
Decorators

A decorator takes in a function, adds some functionality and returns it. In this

tutorial, you will learn how you can create a decorator and why you should use it.

Decorators in Python

Python has an interesting feature called decorators to add functionality to an

existing code.

This is also called metaprogramming because a part of the program tries to modify

another part of the program at compile time.

Prerequisites for learning decorators

In order to understand about decorators, we must first know a few basic things in

Python.

We must be comfortable with the fact that everything in Python (Yes! Even classes),

are objects. Names that we define are simply identifiers bound to these

objects. Functions are no exceptions, they are objects too (with attributes). Various

different names can be bound to the same function object.

Here is an example.

Decorators01.py

Line Code

1

2

3

4

5

6

7

def first(msg):

 print(msg)

first("Hello")

second = first

second("Hello")

Output

Hello

Hello

When you run the code, both functions first and second give the same output. Here,

the names first and second refer to the same function object.

Now things start getting weirder.

Functions can be passed as arguments to another function.

If you have used functions like map, filter and reduce in Python, then you already

know about this.

Such functions that take other functions as arguments are also called higher order

functions. Here is an example of such a function.

Decorators02.py

Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

def inc(x):

 return x + 1

def dec(x):

 return x - 1

def operate(func, x):

 result = func(x)

 return result

print(operate(inc,3))

print(operate(dec,3))

Run the code.

Output

4

2

Furthermore, a function can return another function.

Decorators03.py

Line Code

1

2

3

4

5

6

7

8

9

def is_called():

 def is_returned():

 print("Hello")

 return is_returned

new = is_called()

Outputs "Hello"

new()

Output

Hello

Here, is_returned() is a nested function which is defined and returned each time we

call is_called().

Finally, we must know about Closures in Python.

Getting back to Decorators

Functions and methods are called callable as they can be called.

In fact, any object which implements the special __call__() method is termed

callable. So, in the most basic sense, a decorator is a callable that returns a callable.

Basically, a decorator takes in a function, adds some functionality and returns it.

Decorators04.py

Line Code

1

2

3

4

5

6

7

8

9

def make_pretty(func):

 def inner():

 print("I got decorated")

 func()

 return inner

def ordinary():

 print("I am ordinary")

10

11

12

13

ordinary()

print('----After decoration-----')

pretty = make_pretty(ordinary)

pretty()

When you run the code, you will get the following,
I am ordinary

----After decoration-----

I got decorated

I am ordinary In the example shown above, make_pretty() is a decorator. In the

assignment step:
pretty = make_pretty(ordinary)

The function ordinary() got decorated and the returned function was given the

name pretty.

We can see that the decorator function added some new functionality to the original

function. This is similar to packing a gift. The decorator acts as a wrapper. The nature

of the object that got decorated (actual gift inside) does not alter. But now, it looks

pretty (since it got decorated).

Generally, we decorate a function and reassign it as,
ordinary = make_pretty(ordinary).

This is a common construct and for this reason, Python has a syntax to simplify this.

We can use the @ symbol along with the name of the decorator function and place it

above the definition of the function to be decorated. For example,
@make_pretty

def ordinary():

 print("I am ordinary")

is equivalent to
def ordinary():

 print("I am ordinary")

ordinary = make_pretty(ordinary)

This is just a syntactic sugar to implement decorators.

Decorating Functions with Parameters

The above decorator was simple and it only worked with functions that did not have

any parameters. What if we had functions that took in parameters like:
def divide(a, b):

 return a/b

This function has two parameters, a and b. We know it will give an error if we pass

in b as 0.

>>> divide(2,5)

0.4

>>> divide(2,0)

Traceback (most recent call last):

...

ZeroDivisionError: division by zero

Now let's make a decorator to check for this case that will cause the error.

Decorators05.py

Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

def smart_divide(func):

 def inner(a, b):

 print("I am going to divide", a, "and", b)

 if b == 0:

 print("Whoops! cannot divide")

 return

 return func(a, b)

 return inner

@smart_divide

def divide(a, b):

 print(a/b)

divide(2,5)

print("----------------------------")

divide(2,0)

This new implementation will return None if the error condition arises.

I am going to divide 2 and 5

0.4

I am going to divide 2 and 0

Whoops! cannot divide

In this manner, we can decorate functions that take parameters.

A keen observer will notice that parameters of the nested inner() function inside the

decorator is the same as the parameters of functions it decorates. Taking this into

account, now we can make general decorators that work with any number of

parameters.

In Python, this magic is done as function(*args, **kwargs). In this way, args will be

the tuple of positional arguments and kwargs will be the dictionary of keyword

arguments. An example of such a decorator will be:
def works_for_all(func):

 def inner(*args, **kwargs):

 print("I can decorate any function")

 return func(*args, **kwargs)

 return inner

Chaining Decorators in Python

Multiple decorators can be chained in Python.

This is to say, a function can be decorated multiple times with different (or same)

decorators. We simply place the decorators above the desired function.

Decorators06.py

Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

def star(func):

 def inner(*args, **kwargs):

 print("*" * 30)

 func(*args, **kwargs)

 print("*" * 30)

 return inner

def percent(func):

 def inner(*args, **kwargs):

 print("%" * 30)

 func(*args, **kwargs)

 print("%" * 30)

 return inner

@star

@percent

def printer(msg):

 print(msg)

printer("Hello")

Output

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Hello

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The above syntax of,

@star

@percent

def printer(msg):

 print(msg)

is equivalent to

def printer(msg):

 print(msg)

printer = star(percent(printer))

The order in which we chain decorators matter. If we had reversed the order as,

@percent

@star

def printer(msg):

 print(msg)

The output would be:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Hello

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

