
Iterators

Iterators are everywhere in Python. They are elegantly implemented

within for loops, comprehensions, generators etc. but are hidden in plain sight.

Iterator in Python is simply an object that can be iterated upon. An object which will

return data, one element at a time.

Technically speaking, a Python iterator object must implement two special

methods, __iter__() and __next__(), collectively called the iterator protocol.

An object is called iterable if we can get an iterator from it. Most built-in containers

in Python like: list, tuple, string etc. are iterables.

The iter() function (which in turn calls the __iter__() method) returns an iterator

from them.

Iterating Through an Iterator

We use the next() function to manually iterate through all the items of an iterator.

When we reach the end and there is no more data to be returned, it will raise

the StopIteration Exception. Following is an example.

Iterators01.py

Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

define a list

my_list = [4, 7, 0, 3]

get an iterator using iter()

my_iter = iter(my_list)

iterate through it using next()

Output: 4

print(next(my_iter))

Output: 7

print(next(my_iter))

14

15

16

17

18

19

20

21

22

23

24

next(obj) is same as obj.__next__()

Output: 0

print(my_iter.__next__())

Output: 3

print(my_iter.__next__())

This will raise error, no items left

next(my_iter)

Output

4

7

0

3

Traceback (most recent call last):

 File "<string>", line 24, in <module>

 next(my_iter)

StopIteration

A more elegant way of automatically iterating is by using the for loop. Using this, we

can iterate over any object that can return an iterator, for example list, string, file etc.

>>> for element in my_list:

... print(element)

...

4

7

0

3

Working of for loop for Iterators

As we see in the above example, the for loop was able to iterate automatically

through the list.

In fact the for loop can iterate over any iterable. Let's take a closer look at how

the for loop is actually implemented in Python.
for element in iterable:

 # do something with element

Is actually implemented as.

create an iterator object from that iterable

iter_obj = iter(iterable)

infinite loop

while True:

 try:

 # get the next item

 element = next(iter_obj)

 # do something with element

 except StopIteration:

 # if StopIteration is raised, break from loop

 break

So internally, the for loop creates an iterator object, iter_obj by calling iter() on

the iterable.

Ironically, this for loop is actually an infinite while loop.

Inside the loop, it calls next() to get the next element and executes the body of

the for loop with this value. After all the items exhaust, StopIteration is raised which

is internally caught and the loop ends. Note that any other kind of exception will

pass through.

Building Custom Iterators

Building an iterator from scratch is easy in Python. We just have to implement

the __iter__() and the __next__() methods.

The __iter__() method returns the iterator object itself. If required, some

initialization can be performed.

The __next__() method must return the next item in the sequence. On reaching the

end, and in subsequent calls, it must raise StopIteration.

Here, we show an example that will give us the next power of 2 in each iteration.

Power exponent starts from zero up to a user set number.

Iterators02.py

Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

#Building Custom Iterator

class PowTwo:#Class to implement an iterator of powers of two

 def __init__(self, max=0):

 self.max = max

 def __iter__(self):

 self.n = 0

 return self

 def __next__(self):

 if self.n <= self.max:

 result = 2 ** self.n

 self.n += 1

 return result

 else:

 raise StopIteration

create an object

numbers = PowTwo(3)

create an iterable from the object

i = iter(numbers)

Using next to get to the next iterator element

print(next(i))

print(next(i))

print(next(i))

print(next(i))

print(next(i))

Output

1

2

4

8

Traceback (most recent call last):

 File "/home/bsoyuj/Desktop/Untitled-1.py", line 32, in <module>

 print(next(i))

 File "<string>", line 18, in __next__

 raise StopIteration

We can also use a for loop to iterate over our iterator class.

>>> for i in PowTwo(5):

... print(i)

...

Python Infinite Iterators

It is not necessary that the item in an iterator object has to be exhausted. There can

be infinite iterators (which never ends). We must be careful when handling such

iterators.

Here is a simple example to demonstrate infinite iterators.

The built-in function iter() function can be called with two arguments where the first

argument must be a callable object (function) and second is the sentinel. The

iterator calls this function until the returned value is equal to the sentinel.
>>> int()

0

>>> inf = iter(int,1)

>>> next(inf)

0

>>> next(inf)

0

We can see that the int() function always returns 0. So passing it as iter(int,1) will

return an iterator that calls int() until the returned value equals 1. This never

happens and we get an infinite iterator.

We can also build our own infinite iterators. The following iterator will, theoretically,

return all the odd numbers.

Iterators03.py

Line Code

1

2

3

4

5

6

7

8

9

10

11

12

class InfIter: #Infinite iterator to return all odd numbers

 def __iter__(self):

 self.num = 1

 return self

 def __next__(self):

 num = self.num

 self.num += 2

 return num

a = iter(InfIter())

13

14

15

16

17

print(next(a))

print(next(a))

print(next(a))

print(next(a))

and so on...

Be careful to include a terminating condition, when iterating over these types of

infinite iterators.

The advantage of using iterators is that they save resources. Like shown above, we

could get all the odd numbers without storing the entire number system in memory.

We can have infinite items (theoretically) in finite memory.

