VI The Matplotlib Developers' Guide

32 Contributing

33 Bug triaging and issue curation

34 Setting up Matplotlib for development

35 Testing

36 Writing documentation

37 Developer's guide for creating scales and transformations

38 Working with Matplotlib source code

1139
1141

2929

3157
3159
3161

3163

3165
3169
3173
3175
3181
3183
3185
3187
3189

3195

3197
3201
3211
3215
3219
3225
3245

3249

39 Pull request guidelines

40 Release Guide

41 Dependencies

42 Minimum Version of Dependencies Policy
43 Matplotlib Enhancement Proposals

44 Licenses

45 Default Color changes

VII Appendices
Bibliography
Python Module Index

Index

3271
3277
3285
3289
3291
3357

3359

3363
3365
3367

3369

Part 1

User's Guide

CHAPTER
ONE

INSTALLATION

1.1 Installing from source

If you are interested in contributing to Matplotlib development, running the latest source code, or just like to
build everything yourself, it is not difficult to build Matplotlib from source.

First you need to install the Dependencies.

A C compiler is required. Typically, on Linux, you will need gcc, which should be installed using your
distribution's package manager; on macOS, you will need xcode; on Windows, you will need Visual Studio
2015 or later.

The easiest way to get the latest development version to start contributing is to go to the git repository and
run:

git clone https://github.com/matplotlib/matplotlib.git

or:

git clone git@github.com:matplotlib/matplotlib.git

If you're developing, it's better to do it in editable mode. The reason why is that pytest's test discovery only
works for Matplotlib if installation is done this way. Also, editable mode allows your code changes to be
instantly propagated to your library code without reinstalling (though you will have to restart your python
process / kernel):

cd matplotlib
python -m pip install -e

If you're not developing, it can be installed from the source directory with a simple (just replace the last step):

python -m pip install

To run the tests you will need to install some additional dependencies:

python -m pip install -r requirements/dev/dev-requirements.txt

Then, if you want to update your Matplotlib at any time, just do:

https://guide.macports.org/chunked/installing.html#installing.xcode
https://github.com/matplotlib/matplotlib

Matplotlib, Release 3.4.3

git pull

When you run git pull, if the output shows that only Python files have been updated, you are all set. If
C files have changed, you need torun pip install -e . again to compile them.

There is more information on using git in the developer docs.

Warning: The following instructions in this section are for very custom installations of Matplotlib.
Proceed with caution because these instructions may result in your build producing unexpected behavior
and/or causing local testing to fail.

If you would like to build from a tarball, grab the latest far.gz release file from the PyPI files page.

We provide a setup.cfg file which you can use to customize the build process. For example, which default
backend to use, whether some of the optional libraries that Matplotlib ships with are installed, and so on.
This file will be particularly useful to those packaging Matplotlib.

If you are building your own Matplotlib wheels (or sdists) on Windows, note that any DLLs that you copy
into the source tree will be packaged too.

1.2 Installing an official release

Matplotlib releases are available as wheel packages for macOS, Windows and Linux on PyPI. Install it using
pip:

python -m pip install -U pip
python —-m pip install -U matplotlib

If this command results in Matplotlib being compiled from source and there's trouble with the compilation,
youcan add ——-prefer-binary to select the newest version of Matplotlib for which there is a precompiled
wheel for your OS and Python.

Note: The following backends work out of the box: Agg, ps, pdf, svg
Python is typically shipped with tk bindings which are used by TkAgg.

For support of other GUI frameworks, LaTeX rendering, saving animations and a larger selection of file
formats, you can install Optional dependencies.

4 Chapter 1. Installation

https://pypi.org/project/matplotlib/
https://raw.githubusercontent.com/matplotlib/matplotlib/master/setup.cfg.template
https://pypi.org/project/matplotlib/

Matplotlib, Release 3.4.3

1.3 Third-party distributions

Various third-parties provide Matplotlib for their environments.

1.3.1 Conda packages

Matplotlib is available both via the anaconda main channel

conda install matplotlib

as well as via the conda-forge community channel

conda install -c conda-forge matplotlib

1.3.2 Python distributions

Matplotlib is part of major Python distributions:
e Anaconda
e ActiveState ActivePython
e WinPython

1.3.3 Linux package manager
If you are using the Python version that comes with your Linux distribution, you can install Matplotlib via
your package manager, e.g.:

e Debian / Ubuntu: sudo apt-get install python3-matplotlib

e Fedora: sudo dnf install python3-matplotlib

e Red Hat: sudo yum install python3-matplotlib

e Arch: sudo pacman —-S python-matplotlib

1.4 Installing from source

See Installing from source.

1.3. Third-party distributions 5

https://www.anaconda.com/
https://www.activestate.com/activepython/downloads
https://winpython.github.io/

Matplotlib, Release 3.4.3

1.5 Installing for development

See Setting up Matplotlib for development.

6 Chapter 1. Installation

CHAPTER
TWO

TUTORIALS

This page contains more in-depth guides for using Matplotlib. It is broken up into beginner, intermediate,
and advanced sections, as well as sections covering specific topics.

For shorter examples, see our examples page. You can also find external resources and a FAQ in our user
guide.

2.1 Introductory

These tutorials cover the basics of creating visualizations with Matplotlib, as well as some best-practices in
using the package effectively.

2.1.1 Usage Guide

This tutorial covers some basic usage patterns and best-practices to help you get started with Matplotlib.

import matplotlib.pyplot as plt
import numpy as np

A simple example

Matplotlib graphs your data on Figures (i.e., windows, Jupyter widgets, etc.), each of which can contain
one or more Axes (i.e., an area where points can be specified in terms of x-y coordinates, or theta-r in a
polar plot, or x-y-z in a 3D plot, etc.). The simplest way of creating a figure with an axes is using pyplot.
subplots. We can then use Axes.plot to draw some data on the axes:

fig, ax = plt.subplots() # Create a figure containing a single axes.
ax.plot([1, 2, 3, 41, [1, 4, 2, 31) # Plot some data on the axes.

../gallery/index.html
../resources/index.html
../faq/index.html
../contents.html
../contents.html

Matplotlib, Release 3.4.3

4.0

3.5 T

3.0

2.5

2.0 1

1.5+

1.0+

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Out:

[<matplotlib.lines.Line2D object at 0x7fe6d4alcflf0>]

Many other plotting libraries or languages do not require you to explicitly create an axes. For example, in
MATLAB, one can just do

plot ([1, 2, 3, 41, [1, 4, 2, 3]) & MATLAB plot.

and get the desired graph.

In fact, you can do the same in Matplotlib: for each Axe s graphing method, there is a corresponding function
inthe matplotlib.pyplot module that performs that plot on the "current" axes, creating that axes (and
its parent figure) if they don't exist yet. So, the previous example can be written more shortly as

plt.plot ([1, 2, 3, 41, [1, 4, 2, 3]) # Matplotlib plot.

8 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

4.0

3.5 T

3.0

2.5

2.0 1

1.5+

1.0+

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Out:

[<matplotlib.lines.Line2D object at 0x7fe659d068b0>]

Parts of a Figure

Now, let's have a deeper look at the components of a Matplotlib figure.

2.1. Introductory 9

Matplotlib, Release 3.4.3

@ Anaw of a figure

Title

|
|
Major tick :
I

D

Minor tick

Major tick label

l=]

s label

|
|
|
I
|
7 | o]
I
o]
T ©
0 o]
= o
m 22— ——————= ———————————- ol
_ [
o %o o)
Y axis labhel Q Oo: o
|
© o
- |
| o
|
l__________o _____ Y :
o b |
— | |
|
O oS '
. | | |
. | I [
Figure Line : :
4 Axes (line plot) I |
; : I
0 T T i T T T i T T T i T T T
0.2% 2.75 1 1.25 1.50 2 2.25 2.50 2.75 3 3.25 3.50 3.75 4

Minor tick label Made with http://matplotlib.org

X axis label

Figure

The whole figure. The figure keeps track of all the child Axes, a smattering of 'special’ artists (titles, figure
legends, etc), and the canvas. (Don't worry too much about the canvas, it is crucial as it is the object that
actually does the drawing to get you your plot, but as the user it is more-or-less invisible to you). A figure
can contain any number of Axes, but will typically have at least one.

The easiest way to create a new figure is with pyplot:

fig = plt.figure() # an empty figure with no Axes
fig, ax = plt.subplots() # a figure with a single Axes

(continues on next page)

10 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

fig, axs = plt.subplots (2, 2) # a figure with a 2x2 grid of Axes

It's convenient to create the axes together with the figure, but you can also add axes later on, allowing for
more complex axes layouts.

Axes

This is what you think of as 'a plot, it is the region of the image with the data space. A given figure can
contain many Axes, but a given Axes object can only be in one Figure. The Axes contains two (or
three in the case of 3D) Axis objects (be aware of the difference between Axes and Axis) which take
care of the data limits (the data limits can also be controlled via the axes.Axes.set_xlim() and
axes.Axes.set_ylim() methods). Each Axes has a title (set via set_title ()), an X-label (set
via set_xlabel ()), and a y-label set via set_ylabel ()).

The Axes class and its member functions are the primary entry point to working with the OO interface.

Axis

These are the number-line-like objects. They take care of setting the graph limits and generating the ticks
(the marks on the axis) and ticklabels (strings labeling the ticks). The location of the ticks is determined by a
Locator object and the ticklabel strings are formatted by a Format ter. The combination of the correct
Locator and Formatter gives very fine control over the tick locations and labels.

Artist

Basically, everything you can see on the figure is an artist (even the Figure, Axes, and Axis objects).
This includes Text objects, Line2D objects, collections objects, Patch objects ... (you get the idea).
When the figure is rendered, all of the artists are drawn to the canvas. Most Artists are tied to an Axes; such
an Artist cannot be shared by multiple Axes, or moved from one to another.

Types of inputs to plotting functions

All of plotting functions expect numpy .array or numpy .ma.masked_array as input. Classes that
are 'array-like' such as pandas data objects and numpy . mat rix may or may not work as intended. It is
best to convert these to numpy . array objects prior to plotting.

For example, to convert a pandas.DataFrame

a = pandas.DataFrame (np.random.rand (4, 5), columns = list ('abcde'))
a_asarray = a.values

and to convert a numpy .matrix

2.1. Introductory 11

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numpy.org/doc/stable/reference/generated/numpy.ma.masked_array.html#numpy.ma.masked_array
https://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix

Matplotlib, Release 3.4.3

b = np.matrix([[1, 2], [3, 411]1)
b_asarray = np.asarray (b)

The object-oriented interface and the pyplot interface

As noted above, there are essentially two ways to use Matplotlib:
o Explicitly create figures and axes, and call methods on them (the "object-oriented (OO) style").

e Rely on pyplot to automatically create and manage the figures and axes, and use pyplot functions for
plotting.

So one can do (OO-style)

x = np.linspace (0, 2, 100)

Note that even in the 00-style, we use .pyplot.figure' to create the.
~figure.

fig, ax = plt.subplots() # Create a figure and an axes.

ax.plot (x, x, label='linear') # Plot some data on the axes.

ax.plot(x, x**2, label='quadratic') # Plot more data on the axes...

ax.plot (x, x**3, label='cubic'") # ... and some more.

ax.set_xlabel ('x label'") # Add an x-label to the axes.

ax.set_ylabel('y label'") # Add a y-label to the axes.

ax.set_title("Simple Plot") # Add a title to the axes.

ax.legend() # Add a legend.

12 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Simple Plot

8 1 — linear
guadratic
71 —— cubic

y label
Y

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X label

Out:

<matplotlib.legend.Legend object at 0x7fe65a0d3c70>

or (pyplot-style)

X = np.linspace (0, 2, 100)

plt.plot (x, x, label='linear') # Plot some data on the (implicit) axes.
plt.plot (x, x**2, label='quadratic') # etc.

plt.plot(x, x**3, label='cubic')

plt.xlabel ('x label')

plt.ylabel ('y label')

plt.title("Simple Plot")

plt.legend()

2.1. Introductory 13

Matplotlib, Release 3.4.3

Simple Plot

8 1 — linear
guadratic
71 —— cubic

y label
Y

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X label

Out:

<matplotlib.legend.Legend object at 0x7fe64c428340>

In addition, there is a third approach, for the case when embedding Matplotlib in a GUI application, which
completely drops pyplot, even for figure creation. We won't discuss it here; see the corresponding section in
the gallery for more info (user_interfaces).

Matplotlib's documentation and examples use both the OO and the pyplot approaches (which are equally
powerful), and you should feel free to use either (however, it is preferable pick one of them and stick to it,
instead of mixing them). In general, we suggest to restrict pyplot to interactive plotting (e.g., in a Jupyter
notebook), and to prefer the OO-style for non-interactive plotting (in functions and scripts that are intended
to be reused as part of a larger project).

Note: In older examples, you may find examples that instead used the so-called pylab interface, via from
pylab import *. This star-import imports everything both from pyplot and from numpy, so that one
could do

x = linspace (0, 2, 100)
plot (x, x, label='linear'")

14 Chapter 2. Tutorials

https://numpy.org/doc/stable/reference/index.html#module-numpy

Matplotlib, Release 3.4.3

for an even more MATLAB-like style. This approach is strongly discouraged nowadays and deprecated. It
is only mentioned here because you may still encounter it in the wild.

Typically one finds oneself making the same plots over and over again, but with different data sets, which
leads to needing to write specialized functions to do the plotting. The recommended function signature is
something like:

def my_plotter (ax, datal, data2, param_dict):

mirrn

A helper function to make a graph

Parameters
ax : Axes
The axes to draw to

datal : array
The x data

dataZ2 : array
The y data

param_dict : dict
Dictionary of kwargs to pass to ax.plot

Returns
out : 1ist
list of artists added
mrrn
out = ax.plot (datal, data2, **param_dict)
return out

which you would then use as:

datal, data2, data3, dataid
fig, ax = plt.subplots(l, 1)
my_plotter (ax, datal, data2, {'marker': 'x'})

np.random.randn (4, 100)

2.1. Introductory 15

Matplotlib, Release 3.4.3

Out:

[<matplotlib.lines.Line2D object at 0x7fe64b5e2220>]

or if you wanted to have 2 sub-plots:

fig, (axl, ax2) = plt.subplots(l, 2)
my_plotter (axl, datal, dataz, {'marker': 'x'})
my_plotter (ax2, data3, datad4, {'marker': 'o'})

16 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

[<matplotlib.lines.Line2D object at 0x7fe64b411250>]

For these simple examples this style seems like overkill, however once the graphs get slightly more complex
it pays off.

Backends

What is a backend?

A lot of documentation on the website and in the mailing lists refers to the "backend" and many new users
are confused by this term. Matplotlib targets many different use cases and output formats. Some people use
Matplotlib interactively from the python shell and have plotting windows pop up when they type commands.
Some people run Jupyter notebooks and draw inline plots for quick data analysis. Others embed Matplotlib
into graphical user interfaces like PyQt or PyGObject to build rich applications. Some people use Matplotlib
in batch scripts to generate postscript images from numerical simulations, and still others run web application
servers to dynamically serve up graphs.

To support all of these use cases, Matplotlib can target different outputs, and each of these capabilities is
called a backend; the "frontend" is the user facing code, i.e., the plotting code, whereas the "backend" does

2.1. Introductory 17

https://jupyter.org

Matplotlib, Release 3.4.3

all the hard work behind-the-scenes to make the figure. There are two types of backends: user interface
backends (for use in PyQt/PySide, PyGObject, Tkinter, wxPython, or macOS/Cocoa); also referred to as
"interactive backends") and hardcopy backends to make image files (PNG, SVG, PDF, PS; also referred to
as "non-interactive backends").

Selecting a backend

There are three ways to configure your backend:
1. The rcParams ["backend"] parameter in your matplotlibrc file
2. The MPLBACKEND environment variable
3. The function matplotlib.use ()

A more detailed description is given below.

If multiple of these are configurations are present, the last one from the list takes precedence; e.g. calling
matplotlib.use () will override the setting in your matplotlibrc.

If no backend is explicitly set, Matplotlib automatically detects a usable backend based on what is available
on your system and on whether a GUI event loop is already running. On Linux, if the environment variable
DISPLAY is unset, the "event loop" is identified as "headless", which causes a fallback to a noninteractive
backend (agg); in all other cases, an interactive backend is preferred (usually, at least tkagg will be available).

Here is a detailed description of the configuration methods:

1. Setting rcParams ["backend"] in yourmatplotlibzrc file:

backend : gtbagg # use pyqtb with antigrain (agg) rendering

See also Customizing Matplotlib with style sheets and rcParams.
2. Setting the MPLBACKEND environment variable:
You can set the environment variable either for your current shell or for a single script.

On Unix:

> export MPLBACKEND=gt5agg
> python simple_plot.py

> MPLBACKEND=gt5agg python simple_plot.py

On Windows, only the former is possible:

> set MPLBACKEND=gtb5agg
> python simple_plot.py

Setting this environment variable will override the backend parameter inanymatplotlibrc, even
if there is a matplotlibrc in your current working directory. Therefore, setting MPLBACKEND
globally, e.g. in your .bashrc or .profile, is discouraged as it might lead to counter-intuitive
behavior.

18 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=backend#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=backend#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

3. If your script depends on a specific backend you can use the function matplotlib.use ():

import matplotlib
matplotlib.use ('gtS5agg"')

This should be done before any figure is created, otherwise Matplotlib may fail to switch the backend
and raise an ImportError.

Using use will require changes in your code if users want to use a different backend. Therefore, you
should avoid explicitly calling use unless absolutely necessary.

The builtin backends

By default, Matplotlib should automatically select a default backend which allows both interactive work and
plotting from scripts, with output to the screen and/or to a file, so at least initially, you will not need to worry
about the backend. The most common exception is if your Python distribution comes without tkinter
and you have no other GUI toolkit installed. This happens on certain Linux distributions, where you need to
install a Linux package named python-tk (or similar).

If, however, you want to write graphical user interfaces, or a web application server
(/gallery/user_interfaces/web_application_server_sgskip), or need a better understanding of what is
going on, read on. To make things a little more customizable for graphical user interfaces, Matplotlib
separates the concept of the renderer (the thing that actually does the drawing) from the canvas (the place
where the drawing goes). The canonical renderer for user interfaces is Agg which uses the Anti-Grain
Geometry C++ library to make a raster (pixel) image of the figure; it is used by the Qt 5Agg, Ot 4Agg,
GTK3Agg, wxAgg, TkAgg, and macosx backends. An alternative renderer is based on the Cairo library,
used by Qt 5Cairo, Qt4Cairo, etc.

For the rendering engines, one can also distinguish between vector or raster renderers. Vector graphics
languages issue drawing commands like "draw a line from this point to this point" and hence are scale free,
and raster backends generate a pixel representation of the line whose accuracy depends on a DPI setting.

Here is a summary of the Matplotlib renderers (there is an eponymous backend for each; these are non-
interactive backends, capable of writing to a file):

Ren- Filetypes Description
derer
AGG png raster graphics -- high quality images using the Anti-Grain Geometry en-
gine
PDF pdf vector graphics -- Portable Document Format
PS ps, eps vector graphics -- Postscript output
SVG svg vector graphics -- Scalable Vector Graphics
PGF pef, pdf vector graphics -- using the pgf package
Cairo png, ps, pdf, | raster or vector graphics -- using the Cairo library
svg

To save plots wusing the non-interactive backends, use the matplotlib.pyplot.
savefig('filename') method.

2.1. Introductory 19

https://docs.python.org/3/library/tkinter.html#module-tkinter
http://antigrain.com/
http://antigrain.com/
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/Raster_graphics
http://antigrain.com/
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Portable_Document_Format
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/Vector_graphics
https://ctan.org/pkg/pgf
https://en.wikipedia.org/wiki/Raster_graphics
https://en.wikipedia.org/wiki/Vector_graphics
https://www.cairographics.org

Matplotlib, Release 3.4.3

And here are the user interfaces and renderer combinations supported; these are interactive backends, capable
of displaying to the screen and of using appropriate renderers from the table above to write to a file:

Back- | Description
end
Qt5SAgg| Aggrendering in a Qt5 canvas (requires PyQt5). This backend can be activated in IPython with
$matplotlib gtb.

ipympl | Agg rendering embedded in a Jupyter widget. (requires ipympl). This backend can be enabled
in a Jupyter notebook with $matplotlib ipympl.

GTK3AggAgg rendering toa GTK 3.x canvas (requires PyGObject, and pycairo or cairocffi). This backend
can be activated in IPython with $matplotlib gtk3.

ma- Agg rendering into a Cocoa canvas in OSX. This backend can be activated in IPython with
COSX matplotlib osx.

TkAgg | Aggrendering to a Tk canvas (requires TklInter). This backend can be activated in [Python with
$matplotlib tk.

nbAgg | Embed an interactive figure in a Jupyter classic notebook. This backend can be enabled in
Jupyter notebooks via $matplotlib notebook.

We- On show () will start a tornado server with an interactive figure.

bAgg
GTK3Caifdairo rendering to a GTK 3.x canvas (requires PyGObject, and pycairo or cairocffi).

Qt4Agg| Agg rendering to a Qt4 canvas (requires PyQt4 or pyside). This backend can be activated in
[Python with $matplotlib qgt4.

WX- Agg rendering to a wxWidgets canvas (requires wxPython 4). This backend can be activated in
Agg [Python with $matplotlib wx.

Note: The names of builtin backends case-insensitive; e.g., 'Qt5Agg' and 'qtSagg' are equivalent.

ipympl

The Jupyter widget ecosystem is moving too fast to support directly in Matplotlib. To install ipympl

pip install ipympl
jupyter nbextension enable --py —--sys-prefix ipympl

or

conda install ipympl -c conda-forge

See jupyter-matplotlib for more details.

20 Chapter 2. Tutorials

https://doc.qt.io/qt-5/index.html
https://riverbankcomputing.com/software/pyqt/intro
https://www.gtk.org/
https://wiki.gnome.org/action/show/Projects/PyGObject
https://www.cairographics.org/pycairo/
https://pythonhosted.org/cairocffi/
https://www.tcl.tk/
https://docs.python.org/3/library/tk.html
https://www.gtk.org/
https://wiki.gnome.org/action/show/Projects/PyGObject
https://www.cairographics.org/pycairo/
https://pythonhosted.org/cairocffi/
https://doc.qt.io/archives/qt-4.8/index.html
https://riverbankcomputing.com/software/pyqt/intro
https://www.wxwidgets.org/
https://www.wxpython.org/
https://github.com/matplotlib/jupyter-matplotlib

Matplotlib, Release 3.4.3

How do | select PyQt4 or PySide?

The OT APT environment variable can be set to either pygt or pyside to use PyQt4 or PySide, re-
spectively.

Since the default value for the bindings to be used is PyQt 4, Matplotlib first tries to import it. If the import
fails, it tries to import PySide.

Using non-builtin backends

More generally, any importable backend can be selected by using any of the methods above. If name.of.
the.backend is the module containing the backend, use module://name.of.the.backend asthe
backend name, e.g. matplotlib.use ('module://name.of.the.backend').

What is interactive mode?

Use of an interactive backend (see What is a backend?) permits--but does not by itself require or ensure--
plotting to the screen. Whether and when plotting to the screen occurs, and whether a script or shell session
continues after a plot is drawn on the screen, depends on the functions and methods that are called, and on a
state variable that determines whether Matplotlib is in "interactive mode". The default Boolean value is set by
the matplotlibrc file, and may be customized like any other configuration parameter (see Customizing
Matplotlib with style sheets and rcParams). It may also be set via matplotlib.interactive (), and
its value may be queried viamatplotlib.is_interactive (). Turning interactive mode on and off in
the middle of a stream of plotting commands, whether in a script or in a shell, is rarely needed and potentially
confusing. In the following, we will assume all plotting is done with interactive mode either on or off.

Note: Major changes related to interactivity, and in particular the role and behavior of show (), were made
in the transition to Matplotlib version 1.0, and bugs were fixed in 1.0.1. Here we describe the version 1.0.1
behavior for the primary interactive backends, with the partial exception of macosx.

Interactive mode may also be turned on via matplotlib.pyplot.ion(), and turned off via
matplotlib.pyplot.ioff ().

Note: Interactive mode works with suitable backends in ipython and in the ordinary python shell, but it
does not work in the IDLE IDE. If the default backend does not support interactivity, an interactive backend
can be explicitly activated using any of the methods discussed in What is a backend?.

2.1. Introductory 21

Matplotlib, Release 3.4.3

Interactive example

From an ordinary python prompt, or after invoking ipython with no options, try this:

import matplotlib.pyplot as plt
plt.ion ()
plt.plot([1.6, 2.7])

This will pop up a plot window. Your terminal prompt will remain active, so that you can type additional
commands such as:

plt.title("interactive test")
plt.xlabel ("index")

On most interactive backends, the figure window will also be updated if you change it via the object-oriented
interface. E.g. get a reference to the Axes instance, and call a method of that instance:

ax = plt.gcal()
ax.plot ([3.1, 2.2])

If you are using certain backends (like macosx), or an older version of Matplotlib, you may not see the new
line added to the plot immediately. In this case, you need to explicitly call draw () in order to update the
plot:

plt.draw()

Non-interactive example

Start a fresh session as in the previous example, but now turn interactive mode off:

import matplotlib.pyplot as plt
plt.ioff ()
plt.plot ([1.6, 2.7])

Nothing happened--or at least nothing has shown up on the screen (unless you are using macosx backend,
which is anomalous). To make the plot appear, you need to do this:

plt.show()

Now you see the plot, but your terminal command line is unresponsive; pyplot . show () blocks the input
of additional commands until you manually kill the plot window.

What good is this--being forced to use a blocking function? Suppose you need a script that plots the contents
of afile to the screen. You want to look at that plot, and then end the script. Without some blocking command
such as show (), the script would flash up the plot and then end immediately, leaving nothing on the screen.

In addition, non-interactive mode delays all drawing until show () 1is called; this is more efficient than
redrawing the plot each time a line in the script adds a new feature.

22 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Prior to version 1.0, show () generally could not be called more than once in a single script (although
sometimes one could get away with it); for version 1.0.1 and above, this restriction is lifted, so one can write
a script like this:

import numpy as np
import matplotlib.pyplot as plt

plt.io0ff ()

for i in range(3):
plt.plot (np.random.rand (10))
plt.show ()

This makes three plots, one at a time. IL.e., the second plot will show up once the first plot is closed.

Summary

In interactive mode, pyplot functions automatically draw to the screen.

When plotting interactively, if using object method calls in addition to pyplot functions, then call draw ()
whenever you want to refresh the plot.

Use non-interactive mode in scripts in which you want to generate one or more figures and display them
before ending or generating a new set of figures. In that case, use show () to display the figure(s) and to
block execution until you have manually destroyed them.

Performance

Whether exploring data in interactive mode or programmatically saving lots of plots, rendering performance
can be a painful bottleneck in your pipeline. Matplotlib provides a couple ways to greatly reduce rendering
time at the cost of a slight change (to a settable tolerance) in your plot's appearance. The methods available
to reduce rendering time depend on the type of plot that is being created.

Line segment simplification

For plots that have line segments (e.g. typical line plots, outlines of polygons, etc.), rendering performance
can be controlled by rcParams["path.simplify"] (default: True) and rcParams|["path.
simplify_threshold"] (default: 0.111111111111), which can be defined e.g. in the mat-
plotlibrc file (see Customizing Matplotlib with style sheets and rcParams for more information about
the matplotlibrc file). rcParams|["path.simplify"] (default: True) is a boolean indicating
whether or not line segments are simplified at all. rcParams ["path.simplify_ threshold"] (de-
fault: 0.111111111111) controls how much line segments are simplified; higher thresholds result in
quicker rendering.

The following script will first display the data without any simplification, and then display the same data
with simplification. Try interacting with both of them:

2.1. Introductory 23

../../tutorials/introductory/customizing.html?highlight=path.simplify#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=path.simplify_threshold#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=path.simplify_threshold#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=path.simplify#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=path.simplify_threshold#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

Setup, and create the data to plot
y = np.random.rand(100000)
y[50000:] *= 2

y [np.geomspace (10, 50000, 400).astype(int)] = -1
mpl.rcParams|['path.simplify'] = True
mpl.rcParams|['path.simplify_threshold'] = 0.0
plt.plot (y)

plt.show()

mpl.rcParams|['path.simplify threshold'] = 1.0
plt.plot (y)

plt.show ()

Matplotlib currently defaults to a conservative simplification threshold of 1 /9. If you want to change your
default settings to use a different value, you can change your matplotlibrc file. Alternatively, you could
create a new style for interactive plotting (with maximal simplification) and another style for publication
quality plotting (with minimal simplification) and activate them as necessary. See Customizing Matplotlib
with style sheets and rcParams for instructions on how to perform these actions.

The simplification works by iteratively merging line segments into a single vector until the next line seg-
ment's perpendicular distance to the vector (measured in display-coordinate space) is greater than the path.
simplify_threshold parameter.

Note: Changes related to how line segments are simplified were made in version 2.1. Rendering time will
still be improved by these parameters prior to 2.1, but rendering time for some kinds of data will be vastly
improved in versions 2.1 and greater.

Marker simplification

Markers can also be simplified, albeit less robustly than line segments. Marker simplification is only available
to LineZ2D objects (through the markevery property). Wherever LineZD construction parameters are
passed through, such as matplotlib.pyplot.plot () and matplotlib.axes.Axes.plot (),
the markevery parameter can be used:

plt.plot (x, y, markevery=10)

The markevery argument allows for naive subsampling, or an attempt at evenly spaced (along the x axis)
sampling. See the /gallery/lines_bars_and_markers/markevery_demo for more information.

24 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Splitting lines into smaller chunks

If you are using the Agg backend (see What is a backend?), then you can make use of rcParams ["agg.
path.chunksize"] (default: 0) This allows you to specify a chunk size, and any lines with greater than
that many vertices will be split into multiple lines, each of which has no more than agg.path.chunksize
many vertices. (Unless agg.path.chunksize is zero, in which case there is no chunking.) For some
kind of data, chunking the line up into reasonable sizes can greatly decrease rendering time.

The following script will first display the data without any chunk size restriction, and then display the same
data with a chunk size of 10,000. The difference can best be seen when the figures are large, try maximizing
the GUI and then interacting with them:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib as mpl
mpl.rcParams|['path.simplify threshold'] = 1.0

Setup, and create the data to plot

y = np.random.rand (100000)

y[50000:] *= 2

y [np.geomspace (10, 50000, 400).astype(int)] = -1
mpl.rcParams|['path.simplify'] = True

mpl.rcParams|['agg.path.chunksize'] = 0
plt.plot (y)
plt.show ()

mpl.rcParams['agg.path.chunksize'] 10000
plt.plot (y)

plt.show ()

Legends

The default legend behavior for axes attempts to find the location that covers the fewest data points
(Loc="best"). This can be a very expensive computation if there are lots of data points. In this case,
you may want to provide a specific location.

Using the fast style

The fast style can be used to automatically set simplification and chunking parameters to reasonable settings
to speed up plotting large amounts of data. It can be used simply by running:

import matplotlib.style as mplstyle
mplstyle.use('fast")

It is very lightweight, so it plays nicely with other styles, just make sure the fast style is applied last so that
other styles do not overwrite the settings:

2.1. Introductory 25

../../tutorials/introductory/customizing.html?highlight=agg.path.chunksize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=agg.path.chunksize#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

mplstyle.use (['dark_background', 'ggplot', 'fast'])

Total running time of the script: (0 minutes 2.430 seconds)

2.1.2 Pyplot tutorial

An introduction to the pyplot interface.

Intro to pyplot

matplotlib.pyplot is a collection of functions that make matplotlib work like MATLAB. Each py—
plot function makes some change to a figure: e.g., creates a figure, creates a plotting area in a figure, plots
some lines in a plotting area, decorates the plot with labels, etc.

Inmatplotlib.pyplot various states are preserved across function calls, so that it keeps track of things
like the current figure and plotting area, and the plotting functions are directed to the current axes (please
note that "axes" here and in most places in the documentation refers to the axes part of a figure and not the
strict mathematical term for more than one axis).

Note: the pyplot API is generally less-flexible than the object-oriented API. Most of the function calls you
see here can also be called as methods from an Axes object. We recommend browsing the tutorials and
examples to see how this works.

Generating visualizations with pyplot is very quick:

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 41)
plt.ylabel ('some numbers')
plt.show ()

26 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

4.0

3.5 T

3.0

2.5

some numbers

2.0 1

1.5+

1.0+

0.0 0.5 1.0 1.5 2.0 2.5 3.0

You may be wondering why the x-axis ranges from 0-3 and the y-axis from 1-4. If you provide a single list
or array to plot, matplotlib assumes it is a sequence of y values, and automatically generates the x values
for you. Since python ranges start with O, the default x vector has the same length as y but starts with O.
Hence the x dataare [0, 1, 2, 3].

plot is a versatile function, and will take an arbitrary number of arguments. For example, to plot x versus
y, you can write:

plt.plot (11, 2, 3, 41, [1, 4, 9, 16])

2.1. Introductory 27

Matplotlib, Release 3.4.3

16 ~

14 -

12 ~

10 ~

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Out:

[<matplotlib.lines.Line2D object at 0x7fe64a20c%9al0>]

Formatting the style of your plot

For every x, y pair of arguments, there is an optional third argument which is the format string that indicates
the color and line type of the plot. The letters and symbols of the format string are from MATLAB, and you
concatenate a color string with a line style string. The default format string is 'b-', which is a solid blue line.
For example, to plot the above with red circles, you would issue

plt.plot ([1, 2, 3, 41, [1, 4, 9, 16], 'ro'")
plt.axis ([0, 6, 0, 201)
plt.show ()

28 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

20.0

17.5 4

15.0 +

12.5 +

10.0 +

7.5 4

5.0 -

2.5 1

0.0

See the p1ot documentation for a complete list of line styles and format strings. The ax i s function in the
example above takes a list of [xmin, xmax, ymin, ymax] and specifies the viewport of the axes.

If matplotlib were limited to working with lists, it would be fairly useless for numeric processing. Generally,
you will use numpy arrays. In fact, all sequences are converted to numpy arrays internally. The example
below illustrates plotting several lines with different format styles in one function call using arrays.

import numpy as np

evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g"")
plt.show()

2.1. Introductory 29

http://www.numpy.org

Matplotlib, Release 3.4.3

A
100 X
A
80 +
A
A
60
A
A
40 - N
A
A
20 LA e
m
A gum” m =
gu®™®
01 I--I-.—.-I-I—I-.--.-.-—.-—.# -------------
T T T I : I

Plotting with keyword strings

There are some instances where you have data in a format that lets you access particular variables with

strings. For example, with numpy . recarray or pandas.DataFrame

Matplotlib allows you provide such an object with the data keyword argument. If provided, then you may

generate plots with the strings corresponding to these variables.

data = {'a': np.arange (50),
'c': np.random.randint (0, 50, 50),
'd': np.random.randn (50) }
data['b'] = datal['a'] + 10 * np.random.randn (50)
data['d'] = np.abs(data['d"']) * 100
plt.scatter('a', 'b', c='c', s='d', data=data)
plt.xlabel('entry a')
plt.ylabel ('entry b')
plt.show()
30 Chapter 2. Tutorials

https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

Matplotlib, Release 3.4.3

entry b

60

50)
40 -

30 + .

20 1 o © ® o

10 ~

-10 | T |

entry a

Plotting with categorical variables

40 50

It is also possible to create a plot using categorical variables. Matplotlib allows you to pass categorical

variables directly to many plotting functions. For example:

names = ['group_a', 'group_b',
values = [1, 10, 100]

'group_c"']

plt.figure(figsize=(9, 3))

plt.
plt.
plt.
plt.
plt.
.plot (names, values)
plt.
plt.

plt

subplot (131)

bar (names, values)
subplot (132)
scatter (names,
subplot (133)

values)

suptitle('Categorical Plotting')
show ()

2.1,

Introductory

31

Matplotlib, Release 3.4.3

Categorical Plotting

100 - 100 - ® 100 |

80 80 80 -

60 - 60 60

40 40 4 40

50 4 20 - 20 A
L

o 01® 01

group_a group_b group_c group_a group_b group_c group_a group_b group_c

Controlling line properties

Lines have many attributes that you can set: linewidth, dash style, antialiased, etc; see matplotlib.
lines.Line2D. There are several ways to set line properties

e Use keyword args:

plt.plot(x, y, linewidth=2.0)

e Use the setter methods of a Line2D instance. plot returns a list of Line2D objects; e.g., Linel,

line2 = plot(xl, yl1, x2, y2).Inthecode below we will suppose that we have only one
line so that the list returned is of length 1. We use tuple unpacking with 1ine, to get the first element
of that list:

line, = plt.plot(x, vy, '—")
line.set_antialiased(False) # turn off antialiasing

e Use setp. The example below uses a MATLAB-style function to set multiple properties on a list of
lines. setp works transparently with a list of objects or a single object. You can either use python
keyword arguments or MATLAB-style string/value pairs:

lines = plt.plot(x1l, yi1, x2, y2)

use keyword args

plt.setp(lines, color='r', linewidth=2.0)

or MATLAB style string value pairs
plt.setp(lines, 'color', 'r', 'linewidth', 2.0)

Here are the available Line2D properties.

Property Value Type

alpha float

animated [True | False]

antialiased or aa [True | False]

clip_box a matplotlib.transform.Bbox instance
clip_on [True | False]

continues on next page

32 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Table 1 - continued from previous page

Property Value Type

clip_path a Path instance and a Transform instance, a Patch
color or ¢ any matplotlib color

contains the hit testing function

dash_capstyle ['butt' | 'round' | '"projecting']
dash_joinstyle ['miter' | 'round'| 'bevel']

dashes sequence of on/off ink in points

data (np.array xdata, np.array ydata)

figure a matplotlib.figure.Figure instance

label any string

linestyle or Is ["=" "= "= "' | 'steps'|..]
linewidth or lw float value in points

marker I R B L A IR I

markeredgecolor or mec

any matplotlib color

markeredgewidth or mew

float value in points

markerfacecolor or mfc

any matplotlib color

markersize or ms

float

markevery [None | integer | (startind, stride)]

picker used in interactive line selection
pickradius the line pick selection radius
solid_capstyle ['butt' | 'round' | 'projecting']
solid_joinstyle ['miter' | 'round'| 'bevel']
transform a matplotlib.transforms.Transform instance
visible [True | False]

xdata np.array

ydata np.array

zorder any number

To get a list of settable line properties, call the set p function with a line or lines as argument

In [69]:

In [70]:
alpha:
animate
antiali

..snip

lines = plt.plot ([1, 2, 31)
plt.setp(lines)

float

d: [True | False]

ased or aa: [True | False]

2.1. Introductory

33

Matplotlib, Release 3.4.3

Working with multiple figures and axes

MATLAB, and pyplot, have the concept of the current figure and the current axes. All plotting functions
apply to the current axes. The function gca returns the current axes (a matplotlib.axes.Axes in-
stance), and gc £ returns the current figure (a matplotlib. figure.Figure instance). Normally, you
don't have to worry about this, because it is all taken care of behind the scenes. Below is a script to create

two subplots.

def f(t):
return np.exp(-t) * np.cos(2*np.pi*t)
tl = np.arange (0.0, 5.0, 0.1)
5.0, 0.02)

t2 = np.arange (0.0,

plt.figure ()
plt.subplot (211)

plt.plot (tl, f(tl), 'bo', t2, £(t2), 'k')

plt.subplot (212)
plt.plot (t2, np.cos(2*np.pi*t2),

plt.show()

lriil)

1.0+

0.5 4

0.0 4

—0.5 -
T T
5

1.04 = o Fay I
0.5 !
! I

I

I

\ I

0.0 A v S
\ I
] I

—0.5 1 1 \
i
E v N\ v \ 7

IID T T
3 4

The figure call here is optional because a figure will be created if none exists, just as an axes will be

Chapter 2. Tutorials

34

Matplotlib, Release 3.4.3

created (equivalent to an explicit subplot () call) if none exists. The subplot call specifies numrows,
numcols, plot_number where plot_number ranges from 1 to numrows*numcols. The com-
mas in the subplot call are optional if numrows*numcols<10. So subplot (211) is identical to
subplot (2, 1, 1).

You can create an arbitrary number of subplots and axes. If you want to place an axes man-
ually, i.e., not on a rectangular grid, use axes, which allows you to specify the location as
axes ([left, bottom, width, height]) where all values are in fractional (0 to 1) coordi-
nates. See /gallery/subplots_axes_and_figures/axes_demo for an example of placing axes manually and
/gallery/subplots_axes_and_figures/subplot_demo for an example with lots of subplots.

You can create multiple figures by using multiple i gure calls with an increasing figure number. Of course,
each figure can contain as many axes and subplots as your heart desires:

import matplotlib.pyplot as plt

plt.figure (1) # the first figure

plt.subplot (211) # the first subplot in the first figure
plt.plot([1, 2, 31)

plt.subplot (212) # the second subplot in the first figure

plt.plot ([4, 5, 6])

plt.figure (2) # a second figure
plt.plot([4, 5, 61) creates a subplot () by default

H

plt.figure (1) # figure 1 current; subplot (212) still current
plt.subplot (211) # make subplot (211) in figurel current
plt.title('Easy as 1, 2, 3') # subplot 211 title

You can clear the current figure with c1f and the current axes with cla. If you find it annoying that
states (specifically the current image, figure and axes) are being maintained for you behind the scenes, don't
despair: this is just a thin stateful wrapper around an object oriented API, which you can use instead (see
Artist tutorial)

If you are making lots of figures, you need to be aware of one more thing: the memory required for a figure
is not completely released until the figure is explicitly closed with c1ose. Deleting all references to the
figure, and/or using the window manager to kill the window in which the figure appears on the screen, is not
enough, because pyplot maintains internal references until cZose is called.

Working with text

text can be used to add text in an arbitrary location, and xlabel, ylabel and title are used to add
text in the indicated locations (see Text in Matplotlib Plots for a more detailed example)

mu, sigma = 100, 15
X = mu + sigma * np.random.randn (10000)

the histogram of the data
n, bins, patches = plt.hist(x, 50, density=1, facecolor='g', alpha=0.75)

(continues on next page)

2.1. Introductory 35

Matplotlib, Release 3.4.3

(continued from previous page)

plt.
plt.
.title('Histogram of IQ")

plt

plt.

plt. (

.grid (True)
(

plt

plt.

xlabel ('Smarts')
ylabel ('Probability")

text (60, .025, r'$\mu=100,\ \sigma=15$")

axis ([40, 160, 0, 0.031)

)

show

Probability

Histogram of 1Q

0.030

0.025

0.020

0.015

0.010

0.005

40 60 80 100 120 140 160
Smarts

All of the text functions return a matplotlib. text . Text instance. Just as with lines above, you can
customize the properties by passing keyword arguments into the text functions or using setp:

t =

plt.xlabel ('my data', fontsize=14, color='red')

These properties are covered in more detail in Text properties and layout.

36

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Using mathematical expressions in text

matplotlib accepts TeX equation expressions in any text expression. For example to write the expression
o; = 15 in the title, you can write a TeX expression surrounded by dollar signs:

plt.title(r'$\sigma_i=15$")

The r preceding the title string is important -- it signifies that the string is a raw string and not to treat
backslashes as python escapes. matplotlib has a built-in TeX expression parser and layout engine, and ships
its own math fonts -- for details see Writing mathematical expressions. Thus you can use mathematical text
across platforms without requiring a TeX installation. For those who have LaTeX and dvipng installed, you
can also use LaTeX to format your text and incorporate the output directly into your display figures or saved
postscript -- see Text rendering With LaTleX.

Annotating text

The uses of the basic text function above place text at an arbitrary position on the Axes. A common use
for text is to annotate some feature of the plot, and the annotate method provides helper functionality
to make annotations easy. In an annotation, there are two points to consider: the location being annotated
represented by the argument xy and the location of the text xytext. Both of these arguments are (x,)
tuples.

ax = plt.subplot ()

t = np.arange (0.0, 5.0, 0.01)
S = np.cos(2*np.pi*t)
line, = plt.plot(t, s, 1lw=2)

plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict (facecolor="'black', shrink=0.05),

)

plt.ylim(-2, 2)
plt.show ()

2.1. Introductory 37

Matplotlib, Release 3.4.3

2.0
1.5 local max
1.0 ~
0.5 1
0.0
—0.5 -
~1.0

1.5 4

=2.0 T

In this basic example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates.
There are a variety of other coordinate systems one can choose -- see Basic annotation and Advanced Anno-
tations for details. More examples can be found in /gallery/text_labels_and_annotations/annotation_demo.

Logarithmic and other nonlinear axes

matplotlib.pyplot supports not only linear axis scales, but also logarithmic and logit scales. This is

commonly used if data spans many orders of magnitude. Changing the scale of an axis is easy:
plt.xscale('log")

An example of four plots with the same data and different scales for the y axis is shown below.

Fixing random state for reproducibility
np.random.seed (19680801)

make up some data in the open interval (0, 1)

= np.random.normal (loc=0.5, scale=0.4, size=1000)
= yl(y > 0) & (y < 1)]

.sort ()

= np.arange (len(y))

X s

(continues on next page)

38 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

plot with various axes scales
plt.figure ()

linear
plt.subplot (221)
plt.plot(x, V)
plt.yscale('linear")
plt.title('linear")
plt.grid (True)

log
plt.subplot (222)
plt.plot(x, V)
plt.yscale('log')
plt.title('log")
plt.grid (True)

symmetric log

plt.subplot (223)

plt.plot(x, y — y.mean())
plt.yscale('symlog', linthresh=0.01)
plt.title('symlog'")

plt.grid (True)

logit

plt.subplot (224)

plt.plot (x, V)

plt.yscale('logit")

plt.title('logit")

plt.grid (True)

Adjust the subplot layout, because the logit one may take more space

than usual, due to y—-tick labels 1like "1 - 10"{-3}"

plt.subplots_adjust (top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
wspace=0.35)

plt.show ()

2.1. Introductory 39

Matplotlib, Release 3.4.3

linear

1.0~

0.8

0.6

0.4

0.2

0.0

D_

T
200

T
400
symlog

T
600

T
800

10—1 i
10—2 i

_10—2 .
_10—1 .

D_

T
200

T
400

T
600

T
800

1071 5

o -

T
200

logit

T T T
400 600 800

=
I I

= e

o o
AP
k k

-
I
-
o
L
"

o -

T
200

T T T
400 600 800

It is also possible to add your own scale, see Developer's guide for creating scales and transformations for

details.

Total running time of the script: (0 minutes 3.758 seconds)

2.1.3 Sample plots in Matplotlib

Here you'll find a host of example plots with the code that generated them.

Line Plot

Here's how to create a line plot with text labels using plot ().

40

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

About as simple as it gets, folks

voltage (mV)
o o = = = = g
i ~ o N w ~ o
= I =1 o =} o <]

o
i
¥

=4
=}
=]

T
0.00 0.25 0.50 0.75 1.00 125 1.50 175 2.00
time (s)

Fig. 1: Simple Plot

Multiple subplots in one figure

Multiple axes (i.e. subplots) are created with the subplot () function:

A tale of 2 subplots

1.0+

0.5 4

0.0 4

Damped oscillation

o4
-
[N]
w
S
w4

104

0.5 1

0.0 4

Undamped

—~1.04

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 125 150 175 2.00
time (s)

Fig. 2: Subplot

Images

Matplotlib can display images (assuming equally spaced horizontal dimensions) using the imshow () func-
tion.

2.1. Introductory 41

../../gallery/lines_bars_and_markers/simple_plot.html
../../gallery/subplots_axes_and_figures/subplot.html

Matplotlib, Release 3.4.3

MRI

Fig. 3: Example of using imshow () to display a CT scan

Contouring and pseudocolor

The pcolormesh () function can make a colored representation of a two-dimensional array, even if the
horizontal dimensions are unevenly spaced. The contour () function is another way to represent the same

data:

Fig. 4: Example comparing pcolormesh () and contour () for plotting two-dimensional data

Histograms

The hist () function automatically generates histograms and returns the bin counts or probabilities:

42 Chapter 2. Tutorials

../../gallery/images_contours_and_fields/image_demo.html
../../gallery/images_contours_and_fields/pcolormesh_levels.html

Matplotlib, Release 3.4.3

Paths

You can add arbitrary paths in Matplotlib using the matplotlib.path module:

Histogram of 1Q: =100, =15

0.035 1

0.030

0.025 4

0.020 1

Probability density
o
o
=]
o

0.010 4

0.005 1

0.000 -

Smarts

Fig. 5: Histogram Features

Fig. 6: Path Patch

Three-dimensional plotting

The mplot3d toolkit (see Getting started and mplot3d-examples-index) has support for simple 3D graphs
including surface, wireframe, scatter, and bar charts.

Thanks to John Porter, Jonathon Taylor, Reinier Heeres, and Ben Root for the mp 1ot 3d toolkit. This toolkit
is included with all standard Matplotlib installs.

2.1. Introductory

43

../../gallery/statistics/histogram_features.html
../../gallery/shapes_and_collections/path_patch.html

Matplotlib, Release 3.4.3

0.5

0.0

—=0.5

Fig. 7: Surface3d

Streamplot

The streamplot () function plots the streamlines of a vector field. In addition to simply plotting the
streamlines, it allows you to map the colors and/or line widths of streamlines to a separate parameter, such
as the speed or local intensity of the vector field.

This feature complements the quiver () function for plotting vector fields. Thanks to Tom Flannaghan
and Tony Yu for adding the streamplot function.

Ellipses
In support of the Phoenix mission to Mars (which used Matplotlib to display ground tracking of spacecraft),

Michael Droettboom built on work by Charlie Moad to provide an extremely accurate 8-spline approximation
to elliptical arcs (see Arc), which are insensitive to zoom level.

Bar charts

Use the bar () function to make bar charts, which includes customizations such as error bars:

You can also create stacked bars (bar_stacked.py), or horizontal bar charts (barh.py).
Pie charts
The pie () function allows you to create pie charts. Optional features include auto-labeling the percentage

of area, exploding one or more wedges from the center of the pie, and a shadow effect. Take a close look at
the attached code, which generates this figure in just a few lines of code.

44 Chapter 2. Tutorials

../../gallery/mplot3d/surface3d.html
http://www.jpl.nasa.gov/news/phoenix/main.php
../../gallery/lines_bars_and_markers/bar_stacked.html
../../gallery/lines_bars_and_markers/barh.html

Matplotlib, Release 3.4.3

% V7 ‘A Z
1—_'// %“:‘: 1—;__:::; ‘§
Noa 7l

Varying Density

Varying Color

Controlling Starting Points

3
2 [] o |
14 .
[
o+ . Ry
-1+ > —
/" N
-2 —//
3 T
-3 -2 -1 0 2

Streamplot with Masking

Z

i

Wz

Fig. 9: Ellipse Demo

0.0
-2.5
-5.0
=15
-10.0
-12.5

0.0
-2.5
-5.0
=15
-10.0
=125

2.1. Introductory

45

../../gallery/images_contours_and_fields/plot_streamplot.html
../../gallery/shapes_and_collections/ellipse_demo.html

Matplotlib, Release 3.4.3

Push Ups

Agility

Mile Run

Flexed Arm
Hang

Pacer Test

Johnny Doe

16th

73rd

37th

F1a

17
sec

| 12:52
min:sec

Test Scores

| 48
sec

i laps

T T
20 30 40 50 60 70

Percentile Ranking Across 2nd Grade Boys
Cohort Size: 62

Fig. 10: Barchart Demo

Hogs

Fig. 11: Pie Features

100

46

Chapter 2.

Tutorials

../../gallery/statistics/barchart_demo.html
../../gallery/pie_and_polar_charts/pie_features.html

Matplotlib, Release 3.4.3

Tables

The table () function adds a text table to an axes.

Loss by Disaster

2000 -

=
v
=}
S

Loss in $1000's

1000 1
|]
500 - .

0 T TFreeze Wind Flood Quake Hail
4315 1049.4 799.6 2149.8 917.9
ear 292.2 717.8 456.4 1368.5 865.6
20 year 213.8 636.0 305.7 1175.2 796.0
ear 1246 555.4 153.7 677.2 1925
year 66.4 1743 5T o779 32.0

Fig. 12: Table Demo

Scatter plots

The scatter () function makes a scatter plot with (optional) size and color arguments. This example plots
changes in Google's stock price, with marker sizes reflecting the trading volume and colors varying with time.
Here, the alpha attribute is used to make semitransparent circle markers.

Volume and percent change

0.20 1 @
0.15 @
0.10
— [] o)
+ 0051-® O @.Dn_
< G
o
0.00 4 3 — =
s 8)~ L J
0.0 na‘."o
\)
—0.05 4 AL LEE.& S, @
® L
@
—0.10 o
L]
-0.10 -0.05 0.00 0.05 0.10 0.15 0.20

4

Fig. 13: Scatter Demo2

2.1. Introductory 47

../../gallery/misc/table_demo.html
../../gallery/lines_bars_and_markers/scatter_demo2.html

Matplotlib, Release 3.4.3

GUI widgets

Matplotlib has basic GUI widgets that are independent of the graphical user interface you are using, allowing
you to write cross GUI figures and widgets. See matplotlib.widgets and the widget examples.

Amplitude

5 0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

Frequency [Hz] [N] 3.0

Fig. 14: Slider and radio-button GUI.

Filled curves

The £i11 () function lets you plot filled curves and polygons:

Thanks to Andrew Straw for adding this function.

Date handling

You can plot timeseries data with major and minor ticks and custom tick formatters for both.

See matplotlib.ticker and matplotlib.dates for details and usage.

Log plots

The semilogx (), semilogy () and loglog () functions simplify the creation of logarithmic plots.

Thanks to Andrew Straw, Darren Dale and Gregory Lielens for contributions log-scaling infrastructure.

48 Chapter 2. Tutorials

../../gallery/index.html#widgets
../../gallery/widgets/slider_demo.html

Matplotlib, Release 3.4.3

-2 4

-6 4

2%

Fig. 15: Fill

700 A

600

200

100 1

1 31 1 1
5O V] 0,)_0 005.0

B d]
A 0% 8

o o oy o) o> o>
190EI 1,‘3"6 1,‘3“1 196l 1906 1906 1,°°g

Fig. 16: Date

2.1. Introductory

49

../../gallery/lines_bars_and_markers/fill.html
../../gallery/text_labels_and_annotations/date.html

Matplotlib, Release 3.4.3

semilogy semilogx
100 4 1.0 -
0.5 A
10-1 0.0 A
0.5 4
~1.04
i " ; T ; T T " :
0 5 10 15 20 10-2 10-1 100 101
loglog base 2 on x Errorbars go negative
1
2x10 104 4
103 §
10! 4
102 4
0
6x10 10! 4
4x%10° 10° 4
3x100
T T ; T 1071 T T
273 272 2! 24 10° 10! 102

Fig. 17: Log Demo

Polar plots

The polar () function generates polar plots.

A line plot on a polar axis
90°

Fig. 18: Polar Demo

Legends

The legend () function automatically generates figure legends, with MATLAB-compatible legend-
placement functions.

Thanks to Charles Twardy for input on the legend function.

50 Chapter 2. Tutorials

../../gallery/scales/log_demo.html
../../gallery/pie_and_polar_charts/polar_demo.html

Matplotlib, Release 3.4.3

20.01

17.5 4

15.0 4

12.54

10.0 4

7.5 1

5.0 1

2.5 4

Fig. 19: Legend

TeX-notation for text objects

Below is a sampling of the many TeX expressions now supported by Matplotlib's internal mathtext engine.
The mathtext module provides TeX style mathematical expressions using FreeType and the DejaVu, BaKoMa
computer modern, or STIX fonts. See the matplotlib.mathtext module for additional details.

Matplotlib's math rendering engine

3p

610102

— (/3B 1 J‘az / UT”
= U(lel +55 . dal | ==

Subscripts and superscripts:

a;> B, al,, =sin(2nfit)e 34T, .

Fractions, binomials and stacked numbers:

3 3y 3 (5-%

T (4]: Yy (T)r

Radicals:

V2, ¥x, ...

Fonts:

Roman , [talic, Typewriter or CALLIGRAPHY

Accents:
a, a a,a, a a a a a xyz, Xyz, ...
Greek, Hebrew:

a, B, x. 6, A u, AT, Q @ 1,Y, V, R 3, 7, 1,

Delimiters, functions and Symbols:

Ll f § 1. 2. log, sin, =, ®, +, x, », 3 R

Fig. 20: Mathtext Examples

Matplotlib's mathtext infrastructure is an independent implementation and does not require TeX or any ex-
ternal packages installed on your computer. See the tutorial at Writing mathematical expressions.

2.1. Introductory

51

../../gallery/text_labels_and_annotations/legend.html
https://www.freetype.org/
http://www.stixfonts.org
../../gallery/text_labels_and_annotations/mathtext_examples.html

Matplotlib, Release 3.4.3

Native TeX rendering

Although Matplotlib's internal math rendering engine is quite powerful, sometimes you need TeX. Matplotlib
supports external TeX rendering of strings with the usetex option.

TeX is Number Z %'

00 02 04 06 0 L0
time (s)

Fig. 21: Tex Demo

EEG GUI

You can embed Matplotlib into Qt, GTK, Tk, or wxWidgets applications. Here is a screenshot of an EEG
viewer called pbrain.

52 Chapter 2. Tutorials

../../gallery/text_labels_and_annotations/tex_demo.html
https://github.com/nipy/pbrain

Matplotlib, Release 3.4.3

% EEG Viewer and Analyzer

Eile

Batients

View Compute

Message: Electrode: RTG12

< 4 b 1 GE A vie=D®E@ J

The lower axes uses specgram () to plot the spectrogram of one of the EEG channels.

For examples of how to embed Matplotlib in different toolkits, see:

o /gallery/user_interfaces/embedding_in_gtk3_sgskip

/gallery/user_interfaces/embedding_in_wx2_sgskip
/gallery/user_interfaces/mpl_with_glade3_sgskip
/gallery/user_interfaces/embedding_in_qt_sgskip

/gallery/user_interfaces/embedding_in_tk_sgskip

2.1. Introductory

53

Matplotlib, Release 3.4.3

XKCD-style sketch plots

Just for fun, Matplotlib supports plotting in the style of xkcd.

my overall health

Subplot example

THE DAY I REALIZED
I COULD COOK BACON
WHENEVER I WANTED

time

"Stove Ownership" from xkcd by Randall Munroe

Fig. 22: xked

Many plot types can be combined in one figure to create powerful and flexible representations of data

54

Chapter 2. Tutorials

https://www.xkcd.com/
../../gallery/showcase/xkcd.html

Matplotlib, Release 3.4.3

import matplotlib.pyplot as plt
import numpy as np

np.random.seed (19680801)
data = np.random.randn (2, 100)

fig, axs = plt.subplots (2, 2, figsize=(5,

axs[0, 0].hist (data[0])

axs[1l, 0].scatter(data[0], datal[l])
axs[0, 1].plot(datal0], datall])
axs[1l, 1].hist2d(data[0], datall])

plt.show ()

2.1. Introductory

55

Matplotlib, Release 3.4.3

2.1.4 Image tutorial

A short tutorial on plotting images with Matplotlib.

Startup commands

First, let's start IPython. It is a most excellent enhancement to the standard Python prompt, and it ties in
especially well with Matplotlib. Start IPython either directly at a shell, or with the Jupyter Notebook (where
IPython as a running kernel).

With IPython started, we now need to connect to a GUI event loop. This tells [Python where (and how) to
display plots. To connect to a GUI loop, execute the %matplotlib magic at your IPython prompt. There's
more detail on exactly what this does at [Python's documentation on GUI event loops.

If you're using Jupyter Notebook, the same commands are available, but people commonly use a specific
argument to the %matplotlib magic:

In [1]: %matplotlib inline

This turns on inline plotting, where plot graphics will appear in your notebook. This has important implica-
tions for interactivity. For inline plotting, commands in cells below the cell that outputs a plot will not affect
the plot. For example, changing the colormap is not possible from cells below the cell that creates a plot.
However, for other backends, such as Qt5, that open a separate window, cells below those that create the plot
will change the plot - it is a live object in memory.

This tutorial will use Matplotlib's imperative-style plotting interface, pyplot. This interface maintains global
state, and is very useful for quickly and easily experimenting with various plot settings. The alternative is
the object-oriented interface, which is also very powerful, and generally more suitable for large application
development. If you'd like to learn about the object-oriented interface, a great place to start is our Usage
guide. For now, let's get on with the imperative-style approach:

import matplotlib.pyplot as plt
import matplotlib.image as mpimg

Importing image data into Numpy arrays

Matplotlib relies on the Pillow library to load image data.

Here's the image we're going to play with:

56 Chapter 2. Tutorials

https://ipython.readthedocs.io/en/stable/interactive/reference.html#gui-event-loop-support
https://pillow.readthedocs.io/en/latest/

Matplotlib, Release 3.4.3

It's a 24-bit RGB PNG image (8 bits for each of R, G, B). Depending on where you get your data, the other
kinds of image that you'll most likely encounter are RGBA images, which allow for transparency, or single-
channel grayscale (luminosity) images. Download stinkbug.png to your computer for the rest of this tutorial.

And here we go...

img = mpimg.imread('../../doc/_static/stinkbug.png')
print (img)

Out:

[[[0.40784314 0.40784314 0.40784314]
[0.40784314 0.40784314 0.40784314]
[0.40784314 0.40784314 0.40784314]

(@}
(@}

[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]]

o
o

[[0.4117647 0.4117647 0.4117647]
[0.4117647 0.4117647 0.4117647]
[0.4117647 0.4117647 0.4117647]

(continues on next page)

2.1. Introductory 57

https://raw.githubusercontent.com/matplotlib/matplotlib/master/doc/_static/stinkbug.png

Matplotlib, Release 3.4.3

(continued from previous page)

[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]
[0.42745098 0.42745098 0.42745098]]

[[0.41960785 0.41960785 0.41960785]
[0.41568628 0.41568628 0.41568628]
[0.41568628 0.41568628 0.41568628]

[0.43137255 0.43137255 0.43137255]
[0.43137255 0.43137255 0.43137255]
[0.43137255 0.43137255 0.43137255]]

[[0.4392157 0.4392157 0.4392157]
[0.43529412 0.43529412 0.43529412]
[0.43137255 0.43137255 0.43137255]

[0.45490196 0.45490196 0.45490196]
[0.4509804 0.4509804 0.4509804]
[0.4509804 0.4509804 0.4509804 1]

[[0.44313726 0.44313726 0.44313726]
[0.44313726 0.44313726 0.44313726]
[0.4392157 0.4392157 0.4392157]

[0.4509804 0.4509804 0.4509804 1]
[0.44705883 0.44705883 0.44705883]
[0.44705883 0.44705883 0.44705883]]

[[0.44313726 0.44313726 0.44313726]
[0.4509804 0.4509804 0.4509804 1]
[0.4509804 0.4509804 0.4509804]

[0.44705883 0.44705883 0.44705883]
[0.44705883 0.44705883 0.44705883]
[0.44313726 0.44313726 0.44313726]11]]

(@}
(@}

Note the dtype there - float32. Matplotlib has rescaled the 8 bit data from each channel to floating point data
between 0.0 and 1.0. As a side note, the only datatype that Pillow can work with is uint8. Matplotlib plotting
can handle float32 and uint8, but image reading/writing for any format other than PNG is limited to uint8
data. Why 8 bits? Most displays can only render 8 bits per channel worth of color gradation. Why can they
only render 8 bits/channel? Because that's about all the human eye can see. More here (from a photography
standpoint): Luminous Landscape bit depth tutorial.

Each inner list represents a pixel. Here, with an RGB image, there are 3 values. Since it's a black and white
image, R, G, and B are all similar. An RGBA (where A is alpha, or transparency), has 4 values per inner list,
and a simple luminance image just has one value (and is thus only a 2-D array, not a 3-D array). For RGB
and RGBA images, Matplotlib supports float32 and uint8 data types. For grayscale, Matplotlib supports only
float32. If your array data does not meet one of these descriptions, you need to rescale it.

58 Chapter 2. Tutorials

https://luminous-landscape.com/bit-depth/

Matplotlib, Release 3.4.3

Plotting numpy arrays as images

So, you have your data in a numpy array (either by importing it, or by generating it). Let's render it. In
Matplotlib, this is performed using the imshow () function. Here we'll grab the plot object. This object
gives you an easy way to manipulate the plot from the prompt.

imgplot = plt.imshow (img)

100

150

200

250

300

350

0 100 200 300 400

You can also plot any numpy array.

Applying pseudocolor schemes to image plots

Pseudocolor can be a useful tool for enhancing contrast and visualizing your data more easily. This is es-
pecially useful when making presentations of your data using projectors - their contrast is typically quite
poor.

Pseudocolor is only relevant to single-channel, grayscale, luminosity images. We currently have an RGB
image. Since R, G, and B are all similar (see for yourself above or in your data), we can just pick one channel
of our data:

2.1. Introductory 59

Matplotlib, Release 3.4.3

lum_img = img[:, :, 0]

This is array slicing. You can read more in the "Numpy tutorial
<https://docs.scipy.org/doc/numpy/user/quickstart.html>"_.

plt.imshow (lum_img)

100

150

200

250

300

350

0 100 200 300 400

Out:

<matplotlib.image.AxesImage object at 0x7fe64b7af0d0>

Now, with a luminosity (2D, no color) image, the default colormap (aka lookup table, LUT), is applied. The
default is called viridis. There are plenty of others to choose from.

plt.imshow (lum_img, cmap="hot")

60 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

100

150

200

250

300

350

0 100 200 300 400

Out:

<matplotlib.image.AxesImage object at 0x7fe659ccf070>

Note that you can also change colormaps on existing plot objects using the set_cmap () method:

imgplot = plt.imshow (lum_img)
imgplot.set_cmap ('nipy_spectral')

2.1. Introductory 61

Matplotlib, Release 3.4.3

T
0 100 200 300 400

Note: However, remember that in the Jupyter Notebook with the inline backend, you can't make changes to
plots that have already been rendered. If you create imgplot here in one cell, you cannot call set_cmap() on
it in a later cell and expect the earlier plot to change. Make sure that you enter these commands together in
one cell. plt commands will not change plots from earlier cells.

There are many other colormap schemes available. See the list and images of the colormaps.

Color scale reference

It's helpful to have an idea of what value a color represents. We can do that by adding a color bar to your
figure:

imgplot = plt.imshow (lum_img)
plt.colorbar ()

62 Chapter 2. Tutorials

../colors/colormaps.html

Matplotlib, Release 3.4.3

100

150

200

250

300

350

0 100 200 300 400

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe659dac550>

Examining a specific data range

Sometimes you want to enhance the contrast in your image, or expand the contrast in a particular region
while sacrificing the detail in colors that don't vary much, or don't matter. A good tool to find interesting
regions is the histogram. To create a histogram of our image data, we use the hist () function.

plt.hist (lum_img.ravel (), bins=256, range=(0.0, 1.0), fc='k', ec='k")

2.1. Introductory 63

Matplotlib, Release 3.4.3

8000 -
6000 1
4000 A
2000 -
0 - T T
0.0 0.2 0.8 1.0

Out:

(array ([2.000e+00, 2.000e+00, 3.000e+00, 3.000e+00, 2.000e+00, 2.000e+00,
3.000e+00, 1.000e+00, 7.000e+00, 9.000e+00, 7.000e+00, 2.000e+00,
7.000e+00, 1.000e+01, 1.100e+01, 1.500e+01, 1.400e+01, 2.700e+01,
2.100e+01, 2.400e+01, 1.400e+01, 3.100e+01, 2.900e+01, 2.800e+01,
2.400e+01, 2.400e+01, 4.000e+01, 2.600e+01, 5.200e+01, 3.900e+01,
5.700e+01, 4.600e+01, 8.400e+01, 7.600e+01, 8.900e+01, 8.000e+01,
1.060e+02, 1.130e+02, 1.120e+02, 9.000e+01, 1.160e+02, 1.090e+02,
1.270e+02, 1.350e+02, 9.800e+01, 1.310e+02, 1.230e+02, 1.110e+02,
1.230e+02, 1.160e+02, 1.010e+02, 1.170e+02, 1.000e+02, 1.010e+02,
9.000e+01, 1.060e+02, 1.260e+02, 1.040e+02, 1.070e+02, 1.110e+02,
1.380e+02, 1.000e+02, 1.340e+02, 1.210e+02, 1.400e+02, 1.320e+02,
1.390e+02, 1.160e+02, 1.330e+02, 1.180e+02, 1.080e+02, 1.170e+02,
1.280e+02, 1.200e+02, 1.210e+02, 1.100e+02, 1.160e+02, 1.180e+02,
9.700e+01, 9.700e+01, 1.140e+02, 1.070e+02, 1.170e+02, 8.700e+01,
1.070e+02, 9.800e+01, 1.040e+02, 1.120e+02, 1.110e+02, 1.180e+02,
1.240e+02, 1.340e+02, 1.200e+02, 1.410e+02, 1.520e+02, 1.360e+02,
1.610e+02, 1.380e+02, 1.620e+02, 1.570e+02, 1.350e+02, 1.470e+02,
1.690e+02, 1.710e+02, 1.820e+02, 1.980e+02, 1.970e+02, 2.060e+02,
2.160e+02, 2.460e+02, 2.210e+02, 2.520e+02, 2.890e+02, 3.450e+02,
3.620e+02, 3.760e+02, 4.480e+02, 4.630e+02, 5.170e+02, 6.000e+02,
6.200e+02, 6.410e+02, 7.440e+02, 7.120e+02, 8.330e+02, 9.290e+02,

(continues on next page)

64 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

1.061e+03, 1.280e+03, 1.340e+03, 1.638e+03, 1.740e+03, 1.953e+03,
2.151e+03, 2.290e+03, 2.440e+03, 2.758e+03, 2.896e+03, 3.384e+03,
4.332e+03, 5.584e+03, 6.197e+03, 6.422e+03, 6.404e+03, 7.181e+03,
8.196e+03, 7.968e+03, 7.474e+03, 7.926e+03, 8.460e+03, 8.091e+03,
9.148e+03, 8.563e+03, 6.747e+03, 6.074e+03, 6.328e+03, 5.291e+03,
6.472e+03, 6.268e+03, 2.864e+03, 3.760e+02, 1.620e+02, 1.180e+02,
1.270e+02, 9.500e+01, 7.600e+01, 8.200e+01, 6.200e+01, 6.700e+01,
5.600e+01, 5.900e+01, 4.000e+01, 4.200e+01, 3.000e+01, 3.400e+01,
3.200e+t01, 4.300e+01, 4.200e+t01, 2.300e+01, 2.800e+t01, 1.900e+01,
2.200e+01, 1.600e+01, 1.200e+01, 1.800e+01, 9.000e+00, 1.000e+01,
1.700e+01, 5.000e+00, 2.100e+01, 1.300e+01, 8.000e+00, 1.200e+01,
1.000e+01, 8.000e+00, 8.000e+00, 5.000e+00, 1.300e+01, 6.000e+00,
3.000e+00, 7.000e+00, 6.000e+00, 2.000e+00, 1.000e+00, 5.000e+00,
3.000e+00, 3.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 5.000e+00,
0.000e+00, 1.000e+00, 3.000e+00, 0.000e+00, 1.000e+00, 1.000e+00,
2.000e+00, 1.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00]1), array([O0. ,
<00390625, 0.0078125 , 0.01171875, 0.015625 ,
0.01953125, 0.0234375 , 0.02734375, 0.03125 , 0.03515625,
0.0390625 , 0.04296875, 0.046875 , 0.05078125, 0.0546875 ,
0.05859375, 0.0625 , 0.06640625, 0.0703125 , 0.07421875,
0.078125 , 0.08203125, 0.0859375 , 0.08984375, 0.09375 ,
0.09765625, 0.1015625 , 0.10546875, 0.109375 , 0.11328125,
0.1171875 , 0.12109375, 0.125 , 0.12890625, 0.1328125 ,
0.13671875, 0.140625 , 0.14453125, 0.1484375 , 0.15234375,
0.15625 , 0.16015625, 0.1640625 , 0.16796875, 0.171875 ,
0.17578125, 0.1796875 , 0.18359375, 0.1875 , 0.19140625,
0.1953125 , 0.19921875, 0.203125 , 0.20703125, 0.2109375 ,
0.21484375, 0.21875 , 0.22265625, 0.2265625 , 0.23046875,
0.234375 , 0.23828125, 0.2421875 , 0.24609375, 0.25 ’
0.25390625, 0.2578125 , 0.26171875, 0.265625 , 0.26953125,
0.2734375 , 0.27734375, 0.28125 , 0.28515625, 0.2890625 ,
0.29296875, 0.296875 , 0.30078125, 0.3046875 , 0.30859375,
0.3125 , 0.31640625, 0.3203125 , 0.32421875, 0.328125 ,
0.33203125, 0.3359375 , 0.33984375, 0.34375 , 0.34765625,
0.3515625 , 0.35546875, 0.359375 , 0.36328125, 0.3671875 ,
0.37109375, 0.375 , 0.37890625, 0.3828125 , 0.38671875,
0.390625 , 0.39453125, 0.3984375 , 0.40234375, 0.40625 ,
0.41015625, 0.4140625 , 0.41796875, 0.421875 , 0.42578125,
0.4296875 , 0.43359375, 0.4375 , 0.44140625, 0.4453125 ,
0.44921875, 0.453125 , 0.45703125, 0.4609375 , 0.46484375,
0.46875 , 0.47265625, 0.4765625 , 0.48046875, 0.484375 ,
0.48828125, 0.4921875 , 0.49609375, 0.5 , 0.50390625,
0.5078125 , 0.51171875, 0.515625 , 0.51953125, 0.5234375 ,
0.52734375, 0.53125 , 0.53515625, 0.5390625 , 0.54296875,
0.546875 , 0.55078125, 0.5546875 , 0.55859375, 0.5625 ’
0.56640625, 0.5703125 , 0.57421875, 0.578125 , 0.58203125,

(continues on next page)

2.1. Introductory

65

Matplotlib, Release 3.4.3

(continued from previous page)

0.5859375 , 0.58984375, 0.59375 , 0.59765625, 0.6015625 ,
0.60546875, 0.609375 , 0.61328125, 0.6171875 , 0.62109375,
0.625 , 0.62890625, 0.6328125 , 0.63671875, 0.640625 ,
0.64453125, 0.6484375 , 0.65234375, 0.65625 , 0.66015625,
0.6640625 , 0.66796875, 0.671875 , 0.67578125, 0.6796875 ,
0.68359375, 0.6875 , 0.69140625, 0.6953125 , 0.69921875,
0.703125 , 0.70703125, 0.7109375 , 0.71484375, 0.71875 ’
0.72265625, 0.7265625 , 0.73046875, 0.734375 , 0.73828125,
0.7421875 , 0.74609375, 0.75 , 0.75390625, 0.7578125 ,
0.76171875, 0.765625 , 0.76953125, 0.7734375 , 0.77734375,
0.78125 , 0.78515625, 0.7890625 , 0.79296875, 0.796875 ,
0.80078125, 0.8046875 , 0.80859375, 0.8125 , 0.81640625,
0.8203125 , 0.82421875, 0.828125 , 0.83203125, 0.8359375 ,
0.83984375, 0.84375 , 0.84765625, 0.8515625 , 0.85546875,
0.859375 , 0.86328125, 0.8671875 , 0.87109375, 0.875 ’
0.87890625, 0.8828125 , 0.88671875, 0.890625 , 0.89453125,
0.8984375 , 0.90234375, 0.90625 , 0.91015625, 0.9140625 ,
0.91796875, 0.921875 , 0.92578125, 0.9296875 , 0.93359375,
0.9375 , 0.94140625, 0.9453125 , 0.94921875, 0.953125 ,
0.95703125, 0.9609375 , 0.96484375, 0.96875 , 0.97265625,
0.9765625 , 0.98046875, 0.984375 , 0.98828125, 0.9921875 ,
0.99609375, 1.], dtype=float32), <BarContainer object of 256.
~artists>)

Most often, the "interesting" part of the image is around the peak, and you can get extra contrast by clipping
the regions above and/or below the peak. In our histogram, it looks like there's not much useful information
in the high end (not many white things in the image). Let's adjust the upper limit, so that we effectively
"zoom in on" part of the histogram. We do this by passing the clim argument to imshow. You could also do
this by calling the set_c1im () method of the image plot object, but make sure that you do so in the same
cell as your plot command when working with the Jupyter Notebook - it will not change plots from earlier
cells.

You can specify the clim in the call to plot.

imgplot = plt.imshow (lum_img, clim=(0.0, 0.7))

66 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

100

150

200

250

300

350

0 100 200 300 400

You can also specify the clim using the returned object

fig = plt.figure()

ax = fig.add_subplot (1, 2, 1)

imgplot = plt.imshow (lum_img)

ax.set_title('Before')

plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal')
ax = fig.add_subplot (1, 2, 2)

imgplot = plt.imshow (lum_img)

imgplot.set_clim (0.0, 0.7)

ax.set_title('After')

plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal')

2.1. Introductory 67

Matplotlib, Release 3.4.3

Before
0 0
100 100
200 200
300 300

0 100 200 300 400 0 100 200 300 400

BT I

0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe64bec9790>

Array Interpolation schemes

Interpolation calculates what the color or value of a pixel "should" be, according to different mathematical
schemes. One common place that this happens is when you resize an image. The number of pixels change,
but you want the same information. Since pixels are discrete, there's missing space. Interpolation is how
you fill that space. This is why your images sometimes come out looking pixelated when you blow them
up. The effect is more pronounced when the difference between the original image and the expanded image
is greater. Let's take our image and shrink it. We're effectively discarding pixels, only keeping a select few.
Now when we plot it, that data gets blown up to the size on your screen. The old pixels aren't there anymore,
and the computer has to draw in pixels to fill that space.

We'll use the Pillow library that we used to load the image also to resize the image.

from PIL import Image

img = Image.open('../../doc/_static/stinkbug.png')

(continues on next page)

68 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

img.thumbnail ((64, 64), Image.ANTIALIAS) # resizes image in-place
imgplot = plt.imshow (img)

Here we have the default interpolation, bilinear, since we did not give imshow () any interpolation argu-
ment.

Let's try some others. Here's "nearest", which does no interpolation.

imgplot = plt.imshow(img, interpolation="nearest")

2.1. Introductory 69

Matplotlib, Release 3.4.3

10

20

and bicubic:

imgplot = plt.imshow(img, interpolation="bicubic")

70 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Bicubic interpolation is often used when blowing up photos - people tend to prefer blurry over pixelated.

Total running time of the script: (0 minutes 7.519 seconds)

2.1.5 The Lifecycle of a Plot

This tutorial aims to show the beginning, middle, and end of a single visualization using Matplotlib. We'll
begin with some raw data and end by saving a figure of a customized visualization. Along the way we try to
highlight some neat features and best-practices using Matplotlib.

Note: This tutorial is based on this excellent blog post by Chris Moffitt. It was transformed into this tutorial
by Chris Holdgraf.

2.1. Introductory 71

http://pbpython.com/effective-matplotlib.html

Matplotlib, Release 3.4.3

A note on the Object-Oriented API vs. Pyplot
Matplotlib has two interfaces. The first is an object-oriented (OO) interface. In this case, we utilize an
instance of axes.Axes in order to render visualizations on an instance of figure.Figure.

The second is based on MATLAB and uses a state-based interface. This is encapsulated in the pyplot
module. See the pyplot tutorials for a more in-depth look at the pyplot interface.

Most of the terms are straightforward but the main thing to remember is that:
e The Figure is the final image that may contain 1 or more Axes.

e The Axes represent an individual plot (don't confuse this with the word "axis", which refers to the x/y
axis of a plot).

We call methods that do the plotting directly from the Axes, which gives us much more flexibility and power
in customizing our plot.

Note: In general, try to use the object-oriented interface over the pyplot interface.

Our data

We'll use the data from the post from which this tutorial was derived. It contains sales information for a
number of companies.

import numpy as np
import matplotlib.pyplot as plt

data = {'Barton LLC': 109438.50,
'Frami, Hills and Schmidt': 103569.59,
'Fritsch, Russel and Anderson': 112214.71,
'Jerde-Hilpert': 112591.43,
'Keeling LLC': 100934.30,
'Koepp Ltd': 103660.54,
'Kulas Inc': 137351.9¢6,
'Trantow—-Barrows': 123381.38,
'White-Trantow': 135841.99,
'Will LLC': 104437.60}

group_data = list (data.values())

group_names = list (data.keys())

group_mean = np.mean (group_data)

72 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Getting started

This data is naturally visualized as a barplot, with one bar per group. To do this with the object-oriented
approach, we first generate an instance of figure.Figure and axes.Axes. The Figure is like a canvas,
and the Axes is a part of that canvas on which we will make a particular visualization.

Note: Figures can have multiple axes on them. For information on how to do this, see the 7Tight Layout
tutorial.

fig, ax = plt.subplots()

1.0

0.8

0.6

0.4

0.2 A

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Now that we have an Axes instance, we can plot on top of it.

fig, ax = plt.subplots()
ax.barh (group_names, group_data)

2.1. Introductory 73

Matplotlib, Release 3.4.3

Will LLC
‘e-Trantow
w-Barrows

Kulas Inc
Koepp Ltd
geling LLC
de-Hilpert
Anderson
d Schmidt

larton LLC

T T T T T T T
0 20000 40000 0000 80000 100000 120000 140000

Out:

<BarContainer object of 10 artists>

Controlling the style

There are many styles available in Matplotlib in order to let you tailor your visualization to your needs. To
see a list of styles, we canuse style.

print (plt.style.available)

Out:

['"Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_background
~', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-
<bright', 'seaborn-colorblind', 'seaborn-dark', 'seaborn-dark-palette',
~'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook',
~'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk',
<'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'tableau-colorblindl0

']

You can activate a style with the following:

74 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

plt.style.use('fivethirtyeight')

Now let's remake the above plot to see how it looks:

fig, ax = plt.subplots()
ax.barh (group_names, group_data)

0 20000 40000 60000 80000 100000120000 140000

Out:

<BarContainer object of 10 artists>

The style controls many things, such as color, linewidths, backgrounds, etc.

2.1. Introductory 75

Matplotlib, Release 3.4.3

Customizing the plot

Now we've got a plot with the general look that we want, so let's fine-tune it so that it's ready for print. First
let's rotate the labels on the x-axis so that they show up more clearly. We can gain access to these labels with
the axes.Axes.get_xticklabels () method:

fig, ax = plt.subplots|()
ax.barh (group_names, group_data)
labels = ax.get_xticklabels()

0 20000 40000 60000 80000 100000120000 140000

If we'd like to set the property of many items at once, it's useful to use the pyplot . setp () function. This
will take a list (or many lists) of Matplotlib objects, and attempt to set some style element of each one.

fig, ax = plt.subplots()

ax.barh (group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

76 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Out:

[None, None, None, None, None, None, None, None, None, None, None, None, None,
< None, None, None, None, None]

It looks like this cut off some of the labels on the bottom. We can tell Matplotlib to automatically make room
for elements in the figures that we create. To do this we set the autolayout value of our rcParams. For
more information on controlling the style, layout, and other features of plots with rcParams, see Customizing
Matplotlib with style sheets and rcParams.

plt.rcParams.update ({'figure.autolayout': True})

fig, ax = plt.subplots()

ax.barh (group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

2.1. Introductory 77

Matplotlib, Release 3.4.3

will L I

White-Trantow _
Trantow-Barrows _

kulas Inc [

Koepp Ltd |

Keeling LLC [

Jerde-titpert |

Fritsch, Russel and Anderson _

Frami, Hills and Schmidt _

Out:

[None, None, None, None, None, None, None, None, None, None, None, None, None,
< None, None, None, None, None]

Next, we add labels to the plot. To do this with the OO interface, we can use the Artist. set () method
to set properties of this Axes object.

fig, ax = plt.subplots()

ax.barh (group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right")

ax.set (x1lim=[-10000, 140000], xlabel='Total Revenue',6 ylabel='Company',
title='Company Revenue')

78 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Company Revenue

will LLC - [
White-Trantow [
Trantow-Barrows [
> Kulas Inc [
9 Koepp Ltd [N
£ Keeling LLC [N
S Jerde-Hilpert [N
Fritsch, Russel and Anderson [
Frami, Hills and Schmidt [
Barton LLC [N
Q {}QQ QQ
& Sl
'\f
Total Revenue
Out:
[(-10000.0, 140000.0), Text (0.5, 44.08838834764833, 'Total Revenue'), Text (43.

=999999999999986, 0.5, 'Company'), Text (0.5, 1.0, 'Company Revenue')]

We can also adjust the size of this plot using the pyplot. subplots () function. We can do this with the
figsize kwarg.

Note: While indexing in NumPy follows the form (row, column), the figsize kwarg follows the form (width,
height). This follows conventions in visualization, which unfortunately are different from those of linear
algebra.

fig, ax = plt.subplots(figsize=(8, 4))

ax.barh (group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

ax.set (x1im=[-10000, 140000], xlabel='Total Revenue',6 ylabel='Company',
title="'Company Revenue')

2.1. Introductory 79

Matplotlib, Release 3.4.3

Company Revenue

Will LLC
White-Trantow
Trantow-Barrows

I
I
-]
c Kulas Inc I
8 Koepp Ltd [—
c Keeling LLC .
o Jerde-Hilpert I
U Fritsch, Russel and Anderson IS
Frami, Hills and Schmidt I
Barton LLC .
Q QO O O Q QO
& &£ & S 4_;::0
I £5) A ,\S) .\”}

Total Revenue

Out:

[(-10000.0, 140000.0), Text (0.5, 43.823223304703376, 'Total Revenue'), .
~Text (43.999999999999986, 0.5, 'Company'), Text (0.5, 1.0, 'Company Revenue')]

For labels, we can specify custom formatting guidelines in the form of functions. Below we define
a function that takes an integer as input, and returns a string as an output. When used with Axis.
set_major_formatter or Axis.set_minor_formatter, they will automatically create and use
aticker.FuncFormatter class.

For this function, the x argument is the original tick label and pos is the tick position. We will only use x
here but both arguments are needed.

def currency(x, pos):
"""The two args are the value and tick position"""
if x >= le6:

s = 'S{:1.17f}M"'.format (x*1e-6)
else:

s = '"S$S{:1.0f}K".format (x*1e—-3)
return s

We can then apply this function to the labels on our plot. To do this, we use the xax i s attribute of our axes.
This lets you perform actions on a specific axis on our plot.

(00}

fig, ax = plt.subplots(figsize=(6,
ax.barh (group_names, group_data)
labels = ax.get_xticklabels()
plt.setp(labels, rotation=45, horizontalalignment='right")

))

ax.set (x1lim=[-10000, 140000], xlabel='Total Revenue',6 ylabel='Company',
title='Company Revenue')
ax.xaxis.set_major_formatter (currency)

80 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Company Revenue

Will LLC

White-Trantow

Trantow-Barrows

Kulas Inc
=
% Koepp Ltd
o
£ .
o Keeling LLC
O
Jerde-Hilpert

Fritsch, Russel and Anderson

Frami, Hills and Schmidt

Barton LLC

%
%

iy
2%
%

J‘ZG

Total Revenue

2.1. Introductory 81

Matplotlib, Release 3.4.3

Combining multiple visualizations

It is possible to draw multiple plot elements on the same instance of axes.Axes. To do this we simply
need to call another one of the plot methods on that axes object.

fig, ax = plt.subplots(figsize=(8, 8))

ax.barh (group_names, group_data)

labels = ax.get_xticklabels()

plt.setp(labels, rotation=45, horizontalalignment='right')

Add a vertical line, here we set the style in the function call
ax.axvline (group_mean, ls='—-', color='r'")

Annotate new companies
for group in [3, 5, 8]:
ax.text (145000, group, "New Company", fontsize=10,
verticalalignment="center")

Now we move our title up since it's getting a little cramped
ax.title.set (y=1.05)

ax.set (x1im=[-10000, 140000], xlabel='Total Revenue', ylabel='Company',
title="'Company Revenue')

ax.xaxlis.set_major_formatter (currency)

ax.set_xticks ([0, 25e3, 50e3, 75e3, 100e3, 125e3])

fig.subplots_adjust (right=.1)

plt.show()

82 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Company Revenue
I

Will LLC l

White-Trantow

New Company

Trantow-Barrows

Kulas Inc

2N
% Koepp Ltd New Company
o
= .
o Keeling LLC
o

Jerde-Hilpert New Company

Fritsch, Russel and Anderson

Frami, Hills and Schmidt

Barton LLC

%
I
%

&

R

Total Revenue

Saving our plot

Now that we're happy with the outcome of our plot, we want to save it to disk. There are many file formats
we can save to in Matplotlib. To see a list of available options, use:

print (fig.canvas.get_supported_filetypes())

Out:

{'eps': 'Encapsulated Postscript', 'Jjpg': 'Joint Photographic Experts Group',
~'jpeg': 'Joint Photographic Experts Group', 'pdf': 'Portable Document Format
', 'pgf': 'PGF code for LaTeX', 'png': 'Portable Network Graphics', 'ps':

o}

~'Postscript', 'raw': 'Raw RGBA bitmap', 'rgba': 'Raw RGBA bitﬁ%%“?“sg%%*EW@@

<'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics', 'tif':
2ﬂ:Tﬂﬁ?@aLﬁﬂﬁﬁy File Format', 'tiff': 'Tagged Image File Format'} 83

Matplotlib, Release 3.4.3

(continued from previous page)

|

We can thenuse the figure.Figure.savefig () inorder to save the figure to disk. Note that there are
several useful flags we show below:

e transparent=True makes the background of the saved figure transparent if the format supports
it.

e dpi=80 controls the resolution (dots per square inch) of the output.

e bbox_inches="tight" fits the bounds of the figure to our plot.

Uncomment this line to save the figure.
fig.savefig('sales.png', transparent=False, dpi=80, bbox_inches="tight")

Total running time of the script: (0 minutes 3.396 seconds)

2.1.6 Customizing Matplotlib with style sheets and rcParams

Tips for customizing the properties and default styles of Matplotlib.

Using style sheets

The style package adds support for easy-to-switch plotting "styles" with the same parameters as a mat-
plotlib rc file (which is read at startup to configure Matplotlib).

There are a number of pre-defined styles provided by Matplotlib. For example, there's a pre-defined style
called "ggplot", which emulates the aesthetics of ggplot (a popular plotting package for R). To use this style,
just add:

import numpy as np

import matplotlib.pyplot as plt
import matplotlib as mpl

from cycler import cycler
plt.style.use('ggplot'")

data = np.random.randn (50)

To list all available styles, use:

print (plt.style.available)

Out:

['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_background
~', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-
~bright', 'seaborn-colorblind', 'seaborn-dark', 'seaborn-dark-palette',
«~'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook',
«~'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk',
~'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'tableau-colorblindl0

']

84 Chapter 2. Tutorials

https://ggplot2.tidyverse.org/
https://www.r-project.org/

Matplotlib, Release 3.4.3

Defining your own style

You can create custom styles and use them by calling st yle. use with the path or URL to the style sheet.

For example, you might want to create . /images/presentation.mplstyle with the following:

axes.titlesize : 24
axes.labelsize : 20
lines.linewidth : 3
lines.markersize : 10

xtick.labelsize : 16
ytick.labelsize : 16

Then, when you want to adapt a plot designed for a paper to one that looks good in a presentation, you can
just add:

>>> import matplotlib.pyplot as plt
>>> plt.style.use('./images/presentation.mplstyle')

Alternatively, you can make your style known to Matplotlib by placing your <style—-name>.mplstyle
fileintompl_configdir/stylelib. You can then load your custom style sheet with acallto style.
use (<style—-name>). By default mpl_configdir shouldbe ~/.config/matplotlib, but you
can check where yours is with matplotlib.get_configdir ();you may need to create this directory.
You also can change the directory where Matplotlib looks for the stylelib/ folder by setting the MPLCON~—
FIGDIR environment variable, see matplotlib configuration and cache directory locations.

Note that a custom style sheet in mpl_configdir/stylelib will override a style sheet defined by
Matplotlib if the styles have the same name.

Once your <style-name>.mplstyle fileisin the appropriate mpl_configdir you can specify your
style with:

>>> import matplotlib.pyplot as plt
>>> plt.style.use(<style—name>)

Composing styles

Style sheets are designed to be composed together. So you can have a style sheet that customizes colors
and a separate style sheet that alters element sizes for presentations. These styles can easily be combined by
passing a list of styles:

>>> import matplotlib.pyplot as plt
>>> plt.style.use(['dark_background', 'presentation'])

Note that styles further to the right will overwrite values that are already defined by styles on the left.

2.1. Introductory 85

Matplotlib, Release 3.4.3

Temporary styling

If you only want to use a style for a specific block of code but don't want to change the global styling, the style
package provides a context manager for limiting your changes to a specific scope. To isolate your styling
changes, you can write something like the following:

with plt.style.context ('dark_background') :
plt.plot (np.sin(np.linspace (0, 2 * np.pi)), 'r-o')
plt.show ()

0.00

—0.25

—0.50

—0.75

2.1.7 Matplotlib rcParams
Dynamic rc settings
You can also dynamically change the default rc settings in a python script or interactively from the python

shell. All of the rc settings are stored in a dictionary-like variable called matplotlib. rcParams, which
is global to the matplotlib package. rcParams can be modified directly, for example:

mpl.rcParams|['lines.linewidth'] = 2
mpl.rcParams['lines.linestyle'] = "—-
plt.plot (data)

86 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

I I
1 \ g\ !
| I HYINHH ;!
| n h | 1y I i I h |
1- 1 I I l"ll I A] |l
' I TR
1 A R I A L I
1
. YT TR
1 " n, o (bt
v Il " TR
FYARVE ST T
I[,‘f V1 u L \
1 1
-1 1 v 1 I.'II
H !
]
1! I
1
o i
0 10 20 30 40 50

Out:

[<matplotlib.lines.Line2D object at 0x7fe64b46e9d0>]

Note, that in order to change the usual pIot color you have to change the prop_cycle property of axes:

mpl.rcParams|['axes.prop_cycle'] = cycler(color=['r"', 'g', 'b', 'yv'])
plt.plot (data) # first color is red

2.1. Introductory 87

Matplotlib, Release 3.4.3

I
! A R 1
1 n L h
1 In H HHIHL
1- 1 I I l"ll'\] |l
| A R T A I A
1
o- b A AT Ty a g
\
Vorry) \ n"l " ity
LAE VY oo ' B R
I 11 1] I A
1 v 1
! \/ v !
-1 |I' v i I"II
! !
I
1! I
1
- i
0 10 20 30 40 50

Out:

[<matplotlib.lines.Line2D object at 0x7fe65a511160>]

Matplotlib also provides a couple of convenience functions for modifying rc settings. matplotlib. rc
can be used to modify multiple settings in a single group at once, using keyword arguments:

mpl.rc('lines', linewidth=4, linestyle='-.")
plt.plot (data)

88 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

0 10 20 30 40 50

Out:

[<matplotlib.lines.Line2D object at 0x7fe64b638d90>]

matplotlib.rcdefaults will restore the standard Matplotlib default settings.

There is some degree of validation when setting the values of rcParams, see matplotlib. rcsetup for
details.

The matplotlibre file

Matplotlib uses matplotlibrc configuration files to customize all kinds of properties, which we call 'rc
settings' or 'rc parameters'. You can control the defaults of almost every property in Matplotlib: figure size
and DPI, line width, color and style, axes, axis and grid properties, text and font properties and so on. When
a URL or path is not specified with a call to style.use ('<path>/<style—-name>.mplstyle'),
Matplotlib looks for matplotlibrc in four locations, in the following order:

1. matplotlibrc in the current working directory, usually used for specific customizations that you
do not want to apply elsewhere.

2. SMATPLOTLIBRC if itis a file, else SMATPLOTLIBRC/matplotlibrc.

3. It next looks in a user-specific place, depending on your platform:

2.1. Introductory 89

Matplotlib, Release 3.4.3

e On Linux and FreeBSD, it looks in .config/matplotlib/matplotlibrc (or
$XDG_CONFIG_HOME/matplotlib/matplotlibrc)ifyou've customized your environ-
ment.

e On other platforms, it looks in .matplotlib/matplotlibrc.
See matplotlib configuration and cache directory locations.

4. INSTALL/matplotlib/mpl-data/matplotlibrc, where INSTALL is something like /
usr/lib/python3.7/site-packages on Linux, and maybe C:\Python37\Lib\site-
packages on Windows. Every time you install matplotlib, this file will be overwritten, so if you
want your customizations to be saved, please move this file to your user-specific matplotlib directory.

Once amatplotlibrc file has been found, it will not search any of the other paths.

To display where the currently active matplotlibrc file was loaded from, one can do the following:

>>> import matplotlib
>>> matplotlib.matplotlib_fname ()
'/home/foo/.config/matplotlib/matplotlibre’

See below for a sample matplotlibre file.

A sample matplotlibrc file

MATPLOTLIBRC FORMAT

NOTE FOR END USERS: DO NOT EDIT THIS FILE!

##

This is a sample Matplotlib configuration file - you can find a copy
of it on your system in site-packages/matplotlib/mpl-data/matplotlibrc
(relative to your Python installation location).

##

You should find a copy of it on your system at

site-packages/matplotlib/mpl-data/matplotlibrc (relative to your Python
installation location). DO NOT EDIT IT!

##

If you wish to change your default style, copy this file to one of the
following locations:

Unix/Linux:

SHOME/.config/matplotlib/matplotlibrc OR

SXDG_CONFIG_HOME/matplotlib/matplotlibrc (if S$XDG_CONFIG_HOME 1s..
wset)

Other platforms:

SHOME/ .matplotlib/matplotlibrc

and edit that copy.

#4#

See https://matplotlib.org/users/customizing.html#the-matplotlibrc-file

for more details on the paths which are checked for the configuration file.
##

Blank lines, or lines starting with a comment symbol, are ignored, as are
trailing comments. Other lines must have the format:

(continues on next page)

90 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

key: val # optional comment

##

Formatting: Use PEP8-1like style (as enforced in the rest of the codebase).
All lines start with an additional '#', so that removing all leading '#'s
yields a valid style file.

##

Colors: for the color values below, you can either use
- a Matplotlib color string, such as r, k, or b
- an RGB tuple, such as (1.0, 0.5, 0.0)

- a hex string, such as ff00ff

- a scalar grayscale intensity such as 0.75

- a legal html color name, e.g., red, blue, darkslategray
##

Matplotlib configuration are currently divided into following parts:
- BACKENDS

— LINES

— PATCHES

— HATCHES

- BOXPLOT

- FONT

- TEXT

- LaTeX

- AXES

- DATES

- TICKS

- GRIDS

— LEGEND

— FIGURE

- IMAGES

- CONTOUR PLOTS

- ERRORBAR PLOTS

— HISTOGRAM PLOTS

- SCATTER PLOTS

- AGG RENDERING

- PATHS

- SAVING FIGURES

— INTERACTIVE KEYMAPS

— ANIMATION

CONFIGURATION BEGINS HERE

R i i i b i b b b b b i i b b b b b I b b b b b b b b b b b b b b i b b b b b b b b b b b b b b b i b b b g b g

* BACKENDS *

AAAAAAAAA A A AL A AA A AA A A A A A A A A AA h Ak d A A kA A

The default backend. If you omit this parameter, the first working
backend from the following list is used:

MacOSX Qt5Agg Gtk3Agg TkAgg WxAgg Agg
Other choices include:
Qt5Cairo GTK3Cairo TkCairo WxCairo Cairo
QOt4Agg Qt4Cairo Wx # deprecated.
PS PDF SVG Template
(continues on next page)
2.1. Introductory 91

Matplotlib, Release 3.4.3

(continued from previous page)

You can also deploy your own backend outside of Matplotlib by referring to
the module name (which must be in the PYTHONPATH) as 'module://my_backend'.
#backend: Agg

The port to use for the web server in the WebAgg backend.
#webagg.port: 8988

The address on which the WebAgg web server should be reachable
#webagg.address: 127.0.0.1

If webagg.port is unavailable, a number of other random ports will
be tried until one that is available is found.
#webagg.port_retries: 50

When True, open the web browser to the plot that is shown
#webagg.open_in_browser: True

If you are running pyplot inside a GUI and your backend choice

conflicts, we will automatically try to find a compatible one for
vou 1f backend_fallback is True

#backend_fallback: True

#interactive: False

#toolbar: toolbar2 # {None, toolbar2, toolmanager}
#timezone: UTC # a pytz timezone string, e.g., US/Central or Europe/
~Paris

AAAAAA A AA A A AL A AA A AA A A A A A A A A AA h Ak d A A kA A

* LINES *
FAAAAA A A A bbb bbb b A A A A A b bbbb bbb b A A A A bbb bbb bbb bbb bbb bbbbbb bbb A A A A A A bbb bbb A A
See https://matplotlib.org/api/artist_api.html#module-matplotlib.lines

for more information on line properties.

#lines.linewidth: 1.5 # line width in points

#lines.linestyle: - # solid line

#lines.color: co # has no affect on plot(); see axes.prop._
wcycle

#lines.marker: None # the default marker
#lines.markerfacecolor: auto # the default marker face color
#lines.markeredgecolor: auto # the default marker edge color
#lines.markeredgewidth: 1.0 # the line width around the marker symbol
#lines.markersize: 6 # marker size, in points
#lines.dash_joinstyle: round # {miter, round, bevel}
#lines.dash_capstyle: butt # {butt, round, projecting}

#lines.solid _joinstyle: round # {miter, round, bevel}

#lines.solid _capstyle: projecting # {butt, round, projecting}
#lines.antialiased: True # render lines in antialiased (no jaggies)

The three standard dash patterns. These are scaled by the linewidth.
#lines.dashed _pattern: 3.7, 1.6

#lines.dashdot_pattern: 6.4, 1.6, 1, 1.6

#lines.dotted_pattern: 1, 1.65

(continues on next page)

92 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

#lines.scale_dashes: True
#markers.fillstyle: full # {full, left, right, bottom, top, none}

#pcolor.shading : flat
#pcolormesh.snap : True # Whether to snap the mesh to pixel boundaries. This
1s provided solely to allow old test images to.
wremain
unchanged. Set to False to obtain the previous.
~behavior.

R b b b b b b b b b b b b b S b i b b b b b b b b b b b b b b b g b Ui g b b g b (b b b (b b g b g

* PATCHES *
ER b b I b b g b b b b b b b b g b g g b b b b i b b g b b S b b b b b g b b b b g b b b g g b b g b b g b b b b g g b b g b g 2 b g b b b g b g 4
Patches are graphical objects that fill 2D space, like polygons or circles.
See https://matplotlib.org/api/artist_api.html#module-matplotlib.patches

for more information on patch properties.

#patch.linewidth: 1 # edge width in points.

#patch. facecolor: co

#patch.edgecolor: black # if forced, or patch is not filled

#patch. force_edgecolor: False # True to always use edgecolor
#patch.antialiased: True # render patches in antialiased (no jaggies)

R i b e i b e b b b e i e e b b b b e b b i b b b b e e b e e b e b b b b e b b b b e b e b b b e e b b b b b b e b i i i

* HATCHES *
b g
#hatch.color: black

#hatch.linewidth: 1.0

LR B i B I i b b b i i b I b i b i b I b b b b b b b b b b b b b i b b b b b b b b b b b b b b b b i b b b g b g

* BOXPLOT *

AAA A AAAAAA A A A A AA h A A A A A b A h A A d A A h bk Ak bk Ak ok h ok kh Kk

#boxplot.notch: False
#boxplot.vertical: True
#boxplot.whiskers: 1.5

#boxplot .bootstrap: None
#boxplot.patchartist: False
#boxplot.showmeans: False
#boxplot.showcaps: True
#boxplot.showbox: True
#boxplot.showfliers: True
#boxplot.meanline: False
#boxplot.flierprops.color: black
#boxplot.flierprops.marker: o

#boxplot.flierprops.markerfacecolor: none
#boxplot.flierprops.markeredgecolor: black
#boxplot.flierprops.markeredgewidth: 1.0
#boxplot.flierprops.markersize: 6
#boxplot.flierprops.linestyle: none

(continues on next page)

2.1. Introductory 93

Matplotlib, Release 3.4.3

(continued from previous page)

#boxplot.flierprops.linewidth: 1.0

#boxplot .boxprops.color: black
#boxplot.boxprops.linewidth: 1.0
#boxplot.boxprops.linestyle: -

#boxplot.whiskerprops.color: black
#boxplot.whiskerprops.linewidth: 1.0
#boxplot.whiskerprops.linestyle: -

#boxplot.capprops.color: black
#boxplot.capprops.linewidth: 1.0
#boxplot.capprops.linestyle: -

#boxplot.medianprops.color: Cc1
#boxplot.medianprops.linewidth: 1.0
#boxplot.medianprops.linestyle: -

#boxplot .meanprops.color: cz2
#boxplot.meanprops.marker:
#boxplot.meanprops.markerfacecolor: C2
#boxplot .meanprops.markeredgecolor: C2
#boxplot.meanprops.markersize: 6
#boxplot .meanprops.linestyle: ——
#boxplot.meanprops.linewidth: 1.0

ER b b b b b b b b b b b b b b S b b b b b b b b b b b g b g b b b b b b b b b b i b b b b b b b b b b b b b b b g b b g b b g b b b b (b b g b g

* FONT *
ER g b I b g g b b b b b S b b g b g g b b 2 b b b b b g b b b b b b b g b b b b b P b b g g b b b b b S b b g b g g b b g b g 2 b g g b g g b g 4
The font properties used by text.Text .

See https://matplotlib.org/api/font_manager_api.html for more information

on font properties. The 6 font properties used for font matching are
given below with their default values.

##

The font.family property can take either a concrete font name (not.
supported

when rendering text with usetex), or one of the following five generic
values:

- 'serif' (e.g., Times),

- 'sans-serif' (e.g., Helvetica),
- 'cursive' (e.qg., Zapf-Chancery),
- 'fantasy' (e.g., Western), and
- 'monospace' (e.g., Courier).

Each of these values has a corresponding default list of font names

(font.serif, etc.); the first available font in the list 1s used. Note.
sthat

for font.serif, font.sans-serif, and font.monospace, the first element of
the 1list (a DejaVu font) will always be used because DejaVu is shipped with
Matplotlib and is thus guaranteed to be available; the other entries are

left as examples of other possible values.

#i#

(continues on next page)

94 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

The font.style property has three values: normal (or roman), italic
or oblique. The oblique style will be used for italic, if it 1s not
present.

##

The font.variant property has two values: normal or small-caps. For
TrueType fonts, which are scalable fonts, small-caps is equivalent
to using a font size of 'smaller', or about 83%% of the current font
size.

##
The font.weight property has effectively 13 values: normal, bold,
bolder, lighter, 100, 200, 300, ..., 900. Normal is the same as

400, and bold is 700. bolder and lighter are relative values with
respect to the current weight.

##

The font.stretch property has 11 values: ultra-condensed,

extra—-condensed, condensed, semi-condensed, normal, semi-expanded,

expanded, extra-expanded, ultra-expanded, wider, and narrower. This
property 1is not currently implemented.
##

The font.size property is the default font size for text, given in points.
10 pt is the standard value.

##

Note that font.size controls default text sizes. To configure

special text sizes tick labels, axes, labels, title, etc., see the rc
settings for axes and ticks. Special text sizes can be defined

relative to font.size, using the following values: xx-small, x-small,
small, medium, large, x-large, xx-large, larger, or smaller

#font.family: sans-serif

#font.style: normal

#font.variant: normal

#font.weight: normal

#font.stretch: normal

#font.size: 10.0

#font.serif: DejaVu Serif, Bitstream Vera Serif, Computer Modern Roman,.

«New Century Schoolbook, Century Schoolbook L, Utopia, ITC Bookman, Bookman,.
oNimbus Roman No9 L, Times New Roman, Times, Palatino, Charter, serif
#font.sans-serif: DejaVu Sans, Bitstream Vera Sans, Computer Modern Sans.
«Serif, Lucida Grande, Verdana, Geneva, Lucid, Arial, Helvetica, Avant Garde,
~ sans—-serif

#font.cursive: Apple Chancery, Textile, Zapf Chancery, Sand, Script MT,.
<Felipa, Comic Neue, Comic Sans MS, cursive

#font.fantasy: Chicago, Charcoal, Impact, Western, Humor Sans, xkcd,.
-fantasy

#font.monospace: DejaVu Sans Mono, Bitstream Vera Sans Mono, Computer Modern.
«Typewriter, Andale Mono, Nimbus Mono L, Courier New, Courier, Fixed,.
«Terminal, monospace

AAAAAA A AAA A A A A AA A AA A AA A A A A A AA KA A A A

* TEXT *

(continues on next page)

2.1. Introductory 95

Matplotlib, Release 3.4.3

(continued from previous page)

R b b b b 2 b g b b b b b b b b g b b g b b b b (a2 b b g b g

The text properties used by 'text.Text .

See https://matplotlib.org/api/artist_api.html#module-matplotlib.text
for more information on text properties

#text.color: black

AAAAAA A AAAAAA A AA A AA A A A A A AA A AA A A A A A A A A AA A AL A

* LaTeX N
b g i
For more information on LaTeX properties, see
https://matplotlib.org/tutorials/text/usetex.html
#text.usetex: False # use latex for all text handling. The following fonts

are supported through the usual rc parameter settings:
new century schoolbook, bookman, times, palatino,
zapf chancery, charter, serif, sans-serif, helvetica,
avant garde, courier, monospace, computer modern roman,
computer modern sans serif, computer modern typewriter
If another font is desired which can loaded using the
LaTeX \usepackage command, please inquire at the
Matplotlib mailing 1list
#text.latex.preamble: # IMPROPER USE OF THIS FEATURE WILL LEAD TO LATEX.
<FAILURES

S Hh R HR R W H

AND IS THEREFORE UNSUPPORTED. PLEASE DO NOT ASK FOR.
<HELP
IF THIS FEATURE DOES NOT DO WHAT YOU EXPECT IT TO.
text.latex.preamble is a single line of LaTeX code.

=

«that

will be passed on to the LaTeX system. It may.
~contain

any code that is valid for the LaTeX "preamble"”, 1i.
Se.

between the "\documentclass'" and "\begin{document}"

statements.

Note that it has to be put on a single line, which.
osmay

become quite long.

The following packages are always loaded with.
susetex, SO

beware of package collisions: color, geometry,.
~graphicx,

typelcm, textcomp.

Adobe Postscript (PSSNFS) font packages may also be

loaded, depending on your font settings.

FreeType hinting flag ("foo" corresponds to FTI_LOAD_FO0OO); may be one of the
following (Proprietary Matplotlib-specific synonyms are given in.
-parentheses,

but their use is discouraged) :

— default: Use the font's native hinter if possible, else FreeType's auto-
<hinter.

("either" is a synonym).

(continues on next page)

96 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

— no_autohint: Use the font's native hinter if possible, else don't hint.
("native"” is a synonym.)

— force_autohint: Use FreeType's auto-hinter. ("auto" is a synonym.)

— no_hinting: Disable hinting. ("none" is a synonym.)

#text.hinting: force_autohint

#text.hinting factor: 8 # Specifies the amount of softness for hinting in the
horizontal direction. A value of 1 will hint to.

ofull

pixels. A value of 2 will hint to half pixels etc.
#text.kerning_factor : 0 # Specifies the scaling factor for kerning values..
-This

is provided solely to allow old test images to.
wremain

unchanged. Set to 6 to obtain previous behavior..
-Values

other than 0 or 6 have no defined meaning.
#text.antialiased: True # If True (default), the text will be antialiased.
This only affects raster outputs.

The following settings allow you to select the fonts in math mode.
#mathtext.fontset: dejavusans # Should be 'dejavusans' (default),
'dejavuserif', 'cm' (Computer Modern), 'stix

'stixsans' or 'custom' (unsupported, may go
away in the future)

"mathtext.fontset: custom" is defined by the mathtext.bf, .cal, .it,
settings which map a TeX font name to a fontconfig font pattern. (These
settings are not used for other font sets.)
#mathtext.bf: sans:bold
#mathtext.cal: cursive
#mathtext.it: sans:italic
#mathtext.rm: sans
#mathtext.sf: sans
#mathtext.tt: monospace
#mathtext.fallback: cm # Select fallback font from ['cm' (Computer Modern),
o'stix'

'stixsans'] when a symbol can not be found in one.
<of the

custom math fonts. Select 'None' to not perform.
«fallback

and replace the missing character by a dummy symbol.

The default font to use for math.
Can be any of the LaTeX font names, including
the special name "regular" for the same font
used in regular text.

#mathtext.default: it

R b b i b b i b i b b b b b b g b b b b b b b b b b b g b b b b (ab b b b b g b g

* AXES *
AAAAAA A AAA A A A A AA A AA A AA A A A A A AA KA A A A

Following are default face and edge colors, default tick sizes,

(continues on next page)

2.1. Introductory 97

Matplotlib, Release 3.4.3

(continued from previous page)

default font sizes for tick labels, and so on. See
https://matplotlib.org/api/axes_api.html#module-matplotlib.axes
#axes.facecolor: white # axes background color
#axes.edgecolor: black # axes edge color
#axes.linewidth: 0.8 # edge line width
#axes.grid: False # display grid or not
#axes.grid.axis: both # which axis the grid should apply to
#axes.grid.which: major # grid lines at {major, minor, both} ticks
#axes.titlelocation: center # alignment of the title: {left, right, center}
#axes.titlesize: large # font size of the axes title
#axes.titleweight: normal # font weight of title
#axes.titlecolor: auto # color of the axes title, auto falls back to
text.color as default value
#axes.titley: None # position title (axes relative units). None.
~implies auto
#axes.titlepad: 6.0 # pad between axes and title in points
#axes.labelsize: medium # font size of the x and y labels
#axes.labelpad: 4.0 # space between label and axis
#axes.labelweight: normal # weight of the x and y labels
#axes.labelcolor: black
#axes.axisbelow: line # draw axis gridlines and ticks:
- below patches (True)
- above patches but below lines ('line')
- above all (False)
#axes.formatter.limits: -5, 6 # use scientific notation if logl0
of the axis range is smaller than the
first or larger than the second
#axes.formatter.use_locale: False # When True, format tick labels
according to the user's locale.
For example, use ',' as a decimal
separator in the fr_FR locale.
#axes.formatter.use_mathtext: False # When True, use mathtext for scientific
notation.
#axes.formatter.min_exponent: # minimum exponent to format in scientific.

snotation
#axes.formatter.useoffset:

#axes.

#axes.
#axes.
#axes.
#axes.

formatter.

spines.
spines.
spines.
spines.

left: True
bottom: True
top: True

right: True

#axes.unicode_minus: True

True

If True, the tick label formatter

will default to labeling ticks relative
to an offset when the data range 1is

small compared to the minimum absolute
value of the data.

offset_threshold: 4 # When useoffset 1is True, the offset

will be used when it can remove
at least this number of significant
digits from tick labels.

display axis spines

use Unicode for the minus symbol rather than.

~hyphen.

See

(continues on next page)

98

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

https://en.wikipedia.orqg/wiki/Plus_and_minus_
wsigns#Character_codes
#axes.prop_cycle: cycler('color', ['1f77b4', 'ff7f0e', '2cal2c’', 'd62728',
~'9467bd', '8c564b', 'e377c2', '7f7f7f', 'bcbd22', 'l7becf'])

color cycle for plot lines as list of string color specs:

single letter, long name, or web-style hex
As opposed to all other parameters in this file, the color
values must be enclosed in quotes for this parameter,
e.g. '1f77b4', instead of 1f77b4.
See also https://matplotlib.org/tutorials/intermediate/

H o H W H

-color_cycle.html
for more details on prop_cycle usage.

#axes.xmargin: .05 # x margin. See ‘axes.Axes.margins’
#axes.ymargin: .05 # y margin. See ‘axes.Axes.margins’
#axes.zmargin: .05 # z margin. See ‘axes.Axes.margins’

#axes.autolimit_mode: data # If "data", use axes.xmargin and axes.ymargin as.
1s.

If "round_numbers'", after application of.
emargins, axis

limits are further expanded to the nearest
«"round" number.
#polaraxes.grid: True # display grid on polar axes
#axes3d.grid: True # display grid on 3D axes

R B i i b i b i i b b b b i b i b b b b b i b b b b i b b b b b b b b b i b b b i b b g b 4

* AXIS *
L b b b b b b b b b B i b b b b b b b b b b P B i b b b b b b b b b i B b i i
#xaxis.labellocation: center # alignment of the xaxis label: {left, right,.
-center}

#yvaxis.labellocation: center # alignment of the yaxis label: {bottom, top,.
scenter}

AAAAAA A AA A A AL A AA A AA A A A A A AL A AAA A A A A A A A A AA A AA A

* DATES .
b g
These control the default format strings used in AutoDateFormatter.

Any valid format datetime format string can be used (see the python

‘datetime’ for details). For example, by using:

'$%x' will use the locale date representation

- '$8X'" will use the locale time representation

- '%%c' will use the full locale datetime representation
These values map to the scales:

{'year': 365, 'month': 30, 'day': 1, 'hour': 1/24, 'minute': 1 / (24 *.
~60) }

#date.autoformatter.year: Y

#date.autoformatter.month: FY-%m

#date.autoformatter.day: $Y-$m—3%d
#date.autoformatter.hour: em—3%d SH
#date.autoformatter.minute: sd SH:%M

(continues on next page)

2.1. Introductory 99

Matplotlib, Release 3.4.3

(continued from previous page)

#date.autoformatter.second: H:%M:%S

#date.autoformatter.microsecond: $M:%S.%f

The reference date for Matplotlib's internal date representation

See https://matplotlib.org/examples/ticks_and_spines/date_precision_and_
sepochs.py

#date.epoch: 1970-01-01T00:00:00

'auto', 'concise':

o oo

oo oo
oo oo

#date.converter: auto
For auto converter whether to use interval_multiples:
#date.interval _multiples: True

R b b b b b b b b b b b b b S b i b b b b b b b b b b b b b b b g b Ui g b b g b (b b b (b b g b g

* TICKS .

R i b e b b e b b b e i e i b b e b b g b e e b b b e b e e b e e b e b b b b e b b b e b e b e b b b e e b b b b b b e b i i i

See https://matplotlib.org/api/axis_api.html#matplotlib.axis.Tick
#xtick.top: False # draw ticks on the top side

#xtick.bottom: True # draw ticks on the bottom side
#xtick.labeltop: False # draw label on the top

#xtick.labelbottom: True # draw label on the bottom
#xtick.major.size: 3.5 # major tick size in points
#xtick.minor.size: 2 # minor tick size in points
#xtick.major.width: 0.8 # major tick width in points
#xtick.minor.width: 0.6 # minor tick width in points
#xtick.major.pad: 3.5 # distance to major tick label in points
#xtick.minor.pad: 3.4 # distance to the minor tick label in points
#xtick.color: black # color of the ticks

#xtick.labelcolor: inherit # color of the tick labels or inherit from.
extick.color

#xtick.labelsize: medium # font size of the tick labels
#xtick.direction: out # direction: {in, out, inout}
#xtick.minor.visible: False # visibility of minor ticks on x—-axis
#xtick.major.top: True # draw x axis top major ticks
#xtick.major.bottom: True # draw x axis bottom major ticks
#xtick.minor.top: True # draw x axis top minor ticks
#xtick.minor.bottom: True # draw x axis bottom minor ticks
#xtick.alignment: center # alignment of xticks

#ytick.left: True # draw ticks on the left side

#ytick.right: False # draw ticks on the right side
#ytick.labelleft: True # draw tick labels on the left side
#ytick.labelright: False # draw tick labels on the right side
#ytick.major.size: 3.5 # major tick size in points
#ytick.minor.size: 2 # minor tick size in points
#ytick.major.width: 0.8 # major tick width in points
#ytick.minor.width: 0.6 # minor tick width in points
#ytick.major.pad: 3.5 # distance to major tick label in points
#ytick.minor.pad: 3.4 # distance to the minor tick label in points
#ytick.color: black # color of the ticks

#ytick.labelcolor: inherit # color of the tick labels or inherit from.
wytick.color

#ytick.labelsize: medium # font size of the tick labels
#ytick.direction: out # direction: {in, out, inout}

(continues on next page)

100 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

#ytick.minor.visible: False # visibility of minor ticks on y-axis
#ytick.major.left: True # draw y axis left major ticks
#ytick.major.right: True # draw y axis right major ticks
#ytick.minor.left: True # draw y axis left minor ticks
#ytick.minor.right: True # draw y axis right minor ticks
#ytick.alignment: center_baseline # alignment of yticks

R i b e e i b e b b b e b e i b b b b b b b b e i b b b b b b b e e b e b b b b e b b e b b b e b b b b b e b b b b b b b i i i

* GRIDS *
b S b g
#grid.color: b0b0b0 # grid color

#grid.linestyle: - # solid

#grid.linewidth: 0.8 # in points

#grid.alpha: 1.0 # transparency, between 0.0 and 1.0

AAAAAAAAAA A AL A AA A AA AR h A A A A A A A h A h A A d A A dhA Ak h Ak h ok kh Kk

* LEGEND .
Ko Sk ok ok b b b b b b b b ok b b b ok b b b b b o ok ok ok ok ok ok ok ok ok

#legend.loc: best
#legend. frameon: True # if True, draw the legend on a background.
gpatch
#legend. framealpha: 0.8 # legend patch transparency
#legend. facecolor: inherit # inherit from axes.facecolor; or color spec
#legend.edgecolor: 0.8 # background patch boundary color
#legend. fancybox: True # if True, use a rounded box for the

legend background, else a rectangle
#legend.shadow: False # 1f True, give background a shadow effect
#legend.numpoints: 1 # the number of marker points in the legend.
sline
#legend.scatterpoints: 1 # number of scatter points
#legend.markerscale: 1.0 # the relative size of legend markers vs..
soriginal
#legend. fontsize: medium
#legend.title fontsize: None # None sets to the same as the default axes.

Dimensions as fraction of font size:

#legend.borderpad: 0.4 # border whitespace

#legend.labelspacing: 0.5 # the vertical space between the legend entries
#legend.handlelength: 2.0 # the length of the legend lines
#legend.handleheight: 0.7 # the height of the legend handle
#legend.handletextpad: 0.8 # the space between the legend line and legend.
stext

#legend.borderaxespad: 0.5 # the border between the axes and legend edge
#legend.columnspacing: 2.0 # column separation

R b b i b b i b i b b b b b b g b b b b b b b b b b b g b b b b (ab b b b b g b g

* FIGURE N
Kk ok ok ok b b b b b b ok b ok b b b ok o ok ok ok ok ok ok ok ok ok

See https://matplotlib.org/api/figure_api.html#matplotlib.figure.Figure

(continues on next page)

2.1. Introductory 101

Matplotlib, Release 3.4.3

(continued from previous page)

#figure.titlesize: large # size of the figure title ("Figure.
wsuptitle() ")
#figure.titleweight: normal # weight of the figure title
#figure.figsize: 6.4, 4.8 # figure size in inches
#figure.dpi: 100 # figure dots per inch
#figure.facecolor: white # figure face color
#figure.edgecolor: white # figure edge color
#figure.frameon: True # enable figure frame
#figure.max_open_warning: 20 # The maximum number of figures to open through
the pyplot interface before emitting a.
swarning.
If less than one this feature is disabled.
#figure.raise_window : True # Raise the GUI window to front when show() 1is.
wcalled.
The figure subplot parameters. All dimensions are a fraction of the.
«figure width and height.
#figure.subplot.left: 0.125 # the left side of the subplots of the figure
#figure.subplot.right: 0.9 # the right side of the subplots of the figure
#figure.subplot.bottom: 0.11 # the bottom of the subplots of the figure
#figure.subplot.top: 0.88 # the top of the subplots of the figure
#figure.subplot.wspace: 0.2 # the amount of width reserved for space.

<between subplots,

expressed as a fraction of the average axis.
owidth
#figure.subplot.hspace: 0.2 # the amount of height reserved for space.
-between subplots,

expressed as a fraction of the average axis.
~height

Figure layout
#figure.autolayout: False # When True, automatically adjust subplot
parameters to make the plot fit the figure
using “tight_layout’
#figure.constrained_layout.use: False # When True, automatically make plot
elements fit on the figure. (Not
compatible with “autolayout', above).
#figure.constrained_layout.h_pad: 0.04167 # Padding around axes objects..
«Float representing
#figure.constrained_layout.w_pad: 0.04167 # inches. Default is 3/72 inches.
- (3 points)

#figure.constrained_layout.hspace: 0.02 # Space between subplot groups..
«Float representing
#figure.constrained_layout.wspace: 0.02 # a fraction of the subplot.

wwidths being separated.

LR B i B b i b i b i b i b b i b I b i b b b b b b b b b b b b b i b b b b b b b b b b b i b b b b b b g b g

* IMAGES *

AAAAAA A AAA A AL A AA b A A A A h b Ak kA kA d kb Ak hk A kb h ko h &

#image.aspect: equal # {equal, auto} or a number
#image.interpolation: antialiased # see help(imshow) for options

(continues on next page)

102 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

#image.cmap: viridis # A colormap name, gray etc...
#image.lut: 256 # the size of the colormap lookup table
#image.origin: upper # {lower, upper}

#image.resample: True

#image.composite_image: True # When True, all the images on a set of axes are
combined into a single composite image before
saving a figure as a vector graphics file,
such as a PDF.

H W H

R i i i b b b b b b b i b b i b b b I b b b b b b b b b b b b b g i b g

* CONTOUR PLOTS *
LR b g g b b b b b b b b b b b b b g b b b b b b b b b b b g g b b b b b b b b b b
#contour.negative_linestyle: dashed # string or on-off ink sequence
#contour.corner_mask: True # {True, False, legacy}
#contour.linewidth: None # {float, None} Size of the contour line

widths. If set to None, it falls back.
<to

“line.linewidth'.

R b b i i b b b b b b b b b b b b i b g b b b db b b b g b g

* ERRORBAR PLOTS *

AAAAAA A AAA A A A A AA A AA A A A A A AL A AA A AA A A A A A AA A

#errorbar.capsize: 0 # length of end cap on error bars in pixels

ER b b b b b b b b b b b b b b S b b b b b b b b b b b g b g b b b b b b b b b b i b b b b b b b b b b b b b b b g b b g b b g b b b b (b b g b g

* HISTOGRAM PLOTS *
Kok Sk ok ok ok b ok b ok ok ok ok ok ok ok ok ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok ok ok b ok b ok b ok b ok b ok b ok ok ok ok ok ok ok ok

#hist.bins: 10 # The default number of histogram bins or 'auto'.

AAA A AAAAAA A A A A AA h A A A A A b A h A A d A A h bk Ak bk Ak ok h ok kh Kk

* SCATTER PLOTS *
ER b b g b b g b b b b b S b b g b g S b g b b b b b b g b b b b b b b b b b b b b P b b g g b b e b b g b b S b b g b b g b g b b g g b e g b g 4
#scatter.marker: o # The default marker type for scatter plots.
#scatter.edgecolors: face # The default edge colors for scatter plots.

R e b e b e b b i e i e i b b b b e b b e b b b e b b e b e e b e b b b b b b e b e b b e b b b b b e b b b b e b b b i i i

* AGG RENDERING *
b S b g b
Warning: experimental, 2008/10/10
#agg.path.chunksize: 0 # 0 to disable; values in the range
10000 to 100000 can improve speed slightly
and prevent an Agg rendering failure
when plotting very large data sets,
especially if they are very gappy.
It may cause minor artifacts, though.
A value of 20000 is probably a good
starting point.

FH FHR R W R K

(continues on next page)

2.1. Introductory 103

Matplotlib, Release 3.4.3

(continued from previous page)

AAAAAA A AAAAAA A AA A AA A A A A A AL A AA A A A A A A A A AA A AL A

* PATHS *
bR b g
#path.simplify: True # When True, simplify paths by removing "invisible"
points to reduce file size and increase rendering
speed
#path.simplify threshold: 0.111111111111 # The threshold of similarity below
which vertices will be removed 1in
the simplification process.
#path.snap: True # When True, rectilinear axis—aligned paths will be snapped
to the nearest pixel when certain criteria are met.
When False, paths will never be snapped.
#path.sketch: None # May be None, or a 3-tuple of the form:
(scale, length, randomness).
- *scale* is the amplitude of the wiggle
perpendicular to the line (in pixels).
— *length* is the length of the wiggle along the
line (in pixels).
- *randomness* is the factor by which the length is
randomly scaled.

R S S S S

#path.effects:

R B i i b i b i i b b b b i b i b b b b b i b b b b i b b b b b b b b b i b b b i b b g b 4

* SAVING FIGURES *
L b b b b b b b b b B i b b b b b b b b b b P B i b b b b b b b b b i B b i i
The default savefig parameters can be different from the display parameters
e.g., you may want a higher resolution, or to make the figure

background white

#savefig.dpi: figure # figure dots per inch or 'figure'
#savefig.facecolor: auto # figure face color when saving
#savefig.edgecolor: auto # figure edge color when saving
#savefig.format: png # {png, ps, pdf, svg}
#savefig.bbox: standard # {tight, standard}

'tight' is incompatible with pipe-based.
sanimation

backends (e.g. 'ffmpeg') but will work with.
~those

based on temporary files (e.g. 'ffmpeqg file
")
#savefig.pad_inches: 0.1 # Padding to be used when bbox is set to
~'tight'
#savefig.directory: ~ # default directory in savefig dialog box,

leave empty to always use current working.
~directory
#savefig.transparent: False # setting that controls whether figures are.

wsaved with a
transparent background by default
#savefig.orientation: portrait # Orientation of saved figure

(continues on next page)

104 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

tk backend params
#tk.window_focus: False # Maintain shell focus for TkAgg

ps backend params

#ps.papersize: letter {auto, letter, legal, ledger, A0-A10, BO-B10}
#ps.useafm: False use of AFM fonts, results in small files
#ps.usedistiller: False {ghostscript, xpdf, None}

Experimental: may produce smaller files.
xpdf intended for production of publication.

HH ¥ H W H

wquality files,

but requires ghostscript, xpdf and psZeps

#ps.distiller.res: 6000 # dpi
#ps.fonttype: 3 # Output Type 3 (Type3) or Type 42 (TrueType)
PDF backend params
#pdf.compression: 6 # integer from 0 to 9

0 disables compression (good for debugging)
#pdf.fonttype: 3 # Output Type 3 (Type3) or Type 42 (TrueType)
#pdf.useldcorefonts : False
#pdf.inheritcolor: False

SVG backend params
#svg.image_inline: True # Write raster image data directly into the SVG file
#svg.fonttype: path # How to handle SVG fonts:

path: Embed characters as paths ——- supported

by most SVG renderers

None: Assume fonts are installed on the

machine where the SVG will be viewed.
#svg.hashsalt: None # If not None, use this string as hash salt instead.
~of uuid4

pgf parameter

See https://matplotlib.org/tutorials/text/pgf.html for more information.
#pgf.rcfonts: True

#pgf.preamble: # See text.latex.preamble for documentation

#pgf.texsystem: xelatex

docstring params
#docstring.hardcopy: False # set this when you want to generate hardcopy.
~docstring

R i i i b i b b b b b i i b b b b b I b b b b b b b b b b b b b b i b b b b b b b b b b b b b b b i b b b g b g

* INTERACTIVE KEYMAPS *
ER b b b b g b b b b b b b b b g b g b b g b b b b b b b b b b b b b b b b b b i b b g b b b g b g b b g b b g b b b g b g b b g b b b g b 4
Event keys to interact with figures/plots via keyboard.

See https://matplotlib.org/users/navigation_toolbar.html for more details.
-0n

interactive navigation. Customize these settings according to your needs.
Leave the field(s) empty if you don't need a key-map. (i.e., fullscreen : '
<")

#keymap.fullscreen: f, ctrl+f # toggling

(continues on next page)

2.1. Introductory 105

Matplotlib, Release 3.4.3

(continued from previous page)

#keymap.
#keymap.
#keymap.
#keymap.
#keymap.
#keymap.
#keymap.
#keymap.
#keymap.
#keymap.
#keymap.
#keymap.
#keymap.
#keymap.

home: h, r, home # home or reset mnemonic

back: left, c, backspace, MouseButton.BACK # forward / backward keys
forward: right, v, MouseButton.FORWARD # for quick navigation
pan: p # pan mnemonic

zoom: © # zoom mnemonic

save: s, ctrl+s # saving current figure

help: f1 # display help about active tools

quit: ctrl+w, cmd+w, q # close the current figure

quit_all: # close all figures

grid: g # switching on/off major grids in current axes
grid_minor: G # switching on/off minor grids in current axes
yscale: 1 # toggle scaling of y-axes ('log'/'linear')
xscale: k, L # toggle scaling of x—-axes ('log'/'linear')
copy: ctrl+c, cmd+c # Copy figure to clipboard

R b b b b I b b i b i b b b b b b b b b b b b b b b b b b g b b b b (a2 b b g b g

* ANIMATION "
Kok Sk ok ok ok b ok b ok ok ok ok ok ok ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok b ok ok ok b ok b ok b ok b ok b ok b ok b ok ok ok ok ok ok

#animation.html: none # How to display the animation as HTML in

the IPython notebook:

- 'html5' uses HTML5 video tag
- 'jshtml' creates a JavaScript animation
#animation.writer: ffmpeg # MovieWriter 'backend' to use
#animation.codec: h264 # Codec to use for writing movie
#animation.bitrate: -1 # Controls size/quality trade-off for movie.
-1 implies let utility auto-determine
#animation. frame_format: png # Controls frame format used by temp files
#animation. ffmpeg _path: ffmpeg # Path to ffmpeg binary. Without full path
SPATH is searched
#animation. ffmpeg_args: # Additional arguments to pass to ffmpeg
#animation.convert_path: convert # Path to ImageMagick's convert binary.
On Windows use the full path since convert
1s also the name of a system tool.
#animation.convert_args: # Additional arguments to pass to convert
#animation.embed_limit: 20.0 # Limit, in MB, of size of baseé64 encoded
animation in HTML (i.e. IPython notebook)

Total running time of the script: (0 minutes 1.653 seconds)

106

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

2.2 Intermediate

These tutorials cover some of the more complicated classes and functions in Matplotlib. They can be useful
for particular custom and complex visualizations.

2.2.1 Artist tutorial

Using Artist objects to render on the canvas.
There are three layers to the Matplotlib API.
e thematplotlib.backend_bases.FigureCanvas is the area onto which the figure is drawn

e the matplotlib.backend_bases.Renderer is the object which knows how to draw on the
FigureCanvas

e and the matplotlib.artist.Artist is the object that knows how to use a renderer to paint
onto the canvas.

The FigureCanvas and Renderer handle all the details of talking to user interface toolkits like wx-
Python or drawing languages like PostScript®, and the Artist handles all the high level constructs like
representing and laying out the figure, text, and lines. The typical user will spend 95% of their time working
with the Artists.

There are two types of Art ists: primitives and containers. The primitives represent the standard graphical
objects we want to paint onto our canvas: LineZD, Rectangle, Text, AxesImage, etc., and the contain-
ers are places to put them (Axis, Axes and Figure). The standard use is to create a F'i gure instance,
use the Figure to create one or more Axes or Subplot instances, and use the Axes instance helper
methods to create the primitives. In the example below, we create a Figure instance using matplotlib.
pyplot.figure (), which is a convenience method for instantiating Figure instances and connecting
them with your user interface or drawing toolkit FigureCanvas. As we will discuss below, this is not
necessary -- you can work directly with PostScript, PDF Gtk+, or wxPython FigureCanvas instances,
instantiate your Figures directly and connect them yourselves -- but since we are focusing here on the
Artist API we'll let pyp 1ot handle some of those details for us:

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot (2, 1, 1) # two rows, one column, first plot

The Axes is probably the most important class in the Matplotlib API, and the one you will be working
with most of the time. This is because the Axes is the plotting area into which most of the objects go, and
the Axes has many special helper methods (plot (), text (), hist (), imshow ()) to create the most
common graphics primitives (LineZ2D, Text, Rectangle, AxesImage, respectively). These helper
methods will take your data (e.g., numpy arrays and strings) and create primitive Artist instances as
needed (e.g., Line2D), add them to the relevant containers, and draw them when requested. Most of you
are probably familiar with the Subplot, which is just a special case of an Axes that lives on a regular rows
by columns grid of Subplot instances. If you want to create an Axes at an arbitrary location, simply use
the add_axes () method which takes a list of [1eft, bottom, width, height] values in 0-1
relative figure coordinates:

2.2. Intermediate 107

https://www.wxpython.org
https://www.wxpython.org

Matplotlib, Release 3.4.3

fig2 = plt.figure()
ax2 = fig2.add_axes([0.15, 0.1, 0.7, 0.31)

Continuing with our example:

import numpy as np

t = np.arange (0.0, 1.0, 0.01)

s = np.sin(2*np.pi*t)

line, = ax.plot(t, s, color='blue', 1lw=2)

In this example, ax is the Axes instance created by the fig.add_subplot call above (remember Sub—
plot is just a subclass of Axes) and when you call ax.plot, it creates a Line2D instance and adds it to
the Axes.lines list. In the interactive IPython session below, you can see that the Axes.lines listis
length one and contains the same line that was returned by the 1ine, = ax.plot... call:

In [101]: ax.lines[O0]
Out[101]: <matplotlib.lines.Line2D at 0x19a95710>

In [102]: line
Out[102]: <matplotlib.lines.Line2D at 0x19a95710>

If you make subsequent calls to ax.plot (and the hold state is "on" which is the default) then additional
lines will be added to the list. You can remove lines later simply by calling the list methods; either of these
will work:

del ax.lines[0]
ax.lines.remove (line) # one or the other, not both!

The Axes also has helper methods to configure and decorate the x-axis and y-axis tick, tick labels and axis
labels:

xtext = ax.set_xlabel ('my xdata') # returns a Text instance
ytext = ax.set_ylabel ('my ydata')

When you call ax.set_xlabel, it passes the information on the Text instance of the XAxis. Each
Axes instance contains an XAx1s and a YAx 1 s instance, which handle the layout and drawing of the ticks,
tick labels and axis labels.

Try creating the figure below.

import numpy as np
import matplotlib.pyplot as plt

fig = plt.figure()
fig.subplots_adjust (top=0.8)
axl = fig.add_subplot (211)
axl.set_ylabel ('volts")
axl.set_title('a sine wave')

o
I

= np.arange (0.0, 1.0, 0.01)
s = np.sin(2*np.pi*t)

(continues on next page)

108 Chapter 2. Tutorials

https://ipython.org/

Matplotlib, Release 3.4.3

(continued from previous page)

line, = axl.plot(t, s, color='blue', 1lw=2)

Fixing random state for reproducibility
np.random.seed (19680801)

ax2 = fig.add_axes([0.15, 0.1, 0.7, 0.31)
n, bins, patches = ax2.hist (np.random.randn(1000), 50,
facecolor='"yellow', edgecolor='yellow'")

ax2.set_xlabel ('time (s)'")

plt.show ()
a sine wave
1.0 -
0.5
2 0.0
s ©
_.DS -
_IID] T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
60 -
40 -
20 -
0 T T T T T T T T
-3 -2 -1 0 1 2 3 4
time (s)

2.2. Intermediate 109

Matplotlib, Release 3.4.3

Customizing your objects

Every element in the figure is represented by a Matplotlib Art i st, and each has an extensive list of proper-
ties to configure its appearance. The figure itself contains a Rect angl e exactly the size of the figure, which
you can use to set the background color and transparency of the figures. Likewise, each Axe s bounding box
(the standard white box with black edges in the typical Matplotlib plot, has a Rectangle instance that
determines the color, transparency, and other properties of the Axes. These instances are stored as member
variables Figure.patch and Axes.patch ("Patch" is a name inherited from MATLAB, and is a 2D
"patch" of color on the figure, e.g., rectangles, circles and polygons). Every Matplotlib Artist has the
following properties

Property | Description

alpha The transparency - a scalar from 0-1
animated | A boolean that is used to facilitate animated drawing
axes The Axes that the Artist lives in, possibly None

clip_box | The bounding box that clips the Artist

clip_on Whether clipping is enabled

clip_path | The path the artist is clipped to

contains | A picking function to test whether the artist contains the pick point

figure The figure instance the artist lives in, possibly None
label A text label (e.g., for auto-labeling)

picker A python object that controls object picking
transform | The transformation

visible A boolean whether the artist should be drawn
zorder A number which determines the drawing order

rasterized | Boolean; Turns vectors into raster graphics (for compression & EPS transparency)

Each of the properties is accessed with an old-fashioned setter or getter (yes we know this irritates Pythonistas
and we plan to support direct access via properties or traits but it hasn't been done yet). For example, to
multiply the current alpha by a half:

a = o.get_alphal)
o.set_alpha(0.5*a)

If you want to set a number of properties at once, you can also use the set method with keyword arguments.
For example:

o.set (alpha=0.5, zorder=2)

If you are working interactively at the python shell, a handy way to inspect the Art ist properties is to use
the matplotlib.artist.qgetp () function (simply getp () in pyplot), which lists the properties and
their values. This works for classes derived from Artist as well, e.g., Figure and Rectangle. Here
are the Figure rectangle properties mentioned above:

In [149]: matplotlib.artist.getp(fig.patch)
agg_filter = None
alpha = None

(continues on next page)

110 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

animated = False
antialiased or aa = False
bbox = Bbox (x0=0.0, y0=0.0, x1=1.0, y1=1.0)

capstyle = butt

children = []

clip_box = None

clip_on = True

clip_path = None

contains = None

data_transform = BboxTransformTo (TransformedBbox (Bbox. ..
edgecolor or ec = (1.0, 1.0, 1.0, 1.0)

extents = Bbox (x0=0.0, y0=0.0, x1=640.0, y1=480.0)

facecolor or fc = (1.0, 1.0, 1.0, 1.0)

figure = Figure (640x480)
fill = True

gid = None

hatch = None

height = 1
in_layout False

joinstyle = miter

label =

linestyle or 1ls = solid

linewidth or 1w = 0.0

patch_transform = CompositeGenericTransform BboxTransformTo (
path = Path(array([[0., 0.], [1., 0.1, [1.,...
path_effects = []

picker = None

rasterized = None

sketch_params = None

snap = None

transform = CompositeGenericTransform (CompositeGenericTra...
transformed_clip_path_and_affine = (None, None)

url = None

verts = [[0. 0.] [640. 0.] [640. 480.] [0. 480....
visible = True

width = 1

window_extent = Bbox (x0=0.0, y0=0.0, x1=640.0, y1=480.0)

x = 0

xy = (0, 0)

y = 0

zorder = 1

The docstrings for all of the classes also contain the Artist properties, so you can consult the interactive
"help" or the matplotlib.artist for a listing of properties for a given object.

2.2. Intermediate 111

Matplotlib, Release 3.4.3

Object containers

Now that we know how to inspect and set the properties of a given object we want to configure, we need to
know how to get at that object. As mentioned in the introduction, there are two kinds of objects: primitives
and containers. The primitives are usually the things you want to configure (the font of a Text instance,
the width of a L1 ne2D) although the containers also have some properties as well -- for example the Axes
Artist is a container that contains many of the primitives in your plot, but it also has properties like
the xscale to control whether the xaxis is 'linear' or 'log'. In this section we'll review where the various
container objects store the Art ists that you want to get at.

Figure container

The top level container Artist is the matplotlib. figure.Figure, and it contains everything in
the figure. The background of the figure is a Rectangle which is stored in Figure.patch. As you
add subplots (add_subplot ()) and axes (add_axes ()) to the figure these will be appended to the
Figure.axes. These are also returned by the methods that create them:

In [156]: fig = plt.figure()

In [157]: axl = fig.add_subplot (211)

In [158]: ax2 fig.add_axes([0.1, 0.1, 0.7, 0.31)

In [159]: axl
Out[159]: <AxesSubplot:>

In [160]: print(fig.axes)
[<AxesSubplot:>, <matplotlib.axes._axes.Axes object at 0x7£0768702be0>]

Because the figure maintains the concept of the "current Axes" (see Figure.gca and Figure. sca) to
support the pylab/pyplot state machine, you should not insert or remove Axes directly from the Axes list,
but rather use the add_subplot () and add_axes () methods to insert, and the delaxes () method to
delete. You are free however, to iterate over the list of Axes or index into it to get access to Axes instances
you want to customize. Here is an example which turns all the Axes grids on:

for ax in fig.axes:
ax.grid(True)

The figure also has its own images, lines, patches and text attributes, which you can use to add
primitives directly. When doing so, the default coordinate system for the Figure will simply be in pixels
(which is not usually what you want). If you instead use Figure-level methods to add Artists (e.g., using
Figure. text to add text), then the default coordinate system will be "figure coordinates" where (0, 0) is
the bottom-left of the figure and (1, 1) is the top-right of the figure.

As with all Artists, you can control this coordinate system by setting the transform property. You can
explicitly use "figure coordinates" by setting the Art ist transformto fig.transFigure:

import matplotlib.lines as lines

(continues on next page)

112 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

fig = plt.figure ()

11 = lines.Line2D ([0,
12 = lines.Line2D ([0,
fig.lines.extend([11,

plt.show()

, [0, 11, transform=fig.transFigure, figure=fig)
[1, 0], transform=fig.transFigure, figure=figqg)

Here is a summary of the Artists the Figure contains

Figure attribute | Description

axes A list of Axes instances (includes Subplot)

patch The Rectangle background

images A list of FigureImage patches - useful for raw pixel display
legends A list of Figure Legend instances (different from Axes . legends)
lines A list of Figure LineZ2D instances (rarely used, see Axes.lines)
patches A list of Figure Pat chs (rarely used, see Axes.patches)

texts A list Figure Text instances

2.2. Intermediate

113

Matplotlib, Release 3.4.3

Axes container

The matplotlib.axes.Axes is the center of the Matplotlib universe -- it contains the vast majority of
all the Artists used in a figure with many helper methods to create and add these Artists to itself, as
well as helper methods to access and customize the Art ists it contains. Like the F'igure, it contains a
Patchpatch which is a Rectangle for Cartesian coordinates and a Ci rcle for polar coordinates; this
patch determines the shape, background and border of the plotting region:

ax = fig.add_subplot ()
rect = ax.patch # a Rectangle instance
rect.set_facecolor('green')

When you call a plotting method, e.g., the canonical pZot () and pass in arrays or lists of values, the method
will create a matplotlib.lines.Line2D () instance, update the line with all the Line2D properties
passed as keyword arguments, add the line to the Axes . 1ines container, and returns it to you:

In [213]: x, y = np.random.rand (2, 100)

In [214]: line, = ax.plot(x, y, '-', color='blue', linewidth=2)

plot returns a list of lines because you can pass in multiple x, y pairs to plot, and we are unpacking the first
element of the length one list into the line variable. The line has been added to the Axes.lines list:

In [229]: print(ax.lines)
[<matplotlib.lines.Line2D at 0xd378b0c>]

Similarly, methods that create patches, like bar () creates a list of rectangles, will add the patches to the
Axes.patches list:

In [233]: n, bins, rectangles = ax.hist (np.random.randn (1000), 50)

In [234]: rectangles
Out[234]: <BarContainer object of 50 artists>

In [235]: print (len(ax.patches))
Out [235]: 50

You should not add objects directly to the Axes.lines or Axes.patches lists unless you know exactly
what you are doing, because the Axes needs to do a few things when it creates and adds an object. It sets the
figure and axes property of the Art ist, as well as the default Axe s transformation (unless a transformation
is set). It also inspects the data contained in the Artist to update the data structures controlling auto-
scaling, so that the view limits can be adjusted to contain the plotted data. You can, nonetheless, create objects
yourself and add them directly to the Axes using helper methods like add_1ine () and add_patch ().
Here is an annotated interactive session illustrating what is going on:

In [262]: fig, ax = plt.subplots()

create a rectangle instance
In [263]: rect = matplotlib.patches.Rectangle((1, 1), width=5, height=12)

(continues on next page)

114 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

by default the axes instance is None
In [264]: print (rect.axes)
None

and the transformation instance is set to the "identity transform"
In [265]: print (rect.get_data_transform())
IdentityTransform/()

now we add the Rectangle to the Axes
In [266]: ax.add_patch(rect)

and notice that the ax.add_patch method has set the axes
instance

In [267]: print (rect.axes)

Axes (0.125,0.1;0.775x0.8)

and the transformation has been set too

In [268]: print (rect.get_data_transform())

CompositeGenericTransform (
TransformWrapper (

BlendedAffine2D (
IdentityTransform(),
IdentityTransform())),

CompositeGenericTransform(

BboxTransformFrom (
TransformedBbox (

Bbox (x0=0.0, y0=0.0, x1=1.0, y1=1.0),
TransformWrapper (

BlendedAffine2D (
IdentityTransform(),
IdentityTransform())))),
BboxTransformTo (
TransformedBbox (
Bbox (x0=0.125, y0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo (
TransformedBbox (
Bbox (x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D (
[[100. 0. 0.]
[0. 100. 0.]
[O. 0. 1.71)))))))

the default axes transformation is ax.transData
In [269]: print (ax.transData)
CompositeGenericTransform (
TransformWrapper (
BlendedAffine2D (
IdentityTransform(),
IdentityTransform())),
CompositeGenericTransform(
BboxTransformFrom (
TransformedBbox (

(continues on next page)

2.2. Intermediate 115

Matplotlib, Release 3.4.3

(continued from previous page)

Bbox (x0=0.0, y0=0.0, x1=1.0, y1=1.0),
TransformWrapper (

BlendedAffine2D (
IdentityTransform(),
IdentityTransform())))),
BboxTransformTo (
TransformedBbox (
Bbox (x0=0.125, yv0=0.10999999999999999, x1=0.9, y1=0.88),
BboxTransformTo (
TransformedBbox (
Bbox (x0=0.0, y0=0.0, x1=6.4, y1=4.8),
Affine2D (
[[100. 0. 0.]
[0. 100. 0.]
[0. 0. 1.11)))))))

notice that the xlimits of the Axes have not been changed
In [270]: print (ax.get_xlim())
(0.0, 1.0)

but the data limits have been updated to encompass the rectangle
In [271]: print (ax.datalLim.bounds)
(1.0, 1.0, 5.0, 12.0)

we can manually invoke the auto-scaling machinery
In [272]: ax.autoscale_view()

and now the xlim are updated to encompass the rectangle, plus margins
In [273]: print (ax.get_xlim())
(0.75, 6.25)

we have to manually force a figure draw
In [274]: fig.canvas.draw ()

There are many, many Axes helper methods for creating primitive Artists and adding them to their
respective containers. The table below summarizes a small sampling of them, the kinds of Artist they
create, and where they store them

Axes helper method Artist Container
annotate - text annotations | Annotation ax.texts

bar - bar charts Rectangle ax.patches
errorbar - error bar plots LineZ2D and Rectangle | ax.lines and ax.patches
fi11 - shared area Polygon ax.patches
hist - histograms Rectangle ax.patches
imshow - image data AxesImage ax.images
Iegend - Axes legends Legend ax.legends
plot -xy plots Line2D ax.lines
scatter - scatter charts PolyCollection ax.collections
text - text Text ax.texts

116 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

In addition to all of these Artists, the Axes contains two important Art ist containers: the XAx1is and
YAx1is, which handle the drawing of the ticks and labels. These are stored as instance variables xaxis and
yvaxis. The XAxis and YAx1s containers will be detailed below, but note that the Axes contains many
helper methods which forward calls on to the Ax i s instances so you often do not need to work with them
directly unless you want to. For example, you can set the font color of the XAx i s ticklabels using the Axes
helper method:

for label in ax.get_xticklabels():
label.set_color('orange')

Below is a summary of the Artists that the Axes contains

Axes attribute | Description

artists A list of Artist instances

patch Rectangle instance for Axes background
collections A list of Collection instances

images A list of AxesImage

legends A list of Legend instances

lines A list of Line2D instances

patches A list of Pat ch instances

texts A list of Text instances

Xaxis A matplotlib.axis.XAx1s instance
yaxis A matplotlib.axis.YAx1s instance

AXxis containers

The matplotlib.axis.Axisinstances handle the drawing of the tick lines, the grid lines, the tick labels
and the axis label. You can configure the left and right ticks separately for the y-axis, and the upper and lower
ticks separately for the x-axis. The Ax 1 s also stores the data and view intervals used in auto-scaling, panning
and zooming, as well as the Locator and Format ter instances which control where the ticks are placed
and how they are represented as strings.

Each Ax 1 s object contains a 1abel attribute (this is what pyp 1ot modifies in calls to x1abel and yla—
bel) as well as a list of major and minor ticks. The ticks are axis.XTick and axis. YTick instances,
which contain the actual line and text primitives that render the ticks and ticklabels. Because the ticks
are dynamically created as needed (e.g., when panning and zooming), you should access the lists of major
and minor ticks through their accessor methods axis.Axis.get_major_ticks and axis.Axis.
get_minor_ticks. Although the ticks contain all the primitives and will be covered below, Ax1is in-
stances have accessor methods that return the tick lines, tick labels, tick locations etc.:

fig, ax = plt.subplots()
axis = ax.xaxis
axis.get_ticklocs()

2.2. Intermediate 117

Matplotlib, Release 3.4.3

1.0

0.8

0.6

0.4

0.2 A

0.0 0.2 0.4 0.6 0.8 1.0

Out:

array ([{0. , 0.2, 0.4, 0.6, 0.8, 1. 1)

axis.get_ticklabels ()

Out:

[Text (0.0, O, '0.0"), Text(0.2, 0, '0.2"), Text(0.4, 0, '0.4"), Text(O.
-~6000000000000001, 0, '0.6"), Text(0.8, 0, '0.8'), Text (1.0, 0, '"1.0")]

note there are twice as many ticklines as labels because by default there are tick lines at the top and bottom
but only tick labels below the xaxis; however, this can be customized.

axis.get_ticklines()

Out:

<a list of 12 Line2D ticklines objects>

And with the above methods, you only get lists of major ticks back by default, but you can also ask for the
minor ticks:

118 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

axis.get_ticklabels (minor=True)
axis.get_ticklines (minor=True)

Out:

<a list of 0 Line2D ticklines objects>

Here is a summary of some of the useful accessor methods of the Axis (these have corresponding setters
where useful, such as set_major formatter().)

Axis accessor method
get_scale

Description

The scale of the Axis, e.g., 'log' or 'linear’
The interval instance of the Axis view limits
The interval instance of the Axis data limits
A list of grid lines for the Axis

The Axis label - a Text instance

The Axis offset text - a Text instance

get_view_interval

get_data_interval

get_gridlines
get_label
get_offset_text

get_ticklabels

A list of Text instances - keyword minor=TruelFalse

get_ticklines

A list of LineZ2D instances - keyword minor=TruelFalse

get_ticklocs

A list of Tick locations - keyword minor=TruelFalse

The ticker. Locator instance for major ticks
The ticker.Formatter instance for major ticks
The t icker. Locator instance for minor ticks
The ticker.Formatter instance for minor ticks
A list of Tick instances for major ticks

A list of Tick instances for minor ticks

Turn the grid on or off for the major or minor ticks

get_major_ locator

get_major_ formatter

get_minor_locator

get_minor_ formatter

get_major_ticks

get_minor_ticks

grid

Here is an example, not recommended for its beauty, which customizes the Axes and Tick properties.

plt.figure creates a matplotlib.figure.Figure instance
fig = plt.figure()

rect = fig.patch # a rectangle instance
rect.set_facecolor('lightgoldenrodyellow")

axl = fig.add_axes([0.1, 0.3, 0.4, 0.41])
rect = axl.patch
rect.set_facecolor('lightslategray')

for label in axl.xaxis.get_ticklabels():
label is a Text instance
label.set_color('red')
label.set_rotation (45)
label.set_fontsize (16)

for line in axl.yaxis.get_ticklines():
line 1s a Line2D instance

(continues on next page)

2.2. Intermediate 119

Matplotlib, Release 3.4.3

(continued from previous page)

plt.

line.set_color ('green')
line.set_markersize (25)
line.set_markeredgewidth (3)

show ()

Tick containers

The matplotlib.axis. Tick isthe final container object in our descent from the Fi gure to the Axes
to the Axistothe Tick. The Tick contains the tick and grid line instances, as well as the label instances
for the upper and lower ticks. Each of these is accessible directly as an attribute of the Tick.

Tick attribute

Description

tick1line

A Linel2D instance

tick2line

A Linel2D instance

gridline

A Linel2D instance

labell

A Text instance

label2

A Text instance

120

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Here is an example which sets the formatter for the right side ticks with dollar signs and colors them green
on the right side of the yaxis.

import numpy as np
import matplotlib.pyplot as plt

Fixing random state for reproducibility
np.random.seed (19680801)

fig, ax = plt.subplots()
ax.plot (100*np.random.rand (20))

Use automatic StrMethodFormatter
ax.yaxis.set_major_formatter ('S{x:1.21f}")

ax.yaxis.set_tick_params (which="'major', labelcolor='green',
labelleft=False, labelright=True)

plt.show()

. $100.0C

. $80.00

. $60.00

. $40.00

. $20.00

T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

2.2. Intermediate 121

Matplotlib, Release 3.4.3

2.2.2 Legend guide

Generating legends flexibly in Matplotlib.

This legend guide is an extension of the documentation available at Iegend () - please ensure you are
familiar with contents of that documentation before proceeding with this guide.

This guide makes use of some common terms, which are documented here for clarity:
legend entry

A legend is made up of one or more legend entries. An entry is made up of exactly one key and one
label.

legend key

The colored/patterned marker to the left of each legend label.
legend label

The text which describes the handle represented by the key.
legend handle

The original object which is used to generate an appropriate entry in the legend.

Controlling the legend entries

Calling 1egend () with no arguments automatically fetches the legend handles and their associated labels.
This functionality is equivalent to:

handles, labels = ax.get_legend_handles_labels ()
ax.legend (handles, labels)

The get_legend _handles_labels () function returns a list of handles/artists which exist on the Axes
which can be used to generate entries for the resulting legend - it is worth noting however that not all artists
can be added to a legend, at which point a "proxy" will have to be created (see Creating artists specifically
Jor adding to the legend (aka. Proxy artists) for further details).

Those artists with an empty string as label or with a label starting with "_" will be ignored.

For full control of what is being added to the legend, it is common to pass the appropriate handles directly
to Iegend():

line_up, = plt.plot([1, 2, 3], label='Line 2")
line_down, = plt.plot([3, 2, 1], label='Line 1")
plt.legend (handles=[line_up, line_down])

In some cases, it is not possible to set the label of the handle, so it is possible to pass through the list of labels
to Iegend ():

line_up, = plt.plot([l1, 2, 3], label='Line 2")
line_down, = plt.plot([3, 2, 1], label='Line 1")
plt.legend([line_up, line_down], ['Line Up', 'Line Down'])

122 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Creating artists specifically for adding to the legend (aka. Proxy artists)

Not all handles can be turned into legend entries automatically, so it is often necessary to create an artist
which can. Legend handles don't have to exist on the Figure or Axes in order to be used.

Suppose we wanted to create a legend which has an entry for some data which is represented by a red color:

import matplotlib.patches as mpatches
import matplotlib.pyplot as plt

red_patch = mpatches.Patch(color="red', label='The red data')
plt.legend (handles=[red_patch])

plt.show ()

1.0

B The red data

0.8

0.6

0.4

0.2 A

D.G T T T T
0.0 0.2 0.4 0.6 0.8 1.0

There are many supported legend handles. Instead of creating a patch of color we could have created a line
with a marker:

import matplotlib.lines as mlines

blue_line = mlines.Line2D([], [], color='blue', marker='*",
markersize=15, label='Blue stars')
plt.legend (handles=[blue_line])

(continues on next page)

2.2. Intermediate 123

Matplotlib, Release 3.4.3

(continued from previous page)

plt.show()

1.0

_.*. Blue stars

0.8

0.6

0.4

0.2 A

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Legend location

The location of the legend can be specified by the keyword argument loc. Please see the documentation at
legend () for more details.

The bbox_to_anchor keyword gives a great degree of control for manual legend placement. For example,
if you want your axes legend located at the figure's top right-hand corner instead of the axes' corner, simply
specify the corner's location and the coordinate system of that location:

plt.legend (bbox_to_anchor=(1, 1),
bbox_transform=plt.gcf () .transFigure)

More examples of custom legend placement:

plt.subplot (211)
plt.plot([1, 2, 31, label="testl")
plt.plot ([3, 2, 11, label="test2")

(continues on next page)

124 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

Place a legend above this subplot, expanding itself to

fully use the given bounding box.

plt.legend (bbox_to_anchor=(0., 1.02, 1., .102), loc='"lower left',
ncol=2, mode="expand", borderaxespad=0.)

plt.subplot (223)

plt.plot ([1, 2, 3], label="testl")

plt.plot ([3, 2, 1], label="test2")

Place a legend to the right of this smaller subplot.

plt.legend (bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.)

plt.show()

— testl — test?

3.0

2.5

2.0 1

1.5~

1.0~

3.0 + —— testl

2.5
2.0 1
1.5+

1.0~

0.0 0.5 1.0 1.5 2.0

2.2. Intermediate 125

Matplotlib, Release 3.4.3

Multiple legends on the same Axes

Sometimes it is more clear to split legend entries across multiple legends. Whilst the instinctive approach
to doing this might be to call the Iegend () function multiple times, you will find that only one legend
ever exists on the Axes. This has been done so that it is possible to call 1egend () repeatedly to update the
legend to the latest handles on the Axes. To keep old legend instances, we must add them manually to the

Axes:
linel, = plt.plot([1, 2, 3], label="Line 1", linestyle='—--")
line2, = plt.plot([3, 2, 11, label="Line 2", linewidth=4)

Create a legend for the first line.

first_legend = plt.legend(handles=[1linel], loc='upper right')

Add the legend manually to the current Axes.
plt.gca() .add_artist (first_legend)

Create another legend for the second line.
plt.legend (handles=[1line2], loc='lower right')

plt.show()

3.00 A ==
2.75 -
2.50 L

2.25 -

2.00
1.75 + -
1.50 + -~

1.25 + -

1.00 -~ Line 2

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

126

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Legend Handlers
In order to create legend entries, handles are given as an argument to an appropriate HandlerBase subclass.
The choice of handler subclass is determined by the following rules:
1. Update get_legend_handler_map () with the value in the handler_map keyword.
2. Check if the handle is in the newly created handler_map.
3. Check if the type of handle is in the newly created handler_map.
4. Check if any of the types in the handle's mro is in the newly created handler_map.
For completeness, this logic is mostly implemented in get_legend_handler ().

All of this flexibility means that we have the necessary hooks to implement custom handlers for our own type
of legend key.

The simplest example of using custom handlers is to instantiate one of the existing Iegend_handler.
HandlerBase subclasses. For the sake of simplicity, let's choose Iegend_handler.
HandlerLineZ2D which accepts a numpoints argument (numpoints is also a keyword on the 1egend ()
function for convenience). We can then pass the mapping of instance to Handler as a keyword to legend.

from matplotlib.legend_handler import HandlerLine2D

linel, plt.plot([3, 2, 1], marker='o', label='Line 1")
line2, = plt.plot([1l, 2, 3], marker='o', label='Line 2'")

plt.legend (handler_map={linel: HandlerLine2D (numpoints=4) })

2.2. Intermediate 127

Matplotlib, Release 3.4.3

3.00 A

2.75

2.50

2.25

@ Linel

2.001 Line 2

1.75 +

1.50 +

1.25 +

1.00 +

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Out:

<matplotlib.legend.Legend object at 0x7fe64b59f4c0>

As you can see, "Line 1" now has 4 marker points, where "Line 2" has 2 (the default). Try the above code,
only change the map's key from 1inel to type (1inel). Notice how now both Line2D instances get 4
markers.

Along with handlers for complex plot types such as errorbars, stem plots and histograms, the default han—
dler_map has a special tuple handler (Iegend_handler.HandlerTuple) which simply plots the
handles on top of one another for each item in the given tuple. The following example demonstrates com-
bining two legend keys on top of one another:

from numpy.random import randn

z = randn (10)

red_dot, = plt.plot(z, "ro", markersize=15)
Put a white cross over some of the data.

white_cross, = plt.plot(z[:5], "wt", markeredgewidth=3, markersize=15)

plt.legend([red_dot, (red_dot, white_cross)], ["Attr A", "Attr A+B"])

128 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.0~

0.5 A

0.0

—0.5 4

_l.D -

_1.5 -

Attr A
Attr A+B

2

Out:

<matplotlib.legend.Legend object at 0x7fe64ala77f0>

The legend_handler.HandlerTuple class can also be used to assign several legend keys to the same

entry:

from matplotlib.legend_handler import HandlerLine2D,
pl, = plt.plot([1, 2.5, 3], 'r-d")

r2, = plt.plot([3, 2, 1], 'k-o")

1 = plt.legend ([(pl, p2)]1, ['Two keys'], numpoints=1,

handler_map={tuple:

HandlerTuple

HandlerTuple (ndivide=None) })

2.2. Intermediate

129

Matplotlib, Release 3.4.3

3.00 A
2.75 1
2.50 A
2.25 4
2.00 4+ e Two keys
1.75 4
1.50 4
1.25 4

1.00 +

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Implementing a custom legend handler

A custom handler can be implemented to turn any handle into a legend key (handles don't necessarily need to
be matplotlib artists). The handler must implementa 1egend_artist method which returns a single artist
for the legend to use. The required signature for legend_artist is documented at Iegend_artist.

import matplotlib.patches as mpatches

class AnyObject:
pass

class AnyObjectHandler:
def legend_artist (self, legend, orig_handle, fontsize, handlebox) :

x0, y0 = handlebox.xdescent, handlebox.ydescent

width, height = handlebox.width, handlebox.height

patch = mpatches.Rectangle([x0, y0], width, height, facecolor='red',
edgecolor="'black', hatch="xx', 1lw=3,
transform=handlebox.get_transform())

handlebox.add_artist (patch)

(continues on next page)

130 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

return patch

plt.legend([AnyObject ()], ['My first handler'],
handler_map={AnyObject: AnyObjectHandler () })

1.0

B My first handler

0.8

0.6

0.4

0.2 A

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Out:

<matplotlib.legend.Legend object at 0x7fe64b8bc2b0>

Alternatively, had we wanted to globally accept AnyObject instances without needing to manually set the
handler_map keyword all the time, we could have registered the new handler with:

from matplotlib.legend import Legend
Legend.update_default_handler_map ({AnyObject: AnyObjectHandler () })

Whilst the power here is clear, remember that there are already many handlers implemented and what you
want to achieve may already be easily possible with existing classes. For example, to produce elliptical
legend keys, rather than rectangular ones:

from matplotlib.legend_handler import HandlerPatch

(continues on next page)

2.2. Intermediate 131

Matplotlib, Release 3.4.3

(continued from previous page)

class HandlerEllipse (HandlerPatch) :
def create_artists(self, legend,
xdescent,

center
jo) mpatches.Ellipse (xy=center,

ydescent,
0.5 * width - 0.5 * xdescent,

orig_handle,

width, height, fontsize, trans):
0.5 * height - 0.5 * ydescent
width=width + xdescent,

height=height + ydescent)

self.update_prop(p, orig_handle,
p.set_transform(trans)
return [p]

C

mpatches.Circle((0.5, 0.5), 0.25,
edgecolor="red",
plt.gca () .add_patch(c)

plt.legend([c], ["An ellipse,
handler_map={mpatches.Circle:

legend)

facecolor="green",
linewidth=3)

not a rectangle"],

HandlerEllipse () })

1.0

0.8

0.6

0.4

0.2 A

@ An ellipse, not a rectangle

0.0 | |
0.0 0.2 0.4

Out:

0.6 0.8 1.0

132

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

<matplotlib.legend.Legend object at 0x7fe64b68e0d0>

Total running time of the script: (0 minutes 2.851 seconds)

2.2.3 Styling with cycler

Demo of custom property-cycle settings to control colors and other style properties for multi-line plots.

Note: More complete documentation of the cycler API can be found here.

This example demonstrates two different APIs:

1. Setting the rc parameter specifying the default property cycle. This affects all subsequent axes (but
not axes already created).

2. Setting the property cycle for a single pair of axes.

from cycler import cycler
import numpy as np
import matplotlib.pyplot as plt

First we'll generate some sample data, in this case, four offset sine curves.

x = np.linspace (0, 2 * np.pi, 50)
offsets = np.linspace(0, 2 * np.pi, 4, endpoint=False)
yy = np.transpose([np.sin(x + phi) for phi in offsets])

Now yvy has shape

print (yy.shape)

Out:

(50, 4)

So yyl:, i] will give you the i-th offset sine curve. Let's set the default prop_cycle using
matplotlib.pyplot.rc (). We'll combine a color cycler and a linestyle cycler by adding (+) two
cycler's together. See the bottom of this tutorial for more information about combining different cyclers.

default_cycler = (cycler(color=['r', 'g', 'b', 'y']) +
cycler (linestyle=['-", '—='", "', '"=."']))

plt.rc('lines', linewidth=4)
plt.rc('axes', prop_cycle=default_cycler)

Now we'll generate a figure with two axes, one on top of the other. On the first axis, we'll plot with
the default cycler. On the second axis, we'll set the prop_cycle using matplotlib.axes.Axes.
set_prop_cycle (), which will only set the prop_cycle for this matplotlib.axes.Axes in-
stance. We'll use a second cycler that combines a color cycler and a linewidth cycler.

2.2. Intermediate 133

https://matplotlib.org/cycler/

Matplotlib, Release 3.4.3

custom_cycler = (cycler(color=['c', 'm', 'y', 'k']) +
cycler (lw=[1, 2, 3, 41))

fig, (ax0, axl) = plt.subplots(nrows=2)

ax0.plot (yy)

ax0.set_title('Set default color cycle to rgby'")
axl.set_prop_cycle (custom_cycler)

axl.plot (yy)

axl.set_title('Set axes color cycle to cmyk')

Add a bit more space between the two plots.
fig.subplots_adjust (hspace=0.3)
plt.show()

Set default color cycle to rgbhy

™
agu® H-#

T T
0 10 20 30 40 50
Set axes color cycle to cmyk

134 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Setting prop_cycle in the matplotlibrec file or style files

Remember, a custom cycler can be set in your matplotlibrc file or a style file (style.mplstyle)
under axes.prop_cycle:

axes.prop_cycle : cycler(color="'bgrcmyk")

Cycling through multiple properties

You can add cyclers:

from cycler import cycler

cc = (cycler(color=list('rgb')) +
cycler (linestyle=['-"', '—=', '=."']))

for d in cc:

print (d)
Results in:
{'color': 'r', 'linestyle': '-'}
{'color': 'g', 'linestyle': '—-'}
{'color': 'b', 'linestyle': '—-.'}

You can multiply cyclers:

from cycler import cycler

cc = (cycler (color=list('rgb')) *
cycler (linestyle=["'-", '—='", '—.'1))

for d in cc:

print (d)
Results in:
{'color': 'r', 'linestyle': '-'}
{'color': 'r', 'linestyle': '—-'}
{'color': 'r', 'linestyle': '-.'}
{'color': 'g', 'linestyle': '-'}
{'color': 'g', 'linestyle': '—-'}
{'color': 'g' 'linestyle': '=-.'}
{'color': 'b', 'linestyle': '-'}
{'color': 'b', 'linestyle': '—-'}
{'color': 'b', 'linestyle': '-.'}

2.2. Intermediate 135

Matplotlib, Release 3.4.3

2.2.4 Customizing Figure Layouts Using GridSpec and Other Functions

How to create grid-shaped combinations of axes.
subplots ()

Perhaps the primary function used to create figures and axes. It's also similar to
matplotlib.pyplot.subplot (), but creates and places all axes on the figure at
once. See also matplotlib.figure.Figure.subplots.

GridSpec

Specifies the geometry of the grid that a subplot will be placed. The number of rows and
number of columns of the grid need to be set. Optionally, the subplot layout parameters
(e.g., left, right, etc.) can be tuned.

SubplotSpec
Specifies the location of the subplot in the given GridSpec.
subplot2grid()

A helper function that is similar to subplot (), butuses 0-based indexing and let subplot
to occupy multiple cells. This function is not covered in this tutorial.

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

Basic Quickstart Guide

These first two examples show how to create a basic 2-by-2 grid using both subplots () and gridspec.

Using subplots () is quite simple. It returns a F'i gure instance and an array of Axes objects.

figl, fl_axes = plt.subplots(ncols=2, nrows=2, constrained_layout=True)

136 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.0 1.0

0.8 - 0.8 -

0.6 - 0.6 -

0.4 - 0.4 -

0.2 - 0.2 -

0.0 0.0

00 02 04 06 08 10 00 02 04 06 08 10

1.0 1.0

0.8 - 0.8 -

0.6 - 0.6 -

0.4 - 0.4 -

0.2 - 0.2 -

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

For a simple use case such as this, gridspec is perhaps overly verbose. You have to create the figure and
GridSpec instance separately, then pass elements of gridspec instance to the add_subplot () method
to create the axes objects. The elements of the gridspec are accessed in generally the same manner as numpy
arrays.

fig2 = plt.figure(constrained_layout=True)
spec2 = gridspec.GridSpec (ncols=2, nrows=2, figure=fig2)

f2_axl = fig2.add_subplot (spec2[0, 01])
f2_ax2 = fig2.add_subplot (spec2[0, 11)
f2_ax3 = fig2.add_subplot (spec2[1, 0])
f2_ax4 = fig2.add_subplot (spec2[1l, 1])

2.2. Intermediate 137

Matplotlib, Release 3.4.3

1.0 1.0

0.8 - 0.8 -

0.6 - 0.6 -

0.4 - 0.4 -

0.2 - 0.2 -

0.0 0.0

00 02 04 06 08 10 00 02 04 06 08 10

1.0 1.0

0.8 - 0.8 -

0.6 - 0.6 -

0.4 - 0.4 -

0.2 - 0.2 -

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

The power of gridspec comes in being able to create subplots that span rows and columns. Note the NumPy
slice syntax for selecting the part of the gridspec each subplot will occupy.

Note that we have also used the convenience method Figure.add gridspec instead of gridspec.
GridSpec, potentially saving the user an import, and keeping the namespace cleaner.

fig3 = plt.figure(constrained_layout=True)
gs = fig3.add_gridspec (3, 3)

f3_axl = fig3.add_subplot (gs[0, :1)
f3_axl.set_title('gs[0, :]1")

f3_ax2 = fig3.add_subplot(gs[l, :-11])
f3_ax2.set_title('gs[l, :=11")
f3_ax3 = fig3.add_subplot (gs[l:, -11)
f3_ax3.set_title('gs[l:, -11")

f3_ax4 = fig3.add_subplot(gs[-1, 01)
f3_ax4.set_title('gs[-1, 0]")
f3_ax5 = fig3.add_subplot (gs[-1, —-21)
f3_ax5.set_title('gs[-1, -2]")

138 Chapter 2. Tutorials

https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Matplotlib, Release 3.4.3

gs[o, :]

1.0
0.5
0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0

s[1, :-1] s[1:, -1]

1.0 9 1.0 9
0.5 0.8 1
0.0 . . . ; i

0.0 0.2 0.4 0.6 0.8 10 20

gs[-1, 0] gs[-1, -2]

1.0 1.0 0.4 4
0.5 0.5 0.2
0.0 . 0.0 . 0.0

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Out:

Text (0.5, 1.0, 'gs[-1, -21")

gridspec is also indispensable for creating subplots of different widths via a couple of methods.

The method shown here is similar to the one above and initializes a uniform grid specification, and then uses
numpy indexing and slices to allocate multiple "cells" for a given subplot.

figd = plt.figure(constrained_layout=True)

specd = figd.add_gridspec (ncols=2, nrows=2)

anno_opts = dict(xy=(0.5, 0.5), xycoords='axes fraction',
va='center', ha='center')

f4_axl = figd.add_subplot (specd [0, 01])

f4_axl.annotate('GridSpec[0, 0]', **anno_opts)
figd4.add_subplot (specd4 [0, 1]).annotate('GridSpec([0, 1:]', **anno_opts)
fig4.add_subplot (spec4[1l, 0]).annotate('GridSpec[l:, 0]', **anno_opts)
figd4.add_subplot (spec4[1l, 1]).annotate('GridSpec[l:, 1:]', **anno_opts)

2.2. Intermediate 139

Matplotlib, Release 3.4.3

1.0 1.0
0.8 0.8
0.6 1 0.6 1
Gridspec[0, 0] Gridspec[0, 1:]
0.4 0.4
0.2 1 0.2 1
0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1.0 1.0
0.8 0.8
0.6 1 0.6 1
Gridspec[1:, 0] Gridspec[1:, 1:]
0.4 0.4
0.2 1 0.2 1
0.0 T T T T 0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Out:

Text (0.5, 0.5, 'GridSpec[l:, 1:1")

Another option is to use the width_ratios and height_ratios parameters. These keyword argu-
ments are lists of numbers. Note that absolute values are meaningless, only their relative ratios matter. That
means that width_ratios=[2, 4, 8] isequivalenttowidth_ratios=[1, 2, 4] withinequally
wide figures. For the sake of demonstration, we'll blindly create the axes within for loops since we won't
need them later.

figh = plt.figure(constrained_layout=True)

widths = [2, 3, 1.5]
heights = [1, 3, 2]
specb = figb.add_gridspec(ncols=3, nrows=3, width_ratios=widths,

height_ratios=heights)
for row in range (3):
for col in range(3):
ax = figb.add_subplot (spec5[row, coll])
label = 'Width: \nHeight: '.format (widths[col], heights[row])
ax.annotate (label, (0.1, 0.5), xycoords='axes fraction', wva='center')

140 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.0 1.0 1.0
Width: 2 Width: 3 Width: 1.5
057 Height: 1 057 Height: 1 0.5 7 Height: 1
0.0 : 0.0 : : : : 0.0 :
0.0 0.5 1.0 0.0 02 04 06 08 10 0.0 05 10
1.0 1.0 1.0
0.8 - 0.8 - 0.8 -
-1 width: 2 061 \width: 3 0-6 1 width: 1.5
Height: 3 Height: 3 Height: 3
0.4 - 0.4 - 0.4 -
0.2 - 0.2 - 0.2 -
0.0 ; 0.0 ; ; ; ; 0.0 ;
0.0 0.5 1.0 0.0 02 04 06 08 10 0.0 05 10
1.00 1.00 1.00
0.75 - 0.75 1 0.75 -
Width: 2 Width: 3 Width: 1.5
030 7 Height: 2 0301 Height: 2 030 7 Height: 2
0.25 - 0.25 - 0.25 -
0.00 ; 0.00 ; ; ; ; 0.00 ;
0.0 0.5 1.0 0.0 02 04 06 08 10 0.0 05 10

Learning touse width_ratios and height_ratios is particularly useful since the top-level function
subplots () accepts them within the gridspec_kw parameter. For that matter, any parameter accepted
by GridSpec can be passed to subplots () viathe gridspec_kw parameter. This example recreates
the previous figure without directly using a gridspec instance.

gs_kw = dict (width_ratios=widths, height_ratios=heights)
fig6, f6_axes = plt.subplots(ncols=3, nrows=3, constrained_layout=True,
gridspec_kw=gs_kw)
for r, row in enumerate (f6_axes) :
for ¢, ax in enumerate (row) :
label = 'Width: \nHeight: '.format (widths[c], heights[r])
ax.annotate (label, (0.1, 0.5), xycoords='axes fraction', wva='center')

2.2. Intermediate 141

Matplotlib, Release 3.4.3

1.0 1.0 1.0
Width: 2 Width: 3 Width: 1.5
057 Height: 1 057 Height: 1 0.5 7 Height: 1
0.0 : 0.0 : : : : 0.0 :
0.0 0.5 1.0 0.0 02 04 06 08 10 0.0 05 10
1.0 1.0 1.0
0.8 - 0.8 - 0.8 -
-1 width: 2 061 \width: 3 0-6 1 width: 1.5
Height: 3 Height: 3 Height: 3
0.4 - 0.4 - 0.4 -
0.2 - 0.2 - 0.2 -
0.0 ; 0.0 ; ; ; ; 0.0 ;
0.0 0.5 1.0 0.0 02 04 06 08 10 0.0 05 10
1.00 1.00 1.00
0.75 - 0.75 1 0.75 -
Width: 2 Width: 3 Width: 1.5
030 7 Height: 2 0301 Height: 2 030 7 Height: 2
0.25 - 0.25 - 0.25 -
0.00 ; 0.00 ; ; ; ; 0.00 ;
0.0 0.5 1.0 0.0 02 04 06 08 10 0.0 05 10

The subplots and get_gridspec methods can be combined since it is sometimes more convenient to
make most of the subplots using subplots and then remove some and combine them. Here we create a
layout with the bottom two axes in the last column combined.

fig7, f7_axs = plt.subplots(ncols=3, nrows=3)
gs = f7_axs[1l, 2].get_gridspec()
remove the underlying axes
for ax in f7_axs[1l:, -1]:
ax.remove ()
axbig = fig7.add_subplot(gs[l:, —-11])
axbig.annotate ('Big Axes \nGridSpec[1:, -1]1', (0.1, 0.5),
xycoords="axes fraction', wva='center')

fig7.tight_layout ()

142 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.0 1.0 1.0
0.5 - 0.5 - 0.5
0.0 . 0.0 . 0.0 .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
1.0 1.0 1.0
0.5 - 0.5 - 0.8
0.0 . 0.0 . 0.6 4
0.0 0.5 1.0 0.0 0.5 1.0 Big Axes
Gridspec[1:, -1]
1.0 1.0 0.4 -
0.5 0.5 0.2 1
0.0 . 0.0 . 0.0 .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Fine Adjustments to a Gridspec Layout

When a GridSpec is explicitly used, you can adjust the layout parameters of subplots that are created
from the GridSpec. Note this option is not compatible with constrained_layout or Figure.
tight_layout which both adjust subplot sizes to fill the figure.

fig8 = plt.figure(constrained_layout=False)

gsl = fig8.add_gridspec (nrows=3, ncols=3, left=0.05, right=0.48, wspace=0.05)
f8_axl = fig8.add_subplot(gsl[:-1, :])

f8_ax2 = fig8.add_subplot (gsl[-1, :-1])

£8_ax3 fig8.add_subplot (gsl[-1, -11)

2.2. Intermediate 143

Matplotlib, Release 3.4.3

1.0

0.8

0.6

0.4

0.2

0.0 | T | |

0.5 4 0.5

0.0 | —o |

T
0.00 025 050 075 1@0 05 1.0

This is similar to subplots_adjust (), but it only affects the subplots that are created from the given
GridSpec.

For example, compare the left and right sides of this figure:

fig9 = plt.figure(constrained_layout=False)

gsl = fig9.add_gridspec (nrows=3, ncols=3, left=0.05, right=0.48,
wspace=0.05)

f9_axl = fig9.add_subplot(gsl[:-1,]

£f9_ax2 fig9.add_subplot (gsl[-1, :-11])

f9_ax3 = fig9.add_subplot (gsl[-1, -1]

gs2 = fig9.add_gridspec (nrows=3, ncols=3, left=0.55, right=0.98,
hspace=0.05)

f9_ax4 = fig9.add_subplot (gs2[:, :-1])
f9_ax5 = fig9.add_subplot (gs2[:-1, -11])
f9_ax6 = fig9.add_subplot (gs2[-1, -1])

144 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.0 1.0 t
0.8 0.8
0.8
0.6 0.6
0.4 1 0.6 0.4 -
0.2 ob -
0.4
0.0 . . . ;
188
1020 0.2 0.4 0.6 0.8 1.0 : i
0.75 -
0.2
0.5 0.5 H 0.5p ~
0.25 -
0.0 . . —6.6 . 0.0 . . —8-60
0.00 025 050 075 1@0 05 1.0 0.00 0.25 050 0.75 1.000 1

GridSpec using SubplotSpec

You can create GridSpec from the Subplot Spec, in which case its layout parameters are set to that of the
location of the given SubplotSpec.

Note this is also available from the more verbose gridspec.GridSpecFromSubplotSpec.

figl0 = plt.figure(constrained_layout=True)
gs0 = figl0.add_gridspec (1, 2)

gs00 = gs0[0].subgridspec (2, 3)
gs0l = gsO0[1].subgridspec (3, 2)

for a in range(2):
for b in range(3):
figl0.add_subplot (gs00[a, b]l)
figl0.add_subplot (gs01l[b, al)

2.2. Intermediate 145

Matplotlib, Release 3.4.3

1.0 1.0 1.0 1.00 1.00
0.8 - 0.8 - 0.8 - 0.75 7 0.75 7
0.50 0.50
0.6 - 0.6 - 0.6 -
0.25 0.25
0.4 - 0.4 - 0.4 - 0.00 . 0.00 .
0.0 05 10 0.0 05 10
0.2 - 0.2 - 0.2 1.00 1.00
0.75 0.75
0.0 0.0 0.0
0 1 0 1 0 1 050 - 0.50 -
1.0 1.0 1.0
0.25 0.25
0.8 - 0.8 - 0.8 - 0.00 . 0.00 .
0.0 05 10 0.0 05 10
0.6 - 0.6 - 0.6 - 1.00 1.00
0.75 0.75
0.4 - 0.4 - 0.4 -
0.50 0.50
0.2 - 0.2 - 0.2 - 0.25 0.25
0.0 0.0 0.0 0.00 . 0.00 .
0 1 0 1 0 1 0.0 05 10 0.0 05 10

A Complex Nested GridSpec using SubplotSpec

Here's a more sophisticated example of nested GridSpec where we put a box around each cell of the outer

4x4 grid, by hiding appropriate spines in each of the inner 3x3 grids.

import numpy as np

def squiggle_xy(a, b, ¢, d, i=np.arange(0.0, 2*np.pi, 0.05)):
return np.sin(i*a)*np.cos(i*b), np.sin(i*c) *np.cos(i*d)

figll = plt.figure(figsize=(8, 8), constrained_layout=False)
outer_grid = figll.add_gridspec (4, 4, wspace=0, hspace=0)

for a in range(4):
for b in range(4):
gridspec inside gridspec
inner_grid = outer_grid[a, b].subgridspec (3, 3, wspace=0,

hspace=0)

axs = inner_grid.subplots() # Create all subplots for the inner grid.

for (c, d), ax in np.ndenumerate (axs) :
ax.plot (*squiggle_xy(a + 1, b + 1, ¢ + 1, d + 1))

(continues on next page)

146 Chapter 2. Tutorials

page)

Matplotlib, Release 3.4.3
continued from previous

XXX E
% 'Q‘ DL
N 72!

R

&9

i
) AKX\ < Rlrle:
SEE CINSSYE D4y
e 09 DAA/888
ERE F3 =N\ AN
o iged NS F N KX
.jaRes S aNrin UV ISR KAV Ol
i 5 BB EE P OOPINER
ReTiEE S S NN SRR T A ZaNN
SR T KN KPP

0

SSSSSSSSS
XXXXXXX
aaaaaaa

show

plt.

147

2.2. Intermediate

Matplotlib, Release 3.4.3

References

The use of the following functions, methods, classes and modules is shown in this example:

matplotlib
matplotlib
matplotlib
matplotlib
matplotlib

matplotlib

.pyplot.subplots
.figure.Figure.add_gridspec
.figure.Figure.add_ subplot
.gridspec.GridSpec
.gridspec.SubplotSpec. subgridspec

.gridspec.GridSpecFromSubplotSpec

Total running time of the script: (0 minutes 8.524 seconds)

2.2.5 Constrained Layout Guide

How to use constrained-layout to fit plots within your figure cleanly.

constrained_layout automatically adjusts subplots and decorations like legends and colorbars so that they fit
in the figure window while still preserving, as best they can, the logical layout requested by the user.

constrained_layout is similar to tight_layout, but uses a constraint solver to determine the size of axes that
allows them to fit.

constrained_layout needs to be activated before any axes are added to a figure. Two ways of doing so are

e using the respective argument to subplots () or figure (), e.g.:

plt.subplots (constrained_layout=True)

e activate it via rcParams, like:

plt.rcParams|['figure.constrained_layout.use'] = True

Those are described in detail throughout the following sections.

Warning: Currently Constrained Layout is experimental. The behaviour and API are subject to change,
or the whole functionality may be removed without a deprecation period. If you require your plots
to be absolutely reproducible, get the Axes positions after running Constrained Layout and use ax.
set_position () in your code with constrained_layout=False.

148

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Simple Example

In Matplotlib, the location of axes (including subplots) are specified in normalized figure coordinates. It can
happen that your axis labels or titles (or sometimes even ticklabels) go outside the figure area, and are thus
clipped.

import matplotlib.pyplot as plt

import matplotlib.colors as mcolors
import matplotlib.gridspec as gridspec
import numpy as np

plt
plt.
plt.

def

fig,

.rcParams|['savefig.facecolor'] = "0.8"
rcParams['figure.figsize'] = 4.5, 4.
rcParams['figure.max_open_warning'] = 50
example_plot (ax, fontsize=12, hide_labels=False):

ax.plot ([1, 21])

ax.locator_params (nbins=3)

if hide_labels:
ax.set_xticklabels([])
ax.set_yticklabels([])

else:
ax.set_xlabel ('x-label', fontsize=fontsize)
ax.set_ylabel ('y-label', fontsize=fontsize)
ax.set_title('Title', fontsize=fontsize)

ax = plt.subplots(constrained_layout=False)

example_plot (ax, fontsize=24)

2.2,

Intermediate 149

Matplotlib, Release 3.4.3

Title

2.0+

1.5

y-lavci

1.0

T
0.0 0.5 1.0
v Iahal
To prevent this, the location of axes needs to be adjusted. For subplots, this can be done by adjusting the

subplot params (Move the edge of an axes to make room for tick labels). However, specifying your figure
with the constrained_layout=True kwarg will do the adjusting automatically.

fig, ax = plt.subplots(constrained_layout=True)
example_plot (ax, fontsize=24)

150 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Title

2.0 4

1.5

y-label

1.0

T
0.0 0.5 1.0

X-label

When you have multiple subplots, often you see labels of different axes overlapping each other.

fig, axs = plt.subplots (2, 2, constrained_layout=False)
for ax in axs.flat:
example_plot (ax)

2.2. Intermediate 151

Matplotlib, Release 3.4.3

Title Title
o
]
1o
=
T T
Totte 1.0
o
]
1o
=
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label

Specifying constrained_layout=True in the call to plt . subplots causes the layout to be prop-

erly constrained.

fig, axs = plt.subplots (2,
for ax in axs.flat:
example_plot (ax)

2,

constrained_layout=True)

152

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Title Title
2.0 2.0
2 2
o 1.5 - o 1.5 -
= =
1.0 4; . . 1.0 4; . .
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Title Title
2.0 2.0
2 2
o 1.5 - o 1.5 -
= =
1.0 4; . . 1.0 4; . .
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Colorbars

If you create a colorbar with Figure.colorbar, you need to make room for it. con—
strained_layout does this automatically. Note that if you specify use_gridspec=True it will
be ignored because this option is made for improving the layout via t ight_layout.

Note: Forthe pcolormeshkwargs (pc_kwargs) we use adictionary. Below we will assign one colorbar
to a number of axes each containing a ScalarMappable; specifying the norm and colormap ensures the
colorbar is accurate for all the axes.

arr = 10))

vmax=100.)

np.arange (100) .reshape ((10,

norm = mcolors.Normalize (vmin=0.,

see note above:
pc_kwargs =
fig, ax =
im =

{'rasterized':
plt.subplots (figsize=(4,

this makes all pcolormesh calls consistent:
True, 'cmap':
4),

'viridis', 'norm': norm}

constrained_layout=True)

ax.pcolormesh (arr,

fig.colorbar (im,

ax=ax,

**pc_kwargs)
shrink=0.6)

2.2. Intermediate

153

Matplotlib, Release 3.4.3

10

8 100
80
6
60
40
4
20
2 0

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe64bee83a0>

If you specify a list of axes (or other iterable container) to the ax argument of col orbar, constrained_layout
will take space from the specified axes.

fig, axs = plt.subplots (2, 2, figsize=(4, 4), constrained_layout=True)
for ax in axs.flat:

im = ax.pcolormesh (arr, **pc_kwargs)
fig.colorbar (im, ax=axs, shrink=0.6)

154 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

10 10

100

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe64b5ff4c0>

If you specify a list of axes from inside a grid of axes, the colorbar will steal space appropriately, and leave

a gap, but all subplots will still be the same size.

fig, axs = plt.subplots (3, 3,
for ax in axs.flat:

im = ax.pcolormesh (arr,
fig.colorbar (im,
fig.colorbar (im,

figsize=(4, 4),

**pc_kwargs)
ax=axs[l:, 1[:, 11, shrink=0.38)
ax=axs[:, —-1], shrink=0.6)

constrained_layout=True)

2.2. Intermediate

155

Matplotlib, Release 3.4.3

10

100
10
80
100 60
80 40
60 20
10
40 0
20
0
10

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe64b2a4£fd0>

Suptitle

constrained_layout can also make room for suptitle.

fig, axs = plt.subplots (2, 2, figsize=(4, 4), constrained_layout=True)
for ax in axs.flat:
im = ax.pcolormesh (arr, **pc_kwargs)
fig.colorbar (im, ax=axs, shrink=0.6)
fig.suptitle('Big Suptitle')

156 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Big Suptitle
10 10
8 8
6 6 100
4 4
80
2 2
0 0 60
10 10 40
20
0

[T S = L =
[T S = L =

Out:

Text (0.5, 0.9895825, 'Big Suptitle')

Legends

Legends can be placed outside of their parent axis. Constrained-layout is designed to handle this for Axes.
legend (). However, constrained-layout does not handle legends being created via Figure. legend ()
(yet).

fig, ax = plt.subplots(constrained_layout=True)
ax.plot (np.arange (10), label='This is a plot')
ax.legend(loc='"'center left', bbox_to_anchor=(0.8, 0.5))

2.2. Intermediate 157

Matplotlib, Release 3.4.3

—— This is a plot

o -
%]
i
=]
]

Out:

<matplotlib.legend.Legend object at 0x7fe64bffdlcO0>

However, this will steal space from a subplot layout:

fig, axs = plt.subplots(l, 2, figsize=(4, 2), constrained_layout=True)
axs[0] .plot (np.arange (10))

axs[1l].plot (np.arange(10), label='This is a plot")
axs[l].legend(loc='center left', bbox_to_anchor=(0.8, 0.5))

8 8
6 6
—— This is a plot

4 - 4 - P
2 2
0 A 0 A

T T T T

0 5 0 5
Out:

<matplotlib.legend.Legend object at 0x7fe64bf8c040>

In order for a legend or other artist to not steal space from the subplot layout, we can leg.

158 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

set_in_layout (False). Of course this can mean the legend ends up cropped, but can be useful if
the plot is subsequently called with fig.savefig ('outname.png', bbox_inches="'tight').
Note, however, that the legend's get_in_layout status will have to be toggled again to make the saved
file work, and we must manually trigger a draw if we want constrained_layout to adjust the size of the axes
before printing.

fig, axs = plt.subplots(l, 2, figsize=(4, 2), constrained_layout=True)

axs[0] .plot (np.arange (10))

axs[l].plot (np.arange (10), label='This is a plot'")

leg = axs[l].legend(loc="center left', bbox_to_anchor=(0.8, 0.5))

leg.set_in_layout (False)

trigger a draw so that constrained_layout is executed once

before we turn it off when printing....

fig.canvas.draw ()

we want the legend included in the bbox_inches='tight' calcs.

leg.set_in_layout (True)

we don't want the layout to change at this point.

fig.set_constrained_layout (False)

fig.savefig('../../doc/_static/constrained_layout_lb.png',
bbox_inches='tight', dpi=100)

8 - 8 -
B B
4 4
2 - 2 -
0 0
T T T T T T T T
00 25 50 7.5 00 25 50 7.5
The saved file looks like:
8 1 8 1
B B
— This is a plot
4- 4- H
2 2
0 0
T T T T T T T T
00 25 50 75 00 25 50 75

A better way to get around this awkwardness is to simply use the legend method provided by Figure.
legend:

2.2. Intermediate 159

Matplotlib, Release 3.4.3

fig, axs = plt.subplots(l, 2, figsize=(4, 2), constrained_layout=True)
axs[0] .plot (np.arange (10))
lines = axs[l].plot(np.arange(10), label='This is a plot')
labels = [l.get_label() for 1 in lines]
leg = fig.legend(lines, labels, loc='center left',
bbox_to_anchor=(0.8, 0.5), bbox_transform=axs[l].transAxes)

fig.savefig('../../doc/_static/constrained_layout_2b.png',

bbox_inches="'tight', dpi=100)

8 1 8 1
6 6
4 - 4 -
2 1 2 1
0 0
T T T T T T T T
0.0 25 50 75 0.0 25 50 75
The saved file looks like:
8 8
6 6
— This is a plot
4- 4- H
2 2
0 0
T T T T T T T T
0.0 25 50 75 0.0 25 50 75

Padding and Spacing

Padding between axes is controlled in the horizontal by w_pad and wspace, and vertical by h_pad and hspace.
These can be edited via set_constrained_layout_pads. w/h_pad are the minimum space around
the axes in units of inches:

fig, axs = plt.subplots (2, 2, constrained_layout=True)
for ax in axs.flat:
example_plot (ax, hide_labels=True)
fig.set_constrained_layout_pads (w_pad=4 / 72, h_pad=4 / 72, hspace=0,.
swspace=0)

160 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Spacing between subplots is further set by wspace and hspace. These are specified as a fraction of the size of
the subplot group as a whole. If these values are smaller than w_pad or h_pad, then the fixed pads are used
instead. Note in the below how the space at the edges doesn't change from the above, but the space between
subplots does.

fig, axs = plt.subplots (2, 2, constrained_layout=True)
for ax in axs.flat:
example_plot (ax, hide_labels=True)
fig.set_constrained_layout_pads (w_pad=4 / 72, h_pad=4 / 72, hspace=0.2,
wspace=0.2)

2.2. Intermediate 161

Matplotlib, Release 3.4.3

If there are more than two columns, the wspace is shared between them, so here the wspace is divided in 2,
with a wspace of 0.1 between each column:

fig, axs = plt.subplots (2, 3, constrained_layout=True)
for ax in axs.flat:
example_plot (ax, hide_labels=True)
fig.set_constrained_layout_pads (w_pad=4 / 72, h_pad=4 / 72, hspace=0.2,
wspace=0.2)

162 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

GridSpecs also have optional hspace and wspace keyword arguments, that will be used instead of the pads
set by constrained_layout:

fig, axs = plt.subplots (2, 2, constrained_layout=True,
gridspec_kw={'wspace': 0.3, 'hspace': 0.2})
for ax in axs.flat:
example_plot (ax, hide_labels=True)
this has no effect because the space set in the gridspec trumps the
space set 1in constrained_layout.
fig.set_constrained_layout_pads (w_pad=4 / 72, h_pad=4 / 72, hspace=0.0,
wspace=0.0)
plt.show ()

2.2. Intermediate 163

Matplotlib, Release 3.4.3

Spacing with colorbars

Colorbars are placed a distance pad from their parent, where pad is a fraction of the width of the parent(s).
The spacing to the next subplot is then given by w/hspace.

fig, axs = plt.subplots (2, 2, constrained_layout=True)
pads = [0, 0.05, 0.1, 0.2]
for pad, ax in zip(pads, axs.flat):
pc = ax.pcolormesh (arr, **pc_kwargs)
fig.colorbar (pc, ax=ax, shrink=0.6, pad=pad)
ax.set_xticklabels('")
ax.set_yticklabels('")
ax.set_title(f'pad: {pad}'")
fig.set_constrained_layout_pads(w_pad=2 / 72, h_pad=2 / 72, hspace=0.2,
wspace=0.2)

164 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

pad: 0 pad: 0.05
100 100
50 50
0 0
pad: 0.1 pad: 0.2
100 100
50 50
0 0

rcParams

There are five rcParams that can be set, either in a script or in the matplotlibrc file. They all have the
prefix figure.constrained_layout:

e use: Whether to use constrained_layout. Default is False

e w_pad, h_pad: Padding around axes objects. Float representing inches. Default is 3./72. inches (3
pts)

e wspace, hspace: Space between subplot groups. Float representing a fraction of the subplot widths
being separated. Default is 0.02.

plt.rcParams['figure.constrained_layout.use'] = True
fig, axs = plt.subplots (2, 2, figsize=(3, 3))
for ax in axs.flat:

example_plot (ax)

2.2. Intermediate 165

Matplotlib, Release 3.4.3

Title
2.0
8
o 1.5
=
1.0 & , ,
0.0 05 1.0
x-label
Title
2.0
8
o 1.5
=
1.0 & , ,
0.0 05 1.0
x-label

Use with GridSpec

Title
2.0
8
o 1.5
=
1.0 & , ,
0.0 05 1.0
x-label
Title
2.0
8
o 1.5
=
1.0 & , ,
0.0 05 1.0
x-label

constrained_layout is meant to be used with subplots () or GridSpec () and add_subplot ().

Note that in what follows constrained_layout=True

fig = plt.figure()

gsl = gridspec.GridSpec (2,
fig.add_subplot (gs1[0]

axl

1

ax2 = fig.add_subplot (gsl[1]

example_plot (axl)
example_plot (ax2)

)
)

figure=£fig)

166

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Title
2.0 -
2
o 1.5
=
1.0 _: . .
0.0 0.5 1.0
x-label
Title
2.0 -
2
o 1.5
=
1.0 _: . .
0.0 0.5 1.0
x-label

More complicated gridspec layouts are possible. Note here we use the convenience functions
add_gridspec and subgridspec.

fig = plt.figure()
gs0 = fig.add_gridspec(l, 2)
gsl = gs0[0].subgridspec (2, 1)

axl = fig.add_subplot (gs1[0])
ax2 fig.add_subplot (gsl[1])

example_plot (axl)
example_plot (ax2)

gs2 = gs0[1].subgridspec (3, 1)

for ss in gs2:
ax = fig.add_subplot (ss)
example_plot (ax)
ax.set_title("")
ax.set_xlabel ("")

ax.set_xlabel ("x-1label", fontsize=12)

2.2. Intermediate 167

Matplotlib, Release 3.4.3

Title 2.0
2.0 E
o 1.5 -
v <
]
LP 131 1.0 - T T T
> 0.0 0.5 1.0
2.0
1.0 L . -
0.0 0.5 1.0 & -
x-label 4 -
. -
. Title 1.0 1 | |
. 0.0 0.5 1.0
— 2.0
i —
o 1.5 - a
= © 151
I
-
1.0 1 T T T 1.0 T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Out:

Text (0.5, 22.166999999999994, 'x-label')

Note that in the above the left and right columns don't have the same vertical extent. If we want the top and
bottom of the two grids to line up then they need to be in the same gridspec. We need to make this figure
larger as well in order for the axes not to collapse to zero height:

fig = plt.figure(figsize=(4, 6))
gs0 = fig.add_gridspec (6, 2)

axl = fig.add_subplot(gs0[:3, 01])
ax2 = fig.add_subplot (gsO[3:, 0])

example_plot (axl)
example_plot (ax2)

ax = fig.add_subplot (gs0[0:2, 11])
example_plot (ax, hide_labels=True)

ax = fig.add_subplot (gs0[2:4, 17])
example_plot (ax, hide_labels=True)

ax = fig.add_subplot(gsO0[4:, 1])
example_plot (ax, hide_labels=True)
fig.suptitle('Overlapping Gridspecs')

168 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Overlapping Gridspecs

Title
2.0 }
2
215_ T T T
=
1.0 -
T T T -1
0.0 0.5 1.0
x-label
Title
7.0 - = T T
2
o 1.5 - .
=
1.0 -]
T T T T T T
0.0 0.5 1.0
x-label
Out:

Text (0.5, 0.993055, 'Overlapping Gridspecs')

This example uses two gridspecs to have the colorbar only pertain to one set of pcolors. Note how the left
column is wider than the two right-hand columns because of this. Of course, if you wanted the subplots to
be the same size you only needed one gridspec.

def docomplicated(suptitle=None) :
fig = plt.figure()
gs0 fig.add_gridspec (1, 2, figure=fig, width_ratios=[1., 2.])
gsl = gs0[0].subgridspec (2, 1)
gsr = gsO0[1l].subgridspec (2, 2)

for gs in gsl:
ax = fig.add_subplot (gs)

(continues on next page)

2.2. Intermediate 169

Matplotlib, Release 3.4.3

(continued from previous page)

example_plot (ax)

axs = []

for gs in gsr:
ax = fig.add_subplot (gs)
pcm = ax.pcolormesh(arr, **pc_kwargs)
ax.set_xlabel ('x-1label')
ax.set_ylabel ('y-label")
ax.set_title('title')

axs += [ax]
fig.colorbar (pcm, ax=axs)
if suptitle is not None:

fig.suptitle (suptitle)

docomplicated()
Title title title
2.0 - 10.0 10.0 100
= 7.5 7.5
1§} 1§}
® 151 © 5.0 & 5.0 80
g = =
2.5 2.5
R — 0.0 0.0 60
0.0 05 10 0 10 0 10
x-label x-label x-label
Title title title
2.0 - 10.0 10.0 40
— 7.5 7.5
o T T
‘© 151 g 5.0 g 5.0 20
g = =
2.5 2.5
L L . . 0.0 0.0 0
0.0 05 10 0 10 0 10
x-label x-label x-label

170 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Manually setting axes positions

There can be good reasons to manually set an axes position. A manual call to set_position will set the
axes so constrained_layout has no effect on it anymore. (Note that constrained_layout still leaves the
space for the axes that is moved).

fig, axs = plt.subplots(l, 2)
example_plot (axs[0], fontsize=12)
axs[1].set_position([0.2, 0.2, 0.4, 0.41])

Title

2.0+

1.0

1.5 g4

y-label

0.6

0.4

0.

0% T T T
10470.00 025 050 0.75 |1.00
T

T T
0.0 0.5 1.0
x-label

Manually turning off constrained_layout

constrained_layout usually adjusts the axes positions on each draw of the figure. If you want to get
the spacing provided by constrained_layout but not have it update, then do the initial draw and then
call fig.set_constrained_layout (False). This is potentially useful for animations where the
tick labels may change length.

Note that constrained_layout is turned off for ZOOM and PAN GUI events for the backends that use
the toolbar. This prevents the axes from changing position during zooming and panning.

2.2. Intermediate 171

Matplotlib, Release 3.4.3

Limitations

Incompatible functions

constrained_layout will work with pypIlot. subplot,butonly if the number of rows and columns
is the same for each call. The reason is that each call to pyplot. subplot will create a new GridSpec
instance if the geometry is not the same, and constrained_layout. So the following works fine:

fig = plt.figure()

axl = plt.subplot(2, 2, 1)

ax2 = plt.subplot (2, 2, 3)

third axes that spans both rows in second column:
ax3 = plt.subplot(2, 2, (2, 4))

axl)
ax2)
ax3)
'Homogenous nrows, ncols')

example_plot
example_plot
example_plot
plt.suptitle

P N

Homogenous nrows, ncols

Title Title
2.0 20
2
o 1.5 -
=
1.0 L. . .
0.0 0.5 1.0 _
x-label S
- o L5
. -
Title =
2.0
2
o 1.5 -
=
1.0 -
1.0 4 T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Out:

Text (0.5, 0.9895825, 'Homogenous nrows, ncols')

but the following leads to a poor layout:

172

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

fig = plt.figure ()

axl = plt.subplot(2, 2, 1)
ax2 = plt.subplot (2, 2, 3)
ax3 = plt.subplot (1, 2, 2)

example_plot (axl)
example_plot (ax2)
example_plot (ax3)
plt.suptitle('Mixed nrows, ncols')

Mixed nrows, ncols

Title Title
2.0]
2
o 1.5 -
=
1.0 L. . .
0.0 0.5 5 14
]
x-label © 15
Title >
2.0
2
o 1.5 -
=
1.0 1
1.0 4 T T T T T
0.0 0.5 1.00.0 0.5 1.0
x-label x-label
Out:

Text (0.5, 0.9895825, 'Mixed nrows, ncols')

Similarly, subplot2gridworks with the same limitation that nrows and ncols cannot change for the layout
to look good.

fig = plt.figure()

axl = plt.subplot2grid
ax2 = plt.subplot2grid
ax3 = plt.subplot2grid
ax4 = plt.subplot2grid

~

0)
1), colspan=2)
, 0), colspan=2, rowspan=2)
2), rowspan=2)

w W w w
~

w W w w
~ 0~

(
(
(
(

~

example_plot (axl)
example_plot (ax2)

(continues on next page)

2.2. Intermediate 173

Matplotlib, Release 3.4.3

(continued from previous page)

example_plot (ax3)
example_plot (ax4)
fig.suptitle ('subplot2grid")

subplot2grid
Title Title
2.0 2.0
2 2
o 1.5 - o 1.5
= =
o4 1.0 15 : :
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Title Title
2.0 2.0 -
2 2
© 15 © 15+
= =
1.0 1 | | 04
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Out:

Text (0.5, 0.9895825, 'subplot2grid')

Other Caveats

e constrained_layout only considers ticklabels, axis labels, titles, and legends. Thus, other artists
may be clipped and also may overlap.

o It assumes that the extra space needed for ticklabels, axis labels, and titles is independent of original
location of axes. This is often true, but there are rare cases where it is not.

e There are small differences in how the backends handle rendering fonts, so the results will not be
pixel-identical.

e An artist using axes coordinates that extend beyond the axes boundary will result in unusual lay-
outs when added to an axes. This can be avoided by adding the artist directly to the F'i gure using
add_artist (). See ConnectionPatch for an example.

174 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Debugging

Constrained-layout can fail in somewhat unexpected ways. Because it uses a constraint solver the solver can
find solutions that are mathematically correct, but that aren't at all what the user wants. The usual failure
mode is for all sizes to collapse to their smallest allowable value. If this happens, it is for one of two reasons:

1. There was not enough room for the elements you were requesting to draw.
2. There is a bug - in which case open an issue at https://github.com/matplotlib/matplotlib/issues.

If there is a bug, please report with a self-contained example that does not require outside data or dependen-
cies (other than numpy).

Notes on the algorithm

The algorithm for the constraint is relatively straightforward, but has some complexity due to the complex
ways we can layout a figure.

Layout in Matplotlib is carried out with gridspecs via the GridSpec class. A gridspec is a logical division
of the figure into rows and columns, with the relative width of the Axes in those rows and columns set by
width_ratios and height_ratios.

In constrained_layout, each gridspec gets a layoutgrid associated with it. The layoutgrid has a series of
left and right variables for each column, and bottom and t op variables for each row, and further it
has a margin for each of left, right, bottom and top. In each row, the bottom/top margins are widened until
all the decorators in that row are accommodated. Similarly for columns and the left/right margins.

Simple case: one Axes

For a single Axes the layout is straight forward. There is one parent layoutgrid for the figure consisting of one
column and row, and a child layoutgrid for the gridspec that contains the axes, again consisting of one row
and column. Space is made for the "decorations" on each side of the axes. In the code, this is accomplished
by the entries in do_constrained_layout () like:

gridspec._layoutgrid[0, 0] .edit_margin_min('left',
-bbox.x0 + pos.x0 + w_pad)

where bbox is the tight bounding box of the axes, and pos its position. Note how the four margins encom-
pass the axes decorations.

from matplotlib._layoutgrid import plot_children

fig, ax = plt.subplots(constrained_layout=True)
example_plot (ax, fontsize=24)
plot_children(fig, fig._layoutgrid)

2.2. Intermediate 175

https://github.com/matplotlib/matplotlib/issues

Matplotlib, Release 3.4.3

Simple case: two Axes

When there are multiple axes they have their layouts bound in simple ways. In this example the left axes
has much larger decorations than the right, but they share a bottom margin, which is made large enough to
accommodate the larger xlabel. Same with the shared top margin. The left and right margins are not shared,
and hence are allowed to be different.

fig, ax = plt.subplots(l, 2, constrained_layout=True)
example_plot (ax[0], fontsize=32)

example_plot (ax[1], fontsize=8)

plot_children(fig, fig._layoutgrid, printit=False)

176 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Two Axes and colorbar

A colorbar is simply another item that expands the margin of the parent layoutgrid cell:

fig, ax = plt.subplots(l, 2, constrained_layout=True)

im = ax[0] .pcolormesh (arr, **pc_kwargs)
fig.colorbar (im, ax=ax[0], shrink=0.6)
im = ax[l].pcolormesh (arr, **pc_kwargs)

plot_children(fig, fig._layoutgrid)

2.2. Intermediate 177

Matplotlib, Release 3.4.3

Colorbar associated with a Gridspec

If a colorbar belongs to more than one cell of the grid, then it makes a larger margin for each:

fig, axs = plt.subplots (2, 2, constrained_layout=True)
for ax in axs.flat:

im = ax.pcolormesh (arr, **pc_kwargs)
fig.colorbar (im, ax=axs, shrink=0.6)
plot_children(fig, fig._layoutgrid, printit=False)

178 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

10 10 u

10 10 u

100

Uneven sized Axes

There are two ways to make axes have an uneven size in a Gridspec layout, either by specifying them to cross

Gridspecs rows or columns, or by specifying width and height ratios.

The first method is used here. Note that the middle t op and bot t om margins are not affected by the left-
hand column. This is a conscious decision of the algorithm, and leads to the case where the two right-hand
axes have the same height, but it is not 1/2 the height of the left-hand axes. This is consietent with how

gridspec works without constrained layout.

fig = plt.figure(constrained_layout=True)

gs = gridspec.GridSpec (2, 2, figure=fig)

ax = fig.add_subplot(gs[:, 01])
im = ax.pcolormesh (arr, **pc_kwargs)
ax = fig.add_subplot(gs[0, 11)
im = ax.pcolormesh (arr, **pc_kwargs)
ax = fig.add_subplot(gs[l, 11)
im = ax.pcolormesh (arr, **pc_kwargs)

plot_children(fig, fig._layoutgrid, printit=False)

2.2. Intermediate

179

Matplotlib, Release 3.4.3

00 25 50 7.5 10.0

0
00 25 50 75 100 00 25 50 75 10.0

One case that requires finessing is if margins do not have any artists constraining their width. In the case
below, the right margin for column O and the left margin for column 3 have no margin artists to set their
width, so we take the maximum width of the margin widths that do have artists. This makes all the axes have
the same size:

fig = plt.figure(constrained_layout=True)
gs = fig.add_gridspec (2, 4)

ax00 = fig.add_subplot (gs[0, 0:2])

ax01 = fig.add_subplot (gs[0, 2:])

ax10 = fig.add_subplot (gs[1, 1:3])
example_plot (ax10, fontsize=14)
plot_children(fig, fig._layoutgrid)

180 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Total running time of the script: (0 minutes 14.099 seconds)

2.2.6 Tight Layout guide

How to use tight-layout to fit plots within your figure cleanly.

tight_layout automatically adjusts subplot params so that the subplot(s) fits in to the figure area. This is an
experimental feature and may not work for some cases. It only checks the extents of ticklabels, axis labels,
and titles.

An alternative to tight_layout is constrained_layout.
Simple Example
In matplotlib, the location of axes (including subplots) are specified in normalized figure coordinates. It can

happen that your axis labels or titles (or sometimes even ticklabels) go outside the figure area, and are thus
clipped.

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams|['savefig.facecolor'] = "0.8"

def example_plot (ax, fontsize=12):
ax.plot ([1, 21)

(continues on next page)

2.2. Intermediate 181

Matplotlib, Release 3.4.3

(continued from previous page)

ax.locator_params (nbins=3)

ax.set_xlabel ('x-label', fontsize=fontsize)
ax.set_ylabel ('y-label', fontsize=fontsize)
ax.set_title('Title', fontsize=fontsize)

plt.close('all'")
fig, ax = plt.subplots/()
example_plot (ax, fontsize=24)

Title

2.0 1

y-label

1.0

T
0.0 0.5 1.0

X-label

To prevent this, the location of axes needs to be adjusted. For subplots, this can be done by adjusting the
subplot params (Move the edge of an axes to make room for tick labels). Matplotlib v1.1 introduced Figure.
tight_layout that does this automatically for you.

fig, ax = plt.subplots|()
example_plot (ax, fontsize=24)
plt.tight_layout ()

182 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Title

2.0+

1.5

y-label

1.0

T
0.0 0.5 1.0

X-label

Note that matplotlib.pyplot.tight_layout () will only adjust the subplot params when it
is called. In order to perform this adjustment each time the figure is redrawn, you can call fig.
set_tight_layout (True), or, equivalently, set rcParams ["figure.autolayout"] (default:
False)to True.

When you have multiple subplots, often you see labels of different axes overlapping each other.

plt.close('all'")

fig, ((axl, ax2),
example_plot (axl)
example_plot (ax2)
example_plot (ax3)
example_plot (ax4)

(ax3, ax4)) = plt.subplots(nrows=2, ncols=2)

2.2. Intermediate 183

../../tutorials/introductory/customizing.html?highlight=figure.autolayout#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Title Title
2.0 2.0
E L
o 15 - % 1.5 -
i\ -
1.0 1.0 -
T T T T T T
0.0 Tothe 1.0 0.0 Tothe 1.0
2.0 - = 2.0 - —
E L
o 15 - % 1.5 -
i\ -
1.0 - | 1 104~ | |
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label

tight_layout () will also adjust spacing between subplots to minimize the overlaps.

fig, ((axl, ax2), (ax3,
example_plot (axl)
example_plot (ax2)
example_plot (ax3)
example_plot (ax4)

plt.tight_layout ()

ax4))

= plt.subplots (nrows=2, ncols=2)

184

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Title
2.0
2
o 1.5
=
1.0 | |
0.0 0.5 1.0
x-label
Title
2.0
2
w15+
=
1.(}_ T T T
0.0 0.5 1.0
x-label

Title
2.0
2
o 15 -
=
1.0 | |
0.0 0.5 1.0
x-label
Title
2.0
2
T 15
=
1.(}_ T T T
0.0 0.5 1.0
x-label

tight_layout () cantake keyword arguments of pad, w_pad and h_pad. These control the extra padding
around the figure border and between subplots. The pads are specified in fraction of fontsize.

fig, ((axl, ax2), (ax3, ax4)) =
example_plot (axl)
example_plot (ax2)
example_plot (ax3)
example_plot (ax4)

plt.tight_layout (pad=0.4, w_pad=0.5,

plt.subplots (nrows=2, ncols=2)

h_pad=1.0)

2.2. Intermediate

185

Matplotlib, Release 3.4.3

Title Title
2.0 2.0
2 2
T 15 T 15
= =
1.(} A T T T 1.(} A T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Title Title
2.0 2.0
2 2
o 15 - o 15 -
= =
1.(} A T T T 1.(} A T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label

tight_layout () will work even if the sizes of subplots are different as far as their grid specification is
compatible. In the example below, ax/ and ax2 are subplots of a 2x2 grid, while ax3 is of a 1x2 grid.

plt.close('all'")
fig = plt.figure()

axl = plt.subplot (221)
ax2 = plt.subplot (223)
ax3 = plt.subplot(122)

example_plot (axl)
example_plot (ax2)
example_plot (ax3)

plt.tight_layout ()

186 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Title Title
2.0
2.0 1
2
o 1.5
=
1.0 1 T T T
0.0 0.5 1.0 —
label 8
X-labe m 1.5 -
.]
Title =
2.0
2
w15+
=
1.0
1.(}_ T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label

It works with subplots created with subplot2grid (). In general, subplots created from the gridspec
(Customizing Figure Layouts Using GridSpec and Other Functions) will work.

plt.close('all'")
fig = plt.figure()

axl plt.subplot2grid ((
ax2 = plt.subplot2grid((
((
((

4
4

~ 0~
~ 0~

ax3 = plt.subplot2grid
ax4 plt.subplot2grid

, colspan=2, rowspan=2)
, rowspan=2)

4

~
~

3
3
3
3

w w w w
= = O O

)
), colspan=2)
)

’)

example_plot (axl)
example_plot (ax2)
example_plot (ax3)
example_plot (ax4)

plt.tight_layout ()

2.2. Intermediate 187

Matplotlib, Release 3.4.3

Title Title
2.0 2.0
8 8
o 1.5 o 1.5 -
]]
- -
1.0 ; , , 1.0 1 , ,
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
Title Title
2.0 - 2.0
2 2
o 1.5 o 15 -
= =
1.0 1.0
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label

Although not thoroughly tested, it seems to work for subplots with aspect != "auto" (e.g., axes with images).

arr = np.arange (100) .reshape((10, 10))

plt.close('all'")
fig = plt.figure(figsize=(5, 4))

ax = plt.subplot ()
im ax.imshow (arr, interpolation="none")

plt.tight_layout ()

188 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Caveats
e tight_layout considers all artists on the axes by default. To remove an artist from the layout
calculation you can call Artist.set_in_layout.

e tight_layout assumes that the extra space needed for artists is independent of the original location
of axes. This is often true, but there are rare cases where it is not.

e pad=0 can clip some texts by a few pixels. This may be a bug or a limitation of the current algorithm
and it is not clear why it happens. Meanwhile, use of pad larger than 0.3 is recommended.

Use with GridSpec

GridSpec has its own GridSpec.tight_layout method (the pyplot api pyplot.tight_layout
also works).

import matplotlib.gridspec as gridspec

plt.close('all'")
fig = plt.figure()

gsl = gridspec.GridSpec (2, 1)
axl = fig.add_subplot (gsl1[0])
ax2 fig.add_subplot (gsl[1])

(continues on next page)

2.2. Intermediate 189

Matplotlib, Release 3.4.3

(continued from previous page)

example_plot (axl)
example_plot (ax2)

gsl.tight_layout (fiqg)

Title
2.0
2
o 1.5
=
104 | |
0.0 0.5 1.0
x-label
Title
2.0
2
w15+
=
104 | |
0.0 0.5 1.0
x-label

You may provide an optional rect parameter, which specifies the bounding box that the subplots will be fit
inside. The coordinates must be in normalized figure coordinates and the default is (0, O, 1, 1).

fig = plt.figure()

gsl = gridspec.GridSpec (2, 1)
axl = fig.add_subplot (gsl1[0])
ax?2 fig.add_subplot (gsl[1])

example_plot (axl)
example_plot (ax2)

gsl.tight_layout (fig, rect=[0, 0, 0.5, 1.0])

190 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Title
2.0
2
o 1.5
=
1.0 | |
0.0 0.5 1.0
x-label
Title
2.0
2
w15+
=
l.ﬂ_ T T T
0.0 0.5 1.0
x-label

However, we do not recommend that this be used to manually construct more complicated lay-
outs, like having one GridSpec in the left and one in the right side of the figure. For these use
cases, one should instead take advantage of /gallery/subplots_axes_and_figures/gridspec_nested, or the
/gallery/subplots_axes_and_figures/subfigures.

Legends and Annotations

Pre Matplotlib 2.2, legends and annotations were excluded from the bounding box calculations that decide
the layout. Subsequently these artists were added to the calculation, but sometimes it is undesirable to include
them. For instance in this case it might be good to have the axes shrink a bit to make room for the legend:

fig, ax = plt.subplots(figsize=(4, 3))

lines = ax.plot(range(10), label='A simple plot")
ax.legend (bbox_to_anchor=(0.7, 0.5), loc='center left',)
fig.tight_layout ()

plt.show ()

2.2. Intermediate 191

Matplotlib, Release 3.4.3

— A simple plot

However, sometimes this is not desired (quite often when using fig.savefig('outname.png',
bbox_inches="tight"')). In order to remove the legend from the bounding box calculation, we simply
set its bounding leg.set_in_layout (False) and the legend will be ignored.

fig, ax = plt.subplots(figsize=(4, 3))

lines = ax.plot(range(10), label='B simple plot")

leg = ax.legend(bbox_to_anchor=(0.7, 0.5), loc='center left',)
leg.set_in_layout (False)

fig.tight_layout ()

plt.show ()

192 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Use with AxesGrid1

While limited, mp1_toolkits.axes_gridl is also supported.

from mpl_toolkits.axes_gridl import Grid

plt.close('all")

fig = plt.figure ()
grid = Grid(fig, rect=111, nrows_ncols=(2, 2),
axes_pad=0.25, label_mode='L",
)
for ax in grid:
example_plot (ax)
ax.title.set_visible (False)
plt.tight_layout ()
Title Title
2.0 .
2
o 1.5 - .
=
1.0 1 e
T - T T T T
Title
2.0 .
2
© 1.5 1 S
=
1.0 1 e
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
x-label x-label
2.2. Intermediate 193

Matplotlib, Release 3.4.3

Colorbar

If you create a colorbar with Figure. colorbar, the created colorbar is drawn in a Subplot as long as the
parent axes is also a Subplot, so Figure.tight_layout will work.

plt.close('all'")

arr = np.arange (100) .reshape((10, 10))

fig = plt.figure(figsize=(4, 4))

im = plt.imshow(arr, interpolation="none")

plt.colorbar (im)

plt.tight_layout ()

Another option is to use the AxesGrid1 toolkit to explicitly create an axes for the colorbar.

from mpl_toolkits.axes_gridl import make_axes_locatable

plt.close('all'")

arr = np.arange (100) .reshape ((10, 10))

fig = plt.figure(figsize=(4, 4))

im = plt.imshow(arr, interpolation="none")

divider = make_axes_locatable(plt.gca())
cax = divider.append_axes ("right", "5%", pad="3%")

plt.colorbar (im, cax=cax)

plt.tight_layout ()

194 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

=]

MJ

i

=]

Total running time of the script: (0 minutes 5.110 seconds)

2.2.7 Autoscaling

The limits on an axis can be set manually (e.g. ax.set_xlim(xmin,

xmax)) or Matplotlib can set

them automatically based on the data already on the axes. There are a number of options to this autoscaling
behaviour, discussed below.

We will start with a simple line plot showing that autoscaling extends the axis limits 5% beyond the data
limits (-2x, 2m).

import
import
import

X = np

y = np.

fig, ax

numpy as np
matplotlib as mpl

matplotlib.pyplot as plt

.linspace (-2 * np.pi,

sinc (x)

= plt.subplots()

ax.plot (x, V)

2 * np.pi,

100)

2.2. Intermediate

195

Matplotlib, Release 3.4.3

1.0~

0.8

0.6

0.4

0.2

0.0

—0.2

Out:

[<matplotlib.lines.Line2D object at 0x7fe6d47eeaatb0>]

Margins

The default margin around the data limits is 5%:

ax.margins ()

Out:

(0.05, 0.05)

The margins can be made larger using margins:

fig, ax = plt.subplots()
ax.plot (x, V)
ax.margins (0.2, 0.2)

196

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.2

1.0~

0.8

0.6

0.4

0.2

0.0

—0.2

—'U.4 -

In general, margins can be in the range (-0.5, c0), where negative margins set the axes limits to a subrange of
the data range, i.e. they clip data. Using a single number for margins affects both axes, a single margin can
be customized using keyword arguments x or y, but positional and keyword interface cannot be combined.

fig, ax = plt.subplots()
ax.plot (x, V)
ax.margins (y=-0.2)

2.2. Intermediate 197

Matplotlib, Release 3.4.3

0.7 4

0.6

0.5 4

0.4

0.3 A

0.2 A

0.1

-6

il

Sticky edges

Noa

There are plot elements (Art i sts) that are usually used without margins. For example false-color images
(e.g. created with Axes. imshow) are not considered in the margins calculation.

xx, yy = np.meshgrid(x, x)

zz = np.sinc(np.sqrt ((xx — 1)**2 + (yy — 1)**2))

fig, ax = plt.subplots(ncols=2, figsize=(12, 8))

ax[0] .imshow (zz)

ax[0] .set_title("default margins")

ax[1].imshow(zz)

ax[1] .margins (0.2)

ax[1].set_title("margins (0.2)")

198 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

default margins margins(0.2)

Out:

Text (0.5, 1.0, 'margins(0.2)")

This override of margins is determined by "sticky edges", a property of Artist class that can sup-
press adding margins to axis limits. The effect of sticky edges can be disabled on an Axes by changing
use_sticky_edges. Artists have a property Artist.sticky_edges, and the values of sticky edges
can be changed by writing to Artist.sticky_edges.xor .Artist.sticky_edges.y.

The following example shows how overriding works and when it is needed.

fig, ax = plt.subplots(ncols=3, figsize=(16, 10))

.imshow (zz)

.margins (0.2)

.set_title("default use_sticky_edges\nmargins (0.2)")
.imshow (zz)

.margins (0.2)

.use_sticky_edges = False

.set_title ("use_sticky_edges=False\nmargins (0.2)")
.imshow (zz)

.margins (-0.2)

.set_title("default use_sticky_edges\nmargins (-0.2)")

2.2. Intermediate 199

Matplotlib, Release 3.4.3

default use_sticky_edges use_sticky_edges=False default use_sticky_edges
margins(0.2) margins(0.2) margins(-0.2)

20

40
404

60 -
60

801
80

100 4

Out:

Text (0.5, 1.0, 'default use_sticky_edges\nmargins (-0.2)")

We can see that setting use_sticky_edges to False renders the image with requested margins.

While sticky edges don't increase the axis limits through extra margins, negative margins are still taken into
account. This can be seen in the reduced limits of the third image.

Controlling autoscale

By default, the limits are recalculated every time you add a new curve to the plot:

fig, ax = plt.subplots(ncols=2, figsize=(12, 8))
ax[0] .plot (x, V)

[0] .set_title("Single curve")
ax[1].plot(x, V)

[1].plot(x * 2.0, v)

[1].set_title("Two curves")

200 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Single curve Two curves

1.0 - 1.0 -
0.8 1 0.8 -
0.6 1 0.6 1
0.4 4 0.4 1
0.2 1 0.2
0.0 0.0 \/i '\f
-0.2 A -0.2 A

. . ‘ ‘ T ‘ : ‘ . . ‘

-6 -4 -2 0 2 4 6 -10 -5 0 5 10

Out:

Text (0.5, 1.0, 'Two curves')

However, there are cases when you don't want to automatically adjust the viewport to new data.

One way to disable autoscaling is to manually set the axis limit. Let's say that we want to see only a part of
the data in greater detail. Setting the x1 im persists even if we add more curves to the data. To recalculate
the new limits calling Axes. autoscale will toggle the functionality manually.

fig, ax = plt.subplots(ncols=2, figsize=(12, 8))

ax[0] .plot(x, vy)

ax[0] .set_xlim(left=-1, right=1)

ax[0].plot(x + np.pi * 0.5, vy)
ax[0].set_title("set_xlim(left=-1, right=1)\n")

ax[1l] .plot(x, vy)

ax[1l].set_xlim(left=-1, right=1)

ax[1].plot(x + np.pi * 0.5, V)

ax[1l] .autoscale ()

ax[1].set_title("set_xlim(left=-1, right=1)\nautoscale()")

2.2. Intermediate 201

Matplotlib, Release 3.4.3

set xlim{left=-1, right=1) set xlim{left=-1, right=1)
autoscale()
104 1.0+
0.8 A 0.8 A
0.6 A 0.6 -
0.4 0.4 4
0.2 A 0.2 4
-0.2 -0.2 1
~1.00 —0.75 -0.50 -0.25 000 025 050 075 100 %5 -4 2 0 2 4 6 8

Out:

Text (0.5, 1.0, 'set_xlim(left=-1, right=1)\nautoscale()"')

We can check that the first plot has autoscale disabled and that the second plot has it enabled again by using
Axes.get_autoscale _on():

print (ax[0] .get_autoscale_on()) # False means disabled

print (ax[1] .get_autoscale_on()) # True means enabled —-> recalculated
Out:

False

True

Arguments of the autoscale function give us precise control over the process of autoscaling. A combination
of arguments enable, and axis sets the autoscaling feature for the selected axis (or both). The argument
tight sets the margin of the selected axis to zero. To preserve settings of either enable or tight you
can set the opposite one to None, that way it should not be modified. However, setting enable to None and
tight to True affects both axes regardless of the axis argument.

fig, ax = plt.subplots()

ax.plot (x, V)

ax.margins (0.2, 0.2)

ax.autoscale (enable=None, axis="x", tight=True)

(continues on next page)

202 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

print (ax.margins ())

0.8

0.6

0.4

0.2 A

0.0

_0.2 -

Working with collections

Autoscale works out of the box for all lines, patches, and images added to the axes. One of the artists that it
won't work with is a Collection. After adding a collection to the axes, one has to manually trigger the
autoscale view () torecalculate axes limits.

fig, ax = plt.subplots|()

collection = mpl.collections.StarPolygonCollection (
5, 0, [250, 1, # five point star, zero angle, size 250px
offsets=np.column_stack ([x, vI]), # Set the positions
transOffset=ax.transData, # Propagate transformations of the Axes

(continues on next page)

2.2. Intermediate 203

Matplotlib, Release 3.4.3

(continued from previous page)

ax.add_collection(collection)
ax.autoscale_view ()

1.0 - #
i

0.8

0.6

0.2

0.0

* K
* %
>4 *
* %
* %
*x %

—0.2

Total running time of the script: (0 minutes 6.041 seconds)

2.2.8 origin and extent in imshow

imshow () allows you to render an image (either a 2D array which will be color-mapped (based on norm and
cmap) or a 3D RGB(A) array which will be used as-is) to a rectangular region in data space. The orientation
of the image in the final rendering is controlled by the origin and extent kwargs (and attributes on the resulting
AxesImage instance) and the data limits of the axes.

The extent kwarg controls the bounding box in data coordinates that the image will fill specified as (left,
right, bottom, top) indata coordinates, the origin kwarg controls how the image fills that bounding
box, and the orientation in the final rendered image is also affected by the axes limits.

Hint: Most of the code below is used for adding labels and informative text to the plots. The described
effects of origin and extent can be seen in the plots without the need to follow all code details.

For a quick understanding, you may want to skip the code details below and directly continue with the

204 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

discussion of the results.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec

def index_to_coordinate (index, extent, origin):
"""Return the pixel center of an index."""
left, right, bottom, top = extent

hshift = 0.5 * np.sign(right - left)
left, right = left + hshift, right - hshift
vshift = 0.5 * np.sign(top - bottom)
bottom, top = bottom + vshift, top - vshift

if origin == 'upper':
bottom, top = top, bottom

return
"[0, O]": (left, Dbottom),
"M, O]": (left, top),
"[0, N'"]": (right, bottom),
"[M'", N'"]": (right, top),

} [index]

def get_index_label_pos (index, extent, origin, inverted_xindex):
mrrn

Return the desired position and horizontal alignment of an index label.

mirrn

if extent is None:

extent = lookup_extent (origin)
left, right, bottom, top = extent
X, y = index_to_coordinate (index, extent, origin)
is_ x0 = index[-2:] == "O]"
halign = 'left' if is_x0 »~ inverted_xindex else 'right'

hshift = 0.5 * np.sign(left - right)
X += hshift * (1 if is_x0 else -1)
return x, y, halign

def get_color (index, data, cmap):

"""Return the data color of an index."""

val = {
"[0, O0]": datalO, 01,
"[0, N'"]": data[O0, -11,
"[M', 0]": data[-1, 0],
"[M', N']": datal-1, -11,
} [index]

return cmap(val / data.max())

(continues on next page)

2.2. Intermediate

205

Matplotlib, Release 3.4.3

(continued from previous page)

def lookup_extent (origin) :
"""Return extent for label positioning when not given explicitly."""
if origin == 'lower':
return (-0.5, 6.5, -0.5, 5.5)
else:
return (-0.5, 6.5, 5.5, -0.5)

def set_extent_ None_text (ax) :
ax.text (3, 2.5, 'equals\nextent=None', size='large',
ha='center', va='center', color='w')

def plot_imshow_with_labels (ax, data, extent, origin, xlim, ylim):
"""Actually run "~ imshow ()~ and add extent and index labels."""
im = ax.imshow(data, origin=origin, extent=extent)

extent labels (left, right, bottom, top)
left, right, bottom, top = im.get_extent ()
if xlim is None or top > bottom:

upper_string, lower_string = 'top', 'bottom'
else:
upper_string, lower_string = 'bottom', 'top'
if ylim is None or left < right:
port_string, starboard_string = 'left', 'right'
inverted_xindex = False
else:
port_string, starboard_string = 'right', 'left'
inverted_xindex = True
bbox_kwargs = {'fc': 'w', 'alpha': .75, 'boxstyle': "round4"}
ann_kwargs = {'xycoords': 'axes fraction',
'textcoords': 'offset points',
'bbox"': bbox_kwargs}
ax.annotate (upper_string, xy=(.5, 1), xytext=(0, -1),
ha='center', va='top', **ann_kwargs)
ax.annotate (lower_string, xy=(.5, 0), xytext=(0, 1),

ha='center', va='bottom', **ann_kwargs)

ax.annotate (port_string, xy=(0, .5), xytext=(1, 0),
ha='left', va='center', rotation=90,
**ann_kwargs)

ax.annotate (starboard_string, xy=(1, .5), xytext=(-1, 0),
ha='right', wva='center', rotation=-90,
**ann_kwargs)

ax.set_title('origin: {origin}'.format (origin=origin))

index labels
for index in ["[O, O]", "[O, N']", "[M', O]", "[M', N']"]:
tx, ty, halign = get_index_label_pos (index, extent, origin,
inverted_xindex)
facecolor = get_color(index, data, im.get_cmap())

(continues on next page)

206 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

ax.text (tx, ty, index, color='white', ha=halign, va='center'
bbox={"boxstyle': 'square', 'facecolor': facecolor})
if x1lim:
ax.set_xlim(*x1lim)
if ylim:
ax.set_ylim(*ylim)

def generate_imshow_demo_grid(extents, xlim=None, ylim=None) :
N = len(extents)
fig = plt.figure(tight_layout=True)
fig.set_size_inches (6, N * (11.25) / 5)
gs = GridSpec (N, 5, figure=fig)

columns = {'label': [fig.add_subplot(gs[]j, 0]) for j in range (N)
'upper': [fig.add_subplot(gs[j, 1:3]) for j in range(
'"lower': [fig.add_subplot(gs[j, 3:5]) for j in range(

X, y = np.ogrid[0:6, 0:7]

data = x + vy

for origin in ['upper', 'lower']:

for ax, extent in zip(columns[origin], extents):
plot_imshow_with_labels (ax, data, extent, origin, xlim,

columns(['label'][0].set_title('extent=")
for ax, extent in zip(columns['label'], extents):
if extent is None:

text = 'None'
else:
left, right, bottom, top = extent
text = (f'left: {left:0.1f/\nright: {right:0.1f}\n’

f'bottom: {bottom:0.1f}\ntop: {top:0.1f}\n")

ax.text (1., .5, text, transform=ax.transAxes, ha='right', va='center')

ax.axis ('off")
return columns

4

ylim)

Default extent

First, let's have a look at the default extent=None

generate_imshow_demo_grid(extents=[None])

2.2. Intermediate

Matplotlib, Release 3.4.3

extent= origin: upper origin: lower

None

Out:

{'label': [<AxesSubplot:title={'center':'extent='}>], 'upper': [
«<AxesSubplot:title={"'center':'origin: upper'}>], 'lower': [
~<AxesSubplot:title={"'center':'origin: lower'}>]}

Generally, for an array of shape (M, N), the first index runs along the vertical, the second index runs along
the horizontal. The pixel centers are at integer positions ranging from O to N' = N - 1 horizontally and
fromOtoM' = M - 1 vertically. origin determines how the data is filled in the bounding box.

For origin="'lower"':

[0, 0] is at (left, bottom)

[M', 0] is at (left, top)

[0, N'] is at (right, bottom)
e [M/, N'] is at (right, top)
origin="upper' reverses the vertical axes direction and filling:
[0, 0] is at (left, top)
[M', 0] is at (left, bottom)

[0, N'] is at (right, top)
[M', N'] is at (right, bottom)

In summary, the position of the [0, 0] index as well as the extent are influenced by origin:

origin | [0, 0] position | extent
upper | top left (-0.5, numcols-0.5, numrows-0.5, -0.5)
lower | bottom left (-0.5, numcols-0.5, -0.5, numrows-0.5)

The default value of originis setby rcParams ["image.origin"] (default: 'upper ') which defaults
to 'upper' to match the matrix indexing conventions in math and computer graphics image indexing con-
ventions.

208 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=image.origin#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Explicit extent

By setting extent we define the coordinates of the image area. The underlying image data is interpo-
lated/resampled to fill that area.

If the axes is set to autoscale, then the view limits of the axes are set to match the extent which ensures that
the coordinate setby (left, bottom) is atthe bottom left of the axes! However, this may invert the axis
so they do not increase in the 'natural’ direction.

extents = [(-0.5, 6.5, -0.5, 5.5),

(-0.5, 6.5, 5.5, -0.5),

(6.5, -0.5, -0.5, 5.5),

(6.5, -0.5, 5.5, -0.5)]
columns = generate_imshow_demo_grid (extents)
set_extent_None_text (columns|['upper'] [1])
set_extent_None_text (columns['lower'] [0])

2.2. Intermediate 209

Matplotlib, Release 3.4.3

extent= origin: upper origin: lower
: (w01 LI
left: -0.5 .

right: 6.5 equals E
=T

bottom: -0.5 .
top: 5.5 extent=None

[0, N']

left: -0.5
right: 6.5
bottom: 5.5
top: -0.5

equals
extent=None

left: 6.5
right: -0.5
bottom: -0.5
top: 5.5

left: 6.5
right: -0.5
bottom: 5.5
top: -0.5

210 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Explicit extent and axes limits

If we fix the axes limits by explicitly setting set_x1im/ set_y1im, we force a certain size and orientation
of the axes. This can decouple the 'left-right' and 'top-bottom' sense of the image from the orientation on the
screen.

In the example below we have chosen the limits slightly larger than the extent (note the white areas within
the Axes).

While we keep the extents as in the examples before, the coordinate (0, 0) is now explicitly put at the bottom
left and values increase to up and to the right (from the viewer's point of view). We can see that:

e The coordinate (left, bottom) anchors the image which then fills the box going towards the
(right, top) pointin data space.

The first column is always closest to the 'left'.

e origin controls if the first row is closest to 'top' or 'bottom'.

The image may be inverted along either direction.

The 'left-right' and 'top-bottom' sense of the image may be uncoupled from the orientation on the
screen.

generate_imshow_demo_grid(extents=[None] + extents,
xlim=(-2, 8), ylim=(-1, 6))

plt.show ()

2.2. Intermediate 211

Matplotlib, Release 3.4.3

extent=
origin: upper origin: lower
T tto top
4 4
& a @
None (] E: E:
0_
top botto
T T T T T T T T
0.0 25 50 75 00 25 50 715
origin: upper origin: lower
top top
left: -0.5
r|ght: 6.5 = =
bottom: -0.5 E_ E.
top: 5.5 i i
otto botto
T T T T T T T T
0.0 25 50 75 00 25 50 715
origin: upper origin: lower
otto botto
left: -0.5
right: 6.5 = =
bottom: 5.5 E_ @_
top: -0.5 - ~
T T T T T T
0.0 25 50 75 00 25 50 715
origin: upper origin: lower
top 6 top
left: 6.5 4 4
right: -0.5 = ”
bottom: -0.5 2_% 5 %
top: 5.5 = =
0 0 -
tto ottom
T T T T T T T T
0.0 25 50 75 00 25 50 715
origin: upper origin: lower
6 tto 6 ottom
left: 8.5 44 4
right: -0.5 - -~
bottom: 5.5 i;] %
top: -0.5 21E 21e
0 0 1
212 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Total running time of the script: (0 minutes 2.676 seconds)

2.3 Advanced

These tutorials cover advanced topics for experienced Matplotlib users and developers.

2.3.1 Faster rendering by using blitting

Blitting is a standard technique in raster graphics that, in the context of Matplotlib, can be used to (drastically)
improve performance of interactive figures. For example, the animation and widgets modules use
blitting internally. Here, we demonstrate how to implement your own blitting, outside of these classes.

Blitting speeds up repetitive drawing by rendering all non-changing graphic elements into a background
image once. Then, for every draw, only the changing elements need to be drawn onto this background. For
example, if the limits of an Axes have not changed, we can render the empty Axes including all ticks and
labels once, and only draw the changing data later.

The strategy is
e Prepare the constant background:

— Draw the figure, but exclude all artists that you want to animate by marking them as animated
(see Artist.set_animated).

— Save a copy of the RBGA buffer.
e Render the individual images:
— Restore the copy of the RGBA buffer.
— Redraw the animated artists using Axes.draw_artist/ Figure.draw_artist.
— Show the resulting image on the screen.
One consequence of this procedure is that your animated artists are always drawn on top of the static artists.

Not all backends support blitting. You can check if a given canvas does via the F'igureCanvasBase.
supports_blit property.

Warning: This code does not work with the OSX backend (but does work with other GUI backends on
mac).

2.3. Advanced 213

https://en.wikipedia.org/wiki/Bit_blit

Matplotlib, Release 3.4.3

Minimal example

We can use the F'igureCanvasAgg methods copy_from bbox and restore_region in conjunc-
tion with setting animated=True on our artist to implement a minimal example that uses blitting to ac-
celerate rendering

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 2 * np.pi, 100)
fig, ax = plt.subplots()

animated=True tells matplotlib to only draw the artist when we
explicitly request it
(ln,) = ax.plot(x, np.sin(x), animated=True)

make sure the window is raised, but the script keeps going
plt.show (block=False)

stop to admire our empty window axes and ensure it 1is rendered at
least once.

We need to fully draw the figure at its final size on the screen
before we continue on so that

a) we have the correctly sized and drawn background to grab

b) we have a cached renderer so that °~‘ax.draw_artist’ works

so we spin the event loop to let the backend process any pending operations
plt.pause(0.1)

S R R R HR R R H

get copy of entire figure (everything inside fig.bbox) sans animated artist
bg = fig.canvas.copy_from bbox (fig.bbox)

draw the animated artist, this uses a cached renderer

ax.draw_artist (1n)

show the result to the screen, this pushes the updated RGBA buffer from the
renderer to the GUI framework so you can see it

fig.canvas.blit (fig.bbox)

for j in range (100):
reset the background back in the canvas state, screen unchanged
fig.canvas.restore_region (bg)
update the artist, neither the canvas state nor the screen have changed
In.set_ydata(np.sin(x + (j / 100) * np.pi))
re-render the artist, updating the canvas state, but not the screen
ax.draw_artist (1n)
copy the image to the GUI state, but screen might not be changed yet
fig.canvas.blit (fig.bbox)
flush any pending GUI events, re-painting the screen if needed
fig.canvas.flush_events ()
you can put a pause in if you want to slow things down
plt.pause(.1)

214 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.00 +

0.75 +

0.50

0.25 +

0.00 +

—0.25 +

—0.50 ~

—0.75 +

—1.00 ~

This example works and shows a simple animation, however because we are only grabbing the background
once, if the size of the figure in pixels changes (due to either the size or dpi of the figure changing) , the
background will be invalid and result in incorrect (but sometimes cool looking!) images. There is also a
global variable and a fair amount of boiler plate which suggests we should wrap this in a class.

Class-based example

We can use a class to encapsulate the boilerplate logic and state of restoring the background, drawing the
artists, and then blitting the result to the screen. Additionally, we can use the 'draw_event ' callback to
capture a new background whenever a full re-draw happens to handle resizes correctly.

class BlitManager:

def _ init__ (self, canvas, animated_artists=()):
rmrrn
Parameters
canvas : FigureCanvasAgg

The canvas to work with, this only works for sub-classes of the.
sAgg

canvas which have the "~FigureCanvasAgqg.copy_from_bbox and

‘~FigureCanvasAgg.restore_region methods.

(continues on next page)

2.3. Advanced 215

Matplotlib, Release 3.4.3

(continued from previous page)

animated _artists : Iterable[Artist]
List of the artists to manage

rmrrn

self.canvas = canvas

self._bg = None

self. _artists = []

for a in animated_artists:
self.add_artist (a)
grab the background on every draw
self.cid = canvas.mpl_connect ("draw_event", self.on_draw)

def on_draw(self, event):
"""Callback to register with 'draw_event'.

mrmrn

cv = self.canvas
if event is not None:
if event.canvas != cv:

raise RuntimeError
self._bg = cv.copy_from bbox(cv.figure.bbox)
self._draw_animated()

def add_artist (self, art):

mrrn

Add an artist to be managed.

Parameters

The artist to be added. Will be set to 'animated' (just
to be safe). *art* must be in the figure associated with
the canvas this class 1s managing.

mrmrn

if art.figure != self.canvas.figure:
raise RuntimeError

art.set_animated (True)

self._artists.append(art)

def _draw_animated(self):
"""Draw all of the animated artists."""
fig = self.canvas.figure
for a in self._artists:
fig.draw_artist (a)

def update (self):
"""Update the screen with animated artists."""
cv = self.canvas
fig = cv.figure
paranoia in case we missed the draw event,
if self._bg is None:

(continues on next page)

216 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

self.on_draw (None)
else:
restore the background
cv.restore_region(self._bg)
draw all of the animated artists
self. draw_animated()
update the GUI state
cv.blit (fig.bbox)

cv.flush_events()

let the GUI event loop process anything it has to do

Here is how we would use our class. This is a slightly more complicated example than the first case as we

add a text frame counter as well.

make a new figure
fig, ax = plt.subplots()
add a line
(Iln,) = ax.plot(x, np.sin(x), animated=True)
add a frame number
fr_number = ax.annotate(
novv,
(0, 1),
xycoords="axes fraction",
xytext= (10, -10),
textcoords="offset points",
ha="1left",
va="top",
animated=True,
)
bm = BlitManager (fig.canvas, [ln, fr_number])
make sure our window 1is on the screen and drawn
plt.show(block=False)
plt.pause(.1)

for j in range (100):
update the artists
In.set_ydata(np.sin(x + (j / 100) * np.pi))

fr_number.set_text ("frame: {j}".format (j=7))
tell the blitting manager to do its thing
bm.update ()

2.3. Advanced

217

Matplotlib, Release 3.4.3

1.00 4 frame: 99

0.75 +

0.50

0.25 +

0.00 +

—0.25 +

—0.50 ~

—0.75 +

—1.00 ~

This class does not depend on pyplot and is suitable to embed into larger GUI application.

Total running time of the script: (0 minutes 1.207 seconds)

2.3.2 Path Tutorial

Defining paths in your Matplotlib visualization.

The object underlying all of the matplotlib.patches objectsisthe Path, which supports the standard
set of moveto, lineto, curveto commands to draw simple and compound outlines consisting of line segments
and splines. The Path is instantiated with a (N, 2) array of (X, y) vertices, and a N-length array of path
codes. For example to draw the unit rectangle from (0, 0) to (1, 1), we could use this code:

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

verts = [
(0., 0.), # left, bottom
(0., 1.), # left, top
(1., 1.), # right, top
(1., 0.), # right, bottom

(continues on next page)

218 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

(0., 0.), # ignored

Path.MOVETO,
Path.LINETO,
Path.LINETO,
Path.LINETO,
Path.CLOSEPOLY,

path = Path(verts, codes)

fig, ax = plt.subplots()

patch = patches.PathPatch (path, facecolor='orange', 1lw=2)
ax.add_patch (patch)

ax.set_xlim(-2, 2)

ax.set_ylim(-2, 2)

plt.show ()

2.0

1.5~

1.0+

0.5 A

0.0

—0.5 4

1.0

1.5 4

_2.[} T T T T T T T
—-2.0 -1.5 -1.0 —-0.5 0.0 0.5 1.0 1.5 2.0

The following path codes are recognized

2.3. Advanced 219

Matplotlib, Release 3.4.3

Code Vertices Description
STOP 1 (ignored) A marker for the end of the entire path (currently not required and ig-
nored).

MOVETO | 1 Pick up the pen and move to the given vertex.

LINETO | 1 Draw a line from the current position to the given vertex.

CURVE3 | 2: 1 control point, 1 | Draw a quadratic Bézier curve from the current position, with the given
end point control point, to the given end point.

CURVEA4 | 3: 2 control points, | Draw a cubic Bézier curve from the current position, with the given
1 end point control points, to the given end point.

CLOSE- | 1 (the point is ig- | Draw a line segment to the start point of the current polyline.

POLY nored)

Bézier example

Some of the path components require multiple vertices to specify them: for example CURVE 3 is a bézier
curve with one control point and one end point, and CURVE4 has three vertices for the two control points
and the end point. The example below shows a CURVE4 Bézier spline -- the bézier curve will be contained
in the convex hull of the start point, the two control points, and the end point

verts = [
(0., 0.), # PO
(0.2, 1.), # P1
(1., 0.8), # P2
(0.8, 0.), # P3

]

codes = [

Path.MOVETO,
Path.CURVE4,
Path.CURVE4,
Path.CURVE4,

path = Path(verts, codes)
fig, ax = plt.subplots()
patch = patches.PathPatch (path, facecolor='none', 1lw=2)

ax.add_patch (patch)

XS,

yS zip (*verts)

ax.plot(xs, ys, 'x——', 1lw=2, color='black', ms=10)
text
text

(-0.05,
(
text (
(

0.15,
1.05,
0.85,

ax.
ax.

-0.05, 'PO'")
1.05, 'P1'")
0.85, 'P2')
-0.05, 'P3'")

ax.

ax.text

ax.set_xlim(-0.1, 1.1)

(continues on next page)

220 Chapter 2. Tutorials

https://en.wikipedia.org/wiki/B%C3%A9zier_curve

Matplotlib, Release 3.4.3

(continued from previous page)

ax.set_ylim(-0.1, 1.1)
plt.show()

1.0+

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Compound paths

All of the simple patch primitives in matplotlib, Rectangle, Circle, Polygon, etc, are implemented with simple
path. Plotting functions like hist () and bar (), which create a number of primitives, e.g., a bunch of
Rectangles, can usually be implemented more efficiently using a compound path. The reason bar creates
a list of rectangles and not a compound path is largely historical: the Path code is comparatively new and
bar predates it. While we could change it now, it would break old code, so here we will cover how to create
compound paths, replacing the functionality in bar, in case you need to do so in your own code for efficiency
reasons, €.g., you are creating an animated bar plot.

We will make the histogram chart by creating a series of rectangles for each histogram bar: the rectangle
width is the bin width and the rectangle height is the number of datapoints in that bin. First we'll create some
random normally distributed data and compute the histogram. Because numpy returns the bin edges and not
centers, the length of bins is 1 greater than the length of n in the example below:

2.3. Advanced 221

Matplotlib, Release 3.4.3

histogram our data with numpy
data = np.random.randn (1000)
n, bins = np.histogram(data, 100)

We'll now extract the corners of the rectangles. Each of the 1eft, bottom, etc, arrays below is 1en (n),
where n is the array of counts for each histogram bar:

get the corners of the rectangles for the histogram
left = np.array(bins[:-1])

right = np.array(bins[1:])

bottom = np.zeros(len(left))

top = bottom + n

Now we have to construct our compound path, which will consist of a series of MOVETO, LINETO and
CLOSEPOLY for each rectangle. For each rectangle, we need 5 vertices: 1 for the MOVETO, 3 for the
LINETO, and 1 for the CLOSEPOLY. As indicated in the table above, the vertex for the closepoly is ig-
nored but we still need it to keep the codes aligned with the vertices:

nverts = nrects* (1+3+1)

verts = np.zeros((nverts, 2))
codes = np.ones (nverts, int) * path.Path.LINETO
codes[0::5] = path.Path.MOVETO
codes[4::5] = path.Path.CLOSEPOLY
verts[0::5, 0] = left

verts[0::5, 1] = bottom
verts[l::5, 0] = left

verts[l::5, 1] = top

verts[2::5, 0] = right
verts[2::5, 1] = top

verts[3::5, 0] = right

verts[3::5, 1] = bottom

~

All that remains is to create the path, attach it to a Pat hPat ch, and add it to our axes:

barpath = path.Path(verts, codes)

patch = patches.PathPatch (barpath, facecolor='green',
edgecolor="'yellow', alpha=0.5)

ax.add_patch (patch)

import numpy as np
import matplotlib.patches as patches
import matplotlib.path as path

fig, ax = plt.subplots()
Fixing random state for reproducibility
np.random.seed (19680801)

histogram our data with numpy
data = np.random.randn (1000)
n, bins = np.histogram(data, 100)

(continues on next page)

222 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

get the corners of the rectangles for the histogram
left = np.array(bins[:-1])

right = np.array(bins[1:])

bottom = np.zeros(len(left))

top = bottom + n

nrects = len(left)

nverts = nrects* (1+3+1)

verts = np.zeros((nverts, 2))
codes = np.ones (nverts, int) * path.Path.LINETO
codes[0::5] = path.Path.MOVETO
codes[4::5] = path.Path.CLOSEPOLY
verts[0::5, 0] = left

verts[0::5, 1] = bottom
verts[l::5, 0] = left

verts[l::5, 1] = top

verts[2::5, 0] = right
verts[2::5, 1] = top

verts[3::5, 0] = right

verts[3::5, 1] = bottom

~

barpath = path.Path(verts, codes)
patch = patches.PathPatch (barpath, facecolor='green',

edgecolor='yellow', alpha=0.5)

ax.add_patch (patch)

ax.set_xlim(left[0], right[-11])
ax.set_ylim(bottom.min (), top.max())

plt.show ()

2.3. Advanced

223

Matplotlib, Release 3.4.3

2.3.3 Path effects guide

Defining paths that objects follow on a canvas.

Matplotlib's patheffects module provides functionality to apply a multiple draw stage to any Artist
which can be rendered via a path.Path.

Artists which can have a path effect applied to them include patches.Patch, lines.LineZD,
collections.Collectionandeven text. Text. Each artist's path effects can be controlled via the
Artist.set_path_effects method, which takes an iterable of AbstractPathEffect instances.

The simplest path effect is the Norma 1 effect, which simply draws the artist without any effect:

import matplotlib.pyplot as plt
import matplotlib.patheffects as path_effects

fig = plt.figure(figsize=(5, 1.5))
text = fig.text (0.5, 0.5, 'Hello path effects world!\nThis is the normal '
'path effect.\nPretty dull, huh?',
ha='center', va='center', size=20)
text.set_path_effects ([path_effects.Normal()])
plt.show ()

224 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Hello path effects world!
This is the normal path effect.
Pretty dull, huh?

Whilst the plot doesn't look any different to what you would expect without any path effects, the drawing
of the text has now been changed to use the path effects framework, opening up the possibilities for more
interesting examples.

Adding a shadow

A far more interesting path effect than Norma 1 is the drop-shadow, which we can apply to any of our path
based artists. The classes SimplePatchShadowand SimpleLineShadow do precisely this by drawing
either a filled patch or a line patch below the original artist:

import matplotlib.patheffects as path_effects

text = plt.text (0.5, 0.5, 'Hello path effects world!",
path_effects=[path_effects.withSimplePatchShadow ()])

plt.plot ([0, 3, 2, 5], linewidth=5, color='blue',
path_effects=[path_effects.SimpleLineShadow (),
path_effects.Normal()])
plt.show ()

2.3. Advanced 225

Matplotlib, Release 3.4.3

Hello, path effects world!

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Notice the two approaches to setting the path effects in this example. The first uses the with* classes to
include the desired functionality automatically followed with the "normal" effect, whereas the latter explicitly
defines the two path effects to draw.

Making an artist stand out

One nice way of making artists visually stand out is to draw an outline in a bold color below the actual artist.
The St roke path effect makes this a relatively simple task:

fig = plt.figure(figsize=(7, 1))
text = fig.text (0.5, 0.5, 'This text stands out because of\n'
'its black border.', color='white',
ha='center', va='center', size=30)
text.set_path_effects([path_effects.Stroke(linewidth=3, foreground='black'"),
path_effects.Normal()])
plt.show()

This stands out because ofF
its black border,

226 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

It is important to note that this effect only works because we have drawn the text path twice; once with a
thick black line, and then once with the original text path on top.

You may have noticed that the keywords to St roke and SimplePatchShadow and SimpleLine—
Shadow are not the usual Artist keywords (facecolor edgecolor, etc.). This is because with these path
effects we are operating at lower level of Matplotlib. In fact, the keywords which are accepted are those for
amatplotlib.backend_bases.GraphicsContextBase instance, which have been designed for
making it easy to create new backends - and not for its user interface.

Greater control of the path effect artist

As already mentioned, some of the path effects operate at a lower level than most users will be used to,
meaning that setting keywords such as facecolor and edgecolor raise an AttributeError. Luckily there is a
generic PathPatchEffect path effect which creates a patches.PathPatch class with the original
path. The keywords to this effect are identical to those of patches.PathPatch:

fig = plt.figure(figsize=(8.5, 1))
t = fig.text (0.02, 0.5, 'Hatch shadow', fontsize=75, weight=1000, va='center')
t.set_path_effects ([
path_effects.PathPatchEffect (
offset=(4, —-4), hatch="xxxx', facecolor='gray'),
path_effects.PathPatchEffect (
edgecolor="'white', linewidth=1.1, facecolor='black')])
plt.show ()

Hatch shadow

2.3.4 Transformations Tutorial

Like any graphics packages, Matplotlib is built on top of a transformation framework to easily move between
coordinate systems, the userland data coordinate system, the axes coordinate system, the figure coordinate
system, and the display coordinate system. In 95% of your plotting, you won't need to think about this,
as it happens under the hood, but as you push the limits of custom figure generation, it helps to have an
understanding of these objects so you can reuse the existing transformations Matplotlib makes available to
you, or create your own (see matplotlib.transforms). The table below summarizes the some useful
coordinate systems, the transformation object you should use to work in that coordinate system, and the
description of that system. In the Transformation Object column, ax is a Axes instance, and fig
is a F'igure instance.

2.3. Advanced 227

Matplotlib, Release 3.4.3

Co- | Transformation object Description

ordi-

nates

"data" | ax.transData The coordinate system for the data, controlled by xlim and ylim.

"axes" | ax.transAxes The coordinate system of the Axes; (0, 0) is bottom left of the axes,
and (1, 1) is top right of the axes.

"sub- | subfigure. The coordinate system of the SubFigure; (0, 0) is bottom left of

fig- transSubfigure the subfigure, and (1, 1) is top right of the subfigure. If a figure has

ure" no subfigures, this is the same as t ransFigure.

"fig- fig.transFigure The coordinate system of the F'igure; (0, 0) is bottom left of the

ure" figure, and (1, 1) is top right of the figure.

"figurer fig. The coordinate system of the Fi gure in inches; (0, 0) is bottom

inches'| dpi_scale_trans left of the figure, and (width, height) is the top right of the figure in
inches.

"dis- | None, or Identity-— | The pixel coordinate system of the display window; (0, 0) is bottom

play" | Transform() left of the window, and (width, height) is top right of the display
window in pixels.

"xaxis'l, ax. Blended coordinate systems; use data coordinates on one of the axis

"yaxis'| get_xaxis_transform ahd axes coordinates on the other.

ax.
get_vyaxis_transform ()

All of the transformation objects in the table above take inputs in their coordinate system, and transform
the input to the display coordinate system. That is why the display coordinate system has None for the
Transformation Object column -- it already is in display coordinates. The transformations also
know how to invert themselves, to go from display back to the native coordinate system. This is particularly
useful when processing events from the user interface, which typically occur in display space, and you want
to know where the mouse click or key-press occurred in your data coordinate system.

Note that specifying objects in display coordinates will change their location if the dp1i of the figure changes.
This can cause confusion when printing or changing screen resolution, because the object can change location
and size. Therefore it is most common for artists placed in an axes or figure to have their transform set to
something other than the TdentityTransform ();the default when an artist is placed on an axes using
add_artist is for the transform to be ax.transData.

Data coordinates

Let's start with the most commonly used coordinate, the data coordinate system. Whenever you add
data to the axes, Matplotlib updates the datalimits, most commonly updated with the set_xI1im () and
set_ylim () methods. For example, in the figure below, the data limits stretch from O to 10 on the x-axis,
and -1 to 1 on the y-axis.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches

(continues on next page)

228 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

X np.arange (0, 10, 0.005)

y = np.exp(-x/2.) * np.sin(2*np.pi*x)

fig, ax = plt.subplots|()
ax.plot(x, V)
ax.set_x1im(0, 10)
ax.set_ylim(-1, 1)

plt.show ()

1.00

0.75 4

0.50

0.25

0.00 +

—0.25 +

—0.50 ~

—0.75 +

—1.00

You can use the ax .t ransData instance to transform from your data to your display coordinate system,
either a single point or a sequence of points as shown below:

In [14]: type(ax.transData)
Out[1l4]: <class 'matplotlib.transforms.CompositeGenericTransform'>

In [15]: ax.transData.transform((5, 0))
Out[15]: array ([335.175, 247. 1)

In [16]: ax.transData.transform([(5, 0), (1, 2)1)
Out[16]:
array ([[335.175, 247. 1,

(continues on next page)

2.3. Advanced 229

Matplotlib, Release 3.4.3

(continued from previous page)

[132.435, 642.2 11)

You can use the inverted () method to create a transform which will take you from display to data
coordinates:

In [41]: inv = ax.transData.inverted()

In [42]: type (inv)
Out[42]: <class 'matplotlib.transforms.CompositeGenericTransform'>

In [43]: inv.transform((335.175, 247.))
Out[43]: array([5., 0.1)

If your are typing along with this tutorial, the exact values of the display coordinates may differ if you have
a different window size or dpi setting. Likewise, in the figure below, the display labeled points are probably
not the same as in the ipython session because the documentation figure size defaults are different.

X np.arange (0, 10, 0.005)

y = np.exp(-x/2.) * np.sin(2*np.pi*x)

fig, ax = plt.subplots/()
ax.plot (x, V)
ax.set_x1im(0, 10)
ax.set_ylim(-1, 1)

xdata, ydata = 5, 0

This computing the transform now, 1f anything

(figure size, dpi, axes placement, data limits, scales..)
changes re-calling transform will get a different value.
xdisplay, ydisplay = ax.transData.transform((xdata, ydata))

bbox = dict (boxstyle="round", fc="0.8")
arrowprops = dict (
arrowstyle="->",
connectionstyle="angle, angleA=0,angleB=90, rad=10")

offset = 72
ax.annotate ('data = (,)" % (xdata, ydata),
(xdata, ydata), xytext=(-2*offset, offset), textcoords='offset.
-points',
bbox=bbox, arrowprops=arrowprops)

disp = ax.annotate('display = (,)" % (xdisplay, ydisplay),
(xdisplay, ydisplay), xytext=(0.5*offset, -offset),
xycoords="'figure pixels',
textcoords="'offset points',
bbox=bbox, arrowprops=arrowprops)

plt.show()

230 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.00

0.75

0.50

0.25

0.00 +

—0.25

—0.50

—0.75

—1.00

[data = (5.0, u.u}]—\

. —(display = (328.0, 237.6)|

the figure

Warning:
two arrows for the data and display annotations do not point to exactly the same point. This is because
the display point was computed before the figure was displayed, and the GUI backend may slightly resize

one good reason why you rarely want to work in display space, but you can connect to the 'on_draw'
Event to update figure coordinates on figure draws; see Event handling and picking.

If you run the source code in the example above in a GUI backend, you may also find that the

when it is created. The effect is more pronounced if you resize the figure yourself. This is

When you change the x or y limits of your axes, the data limits are updated so the transformation yields a new
display point. Note that when we just change the ylim, only the y-display coordinate is altered, and when we
change the xlim too, both are altered. More on this later when we talk about the Bbox.

In [54]:
Out[54]:

In [55]:
Out [55]:

In [56]:
Out[56]:

ax.transData.transform((5, 0))
array ([335.175, 247. 1)

ax.set_ylim(-1, 2)
(-1, 2)

ax.transData.transform((5, 0))
array ([335.175 , 181.13333333])

(continues on next page)

2.3. Advanced 231

Matplotlib, Release 3.4.3

(continued from previous page)

In [57]: ax.set_x1im (10, 20)
Out [57]: (10, 20)

In [58]: ax.transData.transform((5, 0))
Out[58]: array([-171.675 , 181.133333331])

Axes coordinates

After the data coordinate system, axes is probably the second most useful coordinate system. Here the point
(0, 0) is the bottom left of your axes or subplot, (0.5, 0.5) is the center, and (1.0, 1.0) is the top right. You can
also refer to points outside the range, so (-0.1, 1.1) is to the left and above your axes. This coordinate system
is extremely useful when placing text in your axes, because you often want a text bubble in a fixed, location,
e.g., the upper left of the axes pane, and have that location remain fixed when you pan or zoom. Here is a
simple example that creates four panels and labels them 'A’, 'B', 'C', 'D’ as you often see in journals.

fig = plt.figure ()
for i, label in enumerate(('A', 'B', 'C', 'D")):
ax = fig.add_subplot (2, 2, i+1)
ax.text (0.05, 0.95, label, transform=ax.transAxes,
fontsize=16, fontweight='bold', va='top')

plt.show ()

232 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.0 1.0
A
0.8 0.8
0.6 0.6
0.4 0.4
0.2 A 0.2 A
0-0 T T T T 0-0 T T T T
00 02 04 06 08 0.0 02 04 06 08
1.0 1.0
C
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 T T T T 0.0 T T T T
00 02 04 06 08 0.0 02 04 06 08

You can also make lines or patches in the axes coordinate system, but this is less useful in my experience
than using ax . t ransAxes for placing text. Nonetheless, here is a silly example which plots some random
dots in data space, and overlays a semi-transparent C1i rcle centered in the middle of the axes with a radius
one quarter of the axes -- if your axes does not preserve aspect ratio (see set_aspect ()), this will look
like an ellipse. Use the pan/zoom tool to move around, or manually change the data xlim and ylim, and you
will see the data move, but the circle will remain fixed because it is not in data coordinates and will always
remain at the center of the axes.

fig, ax = plt.subplots()
x, y = 10*np.random.rand (2, 1000)
ax.plot(x, y, 'go', alpha=0.2) # plot some data in data coordinates

circ = mpatches.Circle((0.5, 0.5), 0.25, transform=ax.transAxes,
facecolor="blue', alpha=0.75)

ax.add_patch (circ)

plt.show ()

2.3. Advanced 233

Matplotlib, Release 3.4.3

10 ~

Blended transformations

Drawing in blended coordinate spaces which mix axes with data coordinates is extremely useful, for example
to create a horizontal span which highlights some region of the y-data but spans across the x-axis regardless
of the data limits, pan or zoom level, etc. In fact these blended lines and spans are so useful, we have built
in functions to make them easy to plot (see axhline (), axvline (), axhspan (), axvspan ()) but
for didactic purposes we will implement the horizontal span here using a blended transformation. This trick
only works for separable transformations, like you see in normal Cartesian coordinate systems, but not on
inseparable transformations like the PolarTransform.

import matplotlib.transforms as transforms

fig, ax = plt.subplots|()
x = np.random.randn (1000)

ax.hist (x, 30)
ax.set_title(r'S$\sigma=1 \/ \dots \/ \sigma=2$', fontsize=16)

the x coords of this transformation are data, and the y coord are axes
trans = transforms.blended_transform_factory (
ax.transData, ax.transAxes)

(continues on next page)

234 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

highlight the 1..2 stddev region with a span.

We want x to be in data coordinates and y to span from 0..1 in axes coords.

rect = mpatches.Rectangle((1, 0), width=1, height=1, transform=trans,
color="yellow', alpha=0.5)

ax.add_patch (rect)

plt.show()

o=1...0=2

80 4

60

20 +

Note: The blended transformations where x is in data coords and y in axes coordinates is so
useful that we have helper methods to return the versions Matplotlib uses internally for drawing
ticks, ticklabels, etc. The methods are matplotlib.axes.Axes.get_xaxis_transform()
and matplotlib.axes.Axes.get_yaxis_transform(). So in the example above, the call to
blended_transform_factory () canbe replaced by get_xaxis_transform:

trans = ax.get_xaxis_transform()

2.3. Advanced 235

Matplotlib, Release 3.4.3

Plotting in physical coordinates

Sometimes we want an object to be a certain physical size on the plot. Here we draw the same circle as
above, but in physical coordinates. If done interactively, you can see that changing the size of the figure does
not change the offset of the circle from the lower-left corner, does not change its size, and the circle remains
a circle regardless of the aspect ratio of the axes.

fig, ax = plt.subplots(figsize=(5, 4))

x, y = 10*np.random.rand (2, 1000)

ax.plot(x, y*10., 'go', alpha=0.2) # plot some data in data coordinates

add a circle in fixed-coordinates

circ = mpatches.Circle((2.5, 2), 1.0, transform=fig.dpi_scale_trans,
facecolor="blue', alpha=0.75)

ax.add_patch(circ)

plt.show ()

100

80

60 1

40 A

20

=]
J
A
o
oo -
o

If we change the figure size, the circle does not change its absolute position and is cropped.

fig, ax = plt.subplots(figsize=(7, 2))

x, y = 10*np.random.rand (2, 1000)

ax.plot (x, y*10., 'go', alpha=0.2) # plot some data in data coordinates

add a circle in fixed-coordinates

circ = mpatches.Circle((2.5, 2), 1.0, transform=fig.dpi_scale_trans,
facecolor="blue', alpha=0.75)

ax.add_patch(circ)

plt.show ()

236 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

. " s
X N
"} |} i rr;c_-. "3
-~ \} g |] :"
as, oy
» o 2 By F| '
. .u& . ru:
o v te
ool >N
a k. © i o &
T T
8 10

Another use is putting a patch with a set physical dimension around a data point on the axes. Here we add
together two transforms. The first sets the scaling of how large the ellipse should be and the second sets its
position. The ellipse is then placed at the origin, and then we use the helper transform ScaledTransla—
t ion to move it to the right place in the ax.transData coordinate system. This helper is instantiated
with:

trans = ScaledTranslation(xt, yt, scale_trans)

where xt and yr are the translation offsets, and scale_trans is a transformation which scales xt and yr at
transformation time before applying the offsets.

Note the use of the plus operator on the transforms below. This code says: first apply the scale transformation
fig.dpi_scale_trans to make the ellipse the proper size, but still centered at (0, 0), and then translate
the data to xdata[0] and ydata[0] in data space.

In interactive use, the ellipse stays the same size even if the axes limits are changed via zoom.

fig, ax = plt.subplots()

xdata, ydata = (0.2, 0.7), (0.5, 0.5)
ax.plot (xdata, ydata, "o")
ax.set_x1im((0, 1))

trans = (fig.dpi_scale_trans +
transforms.ScaledTranslation(xdata[0], ydatal[0], ax.transData))

plot an ellipse around the point that is 150 x 130 points in diameter...
circle = mpatches.Ellipse((0, 0), 150/72, 130/72, angle=40,
fill=None, transform=trans)
ax.add_patch(circle)
plt.show ()

2.3. Advanced 237

Matplotlib, Release 3.4.3

0.52 -
0.51 -
0.50 - ° °
0.49 -
0.48 -
T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Note: The order of transformation matters. Here the ellipse is given the right dimensions in display space
first and then moved in data space to the correct spot. If we had done the ScaledTranslation first, then
xdata[0] and ydata [0] would first be transformed to display coordinates ([358.4 475.2] ona
200-dpi monitor) and then those coordinates would be scaled by fig.dpi_scale_trans pushing the
center of the ellipse well off the screen (i.e. [71680. 95040.1]).

Using offset transforms to create a shadow effect

Another use of ScaledTranslation is to create a new transformation that is offset from another trans-
formation, e.g., to place one object shifted a bit relative to another object. Typically you want the shift to be
in some physical dimension, like points or inches rather than in data coordinates, so that the shift effect is
constant at different zoom levels and dpi settings.

One use for an offset is to create a shadow effect, where you draw one object identical to the first just to the
right of it, and just below it, adjusting the zorder to make sure the shadow is drawn first and then the object
it is shadowing above it.

Here we apply the transforms in the opposite order to the use of ScaledTranslation above. The plot
is first made in data coordinates (ax.transData) and then shifted by dx and dy points using fig.
dpi_scale_trans. (In typography, a point is 1/72 inches, and by specifying your offsets in points, your

238 Chapter 2. Tutorials

https://en.wikipedia.org/wiki/Point_%28typography%29

Matplotlib, Release 3.4.3

figure will look the same regardless of the dpi resolution it is saved in.)

fig, ax = plt.subplots/()

make a simple sine wave

x = np.arange(0., 2., 0.01)

y np.sin(2*np.pi*x)

line, = ax.plot(x, y, 1lw=3, color='blue')

shift the object over 2 points, and down 2 points

dx, dy = 2/72., -2/72.

offset = transforms.ScaledTranslation(dx, dy, fig.dpi_scale_trans)
shadow_transform = ax.transData + offset

now plot the same data with our offset transform;

use the zorder to make sure we are below the line

ax.plot(x, y, lw=3, color='gray',
transform=shadow_transform,
zorder=0.5*1ine.get_zorder())

ax.set_title('creating a shadow effect with an offset transform')
plt.show ()

creating a shadow effect with an offset transform

1.00 +

0.75 +

0.50

0.25 +

0.00 +

—0.25 +

—0.50 ~

—0.75 +

—1.00 ~

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

2.3. Advanced 239

Matplotlib, Release 3.4.3

Note: The dpi and inches offset is a common-enough use case that we have a special helper function
to create it in matplotlib.transforms.offset_copy (), which returns a new transform with an
added offset. So above we could have done:

shadow_transform = transforms.offset_copy(ax.transData,
fig=fig, dx, dy, units='inches')

The transformation pipeline

The ax.transData transform we have been working with in this tutorial is a composite of three different
transformations that comprise the transformation pipeline from data -> display coordinates. Michael Droet-
tboom implemented the transformations framework, taking care to provide a clean API that segregated the
nonlinear projections and scales that happen in polar and logarithmic plots, from the linear affine transfor-
mations that happen when you pan and zoom. There is an efficiency here, because you can pan and zoom in
your axes which affects the affine transformation, but you may not need to compute the potentially expensive
nonlinear scales or projections on simple navigation events. It is also possible to multiply affine transfor-
mation matrices together, and then apply them to coordinates in one step. This is not true of all possible
transformations.

Here is how the ax . transData instance is defined in the basic separable axis Axes class:

self.transData = self.transScale + (self.transLimits + self.transAxes)

We've been introduced to the t ransAxes instance above in Axes coordinates, which maps the (0, 0), (1, 1)
corners of the axes or subplot bounding box to display space, so let's look at these other two pieces.

self.transLimits is the transformation that takes you from data to axes coordinates; i.e., it maps your
view xlim and ylim to the unit space of the axes (and t ransAxes then takes that unit space to display
space). We can see this in action here

In [80]: ax = plt.subplot ()

In [81]: ax.set_x1im(0, 10)
Out[81]: (0, 10)

In [82]: ax.set_ylim(-1, 1)
out[82]: (-1, 1)

In [84]: ax.transLimits.transform((0, -1))
Out[84]: array ([0., 0.1)

In [85]: ax.transLimits.transform((10, -1))
Out[85]: array ([1., 0.1)

In [86]: ax.transLimits.transform((10, 1))
Out[86]: array ([1., 1.1)

(continues on next page)

240 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

In [87]: ax.transLimits.transform((5, 0))
Out[87]: array([0.5, 0.5])

and we can use this same inverted transformation to go from the unit axes coordinates back to data coordi-
nates.

In [90]: inv.transform((0.25, 0.25))
Out[90]: array ([2.5, -0.51])

The final piece is the sel1 f.transScale attribute, which is responsible for the optional non-linear scaling
of the data, e.g., for logarithmic axes. When an Axes is initially setup, this is just set to the identity trans-
form, since the basic Matplotlib axes has linear scale, but when you call a logarithmic scaling function like
semilogx () orexplicitly set the scale to logarithmic with set_xscale (), thenthe ax.transScale
attribute is set to handle the nonlinear projection. The scales transforms are properties of the respective
xaxis and yaxis Axis instances. For example, when you call ax.set_xscale ('log'), the xaxis
updates its scale toa matplotlib.scale.LogScale instance.

For non-separable axes the PolarAxes, there is one more piece to consider, the projection transformation.
The transData matplotlib.projections.polar.PolarAxes is similar to that for the typical
separable matplotlib Axes, with one additional piece t ransProjection:

self.transData = self.transScale + self.transProjection + \
(self.transProjectionAffine + self.transAxes)

transProjection handles the projection from the space, e.g., latitude and longitude for map data, or
radius and theta for polar data, to a separable Cartesian coordinate system. There are several projection
examples in the matplotlib.projections package, and the best way to learn more is to open the
source for those packages and see how to make your own, since Matplotlib supports extensible axes and
projections. Michael Droettboom has provided a nice tutorial example of creating a Hammer projection
axes; see /gallery/misc/custom_projection.

Total running time of the script: (0 minutes 3.177 seconds)

2.4 Colors

Matplotlib has support for visualizing information with a wide array of colors and colormaps. These tutorials
cover the basics of how these colormaps look, how you can create your own, and how you can customize
colormaps for your use case.

For even more information see the examples page.

2.4. Colors 241

Matplotlib, Release 3.4.3

2.4.1 Specifying Colors

Matplotlib recognizes the following formats in the table below to specify a color.

242 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Format Example
R S o e W WSy (0.1, 0.2, 0.5
T e (0.1, 0.2, 0.5, 0.3)
Case-insensitive hex RGB or RGBA string.
o "#0fO0f0f"

o "#0f0f0£80"'

Case-insensitive RGB or RGBA string equivalent
hex shorthand of duplicated characters.

e '"#abc' as '#aabbcc!
o "#fbl'as '"#ffbbll'

String representation of float value in closed inter-
val [0, 1] for black and white, respectively.

e '0.8" aslight gray

spaces.

e '0' as black
e '1' as white
Single character shorthand notation for shades of
colors e 'b' asblue
) e 'g' asgreen
Note: The colors green, cyan, magenta, and yel- ® . r' as red
low do not coincide with X11/CSS4 colors. ® coascyan
e 'm' as magenta
e 'y' asyellow
e 'k ' asblack
e 'w' as white
Case-insensitive X11/CSS4 color name with no , L
e 'aguamarine

e 'mediumseagreen'

Case-insensitive color name from xkcd color sur-
vey with 'xkcd: ' prefix.

'xkcd:sky blue'
'xkcd:eggshell’

Case-insensitive Tableau Colors from 'T10' cate-
gorical palette.

Note: This is the default color cycle.

'tab:blue'
'tab:orange’
'tab:green'
'tab:red’
'tab:
'tab:
'tab:pink'
'tab:gray'
'tab:olive'
'tab:cyan'

purple'
brown'

"CN" color spec where ' C' precedes a number act-
ing as an index into the default property cycle.

Note: Matplotlib indexes color at draw time and

lCOl
) 'Cll

odefa@siérslack if cycle does not include color.

rCcParams ["axes.prop_CcyCcie '] (de-

fault: cycler('color', ['#1f77b42f13
"#££7£f0e"', '#2cal2c’', '#do2728",
'#9467bd"', '#8c564b"', '"#e377c2"',
YV U9 o Yy L1l 1w 3D Y Y U1 7N — — ¥ 1T\

https://xkcd.com/color/rgb/
https://xkcd.com/color/rgb/
../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

See also:
The following links provide more information on colors in Matplotlib.
e /gallery/color/color_demo Example
e matplotlib.colors API
e /gallery/color/named_colors Example
"Red", "Green", and "Blue" are the intensities of those colors. In combination, they represent the colorspace.

Matplotlib draws Artists based on the zorder parameter. If there are no specified values, Matplotlib defaults
to the order of the Artists added to the Axes.

The alpha for an Artist controls opacity. It indicates how the RGB color of the new Artist combines with
RGB colors already on the Axes.

The two Artists combine with alpha compositing. Matplotlib uses the equation below to compute the result
of blending a new Artist.

RGB_{new} = RGB_{below} * (1 - \alpha) + RGB_{artist} * \alpha

Alpha of 1 indicates the new Artist completely covers the previous color. Alpha of 0 for top color is not
visible; however, it contributes to blending for intermediate values as the cumulative result of all previous
Artists. The following table contains examples.

244 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Alpha Visual
value
Alpha = 0.3
Zorder = 1 Zorder = 2
zorder = 2 Zorder = 1
0.3
Alpha =1
B rorder=1 B zorder = 2
B rorder =2 B Forder=1
1

Note: Re-ordering Artists is not commutative in Matplotlib.

2.4. Colors

245

Matplotlib, Release 3.4.3

"CN" color selection

Matplotlib converts "CN" colors to RGBA when drawing Artists. The Styling with cycler section contains
additional information about controlling colors and style properties.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl

th = np.linspace(0, 2*np.pi, 128)

def demo (sty) :
mpl.style.use(sty)
fig, ax = plt.subplots(figsize=(3, 3))
ax.set_title('style: '.format (sty), color='C0")
ax.plot (th, np.cos(th), 'Cl', label='Cl")

ax.plot (th, np.sin(th), 'C2', label='C2")
ax.legend()

demo ('default")
demo ('seaborn')

style: 'default’

1.0 1
0.5
0.0
-0.5
C1
— C2
-1.0 1
T T T T
0 2 4]

246 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

style: 'seaborn’

1.0
0.5
0.0
-0.5
— 1
— 2
-1.0
0 2 4]

The first color 'CO' is the title. Each plot uses the second and third colors of each style's
rcParams ["axes.prop_cycle"] (default: cycler ('color', ['#1f77b4', '#ff7f0e’,
'#2cal2c', '#d62728", '#9467bd"', '#8c564b', '#e377c2"', "#7£7£7€0,
"#bcbd22', '#17becf'])). Theyare 'C1l' and 'C2"', respectively.

Comparison between X11/CSS4 and xkcd colors

The xked colors come from a user survey conducted by the webcomic xked.

95 out of the 148 X11/CSS4 color names also appear in the xkcd color survey. Almost all of them map to
different color values in the X11/CSS4 and in the xkecd palette. Only 'black’, 'white' and 'cyan' are identical.

For example, 'blue' mapsto '#0000FF "' whereas 'xkcd:blue' mapsto '#0343DF'. Due to these
name collisions, all xked colors have the 'xkcd: ' prefix.

The visual below shows name collisions. Color names where color values agree are in bold.

import matplotlib._color_data as mcd
import matplotlib.patches as mpatch

overlap = {name for name in mcd.CSS4_COLORS
if "xkcd:" + name in mcd.XKCD_COLORS}

fig = plt.figure(figsize=[9, 51])
ax = fig.add_axes ([0, 0, 1, 11)

n_groups = 3
n_rows = len(overlap) // n_groups + 1

for j, color_name in enumerate (sorted(overlap)) :
css4 mcd.CSS4_COLORS[color_name]
xkcd = mcd.XKCD_COLORS["xkcd:" + color_name] .upper ()

(continues on next page)

2.4. Colors 247

../../tutorials/introductory/customizing.html?highlight=axes.prop_cycle#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://blog.xkcd.com/2010/05/03/color-survey-results/

Matplotlib, Release 3.4.3

(continued from previous page)

col_shift = (j // n_rows) * 3
y_pos = j % n_rows
text_args = dict (va='center', fontsize=10,
weight="'bold' if css4 == xkcd else None)

)

ax.add_patch (mpatch.Rectangle((0 + col_shift, y_pos), 1, 1, color=css4
1)

)
ax.add_patch (mpatch.Rectangle((1 + col_shift, y_pos), 1, , color=xkcd)
)
)

ax.text (0 + col_shift, y_pos + .5, ' ' + css4, alpha=0.5, **text_args
ax.text (1 + col_shift, y_pos + .5, ' ' + xkcd, alpha=0.5, **text_args
ax.text (2 + col_shift, y_pos + .5, ' ' + color_name, **text_args)

for g in range (n_groups):
ax.hlines (range (n_rows), 3*g, 3*g + 2.8, color='0.7', linewidth=1)
ax.text (0.5 + 3*g, -0.5, '"X11', ha='center', va='center')
ax.text (1.5 + 3*g, -0.5, 'xkcd', ha='center', wva='center')

ax.set_x1im(0, 3 * n_groups)
ax.set_ylim(n_rows, -1)
ax.axis('off")

plt.show ()
x11 sked x11 sked x11 sked

#00FFFF aqua green #DDAODD plum

#TFFFD4 aguamarine grey purple

#FOFFFF azure indigo red

#F5F5DC HEBDAAB beige #FFFFFD #FFFFCB ivory salmon

' black #FOEG8C khaki sienna

blue #EBEGFA #CTIFEF lavender #C0DCOCD #C5C9CT silver
brown #ADDBEG #/BC8F6 lightblue #D2B48C #D1B26F tan

#TFFF0O0 #C1FB0A chartreuse #90EE90 HT6FFTB lightgreen teal

chocolate #AAFF32 lime tomato
coral magenta #A0EODO turguoise
crimson maroon #EEBZEE violet
#00FFFF #00FFFF cyan navy #FSDEB3 #FBDDTE wheat
darkblue olive #FFFFFF #FFFFFF white

darkgreen #FFA500 orange #FFFFOO0 #FFFF14 yellow
fuchsia orangered #9ACD32 #BBFI0F yellowgreen
#FFD700 #DEB40C gold orchid
_ #FAC205 goldenrod ~ #FFCOCB | #FFB1C0 pink

Total running time of the script: (0 minutes 1.236 seconds)

248 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

2.4.2 Customized Colorbars Tutorial

This tutorial shows how to build and customize standalone colorbars, i.e. without an attached plot.

Customized Colorbars

A colorbar needs a "mappable” (matplotlib.cm.ScalarMappable) object (typically, an image)
which indicates the colormap and the norm to be used. In order to create a colorbar without an attached
image, one can instead use a ScalarMappable with no associated data.

Basic continuous colorbar

Here we create a basic continuous colorbar with ticks and labels.

The arguments to the colorbar call are the ScalarMappable (constructed using the norm and cmap
arguments), the axes where the colorbar should be drawn, and the colorbar's orientation.

For more information see the colorbar API.

import matplotlib.pyplot as plt
import matplotlib as mpl

fig, ax = plt.subplots(figsize=(6, 1))
fig.subplots_adjust (bottom=0.5)

cmap = mpl.cm.cool
norm = mpl.colors.Normalize (vmin=5, vmax=10)

fig.colorbar (mpl.cm.ScalarMappable (norm=norm, cmap=cmap),
cax=ax, orientation='horizontal', label='Some Units')

5 6 i 8 9 10
some Units

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe6483bf670>

2.4. Colors 249

Matplotlib, Release 3.4.3

Extended colorbar with continuous colorscale

The second example shows how to make a discrete colorbar based on a continuous cmap. With the "extend"
keyword argument the appropriate colors are chosen to fill the colorspace, including the extensions:

fig, ax = plt.subplots(figsize=(6, 1))
fig.subplots_adjust (bottom=0.5)

cmap = mpl.cm.viridis
bounds = [-1, 2, 5, 7, 12, 15]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N, extend='both")

fig.colorbar (mpl.cm.ScalarMappable (norm=norm, cmap=cmap),
cax=ax, orientation='horizontal',
label="Discrete intervals with extend='both' keyword")

-1 2 5 7 12 15
Discrete intervals with extend="both' keyword

Out:

<matplotlib.colorbar.Colorbar object at O0x7fe64b64eeb0>

Discrete intervals colorbar

The third example illustrates the use of a ListedColormap which generates a colormap from a set of
listed colors, colors. BoundaryNormwhich generates a colormap index based on discrete intervals and
extended ends to show the "over" and "under" value colors. Over and under are used to display data outside
of the normalized [0, 1] range. Here we pass colors as gray shades as a string encoding a float in the 0-1
range.

If a ListedColormap is used, the length of the bounds array must be one greater than the length of the
color list. The bounds must be monotonically increasing.

This time we pass additional arguments to colorbar. For the out-of-range values to display on the colorbar
without using the extend keyword with colors.BoundaryNorm, we have to use the extend keyword
argument directly in the colorbar call, and supply an additional boundary on each end of the range. Here we
also use the spacing argument to make the length of each colorbar segment proportional to its corresponding
interval.

fig, ax = plt.subplots(figsize=(6, 1))
fig.subplots_adjust (bottom=0.5)

cmap = (mpl.colors.ListedColormap(['red', 'green', 'blue', 'cyan'])
.with_extremes (over='0.25"', under='0.75"))

(continues on next page)

250 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

bounds = [1, 2, 4, 7, 8]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
fig.colorbar (
mpl.cm.ScalarMappable (cmap=cmap, norm=norm),
cax=ax,
boundaries=[0] + bounds + [13], # Adding values for extensions.
extend="both',
ticks=bounds,
spacing="'proportional',
orientation='"horizontal',
label="'Discrete intervals, some other units',

1 2 4 i a8
Discrete intervals, some other units

Out:

<matplotlib.colorbar.Colorbar object at 0x7fe64b6ac790>

Colorbar with custom extension lengths

Here we illustrate the use of custom length colorbar extensions, on a colorbar with discrete intervals. To make
the length of each extension the same as the length of the interior colors, use extendfrac="auto"'.

fig, ax = plt.subplots(figsize=(6, 1))
fig.subplots_adjust (bottom=0.5)

cmap = (mpl.colors.ListedColormap(['royalblue', 'cyan', 'yellow', 'orange'])
.with_extremes (over="red', under='blue'))

bounds = [-1.0, -0.5, 0.0, 0.5, 1.0]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
fig.colorbar (
mpl.cm.ScalarMappable (cmap=cmap, norm=norm),
cax=ax,
boundaries=[-10] + bounds + [10],
extend="'both',
extendfrac='auto',
ticks=bounds,
spacing='uniform',
orientation='horizontal',
label="Custom extension lengths, some other units',

plt.show ()

2.4. Colors 251

Matplotlib, Release 3.4.3

~gin -

I I I
-1.0 —0.5 0.0 0.5 1.0
Custom extension lengths, some other units

2.4.3 Creating Colormaps in Matplotlib

Matplotlib has a number of built-in colormaps accessible via matplotlib.cm.get_cmap. There are
also external libraries like palettable that have many extra colormaps.

However, we often want to create or manipulate colormaps in Matplotlib. This can be done using the class
ListedColormap or LinearSegmentedColormap. Seen from the outside, both colormap classes
map values between 0 and 1 to a bunch of colors. There are, however, slight differences, some of which are
shown in the following.

Before manually creating or manipulating colormaps, let us first see how we can obtain colormaps and their
colors from existing colormap classes.

Getting colormaps and accessing their values

First, getting a named colormap, most of which are listed in Choosing Colormaps in Matplotlib, may be
done using matplotlib.cm.get_cmap, which returns a colormap object. The second argument gives
the size of the list of colors used to define the colormap, and below we use a modest value of 8 so there are
not a lot of values to look at.

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import cm

from matplotlib.colors import ListedColormap, LinearSegmentedColormap

viridis = cm.get_cmap('viridis', 8)

The object viridis is a callable, that when passed a float between 0 and 1 returns an RGBA value from
the colormap:

print (viridis (0.56))

Out:

(0.122312, 0.633153, 0.530398, 1.0)

252 Chapter 2. Tutorials

https://jiffyclub.github.io/palettable/

Matplotlib, Release 3.4.3

ListedColormap

ListedColormap s store their color values in a . colors attribute. The list of colors that comprise the
colormap can be directly accessed using the colors property, or it can be accessed indirectly by calling
viridis with an array of values matching the length of the colormap. Note that the returned list is in the
form of an RGBA Nx4 array, where N is the length of the colormap.

print ('viridis.colors', wviridis.colors)
print ('viridis (range (8))', viridis(range(8)))

print ('viridis (np.linspace (0, 1, 8))', viridis(np.linspace (0, 1, 8)))
Out:
viridis.colors [[0.267004 0.004874 0.329415 1.]

[0.275191 0.194905 0.496005 1.]

[0.212395 0.359683 0.55171 1.]

[0.153364 0.497 0.557724 1.]

[0.122312 0.633153 0.530398 1.]

[0.288921 0.758394 0.428426 1.]

[0.626579 0.854645 0.223353 1.]

[0.993248 0.906157 0.143936 1. 11
viridis(range(8)) [[0.267004 0.004874 0.329415 1.]

[0.275191 0.194905 0.496005 1.]

[0.212395 0.359683 0.55171 1.]

[0.153364 0.497 0.557724 1.]

[0.122312 0.633153 0.530398 1.]

[0.288921 0.758394 0.428426 1.]

[0.626579 0.854645 0.223353 1.]

[0.993248 0.906157 0.143936 1. 11
viridis(np.linspace (0, 1, 8)) [[0.267004 0.004874 0.329415 1.]

[0.275191 0.194905 0.496005 1.]

[0.212395 0.359683 0.55171 1.]

[0.153364 0.497 0.557724 1.]

[0.122312 0.633153 0.530398 1.]

[0.288921 0.758394 0.428426 1.]

[0.626579 0.854645 0.223353 1.]

[0.993248 0.906157 0.143936 1. 11

The colormap is a lookup table, so "oversampling" the colormap returns nearest-neighbor interpolation (note
the repeated colors in the list below)

print ('viridis (np.linspace (0, 1, 12))', viridis(np.linspace (0, 1, 12)))
Out:
viridis(np.linspace (0, 1, 12)) [[0.267004 0.004874 0.329415 1.]
[0.267004 0.004874 0.329415 1]
[0.275191 0.194905 0.496005 1.]
[0.212395 0.359683 0.55171 1.]
[0.212395 0.359683 0.55171 1]
[0.153364 0.497 0.557724 1]
[0.122312 0.633153 0.530398 1]

(continues on next page)

2.4. Colors 253

Matplotlib, Release 3.4.3

(continued from previous page)

[0.288921 0.758394 0.428426 1.]
[0.288921 0.758394 0.428426 1.]
[0.626579 0.854645 0.223353 1.]
[0.993248 0.906157 0.143936 1.]
[0.993248 0.906157 0.143936 1. 1]

LinearSegmentedColormap

LinearSegmentedColormap s do not have a . colors attribute. However, one may still call the col-
ormap with an integer array, or with a float array between 0 and 1.

copper = cm.get_cmap ('copper', 8)

print ('copper (range(8)) ', copper (range(8)))
print ('copper (np.linspace (0, 1, 8))', copper (np.linspace(0, 1, 8)))

Out:
copper (range (8)) [I[O0. 0. 0. 1.]
[0.17647055 0.1116 0.07107143 1.]
[0.35294109 0.2232 0.14214286 1.]
[0.52941164 0.3348 0.21321429 1.]
[0.70588219 0.4464 0.28428571 1.]
[0.88235273 0.558 0.35535714 1.]
[1. 0.6696 0.42642857 1.]
[1. 0.7812 0.4975 1. 11
copper (np.linspace (0, 1, 8)) [[O. 0. 0. 1.]
[0.17647055 0.1116 0.07107143 1.]
[0.35294109 0.2232 0.14214286 1.]
[0.52941164 0.3348 0.21321429 1.]
[0.70588219 0.4464 0.28428571 1.]
[0.88235273 0.558 0.35535714 1.]
[1. 0.6696 0.42642857 1.]
[1. 0.7812 0.4975 1. 11

Creating listed colormaps
Creating a colormap is essentially the inverse operation of the above where we supply a list or array of color
specifications to ListedColormap to make a new colormap.

Before continuing with the tutorial, let us define a helper function that takes one of more colormaps as input,
creates some random data and applies the colormap(s) to an image plot of that dataset.

def plot_examples (colormaps) :

mrrn

Helper function to plot data with associated colormap.
mirrn

np.random.seed (19680801)

(continues on next page)

254 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

data = np.random.randn (30, 30)

n = len(colormaps)

fig, axs = plt.subplots(l, n, figsize=(n * 2 + 2, 3),
constrained_layout=True, squeeze=False)

for [ax, cmap] in zip(axs.flat, colormaps):

psm = ax.pcolormesh (data, cmap=cmap, rasterized=True, vmin=-4, vmax=4)
fig.colorbar (psm, ax=ax)
plt.show ()

In the simplest case we might type in a list of color names to create a colormap from those.

cmap = ListedColormap (["darkorange", "gold", "lawngreen", "lightseagreen"])
plot_examples ([cmap])

30 4
-] [;
25 1 -
[[- 5
20 [] = L
[] |]
154 m = -0
| n - —1
10
EEE - —2
5_
- —3
0 T T T T T 1 — —4
0 5 10 15 20 25 30

In fact, that list may contain any valid matplotlib color specification. Particularly useful for creating custom
colormaps are Nx4 numpy arrays. Because with the variety of numpy operations that we can do on a such
an array, carpentry of new colormaps from existing colormaps become quite straight forward.

For example, suppose we want to make the first 25 entries of a 256-length "viridis" colormap pink for some
reason:

viridis = cm.get_cmap('viridis', 256)
newcolors = viridis (np.linspace (0, 1, 256))
pink = np.array ([248/256, 24/256, 148/256, 11)
newcolors[:25, :] = pink

newcmp = ListedColormap (newcolors)

plot_examples ([viridis, newcmp])

2.4. Colors 255

Matplotlib, Release 3.4.3

30 4 30 4
25 25
20 20
15 0 15 0
-1 -1
10 10
-2 -2
-3 -3
0 -4 0 -4
0 10 20 30 0 10 20 30

We can easily reduce the dynamic range of a colormap; here we choose the middle 0.5 of the colormap.
However, we need to interpolate from a larger colormap, otherwise the new colormap will have repeated
values.

L
L

MJ
MJ

[
[

L
L

viridis_big = cm.get_cmap('viridis', 512)
newcmp = ListedColormap (viridis_big(np.linspace(0.25, 0.75, 256)))
plot_examples ([viridis, newcmp])

30 4 30 4
25 25
20 20
15 0 15 0
-1 -1
10 10
-2 -2
-3 -3
0 -4 0 -4
0 10 20 30 0 10 20 30

and we can easily concatenate two colormaps:

L
L

MJ
MJ

[
[

L
L

top = cm.get_cmap('Oranges_r', 128)
bottom = cm.get_cmap('Blues’', 128)

newcolors = np.vstack((top(np.linspace(0, 1, 128)),
bottom(np.linspace (0, 1, 128))))

(continues on next page)

256 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

newcmp =
plot_examples ([viridis, newcnp])

ListedColormap (newcolors, name='OrangeBlue')

L

30

25

20

15

10

0
0 10 20 30

L

MJ

=

25 4"

2{}-.

151 &

*

—
- 3
. N 2
.- | [|) 1
| I.IIII -0

Of course we need not start from a named colormap, we just need to create the Nx4 array to pass to List —
edColormap. Here we create a colormap that goes from brown (RGB: 90, 40, 40) to white (RGB: 255,

255, 255).

N = 256

vals = np.ones ((N, 4))

vals[:, 0] = np.linspace(90/256,
vals[:, 1] = np.linspace (40/256,
vals[:, 2] = np.linspace (40/256,

newcmp = ListedColormap (vals)
plot_examples ([viridis, newcmp])

L

30

25

20

15

10

0
0 10 20 30

2.4. Colors

257

Matplotlib, Release 3.4.3

Creating linear segmented colormaps

LinearSegmentedColormap class specifies colormaps using anchor points between which RGB(A)

values are interpolated.

The format to specify these colormaps allows discontinuities at the anchor points. Each anchor point is

specified as a row in a matrix of the form [x[1i]

yleft[i] yright[i]], where x[i] is the anchor,

and yleft [1] and yright [1] are the values of the color on either side of the anchor point.

If there are no discontinuities, then yleft [1i]=yright [i]:

cdict = {'red':

—

~ 0~

~

—

'green’':

(G2 NG N]
~

~

'blue':

—

~

~

P OOk OO Ok oo
O U O O J DN O o u O

— o o/ /o e e o

~

def plot_linearmap (cdict) :

OOk, P OORFEFEOo

~ 0~ 0~

~

~ N 0~ 0~

O OO OO O oo oo
~

~

OOk, Pk OOk P O

~

o~
~

~

o~
~

~

O O O OO o oo o o
T
~

o~
—

newcmp = LinearSegmentedColormap ('testCmap', segmentdata=cdict, N=256)
rgba = newcmp (np.linspace (0, 1, 256))
fig, ax = plt.subplots(figsize=(4, 3), constrained_layout=True)
col = ['r', 'g', 'b']
for xx in [0.25, 0.5, 0.75]:
ax.axvline (xx, color='0.7"', linestyle='--")
for i in range(3):
ax.plot (np.arange (256) /256, rgbal:, i], color=col[i])

ax.set_xlabel ('index")
ax.set_ylabel ('RGR")
plt.show ()

plot_linearmap (cdict)

258

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.0+

0.8 1

0.6

RGB

0.4 1

0.2 1

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
index

In order to make a discontinuity at an anchor point, the third column is different than the second. The matrix
for each of "red", "green", "blue", and optionally "alpha" is set up as:

cdict['red'] = [...

[x[1] yleft[i] yright[i]],
[x[1+1] yleft[i+1] yright [i+1]1],
-1

and for values passed to the colormap between x [1] and x [1+1], the interpolation is between yright [1]
and yleft [1i+1].

In the example below there is a discontinuity in red at 0.5. The interpolation between 0 and 0.5 goes from
0.3 to 1, and between 0.5 and 1 it goes from 0.9 to 1. Note that red[0, 1], and red[2, 2] are both superfluous
to the interpolation because red[0, 1] is the value to the left of 0, and red[2, 2] is the value to the right of 1.0.

cdict['red'] = [[O0.
0.
1.

+ o o o

[
[
[
d

14
14
14
plot_linearmap (cdict)

2.4. Colors 259

Matplotlib, Release 3.4.3

1.0+

0.8 1

0.6

RGB

0.4 1

0.2 1

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
index

Directly creating a segmented colormap from a list

The above described is a very versatile approach, but admittedly a bit cumbersome to implement. For some
basic cases, the use of LinearSegmentedColormap.from_11ist may be easier. This creates a seg-
mented colormap with equal spacings from a supplied list of colors.

colors = ["darkorange", "gold", "lawngreen", "lightseagreen"]
cmapl = LinearSegmentedColormap.from_list ("mycmap", colors)

If desired, the nodes of the colormap can be given as numbers between 0 and 1. E.g. one could have the
reddish part take more space in the colormap.

nodes (0.0, 0.4, 0.8, 1.0]
cmap2 = LinearSegmentedColormap.from_ list ("mycmap", list (zip(nodes, colors)))

plot_examples ([cmapl, cmap2])

260 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

30 H4 30 H—4
-3 -3
25 1 . 25 1 m
-2 -2
20 A~ 20 A~
-1 -1
15 - -0 15 -0
- —1 - —1
10 - 10 -
L 2 - —2
5 1 5 A
L 3 - —3
0 T T — —4 0 T T — 4
0 10 20 30 0 10 20 30
References

The use of the following functions, methods, classes and modules is shown in this example:
e matplotlib.axes.Axes.pcolormesh
e matplotlib.figure.Figure.colorbar
e matplotlib.colors
e matplotlib.colors.LinearSegmentedColormap
e matplotlib.colors.ListedColormap
e matplotlib.cm

e matplotlib.cm.get_cmap

Total running time of the script: (0 minutes 3.373 seconds)

2.4.4 Colormap Normalization

Objects that use colormaps by default linearly map the colors in the colormap from data values vmin to viax.
For example:

pcm = ax.pcolormesh(x, vy, Z, vmin=-1., vmax=1l., cmap='RdBu_r")

will map the data in Z linearly from -1 to +1, so Z=0 will give a color at the center of the colormap RdBu_r
(white in this case).

Matplotlib does this mapping in two steps, with a normalization from the input data to [0, 1] occur-
ring first, and then mapping onto the indices in the colormap. Normalizations are classes defined in
the matplotlib.colors () module. The default, linear normalization is matplotlib.colors.
Normalize ().

2.4. Colors 261

Matplotlib, Release 3.4.3

Artists that map data to color pass the arguments vmin and vmax to construct a matplotlib.colors.
Normalize () instance, then call it:

In [1]: import matplotlib as mpl
In [2]: norm = mpl.colors.Normalize (vmin=-1, vmax=1)

In [3]: norm(0)
Out[3]: 0.5

However, there are sometimes cases where it is useful to map data to colormaps in a non-linear fashion.

Logarithmic

One of the most common transformations is to plot data by taking its logarithm (to the base-10). This
transformation is useful to display changes across disparate scales. Using colors. LogNorm normalizes
the data via /og;y. In the example below, there are two bumps, one much smaller than the other. Using
colors.LogNorm, the shape and location of each bump can clearly be seen:

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.colors as colors
import matplotlib.cbook as cbook
from matplotlib import cm

N = 100
X, Y = np.mgrid[-3:3:complex (0, N), —-2:2:complex (0, N)]

A low hump with a spike coming out of the top right. Needs to have
z/colour axis on a log scale so we see both hump and spike. 1linear
scale only shows the spike.

Z1 = np.exp(—X**2 — Y**2)

Z2 = np.exp(—(X * 10)**2 — (Y * 10)**2)

Z = Z1 + 50 * 272

fig, ax = plt.subplots (2, 1)

pcm = ax[0] .pcolor(X, Y, Z,
norm=colors.LogNorm (vmin=Z.min (), vmax=Z.max()),
cmap='"PuBu_r', shading='auto')

fig.colorbar (pcm, ax=ax[0], extend='max')

pcm = ax[1l].pcolor(X, Y, Z, cmap='PuBu_r', shading='auto')
fig.colorbar (pcm, ax=ax[l], extend='max')
plt.show ()

262 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

2
1 100
0 10-2
-1 104
5 | |
-3 -2 -1 0 1 2 3

2
40

1
30

0
20
-1 10

Centered

In many cases, data is symmetrical around a center, for example, positive and negative anomalies around
a center 0. In this case, we would like the center to be mapped to 0.5 and the datapoint with the largest
deviation from the center to be mapped to 1.0, if its value is greater than the center, or 0.0 otherwise. The
norm colors.CenteredNorm creates such a mapping automatically. It is well suited to be combined
with a divergent colormap which uses different colors edges that meet in the center at an unsaturated color.

If the center of symmetry is different from 0, it can be set with the vcenter argument. For logarithmic scaling
on both sides of the center, see colors. SymLogNorm below; to apply a different mapping above and
below the center, use colors. TwoSI1opeNorm below.

delta = 0.1

X = np.arange(-3.0, 4.001, delta)

y = np.arange(-4.0, 3.001, delta)

X, Y = np.meshgrid(x, vy)

Z1 = np.exp(—X**2 — Y**2)

22 = np.exp(—(X — 1)**2 — (Y — 1)**2)
Z = (0.9%21 - 0.5*%z22) * 2

select a divergent colormap

(continues on next page)

2.4. Colors 263

Matplotlib, Release 3.4.3

(continued from previous page)

cmap = cm. coolwarm

fig, (axl, ax2) = plt.subplots(ncols=2)
pc = axl.pcolormesh (Z, cmap=cmap)
fig.colorbar (pc, ax=axl)
axl.set_title('Normalize()")

pc = ax2.pcolormesh (Z, norm=colors.CenteredNorm(), cmap=cmap)
fig.colorbar (pc, ax=ax2)
ax2.set_title ('CenteredNorm() ")

plt.show()
Normalize() CenteredMNorm()
70 A 70 4
15 1.5
60 - 60
1.0
50 1.0, |
- 0.5
40 - 40 -
- 0.5
- 0.0
30 30
L 0.0 - 0.3
20 1 20
-1.0
10 - _0.30 -
-1.5
0 T T T 0 T T T
0 20 40 60 0 20 40 60

264 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Symmetric logarithmic

Similarly, it sometimes happens that there is data that is positive and negative, but we would still like a
logarithmic scaling applied to both. In this case, the negative numbers are also scaled logarithmically, and
mapped to smaller numbers; e.g., if vmin=-vmax, then the negative numbers are mapped from O to 0.5 and
the positive from 0.5 to 1.

Since the logarithm of values close to zero tends toward infinity, a small range around zero needs to be mapped
linearly. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh). The
size of this range in the colormap is set by linscale. When linscale == 1.0 (the default), the space used for
the positive and negative halves of the linear range will be equal to one decade in the logarithmic range.

N = 100

X, Y = np.mgrid[-3:3:complex (0, N), —-2:2:complex (0, N)]
Z1 = np.exp(—X**2 — Y**2)

7.2 np.exp(—(X — 1)**2 — (Y — 1)**2)

Z = (21 - z2) * 2

fig, ax = plt.subplots (2, 1)

pcm = ax[0] .pcolormesh(X, Y, Z,
norm=colors.SymLogNorm(linthresh=0.03, linscale=0.03,
vmin=-1.0, vmax=1.0, base=10),
cmap='RdBu_r"', shading='auto')
fig.colorbar (pcm, ax=ax[0], extend='both')

pcm = ax[1l].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z), shading='auto
=")

fig.colorbar (pcm, ax=ax[1l], extend='both')

plt.show()

2.4. Colors 265

Matplotlib, Release 3.4.3

10¢
l —
1071
0 Q-2
_10—1
_1 -
_1n0
=2 T T T 10
-3 -2 3
2
1 - 1
0~ 0
-1 4 -1
_2 T T T T T T T
-3 -2 -1 0 1 2 3
Power-law

Sometimes it is useful to remap the colors onto a power-law relationship (i.e. y = x”, where y is the power).
For this we use the colors.PowerNorm. It takes as an argument gamma (gamma == 1.0 will just yield
the default linear normalization):

Note: There should probably be a good reason for plotting the data using this type of transformation.
Technical viewers are used to linear and logarithmic axes and data transformations. Power laws are less
common, and viewers should explicitly be made aware that they have been used.

N = 100
X, ¥ = np.mgrid[0:3:complex (0, N), 0:2:complex (0, N)]
Z1 = (1 + np.sin(Y * 10.)) * X**2

fig, ax = plt.subplots (2, 1, constrained_layout=True)

pcm = ax[0] .pcolormesh (X, Y, Z1, norm=colors.PowerNorm(gamma=0.5),
cmap="PuBu_r', shading='auto')
fig.colorbar (pcm, ax=ax[0], extend='max')

(continues on next page)

266 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

ax[0].set_title('PowerNorm() ")

pcm = ax[1].pcolormesh (X, Y, Z1l, cmap='PuBu_r', shading='auto')
fig.colorbar (pcm, ax=ax[l], extend='max')
ax[1l].set_title('Normalize () ")

plt.show ()
PowerNorm()
16
14
12
10
8
6
4
2
T T 0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Normalize()
2.0
1.5 15
1.0 10
0.5 5
0.0 0

Discrete bounds

Another normalization that comes with Matplotlib is colors. BoundaryNorm. In addition to vmin and
vmax, this takes as arguments boundaries between which data is to be mapped. The colors are then linearly
distributed between these "bounds". It can also take an extend argument to add upper and/or lower out-of-
bounds values to the range over which the colors are distributed. For instance:

In [4]: import matplotlib.colors as colors
In [5]: bounds = np.array([-0.25, -0.125, 0, 0.5, 11)

In [6]: norm = colors.BoundaryNorm (boundaries=bounds, ncolors=4)

(continues on next page)

2.4. Colors 267

Matplotlib, Release 3.4.3

(continued from previous page)

In [7]: print(norm([-0.2, -0.15, -0.02, 0.3, 0.8, 0.99]))
[0 01 2 3 3]

Note: Unlike the other norms, this norm returns values from O to ncolors-1.

N = 100
X, Y = np.meshgrid(np.linspace (-3, 3, N), np.linspace (-2, 2, N))

Z1 = np.exp (—X**2 — Y**2)
22 = np.exp(—(X — 1)**2 — (Y — 1)**2)
Z = ((z1 — Z22) * 2)[:-1, :-1]

fig, ax = plt.subplots (2, 2, figsize=(8, 6), constrained_layout=True)
ax = ax.flatten()

Default norm:

pcm = ax[0] .pcolormesh(X, Y, Z, cmap='RdBu_r'")
fig.colorbar (pcm, ax=ax[0], orientation='vertical')
ax[0] .set_title('Default norm')

Even bounds give a contour-like effect:

bounds = np.linspace(-1.5, 1.5, 7)

norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256)

pcm = ax[1l].pcolormesh (X, Y, Z, norm=norm, cmap='RdBu_r'")
fig.colorbar (pcm, ax=ax[l], extend='both', orientation='vertical')
ax[1].set_title('BoundaryNorm: 7 boundaries"')

Bounds may be unevenly spaced:

bounds = np.array([-0.2, -0.1, 0, 0.5, 11)

norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256)

pcm = ax[2].pcolormesh (X, Y, Z, norm=norm, cmap='RdBu_r")
fig.colorbar (pcm, ax=ax[2], extend='both', orientation='vertical')
ax[2].set_title('BoundaryNorm: nonuniform')

With out—-of-bounds colors:

bounds = np.linspace(-1.5, 1.5, 7)

norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256, extend='both'")
pcm = ax[3].pcolormesh (X, Y, Z, norm=norm, cmap='RdBu_r")

The colorbar inherits the "extend" argument from BoundaryNorm.
fig.colorbar (pcm, ax=ax[3], orientation='vertical')
ax[3].set_title('BoundaryNorm: extend="both"")

plt.show()

268 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Default norm

BoundaryNorm: 7 boundaries

2.0 2.0 Ls
L5 .
15 15 -
1.0
1.0 10 10
0.5 1 - 0.5 0.5 4 0.5
0.0 F0.0 0.0 - 0.0
—-0.5 4 L —0.5 —0.5 1 —0.5
-1.0 - -1.0 -
-1.0 -1.0
~1.5 - 15 157
T -1.5
_2.0 T T T T T _2.0 T T T T T
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2 3
BoundaryNorm: nonuniform BoundaryNorm: extend="both"
2.0 2.0
10 15
15 1.5 -
1.0
1.0 0.5 1.0
0.5 - 0.5 - 0.5
0.0 0.0 0.0 0.0
_0‘.5 T _0‘.5 | _0.5
-1.0 —01 1.0
-1.0
-1.5 - -1.5 -
-0.2 -1.5
_2.0 T T T T T _2.0 T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 o0 1 2 3

TwoSlopeNorm: Different mapping on either side of a center

Sometimes we want to have a different colormap on either side of a conceptual center point, and we want
those two colormaps to have different linear scales. An example is a topographic map where the land and
ocean have a center at zero, but land typically has a greater elevation range than the water has depth range,
and they are often represented by a different colormap.

dem = cbook.get_sample_data('topobathy.npz',
topo = dem['topo']

longitude = dem['longitude']

latitude = dem['latitude']

np_load=True)

fig, plt.subplots()
make a colormap that has land and ocean clearly delineated and of the
same length (256 + 256)
colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 256))
colors_land = plt.cm.terrain(np.linspace(0.25, 1, 256))
all _colors = np.vstack((colors_undersea, colors_land))
terrain_map = colors.LinearSegmentedColormap.from_list (
'terrain_map', all_colors)

ax =

(continues on next page)

2.4. Colors 269

Matplotlib, Release 3.4.3

(continued from previous page)

make the norm: Note the center is offset so that the land has more
dynamic range:
divnorm = colors.TwoSlopeNorm(vmin=-500., vcenter=0, vmax=4000)

pcm = ax.pcolormesh (longitude, latitude, topo, rasterized=True, norm=divnorm,
cmap=terrain_map, shading='auto')

Simple geographic plot, set aspect ratio beecause distance between lines of

longitude depends on latitude.

ax.set_aspect (1l / np.cos(np.deg2rad(49)))

ax.set_title('TwoSlopeNorm(x) ")

fig.colorbar (pcm, shrink=0.6)

plt.show()

TwoSlopeNorm(x)

T =

L

49.75 4000
49.50 3500

3000
49.25 2500

2000
49.00

1500
48.75 1000

500
48.50

0
48.25 —500

2345 235.0 235.5 236.0 236.5 237.0 237.5 238.0

270 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

FuncNorm: Arbitrary function normalization

If the above norms do not provide the normalization you want, you can use FuncNorm to define your own.
Note that this example is the same as Powe rNorm with a power of 0.5:

def _forward(x):
return np.sqgrt (x)

def _inverse(x):
return x**2

N = 100
X, ¥ = np.mgrid[0:3:complex (0, N), 0:2:complex (0, N)]
Z1 = (1 + np.sin(Y * 10.)) * X**2

fig, ax = plt.subplots()

norm = colors.FuncNorm((_forward, _inverse), vmin=0, vmax=20)

pcm = ax.pcolormesh (X, Y, Z1, norm=norm, cmap='PuBu_r', shading='auto')
ax.set_title('FuncNorm(x) ")

fig.colorbar (pcm, shrink=0.6)

plt.show()
FuncNorm(x)
2.00
1.75
—20.0
150 L 17.5
- 15.0
L 12.5
1.25 - 10.0
- 7.5
1.00 5.0
2.5
0.75
0.50
0.0
0.25
0.00

2.4. Colors 271

Matplotlib, Release 3.4.3

Custom normalization: Manually implement two linear ranges

The TwoS1lopeNorm described above makes a useful example for defining your own norm.

class MidpointNormalize (colors.Normalize) :

def _ init_ (self, vmin=None, vmax=None, vcenter=None, clip=False):
self.vcenter = vcenter
super () .__init__ (vmin, vmax, clip)

def _ _call__ (self, value, clip=None):
I'm ignoring masked values and all kinds of edge cases to make a
simple example...
x, y = [self.vmin, self.vcenter, self.vmax], [0, 0.5, 1]
return np.ma.masked_array (np.interp(value, x, y))

fig, ax = plt.subplots()
midnorm = MidpointNormalize (vmin=-500., vcenter=0, vmax=4000)

pcm = ax.pcolormesh (longitude, latitude, topo, rasterized=True, norm=midnorm,
cmap=terrain_map, shading='auto')

ax.set_aspect (1l / np.cos(np.deg2rad(49)))

ax.set_title('Custom norm')

fig.colorbar (pcm, shrink=0.6, extend='both')

plt.show ()

272 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Custom norm

49.75

4000
49.50 3500

3000
49.25 2500

2000
49.00

1500
48.75 1000

500
48.50 0

=500
48.25

2345 235.0 235.5 236.0 236.5 237.0 237.5 238.0

Total running time of the script: (0 minutes 4.688 seconds)

2.4.5 Choosing Colormaps in Matplotlib

Matplotlib has a number of built-in colormaps accessible via matplotlib.cm.get_cmap. There are
also external libraries like [palettable] and [colorcet] that have many extra colormaps. Here we briefly discuss
how to choose between the many options. For help on creating your own colormaps, see Creating Colormaps
in Matplotlib.

Overview

The idea behind choosing a good colormap is to find a good representation in 3D colorspace for your data
set. The best colormap for any given data set depends on many things including:

Whether representing form or metric data ([Ware])

Your knowledge of the data set (e.g., is there a critical value from which the other values deviate?)

If there is an intuitive color scheme for the parameter you are plotting

If there is a standard in the field the audience may be expecting

2.4. Colors 273

Matplotlib, Release 3.4.3

For many applications, a perceptually uniform colormap is the best choice; i.e. a colormap in which equal
steps in data are perceived as equal steps in the color space. Researchers have found that the human brain
perceives changes in the lightness parameter as changes in the data much better than, for example, changes
in hue. Therefore, colormaps which have monotonically increasing lightness through the colormap will be
better interpreted by the viewer. A wonderful example of perceptually uniform colormaps is [colorcet].

Color can be represented in 3D space in various ways. One way to represent color is using CIELAB. In
CIELAB, color space is represented by lightness, L*; red-green, a*; and yellow-blue, b*. The lightness
parameter L* can then be used to learn more about how the matplotlib colormaps will be perceived by
viewers.

An excellent starting resource for learning about human perception of colormaps is from [IBM].

Classes of colormaps

Colormaps are often split into several categories based on their function (see, e.g., [Moreland]):

1. Sequential: change in lightness and often saturation of color incrementally, often using a single hue;
should be used for representing information that has ordering.

2. Diverging: change in lightness and possibly saturation of two different colors that meet in the middle
at an unsaturated color; should be used when the information being plotted has a critical middle value,
such as topography or when the data deviates around zero.

3. Cyclic: change in lightness of two different colors that meet in the middle and beginning/end at an
unsaturated color; should be used for values that wrap around at the endpoints, such as phase angle,
wind direction, or time of day.

4. Qualitative: often are miscellaneous colors; should be used to represent information which does not
have ordering or relationships.

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

from matplotlib import cm

from colorspacious import cspace_converter
from collections import OrderedDict

cmaps = OrderedDict ()

Sequential

For the Sequential plots, the lightness value increases monotonically through the colormaps. This is good.
Some of the L* values in the colormaps span from 0 to 100 (binary and the other grayscale), and others start
around L* = 20. Those that have a smaller range of L™ will accordingly have a smaller perceptual range.
Note also that the L* function varies amongst the colormaps: some are approximately linear in L* and others
are more curved.

274 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

cmaps ['Perceptually Uniform Sequential']l = [
'viridis', 'plasma', 'inferno', 'magma', 'cividis']

cmaps|['Sequential'] = [
'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds',
'Y10rBr', 'Y1OrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu',
'GnBu', 'PuBu', 'Y1lGnBu', 'PuBuGn', 'BuGn', 'Y1lGn']

Sequential2

Many of the L* values from the Sequential2 plots are monotonically increasing, but some (autumn, cool,
spring, and winter) plateau or even go both up and down in L* space. Others (afmhot, copper, gist_heat,
and hot) have kinks in the L* functions. Data that is being represented in a region of the colormap that is
at a plateau or kink will lead to a perception of banding of the data in those values in the colormap (see
[mycarta-banding] for an excellent example of this).

cmaps['Sequential (2)'] = [
'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink',
'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia',
'hot', 'afmhot', 'gist_heat', 'copper']

Diverging

For the Diverging maps, we want to have monotonically increasing L* values up to a maximum, which should
be close to L* = 100, followed by monotonically decreasing L* values. We are looking for approximately
equal minimum L* values at opposite ends of the colormap. By these measures, BrBG and RdBu are good
options. coolwarm is a good option, but it doesn't span a wide range of L* values (see grayscale section
below).

cmaps ['Diverging'] = [
'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu',
'RdY1Bu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic']

Cyclic

For Cyclic maps, we want to start and end on the same color, and meet a symmetric center point in the
middle. L* should change monotonically from start to middle, and inversely from middle to end. It should
be symmetric on the increasing and decreasing side, and only differ in hue. At the ends and middle, L* will
reverse direction, which should be smoothed in L* space to reduce artifacts. See [kovesi-colormaps] for
more information on the design of cyclic maps.

The often-used HSV colormap is included in this set of colormaps, although it is not symmetric to a cen-
ter point. Additionally, the L* values vary widely throughout the colormap, making it a poor choice for
representing data for viewers to see perceptually. See an extension on this idea at [mycarta-jet].

2.4. Colors 275

Matplotlib, Release 3.4.3

cmaps['Cyclic'] = ['twilight', 'twilight_shifted', 'hsv']

Qualitative

Qualitative colormaps are not aimed at being perceptual maps, but looking at the lightness parameter can
verify that for us. The L* values move all over the place throughout the colormap, and are clearly not
monotonically increasing. These would not be good options for use as perceptual colormaps.

cmaps|['Qualitative'] = ['Pastell', 'Pastel2', 'Paired', 'Accent',
'Dark2', 'Setl', 'Set2', 'Set3',
'"tabl1l0', 'tab20', 'tab20b', 'tab20c']

Miscellaneous

Some of the miscellaneous colormaps have particular uses for which they have been created. For example,
gist_earth, ocean, and terrain all seem to be created for plotting topography (green/brown) and water depths
(blue) together. We would expect to see a divergence in these colormaps, then, but multiple kinks may not
be ideal, such as in gist_earth and terrain. CMRmap was created to convert well to grayscale, though it does
appear to have some small kinks in L*. cubehelix was created to vary smoothly in both lightness and hue,
but appears to have a small hump in the green hue area. turbo was created to display depth and disparity
data.

The often-used jet colormap is included in this set of colormaps. We can see that the L* values vary widely
throughout the colormap, making it a poor choice for representing data for viewers to see perceptually. See
an extension on this idea at [mycarta-jet] and [turbo].

cmaps|['Miscellaneous'] = [
'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern',
'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg',
'gist_rainbow', 'rainbow', 'jet', 'turbo', 'nipy_spectral',
'gist_ncar']

First, we'll show the range of each colormap. Note that some seem to change more "quickly" than others.

gradient = np.linspace(0, 1, 256)
gradient np.vstack ((gradient, gradient))

def plot_color_gradients (cmap_category, cmap_list):
Create figure and adjust figure height to number of colormaps
nrows = len(cmap_list)
figh = 0.35 + 0.15 + (nrows + (nrows — 1) * 0.1) * 0.22
fig, axs = plt.subplots(nrows=nrows + 1, figsize=(6.4, figh))
fig.subplots_adjust (top=1 - 0.35 / figh, bottom=0.15 / figh,

left=0.2, right=0.99)

axs[0] .set_title(cmap_category + ' colormaps', fontsize=14)

(continues on next page)

276 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

for ax, name in zip(axs, cmap_list):
ax.imshow (gradient, aspect='auto', cmap=plt.get_cmap (name))
ax.text (-0.01, 0.5, name, va='center', ha='right', fontsize=10,
transform=ax.transAxes)

Turn off *all* ticks & spines, not just the ones with colormaps.

for ax in axs:
ax.set_axis_off ()

for cmap_category, cmap_list in cmaps.items():
plot_color_gradients (cmap_category, cmap_list)

plt.show ()

Perceptually Uniform Sequential colormaps

vindis N
GEENER 0

inferno N
magma [N

cavidis [N T

2.4. Colors 277

Matplotlib, Release 3.4.3

Sequential colormaps

Greys
Purples
Blues
Greens
Oranges
Reds
YIOrBr
YIOrRd
OrRd
PuRd
RdPu
BuPu
GnBu
PuBu
YIGnBu
PUBUGnN
BuGn
YlIGn

Sequential (2) colormaps
binary
gist_yarg
gst_groy N
ooy I
cone N
pink [
spring [T
summer [T 00
auumn [

winter

cool
Wistia
o
afmhot AT
gst_heat [000
copper [N0

278 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Diverging colormaps
Pve I
eron I
srec I
roor I
rdoy ST
rosu
rovisu
ravion [N
spectral [N
cootwarm |
oor I
seismic [B |

Cyclic colormaps
twilight ~
twilight_shifted [N
hsv I [

Qualitative colormaps

Pastell

Pastel2

Paired B B B 7 B e
Accent [0

park2 | s B
X T I
Set [
Set3 e

-
tab10 | S S

tabz0 [N BB B
tabz0- NN
e T T T

2.4. Colors 279

Matplotlib, Release 3.4.3

Miscellaneous colormaps

fag | I I
erism [1
IS
gstcortn
terran [R -
gststen

cbencl
o; I
gist_rainbow [000
inbow I

o I

wio [
ripy._spectral NN
ast ncor [~~~

Lightness of Matplotlib colormaps

Here we examine the lightness values of the matplotlib colormaps. Note that some documentation on the
colormaps is available ([list-colormaps]).

mpl.rcParams.update ({'font.size': 12})

Number of colormap per subplot for particular cmap categories

_DSUBS = {'Perceptually Uniform Sequential': 5, 'Sequential': 6,
'Sequential (2)': 6, 'Diverging': 6, 'Cyclic': 3,
'Qualitative': 4, 'Miscellaneous': 6}

Spacing between the colormaps of a subplot

_DC = {'Perceptually Uniform Sequential': 1.4, 'Sequential': 0.7,
'Sequential (2)': 1.4, 'Diverging': 1.4, 'Cyclic': 1.4,
'Qualitative': 1.4, 'Miscellaneous': 1.4}

Indices to step through colormap
X = np.linspace (0.0, 1.0, 100)

Do plot
for cmap_category, cmap_list in cmaps.items{() :

Do subplots so that colormaps have enough space.

(continues on next page)

280 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

Default is 6 colormaps per subplot.
dsub = _DSUBS.get (cmap_category, 6)
nsubplots = int (np.ceil (len(cmap_list) / dsub))

squeeze=False to handle similarly the case of a single subplot
fig, axs = plt.subplots(nrows=nsubplots, squeeze=False,
figsize=(7, 2.6*nsubplots))
for i, ax in enumerate (axs.flat):
locs = [] # locations for text labels
for j, cmap in enumerate (cmap_list[i*dsub: (i+1) *dsub]) :
Get RGB values for colormap and convert the colormap in
CAM02-UCS colorspace. lab[0, :, 0] is the lightness.

rgb = cm.get_cmap (cmap) (x) [np.newaxis, :, :3]
lab = cspace_converter ("sRGB1", "CAM02-UCS") (rgb)

Plot colormap L values. Do separately for each category
so each plot can be pretty. To make scatter markers change
color along plot:
http://stackoverflow.com/questions/8202605/
if cmap_category == 'Sequential':
These colormaps all start at high lightness but we want them
reversed to look nice in the plot, so reverse the order.
y_ = lab[0, ::-1, 0]
c_ = x[::-1]
else:
y_ = lab[0, :, 0]
c_ = x
dc = _DC.get (cmap_category, 1.4) # cmaps horizontal spacing

ax.scatter(x + j*dc, y_, c=c_, cmap=cmap, s=300, linewidths=0.0)

Store locations for colormap labels
if cmap_category in ('Perceptually Uniform Sequential',
'Sequential'):
locs.append(x[-1] + j*dc)
elif cmap_category in ('Diverging', 'Qualitative', 'Cyclic',
'Miscellaneous', 'Sequential (2)"'):
locs.append (x[int (x.size/2.)] + j*dc)

Set up the axis limits:

* the 1st subplot is used as a reference for the x-axis limits
* lightness values goes from 0 to 100 (y-axis limits)
ax.set_xlim(axs[0, 0].get_xlim())

ax.set_ylim (0.0, 100.0)

Set up labels for colormaps
ax.xaxlis.set_ticks_position('top'")

(continues on next page)

2.4. Colors 281

Matplotlib, Release 3.4.3

(continued from previous page)

ticker = mpl.ticker.FixedLocator (locs)
ax.xaxis.set_major_locator (ticker)

formatter = mpl.ticker.FixedFormatter (cmap_list[i*dsub: (i+1) *dsub])
ax.xaxlis.set_major_formatter (formatter)

ax.xaxlis.set_tick_params (rotation=50)

ax.set_ylabel ('Lightness $L"*$', fontsize=12)

ax.set_xlabel (cmap_category + ' colormaps', fontsize=14)

fig.tight_layout (h_pad=0.0, pad=1.5)
plt.show ()

lDD I i I Il i

LS LI

Perceptually Uniform Sequential colormaps

W

Lightness L

282

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

lnu I I Il Il Il Il

Lightness L *
un |
S o

J
un
L

o
1

100

Lightness L
un |
S o

]
(%]
1

o

1DG I I Il Il Il Il

/1/7/7//

Sequential colormaps

Lightness L *
[un |
o L o wun

2.4. Colors 283

Matplotlib, Release 3.4.3

%";9 c‘_»:ﬁ\
.c}/ ..:}-/
S S

75 1

T T
o [Ta]
o~

100

. 7ssauybr

o

)

N
\
\

100

. 7ssauybr

T T
n 9O n o
~ 1N~

117/

Sequential (2) colormaps

100

75 1
50 +
25

. 7ssauybr

O_

Chapter 2. Tutorials

284

Matplotlib, Release 3.4.3

1DG Il i I i Il I

Lightness L *
un |
S o

M
un
L

o

100 '

|
wn
1

J
un
L

Lightness L *
un
S

' AYAY A ,\

Diverging colormaps

=

100

Lightness L *
un
=

Cyclic colormaps

2.4. Colors 285

Matplotlib, Release 3.4.3

T T T
Ta] o Ty
~ m ™

100

. 7ssauybr

. 7ssauybn

. 7ssauiybn

Qualitative colormaps

Chapter 2. Tutorials

286

Matplotlib, Release 3.4.3

100

un
]
1

Lightness L *

o
1

100

50 1

Lightness L *

& ¢

Y &7
¢ & & %

NANSR

Miscellaneous colormaps

100

un
o
1

Lightness L

Grayscale conversion

It is important to pay attention to conversion to grayscale for color plots, since they may be printed on black
and white printers. If not carefully considered, your readers may end up with indecipherable plots because
the grayscale changes unpredictably through the colormap.

Conversion to grayscale is done in many different ways [bw]. Some of the better ones use a linear combination
of the rgb values of a pixel, but weighted according to how we perceive color intensity. A nonlinear method
of conversion to grayscale is to use the L* values of the pixels. In general, similar principles apply for this
question as they do for presenting one's information perceptually; that is, if a colormap is chosen that is

2.4. Colors 287

Matplotlib, Release 3.4.3

monotonically increasing in L* values, it will print in a reasonable manner to grayscale.

With this in mind, we see that the Sequential colormaps have reasonable representations in grayscale. Some
of the Sequential2 colormaps have decent enough grayscale representations, though some (autumn, spring,
summer, winter) have very little grayscale change. If a colormap like this was used in a plot and then the
plot was printed to grayscale, a lot of the information may map to the same gray values. The Diverging
colormaps mostly vary from darker gray on the outer edges to white in the middle. Some (PuOr and seismic)
have noticeably darker gray on one side than the other and therefore are not very symmetric. coolwarm has
little range of gray scale and would print to a more uniform plot, losing a lot of detail. Note that overlaid,
labeled contours could help differentiate between one side of the colormap vs. the other since color cannot
be used once a plot is printed to grayscale. Many of the Qualitative and Miscellaneous colormaps, such as
Accent, hsv, jet and turbo, change from darker to lighter and back to darker grey throughout the colormap.
This would make it impossible for a viewer to interpret the information in a plot once it is printed in grayscale.

mpl.rcParams.update ({'font.size': 14})

Indices to step through colormap.
x = np.linspace (0.0, 1.0, 100)

gradient = np.linspace(0, 1, 256)
gradient = np.vstack((gradient, gradient))

def plot_color_gradients (cmap_category, cmap_list):
fig, axs = plt.subplots(nrows=len (cmap_list), ncols=2)
fig.subplots_adjust (top=0.95, bottom=0.01, left=0.2, right=0.99,
wspace=0.05)
fig.suptitle (cmap_category + ' colormaps', fontsize=14, y=1.0, x=0.6)

for ax, name in zip(axs, cmap_list):

Get RGB values for colormap.
rgb = cm.get_cmap (plt.get_cmap (name)) (x) [np.newaxis, :, :3]

Get colormap in CAM02-UCS colorspace. We want the lightness.
lab = cspace_converter ("sRGB1", "CAM02-UCS") (rgb)

L = lab[0, :, 0]

L = np.float32(np.vstack ((L, L, L)))

ax[0] .imshow (gradient, aspect='auto', cmap=plt.get_cmap (name))
ax[1l] .imshow (L, aspect='auto', cmap='binary_r', vmin=0., vmax=100.)
pos = list(ax[0].get_position () .bounds)

x_text = pos[0] - 0.01

y_text = pos[1l] + pos[3]/2.
fig.text (x_text, y_text, name, va='center', ha='right', fontsize=10)

Turn off *all* ticks & spines, not just the ones with colormaps.
for ax in axs.flat:

ax.set_axis_off ()

plt.show ()

(continues on next page)

288 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

for cmap_category, cmap_list in cmaps.items () :

plot_color_gradients (cmap_category, cmap_list)

Perceptually Uniform Sequential colormaps

viridis

plasma

inferno

magma

cividis

2.4. Colors

289

Matplotlib, Release 3.4.3

Greys
Purples
Blues
Greens
Oranges
Reds
YIOrBr
YIOrRd
OrRd
PuRd
RdPu
BuPu
GnBu
PuBu
YIGnBu
PuBuGn
BuGn
YIGn

Sequential colormaps

290

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Sequential (2) colormaps

binary
gist_yarg
gist_gray
gray
bone

pink
spring
summer
autumn
winter
cool

Wistia

g

afmhot
gist_heat

copper

2.4. Colors

291

Matplotlib, Release 3.4.3

Diverging colormaps

w
()

PiYG

PRGN
BrBG
PuOr

RdGy
RdBu

RdYIBu
RAYIGn
Spectral

coolwarm

g

seismic

292 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Cyclic colormaps

- -

twilight_shifted

2.4. Colors 293

Matplotlib, Release 3.4.3

Qualitative colormaps

Pastell
Pastel2

Paired

Accent

Darkz

setl

294 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Miscellaneous colormaps

ocean [N
suoio: T I
arupior2 [— D
cvrmep [N — e
- N

Q
n
n
-
w
=]
o
(=]
=

rainbow
Jet
turbo

nipy_spectral

gist_ncar - -

Color vision deficiencies
There is a lot of information available about color blindness (e.g., [colorblindness]). Additionally, there are
tools available to convert images to how they look for different types of color vision deficiencies.

The most common form of color vision deficiency involves differentiating between red and green. Thus,
avoiding colormaps with both red and green will avoid many problems in general.

2.4. Colors 295

Matplotlib, Release 3.4.3

References

Total running time of the script: (0 minutes 13.963 seconds)

2.5 Provisional

These tutorials cover proposed APIs of any complexity. These are here to document features that we have
released, but want to get user feedback on before committing to them. Please have a look, try them out and
give us feedback on gitter, discourse, or the the mailing list! But, be aware that we may change the APIs
without warning in subsequent versions.

2.5.1 Complex and semantic figure composition

Warning: This tutorial documents experimental / provisional API. We are releasing this in v3.3 to get
user feedback. We may make breaking changes in future versions with no warning.

Laying out Axes in a Figure in a non uniform grid can be both tedious and verbose. For dense, even grids
we have Figure.subplots but for more complex layouts, such as Axes that span multiple columns
/ rows of the layout or leave some areas of the Figure blank, you can use gridspec.GridSpec (see
Customizing Figure Layouts Using GridSpec and Other Functions) or manually place your axes. Figure.
subplot_mosaic aims to provide an interface to visually lay out your axes (as either ASCII art or nested
lists) to streamline this process.

This interface naturally supports naming your axes. Figure.subplot_mosaic returns a dictionary
keyed on the labels used to lay out the Figure. By returning data structures with names, it is easier to write
plotting code that is independent of the Figure layout.

This is inspired by a proposed MEP and the patchwork library for R. While we do not implement the operator
overloading style, we do provide a Pythonic API for specifying (nested) Axes layouts.

import matplotlib.pyplot as plt
import numpy as np

Helper function used for visualization in the following examples
def identify_axes(ax_dict, fontsize=48):

mirrn

Helper to identify the Axes in the examples below.
Draws the label in a large font in the center of the Axes.

Parameters
ax_dict : dict[str, Axes]

Mapping between the title / label and the Axes.
fontsize : int, optional

(continues on next page)

296 Chapter 2. Tutorials

https://gitter.im/matplotlib/matplotlib
https://discourse.matplotlib.org
https://mail.python.org/mailman/listinfo/matplotlib-users
https://github.com/matplotlib/matplotlib/pull/4384
https://github.com/thomasp85/patchwork

Matplotlib, Release 3.4.3

(continued from previous page)

How big the label should be.
mrrn
kw = dict (ha="center", va="center", fontsize=fontsize, color="darkgrey")
for k, ax in ax_dict.items{():

ax.text (0.5, 0.5, k, transform=ax.transAxes, **kw)

If we want a 2x2 grid we can use F'igure. subplots which returns a 2D array of axes . Axes which we
can index into to do our plotting.

np.random.seed (19680801)
hist_data = np.random.randn (1_500)

fig = plt.figure(constrained_layout=True)
ax_array = fig.subplots (2, 2, squeeze=False)
ax_array .bar([("a", "b", "c"1, [5, 7, 91)
.plot ([1, 2, 31)

.hist (hist_data, bins="auto")

ax_array
ax_array

— — —
= = O O
~
= O = O
e e

ax_arrayll, .imshow ([[1, 2], [2, 111)
identify_axes(
{(j, k): a for j, r in enumerate (ax_array) for k, a in enumerate(r) },

2.5. Provisional 297

Matplotlib, Release 3.4.3

0.5 1.0 1.5 2.0

125 -
0.0
100
75 4 0.5 4
50
1.0 -
25
0- 1.5 T
-2 0 e 4 —0.5 0.0 0.5 1.0 1.5

Using Figure. subplot_mosaic we can produce the same mosaic but give the axes semantic names

fig = plt.figure(constrained_layout=True)
ax_dict = fig.subplot_mosaic(
[
["bar", "plot"],
["hist", "image"],
]I
)
ax_dict["bar"] .bar(["a", "b", "c"I1, [5, 7, 9])
ax_dict["plot"].plot ([1, 2, 31)
ax_dict["hist"].hist (hist_data)
ax_dict["image"].imshow ([[1, 2], [2, 111)
identify_axes (ax_dict)

298 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

0.5 1.0 1.5 2.0

400 -
0.0

300 A
0.5 -

200 1

100 - 1.0 7

0 1.5 .
-2 0 2 4 -05 00 05 10 15

A key difference between Figure.subplots and Figure.subplot_mosaic is the return value.
While the former returns an array for index access, the latter returns a dictionary mapping the labels to the
axes.Axes instances created

print (ax_dict)

Out:

{'bar': <AxesSubplot:label='bar'>, 'plot': <AxesSubplot:label='plot'>, 'hist
~': <AxesSubplot:label='hist'>, 'image': <AxesSubplot:label='image'>}

String short-hand

By restricting our axes labels to single characters we can use Using we can "draw" the Axes we want as
"ASCII art". The following

mosaic = """
AB
CD

wnnn

2.5. Provisional 299

Matplotlib, Release 3.4.3

will give us 4 Axes laid out in a 2x2 grid and generates the same figure mosaic as above (but now labeled
with {"A", "B", "C", "D"} ratherthan {"bar", "plot", "hist", "image"}).

fig = plt.figure(constrained_layout=True)
ax_dict = fig.subplot_mosaic (mosaic)
identify_axes (ax_dict)

1.0 1.0
0.8 - 0.8 -
0.6 - 0.6 -
0.4 - 0.4 -
0.2 - 0.2 -
0.0 ; ; ; ; 0.0 ; ; ; ;
00 02 04 06 08 10 00 02 04 06 08 1.0
1.0 1.0
0.8 - 0.8 -
0.6 - 0.6 -
0.4 - 0.4 -
0.2 - 0.2 -
0.0 ; ; ; ; 0.0 ; ; ; ;

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Something we can do with Figure. subplot_mosaic that you can not do with Figure. subplots
is specify that an Axes should span several rows or columns.

If we want to re-arrange our four Axes to have C be a horizontal span on the bottom and D be a vertical span
on the right we would do

axd = plt.figure(constrained_layout=True) .subplot_mosaic (
mrrn
ABD
CcCD

mrn

)
identify_axes (axd)

300 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.0 1.0 1.0
0.8 0.8
0.6 0.6
0.8
0.4 0.4
0.2 A 0.2 A
0.6
0.0 | 0.0 |
0.0 0.5 1.0 0.0 0.5 1.0
1.0
0.4 1
0.8
0.6
0.4 4 0.2 1
0.2 A
0.0 T T T T 0.0 T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0

If we do not want to fill in all the spaces in the Figure with Axes, we can specify some spaces in the grid to
be blank

axd = plt.figure(constrained_layout=True) .subplot_mosaic (
mrrann
A.C
BBB
.D.
mrrar
)

identify_axes (axd)

2.5. Provisional 301

Matplotlib, Release 3.4.3

1.00 1.00
0.75 1 0.75 1
0.50 0.50
0.25 1 0.25 1
0.00 T 0.00 T
0.0 0.5 1.0 0.0 0.5 1.0
1.00
0.75 1
0.50
0.25 1
G.OD T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1.00
0.75 1
0.50
0.25 1
0.00 T
0.0 0.5 1.0
If we prefer to use another character (rather than a period " .") to mark the empty space, we can use

empty_sentinel to specify the character to use.

axd

)

= plt.figure (constrained_layout=True) .subplot_mosaic (

mrrann

ax
Xb

mrrn

empty_sentinel="X",

identify_axes (axd)

302

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.0
0.8 -
0.6 -
0.4 -
0.2 -
0.0
00 02 04 06 08 10
1.0
0.8 -
0.6 -
0.4 -
0.2 -
0.0

0.0 0.2 0.4 0.6 0.8 1.0

Internally there is no meaning attached to the letters we use, any Unicode code point is valid!

axd = plt.figure(constrained_layout=True) .subplot_mosaic (
mnin "a 6
]RJ‘?‘"” nn

)

identify_axes (axd)

2.5. Provisional 303

Matplotlib, Release 3.4.3

1.0 1.0

0.8 - 0.8 -

0.6 - 0.6 -

0.4 - 0.4 -

0.2 - 0.2 -

0.0 0.0

00 02 04 06 08 10 00 02 04 06 08 10

1.0 1.0

0.8 - 0.8 -

0.6 - 0.6 -

0.4 - 0.4 -

0.2 - 0.2 -

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

It is not recommended to use white space as either a label or an empty sentinel with the string shorthand
because it may be stripped while processing the input.

Controlling mosaic and subplot creation
This feature is built on top of gridspec and you can pass the keyword arguments through to the underlying
gridspec.GridSpec (the same as Figure.subplots).

In this case we want to use the input to specify the arrangement, but set the relative widths of the rows /
columns via gridspec_kw.

axd = plt.figure(constrained_layout=True) .subplot_mosaic (
mrrar
.a.
bAc
.d.
mrron
4
gridspec_kw={
set the height ratios between the rows

"height_ratios": [1, 3.5, 1],
set the width ratios between the columns
"width_ratios": [1, 3.5, 11,

(continues on next page)

304 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

b
)

identify_axes (axd)

1.0
0.5
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1.0 1.0 1.0
0.8 0.8 1 0.8
0.6 0.6 0.6
0.4 0.4 1 0.4 1
0.2 A 0.2 1 0.2 1
0.0 T 0.0 T T T T 0.0 T
00 05 10 0.0 0.2 0.4 0.6 0.8 1.0 00 05 10
1.0
0.5~
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Or use the {left, right, bottom, top } keyword arguments to position the overall mosaic to put multiple versions

of the same mosaic in a figure

mosaic = """AA
BC" nn
fig = plt.figure()

axd = fig.subplot_mosaic (

mosaic,

gridspec_kw={
"bottom": 0.25,
"top": 0.95,
"left": 0.1,
"right": 0.5,
"wspace": 0.5,
"hspace": 0.5,
}I

)

identify_axes (axd)

(continues on next page)

2.5. Provisional

305

Matplotlib, Release 3.4.3

(continued from previous page)

axd

)

= fig.subplot_mosaic(
mosaic,
gridspec_kw={

Hy

"bottom": 0.05,
"top": 0.75,
"left": 0.6,
"right": 0.95,
"wspace": 0.5,
"hspace": 0.5,

identify_axes (axd)

1.00
0.75 4
0.50 -
0.25 - 1.00
0.00 T T T T 0.75 +
0.0 0.2 0.4 0.6 0.8 1.0
0.50 -
1.00 1.00 0.25 -
0.75 - 0.75 - 0.00 ' ' ' '
00 02 04 06 08 10
0.50 0.50 1
0.25 - 0.25 - 1.00 1.00
0.00 : 0.00 : 0.75 7 0.75 7
0.0 0.5 1.0 0.0 0.5 1.0
0.50 0.50
0.25 A 0.25 A
0.00 T 0.00 T
00 05 10 00 05 10
Alternatively, you can use the sub-Figure functionality:
mosaic = """AA
BC" nn
fig = plt.figure(constrained_layout=True)
left, right = fig.subfigures (nrows=1, ncols=2)

axd

= left.subplot_mosaic (mosaic)
identify_axes (axd)

(continues on next page)

306

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

axd = right.subplot_mosaic (mosaic)
identify_axes (axd)

1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 | | | | 0.0 | | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1.0 1.0 1.0 1.0
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0.0 | 0.0 | 0.0 | 0.0 |
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

We can also pass through arguments used to create the subplots (again, the same as FFigure. subplots).

axd = plt.figure(constrained_layout=True) .subplot_mosaic (
"AB", subplot_kw={"projection": "polar"}
)

identify_axes (axd)

2.5. Provisional 307

Matplotlib, Release 3.4.3

90 90

180°

270° 270°

Nested List input

Everything we can do with the string short-hand we can also do when passing in a list (internally we convert
the string shorthand to a nested list), for example using spans, blanks, and gridspec_kw:

axd = plt.figure(constrained_layout=True) .subplot_mosaic (

["main", "zoom"],
["main", "BLANK"],
]I
empty_sentinel="BLANK",
gridspec_kw={"width_ratios": [2, 11},
)

identify_axes (axd)

308 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.0 1.0
0.8 -
0.8 1 0.6 4
0.4 -
0.2 -
0.6 -
0.0 :

T T
0.00 0.25 050 075 100

0.4

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

In addition, using the list input we can specify nested mosaics. Any element of the inner list can be another
set of nested lists:

inner = |
["inner A"],
["inner B"],

]

outer_nested_mosaic = [
["main", inner],
["bottom", "bottom"],

]

axd = plt.figure(constrained_layout=True) .subplot_mosaic (
outer_nested_mosaic, empty_sentinel=None

)

identify_axes (axd, fontsize=36)

2.5. Provisional 309

Matplotlib, Release 3.4.3

1.0 1.0
0.8 0.5 4
0.6 0.0 T | | |
0.0 0.2 0.4 0.6 0.8 1.0

0.4 1.0
0.2 0.5 4
0.0 T T T T 0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1.0
0.8
0.6
0.4
0.2
0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0

We can also pass in a 2D NumPy array to do things like

mosaic = np.zeros((4, 4), dtype=int)

for j in range(4):
mosaic([]j, j] = 3 + 1

axd = plt.figure(constrained_layout=True) .subplot_mosaic (
mosaic,

empty_sentinel=0,
)
identify_axes (axd)

310 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.0
0.5 4
0.0 |
0.0 0.5 1.0
1.0
0.5 4
0.0 |
0.0 0.5 1.0
1.0
0.5 4
0.0 |
0.0 0.5 1.0
1.0
0.5 4
0.0 |

0.0 0.5 1.0

Total running time of the script: (0 minutes 6.155 seconds)

2.6 Text

matplotlib has extensive text support, including support for mathematical expressions, truetype support for
raster and vector outputs, newline separated text with arbitrary rotations, and unicode support. These tutorials
cover the basics of working with text in Matplotlib.

2.6.1 Text in Matplotlib Plots

Introduction to plotting and working with text in Matplotlib.

Matplotlib has extensive text support, including support for mathematical expressions, truetype support for
raster and vector outputs, newline separated text with arbitrary rotations, and unicode support.

Because it embeds fonts directly in output documents, e.g., for postscript or PDF, what you see on the screen
is what you get in the hardcopy. FreeType support produces very nice, antialiased fonts, that look good even
at small raster sizes. Matplotlib includes its own matplotlib. font_manager (thanks to Paul Barrett),
which implements a cross platform, W3C compliant font finding algorithm.

2.6. Text 311

https://www.freetype.org/
https://www.w3.org/

Matplotlib, Release 3.4.3

The user has a great deal of control over text properties (font size, font weight, text location and color,
etc.) with sensible defaults set in the rc file. And significantly, for those interested in mathematical or
scientific figures, Matplotlib implements a large number of TeX math symbols and commands, supporting
mathematical expressions anywhere in your figure.

Basic text commands

The following commands are used to create text in the pyplot interface and the object-oriented API:

pyplot OO0 API description

API

text text Add text at an arbitrary location of the Axes.

annotate | annotate Add an annotation, with an optional arrow, at an arbitrary location of the
Axes.

xlabel set_ xlabel Add alabel to the Axes's x-axis.

ylabel set_ylabell Add alabel to the Axes's y-axis.

title set_title | Add atitle to the Axes.

figtext text Add text at an arbitrary location of the F'igure.

suptitle | suptitle Add atitle to the Figure.

All of these functions create and return a Text instance, which can be configured with a variety of font and
other properties. The example below shows all of these commands in action, and more detail is provided in
the sections that follow.

import matplotlib
import matplotlib.pyplot as plt

fig = plt.figure()

ax = fig.add_subplot ()

fig.subplots_adjust (top=0.85)

Set titles for the figure and the subplot respectively
fig.suptitle('bold figure suptitle', fontsize=14, fontweight='bold")

ax.set_title('axes title'")

ax.set_xlabel ('xlabel')
ax.set_ylabel ('ylabel')

Set both x—- and y-axis limits to [0, 10] instead of default [0, 1]
ax.axis ([0, 10, 0, 10])

ax.text (3, 8, 'boxed italics text in data coords', style='italic',
bbox={"'facecolor': 'red', 'alpha': 0.5, 'pad': 10})

ax.text (2, 6, r'an equation: S$E=mc”2$', fontsize=15)
ax.text (3, 2, 'unicode: Institut fir Festkdrperphysik')

ax.text (0.95, 0.01, 'colored text in axes coords',

(continues on next page)

312 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)
verticalalignment="bottom', horizontalalignment='right',
transform=ax.transAxes,
color="green', fontsize=15)

ax.plot ([2]1, [1]1, 'o")
ax.annotate ('annotate', xy=(2, 1), xytext=(3, 4),
arrowprops=dict (facecolor="'black', shrink=0.05))

plt.show ()
bold figure suptitle
axes title
10
g - boxed italics text in data coords
6 an equation: E = mc?
g
1]
=
4 annotate
5 unicode: Institut fur Festkorperphysik
]
. colored text in axes coords
0 2 4 6 8 10

xlabel

Labels for x- and y-axis

Specifying the labels for the x- and y-axis is straightforward, via the set_xlabel and set_ylabel
methods.

import matplotlib.pyplot as plt
import numpy as np

x1 = np.linspace (0.0, 5.0, 100)
yl = np.cos (2 * np.pi * x1) * np.exp(-x1)

(continues on next page)

2.6. Text 313

Matplotlib, Release 3.4.3

(continued from previous page)

fig, ax plt.subplots (figsize=(5, 3))
fig.subplots_adjust (bottom=0.15, left=0.2)
ax.plot (x1, y1)

ax.set_xlabel('time [s]")

ax.set_ylabel ('Damped oscillation [V]")

plt.show ()

1.0 1
>
=

2 0.5
et
o
E
1]
o

= 0.0+
a
=1
E
[1+]
O

_{]5 .

T T T T T T
0 1 2 3 4 5
time [5]

The x- and y-labels are automatically placed so that they clear the x- and y-ticklabels. Compare the plot
below with that above, and note the y-label is to the left of the one above.

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust (bottom=0.15, left=0.2)
ax.plot(x1, y1*10000)

ax.set_xlabel('time [s]")

ax.set_ylabel ('Damped oscillation [V]")

plt.show ()

314 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

10000 4
>
=
2 5000 4
)
o
E
1]
o
=] 0 4
]
o
=
[1+]
O
—5000 4

[
=
MJ
L
+a
(W, =

time [5]

If you want to move the labels, you can specify the labelpad keyword argument, where the value is points

(1/72", the same unit used to specify fontsizes).

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust (bottom=0.15, left=0.2)
ax.plot(x1, y1*10000)

ax.set_xlabel ('time [s]'")

ax.set_ylabel ('Damped oscillation [V]', labelpad=18)

plt.show ()
10000 A
2
=
§=] 5000 -
et
=
E
I
=]
- 0
b}
[=1
E
o
O
—5000 ~

[
=
MJ
L
+a
(W, =

time [5]

Or, the labels accept all the Text keyword arguments, including position, via which we can manually specify
the label positions. Here we put the xlabel to the far left of the axis. Note, that the y-coordinate of this position

has no effect - to adjust the y-position we need to use the labelpad kwarg.

2.6. Text

315

Matplotlib, Release 3.4.3

fig, ax = plt.subplots(figsize=(5, 3))

fig.subplots_adjust (bottom=0.15, left=0.2)

ax.plot (x1, vy1)

ax.set_xlabel ('time [s]', position=(0., 1e6), horizontalalignment='left')
ax.set_ylabel ('Damped oscillation [V]")

plt.show ()

1.0 4
>
o

o 0.5 4
)
m
E
0
o

= 0.0+
ib]
o
E
[
(]

0.5 4

T T T T T T
0 1 2 3 4 5
time [5]

All the labelling in this tutorial can be changed by manipulating the matplotlib.font_manager.
FontProperties method, or by named kwargs to set_xlabel

from matplotlib. font_manager import FontProperties

font = FontProperties()
font.set_family('serif')
font.set_name ('Times New Roman')
font.set_style('italic')

fig, ax = plt.subplots(figsize=(5, 3))

fig.subplots_adjust (bottom=0.15, left=0.2)

ax.plot (x1, vy1)

ax.set_xlabel ('time [s]', fontsize='large', fontweight='bold")
ax.set_ylabel ('Damped oscillation [V]', fontproperties=font)

plt.show ()

316 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

1.0 4
=
—_
s
S 05-
o
S
1751
[
= 0.0
L
=]
=
1}
[
_.[]5 -
T T T T T T
0 1 2 3 4 5
time [s]

Finally, we can use native TeX rendering in all text objects and have multiple lines:

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust (bottom=0.2, left=0.2)

ax.plot (x1, np.cumsum(yl**2))

ax.set_xlabel('time [s] \n This was a long experiment')
ax.set_ylabel (r's\int\ Y~2\ dt\ \ [V"2 s]S$")

plt.show ()

T T T T
1 2 3 4
time [5]

This was a long experiment

D_
Ln_

2.6. Text 317

Matplotlib, Release 3.4.3

Titles

Subplot titles are set in much the same way as labels, but there is the loc keyword arguments that can change
the position and justification from the default value of 1loc=center.

fig, axs = plt.subplots (3, 1, figsize=(5, 6), tight_layout=True)
locs = ['center', 'left', 'right']
for ax, loc in zip(axs, locs):
ax.plot (x1, y1)
ax.set_title('Title with loc at '+loc, loc=loc)
plt.show ()

Title with loc at center

1.0+

0.5 A

0.0

—0.5 4

T
0 1 2 3 4

Title with loc at left
1.0 4

(5,

0.5 A

0.0

—0.5 4

(5,

3 2
Title with loc at right

o
=
J

1.0+

0.5 A

0.0

—0.5 4

o -
=
P
[¥¥]
Y
(5,

Vertical spacing for titles is controlled via rcParams ["axes.titlepad"] (default: 6.0), which de-
faults to 5 points. Setting to a different value moves the title.

318 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=axes.titlepad#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

fig, ax = plt.subplots(figsize=(5, 3))
fig.subplots_adjust (top=0.8)

ax.plot (x1, vy1)

ax.set_title('Vertically offset title', pad=30)
plt.show ()

Vertically offset title

1.0 +

0.5 4

0.0

—0.5 4

Ticks and ticklabels

Placing ticks and ticklabels is a very tricky aspect of making a figure. Matplotlib does its best to accom-
plish the task automatically, but it also offers a very flexible framework for determining the choices for tick
locations, and how they are labelled.

Terminology

Axes have an matplotlib.axis.Axis object for the ax.xaxis and ax.yaxis that contain the in-
formation about how the labels in the axis are laid out.

The axis API is explained in detail in the documentation to axi s.

An Axis object has major and minor ticks. The Axis has Axis.set_major locator and Axis.
set_minor_locator methods that use the data being plotted to determine the location of major and
minor ticks. There are also Axis.set_major formatter and Axis.set_minor formatter
methods that format the tick labels.

2.6. Text 319

Matplotlib, Release 3.4.3

Simple ticks

It often is convenient to simply define the tick values, and sometimes the tick labels, overriding the default
locators and formatters. This is discouraged because it breaks interactive navigation of the plot. It also can
reset the axis limits: note that the second plot has the ticks we asked for, including ones that are well outside
the automatic view limits.

fig, axs = plt.subplots (2, 1, figsize=(5, 3), tight_layout=True)
axs[0].plot (x1, y1)

axs[1l].plot(x1l, y1)

axs[1l] .xaxis.set_ticks (np.arange (0., 8.1, 2.))

plt.show ()
l_
0 -
T T T T T T
0 1 2 3 4 5
1 -
0_
T T T T
0 2 4 6 8

We can of course fix this after the fact, but it does highlight a weakness of hard-coding the ticks. This example
also changes the format of the ticks:

fig, axs = plt.subplots (2, 1, figsize=(5, 3), tight_layout=True)
axs[0] .plot (x1, y1)

axs[1].plot(x1, vy1)

ticks = np.arange(0., 8.1, 2.)

list comprehension to get all tick labels...

tickla = [f'{tick:1.2f}" for tick in ticks]

axs[l] .xaxis.set_ticks (ticks)

axs[1] .xaxis.set_ticklabels(tickla)
axs[1l].set_xlim(axs[0].get_xlim())

plt.show ()

320 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

o -
=
MJ
L
+a
un

T T T
0.00 2.00 4.00

Tick Locators and Formatters

Instead of making a list of all the tickalbels, we could have used matplotlib.ticker.
StrMethodFormatter (new-style str.format () format string) or matplotlib.ticker.
FormatStrFormatter (old-style '%' format string) and passed it to the ax . xaxis. Amatplotlib.
ticker.StrMethodFormatter canalsobe created by passing a st r without having to explicitly create
the formatter.

fig, axs = plt.subplots (2, 1, figsize=(5, 3), tight_layout=True)
axs[0].plot(x1, vy1)

axs[1l] .plot(x1, y1)

ticks = np.arange (0., 8.1, 2.)

axs[1l] .xaxis.set_ticks (ticks)

axs[1l] .xaxis.set_major_formatter (' ")
axs[l].set_xlim(axs[0].get_x1lim())

plt.show ()

2.6. Text 321

Matplotlib, Release 3.4.3

l_

° \/\/\N
T T T T T
0 1 2 3 4
T T T
0.0 2.0 4.0

3

And of course we could have used a non-default locator to set the tick locations. Note we still pass in the tick
values, but the x-limit fix used above is not needed.

fig, axs = plt.subplots (2, 1, figsize=(5, 3), tight_layout=True)
axs[0] .plot (x1, vy1)
axs[1l] .plot(x1, y1)

locator = matplotlib.ticker.FixedLocator (ticks)
axs[1l] .xaxis.set_major_locator (locator)
axs[l] .xaxis.set_major_formatter ('+ °on)
plt.show ()
l_
0_ \/\/\N
T T T T T T
0 1 2 3 4 5
1 -
0 - \/\/\/_\
T T T
+0.0° +2.0° +4.0°

The default formatter is the matplotlib.ticker.MaxNLocator called as ticker.
MaxNLocator (self, nbins='auto', steps=[1, 2, 2.5, 5, 10]1) The steps
keyword contains a list of multiples that can be used for tick values. i.e. in this case, 2, 4, 6 would be
acceptable ticks, as would 20, 40, 60 or 0.2, 0.4, 0.6. However, 3, 6, 9 would not be acceptable because 3

322 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

doesn't appear in the list of steps.

nbins=auto uses an algorithm to determine how many ticks will be acceptable based on how long the
axis is. The fontsize of the ticklabel is taken into account, but the length of the tick string is not (because its
not yet known.) In the bottom row, the ticklabels are quite large, so we set nbins=4 to make the labels fit
in the right-hand plot.

fig, axs = plt.subplots (2, 2, figsize=(8, 5), tight_layout=True)
for n, ax in enumerate (axs.flat):
ax.plot (x1*10., y1)

formatter = matplotlib.ticker.FormatStrFormatter (' ")

locator = matplotlib.ticker.MaxNLocator (nbins='auto', steps=[1, 4, 10])
axs[0, 1].xaxis.set_major_locator (locator)

axs [0, 1].xaxis.set_major_formatter (formatter)

formatter = matplotlib.ticker.FormatStrFormatter (' ")
locator = matplotlib.ticker.AutoLocator ()

axs[1l, 0].xaxis.set_major_formatter (formatter)

axs[1l, 0].xaxis.set_major_locator (locator)

formatter = matplotlib.ticker.FormatStrFormatter (' ")
locator = matplotlib.ticker.MaxNLocator (nbins=4)
axs[1l, 1].xaxis.set_major_formatter (formatter)

17.

axs([1, xaxis.set_major_locator (locator)
plt.show ()
1.0 1 1.0 1
0.5 1 0.5 1
0.0 0.0 A
—0.5 1 —0.5 1
T T T T T T T T T T T T
0 10 20 30 40 50 0.0 10.0 20.0 30.0 40.0 50.0
1.0 1 1.0 4
0.5 1 0.5 A
0.0 0.0 A
—0.5 1 —0.5 1
T T T T T T T T T T
0.0000010.0000@0.000080.000030.0000@0.00000 0.00000 15.00000 30.00000 45.00000

Finally, we can specify functions for the formatter using matplotlib.ticker.FuncFormatter. Fur-

2.6. Text 323

Matplotlib, Release 3.4.3

ther, like matplotlib.ticker.StrMethodFormatter, passing a function will automatically create
amatplotlib.ticker.FuncFormatter

def formatoddticks (x, pos):
"""EFormat odd tick positions."""
if x % 2:
return f'{x:1.2f}"'
else:

return ''

fig, ax = plt.subplots(figsize=(5, 3), tight_layout=True)
ax.plot (x1, vy1)

locator = matplotlib.ticker.MaxNLocator (nbins=6)
ax.xaxls.set_major_formatter (formatoddticks)
ax.xaxlis.set_major_locator (locator)

plt.show()

1.00 +

0.75 4

0.50 4

0.25 4

0.00 +

—0.25 +

—0.50 ~

T T T
1.00 3.00 5.00

Dateticks

Matplotlib can accept datetime.datetime and numpy .datet ime64 objects as plotting arguments.
Dates and times require special formatting, which can often benefit from manual intervention. In order to
help, dates have special Locators and Formatters, defined in the matplotlib.dates module.

A simple example is as follows. Note how we have to rotate the tick labels so that they don't over-run each
other.

import datetime

fig, ax = plt.subplots(figsize=(5, 3), tight_layout=True)
base = datetime.datetime (2017, 1, 1, 0, 0, 1)

(continues on next page)

324 Chapter 2. Tutorials

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64

Matplotlib, Release 3.4.3

(continued from previous page)

time = [base + datetime.timedelta(days=x) for x in range (len(xl))]

ax.plot (time, v1)
ax.tick_params (axis='x"', rotation=70)
plt.show ()

1.0~

0.5 4

0.0 4

—0.5 4

T T T
- in i iy =
& < & I &
Apr 2017

T T
-y in
£z ~

We can pass a format to matplotlib.dates.DateFormatter. Also note that the 29th and the next
month are very close together. We can fix this by using the dates.DayLocator class, which allows us to
specify a list of days of the month to use. Similar formatters are listed in the matplotlib. dates module.

import matplotlib.dates as mdates

locator = mdates.DayLocator (bymonthday=[1, 15])
formatter = mdates.DateFormatter ('$% ")

fig, ax = plt.subplots(figsize=(5, 3), tight_layout=True)
ax.xaxis.set_major_locator (locator)
ax.xaxis.set_major_formatter (formatter)

ax.plot (time, v1)

ax.tick_params (axis='x"', rotation=70)

plt.show ()

2.6. Text 325

Matplotlib, Release 3.4.3

1.0~

0.5 4

0.0

—0.5 4

T T T T T T
ref iy r~) ~ in
< ~ = Fey o —
o o -0 -0))
o o
g g & & = =

Legends and Annotations
o Legends: Legend guide
e Annotations: Annotations
Total running time of the script: (0 minutes 5.111 seconds)

2.6.2 Text properties and layout

Controlling properties of text and its layout with Matplotlib.

Aprﬂj .

matplotlib.text.Text instances have a variety of properties which can be configured via keyword

arguments to set_title, set_xlabel, text, etc.

326

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Property Value Type

alpha float

backgroundcolor any matplotlib color

bbox Rectangle prop dict plus key 'pad’' which is a pad in points

clip_box a matplotlib.transform.Bbox instance

clip_on bool

clip_path a Path instance and a Transforminstance, a Patch

color any matplotlib color

family ['serif' | 'sans-serif' | ‘'cursive' | 'fantasy' |
'monospace’ |

fontproperties FontProperties

horizontalalignment or | ['center' | 'right'| 'left']

ha

label any string

linespacing float

multialignment ["left' | 'right' | 'center']

name or fontname string e.g., ['Sans' | 'Courier' | 'Helvetica' ..]

picker [Nonelfloatlboollcallable]

position x,y)

rotation [angle in degrees | 'vertical' | '"horizontal']

size or fontsize [size in points | relative size, e.g., 'smaller', 'x-large']

style or fontstyle ['"normal'l 'italic'l 'oblique']

text string or anything printable with '%s' conversion

transform Transformsubclass

variant ['normal'l 'small-caps']

verticalalignmentor va | ['center'| 'top' | 'bottom' | 'baseline']

visible bool

weight or fontweight ["normal'l'bold'l'heavy'l'light'|'ultrabold'| 'ultra-
light']

X float

y float

zorder any number

You can lay out text with the alignment arguments horizontalalignment, verticalalignment,
and multialignment. horizontalalignment controls whether the x positional argument for the
text indicates the left, center or right side of the text bounding box. verticalalignment controls
whether the y positional argument for the text indicates the bottom, center or top side of the text bound-
ing box. multialignment, for newline separated strings only, controls whether the different lines are
left, center or right justified. Here is an example which uses the text () command to show the various
alignment possibilities. The use of transform=ax.transAxes throughout the code indicates that the
coordinates are given relative to the axes bounding box, with (0, 0) being the lower left of the axes and (1,
1) the upper right.

import matplotlib.pyplot as plt
import matplotlib.patches as patches

(continues on next page)

2.6. Text 327

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Matplotlib, Release 3.4.3

(continued from previous page)

build a rectangle in axes coords
left, width = .25, .5

bottom, height = .25, .5

right = left + width

top = bottom + height

fig = plt.figure()
ax = fig.add_axes ([0, 0, 1, 11)

axes coordinates: (0, 0) is bottom left and (1, 1) is upper right
p = patches.Rectangle (

(left, bottom), width, height,

fill=False, transform=ax.transAxes, clip_on=False

)
ax.add_patch (p)

ax.text (left, bottom, 'left top',
horizontalalignment="'left',
verticalalignment="top"',
transform=ax.transAxes)

ax.text (left, bottom, 'left bottom',
horizontalalignment="'left',
verticalalignment="bottom',
transform=ax.transAxes)

ax.text (right, top, 'right bottom',
horizontalalignment="right',
verticalalignment="bottom',
transform=ax.transAxes)

ax.text (right, top, 'right top',
horizontalalignment='"right',
verticalalignment="'top',
transform=ax.transAxes)

ax.text (right, bottom, 'center top',
horizontalalignment='center',
verticalalignment="'top',
transform=ax.transAxes)

ax.text (left, 0.5* (bottom+top), 'right center',
horizontalalignment='right',
verticalalignment="'center',
rotation='vertical',
transform=ax.transAxes)

ax.text (left, 0.5* (bottom+top), 'left center',
horizontalalignment="'left',
verticalalignment="center',
rotation='vertical',

(continues on next page)

328 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

(continued from previous page)

transform=ax.transAxes)

ax.text (0.5% (left+right), 0.5%* (bottomt+top), 'middle’,
horizontalalignment="'center',
verticalalignment='center',
fontsize=20, color='red',
transform=ax.transAxes)

ax.text (right, 0.5* (bottom+top), 'centered',
horizontalalignment='center',
verticalalignment='center',
rotation='vertical',
transform=ax.transAxes)

ax.text (left, top, 'rotated\nwith newlines',
horizontalalignment='center',
verticalalignment="'center',
rotation=45,
transform=ax.transAxes)

ax.set_axis_off ()
plt.show()

&, & _
@ right bottom
g
S F rght top
&
b
Lo P
= : 3
S middle g
£ = di
=yl 1]
[
left bottom
eft top center top

2.6. Text 329

Matplotlib, Release 3.4.3

2.6.3 Default Font

The base default font is controlled by a set of rcParams. To set the font for mathematical expressions, use
the rcParams beginning with mathtext (see mathtext).

rcParam usage

'font. List of either names of font or {'cursive', 'fantasy', 'monospace’,
family' 'sans', 'sans serif', 'sans-serif', 'serif'}.

'font. The default style, ex 'normal’', 'italic’.

style'

'font. Default variant, ex 'normal', 'small-caps' (untested)

variant'

'font. Default stretch, ex 'normal’', 'condensed' (incomplete)

stretch'’

'font. Default weight. Either string or integer

weight'

'font. Default font size in points. Relative font sizes (' large', 'x—small"') are computed
size' against this size.

The mapping between the family aliases ({ 'cursive', 'fantasy', 'monospace', 'sans',

'sans serif', 'sans-serif', 'serif'})and actual fontnames is controlled by the following
rcParams:

family alias rcParam with mappings
'serif' 'font.serif'
'monospace’ 'font .monospace'
'fantasy' 'font.fantasy'
'cursive' 'font.cursive'
{'sans', 'sans serif', 'sans-serif'} 'font.sans-serif'

which are lists of font names.

Text with non-latin glyphs
As of v2.0 the default font, DejaVu, contains glyphs for many western alphabets, but not other scripts, such
as Chinese, Korean, or Japanese.

To set the default font to be one that supports the code points you need, prepend the font name to ' font.
family"' or the desired alias lists

matplotlib.rcParams|['font.sans-serif'] = ['Source Han Sans TW', 'sans-serif']

or setitin your .matplotlibrc file:

font.sans-serif: Source Han Sans TW, Arial, sans-serif

330 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

To control the font used on per-artist basis use the 'name', 'fontname' or 'fontproperties'
kwargs documented above.

On linux, fc-list can be a useful tool to discover the font name; for example

$ fc-1list :lang=zh family

Noto to Sans Mono CJK TC,Noto Sans Mono CJK TC Bold
Noto Sans CJK TC,Noto Sans CJK TC Medium

Noto Sans CJK TC,Noto Sans CJK TC DemiLight

Noto Sans CJK KR,Noto Sans CJK KR Black

Noto Sans CJK TC,Noto Sans CJK TC Black

Noto Sans Mono CJK TC,Noto Sans Mono CJK TC Regular
Noto Sans CJK SC,Noto Sans CJK SC Light

lists all of the fonts that support Chinese.

2.6.4 Annotations

Annotating text with Matplotlib.

Table of Contents

e Annotations

— Basic annotation

— Advanced Annotations
x Annotating with Text with Box
* Annotating with Arrow
% Placing Artist at the anchored location of the Axes
x Using Complex Coordinates with Annotations
* Using ConnectionPatch

— Advanced Topics

x Zoom effect between Axes

* Define Custom BoxStyle

2.6. Text 331

https://linux.die.net/man/1/fc-list

Matplotlib, Release 3.4.3

Basic annotation

The uses of the basic text () will place text at an arbitrary position on the Axes. A common use case of text
is to annotate some feature of the plot, and the annotate () method provides helper functionality to make
annotations easy. In an annotation, there are two points to consider: the location being annotated represented
by the argument xy and the location of the text xyfext. Both of these arguments are (x, vy) tuples.

2.0

1.5 4 local max

104

0.5 1

0.0 4

—~1.04

154

-2.0 T T T T T T

Fig. 23: Annotation Basic

In this example, both the xy (arrow tip) and xytext locations (text location) are in data coordinates. There
are a variety of other coordinate systems one can choose -- you can specify the coordinate system of xy and
xytext with one of the following strings for xycoords and textcoords (default is 'data’)

argument coordinate system

'figure points' points from the lower left corner of the figure
'figure pixels' pixels from the lower left corner of the figure
'figure fraction' | (0, 0) is lower left of figure and (1, 1) is upper right
'axes points' points from lower left corner of axes

'axes pixels' pixels from lower left corner of axes

'axes fraction' | (0, 0) is lower left of axes and (1, 1) is upper right
'data’ use the axes data coordinate system

For example to place the text coordinates in fractional axes coordinates, one could do:

ax.annotate ('local max', xy=(3, 1), xycoords="data',
xytext=(0.8, 0.95), textcoords='axes fraction',
arrowprops=dict (facecolor="'black', shrink=0.05),
horizontalalignment='right', verticalalignment='top',

)

For physical coordinate systems (points or pixels) the origin is the bottom-left of the figure or axes.

Optionally, you can enable drawing of an arrow from the text to the annotated point by giving a dictionary
of arrow properties in the optional keyword argument arrowprops.

332 Chapter 2. Tutorials

../../gallery/pyplots/annotation_basic.html

Matplotlib, Release 3.4.3

arrowprops key | description

width the width of the arrow in points

frac the fraction of the arrow length occupied by the head

headwidth the width of the base of the arrow head in points

shrink move the tip and base some percent away from the annotated point and text
**kwargs any key for matplotlib.patches.Polygon,e.g., facecolor

In the example below, the xy point is in native coordinates (xycoords defaults to 'data’). For a polar axes,
this is in (theta, radius) space. The text in this example is placed in the fractional figure coordinate system.
matplotlib.text. Text keyword arguments like horizontalalignment, verticalalignment and fontsize
are passed from annotate to the Text instance.

a polar annotation 270°

Fig. 24: Annotation Polar

For more on all the wild and wonderful things you can do with annotations, including fancy arrows, see
Advanced Annotations and /gallery/text_labels_and_annotations/annotation_demo.

Do not proceed unless you have already read Basic annotation, text () and annotate ()!

Advanced Annotations

Annotating with Text with Box

Let's start with a simple example.

text takes a bbox keyword argument, which draws a box around the text:

t = ax.text(
0, 0, "Direction", ha="center", wva="center", rotation=45, size=15,
bbox=dict (boxstyle="rarrow,pad=0.3", fc="cyan", ec="b", 1lw=2))

The patch object associated with the text can be accessed by:

2.6. Text 333

../../gallery/pyplots/annotation_polar.html

Matplotlib, Release 3.4.3

2] ’ «” Sample B |

°
a® ®

Fig. 25: Annotate Text Arrow

bb = t.get_bbox_patch ()

The return value is a FancyBboxPat ch; patch properties (facecolor, edgewidth, etc.) can be accessed and

modified as usual. FancyBboxPatch.set_boxstyle sets the box shape:

bb.set_boxstyle("rarrow",

pad=0.6)

The arguments are the name of the box style with its attributes as keyword arguments. Currently, following

box styles are implemented.

Class Name Attrs

Circle circle pad=0.3

DArrow darrow pad=0.3

LArrow larrow pad=0.3

RArrow rarrow pad=0.3

Round round pad=0.3,rounding_size=None
Round4 round4 pad=0.3,rounding_size=None
Roundtooth | roundtooth | pad=0.3,tooth_size=None
Sawtooth sawtooth pad=0.3,tooth_size=None
Square square pad=0.3

Note that the attribute arguments can be specified within the style name with separating comma (this form

can be used as "boxstyle" value of bbox argument when initializing the text instance)

bb.set_boxstyle ("rarrow,pad=0.6")

334

Chapter 2. Tutorials

../../gallery/userdemo/annotate_text_arrow.html

Matplotlib, Release 3.4.3

round

roundtooth

sawtooth

1 e

square

Fig. 26: Fancybox Demo

Annotating with Arrow

annotate draws an arrow connecting two points in an axes:

ax.annotate ("Annotation",
xy=(x1, yl), xycoords='data',
xytext=(x2, y2), textcoords='offset points',
)

This annotates a point at xy in the given coordinate (xycoords) with the text at xytext given in textcoords.
Often, the annotated point is specified in the data coordinate and the annotating text in offset points. See
annotate for available coordinate systems.

An arrow connecting xy to xyfext can be optionally drawn by specifying the arrowprops argument. To draw
only an arrow, use empty string as the first argument.

ax.annotate ("",
xy=(0.2, 0.2), xycoords='data',
xytext=(0.8, 0.8), textcoords='data',
arrowprops=dict (arrowstyle="->",
connectionstyle="arc3"),

)

The arrow is drawn as follows:

1. A path connecting the two points is created, as specified by the connectionstyle parameter.

2.6. Text 335

../../gallery/shapes_and_collections/fancybox_demo.html

Matplotlib, Release 3.4.3

1.0

0.8 4

0.6 4

0.4 4

0.2 4

0.0

0.0 0:2 0.‘4 0.‘6 0.‘8 10
Fig. 27: Annotate SimpleO1
2. The path is clipped to avoid patches patchA and patchB, if these are set.

3. The path is further shrunk by shrinkA and shrinkB (in pixels).

4. The path is transmuted to an arrow patch, as specified by the arrowstyle parameter.

connect cip

shrink mutate

Fig. 28: Annotate Explain

The creation of the connecting path between two points is controlled by connectionstyle key and the
following styles are available.

Name Atirs
angle angleA=90,angleB=0,rad=0.0
angle3 | angleA=90,angleB=0

arc angleA=0,angleB=0,armA=None,armB=None,rad=0.0
arc3 rad=0.0
bar armA=0.0,armB=0.0,fraction=0.3,angle=None

Note that "3" in angle3 and arc3 is meant to indicate that the resulting path is a quadratic spline segment
(three control points). As will be discussed below, some arrow style options can only be used when the
connecting path is a quadratic spline.

The behavior of each connection style is (limitedly) demonstrated in the example below. (Warning: The
behavior of the bar style is currently not well defined, it may be changed in the future).

336 Chapter 2. Tutorials

../../gallery/userdemo/annotate_simple01.html
../../gallery/userdemo/annotate_explain.html

Matplotlib, Release 3.4.3

angle3, arc3, angle, arc, bar,
angleA=90, rad=0. angleA=-90, angleA=-90, fraction=0.3 .
angleB=0 angleB=180, angleB=0, N\
H . rad=0 . armA=30,
/ armB=30, p
/ rad=0 /
r)
angle3, arc3, angle, arc, bar,
angleA=0, rad=0.3 angleA=-90, angleA=-90, fraction=-0.3
angleB=90 angleB=180, angleB=0,
_— " rad=5 [3 armA=30,
Vs armB=30,
4 = S
! / rad=5 P
. - — -
arc3, angle, arc, bar,
rad=-0.3 angleA=-90, angleA=-90, angle=180,
angleB=10, angleB=0, fraction=-0.2
. rad=5 . armA=0, . .
/ armB=40, /
V4 rad=0 Vi
e g .(:_7_7_7_,.7 »— / .

Fig. 29: Connectionstyle Demo

The connecting path (after clipping and shrinking) is then mutated to an arrow patch, according to the given
arrowstyle.

Name Attrs

- None

—> head_length=0.4,head_width=0.2

- widthB=1.0,lengthB=0.2,angleB=None

|- widthA=1.0,widthB=1.0

- > head_length=0.4,head_width=0.2

<- head_length=0.4,head_width=0.2

<—> head_length=0.4,head_width=0.2

<|- head_length=0.4,head_width=0.2

<|-1> head_length=0.4,head_width=0.2

fancy head_length=0.4,head_width=0.4,tail_width=0.4
simple | head_length=0.5head_width=0.5,tail_width=0.2
wedge tail_width=0.3,shrink_factor=0.5

Some arrowstyles only work with connection styles that generate a quadratic-spline segment. They are
fancy, simple, and wedge. For these arrow styles, you must use the "angle3" or "arc3" connection
style.

If the annotation string is given, the patchA is set to the bbox patch of the text by default.
As with text, a box around the text can be drawn using the bbox argument.

By default, the starting point is set to the center of the text extent. This can be adjusted with relpos key
value. The values are normalized to the extent of the text. For example, (0, 0) means lower-left corner and
(1, 1) means top-right.

2.6. Text 337

../../gallery/userdemo/connectionstyle_demo.html

Matplotlib, Release 3.4.3

[—e® [<l>]+—®
]—® [—e
[—e (e
(-] —e® [fancy|=— @
—e [simple]— @
>—e® [wedge]— @
<1—e® e

Fig. 30: Fancyarrow Demo

1.0

0.8 Test

0.6 4

0.4 4

0.2 4

0.0

Fig. 31: Annotate Simple02

1.0

0.8

0.6

0.4 4

0.2 4

0.0

T T T T
0.0 02 04 06 08 1.0

Fig. 32: Annotate Simple03

1.0

0.8

0.6 4

0.4 4

0.2 4

0.0

T T T T
0.0 02 04 06 08 1.0

Fig. 33: Annotate Simple04

338

Chapter 2. Tutorials

../../gallery/text_labels_and_annotations/fancyarrow_demo.html
../../gallery/userdemo/annotate_simple02.html
../../gallery/userdemo/annotate_simple03.html
../../gallery/userdemo/annotate_simple04.html

Matplotlib, Release 3.4.3

Placing Artist at the anchored location of the Axes

There are classes of artists that can be placed at an anchored location in the Axes. A common example is the
legend. This type of artist can be created by using the Of fset Box class. A few predefined classes are avail-
able in matplotlib.offsetboxandin mpl_toolkits.axes_gridl.anchored_artists.

from matplotlib.offsetbox import AnchoredText
at = AnchoredText ("Figure 1a",
prop=dict (size=15), frameon=True,
loc="upper left',
)
at.patch.set_boxstyle ("round, pad=0., rounding_size=0.2")
ax.add_artist (at)

1.0

0.6

0.4 4

0.2 4

0.0 T T T T
0.0 02 04 06 08 1.0

Fig. 34: Anchored Box01

The loc keyword has same meaning as in the legend command.

A simple application is when the size of the artist (or collection of artists) is known in pixel size during the
time of creation. For example, If you want to draw a circle with fixed size of 20 pixel x 20 pixel (radius =
10 pixel), you can utilize AnchoredDrawingArea. The instance is created with a size of the drawing
area (in pixels), and arbitrary artists can added to the drawing area. Note that the extents of the artists that
are added to the drawing area are not related to the placement of the drawing area itself. Only the initial size
matters.

from mpl_toolkits.axes_gridl.anchored_artists import AnchoredDrawingArea

ada AnchoredDrawingArea (20, 20, 0, O,
loc="upper right', pad=0., frameon=False)
pl = Circle((10, 10), 10)
ada.drawing_area.add_artist (pl)
p2 = Circle((30, 10), 5, fc="r")

ada.drawing_area.add_artist (p2)

The artists that are added to the drawing area should not have a transform set (it will be overridden) and
the dimensions of those artists are interpreted as a pixel coordinate, i.e., the radius of the circles in above
example are 10 pixels and 5 pixels, respectively.

Sometimes, you want your artists to scale with the data coordinate (or coordinates other than canvas pixels).
You can use AnchoredAuxTransformBox class. This is similar to AnchoredDrawingArea except
that the extent of the artist is determined during the drawing time respecting the specified transform.

2.6. Text 339

../../gallery/userdemo/anchored_box01.html

Matplotlib, Release 3.4.3

1.0

0.8 4
0.6 4
0.4 4

0.2 4

0.0

T T T T
0.0 02 04 06 08 1.0

Fig. 35: Anchored Box02

from mpl_toolkits.axes_gridl.anchored_artists import AnchoredAuxTransformBox

box = AnchoredAuxTransformBox (ax.transData, loc='upper left')
el = Ellipse((0, 0), width=0.1, height=0.4, angle=30) # in data coordinates!
box.drawing_area.add_artist (el)

The ellipse in the above example will have width and height corresponding to 0.1 and 0.4 in data coordinates
and will be automatically scaled when the view limits of the axes change.

1.0
0.8 | \
0.6 -

0.4 4

0.2 4

0.0 T T T T
0.0 02 04 06 08 1.0

Fig. 36: Anchored Box03

As in the legend, the bbox_to_anchor argument can be set. Using the HPacker and VPacker, you can have
an arrangement(?) of artist as in the legend (as a matter of fact, this is how the legend is created).

Test: o =

1.0

0.8 4

0.6

0.4 1

0.2 4

0.0 T T T T
0.0 02 04 06 08 1.0

Fig. 37: Anchored Box04

Note that unlike the legend, the bbox_transform is set to IdentityTransform by default.

340 Chapter 2. Tutorials

../../gallery/userdemo/anchored_box02.html
../../gallery/userdemo/anchored_box03.html
../../gallery/userdemo/anchored_box04.html

Matplotlib, Release 3.4.3

Using Complex Coordinates with Annotations

The Annotation in matplotlib supports several types of coordinates as described in Basic annotation. For an
advanced user who wants more control, it supports a few other options.

1. A Transforminstance. For example,

ax.annotate ("Test", xy=(0.5, 0.5), xycoords=ax.transAxes)

1s identical to

ax.annotate ("Test", xy=(0.5, 0.5), xycoords="axes fraction")

This allows annotating a point in another axes:

fig, (axl, ax2) = plt.subplots(l, 2)

ax2.annotate ("Test", xy=(0.5, 0.5), xycoords=axl.transData,
xytext=(0.5, 0.5), textcoords=ax2.transData,
arrowprops=dict (arrowstyle="->"))

2. An Artist instance. The xy value (or xyfext) is interpreted as a fractional coordinate of the bbox
(return value of get_window_extent) of the artist:

anl = ax.annotate("Test 1", xy=(0.5, 0.5), xycoords="data",
va="center", ha="center",
bbox=dict (boxstyle="round", fc="w"))
an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=anl, # (1, 0.5) of.
~the anl's bbox
xytext=(30, 0), textcoords="offset points",
va="center", ha="left",
bbox=dict (boxstyle="round", fc="w"),
arrowprops=dict (arrowstyle="->"))

1.0
0.8
0.6

0.4 1
0.2 4

0.0

T T T T
0.0 02 04 06 08 1.0

Fig. 38: Annotation with Simple Coordinates

Note that you must ensure that the extent of the coordinate artist (an/ in above example) is determined
before an2 gets drawn. Usually, this means that an2 needs to be drawn after an/.

3. A callable object that takes the renderer instance as single argument, and returns eithera Transform
or a BboxBase. The return value is then handled as in (1), for transforms, or in (2), for bboxes. For
example,

an2 = ax.annotate("Test 2", xy=(1, 0.5), xycoords=anl,
xytext=(30, 0), textcoords="offset points")

2.6. Text 341

../../gallery/userdemo/annotate_simple_coord01.html

Matplotlib, Release 3.4.3

1s identical to:

an2 = ax.annotate ("Test 2", xy=(1, 0.5), xycoords=anl.get_window_extent,
xytext=(30, 0), textcoords="offset points")

4. A pair of coordinate specifications -- the first for the x-coordinate, and the second is for the y-
coordinate; e.g.

annotate ("Test", xy=(0.5, 1), xycoords=("data", "axes fraction"))

Here, 0.5 is in data coordinates, and 1 is in normalized axes coordinates. Each of the coordinate
specifications can also be an artist or a transform. For example,

1.0 }
0.8
0.6 |

0.4

0.2 1

0.0 T T T T
0.0 02 04 06 08 1.0

Fig. 39: Annotation with Simple Coordinates 2

5. Sometimes, you want your annotation with some "offset points", not from the annotated point but from
some other point. text.OffsetFromis a helper for such cases.

1.0

0.8 4

0.6

0.4 4

0.2 1

0.0 T T T T

Fig. 40: Annotation with Simple Coordinates 3

You may take a look at this example /gallery/text_labels_and_annotations/annotation_demo.

Using ConnectionPatch

ConnectionPatch is like an annotation without text. While annotate is sufficient in most situations, Con-
nectionPatch is useful when you want to connect points in different axes.

from matplotlib.patches import ConnectionPatch

xy = (0.2, 0.2)

con = ConnectionPatch (xyA=xy, coordsA=axl.transData,
xyB=xy, coordsB=ax2.transData)

fig.add_artist (con)

The above code connects point xy in the data coordinates of ax1 to point xy in the data coordinates of ax2.
Here is a simple example.

342 Chapter 2. Tutorials

../../gallery/userdemo/annotate_simple_coord02.html
../../gallery/userdemo/annotate_simple_coord03.html

Matplotlib, Release 3.4.3

1.0 05

0.8 - . 0.4

0.6 0.3

0.4 02 __—
-

02{ & — | 0.1

0.0 —— 0.0 ———————

00 02 04 06 08 10 00 01 02 03 04 05

Fig. 41: Connect Simple0O1

Here, we added the ConnectionPatch to the figure (with add_art ist) rather than to either axes: this
ensures that it is drawn on top of both axes, and is also necessary if using constrained_layout for positioning
the axes.

Advanced Topics

Zoom effect between Axes

mpl_toolkits.axes_gridl.inset_locator defines some patch classes useful for interconnect-
ing two axes. Understanding the code requires some knowledge of Matplotlib's transform system.

10 10
0.8 0.8 |
0.6 0.6
0.4 0.4
0.2 0.2

0.0 T T 0.0, T T T
0.0D/J.ZSMS 1.06°2.00 2.25 75 3.00
10

0.8 4

0.6

0.4 4

0.2 4

0.0 T T T T
0 1 2 3 4 5

Fig. 42: Axes Zoom Effect

2.6. Text 343

../../gallery/userdemo/connect_simple01.html
../../gallery/subplots_axes_and_figures/axes_zoom_effect.html

Matplotlib, Release 3.4.3

Define Custom BoxStyle

You can use a custom box style. The value for the boxstyle can be a callable object in the following
forms.:

def _ _call_ (self, x0, y0, width, height, mutation_size,
aspect_ratio=1.):
Given the location and size of the box, return the path of
the box around 1it.

- *x0*, *y0*, *width*, *height* : location and size of the box
- *mutation_size* : a reference scale for the mutation.
- *aspect_ratio* : aspect-ratio for the mutation.

path =
return path

Here is a complete example.

1.0

0.8 4

To<est

0.2 4

0.0

T T T T
0.0 02 04 06 08 1.0

Fig. 43: Custom BoxstyleO1

Similarly, you can define a custom ConnectionStyle and a custom ArrowStyle. See the source code of 1ib/
matplotlib/patches.py and check how each style class is defined.

2.6.5 Writing mathematical expressions

An introduction to writing mathematical expressions in Matplotlib.
You can use a subset TeX markup in any matplotlib text string by placing it inside a pair of dollar signs ($).

Note that you do not need to have TeX installed, since Matplotlib ships its own TeX expression parser, layout
engine, and fonts. The layout engine is a fairly direct adaptation of the layout algorithms in Donald Knuth's
TeX, so the quality is quite good (matplotlib also provides a usetex option for those who do want to call
out to TeX to generate their text (see Text rendering With LaTeX).

Any text element can use math text. You should use raw strings (precede the quotes with an 'r'), and
surround the math text with dollar signs ($), as in TeX. Regular text and mathtext can be interleaved within
the same string. Mathtext can use DejaVu Sans (default), DejaVu Serif, the Computer Modern fonts (from
(La)TeX), STIX fonts (with are designed to blend well with Times), or a Unicode font that you provide.

344 Chapter 2. Tutorials

../../gallery/userdemo/custom_boxstyle01.html
http://www.stixfonts.org/

Matplotlib, Release 3.4.3

The mathtext font can be selected with the customization variable mathtext . fontset (see Customizing
Matplotlib with style sheets and rcParams)

Here is a simple example:

plain text
plt.title('alpha > beta')

produces "alpha > beta".

Whereas this:

math text
plt.title(r'$\alpha > \betas$'")

produces "a > f".

Note: Mathtext should be placed between a pair of dollar signs ($). To make it easy to display monetary
values, e.g., "$100.00", if a single dollar sign is present in the entire string, it will be displayed verbatim as a
dollar sign. This is a small change from regular TeX, where the dollar sign in non-math text would have to
be escaped (\$").

Note: While the syntax inside the pair of dollar signs ($) aims to be TeX-like, the text outside does not. In
particular, characters such as:

#5588 & ~_ "N A FANCN) N \]

have special meaning outside of math mode in TeX. Therefore, these characters will behave differently de-
pending on rcParams ["text .usetex"] (default: False). See the usetex tutorial for more informa-
tion.

Subscripts and superscripts

To make subscripts and superscripts, use the ' _' and '~ ' symbols:

r'$\alpha_i > \beta_i$'

a; > f;
To display multi-letter subscripts or superscripts correctly, you should put them in curly braces { . . . }:
r'$\alpha” > \beta_ St

aic > ﬂic

Some symbols automatically put their sub/superscripts under and over the operator. For example, to write
the sum of x; from O to oo, you could do:

2.6. Text 345

../../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

r'$\sum_{i=0}"\infty x_1i$"

oo
2%

i=0

Fractions, binomials, and stacked numbers

Fractions, binomials, and stacked numbers can be created with the \frac{}{}, \binom{}{} and \
genfrac{}{}{}{}{}{} commands, respectively:

r'$S\frac \binom \genfrac S’

produces

Fractions can be arbitrarily nested:

r'$S\frac{5 - \frac } S

produces

Note that special care needs to be taken to place parentheses and brackets around fractions. Doing things the
obvious way produces brackets that are too small:

r'$(\frac{5 - \frac })S!

The solution is to precede the bracket with \1eft and \right to inform the parser that those brackets
encompass the entire object.:

r'$\left (\frac{5 - \frac } \right)$'

346 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Radicals

Radicals can be produced with the \sgrt [] { } command. For example:

r'S$\sqgrt S’

V2

Any base can (optionally) be provided inside square brackets. Note that the base must be a simple expression,
and can not contain layout commands such as fractions or sub/superscripts:

r'$\sqrt[3] $!

Ux
Fonts

The default font is italics for mathematical symbols.

Note: This default can be changed using rcParams ["mathtext.default"] (default: 'it"). This
is useful, for example, to use the same font as regular non-math text for math text, by setting it to regular.

To change fonts, e.g., to write "sin" in a Roman font, enclose the text in a font command:

r'$Ss(t) = \mathcal \mathrm (2 \omega t)s'

s(t) = AsinRwt)

More conveniently, many commonly used function names that are typeset in a Roman font have shortcuts.
So the expression above could be written as follows:

r'$Ss(t) = \mathcal \sin (2 \omega t)$'

s(t) = of sinwt)

Here "s" and "t" are variable in italics font (default), "sin" is in Roman font, and the amplitude "A" is in
calligraphy font. Note in the example above the calligraphy A is squished into the sin. You can use a
spacing command to add a little whitespace between them:

r's(t) = \mathcal \/\sin (2 \omega t)'

s(t) = o sinQQeot)

The choices available with all fonts are:

2.6. Text 347

../../tutorials/introductory/customizing.html?highlight=mathtext.default#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Command Result
\mathrm{Roman} Roman
\mathit{Italic} Italic
\mathtt{Typewriter} Typewriter
\mathcal {CALLIGRAPHY} | CALL IFECRAPH Y

When using the STIX fonts, you also have the choice of:

Command Result
\mathbb{blackboard} blackboard
\mathrm{\mathbb{blackboard}} | blackboard
\mathfrak{Fraktur} BFraftur
\mathsf{sansserif} sansserif
\mathrm{\mathsf{sansserif}} sansserif

There are also five global "font sets" to choose from, which are selected using the mathtext.fontset

parameter in matplotlibre.

dejavusans: DejaVu Sans

ﬁ - sin 27rfx

i=a

dejavuserif: DejaVu Serif

R | | a;sin (27 fx;)

—

I
K

cm: Computer Modern (TeX)

R

—

a; sin (27rfx,~)

=

stix: STIX (designed to blend well with Times)

R

—

a;sin (27 fx;)

I=x

stixsans: STIX sans-serif

% [asin (271x;)

]
K

2.1)

2.2)

2.3)

24)

(2.5)

348

Chapter 2. Tutorials

http://www.stixfonts.org/

Matplotlib, Release 3.4.3

Additionally, you can use \mathdefault{. ..} oritsalias \mathregular{. ..} touse the font used
for regular text outside of mathtext. There are a number of limitations to this approach, most notably that far
fewer symbols will be available, but it can be useful to make math expressions blend well with other text in
the plot.

Custom fonts

mathtext also provides a way to use custom fonts for math. This method is fairly tricky to use, and
should be considered an experimental feature for patient users only. By setting rcParams ["mathtext.
fontset"] (default: 'dejavusans') to custom, you can then set the following parameters, which
control which font file to use for a particular set of math characters.

Parameter Corresponds to

mathtext.it \mathit{} or default italic
mathtext.rm \mathrm{ } Roman (upright)
mathtext.tt \mathtt{} Typewriter (monospace)
mathtext.bf \mathbf {} bold italic
mathtext.cal | \mathcal{} calligraphic
mathtext .sf \mathsf{} sans-serif

Each parameter should be set to a fontconfig font descriptor (as defined in the yet-to-be-written font chapter).

The fonts used should have a Unicode mapping in order to find any non-Latin characters, such as Greek. If you
want to use a math symbol that is not contained in your custom fonts, you can set rcParams ["mathtext .
fallback"] (default: "cm') to either 'cm', 'stix' or 'stixsans' which will cause the mathtext
system to use characters from an alternative font whenever a particular character can not be found in the
custom font.

Note that the math glyphs specified in Unicode have evolved over time, and many fonts may not have glyphs
in the correct place for mathtext.

2.6. Text 349

../../tutorials/introductory/customizing.html?highlight=mathtext.fontset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=mathtext.fontset#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=mathtext.fallback#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=mathtext.fallback#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Accents

An accent command may precede any symbol to add an accent above it. There are long and short forms for
some of them.

Command Result
\acute aor\'a
\bar a

\breve a
\ddot aor\''a
\dot aor\.a
\grave aor\ a
\hat aor\"a
\tilde aor\~a
\vec a

|Ql V| | Q| Q| Q| Q| Q1|

\overline{abc} | abc

In addition, there are two special accents that automatically adjust to the width of the symbols below:

Command Result
\widehat{xyz} Xyz

\widetilde{xyz} Q?Z

Care should be taken when putting accents on lower-case i's and j's. Note that in the following \imath is
used to avoid the extra dot over the i:

r"$\hat i\ \ \hat \imathS$"

Symbols

You can also use a large number of the TeX symbols, as in \infty, \leftarrow, \sum, \int.

Lower-case Greek

350 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

a\alpha | fp\beta | x \chi 0 \delta F \digamma e \epsilon

n \eta Y \ | 1\iota kK \kappa A\lambda P \mu
gamma

v\nu ® \ | ¢ \phi n \pi Y \psi p \rho
omega

c \sigma | T \tau 0 \theta | v\upsilon | & \ | x \

varepsilon varkappa

() \ | @ \ | \ | g \ | 9 \vartheta | &\xi

varphi varpi varrho varsigma

{\zeta

Upper-case Greek

A \ | I'\Gamma | A \ | Q \ | ®\Phi | II Y z \
Delta Lambda Omega \Pi \Psi | Sigma
® N\ | Y \ | E\X1 O \mho | V \
Theta Upsilon nabla

Hebrew

’ N \aleph ‘ J \beth ‘ T \daleth ‘ A\gimel ‘

Delimiters

!/ [[U N \ ||l \Vert \ \
Downarrow | Uparrow backslash
l \ || \ | [\lceil | \1floor | . \ | \
downarrow | langle llcorner | lrcorner
Y \rangle] \ |] \rfloor r N1 \ |7 \
rceil ulcorner | uparrow urcorner

[\vert { \{ [\ | }\} 11 |]

Big symbols
N v U VO \ | D V| ® \ \
bigcap bigcup bigodot bigoplus bigotimes biguplus

V \ A \ T \ | [\int ¢ \oint I] \prod

bigvee bigwedge coprod
Y, \sum

Standard function names

2.6. Text 351

Matplotlib, Release 3.4.3

Pr\pPr arccos \ | arcsin \ | arctan \ | arg \arg | cos
arccos arcsin arctan \cos
cosh cot \cot coth \coth csc \csc deg \deg | det
\cosh \det
dim \dim | exp \exp gcd \gcd hom \hom inf \inf | ker
\ker
Ig\1g lim \1im liminf \ | limsup \ | In\1n log
liminf limsup \log
max \max | min \min sec \sec sin \sin sinh sup
\sinh \sup
tan \tan tanh \tanh
Binary operation and relation symbols
= \Bumpeq m \Cap U \Cup = \Doteqg
D] \Join € \Subset 5 \Supset IF \vdash
lIF \Vvdash ~ \approx & \approxeq * \ast
= \asymp 9 \backepsilon «~ \backsim » \backsimeq
A\barwedge " \because § \between O \bigcirc
V \bigtriangledown | A \bigtriangleup | € \blacktriangleleft | pp\blacktriangleright
1 \bot M \bowtie [[] \boxdot H \boxminus
H \boxplus X \boxtimes e\bullet = \bumpeq
N \cap -\cdot o\circ = \circeq
:= \coloneq ~ \cong U \cup Z \curlyegprec
> \curlyegsucc Y \curlyvee A \curlywedge T \dag
< \dashv ¥ \ddag o \diamond +\div
% \divideontimes = \doteq = \dotegdot + \dotplus
A \doublebarwedge = \eqcirc =: \egcolon ~ \egsim
> \egslantgtr Z \eqgslantless = \equiv =\fallingdotseq
~ \frown > \geq 2 \geqq > \gegslant
> \gg >> \ggg % \gnapprox Z \gneqq
> \gnsim % \gtrapprox > \gtrdot = \gtregless
% \gtreqggless Z \gtrless 2 \gtrsim € \in
T \intercal X \leftthreetimes | <\leqg <\leqgq
< \legslant S \lessapprox < \lessdot § \lesseqgtr
é\lesseqqgtr $ \lessgtr <\lesssim < \11
<« \111 ~ \lnapprox S \1lneqq < \1lnsim
X \1ltimes | \mid F \models F \mp
JE \nVDash ¥ \nvdash % \napprox % \ncong
\ne # \neq # \neq Z \nequiv
% \ngeg # \ngtr 5 \ni £ \nleg
£ \nless } \nmid ¢ \notin ¥ \nparallel
£ \nprec ~ \nsim ¢ \nsubset ¢ \nsubseteqg
continues on next pag
352 Chapter 2. Tutorials

Matplotlib, Release 3.4.3

Table 2 - continued from previous page

\nsucc ? \nsupset 2 \nsupseteq 4 \ntriangleleft
d\ntrianglelefteq | P \ntriangleright | \ntrianglerighteq ¥ \nvDash

¥ \nvdash ® \odot © \ominus ® \oplus

@ \oslash ® \otimes [\parallel 1L \perp

M \pitchfork + \pm < \prec = \precapprox

< \preccurlyeq < \preceq ~ \precnapprox < \precnsim

< \precsim « \propto A \rightthreetimes =\risingdotseq
X \rtimes ~\sim ~ \simeqg / \slash

— \smile M \sgcap L \sgcup C \sgsubset

C \sgsubset C \sgsubseteqg 1 \sgsupset O \sgsupset
Jd\sgsupseteq * \star C \subset C \subseteq

C \subseteqq

C \subsetneqg

G \subsetneqq

> \succ

% \succapprox

> \succcurlyeq

= \succeq

% \succnapprox

> \succnsim

> \succsim

D \supset

2 \supseteq

2 \supseteqq

2 \supsetneqg

2 \supsetneqq

S \therefore

X \times T \top <]\triangleleft <d\trianglelefteq

£ \triangleq [> \triangleright | B> \trianglerighteq W \uplus

E \vDash x \varpropto < \vartriangleleft > \vartriangleright
F \vdash VvV \vee V \veebar A \wedge

L\wWr

Arrow symbols

2.6. Text

353

Matplotlib, Release 3.4.3

{ \Downarrow & \Leftarrow = \ | €\Lleftarrow
Leftrightarrow

— \ | &= \ | = \ | 9\Lsh

Longleftarrow | Longleftrightarfzdwngrightarrow

2 \Nearrow RN \Nwarrow = \Rightarrow \
Rrightarrow

P \Rsh X\ \Searrow ¢ \Swarrow M \Uparrow

¢ A\ | O \ | O \ \

Updownarrow circlearrowleft | circlearrowright]y curvearrowleft

~ \ | - \ | - \ | | \downarrow

curvearrowrightdashleftarrow dashrightarrow

) \ Nl \ \

downdownarrowsg downharpoonleft | downharpoonright| hookleftarrow

3N \ | » \leadsto «— \leftarrow \

hookrightarrow leftarrowtail

— \ |~ \ | & \ \

leftharpoondoynleftharpoonup leftleftarrows leftrightarrow

s \ | = \ | o \ \

leftrightarroysleftrightharpoonsleftrightsquigayrbeftsquigarrow

— \ | «— \ | — \longmapsto | — \

longleftarrow| longleftrightarnrow longrightarrow

«f \ | P \ | » \mapsto — \multimap

looparrowleft | looparrowright

& \ | @ \ | # \nRightarrow /" \nearrow

nLeftarrow nLeftrightarrow

“«+ \ | +» \ | » \nrightarrow N\ \nwarrow

nleftarrow nleftrightarrow

- \ | = \ | — \ \

rightarrow rightarrowtail rightharpoondown rightharpoonup

2 \ | =2 \ | = \ \

rightleftarrowysrightleftarrows | rightleftharpoonsrightleftharpopns

3 \ | 3 \ |~ \ | \\ \searrow

rightrightarrowsightrightarrows rightsquigarrow

/ \swarrow — \to “« \ \

twoheadleftarrow twoheadrightarrow

T \uparrow ! \updownarrow ! \updownarrow \
upharpoonleft

i \ | 1 \upuparrows

upharpoonrighft

Miscellaneous symbols

354

Chapter 2. Tutorials

Matplotlib, Release 3.4.3

$1\$ A\aA 4\Finv O \Game

S \Im q\p R \Re §\s

Z\angle ‘\backprime * \bigstar [| \
blacksquare

A A 4 \ | -=- \cdots v \checkmark

blacktriangle | blacktriangledown

® \circledR

® \circleds

& \clubsuit

C \complement

© \copyright . \ddots O \ | Z\ell
diamondsuit

@ \emptyset d\eth J\exists b\flat

V\forall h \hbar Q \heartsuit Ai\hslash

JJ \iiint J \iint 1 \imath oo \infty

7 \jmath ... \1ldots A \ | B \natural
measuredangle

- \neg A\nexists fff \oiiint 0 \partial

"\prime f \sharp & \spadesuit <4 \

sphericalangle
B\ss v \triangledown @ \varnothing | A \vartriangle
! \vdots % \wp ¥ \yen

If a particular symbol does not have a name (as is true of many of the more obscure symbols in the STIX
fonts), Unicode characters can also be used:

r's\u23ces’

Example

Here is an example illustrating many of these features in context.

volts (mv)

a; > Bi

1.00 4

0.75

0.50

0.25 4

0.00 4

—0.25 A

—0.50 A

—0.75 A

—1.00 A

Asin(2w

2 Xi
i=0

T T T T
0.00 0.25 0.50 0.75

T
1.00
time (s)

T T T T
125 1.50 175 2.00

Fig. 44: Pyplot Mathtext

2.6. Text

355

../../gallery/pyplots/pyplot_mathtext.html

Matplotlib, Release 3.4.3

2.6.6 Typesetting With XeLaTeX/LuaLaTeX

How to typeset text with the pgf backend in Matplotlib.

Using the pgf backend, Matplotlib can export figures as pgf drawing commands that can be processed
with pdflatex, xelatex or lualatex. XeLaTeX and Lual.aTeX have full Unicode support and can use any
font that is installed in the operating system, making use of advanced typographic features of OpenType,
AAT and Graphite. Pgf pictures created by plt.savefig ('figure.pgf') can be embedded as raw
commands in LaTeX documents. Figures can also be directly compiled and saved to PDF with plt.
savefig ('figure.pdf') by switching the backend

matplotlib.use('pgf')

or by explicitly requesting the use of the pgf backend

plt.savefig('figure.pdf', backend='pgf'")

or by registering it for handling pdf output

from matplotlib.backends.backend_pgf import FigureCanvasPgf
matplotlib.backend_bases.register_backend('pdf', FigureCanvasPgf)

The last method allows you to keep using regular interactive backends and to save xelatex, lualatex or pdflatex
compiled PDF files from the graphical user interface.

Matplotlib's pgf support requires a recent LaTeX installation that includes the TikZ/PGF packages (such as
TeXLive), preferably with XeLaTeX or LuaLaTeX installed. If either pdftocairo or ghostscript is present on
your system, figures can optionally be saved to PNG images as well. The executables for all applications
must be located on your PATH.

rcParams that control the behavior of the pgf backend:

Parameter Documentation

pgf.preamble | Lines to be included in the LaTeX preamble
pgf.rcfonts Setup fonts from rc params using the fontspec package
pef.texsystem | Either "xelatex" (default), "lualatex" or "pdflatex"

Note: TeX defines a set of special characters, such as:

#5 % & ~_ "\ {}

Generally, these characters must be escaped correctly. For convenience, some characters (_, », %) are auto-
matically escaped outside of math environments.

356 Chapter 2. Tutorials

http://www.tug.org
http://www.tug.org/texlive/

Matplotlib, Release 3.4.3

Multi-Page PDF Files

The pgf backend also supports multipage pdf files using PdfPages

from matplotlib.backends.backend_pgf import PdfPages
import matplotlib.pyplot as plt

with PdfPages ('multipage.pdf', metadata={'author': 'Me'}) as pdf:

figl, axl = plt.subplots/()
axl.plot ([1, 5, 31)
pdf.savefig(figl)

fig2, ax2 = plt.subplots/()
ax2.plot ([1, 5, 31)
pdf.savefig(fig2)

Font specification

The fonts used for obtaining the size of text elements or when compiling figures to PDF are usually de-
fined in the rcParams. You can also use the LaTeX default Computer Modern fonts by clearing the lists
for rcParams ["font.serif"] (default: ['DejaVu Serif', 'Bitstream Vera Serif',
'Computer Modern Roman', 'New Century Schoolbook', 'Century Schoolbook
L', 'Utopia', 'ITC Bookman', 'Bookman', 'Nimbus Roman No9 L', 'Times New
Roman', 'Times', 'Palatino', 'Charter', 'serif']), rcParams/["font.sans-
serif"] (default: ['DejaVu Sans', 'Bitstream Vera Sans', 'Computer Modern
Sans Serif', 'Lucida Grande', 'Verdana', 'Geneva', 'Lucid', 'Arial',
'Helvetica', 'Avant Garde', 'sans-serif'])or rcParams/["font.monospace"]
(default: ['DejavVu Sans Mono', 'Bitstream Vera Sans Mono', 'Computer Modern
Typewriter', 'Andale Mono', 'Nimbus Mono L', 'Courier New', 'Courier',
'Fixed', 'Terminal', 'monospace']). Please note that the glyph coverage of these fonts is very
limited. If you want to keep the Computer Modern font face but require extended Unicode support, consider
installing the Computer Modern Unicode fonts CMU Serif, CMU Sans Serif, etc.

When saving to . pgf, the font configuration Matplotlib used for the layout of the figure is included in the
header of the text file.

mmn

mmn

import matplotlib.pyplot as plt
plt.rcParams.update ({
"font.family": "serif",
Use LaTeX default serif font.
"font.serif": [],

(continues on next page)

2.6. Text 357

../../tutorials/introductory/customizing.html?highlight=font.serif#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=font.sans\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} serif#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=font.sans\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} serif#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=font.monospace#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://sourceforge.net/projects/cm-unicode/

Matplotlib, Release 3.4.3

(continued from previous page)

Use specific cursive fonts.
"font.cursive": ["Comic Neue", "Comic Sans MS"],

})
fig, ax = plt.subplots(figsize=(4.5, 2.5))
ax.plot (range (5))

ax.text (0.5, 3., "serif")

ax.text (0.5, 2., "monospace", family="monospace")

ax.text (2.5, 2., "sans-serif", family="DejaVu Sans") # Use specific sans.
«font.

ax.text (2.5, 1., "comic", family="cursive")

ax.set_xlabel ("p is not $\\mus")

fig.tight_layout (pad=.5)

Custom preamble

Full customization is possible by adding your own commands to the preamble. Use rcParams ["pgf.
preamble"] (default: '') if you want to configure the math fonts, using unicode-math for example,
or for loading additional packages. Also, if you want to do the font configuration yourself instead of using
the fonts specified in the rc parameters, make sure to disable rcParams ["pgf.rcfonts"] (default:
True).

mrrn

mrrn

import matplotlib as mpl
mpl.use ("pgf")

Choosing the TeX system

The TeX system to be used by Matplotlib is chosen by rcParams ["pgf.texsystem"] (default: 'xe-
latex"). Possible values are 'xelatex' (default), 'lualatex' and 'pdflatex'. Please note that
when selecting pdflatex, the fonts and Unicode handling must be configured in the preamble.

mrmrn

(continues on next page)

358 Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=pgf.preamble#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=pgf.preamble#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=pgf.rcfonts#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=pgf.texsystem#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

(continued from previous page)

mmn

import matplotlib.pyplot as plt
plt.rcParams.update ({
"pgf.texsystem": "pdflatex",
"pgf.preamble": "\n".join ([
r"\usepackage [ut f8x] ",
r"\usepackage [T1] ,
r"\usepackage ",
1)
})

fig, ax = plt.subplots(figsize=(4.5, 2.5))
ax.plot (range (5))

ax.text (0.5,

3., "serif", family="serif")

ax.text (0.5, 2., "monospace", family="monospace™)
2.,
(

ax.text (2.5, "sans-serif", family="sans-serif")
ax.set_xlabel (r"p is not S$\musS")

fig.tight_layout (pad=.5)

Troubleshooting

e Please note that the TeX packages found in some Linux distributions and MiKTeX installations are
dramatically outdated. Make sure to update your package catalog and upgrade or install a recent TeX
distribution.

e On Windows, the PATH environment variable may need to be modified to include the directories
containing the latex, dvipng and ghostscript executables. See Environment Variables and Setting en-
vironment variables in Windows for details.

o A limitation on Windows causes the backend to keep file handles that have been opened by your appli-
cation open. As a result, it may not be possible to delete the corresponding files until the application
closes (see #1324).

e Sometimes the font rendering in figures that are saved to png images is very bad. This happens when
the pdftocairo tool is not available and ghostscript is used for the pdf to png conversion.

e Make sure what you are trying to do is possible in a LaTeX document, that your LaTeX syntax is valid
and that you are using raw strings if necessary to avoid unintended escape sequences.

e rcParams |["pgf.preamble"] (default: ' ') provides lots of flexibility, and lots of ways to cause
problems. When experiencing problems, try to minimalize or disable the custom preamble.

e Configuring an unicode—math environment can be a bit tricky. The TeXLive distribution for
example provides a set of math fonts which are usually not installed system-wide. XeTeX, un-
like Lualatex, cannot find these fonts by their name, which is why you might have to specify \

2.6. Text 359

https://github.com/matplotlib/matplotlib/issues/1324
../../tutorials/introductory/customizing.html?highlight=pgf.preamble#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

setmathfont{xits-math.otf} instead of \setmathfont{XITS Math} or alternatively
make the fonts available to your OS. See this tex.stackexchange.com question for more details.

o If the font configuration used by Matplotlib differs from the font setting in yout LaTeX document, the
alignment of text elements in imported figures may be off. Check the header of your . pgf file if you
are unsure about the fonts Matplotlib used for the layout.

e Vector images and hence . pgf files can become bloated if there are a lot of objects in the graph. This
can be the case for image processing or very big scatter graphs. In an extreme case this can cause TeX to
run out of memory: "TeX capacity exceeded, sorry" You can configure latex to increase the amount of
memory available to generate the . pdf image as discussed on tex.stackexchange.com. Another way
would be to "rasterize" parts of the graph causing problems using either the rasterized=True
keyword, or . set_rasterized (True) as per this example.

o If you still need help, please see Getting help

2.6.7 Text rendering With LaTeX

Matplotlib can use LaTeX to render text. This is activated by setting text .usetex : True in your
rcParams, or by setting the usetex property to True on individual Text objects. Text handling through
LaTeX is slower than Matplotlib's very capable mathtext, but is more flexible, since different LaTeX packages
(font packages, math packages, etc.) can be used. The results can be striking, especially when you take care
to use the same fonts in your figures as in the main document.

Matplotlib's LaTeX support requires a working LaTeX installation. For the *Agg backends, dvipng is addi-
tionally required; for the PS backend, psfrag, dvips and Ghostscript are additionally required. The executa-
bles for these external dependencies must all be located on your PATH.

There are a couple of options to mention, which can be changed using rc sertings. Here is an example
matplotlibre file:

font.family : serif

font.serif : Times, Palatino, New Century Schoolbook, Bookman, .
~Computer Modern Roman

font.sans—-serif : Helvetica, Avant Garde, Computer Modern Sans Serif
font.cursive : Zapf Chancery

font .monospace : Courier, Computer Modern Typewriter

text .usetex : true

The first valid font in each family is the one that will be loaded. If the fonts are not specified, the Computer
Modern fonts are used by default. All of the other fonts are Adobe fonts. Times and Palatino each have their
own accompanying math fonts, while the other Adobe serif fonts make use of the Computer Modern math
fonts. See the PSNFSS documentation for more details.

To use LaTeX and select Helvetica as the default font, without editing matplotlibrc use:

import matplotlib.pyplot as plt
plt.rcParams.update ({
"text .usetex": True,
"font.family": "sans-serif",

(continues on next page)

360 Chapter 2. Tutorials

http://tex.stackexchange.com/questions/43642
http://tex.stackexchange.com/questions/7953
http://www.tug.org
http://www.nongnu.org/dvipng/
https://ctan.org/pkg/psfrag
https://tug.org/texinfohtml/dvips.html
https://ghostscript.com/
http://www.ctan.org/tex-archive/macros/latex/required/psnfss/psnfss2e.pdf

Matplotlib, Release 3.4.3

(continued from previous page)

"font.sans-serif": ["Helvetica"]})
for Palatino and other serif fonts use:
plt.rcParams.update ({

"text.usetex": True,
"font.family": "serif",
"font.serif": ["Palatino"],

H)

Here is the standard example, /gallery/text_labels_and_annotations/tex_demo:

TeX is Number Z ;'

3.00 4
2.75 4

o 250

se

2 2254
S—
2.00 4

ity

Q175

lo

L 1504

1.25 4

1.00 4

00 02 04 06 08 1o
time (s)

Note that display math mode ($$ e=mc”2 $$) is not supported, but adding the command \
displaystyle, as in the above demo, will produce the same results.

Non-ASCII characters (e.g. the degree sign in the y-label above) are supported to the extent that they are
supported by inputenc.

Note: Certain characters require special escaping in TeX, such as:

#5 & & ~_ N A FANCN) N \]

Therefore, these characters will behave differently depending on rcParams ["text .usetex"] (default:
False).

PostScript options

In order to produce encapsulated PostScript (EPS) files that can be embedded in a new LaTeX document,
the default behavior of Matplotlib is to distill the output, which removes some PostScript operators used
by LaTeX that are illegal in an EPS file. This step produces results which may be unacceptable to some
users, because the text is coarsely rasterized and converted to bitmaps, which are not scalable like standard
PostScript, and the text is not searchable. One workaroundistoset rcParams["ps.distiller.res"]
(default: 6000) to a higher value (perhaps 6000) in your rc settings, which will produce larger files but may
look better and scale reasonably. A better workaround, which requires Poppler or Xpdf, can be activated
by changing rcParams ["ps.usedistiller"] (default: None) to xpdf. This alternative produces
PostScript without rasterizing text, so it scales properly, can be edited in Adobe Illustrator, and searched text
in pdf documents.

2.6. Text 361

../../gallery/text_labels_and_annotations/tex_demo.html
https://ctan.org/pkg/inputenc
../../tutorials/introductory/customizing.html?highlight=text.usetex#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
../../tutorials/introductory/customizing.html?highlight=ps.distiller.res#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file
https://poppler.freedesktop.org/
http://www.xpdfreader.com/
../../tutorials/introductory/customizing.html?highlight=ps.usedistiller#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

Possible hangups

On Windows, the PATH environment variable may need to be modified to include the directories
containing the latex, dvipng and ghostscript executables. See Environment Variables and Setting en-
vironment variables in Windows for details.

Using MiKTeX with Computer Modern fonts, if you get odd *Agg and PNG results, go to MiK-
TeX/Options and update your format files

On Ubuntu and Gentoo, the base texlive install does not ship with the typelcm package. You may
need to install some of the extra packages to get all the goodies that come bundled with other latex
distributions.

Some progress has been made so matplotlib uses the dvi files directly for text layout. This allows latex
to be used for text layout with the pdf and svg backends, as well as the *Agg and PS backends. In the
future, a latex installation may be the only external dependency.

Troubleshooting

Try deleting your .matplotlib/tex.cache directory. If you don't know where to find .
matplotlib, see matplotlib configuration and cache directory locations.

Make sure LaTeX, dvipng and ghostscript are each working and on your PATH.

Make sure what you are trying to do is possible in a LaTeX document, that your LaTeX syntax is valid
and that you are using raw strings if necessary to avoid unintended escape sequences.

rcParams["text.latex.preamble"] (default: '") is not officially supported. This option
provides lots of flexibility, and lots of ways to cause problems. Please disable this option before re-
porting problems to the mailing list.

If you still need help, please see Getting help

2.7 Toolkits

These tutorials cover toolkits designed to extend the functionality of Matplotlib in order to accomplish spe-
cific goals.

2.7.1 Overview of axes_grid1 toolkit

Controlling the layout of plots with the mp1_toolkits.axes_gridl toolkit.

362

Chapter 2. Tutorials

../../tutorials/introductory/customizing.html?highlight=text.latex.preamble#a\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} sample\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} matplotlibrc\unhbox \voidb@x \kern \z@ \char `\protect \discretionary {\char \hyphenchar \font }{}{} file

Matplotlib, Release 3.4.3

What is axes_grid1 toolkit?

mpl_toolkits.axes_gridl isacollection of helper classes to ease displaying (multiple) images with
matplotlib. In matplotlib, the axes location (and size) is specified in the normalized figure coordinates, which
may not be ideal for displaying images that needs to have a given aspect ratio. For example, it helps if you
have a colorbar whose height always matches that of the image. /mageGrid, RGB Axes and AxesDivider are
helper classes that deal with adjusting the location of (multiple) Axes. They provides a framework to adjust
the position of multiple axes at the drawing time. ParasiteAxes provides twinx(or twiny)-like features so that
you can plot different data (e.g., different y-scale) in a same Axes. AnchoredArtists includes custom artists
which are placed at some anchored position, like the legend.

Fig. 45: Demo Axes Grid

axes_grid1

ImageGrid

A grid of Axes.

In Matplotlib, the axes location (and size) is specified in normalized figure coordinates. This may not be
ideal for images that needs to be displayed with a given aspect ratio; for example, it is difficult to display
multiple images of a same size with some fixed padding between them. ITmageGrid can be used in such a
case; see its docs for a detailed list of the parameters it accepts.

@ o B N O

© o s~ N O

Fig. 46: Simple Axesgrid

e The position of each axes is determined at the drawing time (see AxesDivider), so that the size of the
entire grid fits in the given rectangle (like the aspect of axes). Note that in this example, the paddings

2.7. Toolkits 363

../../gallery/axes_grid1/demo_axes_grid.html
../../gallery/axes_grid1/simple_axesgrid.html

Matplotlib, Release 3.4.3

between axes are fixed even if you changes the figure size.

e axes in the same column has a same axes width (in figure coordinate), and similarly, axes in the same
row has a same height. The widths (height) of the axes in the same row (column) are scaled according
to their view limits (xlim or ylim).

0 5 10 0 5 00 25

Fig. 47: Simple Axes Grid

e xaxis are shared among axes in a same column. Similarly, yaxis are shared among axes in a same row.
Therefore, changing axis properties (view limits, tick location, etc. either by plot commands or using
your mouse in interactive backends) of one axes will affect all other shared axes.

The examples below show what you can do with ImageGrid.

-2 0 2

Fig. 48: Demo Axes Grid

AxesDivider Class

Behind the scene, the ImageGrid class and the RGBAxes class utilize the AxesDivider class, whose role
is to calculate the location of the axes at drawing time. Direct use of the AxesDivider class will not be
necessary for most users. The axes_divider module provides a helper function make_axes_locatable,
which can be useful. It takes a existing axes instance and create a divider for it.

ax = subplot (1, 1, 1)
divider = make_axes_locatable (ax)

make_axes_locatable returns an instance of the AxesDivider class. It provides an append_axes
method that creates a new axes on the given side of ("top", "right", "bottom" and "left") of the original
axes.

364 Chapter 2. Tutorials

../../gallery/axes_grid1/simple_axesgrid2.html
../../gallery/axes_grid1/demo_axes_grid.html

Matplotlib, Release 3.4.3

colorbar whose height (or width) in sync with the master axes

Fig. 49: Simple Colorbar

scatter_hist.py with AxesDivider

The /gallery/lines_bars_and_markers/scatter_hist example can be rewritten using
make axes_locatable:

axScatter = plt.subplot ()
axScatter.scatter(x, v)
axScatter.set_aspect (1.)

create new axes on the right and on the top of the current axes.

divider = make_axes_locatable (axScatter)

axHistx = divider.append_axes ("top", size=1.2, pad=0.1, sharex=axScatter)
axHisty = divider.append_axes ("right", size=1.2, pad=0.1, sharey=axScatter)

the scatter plot:

histograms

bins = np.arange(-lim, lim + binwidth, binwidth)
axHistx.hist (x, bins=bins)

axHisty.hist (y, bins=bins, orientation='horizontal')

See the full source code below.

The /gallery/axes_grid1/scatter_hist_locatable_axes using the AxesDivider has some advantage over the
original /gallery/lines_bars_and_markers/scatter_hist in Matplotlib. For example, you can set the aspect
ratio of the scatter plot, even with the x-axis or y-axis is shared accordingly.

2.7. Toolkits 365

../../gallery/axes_grid1/simple_colorbar.html

Matplotlib, Release 3.4.3

100 o

50 4

—4 4

Fig. 50: Scatter Hist

ParasiteAxes

The ParasiteAxes is an axes whose location is identical to its host axes. The location is adjusted in the
drawing time, thus it works even if the host change its location (e.g., images).

In most cases, you first create a host axes, which provides a few method that can be used to create parasite
axes. They are twinx, twiny (which are similar to twinx and twiny in the matplotlib) and twin. twin takes
an arbitrary transformation that maps between the data coordinates of the host axes and the parasite axes.
draw method of the parasite axes are never called. Instead, host axes collects artists in parasite axes and draw
them as if they belong to the host axes, i.e., artists in parasite axes are merged to those of the host axes and
then drawn according to their zorder. The host and parasite axes modifies some of the axes behavior. For
example, color cycle for plot lines are shared between host and parasites. Also, the legend command in host,
creates a legend that includes lines in the parasite axes. To create a host axes, you may use host_subplot or
host_axes command.

Example 1. twinx
Example 2. twin

twin without a transform argument assumes that the parasite axes has the same data transform as the host.
This can be useful when you want the top(or right)-axis to have different tick-locations, tick-labels, or tick-
formatter for bottom(or left)-axis.

ax2 = ax.twin() # now, ax2 is responsible for "top" axis and "right" axis
ax2.set_xticks([0., .5*np.pi, np.pi, 1.5*np.pi, 2*np.pil)
ax2.set_xticklabels (["0", r"$\frac \pis$",

r"πs", r"S$\frac \pis$", r"$2\pis$"1])

A more sophisticated example using twin. Note that if you change the x-limit in the host axes, the x-limit of

366 Chapter 2. Tutorials

../../gallery/axes_grid1/scatter_hist_locatable_axes.html

Matplotlib, Release 3.4.3

2.001

1754

1.50 4

1.254

1.00 4

Density

0.75 4

0.50 4

0.25 4

0.00 4

—— Density

r3.0

r2.5

r2.0

L5

r 1o

r 0.5

r 0.0

T
0.00

=}

T T T T T T T
0.25 0.50 0.75 100 1.25 1.50 175
Distance

Fig. 51: Parasite Simple

2.00

1.00 4

0.75

0.50

0.25 4

0.00 4

—0.25 A

—0.50 A

—0.75 A

—1.00 A

o

Fig. 52: Simple Axisline4

2.7. Toolkits

367

../../gallery/axes_grid1/parasite_simple.html
../../gallery/axes_grid1/simple_axisline4.html

Matplotlib, Release 3.4.3

the parasite axes will change accordingly.

Proper Motion ["/yr]
0.10 0.15 0.20 0.25 0.30
.

3000

2750 A

2500 -

2000 - _|_

1750 A F
D E—

1500 - F

1250 A

8]
~
v
=}

FWHM [kmy/s]

1000

T T T T T T
1000 1500 2000 2500 3000 3500
Linear velocity at 2.3 kpc [km/s]

Fig. 53: Parasite Simple2

AnchoredArtists

It's a collection of artists whose location is anchored to the (axes) bbox, like the legend. It is derived from
OffsetBox in Matplotlib, and artist need to be drawn in the canvas coordinate. But, there is a limited support
for an arbitrary transform. For example, the ellipse in the example below will have width and height in the
data coordinate.

®

1.0

0.8 4

0.6

0.4 4

0.2 4

. s

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

0.0

Fig. 54: Simple Anchored Artists

368 Chapter 2. Tutorials

../../gallery/axes_grid1/parasite_simple2.html
../../gallery/axes_grid1/simple_anchored_artists.html

Matplotlib, Release 3.4.3

InsetLocator

mpl_toolkits.axes_gridl.inset_locator provides helper classes and functions to place your
(inset) axes at the anchored position of the parent axes, similarly to AnchoredArtist.

Using mpl_toolkits.axes_gridl.inset_locator.inset_axes (), you can have inset axes
whose size is either fixed, or a fixed proportion of the parent axes:

inset_axes = inset_axes (parent_axes,
width="30%", # width = 30% of parent_bbox
height=1., # height : 1 inch
loc="lower left')

creates an inset axes whose width is 30% of the parent axes and whose height is fixed at 1 inch.

You may creates your inset whose size is determined so that the data scale of the inset axes to be that of the
parent axes multiplied by some factor. For example,

inset_axes = zoomed_inset_axes (ax,
0.5, # zoom = 0.5
loc="upper right'")

creates an inset axes whose data scale is half of the parent axes. Here is complete examples.

1.0 1.0
0.8 | 0.8
0.6 | 0.6 |

T
0.4 0.4
0.2] 0.2 D
0.0 +

T T T 5 T T T
0.00 025 050 075 100 000 025 050 075 100

Fig. 55: Inset Locator Demo

For example, zoomed_inset_axes () can be used when you want the inset represents the zoom-up of
the small portion in the parent axes. And inset_locator provides a helper function mark_inset ()
to mark the location of the area represented by the inset axes.

1.0

0.8 4

0.6 4
0.5

0.4 4

0.2 4
0.5

0.0

T T T T
00 02 04 06 08

Fig. 56: Inset Locator Demo2

2.7. Toolkits 369

../../gallery/axes_grid1/inset_locator_demo.html
../../gallery/axes_grid1/inset_locator_demo2.html

Matplotlib, Release 3.4.3

RGB Axes

RGBAXxes is a helper class to conveniently show RGB composite images. Like ImageGrid, the location of
axes are adjusted so that the area occupied by them fits in a given rectangle. Also, the xaxis and yaxis of

each axes are shared.

from mpl_toolkits.axes_gridl.axes_rgb import RGBAxes

fig = plt.figure()

ax = RGBAxes(fig, [0.1, 0.1, 0.8, 0.8], pad=0.0)
r, g, b = get_rgb() # r, g, b are 2D images.
ax.imshow_rgb(r, g, b)

AxesDivider

The mpl_toolkits.axes_gridl.axes_divider module provides helper classes to adjust the axes
positions of a set of images at drawing time.

e axes_size provides a class of units that are used to determine the size of each axes. For example,
you can specify a fixed size.
e Divideristhe class that calculates the axes position. It divides the given rectangular area into several

areas. The divider is initialized by setting the