
Generators

In this tutorial, you'll learn how to create iterations easily using Python generators,

how it is different from iterators and normal functions, and why you should use it.

Generators in Python

There is a lot of work in building an iterator in Python. We have to implement a class

with __iter__() and __next__() method, keep track of internal states, and

raise StopIteration when there are no values to be returned.

This is both lengthy and counterintuitive. Generator comes to the rescue in such

situations.

Python generators are a simple way of creating iterators. All the work we mentioned

above are automatically handled by generators in Python.

Simply speaking, a generator is a function that returns an object (iterator) which we

can iterate over (one value at a time).

Create Generators in Python

It is fairly simple to create a generator in Python. It is as easy as defining a normal

function, but with a yield statement instead of a return statement.

If a function contains at least one yield statement (it may contain

other yield or return statements), it becomes a generator function.

Both yield and return will return some value from a function.

The difference is that while a return statement terminates a function

entirely, yield statement pauses the function saving all its states and later continues

from there on successive calls.

Differences between Generator function and Normal

function

Here is how a generator function differs from a normal function.

• Generator function contains one or more yield statements.

• When called, it returns an object (iterator) but does not start execution

immediately.

• Methods like __iter__() and __next__() are implemented automatically. So

we can iterate through the items using next().

• Once the function yields, the function is paused and the control is transferred

to the caller.

• Local variables and their states are remembered between successive calls.

• Finally, when the function terminates, StopIteration is raised automatically

on further calls.

Here is an example to illustrate all of the points stated above. We have a generator

function named my_gen() with several yield statements.

Generators01.py

Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

A simple generator function

def my_gen():

 n = 1

 print('This is printed first')

 # Generator function contains yield statements

 yield n

 n += 1

 print('This is printed second')

 yield n

 n += 1

 print('This is printed at last')

 yield n

a = my_gen()

next(a)

next(a)

next(a)

21

22

#After first run,try uncomment the following statement and re-run

#next(a)

One interesting thing to note in the above example is that the value of variable n is

remembered between each call.

Unlike normal functions, the local variables are not destroyed when the function

yields. Furthermore, the generator object can be iterated only once.

To restart the process we need to create another generator object using something

like a = my_gen().

One final thing to note is that we can use generators with for loops directly.

This is because a for loop takes an iterator and iterates over it using next() function.

It automatically ends when StopIteration is raised.

Generators02.py

Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

A simple generator function

def my_gen():

 n = 1

 print('This is printed first')

 # Generator function contains yield statements

 yield n

 n += 1

 print('This is printed second')

 yield n

 n += 1

 print('This is printed at last')

 yield n

Using for loop

for item in my_gen():

 print(item)

When you run the program, the output will be:

This is printed first

1

This is printed second

2

This is printed at last

3

Python Generators with a Loop

The above example is of less use and we studied it just to get an idea of what was

happening in the background.

Normally, generator functions are implemented with a loop having a suitable

terminating condition.

Let's take an example of a generator that reverses a string.

Generators03.py

Line Code

1

2

3

4

5

6

7

8

def rev_str(my_str):

 length = len(my_str)

 for i in range(length - 1, -1, -1):

 yield my_str[i]

For loop to reverse the string

for char in rev_str("hello"):

 print(char)

Output

o

l

l

e

h

In this example, we have used the range() function to get the index in reverse order

using the for loop.

Note: This generator function not only works with strings, but also with other kinds

of iterables like list, tuple, etc.

Python Generator Expression

Simple generators can be easily created on the fly using generator expressions. It

makes building generators easy.

Similar to the lambda functions which create anonymous functions, generator

expressions create anonymous generator functions.

The syntax for generator expression is similar to that of a list comprehension in

Python. But the square brackets are replaced with round parentheses.

The major difference between a list comprehension and a generator expression is

that a list comprehension produces the entire list while the generator expression

produces one item at a time.

They have lazy execution (producing items only when asked for). For this reason, a

generator expression is much more memory efficient than an equivalent list

comprehension.

Generators04.py

Line Code

1

2

3

4

5

6

7

8

9

10

11

12

Initialize the list

my_list = [1, 3, 6, 10]

square each term using list comprehension

list_ = [x**2 for x in my_list]

same thing can be done using a generator expression

generator expressions are surrounded by parenthesis ()

generator = (x**2 for x in my_list)

print(list_)

print(generator)

Output

[1, 9, 36, 100]

<generator object <genexpr> at 0x7f5d4eb4bf50>

We can see above that the generator expression did not produce the required result

immediately. Instead, it returned a generator object, which produces items only on

demand.

Here is how we can start getting items from the generator:

Generators05.py

Line Code

1

2

3

4

Initialize the list

my_list = [1, 3, 6, 10]

a = (x**2 for x in my_list)

5

6

7

8

9

10

11

12

13

print(next(a))

print(next(a))

print(next(a))

print(next(a))

next(a)

When we run the above program, we get the following output:

1

9

36

100

Traceback (most recent call last):

 File "<string>", line 15, in <module>

StopIteration

Generator expressions can be used as function arguments. When used in such a way,

the round parentheses can be dropped.

>>> sum(x**2 for x in my_list)

146

>>> max(x**2 for x in my_list)

100

Use of Python Generators

There are several reasons that make generators a powerful implementation.

1. Easy to Implement

Generators can be implemented in a clear and concise way as compared to their

iterator class counterpart. Following is an example to implement a sequence of

power of 2 using an iterator class.

Generators06.py

Line Code

1

2

'''

class PowTwo:

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

 def __init__(self, max=0):

 self.n = 0

 self.max = max

 def __iter__(self):

 return self

 def __next__(self):

 if self.n > self.max:

 raise StopIteration

 result = 2 ** self.n

 self.n += 1

 return result

'''

'''

The above program was lengthy and confusing. Now, let's do the same

using a generator function.

'''

def PowTwoGen(max=0):

 n = 0

 while n < max:

 yield 2 ** n

 n += 1

for item in PowTwoGen(10):

 print(item,end='\t')

Since generators keep track of details automatically, the implementation was

concise and much cleaner.

2. Memory Efficient

A normal function to return a sequence will create the entire sequence in memory

before returning the result. This is an overkill, if the number of items in the sequence

is very large.

Generator implementation of such sequences is memory friendly and is preferred

since it only produces one item at a time.

3. Represent Infinite Stream

Generators are excellent mediums to represent an infinite stream of data. Infinite

streams cannot be stored in memory, and since generators produce only one item

at a time, they can represent an infinite stream of data.

The following generator function can generate all the even numbers (at least in

theory).

def all_even():

 n = 0

 while True:

 yield n

 n += 2

4. Pipelining Generators

Multiple generators can be used to pipeline a series of operations. This is best

illustrated using an example.

Suppose we have a generator that produces the numbers in the Fibonacci series.

And we have another generator for squaring numbers.

If we want to find out the sum of squares of numbers in the Fibonacci series, we can

do it in the following way by pipelining the output of generator functions together.

Generators07.py

Line Code

1

2

3

4

5

6

7

8

9

10

11

def fibonacci_numbers(nums):

 x, y = 0, 1

 for _ in range(nums):

 x, y = y, x+y

 yield x

def square(nums):

 for num in nums:

 yield num**2

print(sum(square(fibonacci_numbers(10))))

Output

4895

This pipelining is efficient and easy to read (and yes, a lot cooler!).

