
Python
Cheat Sheet
Python 3 is a truly versatile programming language, loved
both by web developers, data scientists and software
engineers. And there are several good reasons for that!

Once you get a hang of it, your development speed and productivity will soar!

• Python is open-source and has a great support community,

• Plus, extensive support libraries.

• Its data structures are user-friendly.

Python Basics: Getting Started

Main Python Data Types

How to Create a String in Python

Math Operators

How to Store Strings in Variables

Built-in Functions in Python

How to Define a Function

List

List Comprehensions

Tuples

Dictionaries

If Statements (Conditional Statements) in Python

Python Loops

Class

Dealing with Python Exceptions (Errors)

How to Troubleshoot the Errors

Conclusion

03

04

05

06

07

08

10

12

16

16

17

19

21

22

23

24

25

Table of Contents

Python Basics: Getting Started

What is IDLE (Integrated Development and Learning)

Most Windows and Mac computers come with Python pre-installed. You can check
that via a Command Line search. The particular appeal of Python is that you can
write a program in any text editor, save it in .py format and then run via a Command
Line. But as you learn to write more complex code or venture into data science, you
might want to switch to an IDE or IDLE.

IDLE (Integrated Development and Learning Environment) comes with every
Python installation. Its advantage over other text editors is that it highlights
important keywords (e.g. string functions), making it easier for you to interpret code.

Shell is the default mode of operation for Python IDLE. In essence, it’s a simple loop
that performs that following four steps:

• Reads the Python statement

• Evaluates the results of it

• Prints the result on the screen

• And then loops back to read the next statement.

Python shell is a great place to test various small code snippets.

Python Cheat Sheet 3

WebsiteSetup.org - Python Cheat Sheet

Main Python Data Types
Every value in Python is called an “object”. And every object has a specific data
type. The three most-used data types are as follows:

Integers (int) — an integer number to represent an object such as “number 3”.

Strings — codify a sequence of characters using a string. For example, the word
“hello”. In Python 3, strings are immutable. If you already defined one, you cannot
change it later on.

While you can modify a string with commands such as replace() or join(), they will
create a copy of a string and apply modification to it, rather than rewrite the original
one.

Plus, another three types worth mentioning are lists, dictionaries, and tuples. All of
them are discussed in the next sections.

For now, let’s focus on the strings.

Floating-point numbers (float) — use them to represent floating-point numbers.

Integers -2, -1, 0, 1, 2, 3, 4, 5

Strings ‘yo’, ‘hey’, ‘Hello!’, ‘what’s up!’

Floating-point numbers -1.25, -1.0, --0.5, 0.0, 0.5, 1.0, 1.25

Python Cheat Sheet 4

WebsiteSetup.org - Python Cheat Sheet

How to Create a String in Python

Basic Python String

String Concatenation

You can create a string in three ways using single, double or triple quotes. Here’s an
example of every option:

IMP! Whichever option you choose, you should stick to it and use it consistently
within your program.

As the next step, you can use the print() function to output your string in the console
window. This lets you review your code and ensure that all functions well.

Here’s a snippet for that:

my_string = “Let’s Learn Python!”
another_string = ‘It may seem difficult first, but you
can do it!’
a_long_string = ‘’’Yes, you can even master multi-line
strings
 that cover more than one line
 with some practice’’’

The next thing you can master is concatenation — a way to add two strings
together using the “+” operator. Here’s how it’s done:

Note: You can’t apply + operator to two different data types e.g. string + integer. If
you try to do that, you’ll get the following Python error:

string_one = “I’m reading “
string_two = “a new great book!”
string_three = string_one + string_two

TypeError: Can’t convert ‘int’ object to str implicitly

print(“Let’s print out a string!”)

Python Cheat Sheet 5

WebsiteSetup.org - Python Cheat Sheet

String Replication

Math Operators

As the name implies, this command lets you repeat the same string several times.
This is done using * operator. Mind that this operator acts as a replicator only with
string data types. When applied to numbers, it acts as a multiplier.

String replication example:

For reference, here’s a list of other math operations you can apply towards numbers:

And with print ()

And your output will be Alice written five times in a row.

‘Alice’ * 5 ‘AliceAliceAliceAliceAlice’

print(“Alice” * 5)

Operators Operation Example

** Exponent 2 ** 3 = 8

% Modulus/Remainder 22 % 8 = 6

// Integer division 22 // 8 = 2

/ Division 22 / 8 = 2.75

* Multiplication 3 * 3 = 9

- Subtraction 5 - 2 = 3

+ Addition 2 + 2 = 4

Python Cheat Sheet 6

WebsiteSetup.org - Python Cheat Sheet

How to Store Strings in Variables
Variables in Python 3 are special symbols that assign a specific storage location to
a value that’s tied to it. In essence, variables are like special labels that you place on
some value to know where it’s stored.

Strings incorporate data. So you can “pack” them inside a variable. Doing so makes
it easier to work with complex Python programs.

Here’s how you can store a string inside a variable.

Let’s break it down a bit further:

• my_str is the variable name.

• = is the assignment operator.

• “Just a random string” is a value you tie to the variable name.

Now when you print this out, you receive the string output.

See? By using variables, you save yourself heaps of effort as you don’t need to
retype the complete string every time you want to use it.

my_str = “Hello World”

print(my_str)

= Hello World

Python Cheat Sheet 7

WebsiteSetup.org - Python Cheat Sheet

Built-in Functions in Python

Input() Function

len() Function

You already know the most popular function in Python — print(). Now let’s take a
look at its equally popular cousins that are in-built in the platform.

When you run this short program, the results will look like this:

Output:

input() function is a simple way to prompt the user for some input (e.g. provide their
name). All user input is stored as a string.

Here’s a quick snippet to illustrate this:

len() function helps you find the length of any string, list, tuple, dictionary, or another
data type. It’s a handy command to determine excessive values and trim them to
optimize the performance of your program.

Here’s an input function example for a string:

Hi! What’s your name? “Jim”

Nice to meet you, Jim!

How old are you? 25

So, you are already 25 years old, Jim!

The length of the string is: 35

name = input(“Hi! What’s your name? “)
print(“Nice to meet you “ + name + “!”)

age = input(“How old are you “)
print(“So, you are already “ + str(age) + “ years old, “
+ name + “!”)

testing len()
str1 = “Hope you are enjoying our tutorial!”
print(“The length of the string is :”, len(str1))

Python Cheat Sheet 8

WebsiteSetup.org - Python Cheat Sheet

filter()

Use the Filter() function to exclude items in an iterable object (lists, tuples,
dictionaries, etc)

(Optional: The PDF version of the checklist can also include a full table of all the in-built
functions).

ages = [5, 12, 17, 18, 24, 32]

def myFunc(x):
 if x < 18:
 return False
 else:
 return True

adults = filter(myFunc, ages)

for x in adults:
 print(x)

Python Cheat Sheet 9

WebsiteSetup.org - Python Cheat Sheet

How to Define a Function
Apart from using in-built functions, Python 3 also allows you to define your own
functions for your program.

To recap, a function is a block of coded instructions that perform a certain action.
Once properly defined, a function can be reused throughout your program i.e. re-use
the same code.

Here’s a quick walkthrough explaining how to define a function in Python:

First, use def keyword followed by the function name():. The parentheses can
contain any parameters that your function should take (or stay empty).

Next, you’ll need to add a second code line with a 4-space indent to specify what
this function should do.

Now, let’s take a look at a defined function with a parameter — an entity, specifying
an argument that a function can accept.

Now, you have to call this function to run the code.

def name():

def name():
 print(“What’s your name?”)

def add_numbers(x, y, z):
 a = x + y
 b = x + z
 c = y + z
 print(a, b, c)

add_numbers(1, 2, 3)

name.py
def name():
 print(“What’s your name?”)

hello()

Python Cheat Sheet 10

WebsiteSetup.org - Python Cheat Sheet

How to Pass Keyword Arguments to a Function

In this case, you pass the number 1 in for the x parameter, 2 in for the y parameter,
and 3 in for the z parameter. The program will that do the simple math of adding up
the numbers:

Output:

A function can also accept keyword arguments. In this case, you can use
parameters in random order as the Python interpreter will use the provided
keywords to match the values to the parameters.

Here’s a simple example of how you pass a keyword argument to a function.

Output:

Define function with parameters
def product_info(product name, price):
 print(“productname: “ + product name)
 print(“Price “ + str(dollars))

Call function with parameters assigned as above
product_info(“White T-shirt”, 15 dollars)

Call function with keyword arguments
product_info(productname=”jeans”, price=45)

Productname: White T-shirt
Price: 15
Productname: Jeans
Price: 45

a = 1 + 2
b = 1 + 3
c = 2 + 3

Python Cheat Sheet 11

WebsiteSetup.org - Python Cheat Sheet

Lists

Example lists

How to Add Items to a List

Lists are another cornerstone data type in Python used to specify an ordered
sequence of elements. In short, they help you keep related data together and
perform the same operations on several values at once. Unlike strings, lists are
mutable (=changeable).

Each value inside a list is called an item and these are placed between square
brackets.

Alternatively, you can use list() function to do the same:

You have two ways to add new items to existing lists.

The first one is using append() function:

The second option is to insert() function to add an item at the specified index:

my_list = [1, 2, 3]
my_list2 = [“a”, “b”, “c”]
my_list3 = [“4”, d, “book”, 5]

beta_list = [“apple”, “banana”, “orange”]
beta_list.append(“grape”)
print(beta_list)

beta_list = [“apple”, “banana”, “orange”]
beta_list.insert(“2 grape”)
print(beta_list)

alpha_list = list((“1”, “2”, “3”))
print(alpha_list)

Python Cheat Sheet 12

WebsiteSetup.org - Python Cheat Sheet

How to Remove an Item from a List

Combine Two Lists

Create a Nested List

Again, you have several ways to do so. First, you can use remove() function:

Secondly, you can use the pop() function. If no index is specified, it will remove the
last item.

The last option is to use del keyword to remove a specific item:

P.S. You can also apply del towards the entire list to scrap it.

To mash up two lists use the + operator.

You can also create a list of your lists when you have plenty of them :)

beta_list = [“apple”, “banana”, “orange”]
beta_list.remove(“apple”)
print(beta_list)

beta_list = [“apple”, “banana”, “orange”]
beta_list.pop()
print(beta_list)

beta_list = [“apple”, “banana”, “orange”]
del beta_list [1]
print(beta_list)

my_list = [1, 2, 3]
my_list2 = [“a”, “b”, “c”]
combo_list = my_list + my_list2
combo_list
[1, 2, 3, ‘a’, ‘b’, ‘c’]

my_nested_list = [my_list, my_list2]
my_nested_list
[[1, 2, 3], [‘a’, ‘b’, ‘c’]]

Python Cheat Sheet 13

WebsiteSetup.org - Python Cheat Sheet

Sort a List

Slice a List

Change Item Value on Your List

Loop Through the List

Use the sort() function to organize all items in your list.

Now, if you want to call just a few elements from your list (e.g. the first 4 items),
you need to specify a range of index numbers separated by a colon [x:y]. Here’s an
example:

You can easily overwrite a value of one list items:

Using for loop you can multiply the usage of certain items, similarly to what *
operator does. Here’s an example:

Output:

alpha_list = [34, 23, 67, 100, 88, 2]
alpha_list.sort()
alpha_list
[2, 23, 34, 67, 88, 100]

alpha_list[0:4]
[2, 23, 34, 67]

beta_list = [“apple”, “banana”, “orange”]
beta_list[1] = “pear”
print(beta_list)

for x in range(1,4):
 beta_list += [‘fruit’]
 print(beta_list)

[‘apple’, ‘pear’, ‘cherry’]

Python Cheat Sheet 14

WebsiteSetup.org - Python Cheat Sheet

Copy a List

Use the built-in copy() function to replicate your data:

Alternatively, you can copy a list with the list() method:

beta_list = [“apple”, “banana”, “orange”]
beta_list = beta_list.copy()
print(beta_list)

beta_list = [“apple”, “banana”, “orange”]
beta_list = list (beta_list)
print(beta_list)

Python Cheat Sheet 15

WebsiteSetup.org - Python Cheat Sheet

List Comprehensions

Tuples

List comprehensions are a handy option for creating lists based on existing lists.
When using them you can build by using strings and tuples as well.

Tuples are similar to lists — they allow you to display an ordered sequence of
elements. However, they are immutable and you can’t change the values stored in a
tuple.

The advantage of using tuples over lists is that the former are slightly faster. So it’s
a nice way to optimize your code.

Output:

(1, 3, 5, 7, 9)

The process is similar to slicing lists.

Note: Once you create a tuple, you can’t add new items to it or change it in any other way!

List comprehensions examples

How to Create a Tuple

How to Slide a Tuple

Here’s a more complex example that features math operators, integers, and the
range() function:

list_variable = [x for x in iterable]

my_tuple = (1, 2, 3, 4, 5)
my_tuple[0:3]
(1, 2, 3)

numbers = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
print(numbers[1:11:2])

number_list = [x ** 2 for x in range(10) if x % 2 == 0]
print(number_list)

Python Cheat Sheet 16

WebsiteSetup.org - Python Cheat Sheet

Convert Tuple to a List

Dictionaries

How to Create a Python Dictionary

Since Tuples are immutable, you can’t change them. What you can do though is
convert a tuple into a list, make an edit and then convert it back to a tuple.

Here’s how to accomplish this:

A dictionary holds indexes with keys that are mapped to certain values. These
key-value pairs offer a great way of organizing and storing data in Python. They are
mutable, meaning you can change the stored information.

A key value can be either a string, Boolean, or integer. Here’s an example dictionary
illustrating this:

Here’s a quick example showcasing how to make an empty dictionary.

Option 1: new_dict = {}

Option 2: other_dict= dict()

And you can use the same two approaches to add values to your dictionary:

x = (“apple”, “orange”, “pear”)
y = list(x)
y[1] = “grape”
x = tuple(y)
print(x)

Customer 1= {‘username’: ‘john-sea’, ‘online’: false,
‘friends’:100}

new_dict = {
 “brand”: “Honda”,
 “model”: “Civic”,
 “year”: 1995
}
print(new_dict)

Python Cheat Sheet 17

WebsiteSetup.org - Python Cheat Sheet

You can access any of the values in your dictionary the following way:

You can also use the following methods to accomplish the same.
• dict.keys() isolates keys
• dict.values() isolates values
• dict.items() returns items in a list format of (key, value) tuple pairs

To change one of the items, you need to refer to it by its key name:

Again to implement looping, use for loop command.

Note: In this case, the return values are the keys of the dictionary. But, you can also return
values using another method.

How to Access a Value in a Dictionary

Change Item Value

Loop Through the Dictionary

x = new_dict[“brand”]

#Change the “year” to 2020:

new_dict= {
 “brand”: “Honda”,
 “model”: “Civic”,
 “year”: 1995
}
new_dict[“year”] = 2020

#print all key names in the dictionary

for x in new_dict:
 print(x)

#print all values in the dictionary

for x in new_dict:
 print(new_dict[x])

#loop through both keys and values

for x, y in my_dict.items():
 print(x, y)

Python Cheat Sheet 18

WebsiteSetup.org - Python Cheat Sheet

The goal of a conditional statement is to check if it’s True or False.

For more complex operations, you can create nested if statements. Here’s how it
looks:

Just like other programming languages, Python supports the basic logical
conditions from math:

• Equals: a == b

• Not Equals: a != b

• Less than: a < b

• Less than or equal to a <= b

• Greater than: a > b

• Greater than or equal to: a >= b

You can leverage these conditions in various ways. But most likely, you’ll use them in
“if statements” and loops.

Output:

That’s True!

If Statement Example

Nested If Statements

If Statements (Conditional
Statements) in Python

if 5 > 1:
 print(“That’s True!”)

x = 35

if x > 20:
 print(“Above twenty,”)
 if x > 30:
 print(“and also above 30!”)

Python Cheat Sheet 19

WebsiteSetup.org - Python Cheat Sheet

elif keyword prompts your program to try another condition if the previous one(s)
was not true. Here’s an example:

else keyword helps you add some additional filters to your condition clause. Here’s
how an if-elif-else combo looks:

If statements can’t be empty. But if that’s your case, add the pass statement to avoid
having an error:

Not keyword let’s you check for the opposite meaning to verify whether the value is
NOT True:

Elif Statements

If Else Statements

Pass Statements

If-Not-Statements

a = 45
b = 45
if b > a:
 print(“b is greater than a”)
elif a == b:
 print(“a and b are equal”)

if age < 4:
ticket_price = 0
elif age < 18:
ticket_price = 10
else: ticket_price = 15

a = 33
b = 200

if b > a:
 pass

new_list = [1, 2, 3, 4]
x = 10
if x not in new_list:
 print(“’x’ isn’t on the list, so this is True!”)

Python Cheat Sheet 20

WebsiteSetup.org - Python Cheat Sheet

Python has two simple loop commands that are good to know:

• for loops

• while loops

Let’s take a look at each of these.

As already illustrated in the other sections of this Python checklist, for loop is a
handy way for iterating over a sequence such as a list, tuple, dictionary, string, etc.

Here’s an example showing how to loop through a string:

While loop enables you to execute a set of statements as long as the condition for
them is true.

You can also stop the loop from running even if the condition is met. For that, use
the break statement both in while and for loops:

Plus, you’ve already seen other examples for lists and dictionaries.

Python Loops

For Loop

While Loops

How to Break a Loop

for x in “apple”:
 print(x)

#print as long as x is less than 8

i = 1
while i< 8:
 print(x)
 i += 1

i = 1
while i < 8:
 print(i)
 if i == 4:
 break
 i += 1

Python Cheat Sheet 21

WebsiteSetup.org - Python Cheat Sheet

Since Python is an object-oriented programming language almost every element of
it is an object — with its methods and properties.

Class acts as a blueprint for creating different objects. Objects are an instance of a
class, where the class is manifested in some program.

Let’s create a class named TestClass, with one property named z:

As a next step, you can create an object using your class. Here’s how it’s done:

Further, you can assign different attributes and methods to your object. The
example is below:

Class

How to Create a Class

How To Create an Object

class TestClass:
 z = 5

class car(object):
 “””docstring”””

 def __init__(self, color, doors, tires):
 “””Constructor”””
 self.color = color
 self.doors = doors
 self.tires = tires

 def brake(self):
 “””
 Stop the car
 “””
 return “Braking”

 def drive(self):
 “””
 Drive the car
 “””
 return “I’m driving!”

p1 = TestClass()
print(p1.x)

Python Cheat Sheet 22

WebsiteSetup.org - Python Cheat Sheet

Python has a list of in-built exceptions (errors) that will pop up whenever you make
a mistake in your code. As a newbie, it’s good to know how to fix these.

Every object can be further sub-classified. Here’s an example

• AttributeError — pops up when an attribute reference or assignment fails.

• IOError — emerges when some I/O operation (e.g. an open() function) fails
for an I/O-related reason, e.g., “file not found” or “disk full”.

• ImportError — comes up when an import statement cannot locate the
module definition. Also, when a from… import can’t find a name that must be
imported.

• IndexError — emerges when a sequence subscript is out of range.

• KeyError — raised when a dictionary key isn’t found in the set of existing keys.

• KeyboardInterrupt — lights up when the user hits the interrupt key (such
as Control-C or Delete).

• NameError — shows up when a local or global name can’t be found.

Dealing with Python Exceptions (Errors)

How to Create a Subclass

The Most Common Python Exceptions

class Car(Vehicle):
 “””
 The Car class
 “””

 def brake(self):
 “””
 Override brake method
 “””
 return “The car class is breaking slowly!”

if __name__ == “__main__”:
 car = Car(“yellow”, 2, 4, “car”)
 car.brake()
 ‘The car class is breaking slowly!’
 car.drive()
 “I’m driving a yellow car!”

Python Cheat Sheet 23

WebsiteSetup.org - Python Cheat Sheet

• OSError — indicated a system-related error.

• SyntaxError — pops up when a parser encounters a syntax error.

• TypeError — comes up when an operation or function is applied to an object
of inappropriate type.

• ValueError — raised when a built-in operation/function gets an argument
that has the right type but not an appropriate value, and the situation is not
described by a more precise exception such as IndexError.

• ZeroDivisionError — emerges when the second argument of a division or
modulo operation is zero.

Python has a useful statement, design just for the purpose of handling exceptions —

try/except statement. Here’s a code snippet showing how you can catch KeyErrors
in a dictionary using this statement:

You can also detect several exceptions at once with a single statement. Here’s an
example for that:

How to Troubleshoot the Errors

my_dict = {“a”:1, “b”:2, “c”:3}
try:
 value = my_dict[“d”]
 except KeyError:
 print(“That key does not exist!”)

my_dict = {“a”:1, “b”:2, “c”:3}
try:
 value = my_dict[“d”]
except IndexError:
 print(“This index does not exist!”)
except KeyError:
 print(“This key is not in the dictionary!”)
except:
 print(“Some other problem happened!”)

Python Cheat Sheet 24

WebsiteSetup.org - Python Cheat Sheet

my_dict = {“a”:1, “b”:2, “c”:3}

try:
 value = my_dict[“a”]
except KeyError:
 print(“A KeyError occurred!”)
else:
 print(“No error occurred!”)

Adding an else clause will help you confirm that no errors
were found:

try/except with else clause

Conclusions
Now you know the core Python concepts!

By no means is this Python checklist comprehensive. But it includes all the key data
types, functions and commands you should learn as a beginner.

As always, we welcome your feedback in the comment section below!

Python Cheat Sheet 25

WebsiteSetup.org - Python Cheat Sheet

