
Benchmarking
In this module, we will learn how benchmarking help in addressing performance issues.

Suppose we had written a code and it is giving the desired result too but what if we want
to run this code a bit faster because the needs have changed. In this case, we need to
find out what parts of our code are slowing down the entire program. In this case,
benchmarking and profiling can be useful.

What is Benchmarking?

Benchmarking aims at evaluating something by comparison with a standard. However,
the question that arises here is that what would be the benchmarking and why we need
it in case of software programming. Benchmarking the code means how fast the code is
executing and where the bottleneck is. One major reason for benchmarking is that it
optimizes the code.

How does benchmarking work?

If we talk about the working of benchmarking, we need to start by benchmarking the
whole program as one current state then we can combine micro benchmarks and then
decompose a program into smaller programs. In order to find the bottlenecks within our
program and optimize it. In other words, we can understand it as breaking the big and
hard problem into series of smaller and a bit easier problem for optimizing them.

Python module for benchmarking

In Python, we have a by default module for benchmarking which is called timeit. With
the help of the timeit module, we can measure the performance of small bit of Python
code within our main program.

Example

In the following Python script, we are importing the timeit module, which further
measures the time taken to execute two functions – functionA and functionB –

Benchmarking01.py

Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

import timeit

def functionA():

 print("Function A starts the execution:")

 print("Function A completes the execution:")

def functionB():

 print("Function B starts the execution")

 print("Function B completes the execution")

start_time = timeit.default_timer()

functionA()

print(timeit.default_timer() - start_time)

start_time = timeit.default_timer()

14

15

functionB()

print(timeit.default_timer() - start_time)

After running the above script, we will get the execution time of both the functions as
shown below.

Output

Function A starts the execution:

Function A completes the execution:

0.0014599495514175942

Function B starts the execution

Function B completes the execution

0.0017024724827479076

Writing our own timer using the decorator function

In Python, we can create our own timer, which will act just like the timeit module. It can
be done with the help of the decorator function. Following is an example of the custom
timer –

Benchmarking02.py

Line Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

import random

import time

def timer_func(func):

 def function_timer(*args, **kwargs):

 start = time.time()

 value = func(*args, **kwargs)

 end = time.time()

 runtime = end - start

 msg = "{func} took {time} seconds to complete its execution."

 print(msg.format(func=func.__name__, time=runtime))

 return value

 return function_timer

@timer_func

def Myfunction():

 for x in range(5):

 sleep_time = random.choice(range(1,3))

 time.sleep(sleep_time)

if __name__ == '__main__':

 Myfunction()

The above python script helps in importing random time modules. We have created the
timer_func() decorator function. This has the function_timer() function inside it. Now, the
nested function will grab the time before calling the passed in function. Then it waits for
the function to return and grabs the end time. In this way, we can finally make python
script print the execution time. The script will generate the output as shown below.

Output
Myfunction took 8.000457763671875 seconds to complete its execution.

